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Chaotic mixing of highly filled viscous fluids is desired but hardly achieved in the 

electronic packaging industries.  The demand for high reliability found in electronic 

package attracts more and more researchers to study the properties and distribution of 

binders and filler particles.  These will affect properties such as coefficient of thermal 

expansion and stiffness.  Both of these contribute strongly to reliability.  The filler 

concentration, size distribution and spatial distribution must be examined in a structured 

manner to understand their effects on final properties.  However, most studies deal with 

filler concentration and size distribution, while very few studies have tied the particle 

spatial distribution to the properties.  It is not enough to just properly control the filler 

concentration and size distribution.  The more uniform filler distribution, the more 

uniform are local properties, and this can be achieved by well-designed mixing processes.   

   



Mixing is very important and in many cases the goodness of the mixing of fillers will 

affect or determine the properties of the products.  In this thesis, the local properties of 

electronic package and their relations with filler particle distribution are quantified.  For 

the first time, a new feed protocol that can generate chaotic mixing during filling cavity 

by implementing periodic and aperiodic filling process is presented.  Instead of using 

single gate in the molding process, we have developed a two-gate feeding protocol.  A 

numerical simulation experiment is conducted on a 2-D square cavity to examine the 

mixing of polymer fluid in low Reynolds number flows.  Since there are a vast number of 

geometries in electronic packages, only cavities with 46 and 49 bumps, which can be 

treated as solder balls or leadframe, is investigated.  Periodic and aperiodic feed protocols 

resulted in exponential growth of the distance between two adjacent particles, an 

indication of chaotic mixing.  Entropic study shows that the global mixing has been 

improved 858% compared to single gate feeding.  The improved properties and reliability 

could be foreseen in electronic package. 
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Chapter 1: Introduction 

 1.1 Motivation 

Mixing of highly viscous fluids is well known by its importance in the plastic 

manufacturing industry.  The mixing process is responsible for the final uniformity and in      

many cases, properties, of the polymer product.  The recent fast growth in electronic 

packaging field with the use of highly filled filler particles and some of minor additives, 

raised a new area of study, which is how to produce uniformly distributed filler particles 

and what mixing measures are applicable to such systems.   

With ever-finer area-array lead spacing, thinner packages, and smaller device feature 

size, control of highly filled mold compound’s properties and processing parameters 

becomes more important to satisfy the needs of current and new technologies.  This will 

be especially important to the electrical devices used in high temperature environment.  

The properties and distribution of binders and filler particles affect properties like 

coefficient of thermal expansion (CTE) and stiffness, both of which determine the stress 

index and thus contribute strongly to reliability [Pecht 95, Lantz 02].  The interplay 

between the chip size, pitch and the filler concentration, size distribution and spatial 

distribution must be examined in a structured manner to understand their effects on final 

properties.  The study of the mixing of filler particles cannot be overemphasized.  In our 

study the particle distribution resulting from mixing will play an important role and is to 
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be the focus of the research. 

Mixing is very important to the molding process.  In many cases it has been shown 

that the goodness of the mixing of fillers will affect or determine the properties of the 

products.  An uneven mixed electronic package could cause stress concentration due to 

CTE mismatch during the thermal cycle and final product failure such as delamination of 

the die.  

One goal in the molding process is to obtain uniform mixing.  Unlike fully filled 

mixers, which can mix well the mold compound as long as the time is enough, the 

process of electronic packaging with molding machine requires fast mixing during the 

cavity filling process.  This is foreseen to result in poor mixing and low reliability.  

One of the main contributions of this work to the study of mixing and chaos is the 

generation of chaotic flow while filling the empty cavity.  This thesis first investigates the 

properties of highly filled electronic package made using the traditional molding 

processes.  The local property and their relationship with filler particle distribution are 

quantified.  Then we investigate the minor solid constituent of the additives.  A new feed 

protocol that can generate chaotic mixing by making use of periodic and aperiodic filling 

procedure is proposed.  A square cavity model is constructed and the mixing of filler 

particles in this flow system is simulated by using a commercial software package.   

Another contribution of this work is to develop unique measures of mixing, which 

are applicable to quantify the mixing of highly filled system and tell the difference in 

electronic packages. 

This work is motivated by the role of mixing in the electronic packaging industry.  

This thesis represents the first effort to understand the chaotic mixing during the process 
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of filling empty cavity with certain geometries and quantity measures suitable to describe 

the mixing of highly filled systems.  With more than half of failure of electronic packages 

are due to thermal problems, this study becomes important and gives us a new direction 

to solve the problem. 

1.2 Concentration of research 

This thesis will emphasize the following topics:  

• Relations between properties of electronic package and filler particle distribution 

• Uneven particle distribution problem within the highly filled flow system 

• Novel feed protocol with mixing function embedded 

• Flow model and simulation 

• Measures of mixing 

1.2.1 Properties and filler particle distribution 

There is much information about the relationship between filler concentration, size 

distribution and properties [Deanin 89, Pecht 95, Sumitomo, Bae 00, and Lowry 01].  

However, there is little known or published about the role of filler particle distribution. 

In this study we investigate the effects of the filler particle distribution on the 

properties of electronic package and how this affects the product reliability.  It is 

desirable to know if a change of filler distribution will change local properties like CTE.  

1.2.2 Novel feed protocol 

The goal of this study is to design a novel feed protocol with a mixing function 
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embedded.  Previous studies have shown that at very low Reynolds number periodic flow 

can generate chaos in the laminar flow in fully filled cavities, and this chaos is essential 

to good mixing [Ottino 89, Muzzio 94].  Furthermore Muzzio [94] indicated that 

aperiodic flow could make more uniform mixing by deleting periodic points generated in 

periodic flow.  Both of the works examined fully filled flows in channels; in our study we 

apply the principles to the mold filling process. 

By generating chaotic flow regions during the molding process, we expect improved 

filler particle distribution, i.e. more uniform distribution, and thus improved reliability of 

electronic package. 

1.2.3 Flow model and numerical simulation 

The flow during molding process is a typical creeping flow since its Reynolds 

number is much less than 1.  A 2-D square cavity model is constructed and the 

streamlines and the mixing of fillers are obtained by using a commercial mold-simulating 

package, Moldflow®.   

Well-designed numerical simulation experiment is conducted.  Filling the cavities is 

simulated with 46 and 49 bumps representing either solder balls or leadframe inside and 

two gates one on top edge and one on left edge.  Velocity field obtained from Moldflow® 

is reconstructed by using Matlab® and interpolated by using triangular element method. 

1.2.4 Measures of mixing 

Both new and existing measures are carefully designed and selected to be used in 

this study.  These measures include area fraction, number average and volume average 

diameters, interparticle distance, stretching and entropy.  The first 4 measures are used 

for the analysis of actual electronic packages while the stretching and entropy are used 
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for the analysis of simulation results.  

1.3 Organization of the thesis 

Chapter 1 is the introduction and description of the main contributions of the study. 

Chapter 2 gives the background of mixing, chaos theory, chaotic mixing and measures of 

mixing.  It also presents details about both periodic and aperiodic flows, and how a 

researcher might choose parameters, which could define the period.  Chapter 3 provides 

the background on electronic package that includes the functions of molding compounds, 

effects of filler concentration, and of size distribution on properties.  Then the 

experimental study on electronic packages and detailed study on filler distribution and 

minor additive distribution.  Chapter 4 discusses the numerical modeling method and 

important parameters for this study.  Chapter 5 describes the theory of mixing model and 

measures to be used in the analysis.  The results from simulating a clear cavity without 

any bumps are presented.  Chapter 6 presents simulation results from filling cavity with 

bumps inside.  Single gate and two gates filling, periodic and aperiodic filling results are 

analyzed for stretching and entropy.  Chapter 7 is the conclusion of the dissertation. 
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Chapter 2: Background 

This chapter addresses mixing, chaos, and measures of mixing.  Laminar mixing 

theory will be introduced through its evolution to processing examples.  Then the 

development of the chaos theory will be discussed where detailed description is given to 

periodic and aperiodic chaotic flow, since these are the basis for this study. 

2.1 Mixing Theory  

In polymer processing, mixing significantly affects material properties, 

processability, and cost. Various reinforcing materials are mixed with polymers to 

increase moduli or impact toughness.  Additives are mixed with polymers to improve 

flame retardance or reduce coefficient of thermal expansion.  No engineers can accurately 

predict how efficiently a particular processor will mix from a quantitative theoretical 

basis, however. 

To achieve better mixing, we need to understand why flow during mold filling 

process doesn’t give good mixing, and why periodic and aperiodic flows generate chaotic 

flow and better mixing.   

The flow of the mold compound in the filling process is a creeping flow with the 

Reynolds number much less than 1 [White 91].  The filler particles are conveyed along 

the streamlines of the flow.  Since there are no crossing streamlines, mixing will be a 

minimum.  This is true for all constant flows.  Creeping flow in parallel plates and tubes 

are typical constant flows with parallel streamlines, and little mixing can be observed in 
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these flows. 

Turbulent flow is associated with random fluid motion and is a very effective 

mechanism for mixing.  The criterion for maintaining turbulent flow in any channel 

depends on the Reynolds number.  With the channel size D, the average velocity of the 

flow V in the channel, the fluid density ρ, and fluid viscosity η, the following relationship 

is valid for the Reynolds number: 

 

η
ρDV

=Re      (2.1) 

 
The Reynolds number must exceed a value of 2000 to achieve turbulence.  This 

means it is impossible to have turbulent flow in polymer melts, which have the extremely 

high viscosities and very low Reynolds number.  So laminar flow is the only mechanism 

for mixing of high viscosity polymers.  

Mixing is the intermingling by mechanical action of two or more initially segregated 

components.  Two distinct physical phenomena are involved in mixing: dispersion and 

distributive mixing.  Mixing in polymer melt processing is primarily the reduction of 

scales of segregation between fluids.  The scale of a polymer mixture is typically 

described by either an average striation thickness or the amount of the interfacial area.  

Interfacial area generation was recognized by Brothman et al. [Brothman 45] as a primary 

mechanism for mixing.  
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2.2 Chaos theory 

Chaos shows a system’s sensibility to initial conditions.  That is, the ability of two 

adjacent points to diverge in space over time.  A chaotic system offers the potential for 

significantly better mixing than non-chaotic systems.  Aref is commonly recognized as 

the first person to introduce chaotic flow in creeping flow [Aref 84].  He has studied 

stirring in a blinking vortex inside a closed circular geometry.  Ottino and others 

extended the fundamental understanding of mixing with the use of chaos theories  [Ottino 

86, 89].  The research concentrated on the study of a cavity flow with alternate periodic 

motion of one or two boundaries.   

2.2.1 Introduction to chaotic flows 

One of our goals is to achieve uniform mixing in desired regions.  Many studies have 

been conducted to find ways to generate chaos in laminar flow [Ottino 86, Leong 90, 

Muzzio 94, Anderson 00].  Almost all of them used periodic or aperiodic flow methods.  

These chaotic flows generally greatly enhanced the mixing.  We will introduce the cavity 

flow only because it is similar to filling an electronic package.  Bigg and Middleman 

simulated the circulating flow in a rectangular cavity based on the finite difference 

method [Bigg 74].  By plotting the distributions of advected particles at successive times, 

they simulated laminar mixing in a 2D rectangular cavity and showed excellent 

agreement with experiments results. 

2.2.2 Periodic chaotic flow 

Periodic cavity flow is defined in a rectangular domain with two moving walls and 
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fully filled fluid as shown in Figure 2.1 [Muzzio 94].  The aspect ratio is defined as H/L, 

where H is the height of the cavity and L is the length of the moving horizontal walls.  

Periodic flows are generated by alternatively moving the top and bottom walls with 

constant velocity each for a time T/2, where T, the period of the flow, is defined in 

dimensionless terms as the combined displacement of both walls during one period 

divided by the length of the cavity.  In two dimensional flows, crossing streamlines are a 

prerequisite for periodic flow.  

 

 

Figure 2.1 Idealized cavity flow is produced by moving the top and/or the bottom wall 

while keeping the vertical walls stationary [Muzzio 94] 

 

Motions a and b to describe the cavity flow, where motions a and b are respectively 

driven by the displacement of the upper and lower walls.  Then the time periodic flows 

are generated by the periodic sequence P, 
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abababababababababababababababab… 

2.2.3 Dimensionless time 

The dimensionless time or period of oscillation is important in terms of mixing 

efficiency.  Aref [Aref 84] defined this dimensionless period as: 

22 a
T

π
ν Γ

=        (2.2) 

where Γ is the stirring strength of the vortices.  The dimensionless period of oscillation f 

defined by Ottino [Ottino 86] is given as:  

L
HT

H
L

T

f
27
4

8
27

2 ==                    (2.3) 

and Zerafati [Zerafati 94] used the following definition: 

d

c

V
V

W
HJf 2

027
2

=      (2.4) 

The efficiency of mixing depends strongly on the value of f and there exists an 

optimal value of f that produces the best mixing in a given time.  

2.2.4 Effect of different f or T on mixing 

A computer simulation of periodic flow has been done by Muzzio [Muzzio 94].  

Figure 2.2 (a) – (c) shows the effect of changing T on mixing; where n is the number of 

period.  At low values of T = 2.0, particles move regularly for all initial positions (a), the 

flow is mostly regular.  For most values of T between 3 and 13, as in (b) T = 7.0, both 

regular and chaotic particle trajectories exist in the flow, and the periodic point (island) 
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can be clearly seen.  The flow is mostly chaotic when T = 5.6 (c).  However, we can only 

find the optimal T for good mixing by experiment or simulation.   

 

 

(a) 

 

(b) 

 

(c) 
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Figure 2.2 Stretching field of periodic cavity flows with different T: (a) T = 2.0, n = 50; 

(b) T = 7.0, n = 20; (c) T = 5.6, n = 20 [Muzzio, 94] 

Zerafati [Zerafati 94] studied f values from 0.58 to 3.49 and found that there is a 

threshold value for f (fc), increasing f above the critical value will substantially increase 

the mixing performance.  And this fc occurs between 0.58 and 1.16. 

2.2.5 Periodic points 

Time-periodic flows contain periodic points; some of these are elliptic and give rise 

to islands.  These islands must be removed if the flow is to achieve complete mixing. 

There are two kinds of periodic points:  

1) Elliptic (stable) periodic points: at the center of non-mixing rotating regions, 

called islands [Anderson 00].  In general, the lower the period, the larger the 

island.  In a time-periodic flow, regions of regular motion are due to the 

periodicity [Muzzio 94].  

2) Hyperbolic (unstable) periodic points: are centers of stretching in the flow, and 

these regions are favorable for mixing [Anderson 00]. 

2.2.6 Aperiodic chaotic flow 

The islands in time-periodic flows will result in poor mixing zone and should be 

removed.  Aperiodic flows are devoid of periodic points, and hence they are free of 

islands [Muzzio 94].  So we can expect more complete and efficient mixing in aperiodic 

flows.  Aperiodic flows can be generated in several ways [Muzzio 94, Ottino 89].  For 

example, the restricted random period (RRP) introduced by Muzzio.  

This aperiodic procedure is to impose a random perturbation of restricted magnitude 

   
 
 
 
 

12



 

to the duration of a and b.  Instead of T/2, the duration of each motion is given by 

T(1+εi)/2, where εi is a random number in the interval (0, 1).  The restricted random 

period prescription generated by this procedure can be represented as: 

a(ε1)b(ε2)a(ε3)b(ε4) a(ε5)b(ε6)a(ε7)b(ε8)a(ε9)b(ε10)a(ε11)… 

In Figure 2.3, for the same T and n as in Figure 2.2 (a), a very different situation is 

generated by using the aperiodic flow, considerably better mixing is achieved. 

 

 

Figure 2.3 Stretching field of aperiodic cavity flow [Muzzio 94] 

 

There are still many other aperiodic procedures that can be designed easily.  In this 

thesis, we decided that the restricted random period procedure is more suitable for our 

study and is used in the simulation. 

2.3 Mixing Measures 

Numerous measures and indices have been proposed to characterize a mixture’s state 
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of “mixedness.”  In laminar mixing theory, the fundamental equations relate interfacial 

area growth as a function of the shear field.  Direct measures determine the growth and 

reorientation of the interfacial area.  Indirect measures, such as the mixture’s bulk 

electrical conductivity, offer little insight into the mechanisms of mixing.  Most direct 

measures are simply related to interfacial area or striation thickness distributions. 

A comprehensive description of mixing requires both local and global measures. 

Local and global measures are developed and applied to the cavity flow of interest. 

2.3.1 Line growth 

The aim in the mixing process is to increase efficiently the interface between 

different fluids.  An interface should divide the bonding into two separate regions.  For a 

2-D analysis, a line interface will do the job.  Line growth is a very basic measure for the 

mixing. 

2.3.2 Interfacial area growth in a simple shear flow 

For a 3-D analysis an interfacial area is required to perform the task.  Spencer and 

Wiley [Spencer 51], in 1950, developed an equation for the growth of interfacial area in a 

simple shear flow: 

  

αcoss
A
A

i

f =      (2.5) 

 

where Ai and Af are the initial and final interfacial area, s is the magnitude of the shear 

strain, and α is the angle defining the initial orientation of the element relative to the 
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shearing plane.  This is the first fundamental study of mixing in a laminar flow.  It shows 

the growth of interface is linear. 

In the late 1970’s, Erwin showed that re-orienting the interfacial area, after 

substantial deformation, could improve the linear rate of mixing.  In a simple shear flow, 

as the interfacial area deforms it orients itself toward an unfavorable direction, parallel to 

the direction of shear.  If this area were re-oriented then the rate of growth of that area 

would be significantly larger.  The final growth in area could be greater-than-linear and 

approaches an exponential rate of growth, which is also an indication of chaos.  

Therefore, the linear mixing process has been improved when a process of area re-

orientation can be achieved [Conner 91].  This finding gave the ideas of how to generate 

chaotic mixing in a fully filled cavity to the other researchers. 

2.3.3 Interfacial area and principal values and directions 

A method which stands in continuum mechanics is developed to quantify the mixing 

process by relating interfacial area growth with the principal values and directions of the 

appropriate tensors [Zerafati 94].  This approach is good to find out which regions in the 

flow field will have efficient mixing.  It shows that if the maximum instantaneous rate of 

mixing is determined by the magnitude of the largest eigenvalue of the D tensor (rate-of-

deformation tensor), then tracking the orientation of the line relative to that value as they 

both vary throughout the flow field would give insight into the mixing, rather than just 

quantify it.  

If ci (i = 1, 2, 3) are the principal values of C (deformation tensor) and di (i = 1, 2, 3) 

the principal values of D, one of the ci’s quantifies the highest value for the stretch and 

   
 
 
 
 

15



 

one of the di’s characterizes the highest rate of stretch.  These eigenvalues, as well as the 

associated directions, are calculable.  When these two directions happen to be the same 

orientation, the highest rate of stretch will occur and when the direction of smallest ci and 

smallest di are the same, the stretch decreases at the highest rate.  The approach of 

relating mixing to the principal directions of the appropriate tensors is a criterion for 

determining the rate of stretch, therefore the rate of mixing. 

2.4 Mixing in empty cavity 

One of the main objectives of this research project is to generate chaotic mixing 

during the filling process of any empty cavities.  This is a unique contribution to the 

mixing study and it is one of the most difficult problems.  The most important reason is 

that, unlike the fully filled systems the mixing process can be as long as we want, the 

mixing time is equal to the filling time, once the cavity is filled the mixing process is 

finished.  Normally this filling time in a molding machine is on the order of seconds. 

All of the previous studies of the nature of chaos theory and the application are on 

chaotic advection in filled cavities.  None of them have touched filling of empty cavity.  

We are studying the case of filling an empty cavity where there is no steady flow and a 

moving flow front.  In that case some of the descriptions of the flow no longer are 

rigorous, nor the measures of the chaos.  While we are studying the filler distribution in 

electronic packages, it is more and more important to study the mixing during the filling 

process.  With the development of a novel feed protocol, we are finally able to generate 

chaotic flow and dramatically improve the local and global mixing. 
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Chapter 3: Experimental work on electronic packages  

This chapter provides basic knowledge of electronic package such as construction 

and functions of mold compound.  The molding process and failure modes will also be 

included.  Then experimental work on filler and minor additive distributions and their 

relations to properties will be reviewed.  

3.1 Background on electronic package  

3.1.1 Functions of electronic package 

Electronic packaging is the technology dealing with the mechanical and electrical 

connections between a die and the surrounding components together with protection of 

the chip from the environment.  Molded or underfilled electronic packages are used to 

protect silicon chips from harmful environmental conditions such as moisture, chemical 

agents, dust, and light, and to provide the chips with excellent mechanical strength.  

3.1.2 Structure of electronic package 

There are many kinds electronic packages.  A typical cross section of an electronic 

package with leadframe is shown in Figure 3.1.  An integrated circuit chip is physically 

attached to a leadframe, with bond wires as interconnections, and then it is molded in the 

specially prepared molding compound.  

The leadframe is the carrier for package assembly.  It acts as the mechanical support 

of the die for handling, wire bonding, and assembly.  The die attach is used as mechanical 
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attachment of the die to the leadframe paddle and provides heat dissipation from the die 

to the leadframe.  Bond wires are used as electrical contacts from the die bond pads to the 

leadframe [Pecht 95].  We will discuss the details of molding compounds in the next 

section. 

 

 
 

Figure 3.1 Electronic package construction  

 

3.1.3 Electronic packaging configurations 

There are many styles of configurations of electronic packages.  From the view of 

polymer processing they are all have one common characteristic, which is filling a cavity 

with certain geometry.  So we have chosen to study some typical electronic packages 

such as plastic quad flat package (PQFP) and transfer molded exposed die paddle (e-pad) 

leadframe microcircuit package.  The schematic illustration of a PQFP is shown in Figure 

3.2. 
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Figure 3.2 PQFP – Plastic Quad Flat Package  

 

The flip-chip technology is a relatively newer technology intended to meet ever-

increasing demand of high I/O requirements.  Unlike conventional packages, by using 

flip chip connections, the chip is placed face downward and the connection between chip 

and chip carrier is achieved by solder bumps rather than bond wires.  Since the solder 

bumps can be placed anywhere on the chip face, the I/O number can be increased.  This 

technique also has many other advantages such as better heat transfer, reduced 

capacitance, and reduced inductance, both are due to small size of the solder bumps.  The 

underfill technique has been developed and implemented for the flip-chip technology to 

enhance solder bump reliability.  The specially formulated epoxy encapsulant is 

commonly used as underfill material.  Figure 3.3 shows the structure of a flip-chip.  

 

 

Figure 3.3 Flip-chip with underfill 
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To be noted is that the gap between chip and substrate for a flip-chip is very small 

compared that for a PQFP.  The gap for a flip-chip is on the order of tens of microns, and 

that for a PQFP is a few millimeters.  Our simulation on filling empty cavity with bumps 

is more similar to a flip-chip. 

3.1.4 Role of molding compounds  

3.1.4.1 Components of molding compounds 

The electronic packages provide mechanical strength and protection of 

environmental hazards to the silicon die.  Epoxy resins are generally used as matrix for 

molding compounds; other resins include biphenyl resins and silicone resins.  Epoxy is a 

thermosetting polymeric material and need to be modified by the additives, such as 

inorganic fillers, in order to be used in plastic packaging of integrated circuit devices.  

These additives include: curing agents or hardeners, accelerators, inert fillers, coupling 

agents, flame retardants, stress-relief additives, coloring agents, and mold-release agents.  

3.1.4.2 Properties of epoxy resin 

The properties of epoxy resins depend on temperature, time and shear rate.  The 

epoxy resins are kept below their frozen point and can flow at a low initial viscosity after 

being thawed.  The gel time of a thermoset resin indicates polymerization rates.  After gel 

and cure, epoxy resins cannot flow as a true liquid, and their viscosity will go to infinity.  

The glass transition temperature Tg, which is characterized by a step drop in modulus, is 

an important parameter of epoxy resins.  Below the glass transition temperature, the 

material will be brittle.  Above the glass transition temperature, the material will behave 
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like a crosslinked rubber.  

The epoxy resins are non-Newtonian fluids with shear thinning viscosity and will 

show Newtonian behavior at a very low shear rate.  So in this study we will use the 

Carreau model, which attempts to describe a wide range of fluids for both Newtonian and 

shear-thinning non-Newtonian laws. 

The epoxy resins have a CTE much higher than that of the silicon die.  Below the 

glass transition temperature (Tg), the CTE of the most commonly used epoxy resins are in 

the range of 50-90 ppm/ºC, while the CTE of the silicon die is around 2.3-2.6 ppm/ºC.  

To minimize the thermal stress, it is necessary to reduce the CTE of the epoxy resins so 

as to reduce the CTE mismatch.  There are many ways to reduce the CTE and one 

effective way is to add fillers such as silica (SiO2).  Highly filled epoxy resins have 

reduced CTE and increased reliability. 

3.1.4.3 Fillers 

Fillers are used in the molding compounds to minimize the stress of electronic 

packaging by reducing the CTE mismatch between the silicon die and the molding 

compounds.  The weight percentage of the fillers is normally around 70% while the 

epoxy resins have a weight percentage around 20%.  Thus the volume percentage of the 

fillers is around 50%.  It is desirable to increase the filler content, but at a too high level 

(when it exceeds 90%) the properties of the molding compounds will decrease to an 

extent that it will no longer be useful [Bae 00]. 

Other functions of the fillers include: 

• Reduce the shrinkage (and thus reduce residual thermo-mechanical stress) 
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• Raise the elastic modulus and toughness 

• Prevent resin bleed at the molding tool parting line 

• Increase the viscosity, which is a disadvantage since it reduces the flowability 

Our study is to find how fillers distribution will affect product properties and 

reliability, and then propose a way toward improvements. 

3.1.4.4 Filler and properties  

Filler will affect the properties of the molding compounds by its content, shape, size 

and size distribution.  However, there is little known or published about the role of the 

filler particle distribution.  We will show how some important physical properties vary as 

a function of compositional variations.  

3.1.4.5 Effective CTE of molding compounds 

Many models have been developed to predict the effective CTE of the polymeric 

composite materials [Kwon 98, Shin 98, Vo 01].  Kwon also mentioned about 

inhomogeneous thermal properties due to uneven particle distribution.  One widely 

employed model for calculating the effective CTE of the composite is Kerner’s equation:  
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where α  is CTE, φ is volume fraction, K is bulk modulus, and K* is effective bulk 

modulus. The subscripts C, F, and M denote composite, filler, and matrix respectively. 
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Though this model is dealing with CTE of the bulk material, we are going to use it to 

estimate the local CTE as well, once we found the filler particle spatial distribution.  

3.1.4.6 Filler content and properties of the molding compounds 

Figure 3.4 shows the effect of lowering the CTE of the molding compounds as a 

function of the crystalline silica, α–alumina, and fused silica volume percentage.  

 

 

Figure 3.4 Relationship between filler type, volume percentage and the CTE of molding 

compounds [Pecht 95] 

 

3.1.4.7 Filler particle size and size distribution 

Previous studies show that increasing the filler content will decrease the CTE.  The 

epoxy resins filled with large-size particles have slightly higher values of CTE than that 

filled with small-size particles [Bae 00, Vo 01].  Vo explained that for a given volume 

fraction of filler, a smaller particle size has a larger fraction of interphase volume; i.e. the 
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region between the filler and the matrix.  Also they found that the CTE value decreased 

as the portion of smaller particle increased.  These factors will be ultimately related to the 

filler’s microstructure.  However, the effects of filler spatial distribution on material 

properties are not often addressed particularly in the area of electronic packaging.   

In an underfill reliability test, 1µm filler showed improved yield compared to 5 µm 

filler [Dory 00].  This is consistent with its reduced CTE. 

3.1.4.8 Filler particle distribution 

From the above we have shown that the properties of epoxy molding compounds 

(EMC) will be affected by filler content, particle size, and particle size distribution.  

These factors presumably will be ultimately related to the filler’s microstructure.  But 

little information has been found in previous works that address this issue (particularly in 

the area of electronic packaging).  We will propose a method to quantify the filler particle 

distribution, and find the relations between the properties of EMC and the interparticle 

distance (IPD).  

To be noted is that increasing filler content and decrease the filler size would always 

decrease the IPD, and the IPD is an important parameter, in most cases the smaller IPD 

will result in better properties [Bigio 01, Wu 85].  However, little study has been done on 

relations of IPD and CTE and most studies regard macroscopically the molding 

compounds as homogeneous materials, which is not appropriate when the mixing is poor. 

The relations of IPD and CTE would be worth investigating in the future research.  The 

more uniform mixing of filler particles the more uniform and better properties, since the 

IPD or variance of IPD is smaller. 
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3.1.5 Molding process and failure modes electronic package 

3.1.5.1 Molding process 

We will simulate a modified transfer molding press to mold chips.  We will describe 

the molding process below and discuss how we expect to design the new control system 

and the mold in order to achieve the periodic and aperiodic chaotic mixing. 

The molding facilities are used to mold the package assemblies [Manzione 90].  The 

molding equipment includes a transfer molding press, the mold and a dielectric preheater.  

Figure 3.5 shows the features of a transfer molding press and a mold.  

 

.  

Figure 3.5 Transfer molding press [Calce 03] 

 

The pre-shaped molding compound is dielectrically preheated first.  Then it is placed 

into the pot of the mold.  The plunger (hydraulic ram) is then activated and it pushes the 

molding compound into the cavities via the gates through the runner system.  Thus the 

chip is encapsulated.  After curing for 1-3 minutes, the molded package assemblies are 
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removed for the next process operation.  

3.1.5.2 Failure modes of the electronic packages 

While the goal of our research is to achieve uniform mixing and better properties, the 

way to judge the result is to see if it will reduce or delay the failure of electronic 

packages.  

There are many failure modes for electronic packages.  The failure modes related to 

the molding compounds include crack and delamination.  Crack can be brittle or ductile, 

or through fatigue crack propagation.  The most important reason of these kinds of failure 

is CTE mismatch.  CTE mismatch causes stress concentrations and since the flaws, like 

voids, are unavoidable, the cracks initiate from flaws.  

We expect to improve the reliability of electronic packages by reducing CTE 

mismatch through our feed protocol research. 

3.2 Experimental work on investigating of packaging properties as a 

function of filler microstructure in PQFPs  

3.2.1 Introduction 

In this section, we present experimental work on electronic packages.  These 

electronic packages were made by using conventional methods.  No chaotic mixing was 

performed.  This study concentrates on the effect of filler particle spatial distribution. 

Quantitative measures of the particle distribution were experimental determined, 

including area fraction, size and IPD.   
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3.2.2 Materials of chips  

An 80 leads PQFP with the dimension of 20mm × 13mm has been analyzed.  The 

molding compound is Sumitomo EME - 6300H.  The filler materials are a silica flake and 

sphere and a silicone rubber as a part of low stress modifier.  The filler concentration is 

about 70 wt% or 56 vol% and the effective CTE of 17 ppm/°C. 

To gain statistical significance another 3 molded quad flat packages (MQFPs) with 

the dimension of 27mm × 27mm have been studied.  The molding compound is EME - 

G700 and the filler is silica sphere.  The filler concentration is about 84 wt% or 72 vol%.  

The average filler size is between 10 ~ 20µm.  The effective CTE is 12 ppm/°C.  For both 

the molding compounds, Kf  = 34.8 GPa, Km = 3.01 GPa and for PQFP K* = 8.57 GPa, 

for MQFPs K* = 12.55 GPa.  

3.2.3 Experimental procedure 

The chips were received from the provider without further treatment. X-rays were 

taken to locate the die position for the cutting purpose. Since the chips are rectangular, 

the cutting planes were chosen to be parallel to one pair of the edges. 

3.2.3.1 Image acquisition 

The fill direction and cutting planes are shown in Figure 3.6 and we used F (Front), 

M (Middle), and B (Back) to denote three cutting planes.  Only M cut goes through the 

die.  Three pieces of each chip were encapsulated for better polish result.  We used 

several grades of polishing papers, i.e. from 600, 800, to 1200. Then we changed to finer 

polisher with 1µm, 0.3µm and 0.05µm diamond powders to finish the polish process.  
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For particles bigger than 1µm, Optical Microscopy is capable to catch them with 

sufficient clearness and is used for our study.  As shown in Figure 3.6, images were 

obtained at six places within one cross section.  There are 3 positions, which are L (Left), 

M (Middle), and R (Right) and two die positions, which are B (Below die) and U (Above 

die).  Thus each image will be denoted such as BLU, MLU etc.  There are total 18 images 

for one chip. 

3.2.3.2 Image processing software 

The images were modified by using common image tool and were analyzed by using 

‘Scion Image’, a shareware programmable image analysis package.  Since the fillers have 

a wide range of particle size, a 20× magnification which gives the viewing area of 325µm 

× 300µm was used.  If smaller particles are of interest, we can use 50× magnification. 

Macros, which can be incorporated into ‘Scion Image’, were developed to locate the 

particles, calculate the average particle diameter, and obtain the area fraction.  In addition 

one short macro was added to calculate the interparticle distance.  These measures will be 

introduced later. 

By employing a threshold criterion, which removes all of the particles smaller than 

9µm for Visteon chip and 8µm for MQFPs, the distribution of the larger silica particles 

can be examined.  These bigger particles account for more than 90% of the fillers, which 

means the significance will not be lost.  Figure 3.7 shows one of MQFP images – BLB 

(a) and the image after threshold and binary operation (b). 
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Figure 3.6 Sample image position and fill direction 
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(a) 

 

(b) 

 

      Figure 3.7 Image size 325µm × 300µm (a) Image BLB  (b) Image BLB after 

threshold and binary operation  
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3.2.3.3 Quantitative measures 

The size distribution and spatial distribution of the particles are of interest.  The 

measures that we are employing include: Diameter-volume dv, Diameter-number dn, Area 

fraction (AF), and Average IPD db.  Equations (3.2) and (3.3) are used for calculating dv 

and dn: 

 

∑
∑= 3

4

i

i
v d

d
d          (3.2) 
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d

d i
n

∑=                          (3.3) 

 

where di is the Feret’s diameter of the ith  particle.  N is the particle count. 

AF can approximate the volume fraction, and normally will be less than the volume 

fraction.  The closest IPD from border to border can be found by using dilation method.  

We can then deduce the distribution of IPD.  The average IPD to the nearest neighbor 

was thus calculated.   

3.2.4 Results and discussion 

3.2.4.1 MQFPs 

For MQFPs, since the chip is a square, to reflect the actual flow process, new 

grouping method is used as shown in Figure 3.8, and the figure is symmetric.  Three 

factors to be used are distance, position, and die position.  For distance, ‘-1’ is close to 

the gate and for position, ‘-1’ is on the left side.  Die position includes below ‘-1’ and 
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above the die ‘1’.  Thus a 2×3×3 ANOVA test was conducted to see if there has any 

effect of the distances from the gate and if the results are symmetric by position.  

 

 

Figure 3.8 Grouping method 

 

The image analysis results of MQFPs are shown in Table 3.1.  The statistical results 

with 3 replicates including ANOVA, main effect plots and interaction plots are obtained 

by using MINITAB.  The ANOVA results with all P values less than 30% are bolded and 

shown in Table 3.2.  The results are summarized below: 

Over 83% confidence that dv varies with position;  

Over 95% confidence that dn varies with distance;  

Over 97% confidence that db varies with distance. 

All the measures show the symmetric trend by position but not distance or die 

position.  This is clear by looking at Figure 3.9 – 3.12. 
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Chip 1 Chip 2 Chip 3   
AF dv dn db N AF dv dn db N AF dv dn db N 

FRB 32.94 27.15 15.67 8 105 37.73 41.21 16.63 6.99 107 36.74 35.09 16.98 7.6 91
MRB 40.58 52.62 16.54 6.92 100 39.94 36.83 16.95 7.4 94 39.75 40.73 17.02 7.39 92
BRB 40.97 42.38 18.18 7.06 87 38.99 40.76 18.15 7.37 89 43.24 49.49 18.34 7.39 85
FRU 38.79 34.63 16.24 6.85 104 41.88 37.38 17.89 6.43 92 41.7 35.51 16.95 6.1 103
MRU 40.06 46.93 17.96 7.84 87 38.19 41 18.17 7.2 85 35.67 40.26 17.85 8.03 80
BRU 32.97 26.5 15.74 8.19 96 37.82 42.11 17.7 7.93 86 41.29 43.97 17.16 6.32 95
FMB 36.58 34.42 16.87 7.37 95 42.89 40.22 18.37 6.57 91 34.58 35.85 15.47 8.68 109
MMB 43.08 51.68 17.09 6.57 98 38.11 35.39 16.71 7.85 92 34.09 30.97 16.11 7.61 103
BMB 37.42 35.11 16.35 7.43 98 35.14 32.04 16.98 8.89 94 46.1 53.59 22.37 7.47 68
FMU 33.97 45.14 15.57 8.06 105 34.55 42.01 16.17 8.06 100 37.77 34.84 16.78 8.09 90
MMU 39.39 38.93 17.36 5.69 90 40.18 44.83 17.5 7.73 96 42.43 42.34 18.95 7.45 84
BMU 40.47 37.71 18.25 7.81 94 41.01 39.62 17.23 7.05 95 41.55 40.45 17.11 7.24 98
FLB 31.7 35.8 16.29 9.17 92 43.07 42.82 18.3 5.56 90 39.33 37.43 16.26 7.21 96
MLB 40.54 42.87 16.32 7.3 91 43.95 42.19 17.67 6.37 92 38.4 47.01 18.81 9.44 68
BLB 38.35 35.82 17.28 8.17 93 37.2 43.71 18.25 8.47 81 35.19 36.34 17.63 8.83 87
FLU 42.91 35.81 18.58 5.67 86 46.37 43.11 18.45 5.91 87 45.79 44.9 20.48 7.19 72
MLU 35.86 35.53 16.2 8.72 103 46.78 47.8 20.33 7.1 71 36.71 39.02 20.34 9.25 69
BLU 39.28 37.65 18.53 7.64 90 32.9 31.67 17.44 9.15 92 38.85 36.44 17.19 6.92 98

Table 3.1 Results from image analysis of 3 MQFPs 

 
ANOVA: Area Fraction, dv, dn, db versus Distance, Position, DiePosition 
Factor Type Levels Values 
Distance fixed 3 -1     0    1 
Position fixed 3 -1     0    1 
DiePosition fixed 2 -1     1 
Analysis of Variance for AF 

Source DF SS MS F P 
Distance 2 39.16 19.58 1.46 0.244 

Position*DiePos 2 35.18 17.59 1.31 0.281 
Analysis of Variance for dv  

Source DF SS MS F P 
Position 2 129.81 64.91 1.86 0.169 

Analysis of Variance for dn  
Source DF SS MS F P 

Distance 2 11.707 5.853 3.42 0.043 
DiePos 1 2.053 2.053 1.2 0.28 

Position*DiePos 2 4.568 2.284 1.33 0.275 
Analysis of Variance for db  

Source DF SS MS F P 
Distance 2 6.7159 3.3579 4.13 0.023 

Table 3.2 ANOVA test results of MQFPs with 3 replicates 
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Figure 3.9 Main effects plot – data means for AF 

 

 

Figure 3.10 Main effects plot – data means for dv 

 

Figure 3.11 Main effects plot – data means for dn
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Figure 3.12. Main effects plot – data means for db

 

AF values can be used to predict the local CTE difference by using Equation (3.1). 

The minimum AF is 31.7% and the maximum AF is 43.1% for chip 1.  If α F = 0.6 

ppm/°C, α M = 68 ppm/°C, then ∆α C  = 5.3 ppm/°C.  Since AF is not equal to actual 

volume fraction due to that only the large particles are considered, the volume fraction, 

which is 72%, of the molding compound is used as the mid point to get the minimum and 

maximum volume fraction, then ∆α C is calculated.  So the difference of CTE can be as 

big as 5.3 ppm/°C at different locations within one chip.  This value is about 44% of the 

effective CTE, which is about 12 ppm/°C.  This value cannot be neglected when we study 

the reliability of the PEM.  The prediction provided here could be useful for the future 

work of experimental verification. 

3.2.4.2 PQFP 

The results of image analysis are shown in Table 3.3.  Since the PQFP is rectangular 

other than square, three factors have been used are the plane, position and die position, as 

shown in Figure 3.6.  By using MINITAB’s ANOVA, the statistical differences between 

different planes, positions or above and below the die can be found.  It will be shown that 

   
 
 
 
 

35



 

the different measures each have a statistical variation in some direction in the part.  

What is interesting, and worth interpretation, is that the variations are in different 

directions for different measures.  Table 3.4 shows the ANOVA results of AF, dv, dn, and 

db vs. die position, plane, and position and their two-factor interactions. 

 

 AF dv dn db N 
BLB 0.3235 31.561 16.085 7.98 97 
MLB 0.3608 30.49 16.462 6.96 112 
FLB 0.3068 30.181 16.765 9.27 88 
BLU 0.3218 36.925 17.661 8.55 94 
MLU 0.3496 32.014 16.161 6.35 110 
FLU 0.3672 33.189 16.951 6.37 98 
BMB 0.324 28.386 15.857 6.58 107 
MMB 0.3503 29.887 16.509 6.61 109 
FMB 0.2858 26.677 16.338 7.76 101 
BMU 0.3536 30.164 16.336 6.07 122 
MMU 0.3182 26.958 16.468 7.23 107 
FMU 0.3072 22.951 15.667 6.67 108 
BRB 0.2909 22.735 14.432 7.79 113 
MRB 0.3217 33.213 15.602 8.77 101 
FRB 0.3111 23.665 15.314 8.14 118 
BRU 0.3325 26.802 16.018 6.49 118 
MRU 0.3838 28.249 17.078 6.07 107 
FRU 0.2945 26.52 15.846 8.14 116 

Table 3.3 Image analysis results of Visteon chip 

 

1. AF: 

• No significant effect of any of the three factors or their two-factor 

interactions 

2. dv: 

• Over 99% confidence that dv varies with position 

• Over 90% confidence that dv varies with plane 
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• Over 90% confidence that dv varies with interaction of die position and plane, 

plane and position 

The response curves are shown in Figure 3.13.  It shows that dv decreases with plane 

and position away from the feeding gate.  This could be caused by the less flowability of 

the large particles. 

 

ANOVA: Area Fraction, dv, dn, db vs. Die Position, Plane, Position 
Factor   Levels Values 
DiePos  2 1-Jan 
Plane  3 0     1    -1 

Position   3 0     1    -1 
Analysis of Variance for AF 

Source DF SS MS F P 
Plane 2 0.003853 0.001927 1.91 0.262 

Analysis of Variance for dv  
Source DF SS MS F P 
Plane 2 28.222 14.111 5.19 0.077 

DiePos*Plane 2 25.758 12.879 4.74 0.088 
Position 2 109.78 54.89 20.2 0.008 

DiePos*Position 2 18.221 9.11 3.35 0.14 
Plane*Position 4 49.628 12.407 4.57 0.085 

Analysis of Variance for dn  
Source DF SS MS F P 
DiePos 1 1.2918 1.2918 10.68 0.031 

DiePos*Plane 2 1.1324 0.5662 4.68 0.09 
Position 2 2.7985 1.3993 11.57 0.022 

DiePos*Position 2 1.2258 0.6129 5.07 0.08 
Plane*Position 4 1.6523 0.4131 3.42 0.131 

Analysis of Variance for db

Source DF SS MS F P 
DiePos 1 3.485 3.485 2.75 0.172 

Table 3.4. Results of ANOVA analysis 
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Figure 3.13 Main effects plot – data means for dv  

 

3. dn: 

• Over 95% confidence that dn varies with die position and position  

• Over 90% confidence that dn varies with interaction of die position and plane, 

die position and position  

The response curves are shown in Figure 3.14 with dn vs. position has the same trend 

as dv.  

 

 

Figure 3.14 Main effects plot – data means for dn

4. db: 
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• Over 80% confidence that db varies with die position. 

• No significant effect of other two factors or any of the two-factor 

interactions.  

The response curves are shown in Figure 3.15.  The db will be smaller below the die.   

 

 

Figure 3.15 Main effects plot – data means for db

 

The above results clearly indicate that the different places within the chip will greatly 

affect the distribution of filler particles by its size.  This could also be related to the flow 

conditions and package geometry, and more study is needed to understand its effect.  We 

know that the particle size can affect CTE and thermal conductivity of the molding 

compounds, so the non-uniform particle size distribution is undesirable because it will 

cause different properties within the molding compounds.  By implementing our new 

feed protocol we would expect this variance be minimized. 

By using Equation (3.1), we can estimate the CTE difference.  The minimum AF is 

28.6% and the maximum AF is 38.4%.  Using the similar method for MQFPs, for α F = 

0.6 ppm/°C, α M = 58 ppm/°C, we have ∆α C = 5.5 ppm/°C. This value is about 27% of 
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the effective CTE, which is about 17 ppm/°C. 

3.2.5 Conclusions 

Two kinds packages with different geometry are studied, one is square, and the other 

is rectangular.  Images obtained from cross sections at various places are analyzed for the 

particle distribution.  A set of measures include dv, dn, AF and db have been created to 

assess the particle distribution.  These measures are supposed to tie to different 

properties, and more general work need to be done to determine which measures are the 

key factors for which property.  

The statistical results show that the filler particles are not uniformly distributed 

within the package.  It can be found that different measures vary in different directions.  

For MQFPs, over 83% confidence that dv varies with position, over 95% confidence that 

dn varies with distance, and over 97% confidence that IPD varies with distance.  For 

Visteon chip, dv is affected by plane, position and interactions of die position and plane, 

plane and position; dn affected by die position, position and interactions of die position 

and plane, die position and position.  

The uneven distribution has a big influence on local CTE property, and could affect 

the reliability.  In this study the CTE is tied to AF.  The maximum AF variation is found 

about 10% and makes a local CTE difference more than 5 ppm/°C.  This value is about 

44% of the effective CTE for MQFPs and 27% of the effective CTE for PQFPs.  These 

differences could be harmful to the reliability of the packages. 

3.3 Experimental work on distribution of a minor solid constituent in a 
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transfer molded e – pad leadframe package 

This study investigates the spatial distribution of a minor particulate constituent in a 

transfer molded exposed die paddle (e-pad) leadframe microcircuit package.  Packages 

were polished at three depths parallel to its top surface.  Levels 1 and 2 are above the die 

and leadframe while level 3 is just below the top surface of the die and leadframe.  The 

distribution of area fraction and size of the particulate was analyzed for each level and 

with respect to the distance from the gate using micro-photographic image analysis.  A 

non-uniform distribution of the particulate material for both particle size and location is 

evident, and its relations with gate, die and leadframe are interpreted.  ANOVA tests 

were conducted to assess the statistical significance of the variations.  

3.3.1 Introduction 

Encapsulation using a transfer molding process is the most common packaging 

method for integrated circuits.  There may be eight or more major constituent in a 

molding compound used for encapsulation and the physical and chemical compositions 

may vary with purpose of use and by manufacturer.  Table 3.5 summarizes some of the 

typical constituents and their concentration in mold compound formulations.  The 

molding compound constituents are mixed and formed into a pellet.  In the transfer 

molding process, the pellet is heated and forced by pressure, usually at a temperature 

around 175°C, into a mold to encapsulate microcircuits.  Generally, the molding process 

takes a few minutes and the encapsulant is sufficiently cured for the part to be removed 

from the mold.  Then the encapsulated parts are further cured, usually for approximately 

2 to 6 hours [Tummala, 88, Wright 92, Manzione 90]. 
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Constituent Concentration (wt. %) 
Inert fillers 75 – 90 % 
Epoxy resin  8 – 20 % 
Curing agents (Hardeners) 3 – 10 % 
Stress-relief additives  1 – 5 % 
Flame retardants 0.3 – 5 % 
Mold-release agents  0.1 – 1.0 % 
Coloring agents  0.2 – 0.4 % 
Accelerators 0.2 – 0.3 % 

Table 3.5 Major constituents in typical molding compound formulations 

 

In our study we selected devices, which use a red phosphorous flame retardant 

material added to the molding compound as a minor solid constituent.  Because this 

material is red, it offers a unique opportunity to optically study distribution 

characteristics.  The particulate material has only a small volume percentage, which is 

approximately up to 0.64 vol%, and thus the spatial distribution of the particles can 

provide information on the area fraction and size of the particles, and their relation with 

the gate, die and lead frame. 

There is much literature on the particle size distribution in mold compounds [Nguyen 

93, Baikerikar 00, Iwasaki 97, Garrett 98], but negligible studies have been conducted on 

the particle spatial distribution, or the spatial particle size distribution.  Experiments have 

previously been performed on plastic packages to investigate the silica filler distribution 

by studying the cross sections of the packages [Huang 03].  The disadvantage of studying 

the filler is that its volume fraction is too high to assess flow characteristics.  In this 

study, a minor constituent is investigated and assessed in terms of the particle distribution 
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along the filling direction at different planar levels. 

3.3.2 Description of the packages and experimental technique 

The e-pad package (shown in Figure. 3.16) has an exposed die paddle and thus the 

flow of mold compound can be uniquely assessed.  Two Philips 80-lead transfer molded 

e-pad leadframe microcircuit package, with dimensions of 14mm × 14mm and thickness 

of 0.9mm, were studied.  One package contained the mold compound Sumitomo EME-

7351UT and the other Sumitomo EME-7351UL.  Both contained the same resin, 

spherical silica filler, and particulated red phosphorous flame retardant.  

 

 

Figure 3.16 Schematic diagram of the e-pad package 

 
The packages were polished using 3 grades of polishing papers, i.e. from 600, 800, to 

1200.  The packages were polished to three levels: 0.1 mm, 0.2 mm and 0.4 mm below 

the top surface; defined as level 1, level 2, and level 3 respectively.  The fill direction and 

locations of levels 1, 2, 3 are shown in Figures 3.17 (a) and (b).  A 26 × 21 grid was then 

formed over the surface and images of the cells were obtained.  Each cell in the grid was 

658µm × 517µm, and the scan resolution per cell was 1315 pixels × 1033 pixels, or 

0.5µm per pixel length.  In total, 273 alternating cells were studied per layer for layers 1 
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and 2.  A schematic of the surface is shown in Figure 3.18.  

 

   

(a) 

 

(b) 

Figure 3.17 (a) Schematically show the fill direction; (b) A-A view shows the 

locations of levels 1, 2, 3 
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Figure 3.18 Surface plot of area fraction of level 1, the gray scale shows the percentage of 

the red particulate 
 

Figure 3.19 shows one of the images obtained from level 1 for the 7351UL package. 

It represents the size and shape of a single cell.  The white areas in this grayscale 

photograph are the red particulate.  The other regions include the silica filler resin and 

other constituents.  There were no visibly significant differences in the two mold 

compound types. 

A different method was used for level 3 since it contains the leadframe and die. In 

this case, the regions between the lead frames and the die were analyzed first.  Figure 

3.20 shows the polished surface of level 3.  At this level, selected positions between the 

leads were analyzed with a smaller cell size, which is 300µm × 200µm. 

3.3.3 Results and discussion 

Each image of the cell in the grid was analyzed using ‘Image Pro-plus®’ to assess 

constituent area fractions.  The agglomerates were treated as single particles. Particles 
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intersecting the cell boundaries were ignored.  Figures 3.18 and 3.21 – 3.23 show 2-D 

and 3-D plots of the area fraction for levels 1 and 2 for the 7351UT mold compound. 

These figures show distributions from a single replicate. 

 

 

Figure 3.19 A sample image obtained from level 1 

 

 

Figure 3.20 Image of level 3 showing the die and leadframe 
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Figure 3.21 3-D plot of area fraction of level 1 

 

 

 

Figure 3.22 Surface plot of area fraction (%) of level 2  
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Figure 3.23 3-D plot of area fraction of level 2 

 

Statistical analysis, using Minitab®, was performed to assess two factors which could 

affect the particle distribution: one is the distance from the gate, and the other is the level. 

The distance factor is sketched in Figure 3.24 with –1, 0 and 1 indicating near to gate, 

center and far from gate respectively.  Also 1 is assigned to level 1 and -1 is assigned to 

level 2.  Level 3 is not compatible with levels 1 and 2, because of the existence of the die 

and leadframe.  As a result level 3 could not be included in the ANOVA.  Then a 2 × 3 

ANOVA test was performed.  A total of 6 replicates have been used for each factor in the 

study.  All other cells outside the selected locations were not analyzed.  Another possible 

factor, e.g., left, middle and right of the gate location was not significant and is not 

included. 
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Figure 3.24 Distance factor 

 

Before performing the actual ANOVA test, a convergence study was conducted.  A 

series of replicates from 2 to 7, which were chosen from the same location of the 

package, have been analyzed for area fraction with distance and level factors.  Figure 

3.25 shows that the P-value converges as the number of replicates increases, where the P-

value is the probability that the variation between factors may not have occurred by 

chance [Ostle, 96].  The conclusion is that sufficient accuracy can be obtained if the 

number of replicates is greater than 5.  Therefore, for this study 6 replicates were 

analyzed for each factor for each of the three levels.  

3.3.3.1 Area fraction and size distribution results for the package with 7351UT 

Table 3.6 and 3.7 show area fraction data for each factor from each level.  The 

ANOVA test results in Table 3.8, show that the effects of distance and level are 

significant, and the interaction between distance and level is also significant.  There is 

over 95% confidence that area fraction increases with distance from the gate.  The reason 
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may be related to flow properties and particle properties.  The higher density particles 

tend to move further in the cavity after it is filled.  There is over 99% confidence that area 

fraction varies with level.  This could arise due to particle settling and particle migration 

[Huang 04].  Particle settling is described as filler particles “sinking” under their own 

weight.  Particle migration is a phenomenon in which particles gradually migrate from 

regions of higher shear rate towards those with lower shear rate until they reach a steady 

configuration due to interparticle interactions, such as hydrodynamic, electrostatic, and 

surface interactions.  Particle migration is likely to be seen in high aspect ratio channels. 

Both mechanisms will result in more particles at the lower level.  The thinner the 

package, the greater the occurrence of the two mechanisms. 

 

 

 

 

Figure 3.25 Convergence study for area fraction 
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  Area Fraction of 6 × 6 samples – Levels 1 & 2 

L1 (-1) 0.541 0.327 0.529 0.159 0.544 0.615 
L2 (-1) 0.493 0.516 0.818 0.358 0.405 0.534 

Average 
Area 

Fraction 

L1 (0) 0.404 0.465 0.487 0.276 0.834 0.184 L1 
L2 (0) 0.378 0.711 0.924 0.544 1.079 0.444 0.465 
L1 (1) 0.866 0.121 0.282 0.275 1.097 0.362 L2 
L2 (1) 1.655 1.146 0.971 0.581 1.068 0.88 0.75 

Table 3.6 Area fraction (%) results with 6 replicates, L1 & L2 indicate level 

 

  Area Fraction of 6 × 3 samples – Level 3 
L3 (-1) 0.214 0.175 0.327 0.683 0.379 0.284 

Average Area
Fraction 

L3 (0) 0.403 1.138 0.412 1.183 0.898 0.46 
L3 (1) 0.42 0.639 0.926 0.731 0.773 0.647 

0.594 

Table 3.7 Area fraction (%) results with 6 replicates, L3 indicates level 

 

ANOVA: Area Fraction, versus Distance, Level 
Factor Type Levels of a factor Values 
Distance fixed 3 -1     0    1 
Level fixed 2 -1     1 
Analysis of Variance for Area Fraction 
Source Degree of freedom F P 
Distance 2 3.56 0.041 
Level 1 9.78 0.004 
Distance*Level 2 2.32 0.116 

Table 3.8 ANOVA test results 

 

The particle size distribution results are shown in Tables 3.9 – 3.11.  The mean 

diameter measurement is defined as the average length of diameters measured at two 

degree intervals and passing through the object’s centroid.  Thus the various shapes of the 

particles can be compared using mean diameter.  The average observable diameter dn = 

∑di/N and the volume average diameter dv = ∑di
4/di

3, where i indicates each particle, are 
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defined the same as in [Huang 03].  However, the image obtained for a particle will most 

often not coincide with the maximum diameter.  Corrections can be made to estimate 

diameters from cross-sections, and it will have the similar size distribution as the 

measured mean diameters. 

 

Level  & Factor   
L1 (-1) by the gate L1 (0) L1 (1) Average 

No. of Particles 122 172 182 159 
dn (µm) 7.95 6.97 7.28 7.4 
dv (µm) 26.28 19.87 24.91 23.69 

Table 3.9 Results of particle number and size for six cells of level 1 

 
Level & Factor   

L2 (-1) by the gate L2 (0) L2 (1) Average 
No. of Particles 226 251 281 253 

dn (µm) 6.91 7.32 8.14 7.46 
dv (µm) 13.22 19.06 30.74 21.01 

Table 3.10 Results of particle number and size for six cells of level 2 

 
Level & Factor   

L3 (-1) by the gate L3 (0) L3 (1) Average 
No. of Particles 175 250 311 245 

dn (µm) 6.54 7.39 6.63 6.85 
dv (µm) 14.26 31.01 18.44 21.24 

Table 3.11 Results of particle number and size for six cells of level 3 

 

Based on measurements or measured (or observable) particle diameter at level 2, dv 

is increasing with the distance from the gate.  One explanation is that the larger particles 

have more time to settle down as they are flowing away from the gate.  This also affects 

the size distribution with respect to distance from the gate. 
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The average number of particles in level 3, dn and dv are similar to level 2.  Both 

have more particles than level 1.  Table 3.7 shows that the area fraction of level 3 is 

larger than level 1, however it is not larger than level 2, possibly because the leads and 

die can influence the particle distribution.  However, the results indicate that particle 

settling and particle migration occur.  

The particle distribution between the leads was studied in more depth.  Since the 

space between the leads is small, a much smaller frame (cell) is used for the analysis.  

The size of the frame is 300µm × 200µm.  The average observable particle sizes are: dn = 

5.55 µm and dv = 19.82 µm.  These are the smallest among all the levels.  On the other 

hand, the average area fraction is 0.75%, which is the same as that of level 2, and larger 

than level 1.  If the numbers of particles are compared, the average number density is 

58/mm2 for the images between the leads, and the number density for levels 1 to 3 are 

19.5/mm2, 31/mm2, and 30.2/mm2 respectively.  Thus, although particles appear to be 

smaller between leads, the number density is the largest, which is why it has the largest 

area fraction.  

3.3.3.2 Area fraction and size distribution results for the package with 7351UL 

In the assessment of the part using Sumitomo 7351UL, Table 3.12 and 3.13 show the 

selected area fraction data for each factor from each level.  The ANOVA test results in 

Table 3.14 show that the effects of distance and level are significant.  There is over 75% 

confidence that area fraction varies with distance and over 97% confidence that area 

fraction varies with level.  

The data mean plot for area fraction is shown in Figure 3.26.  It shows that the area 
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fraction increases as the distance from the gate increases.  The reason may be related to 

flow properties and particle properties.  Level 2 has a larger area fraction than level 1. 

This could arise from particle settling and particle migration [Huang 04].  Both 

mechanisms will result in more particles at the lower level.  A larger area fraction means 

either more or larger particles. 

 

  Area Fraction of 6× 9 samples – Levels 1 & 2 
L1 (-1) 0.4302 0.4117 0.2858 0.7033 0.5734 0.6539 
L2 (-1) 0.7256 0.5771 0.6318 0.6849 0.9651 0.8487 

Average 
Area 

Fraction 

L1 (0) 0.5686 0.4526 0.7481 0.6054 0.6333 0.7117 L1 
L2 (0) 0.5702 0.5216 0.4806 1.019 0.9947 0.6644 0.596 
L1 (1) 0.506 0.5508 0.634 0.8449 0.7422 0.6722 L2 
L2 (1) 0.9691 0.6835 0.8467 0.7512 0.9382 0.7248 0.755 

Table 3.12 Area fraction (%) results with 6 replicates, L1 & L2 indicate level 

 

  Area Fraction of 6× 9 samples – Level 3 Average Area
L3 (-1) 0.4665 0.4839 0.4518 0.4578 0.9527 0.3318 Fraction 
L3 (0) 0.7092 0.3258 1.0915 0.3741 0.6699 0.4231 
L3 (1) 0.5903 0.4181 0.8646 0.6277 0.7852 0.4363 

0.581 

Table 3.13 Area fraction (%) results with 6 replicates, L3 indicates level 

 

 

 

 ANOVA: Area Fraction, versus Distance, Level 

Factor Type Levels of a factor Values 

Distance fixed 3 -1     0    1 

Level fixed 2 -1     1 
Analysis of Variance for AF 
Source Degree of freedom  F P 
Distance 2 1.486 0.242 
Level 1 5.209 0.03 
Distance*Level 2 0.989 0.384 

Table 3.14 ANOVA test results 
 

   
 
 
 
 

54



 

 

Figure 3.26 Plot of mean area fraction as a function of distance from the gate and level 

 

The particle size distribution results are shown in Tables 3.15 – 3.17.  For all levels 

there is only a slight difference in dn, but the number of particles increases significantly 

with distance factor away from the gate.  The smallest dv is located far from the gate. 

Levels 2 and 3 have a larger dv.  These results only slightly different from the package 

with 7351UT.  It appears that area fraction differences result from the difference of the 

number of particles.  For dvmax ( = the largest value of  dv for a level), level 3 > level 2 > 

level 1 for both compounds, so the largest particles seem to settle to somewhere along the 

leadframe. 

The particle distribution between the leads was studied and the observable average 

particle sizes are: dn = 4.88 µm and dv = 11.76 µm.  All other trends are similar to the case 

with the 7351UT mold compound. 

 

   
 
 
 
 

55



 

Level & Factor  
L1 (-1) by the gate L1 (0) L1 (1) Average 

No. of Particles 376 351 546 424 
dn (µm) 5.35 5.93 5.25 5.51 
dv (µm) 16.79 18.55 14.46 16.6 

Table 3.15 Results of particle number and size for six cells of level 1 

 

Level & Factor  
L2 (-1) by the gate L2 (0) L2 (1) Average 

No. of Particles 436 444 510 463 
dn (µm) 6.53 5.61 4.9 5.68 
dv (µm) 22.07 18.4 18.73 19.73 

Table 3.16 Results of particle number and size for six cells of level 2 

 

Level & Factor  
L3 (-1) by the gate L3 (0) L3 (1) Average 

No. of Particles 372 452 517 447 
dn (µm) 5.4 5.2 5.15 5.25 
dv (µm) 20.37 28.74 12.98 20.7 

Table 3.17 Results of particle number and size for six cells of level 3 

 

3.3.4 Conclusions 

The distance from the gate and the depth (level) within the package are factors that 

will affect the distribution of a minor constituent in a molded microcircuit package.  In 

fact, there is significant confidence that area fraction varies with distance from the gate 

and that area fraction varies with level.  In addition, the number of particles increases as 

the distance from the gate increases.  This trend is the same for the area fraction 

indicating that the area fraction trends result from the difference of the number of 
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particles.  Particle migration and particle settling can explain these results. 

The average area fraction found between the leads is the same as that of level 2, and 

is bigger than level 1.  Also the number of particles is the largest between the leads, even 

though the average particle size found between the leads is the smallest among all 3 

levels. 
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 Chapter 4: Modeling and Numerical Simulation 

This study will be the first time of a simulation demonstrating the effect of chaotic 

advection during the filling of an empty cavity and the combining of the molding and 

mixing processes.  To demonstrate the mixing efficiency of the novel feed protocol, we 

chose to apply it to a square rectangular cavity.  A common molding process fills into a 

given volume.  The ability to repeat the process for the number of cycles, which make 

demonstration of the chaos, is not easy to do.  The numerical simulation of mixing for 

fully filled cavity flow that have been reported in the literature have multiple, non-

constant, time-varying boundaries.  There is no report found that has studied the mixing 

during a cavity filling process due to its difficulty, which lies in the much less time for 

mixing. 

Several software have been developed to simulate the flow of the molding process 

using various molding machines, such as injection molding, extrusion, and transfer 

molding, etc.  They are focusing on the gate location, cured properties, etc; the mixing 

within the flow has never been touched.  One contribution of this study is the 

development of the numerical method to simulate the mixing of solid particles for a 

molding process.  The program developed in this study to quantify the mixing could be 

incorporated in the commercial molding software, thus expanding the functions of these 

software to a brand new level. 

This chapter will first present the governing equations for creeping flow.  Then the 

procedure of the cavity modeling and the flow and mixing simulation process is 
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described.  Also the development of the numerical method and the design of experiment 

for the numerical simulation are discussed. 

4.1 Governing Equations 

4.1.1 Equations of motion 

The equations governing the theoretical flow are the mass and momentum balances 

which in dimensionless form for incompressible and isothermal fluids are:   

 

0: =⋅∇ vMass        (4.1) 

 

0)
Re
1(: 2 =∇+−∇=∇⋅+

∂
∂ vpvv

t
vMomentum     (4.2) 

 

where v, p and t are dimensionless velocity, pressure and time respectively.  Re = ρUL/η 

is the Reynolds number, ρ is the density of the fluid, and U is the mean flow velocity.   

Since the Reynolds number is very small (i.e. Re <<1), the flow is a creeping flow. 

The periodic or aperiodic flows studied here will have alternating flows inside the 

cavity.  The alternate feeding will be transmitted throughout the flow nearly 

instantaneously.  Therefore the velocity field throughout the cavity domain can be 

assumed to switch instantaneously from the steady flow produced by one feed gate to the 

steady flow produced by another one.  This assumption is supported by Leong’s 

experimental work [Leong 90], which showed that the slow unsteady flow was reversible.  

   
 
 
 
 

59



 

So once the steady flow field is obtained, we can simulate the periodic or aperiodic 

flow by switching on and off two steady cavity flows according to the sequence rule, and 

particle trajectories can be integrated. 

The definition of T, the nondimensional period of the flow, is different from the 

cavity flow with moving walls.  Here we define the period T as the ratio of combined 

fluid volume coming through the gates during one period to the total volume of the 

cavity.  Thus for periodic flow the fluid will be pushed through each gate for a time T/2. 

T/2 will also be the motions a and b for aperiodic flow. 

4.1.2 Boundary and initial conditions 

The initial conditions imposed by this study are the particles that will be placed at 

certain positions in the cavity or within the gates.  The fluid will be pushed through the 

gates with constant velocity Vg for a half period, so the volume of fluid pushed into the 

cavity will be proportional to hcosθ×Vg×T/2.  And the pressure in the cavity before 

filling will be atmospheric pressure.  The cavity boundary will also supply the fluid 

boundary conditions; the flow will have zero velocity at the cavity walls. 

The velocity field of the flow at the gates will be assumed to be like an ideal step 

response, which means there is no transient before the flow reaching the desired velocity 

profile.  This assumption is validated when considering Stokes first problem of an 

instantaneously moving plate and seeing that the polymer viscosity is so that that the 

characteristic time to steady state is much smaller than the step time.  The resulting 

position of the fluid from the previous step will serve as the initial conditions of the 

following step. 
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4.1.3 Integration of the dynamical system 

Since we can compute the steady-state velocity fields, the particle position x can be 

determined by the integration of the equation: 

 

00);,(/ Xxtxvdtdx t == =     (4.3) 

 

where X0 is the initial position of the particle.   

4.2 Modeling procedure 

This section will detail a procedure to model the flow system.  One of the goals of 

this study has been to develop a model for the highly filled flow system using a novel 

feed protocol.  Such a model should be able to provide us information on flow front, 

streamlines, mixing efficiency, and how to optimize the dimensions of the part and gates. 

In order to achieve chaos for creeping flow we need periodic or aperiodic flow with 

cross streamlines.  Since we are unable to move any part of the mold in the transfer 

molding process, it is necessary to design a new feed protocol so that we can realize cross 

streamlines by using periodic or aperiodic flow.  The idea of this novel feed protocol is to 

introduce two or more gates.  Through control of the transfer process, the molding 

compound will be pushed through each of the gates using predefined periodic or 

aperiodic flow patterns.  

The flow geometry’s dimensions, gates locations and numbers, the pressure of the 

press, and the material properties are important parameters in determining the flow and 
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mixing efficiency.  To simplify the problem, the processing parameters will be fixed; 

only the gate location and bump patterns will be changed. 

4.2.1 Flow geometry  

The flow geometry is chosen to be a square cavity so as to reflect the real electronic 

packages.  A mid-plane cavity flow is captured.  Though we only analyze the flow and 

particle distribution in this plane, it is come from 2.5-D flow simulation results.  Since 

this 2-D model is adequate to provide information of the flow and mixing, we will leave 

the 3-D model as a future topic and it will not used in this study. 

The flow geometry is shown in Figure 4.1.  It depicts a two gates square rectangular 

cavity.  The distance between the gates and the left upper vertices are d1 and d2, and the 

cavity length is L.  Other parameters are also important and need to be optimized to 

achieve maximum mixing efficiency. 

4.2.2 MoldFlow® 

MoldFlow® is one of the most popular software package used in molding industry. 

This program includes pre-processor and post processor and was developed by MoldFlow 

Corporation.  It can perform the simulation of injection molding, extrusion and resin 

transfer molding, etc.  The finite element method is used to calculate the values of 

interest, such as velocity, fill time, etc., at the centroid of the triangular elements.  

MoldFlow® itself is a 2.5D simulation software, to demonstrate our idea, a 2D 

simulation is chosen.  The main reason is that first, there is no big difference in terms of 

the trend of particle distribution between different layers in a thin package; second, we 

only want to show our point, which is the novel feed protocol can improve mixing, it 
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doesn’t matter we do a 3D or 2D simulation.  Also it is more consistent with the way of 

our experiments which analyze the particle distribution in a plane.  

 

 

Figure 4.1 Flow geometry 

 

4.2.3 Cavity construction  

The first task in the simulation is to construct a 3D model.  Though MoldFlow® has 

the function to construct 3D model, it can also import any standard CAD models.  This is 

a very good feature so we used Pro/E to construct the CAD model.  To reflect the actual 
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package, we generated a square cavity with a dimension of 27mm × 27mm, which has the 

same size of the Sumitomo overmold package we have studied.  The thickness or height 

of the cavity is chosen to be small, here it is 3mm.  This makes the 2D simulation more 

reasonable. 

Cavities with different geometries were modeled.  These geometries include stager 

array bumps and regular array bumps, which can be compared with the solder balls or 

leadframe.   Figure 4.2 and 4.3 show the stager and regular array bumps models. 

4.3 MoldFlow® simulation procedure 

4.3.1 Mesh and gates locations 

The 2nd step is to import the CAD file to MoldFlow® and select Midplane.  Then we 

can generate mesh as shown in Figure 4.2 and 4.3.  The global edge length is chosen to 

be 1.08 mm, while the mesh size around the solder balls is getting smaller gradually, i.e. 

from 0.5 mm to 0.25.  We have found that 1.08 mm mesh will have enough accuracy in 

our study.  Two gates are located at 5.4mm and 7.56mm to the left upper vertices.  The 

mesh and injection locations are also shown in the Figure 4.2.  There are total 1250 

triangle elements and 676 nodes. 

4.3.2 Material and molding conditions 

The material used for simulation is Polylac PA-737 from Chi Mei Corporation.  

Since we only want to demonstrate our point, it is doesn’t matter what material we use, as 

long as it is polymer which has a very low Reynolds number.  The process settings of 
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temperature are shown in Table 4.1. 

 

 

 

Figure 4.2 Stagger array bumps model and mesh  
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Figure 4.3 Regular array bumps model and mesh 

 

Mold Surface temperature (°C) 40 
Melt temperature (°C) 230 

 

Table 4.1 Process settings 
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4.3.3 Velocity field and streamline construction  

From the Moldflow® simulation we obtained the velocity data and from here we can 

construct streamlines of mold compound flow and perform particle tracking by 

interpolating the velocity of any arbitrary point inside the velocity field. 

4.3.4 Velocity field reconstruction 

The Moldflow® analysis can give us the average velocity results only at the centroid 

of each triangle element.  We can save the data in a file ‘avnew.ele’.  The information on 

node position and the numbers of the three nodes which have built a triangle can be 

exported in ASCII format with a file type of *.udm and name of ‘Meshexport.udm’. 

One disadvantage of the Moldflow® is that the data obtained are not consecutive and 

we must modify the data to be used for particle tracking.  The procedures are: 

1. Open ‘Meshexport.udm’ with MSWord, then find the portion for triangular 

elements data and save it with a file name ‘elementsnode.txt’.  Since the format is 

still not usable, we need to use Excel to open it, chose ‘Delimited’ at 1st step, chose 

‘Space’, ‘other }’ at 2nd step, then finish.  Copy last 3 columns into Notepad (close 

Excel file) and save as ‘elementsnode.txt’.  This file has the node number of each 

element.   

2. Save ‘Beginning of node data set.’ part with file name ‘nodeXY.txt’.  Use Excel to 

open it, chose ‘Delimited’ at 1st step, chose ‘Space’, ‘other })’ at 2nd step, then 

finish.  Copy last 3 columns into Notepad (close Excel file) and save as 

‘nodeXY.txt’.  Remember to check the starting node #, let ‘startnode = starting 

node # -1’.   This file has the x, y coordinates of each node.  
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All these data then are ready to be loaded to any post processing software.  From this 

point we start our own programming.  Matlab® is chosen to be the software used to do 

the rest of the work.  This includes velocity field reconstruction, velocity interpolation, 

particle tracking and all the chaos and mixing analysis. 

4.3.5 Velocity at nodes 

Since we want to interpolate the velocity at any arbitrary point, we first need to find 

the velocity at the nodes.  However, the Moldflow® analysis only give us the average 

velocity at the centroid of each triangle element, and these centroids are randomly 

distributed.  So the usual way for interpolating velocity with four nodes at the apex of a 

square rectangle is not feasible.  Thus we have designed a special interpolation method 

for the arbitrary triangle elements. 

To find the velocity at a node, we calculate the average velocity for all the elements 

around that node, and assign the resulted velocity to that node.  To make the results more 

accurate, it is necessary to reduce the size of the elements, especially the elements around 

the geometric objects.  The flow direction has a much sharper reorientation at these 

geometric objects.  A method of gradual reducing element size is adopted, as shown in 

Figure 4.2.  The element size for the first layer around the object is 0.25 mm, and the 

second layer is 0.5 mm, then the rest of the elements have the size of 1 mm.  The purpose 

of using this method is to obtain necessary accuracy while keep the computer calculating 

time reasonable. 

4.3.6 Velocity interpolation 

To construct the streamlines or track the particles, we have to know the velocity at 
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any point inside the flow field.  Since we only have the data at the nodes, we must do the 

velocity interpolation.   

It is convenient to use the method for finding velocity gradient in a triangular mesh 

of constant velocity triangles.  This is because all of the elements are triangles.  For an 

arbitrary point p, the first thing to do is to find the triangle element which the point 

belongs to.  An effective way is to see if the area of the triangle element will be equal to 

the area sum of the three triangles formed by connecting the point to three vertices of the 

triangle element.  Figure 4.4 illustrates how it works.  

 

 

Figure 4.4 Determine a point inside a triangle 

 

First, we calculate the length of the three sides, p0p1, p0p2, and p1p2, as in Equation 

(4.4).  Then we obtain the length of the point p(x’,y’) to the three nodes of an element,  

pp0, pp1, and pp2, as in Equation (4.5).  So the perimeter s of the triangle p0p1p2, can be 

calculated as in Equation (4.6).   Also the perimeters s1, s2, and s3 of the triangles pp0p1, 

pp0p2, and pp1p2 can be calculated as in Equation (4.7).   Thus the area of each triangle is 
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determined by using Equations (4.8 – 4.10).    If the result from Equation (4.8) is equal to 

the result from Equation (4.10), then it means that the point p is inside this triangle 

element.  This way the element embracing the point can be found.  Then the method of 

linear interpolation from vertices of a triangle is used to interpolate the velocity at that 

point.   
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‘Real’ functions are rarely given by an explicit formula allowing us to evaluate them 

anywhere.  More frequently, only ‘sample’ values of the function are given at certain 

points and, in order to estimate the value at some place, which is not a sample, we need to 

somehow combine the available information.  This is the goal of interpolation.  By doing 

interpolation one can, for example, build a complete elevation map of a terrain when only 

an array of height values is given (this is what happens in practice: height cannot be 

measured everywhere; no matter how you do it, you end up with only finite number of 

measurements).  We used interpolation to estimate the velocity over a triangle when 

velocities at vertices are given. 

An example of the variant of linear interpolation follows: Let’s say that we have a 

triangle as shown in Figure 4.5.  It has vertices p0 = (x0 , y0), p1 = (x1 , y1), and p2 = (x2 , 

y2).  At each vertex we have a velocity value, let’s say that they are v0, v1 and v2.  There is 

exactly one linear function which takes the value of v0 at p0, v1 at p1 and v2 at p2 (We can 

prove that by ‘embedding’ our triangle and the values at vertices in 3D: say that the 

triangle lies in the ground plane; lift p0 to height v0, p1 to height v1 and p2 to height v2. 

This yields 3 points in 3D-space.  Now, find the plane passing through the three points. 

This plane is the graph of the linear function we are looking for).  The following shows 
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how to compute algebraically.  

 

 

 

Figure 4.5 Linear interpolation from triangle’s vertices 

 

We seek a function of the form f (x, y) = Ax + By + C (A, B, C to be determined). 

The requirement that the values at the vertices are v0, v1 and v2 leads to three linear 

equations:  

 

 Ax0 + By0 + C = v0      (4.11) 

 

Ax1 + By1 + C = v1      (4.12) 

 

Ax2 + By2 + C = v2      (4.13) 

 

We can solve them, obtaining A, B and C.  So, for example, to compute the 

interpolated value at the point p = (x’, y’ ) we need to evaluate  
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f (p) = f (x’, y’) = A * x’ + B * y’+ C     (4.14) 

 

4.3.7 Streamline construction 

Determination of the streamlines is the next step that is critical to being able to 

calculate laminar mixing.  To construct the streamlines, a few particles are placed at the 

desired initial positions are tracked to the end of filling positions.  Here only streamlines 

in the cavity with stager bump pattern are constructed.  Figure 4.6 shows the streamlines 

for feeding from both left gate and top gate with d1 = 5.4mm and d2 = 7.56mm.  

Streamlines of top gate are in blue and streamlines of left gate are in red.  The most 

important characteristic of chaotic flow – crossing streamlines can be seen clearly.  This 

means by alternate feeding from both gates we are able to generate chaotic mixing.   

Another advantage of two gates filling is that it can diminish the effect of stagnant 

point.  As can be seen from the figure, some of the streamlines are stopped in the middle 

of the cavity, this is because that they encountered the bumps and the velocity is reduced 

to 0.  But the velocities at these points are generally not equal to 0 for the other gate 

filling.  Thus the particles can be spread into everywhere within the cavity. 
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Figure 4.6 Streamlines obtained from d1 = 5.4mm and d2 = 7.56mm 
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Chapter 5: Model of mixing and measures of mixing  

5.1 Model of mixing 

5.1.1 Mixing Simulation - Particle tracking  

We assume the particles are passively conveyed by the flow, so that we can track the 

particle through the streamlines they are traveling.  We assigned 0 velocity at normal 

directions at the ball and used 30% slip velocity along the ball.  The time step is 0.01s, 

and the total tracking time is 1.6 s.   This is also the time to fill the cavity. 

5.1.2 Two important parameters 

There are many factors affecting the flow and mixing.  One of them is the gate 

location.  The distance of the gates to the left upper corner is indicated by d1 and d2, as 

show in Figure 4.1.  Since the length of the square cavity is L, the normalized distance 

can be described as 

 

dn* = dn / L, n = 1, 2      (5.1) 

 

The value of this parameter cannot be too small or too big.  Small distances will not 

generate enough reorientation because in order to achieve chaos, particles need to flow 

past hypergeometric points.  When these hypergeometric points are crossed, adjacent 

particles will separate exponentially when the flow direction is changed.  In the other 
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aspect, if it is too big, the two flow fronts will not reach for a long time, and the weld line 

will become bigger.  This is not good for the final product property and should be 

avoided.  Two distance values have been chosen in this study. 

 

dn
*
 =  0.2 and 0.28     (5.2) 

 

 The other important parameter is the filling period denoted by T.  This parameter is 

used to define the periodic motion.  Other than the definition given by previous 

researchers, here it is defined as the time of filling from one gate at a time which is the 

approximate time of fluid flow from one ball to another ball when T = 0.2s.  Since the 

more important thing is to see the time flow from one ball to another ball, so it is better to 

make this filling period dimensionless according to the ball distance as expressed in 

Equation (5.2).   This dimensionless period is denoted by f. 

 

L
P

t
T

f toatl=      (5.3) 

 

For this study, ttotal = 1.6 s, P = 3 mm, L = 27 mm.  So f is 1.125 at T = 0.2s. 

Thus if we alternatively fill through gates 1 and 2, the whole period is 2T.  Aperiodic 

filling can be obtained by assigning a random number to multiply T as the filling time at 

each gate.  Here this number is between 0.5 and 2.  The periodic and aperiodic 

procedures are given in Table 5.1 and 5.2. 
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Left 0 – 0.2   0.4 –0.6   0.8 – 1.0   1.2-1.4   
Top   0.2 – 0.4   0.6 – 0.8   1.0-1.2   1.4-1.6 

Table 5.1 Periodic procedure 

 

Left 0 – 0.36   0.44 –0.68   0.84 – 1.16   1.44-1.6 
Top   0.36– 0.44   0.68 – 0.84   1.16-1.44   

Table 5.2 Aperiodic procedure 

 

The initial center positions of two particle balls are located at (6, 22) and (6, 20), the 

radius is 0.9 as in Figure 5.1.  The total particle number is 522.  

5.1.3 Design of experiment 

5.1.3.1 One gate and two gates filling 

The most important thing is to see the effects of one gate and two gates filling.  A 

basic assertion the cavity filling model is that two gates are required for chaos to be 

created.  The entropic study and stretching analysis will be conducted; the difference 

between one gate, two gates periodic filling and two gates aperiodic filling will be 

quantified. 
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Figure 5.1 Initial positions of two particle balls  

  

5.1.3.2 Effects of f and ball pattern 

In order to see the effects of f and ball pattern on the mixing, a full 3×3×2 factorial 

design of experiment is constructed as shown in Table 5.3.  There are 3 levels for f which 

are 0.2813, 1.125 and 1.9687.  These correspond to T at 0.05s, 0.2s, and 0.35s 

respectively.  The second factor is the gate location.  Also 3 levels are given by the first 

level: left gate d1 at 5.4mm and top gate d2 at 5.4mm, the second level: left gate d1 at 

5.4mm and top gate d2 at 7.56mm, the third level left gate d1 at 7.56mm and top gate d2 

at 7.56mm.  Two levels for ball patterns; these are stagger and regular patterns as shown 

in Figure 4.2 and 4.3.  The relations between f and mixing will be plotted and modeled.  

The effects of change of gate location and ball pattern on the mixing will also be studied. 
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 Factor 1 Factor 2 Factor 3 
Run A:f B:d1 C:d2 D:Ball Pattern 

1 0.2813 5.4 5.4 Stagger 
2 1.125 5.4 5.4 Stagger 
3 1.9687 5.4 5.4 Stagger 
4 0.2813 5.4 7.56 Stagger 
5 1.125 5.4 7.56 Stagger 
6 1.9687 5.4 7.56 Stagger 
7 0.2813 7.56 7.56 Stagger 
8 1.125 7.56 7.56 Stagger 
9 1.9687 7.56 7.56 Stagger 

10 0.2813 5.4 5.4 Regular 
11 1.125 5.4 5.4 Regular 
12 1.9687 5.4 5.4 Regular 
13 0.2813 5.4 7.56 Regular 
14 1.125 5.4 7.56 Regular 
15 1.9687 5.4 7.56 Regular 
16 0.2813 7.56 7.56 Regular 
17 1.125 7.56 7.56 Regular 
18 1.9687 7.56 7.56 Regular 

Table 5.3 DOE study of f and ball pattern  

 

5.2 Stretching 

Chaotic flow can produce exponential stretching rate and it is convincible to use 

stretching rate as a measure of chaotic flow.  In calculation, the stretching rate λ is 

defined as the ratio of the length of an infinitesimal segment at the end of filling to its 

original length.  First the ratio of all particle pairs at final position df to the initial position 

di is calculated, and the mean is obtained by simply divided the sum of the ratio by the 

total number of particle pairs N.  Then the mean log (λ) can be calculated as in Equation 

(5.4). 
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The evolution of mean log (λ) vs. time is plotted to view the trend.  If a line with 

positive slope can be fitted to the curve, then it is recognized as exponential stretching 

and thus chaotic flow. 

5.3 Entropic mixing characterization  

5.3.1 Background on Shannon Entropy  

The Shannon entropy is used to quantitatively characterize color homogeneity as a 

measure of distributive mixing in numerical simulations and experiments performed in a 

single screw extruder by Wang and Manas [Wang 01, Manas 04]].  Entropy is the 

rigorous measure of mixing.  It is determined by the probabilities pi from:   

 

∑
=

−=
M

i
ii ppS

1

ln      (5.5) 

 

here M is the total number of the outcomes and pi is the probability of outcome i to occur.  

Equation (5.5) is the standard measure [Shannon 1948] of homogeneity as it satisfies 

the following requirements:  

(i) The lowest entropy (S = 0) corresponds to one of the p's being 1 and the rest 

being zero (i.e., segregation);  
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(ii) The largest value for the entropy is achieved when all p's are equal (i.e., 

complete mixing);  

(iii) S is additive over partitions of the outcomes.  

In numerical simulations particles are used as a mean to study the dynamics of the 

mixing process and assess mixing quality.  In particular, the total domain of study (such 

as the midplane of the square cavity) is divided into small regions (bins).  It calculates 

particle concentrations in each bin as estimators of the probabilities.  Calculation of 

Shannon entropy reveals the homogeneity of particle distribution in the system.  

5.3.2 Entropic Characterization of Mixing  

When assessing distributive mixing in a system, we have to consider the relative 

concentration of blue and red particles at each location in the system.  We then, divide the 

space of interest in M bins labeled j = 1, 2, …M.  There are also two species of particles 

(blue and red) labeled c = 1 and 2.  In view of Equation (5.5), the overall quality of 

mixing is described by:  

 

∑∑
= =

−=
2

1 1
,, ln

c

M

j
jcjc ppS      (5.6) 

 

where pc,j is the joint probability for a particle to be of species “c” and in bin “j”.  It is 

estimated by the fraction of particles of species c located in bin j out of all particles.  The 

joint probability for a particle to be located in bin j and to be of species c is given by 

Bayes’ theorem:  
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jjcjc ppp /, =      (5.7) 

where pc/j is the probability of finding a particle of species c conditional on the bin j and 

pj is the probability for bin j.  By substituting equation (5.7) into equation (5.6) we get:  
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where  
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Sj(species) is the entropy of mixing the two species (blue and red) at the location of 

bin j and S(locations) is the entropy associated with the overall spatial distribution of 
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particles irrespective of species.  It can be written more compactly as 

 

S = S(locations) + Slocations(species)   (5.13) 

 

where 

83

][∑
=

=
M

j
jjlocations speciesSpspeciesS

1

)()(   (5.14) 

 

Slocations(species) is a spatial average of the entropy of mixing of species conditional 

on location. It is maximized for the particular homogeneous state characterized by: pc/j= 

½, for c = 1, 2 and j = 1, 2, …M.  The maximum value of Slocations(species) is ln(2), so we 

normalize this entropy by ln(2) to get the relative entropy, which takes values between 0 

and 1.  It is a measure of the system being homogeneous as well as having the particular 

color or shade of gray that corresponds to having equal concentrations of blue and red 

particles in each bin.  In this work we will use this particular entropy to characterize color 

and homogeneity by employing two species of particles, namely blue and red.  

5.4 Analysis of mixing and stretching in empty cavity without bumps 

An empty cavity without bumps is not reflecting the actual application in electronic 

packaging industry, but it worth to learn and it could give us some insight into the theory 

of filling a cavity.  The streamlines for filling from left gate at d1 = 7.56mm and top gate 

at d2 = 7.56mm are shown in Figure 5.2.  The crossing streamlines are verified, however, 

whether it will give us chaotic mixing is to be studied. 

   
 
 
 
 



 

 

Figure 5.2 Streamlines obtained from d1 = 7.56mm and d2 = 7.56mm 

 

5.4.1 Mixing study 

The simulation of mixing is conducted by placing two particle balls inside the cavity, 

and then filling the empty cavity with single gate and two gates.  The initial center 

positions of two particle balls are located at (6, 22) in red and (6, 20) in blue; the radius is 

0.9 as in Figure 5.3.  The total particle number is 522.  Figure 5.3 also shows the final 

particles position at t = 1s for single left gate filling with d1 = 7.56 mm.  The particle balls 

are just elongated with neither mixing nor dispersion.  The final particles position at t = 

1s for two gates filling with d1 = 7.56 mm, d2 = 7.56 mm and f = 1.125 so T = 0.2s is 

shown in Figure 5.4.  We can see that the particles are still bounded together as in the 

single gate filling.  Only the location is different. 
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Figure 5.3 Initial and final particles position with single gate filling  

 

 

Figure 5.4 Initial and final particle positions with two gates filling 
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Figure 5.5 – 5.7 show the entropy Slocations (species), S(locations) and S for left gate 

filling (blue) and two gates periodic filling (cyan).  In theory, the best Slocation(species) 

(Normalized), S(locations) and S values are 1, 5.5645, and 6.2577 respectively.  Also the 

minimum value we can get for Slocation(species) (Normalized) is 0, while we can get the 

initial values for S(locations) and S is 2.0721.   

It is a little surprise to see that the left gate filling even has higher S(locations) and S 

values than two gates filling.  On the other hand, we should not be surprised because if 

we examine the chaotic flow in the fully filled cavity, we can find that besides crossing 

streamline, there is another critical condition must be met, which is velocity gradient.  

The moving wall can generate velocity gradient between itself and the other walls, thus 

can produce hyperbolic points at certain regions.  While in the empty cavity, the velocity 

gradient can only exist at near the walls.  In the middle of the cavity, the velocity field is 

flat.  By placing bumps into the cavity, we could produce the stagnation points and 

velocity gradient in the center of the cavity, and resolve the problem caused by the empty 

cavity. 

5.4.2 Stretching analysis  

For stretching, the particles are initially placed at (6, 22) and formed two circular 

balls.  There are total 261 pairs of particles.  The distance between a pair of particles is 

0.005mm.  The result of mean log (λ) vs. time is given in Figure 5.8.  Filling from left 

gate only with d1 = 7.56 mm is shown in blue.  Periodic filling with d1 = 7.56 mm, d2 = 

7.56 mm and f = 1.125 or T = 20 is shown in cyan.  Both cases have a very small amount 

of stretching.  Periodic filling has slightly higher stretching than single gate filling.   
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Figure 5.5 Slocations(species)/ln(2) vs. time for left gate filling (blue) and two gates filling 

with f = 1.125 (cyan) 
 

 

Figure 5.6 Entropy S(locations) for left gate filling (blue) and two gates periodic filling 

with f = 1.125 (cyan) 
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Figure 5.7 Entropy S for left gate filling (blue) and two gates periodic filling with f = 

1.125 (cyan) 
 

  

Figure 5.8 Mean log(λ) vs. time for left gate (red) and two gates f = 1.125 (blue), d1 = 

7.56mm, d2 = 7.56mm  
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Table 5.4 shows entropy and stretch values at t = 1s.  All the values are relatively 

small, means poor mixing.  No chaotic flow is presented.  Can we expect to see chaotic 

flow once we have added bumps into the cavity?  Next chapter we will find the answer. 

 

f Slocation(species) S(locations) S Stretch 
Left 0 2.9647 2.9647 -0.0225 

1.125 0.013 2.3491 2.3581 0.1066 

Table 5.4 Simulation results for filling the clear cavity 
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Chapter 6: Chaotic mixing analysis 

The analysis is focus on the stretching and mixing.  Exponential stretching is an 

important measure of chaotic flow.  Entropic is a non-chaotic measure, which can reveal 

the effectiveness of the mixing resulted from the novel feed protocol.  

6.1 Analysis of flow and mixing in cavity with stagger bumps 

6.1.1 Particle distribution 

First to see is the final particle distribution.  Total 522 particles were tracked through 

the flow field for different f values and aperiodic procedure.  This section will show 

visually the distribution of particle balls, which are colored by red and blue, at t = 1.6s. 

6.1.1.1 d1 = 5.4mm and d2 = 5.4mm  

The results of filling from left gate d1 = 5.4mm only is given in Figure 6.1.  The 

particles are compressed closer and spread into very limited spaces.  Thus we could 

expect poor mixing.  Figure 6.2 – 6.4 show two gates filling for f = 0.2813, 1.125, and 

1.9687 respectively with d1 = 5.4mm and d2 = 5.4mm.  Figure 6.5 shows aperiodic 

filling.  By looking at the final particle distributions, it is clear that all two gates filling 

are having superior mixing results than one gate filling.  
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Figure 6.1 Distribution of particles at t = 1.6s with left gate filling at d1 = 5.4 mm 

 

Figure 6.2 Distribution of particles at t = 1.6s for f = 0.2813 
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Figure 6.3 Distribution of particles at t = 1.6s for f = 1.125 

 

Figure 6.4 Distribution of particles at t = 1.6s for f = 1.9687 
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Figure 6.5 Distribution of particles at t = 1.6s for aperiodic filling 

 

6.1.1.2 d1 = 5.4mm and d2 = 7.56mm  

The left gate filling is the same as above.  Figure 6.6 – 6.8 show two gates filling for 

f = 0.2813, 1.125, and 1.9687 respectively with d1 = 5.4mm and d2 = 7.56mm.  Figure 

6.9 shows aperiodic filling.  By looking at the final particle distributions, it is clear that 

all two gates filling are having superior mixing results than one gate filling.  Larger f may 

result in better mixing. 
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Figure 6.6 Distribution of particles at t = 1.6s for f = 0.2813 

 

Figure 6.7 Distribution of particles at t = 1.6s for f = 1.125 
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Figure 6.8 Distribution of particles at t = 1.6s for f = 1.9687 

 

Figure 6.9 Distribution of particles at t = 1.6s for aperiodic filling 
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6.1.1.3 d1 = 7.56mm and d2 = 7.56mm 

The results of filling from single left gate at d1 = 7.56mm is given in Figure 6.10.  

Again the particles are compressed closer and spread into very limited spaces.  This 

further confirms that one gate filling is not a good practice for mixing.  Figure 6.11 – 6.13 

show two gates filling for f = 0.2813, 1.125, and 1.9687 respectively with d1 = 7.5mm 

and d2 = 7.5mm.  Figure 6.14 shows aperiodic filling.  By looking at the final particle 

distributions, it is clear that all two gates filling are having superior mixing results than 

one gate filling.   

For all the cases of two gates filling, we observed better spreading and mixing 

compared to single gate filling.  To quantify the mixing, and numerically compare them, 

the next step is to calculate entropic value for all these filling conditions. 
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Figure 6.10 Distribution of particles at t = 1.6s with left gate filling at d1 = 7.5 mm 

 

Figure 6.11 Distribution of particles at t = 1.6s for f = 0.2813 
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Figure 6.12 Distribution of particles at t = 1.6s for f = 1.125 

 

Figure 6.13 Distribution of particles at t = 1.6s for f = 1.9687 
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Figure 6.14 Distribution of particles at t = 1.6s for aperiodic filling 

 

6.1.2 Entropy study 

To quantitatively study the mixing, the enropic plot for Slocation(species),  S(locations) 

and S are given in Figure 6.15 - 6.23.  It would be very helpful to understand the best 

Entropy values we can get for mixing 261 red and 261 blue particles.  By evenly 

distributing one red particle and one blue particle into one bin; with a total of 261 bins, 

we have the best condition.  The best Slocation(species) (Normalized), S(locations) and S 

values are 1, 5.5645, and 6.2577 respectively.  Also the minimum value we can get for 

Slocation(species) (Normalized) is 0, while we get the initial values for S(locations) and S is 

2.0721.   
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6.1.2.1 d1 = 5.4mm and d2 = 5.4mm 

 

Figure 6.15 Slocations(species)/ln(2) vs. time for left gate filling (blue) and two gates filling 

with f = 0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 

 

Figure 6.16 S(locations) vs. time for left gate filling (blue) and two gates filling with f = 

0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 
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Figure 6.17 S vs. time for left gate filling (blue) and two gates filling with f = 0.02813 

(green), f = 1.125 (cyan), f = 1.9687 (red), and aperiodic (black) 

 

6.1.2.2 d1 = 5.4mm and d2 = 7.56mm 

 

Figure 6.18 Slocations(species)/ln(2) vs. time for left gate filling (blue) and two gates filling 

with f = 0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black)  
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Figure 6.19 S(locations) vs. time for left gate filling (blue) and two gates filling with f = 

0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 
 

 

Figure 6.20 S vs. time for left gate filling (blue) and two gates filling with f = 0.02813 

(green), f = 1.125 (cyan), f = 1.9687 (red), and aperiodic (black) 
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6.1.2.3 d1 = 7.56mm and d2 = 7.56mm  

 

Figure 6.21. Slocations(species)/ln(2) vs. time for left gate filling (blue) and two gates filling 

with f = 0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black)  

 

Figure 6.22 S(locations) vs. time for left gate filling (blue) and two gates filling with f = 

0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 
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Figure 6.23 S vs. time for left gate filling (blue) and two gates filling with f = 0.02813 

(green), f = 1.125 (cyan), f = 1.9687 (red), and aperiodic (black) 
 

6.1.2.4 Analysis of entropy  

In general, the entropy for one gate filling is the smallest, which confirms our 

observation that it has the worst mixing.  The f value is a key factor to entropy.  Low 

value of f has the worst mixing.  Aperiodic filling is not the best case in the study.  It is in 

contrast with previous studies on aperiodic flow.  This means here aperiodic flow no 

longer provides more uniform mixing than periodic filling.  Though carefully selected 

aperiodic flows could get good results.  This is not a surprise at all due to that the totally 

different flow characteristics.  Filling the empty cavity will not generate any periodic 

points due to no returning flow, and since the primary function of the aperiodic flow is to 

break the periodic points, so that the aperiodic flow will not necessarily better than 

periodic flow. 
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6.1.2.5 Entropy as a function of f 

Design-Expert, commercial software used for DOE study, is used to analyze the final 

value of Entropy.  A quadratic model is chosen to fit the data since it is nonlinear in 

nature.  The DOE result is shown in Table 6.1.  All the values are obtained at t = 1.6s.  N 

is the number of periods. 

 

Factor 1 Factor 2 Response 1 Response 2 Response 3 Response 4 
f n d1, d2 Slocation(species) S(locations) S Stretch 

Left  5.4 0.0849 2.4788 2.5377 -0.2705 
0.2813 16 5.4, 5.4 0.2651 3.501 3.6848 2.3174 
1.125 4 5.4, 5.4 0.2363 3.9146 4.0784 2.0678 

1.9687 2.3 5.4, 5.4 0.2223 3.8363 3.9904 1.6413 
Aperiodic  5.4, 5.4 0.0887 3.3189 3.3804 1.3465 

       
Left  5.4 0.0849 2.4788 2.5377 -0.2705 

16 5.4, 7.56 0.3719 3.4597 3.7175 2.4422 
0.5625 8 5.4, 7.56 0.2998 3.6852 3.8930 2.2922 

0.8438 5.3 5.4, 7.56 0.5563 3.8790 4.2647 2.4722 

1.125 4 5.4, 7.56 0.4874 4.0363 4.3742 2.3462 
1.4063 3.2 5.4, 7.56 0.3791 3.9536 4.2164 - 

1.9687 2.3 5.4, 7.56 0.3661 3.8248 4.0786 1.9637 
Aperiodic  5.4, 7.56 0.118 3.6185 3.7003 1.6465 

       
Left  7.56 0.0797 2.4051 2.4604 0.4688 

0.2813 16 7.56, 7.56 0.3591 3.4852 3.7341 2.4649 
0.5625 8 7.56, 7.56 0.3231 3.7642 3.9882 - 

0.8438 5.3 7.56, 7.56 0.6835 3.8628 4.3366 - 

1.125 4 7.56, 7.56 0.6441 4.0042 4.4507 2.4227 
1.9687 2.3 7.56, 7.56 0.1913 3.9264 4.0591 2.1177 

Aperiodic  7.56, 7.56 0.1984 3.4344 3.5719 1.8192 

0.2813 

Table 6.1 DOE result for irregular bump pattern 
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One gate filling has the lowest entropic values.  Two gates filling has much higher 

entropic values.  The one factor plots for Slocation(species), S(locations), and S with respect 

to f between 0.02813 and 1.9687 are shown in Figure 6.24 – 6.26 respectively.  The red 

curve is for d1 = 5.4mm and d2 = 5.4mm; the blue curve is for d1 = 5.4mm and d2 = 

7.56mm; the green curve is for d1 = 7.56mm and d2 = 7.56mm.  It is clear that f is critical 

to the mixing.  Neither high nor low f will result in good mixing.  This is because at low f, 

there is not enough movement to stretch the particles, so that the particles are trapped in a 

narrow strip and therefore poor mixing.  On the other hand, at high f, there is not enough 

alternating numbers of two gates filling, for example at f = 1.9687 only two complete 

cycles is observed, so that the mixing is not good.  The S(locations) and S values are 

generally higher for larger f than for smaller f.  This could be understood by the longer 

distance traveled by the particles for each gate filling at larger f.  There exists an f value 

that can achieve highest entropic value and thus the best mixing.  The best mixing is 

obtained at f around 0.8 and 1.2. 

To exam in more details for f around 1, we simulated and calculated entropy at f = 

0.5625, 0.8437, and 1.4063 for d1 = 5.4mm, d2 = 7.56mm.  The results are recorded in 

Table 6.1 and Slocation(species) as a function of f is plotted in Figure 6.27, S(locations) and 

S as a function of f is plotted in Figure 6.28.  From Figure 6.27 we can see that there is a 

critical value of f between around 0.84, above this value, the mixing is substantially 

improved.  This is very similar to Zerafati’s f , which is between 0.58 and 1.16 c [Zerafati 

94].  Here different geometries and different flow result in a similar f value further 

proved that this critical f value is a characteristic of chaotic flow.  The entropic values 

c 
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drops at high f could mostly result from the low number of periods.  

 

Figure 6.24 Slocation(species) vs. f, red: d1 = 5.4mm, d2 = 5.4mm; blue: d1 = 5.4mm, 

d2 = 7.56mm; green: d1 = 7.56mm, d2 = 7.56mm 

 

 

Figure 6.25 S(locations) vs.  f, red: d1 = 5.4mm, d2 = 5.4mm; blue: d1 = 5.4mm, d2 

= 7.56mm; green: d1 = 7.56mm, d2 = 7.56mm 
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Figure 6.26 S vs. f, red: d1 = 5.4mm, d2 = 5.4mm; blue: d1 = 5.4mm, d2 = 7.56mm; 

green: d1 = 7.56mm, d2 = 7.56mm 
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Figure 6.27 Slocation(species) vs. f, d1 = 5.4mm, d2 = 7.56mm 
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Figure 6.28 S(locations) (blue) and S (red) vs. f, d1 = 5.4mm, d2 = 7.56mm 

 

S(locations) and S on the other hand show still higher values at higher f.  This 

indicates that these two parameters do not depend on the number of periods. 

6.1.2.6 Effects of d1 and d2 

From the figures we can see that d1 and d2 play a very important role too.  All 

entropic values are the smallest for d1 = 5.4mm and d2 = 5.4mm.  The best 

Slocation(species) and S values occur at d1 = 7.56mm and d2 = 7.56mm.  While the best 

S(locations) value occurs at d1 = 5.4mm and d2 = 7.56mm.   

To see the effects of d1 and d2 on the critical value of f we simulated and calculated 

Entropy at f = 0.5625 and 0.8437 for d1 = 7.56mm, d2 = 7.56mm.  The results are 

recorded in Table 6.1 and Slocation(species) as a function of f is plotted in Figure 6.29. 

S(locations) and S as a function of f are plotted in Figure 6.30.  Figure 6.29 shows a 

critical value of f around 0.84 which is the same as in the case of d1 = 5.4mm and d2 = 

7.56mm.   
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Figure 6.29 Slocation(species) vs. f, d1 = 7.56mm, d2 = 7.56mm 
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Figure 6.30 S(locations) (blue) and S (red) vs. f, d1 = 7.56mm, d2 = 7.56mm 
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6.1.2.7 Compare with one gate filling 

As an example, we look at entropy with d1 = 7.56mm and d2 = 7.56mm.  The 

maximum value occurs at approximately f = 0.84, and at this f the Slocation(species) has 

increased 8.58 times compared to one gate filling, as shown in Equation (6.1).  For 

S(locations) and S, we will consider the relative increase since the initial S(locations) and 

S is 2.072.  With d1 = 5.4mm and d2 = 7.56mm, the relative increase is 5.8 times 

compared to one gate filling, as shown in Equation (6.2). 

 

8.58 = 
0.0797
0.6835      (6.1)  

 

5.8 = 
2.072-2.4788

 2.072-4.0363       (6.2) 

 

6.1.3 Stretching analysis showing chaotic flow in two gates filling 

Figure 6.31 – 6.33 show stretching, mean log (λ), evolution with time in the cavity of 

filling with gates d1 = 5.4mm d2 = 5.4mm, d1 = 5.4mm d2 = 7.5mm, and d1 = 7.5mm d2 

= 7.5mm respectively.  In all the three cases, the stretching of one gate filling is flat or 

decreasing which means the stretching is linear or even no stretching.  All two gates 

filling have nearly linear increasing of mean log (λ), which indicates the exponential 

stretching.  This is the evidence of chaotic flow inside the cavity.  Chaotic flow can 

dramatically increase the mixing. 

 Figure 6.34 shows stretch as a function of f.  As f increases the stretch is decreasing.  
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This is because the smaller f has more frequent reorientation thus the higher stretching.  

Since the flow tends to minimize the stretching, whenever a new flow direction occurs, 

the stretching will be maximized and then gradually decreasing.  So the smaller f changes 

flow direction more often and maximize the stretching.   

 

 

Figure 6.31 Mean λ for Left gate (blue) and two gates f = 0.02813 (green), f = 1.125 

cyan), f = 1.9687 (red), aperiodic (black); d1 = 5.4mm, d2 = 5.4mm 
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Figure 6.32 Mean λ for Left gate (blue) and two gates f = 0.02813 (green), f = 1.125 

cyan), f = 1.9687, (red), aperiodic (black); d1 = 5.4mm, d2 = 7.56mm 

 

Figure 6.33 Mean λ for Left gate (blue) and two gates f = 0.0281 (green), f = 1.125 cyan), 

f = 1.9687, (red), aperiodic (black); d1 = 7.56mm, d2 = 7.56mm 
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Figure 6.34 Stretching as a function of f, red: d1 = 5.4mm, d2 = 5.4mm; blue: d1 = 

5.4mm, d2 = 7.56mm; green: d1 = 7.56mm, d2 = 7.56mm 

 

Stretching is also governed by gate location.  The largest stretching is obtained at d1 

= 7.56mm and d2 = 7.56mm, while the smallest stretching is obtained at d1 = 5.4mm and 

d2 = 5.4mm.  However, the maximum stretching happens at low f, while the best mixing 

occurs at mid f values.  This means stretching is not a rigorous measure for mixing. 

 

6.1.4 Conclusion 

Two gates filling can generate chaotic flow, and much better mixing.  The f value 

and d1, d2 values are important parameters to Entropy and stretching.  The gates further 

away from each other will have the best results.  But this distance will be restricted by the 

final packaging requirements on weld line, since we want to minimize the weld line too.  

There is a critical value of f around 0.84, above this value, the mixing is substantially 
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improved.  In the case of d1 = 7.56mm and d2 = 7.56mm, the maximum value of 

Slocation(species) has increased 8.58 times compared to one gate filling.  For S(locations) 

and S, the relative increase is 5.8 times compared to one gate filling when d1 = 5.4mm 

and d2 = 7.56mm.  All two gates filling have nearly linear increasing of mean log(λ), 

which indicates the exponential stretching.  This is the evidence of chaotic flow inside the 

cavity.   

6.2 Analysis of flow and mixing in cavity with regular bumps 

This section discusses the effect of bump patterns.  The regular bump pattern has 

been shown in Figure 4.3 in Chapter 4.  Since we are only concerned with the difference 

between two grid patterns, the rest of the study only contains results of f equal to 0.2813, 

1.125 and 1.9687.  The same initial particle balls locations and the total number of 

particles were used as for stagger pattern.   

6.2.1 Particle distribution 

6.2.1.1 d1 = 5.4mm and d2 = 5.4mm  

The results of filling from left gate at d1 = 5.4mm only is given in Figure 6.35.  It is 

very similar to the stagger bump pattern that the particles are compressed closer and 

spread into very limited spaces.  This demonstrates that single gate filling will have poor 

mixing regardless of the bump patterns.  Figure 6.36 – 6.38 show two gates filling for f = 

0.2813, 1.125, and 1.9687 respectively with d1 = 5.4mm and d2 = 5.4mm.  By looking at 

the final particle distributions, two gates filling have substantially improved the mixing.  
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Figure 6.35 Distribution of particles at t = 1.6s with left gate filling at d1 = 5.4 mm 
 

 

Figure 6.36 Distribution of particles at t = 1.6s for f = 0.2813 
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Figure 6.37 Distribution of particles at t = 1.6s for f = 1.125 
 

 

Figure 6.38 Distribution of particles at t = 1.6s for f = 1.9687 
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6.2.1.2 d1 = 5.4mm and d2 = 7.56mm  

Figures 6.39 – 6.41 show two gates filling for f = 0.2813, 1.125, and 1.9687 

respectively with d1 = 5.4mm and d2 = 7.56mm.   

6.2.1.3 d1 = 7.56mm and d2 = 7.56mm  

Figures 6.42 – 6.44 show two gates filling for f = 0.2813, 1.125, and 1.9687 

respectively with d1 = 7.56mm and d2 = 7.56mm.   

By looking at the final particle distributions, it is clear that two gates filling have 

substantially improved the mixing for all the d1 and d2 combinations. 

 

Figure 6.39 Distribution of particles at t = 1.6s for f = 0.2813 
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Figure 6.40 Distribution of particles at t = 1.6s for f = 1.125 

 

Figure 6.41 Distribution of particles at t = 1.6s for f = 1.9687 
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Figure 6.42 Distribution of particles at t = 1.6s for f = 0.2813 
 

 

Figure 6.43 Distribution of particles at t = 1.6s for f = 1.125 
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Figure 6.44 Distribution of particles at t = 1.6s for f = 1.9687 
 

6.2.2 Entropy 

The Entropy function as a function of time is plotted in Figure 6.45 - 6.53 for 

Slocation(species), S(locations), S and different gate locations.  From the plots, we can see 

that the f value is a key factor to entropy.  The same is true to the d1 and d2.  Table 6.2 

summarizes the simulation results for regular bump pattern.  Figure 6.54 shows 

Slocation(species) as a function of f for d1 = 5.4mm and d2 = 7.56mm obtained at t = 1.6s.  

Figure 6.55 shows the same plot as Figure 6.54 with all Slocation(species) values obtained 

at the end of two periods.  Figure 6.56 shows S(locations) and S as a function of f for d1 

= 5.4mm and d2 = 7.56mm.  Here again we see that there is a critical value of f between 

0.56 and 0.84, above this value, the mixing is substantially improved.   
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6.2.2.1 d1 = 5.4mm and d2 = 5.4mm  

 

 

Figure 6.45 Slocations(species)/ln(2) vs. time for two gates filling with f = 0.02813 (green), f 

= 1.125 (cyan), f = 1.9687 (red) 

 

Figure 6.46 S(locations) vs. time for and two gates filling with f = 0.02813 (green), f = 

1.125 (cyan), f = 1.9687 (red) 
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Figure 6.47 S vs. time for two gates filling with f = 0.02813 (green), f = 1.125 (cyan), f = 

1.9687 (red) 
 

6.2.2.2 d1 = 5.4mm and d2 = 7.56mm  

 

 

Figure 6.48 Slocations(species)/ln(2) vs. time for left gate filling (blue) and two gates filling 

with f = 0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 
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Figure 6.49 S(locations) vs. time for left gate filling (blue) and two gates filling with f = 

0.02813 (green), f = 1.125 (cyan), f = 1.9687, (red), aperiodic (black) 

 

Figure 6.50 S vs. time for left gate filling (blue) and two gates filling with f = 0.02813 

(green), f = 1.125 (cyan), f = 1.9687 (red), and aperiodic (black) 
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6.2.2.3 d1 = 7.56mm and d2 = 7.56mm  

 

Figure 6.51 Slocations(species)/ln(2) vs. time for two gates filling with f = 0.02813 (green), f 

= 1.125 (cyan), f = 1.9687 (red) 

 

Figure 6.52 S(locations) vs. time for and two gates filling with f = 0.02813 (green), f = 

1.125 (cyan), f = 1.9687 (red) 
 

   
 
 
 
 

125



 

 

Figure 6.53 S vs. time for and two gates filling with f = 0.02813 (green), f = 1.125 (cyan), 

f = 1.9687 (red) 
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Figure 6.54 Slocation(species) vs. f, d1 = 5.4mm, d2 = 7.56mm, t = 1.6s 
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Figure 6.55 Slocation(species) vs. f, d1 = 5.4mm, d2 = 7.56mm, n = 2 
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Figure 6.56 S(locations) (blue) and S (red) vs. f, d1 = 5.4mm, d2 = 7.56mm 

 

6.2.2.4 Compare with stagger bump pattern 

The average Slocation(species), S(locations), and S values are 0.33, 3.3, and 3.53 

respectively.  To compare with irregular bump pattern results, we calculate the average 
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Slocation(species), S(locations), and S values to be 0.35, 3.78, and 4.02 respectively.  There 

is no significant difference for Slocation(species), but the S(locations) and S values are 

slightly lower than stagger bump pattern.  But all these values are much larger than single 

gate filling, which are 0, 2.47, and 2.47 respectively for regular bump pattern. 

Figure 6.57 shows Slocation(species) as a function of f.  Filling with d1 = 5.4mm and 

d2 = 5.4mm, d1 = 5.4mm and d2 = 7.56mm, d1 = 7.56mm and d2 = 7.56mm are shown 

in red, blue and green respectively, while stagger and regular pattern are indicated by 

circle and star respectively.  The regular pattern results in an almost linear relation 

slightly higher values for the low f value.  The stagger pattern gives the best results with 

medium f value.  And the larger d1 and d2 results in a sharper curvature and higher 

values of Slocation(species).  This shows the strong effects of d1 and d2 on the mixing.   

 

Factor 1 Factor 2 Response 1 Response 2 Response 3 Response 4 

 f d1, d2 Slocation(species)  S(locations) S Stretch 
0.2813 5.4, 5.4 0.3585 3.0858 3.3343 1.9953 
1.125 5.4, 5.4 0.2033 3.4685 3.6094 2.1734 
1.9687 5.4, 5.4 0.0295 2.945 2.9655 1.4573 

      
0.2813 5.4, 7.56 0.5004 3.0429 3.3898 1.9224 
0.5625 5.4, 7.56 0.3805 3.2998 3.5635 2.2427 

0.8438 5.4, 7.56 0.3241 3.5443 3.7689 2.3054 

1.125 5.4, 7.56 0.3319 3.6055 3.8355 2.3403 
1.9687 5.4, 7.56 0.1956 3.6037 3.7393 1.9967 

      
0.2813 7.56, 7.56 0.6545 2.7852 3.2389 1.9242 
1.125 7.56, 7.56 0.389 3.5436 3.8132 2.2776 
1.9687 7.56, 7.56 0.3115 3.6302 3.8462 2.1871 

Table 6.2 DOE results for regular bump pattern 
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Figure 6.58 and 6.59 show S(locations) and S as a function of f respectively.  Filling 

with d1 = 5.4mm and d2 = 5.4mm, d1 = 5.4mm and d2 = 7.56mm, d1 = 7.56mm and d2 

= 7.56mm are shown in red, blue and green respectively, while stagger and regular 

pattern are indicated by circle and star respectively.  Both patterns have similar trend 

except for d1 = 5.4mm and d2 = 5.4mm.  The stagger pattern gives better results in 

general.     

 

 
Figure 6.57 Slocation(species) vs. f, red for d1 = 5.4mm and d2 = 5.4mm, blue for d1 = 

5.4mm and d2 = 7.56mm, green for d1 = 7.56mm and d2 = 7.56mm, stagger pattern – 

circle, regular pattern – star  
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Figure 6.58 S(locations) vs. f, red for d1 = 5.4mm and d2 = 5.4mm, blue for d1 = 5.4mm 

and d2 = 7.56mm, green for d1 = 7.56mm and d2 = 7.56mm, stagger pattern – circle, 

regular pattern – star 

 

 

Figure 6.59 S vs. f, red for d1 = 5.4mm and d2 = 5.4mm, blue for d1 = 5.4mm and d2 = 

7.56mm, green for d1 = 7.56mm and d2 = 7.56mm, stagger pattern – circle, regular 

pattern – star 
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In conclusion, good local mixing will be achieved regardless of bump patterns, 

however, carefully designed bump patterns could optimize the results.  S(locations) and S 

values are generally larger for stagger pattern.  The f value plays an important role and 

has different trends for different patterns.  So the pattern must be considered together 

with the f value to achieve the best mixing.  There is a critical value of f around 0.84, 

above this value, the mixing is substantially improved.  Also the Entropy is affected by 

gate distance.  The gate distance of d1 = 5.4mm and d2 = 5.4mm results in the worst 

mixing for both patterns. 

6.2.3 Stretching analysis 

Figure 6.60 – 6.62 show stretching, mean log (λ), evolution with time in the cavity of 

filling with gates d1 = 5.4mm d2 = 5.4mm, d1 = 5.4mm d2 = 7.5mm, and d1 = 7.5mm d2 

= 7.5mm respectively.  All two gates filling have nearly linear increasing of mean log(λ), 

which indicates the exponential stretching.  This is the evidence of chaotic flow inside the 

cavity.   

Figure 6.63 shows stretch as a function of f for both patterns.  At low f values, the 

regular pattern has smaller stretching.  At higher f values, both patterns have similar 

stretching.  This proves that the bump patterns could affect the stretching.   

 

 

   
 
 
 
 

131



 

 

Figure 6.60 Mean λ for two gates f = 0.02813 (green), f = 1.125 cyan), f = 1.9687 (red); 

d1 = 5.4mm, d2 = 5.4mm 
 

 

Figure 6.61 Mean λ for two gates f = 0.02813 (green), f = 1.125 cyan), f = 1.9687 (red); 

d1 = 5.4mm, d2 = 7.56mm 
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Figure 6.62 Mean λ for two gates f = 0.02813 (green), f = 1.125 cyan), f = 1.9687 (red); 

d1 = 7.56mm, d2 = 7.56mm 
 

 

Figure 6.63 Stretching as a function of f, red for d1 = 5.4mm and d2 = 5.4mm, blue for d1 

= 5.4mm and d2 = 7.56mm, green for d1 = 7.56mm and d2 = 7.56mm, stagger pattern – 

circle, regular pattern – star 
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6.2.4 Improve CTE 

 

To see the improvement of CTE value of mold compound with two gates chaotic 

filling, we can estimate by using Slocation(species) value that has been increased 8.08 times 

compared to one gate filling when use L75T75 two gates filling.  As mentioned before in 

chapter 3, we know that the AF difference can be as big as 11.4% and a CTE difference 

of 5.3 ppm/°C.  Using novel fed protocol filling the package can reduce the AF difference 

to approximately 1.97% as shown in Equation (6.3).  This in return may reduce the CTE 

difference to 0.92 ppm/°C, which is shown in Equation (6.4). 

 

(43.1% - 31.7%) / 5.8 = 1.97%      (6.3) 

 

  ∆CTE = 1.41% / (43.1% - 31.7%) × 5.3 

= 0.92 ppm/°C                   (6.4) 

 

As a result of reduced CTE difference we will expect the electronic packages to be 

more reliable and increased lifetime and performance. 
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Chapter 7: Conclusion 

The goal of this research was to determine the nature of the feed protocol necessary 

to create chaotic laminar mixing during the filling process of an empty cavity.  Periodic 

and aperiodic feed protocols from two feed ports are tested and a domain for chaotic 

mixing is identified.   

The first part of this thesis is the experimental investigation on electronic packages.  

Both major and minor fillers are analyzed.  Two kinds packages with different geometry 

are studied, one is square, and the other is rectangular.  Images obtained from cross 

sections at various places are analyzed for the particle distribution.  A set of measures 

include dv, dn, AF and db have been created to assess the particle distribution.  These 

measures are supposed to tie to different properties, and more general work need to be 

done to determine which measures are the key factors for which property.  

The statistical results show that the filler particles are not uniformly distributed 

within the package.  It can be found that different measures vary in different directions.  

For MQFPs, over 83% confidence that dv varies with position, over 95% confidence that 

dn varies with distance, and over 97% confidence that db varies with distance.  For 

Visteon chip, dv is affected by plane, position and interactions of die position and plane, 

plane and position; dn affected by die position, position and interactions of die position 

and plane, die position and position.  

The uneven distribution has a big influence on local CTE property, and could affect 

the reliability.  In this study the CTE is tied to AF.  The maximum AF variation is found 
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about 10% and makes a local CTE difference more than 5 ppm/°C.  This value is about 

44% of the effective CTE for MQFPs and 27% of the effective CTE for PQFPs.  These 

differences could be harmful to the reliability of the packages. 

For minor filler, the distance from the gate and the depth (level) within the package 

are factors that will affect the distribution of a minor constituent in a molded microcircuit 

package.  In fact, there is significant confidence that area fraction varies with distance 

from the gate and that area fraction varies with level.  In addition, the number of particles 

increases as the distance from the gate increases.  This trend is the same for the area 

fraction indicating that the area fraction trends result from the difference of the number of 

particles.   

The average area fraction found between the leads is the same as that of level 2, and 

is bigger than level 1.  Also the number of particles is the largest between the leads, even 

though the average particle size found between the leads is the smallest among all 3 

levels. 

The second part is the simulation of filling cavity using novel feed protocol.  The 

simulation in an empty cavity without bumps shows no improvements on mixing.  This is 

because that another critical condition must be met, which is velocity gradient.  In this 

kind of cavity, the velocity gradient can only exist at near the walls.  In the middle of the 

cavity, the velocity field is essentially flat. 

The most important achievements of this thesis are to prove that two gates filling can 

generate chaotic flow, and much better mixing.  The f value and d1, d2 values are 

important parameters to Entropy and stretching.  The gates further away from each other 

will have the best results for stagger bump pattern.  But this distance will be restricted by 
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the final packaging requirements on weld line, since we want to minimize the weld line 

too.  The f value plays an important role and has different trends for different patterns.  

There is a critical value of f around 0.84, above this value, the mixing is substantially 

improved.  And this critical value of f is affected by the bump patterns.  So the pattern 

must be considered together with the f value to achieve the best mixing.  Good local 

mixing will be achieved regardless of bump patterns, however, carefully designed bump 

patterns could optimize the results.  S(locations) and S values are generally larger for 

stagger pattern.  Also the Entropy is affected by gate distance.  The gate distance of d1 = 

5.4mm and d2 = 5.4mm results in the worst mixing for both patterns. 

Filling the empty cavity will not generate any periodic points due to no returning 

flow, and since the primary function of the aperiodic flow is to break the periodic points, 

so that the aperiodic flow will not necessarily better than periodic flow  
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Appendix 

1. Program for reconstructing the velocity field in the cavity and defining the initial position of particle 
balls. 
 
close all 
clear all 
clc 
 
%Load elements' 3 nodes 
load 'C:\elementnumber.txt' 
nodes = elementnumber; 
nodes = elementnumber; %the starting node number -1 ; 
 
%Load coordinates of nodes  
load 'C:\nodenumber.txt' 
X = nodenumber(:,1)*1000; 
Y = nodenumber(:,2)*1000; 
 
%Load top gate flow 
load 'C:\T75.txt' 
v = T75*1000; 
ux = v(:,2); %Velocity in x direction 
uy = v(:,3); %Velocity in y direction 
 
% load left gate flow 
load 'C:\L54.txt' 
vb = L54*1000; 
uxb = vb(:,2); 
uyb = vb(:,3);  
 
totalnode = max(max(nodes));  
totalelement = length(nodes);  
 
%Calculate velocity at nodes 
for nn = 1:totalnode   
  uxx(nn) = 0; uyy(nn)= 0; kk = 0; uxxb(nn) = 0; uyyb(nn) = 0;  
  for k = 1:totalelement 
    if (nodes(k, 1) == nn) 
        kk = kk + 1; 
        uxx(nn) = uxx(nn) + ux(k); 
        uyy(nn) = uyy(nn) + uy(k) ; 
        uxxb(nn) = uxxb(nn) + uxb(k); 
        uyyb(nn) = uyyb(nn) + uyb(k) ; 
    end 
    if (nodes(k, 2) == nn) 
        uxx(nn) = uxx(nn) + ux(k); 
        uyy(nn) = uyy(nn) + uy(k); 
        uxxb(nn) = uxxb(nn) + uxb(k); 
        uyyb(nn) = uyyb(nn) + uyb(k) ; 
        kk = kk + 1; 
    end 
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    if (nodes(k, 3) == nn); 
        uxx(nn) = uxx(nn) + ux(k); 
        uyy(nn) = uyy(nn) + uy(k) ; 
        uxxb(nn) = uxxb(nn) + uxb(k); 
        uyyb(nn) = uyyb(nn) + uyb(k) ; 
        kk = kk + 1; 
    end 
  end 
  if (kk > 0) 
  uxx(nn) = uxx(nn)/kk; 
  uyy(nn) = uyy(nn)/kk; 
  uxxb(nn) = uxxb(nn)/kk; 
  uyyb(nn) = uyyb(nn)/kk; 
  end 
end 
 
percent = 0.3 %Set slip velocity as 30% of the original velocity 
 
%Set velocity to be 0 at boundaries 
lxo1 = 7; lyo1 = 5.5; lxo = 4; dball = 1; lyo = 4; e = 1e-6; delty = 3;  
for k = 1:totalnode 
 if (X(k) <= e ) 
     uxx(k)=0; uyy(k) = 0; uxxb(k) = 0; uyyb(k) = 0; 
 end 
 if (X(k) == 27 ) 
     uxx(k) = 0; uyy(k) = 0; uxxb(k) = 0; uyyb(k) = 0; 
 end     
 if (Y(k) <= e) 
     uxx(k) = 0; uyy(k) = 0; uxxb(k) = 0; uyyb(k) = 0; 
 end     
 if (Y(k) == 27 ) 
     uxx(k) = 0; uyy(k) = 0; uxxb(k) = 0; uyyb(k) = 0; 
 end 
      
 %Set velocity to be 0 at balls 
 ly = lyo; 
 for m = 1:7  %y 
     lx = lxo; 
     for mm = 1:4 %x 
          if (X(k) >= lx & X(k) <= lx+dball & Y(k) == ly) 
          uyy(k) = 0; uyyb(k) = 0; uxx(k) = percent*uxx(k); uxxb(k) = percent*uxxb(k);  
        end 
          if (X(k) >= lx & X(k) <= lx+dball & Y(k) == ly + dball  ) 
          uyy(k) = 0; uyyb(k) = 0; uxx(k) = percent*uxx(k); uxxb(k) = percent*uxxb(k);  
        end        
          if (X(k) == lx & Y(k) >= ly & Y(k) <=ly + dball) 
          uxx(k) = 0; uxxb(k) = 0; uyy(k) = percent*uyy(k); uyyb(k) = percent*uyyb(k);  
        end 
          if (X(k) == lx + dball & Y(k) >= ly & Y(k) <= ly + dball) 
          uxx(k) = 0; uxxb(k) = 0; uyy(k) = percent*uyy(k); uyyb(k) = percent*uyyb(k);  
        end         
        lx = lx + 6; 
     end  
     ly = ly + delty;  
  end 
  ly = lyo1; 
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  for m = 1:6   
     lx = lxo1; 
     for mm = 1:3 
        if (X(k) >= lx & X(k) <= lx + dball & Y(k) == ly) 
          uyy(k) = 0; uyyb(k) = 0; uxx(k) = percent*uxx(k); uxxb(k) = percent*uxxb(k);  
        end 
        if (X(k) >= lx & X(k) <= lx+dball & Y(k) == ly+dball) 
          uyy(k) = 0; uyyb(k) = 0; uxx(k) = percent*uxx(k); uxxb(k) = percent*uxxb(k);  
        end        
        if (X(k) == lx & Y(k) >= ly & Y(k) <= ly + dball) 
          uxx(k) = 0; uxxb(k) = 0; uyy(k) = percent*uyy(k); uyyb(k) = percent*uyyb(k);  
        end 
        if (X(k) == lx + dball & Y(k) >= ly & Y(k) <= ly + dball) 
          uxx(k) = 0; uxxb(k) = 0; uyy(k) = percent*uyy(k); uyyb(k) = percent*uyyb(k);  
        end         
        lx = lx + 6; 
     end  
     ly = ly + delty;  
 end 
end 
% Plot velocity field for top gate filling 
figure(1) 
gama = sqrt(uxx.*uxx+uyy.*uyy) + e; %Normalize the plot 
S = 2; 
for k = 1:totalnode 
DX(k) = X(k) + uxx(k) / gama(k) / S; 
DY(k) = Y(k) + uyy(k) / gama(k) / S; 
end  
for n=1:totalnode 
plot([X(n) DX(n)], [Y(n) DY(n)], '-') 
hold on 
end 
axis([0 27 0 27]) 
% Plot velocity field for left gate filling 
figure(2) 
gama = sqrt(uxxb.*uxxb + uyyb.*uyyb) + e; 
for k = 1:totalnode 
DX(k) = X(k) + uxxb(k) / gama(k) / S; 
DY(k) = Y(k) + uyyb(k) / gama(k) / S; 
end  
for n=1:totalnode 
plot([X(n) DX(n)], [Y(n) DY(n)], '-') 
hold on 
end 
 
%Initial positions of particle balls, make sure the ball are not overlap  
%Initial particle ball center point, radius, increment 
xs = 6; ys = 22;  
r = 0.9;  
dys = 0.1; dxs = 0.1; 
i = 1; j = 1; 
x(1,1) = xs - r; xx = x(1,1); 
y(1,1) = ys - sqrt(r^2 - (x(1) - xs)^2); 
yy=y(1,1); 
while (x(j,i) <= (xs+r) ) 
y(j,i) = ys - sqrt(r^2 - (x(j,i) - xs)^2); 

   
 
 
 
 

140



 

    while (y(j,i) <= ys+sqrt(r^2 - (x(j,i) - xs)^2) ); 
    x(j, i+1) = x(j,i); 
    y(j, i+1) = y(j,i)+dys; 
    xx = [xx x(j, i + 1)]; 
    yy = [yy y(j, i + 1)]; 
    i = i + 1; 
    end 
 j = j + 1; 
 i = 1; 
 x(j,i) = x(j-1, i) + dxs; 
end 
y(j,i) = ys - sqrt(r^2 - (x(j,i) - xs)^2); 
xx = [xx x(j,i)]; 
yy = [yy real(y(j,i))]; 
%End of 1st ball1 
xs = 6; ys = 20;  
r = 0.9; i = 1; j = 1; 
dys = 0.1; dxs = 0.1; 
x1(1,1) = xs - r; xx1 = x1(1,1); 
y1(1,1) = ys - sqrt(r^2 - (x1(1) - xs)^2); 
yy1 = y1(1,1); 
while (x1(j,i) < (xs+r)) 
y1(j,i) = ys - sqrt(r^2 - (x1(j,i) - xs)^2); 
    while (y1(j,i) < ys + sqrt(r^2 -( x1(j,i) - xs)^2) ); 
    x1(j, i+1) = x1(j,i); 
    y1(j, i+1) = y1(j,i) + dys; 
    xx1 = [xx1 x1(j, i+1)]; 
    yy1 = [yy1 y1(j, i+1)]; 
    i = i+1; 
    end 
 j=j+1; 
 i=1; 
 x1(j,i)=x1(j-1,i)+dxs; 
end 
y1(j,i) = ys - sqrt(r^2 - (x1(j,i) - xs)^2); 
xx1 = [xx1 x1(j,i)]; 
yy1 = [yy1 real(y1(j,i))]; 
%End of 2nd ball1 
 
xx = real([xx xx1]); 
yy = real([yy yy1]); 
p = length(xx); 
ux = zeros(1,p); 
uy = zeros(1,p); 
plot(xx(:,1:261), yy(:,1:261),'r.') 
hold on 
plot(xx(:,262:522),yy(:,262:522), 'b.') 
hold on 
axis([0 27 0 27]) 
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2. Program for tracking particle positions 
 
%Constant  
e = 1e-6; 
td = 0; 
 
%Define the step as 0.01 second 
dt = 0.01; 
tend = 160-td;  
for i = 21:tend 
  for h = 1:p    
       
%Find the 3 nodes of the triangle element containing the point 
for k = 1:totalelement 
%Length of the three edges of an element 
a1 = sqrt((X(nodes(k,1)) - X(nodes(k,2)))^2 + (Y(nodes(k,1)) - Y(nodes(k,2)))^2); 
a2 = sqrt((X(nodes(k,2)) - X(nodes(k,3)))^2 + (Y(nodes(k,2)) - Y(nodes(k,3)))^2); 
a3 = sqrt((X(nodes(k,3)) - X(nodes(k,1)))^2 + (Y(nodes(k,3)) - Y(nodes(k,1)))^2); 
%Length of the point(xx,yy) to three nodes of an element 
as1(h) = sqrt((X(nodes(k,1)) - xx(i-1,h))^2 + (Y(nodes(k,1)) - yy(i-1,h))^2); 
as2(h) = sqrt((X(nodes(k,2)) - xx(i-1,h))^2 + (Y(nodes(k,2)) - yy(i-1,h))^2); 
as3(h) = sqrt((X(nodes(k,3)) - xx(i-1,h))^2 + (Y(nodes(k,3)) - yy(i-1,h))^2); 
sa = (a1+a2+a3)/2; 
sas1(h) = (as1(h) + as2(h) + a1)/2; 
sas2(h) = (as2(h) + as3(h) + a2)/2; 
sas3(h) = (as3(h) + as1(h) + a3)/2; 
Area = sqrt(sa*(sa - a1)*(sa - a2)*(sa - a3)); 
Areas1(h) = sqrt(sas1(h)*(sas1(h) - as1(h))*(sas1(h) - as2(h))*(sas1(h) - a1)); 
Areas2(h) = sqrt(sas2(h)*(sas2(h) - as2(h))*(sas2(h) - as3(h))*(sas2(h) - a2)); 
Areas3(h) = sqrt(sas3(h)*(sas3(h) - as3(h))*(sas3(h) - as1(h))*(sas3(h) - a3)); 
Areas(h) = Areas1(h) + Areas2(h) + Areas3(h); 
if (abs(Area - Areas(h)) < e) 
    n1(h) = nodes(k,1); 
    n2(h) = nodes(k,2); 
    n3(h) = nodes(k,3); 
end 
end  
%End of finding the 3 nodes 
 
% v(x,y)=Ax+By+C 
AA=[X(n1(h)) Y(n1(h)) 1 
    X(n2(h)) Y(n2(h)) 1 
    X(n3(h)) Y(n3(h)) 1]; 
Bx=[uxx(n1(h)) 
    uxx(n2(h)) 
    uxx(n3(h))]; 
% A=C(1), B=C(2), C =C(3) 
Cx=inv(AA)*Bx; 
vx = [xx(i-1,h) yy(i-1,h) 1] * Cx; 
By = [uyy(n1(h)) 
      uyy(n2(h)) 
      uyy(n3(h))]; 
Cy = inv(AA)*By; 
vy = [xx(i-1,h) yy(i-1,h) 1] * Cy; 
% vb(x,y)=Ax+By+C 
Bxb = [uxxb(n1(h)) 
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       uxxb(n2(h)) 
       uxxb(n3(h))]; 
Cxb = inv(AA)*Bxb; 
vxb = [xx(i-1,h) yy(i-1,h) 1] * Cxb; 
Byb = [uyyb(n1(h)) 
     uyyb(n2(h)) 
     uyyb(n3(h))]; 
Cyb = inv(AA)*Byb; 
vyb = [xx(i-1,h) yy(i-1,h) 1] * Cyb; 
 
%Periodic flow with T=0.2s 
if (i <= 20-td)%left 
xx(i,h) = xx(i-1,h) + dt*vxb; 
yy(i,h) = yy(i-1,h) + dt*vyb; 
elseif (i <= 40-td)%Top 
xx(i,h) = xx(i-1,h) + dt*vx; 
yy(i,h) = yy(i-1,h) + dt*vy; 
elseif (i <= 60-td)%left 
xx(i,h) = xx(i-1,h) + dt*vxb; 
yy(i,h) = yy(i-1,h) + dt*vyb; 
elseif (i <= 80-td)%Top 
xx(i,h) = xx(i-1,h) + dt*vx; 
yy(i,h) = yy(i-1,h) + dt*vy; 
elseif (i <= 100-td)%left 
xx(i,h) = xx(i-1,h) + dt*vxb; 
yy(i,h) = yy(i-1,h) + dt*vyb; 
elseif (i <= 120-td)%Top 
xx(i,h) = xx(i-1,h) + dt*vx; 
yy(i,h) = yy(i-1,h) + dt*vy; 
elseif (i <= 140)%left 
xx(i,h) = xx(i-1,h) + dt*vxb; 
yy(i,h) = yy(i-1,h) + dt*vyb; 
elseif (i <= 160)%Top 
xx(i,h) = xx(i-1,h) + dt*vx; 
yy(i,h) = yy(i-1,h) + dt*vy; 
end 
end 
save xL54T75P20 xx; 
save yL54T75P20 yy; 
end 
plot(xx(:,1:261), yy(:,1:261),'r.') 
hold on 
plot(xx(:,262:522),yy(:,262:522), 'b.') 
hold on 
axis([0 27 0 27]) 
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3. Program for calculating Entropy 
 
clear all 
clc 
 
load xL54T75P20 xx 
load yL54T75P20 yy 
 
%Calculate for 10 points 
m = [1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160]; 
for n = 1:length(m) 
x(m(n),:) = real(xx(m(n),:)); 
y(m(n),:) = real(yy(m(n),:)); 
e = 1e-10; 
Slocation(m(n)) = 0; 
%Define bin size 
binoneside = 27;  
M = binoneside*binoneside; 
Mx = sqrt(M); 
My = sqrt(M); 
for j = 1:M   
red(m,j) = 0; 
blue(m,j) = 0; 
end 
for i = 1:261 %Upper ball only 
    j = 1; 
    for jx = 1:Mx   
        for jy = 1:My   
          if (x(m(n),i) <= 27/Mx*jx & x(m(n),i) >= 27/Mx*(jx-1)) 
            if (y(m(n),i) <= 27/My*jy & y(m(n),i) >= 27/My*(jy-1)) 
              red(m(n),j) = red(m(n),j) + 1; 
            end  
          end 
          j = j + 1; 
        end 
    end 
end 
 
for i = 262:length(xx)  %Bottom ball only 
    j = 1; 
    for jx = 1:Mx   
        for jy = 1:My   
          if (x(m(n),i) <= 27/Mx*jx & x(m(n),i) >= 27/Mx*(jx-1)) 
            if (y(m(n),i) <= 27/My*jy & y(m(n),i) >= 27/My*(jy-1)) 
              blue(m(n),j) = blue(m(n),j) + 1; 
            end  
          end 
          j = j + 1; 
        end 
    end 
end 
 
Total(m(n),:) = blue(m(n),:) + red(m(n),:) + e; 
 
for j = 1:M   
    pcslashj(1,j) = red(m(n),j) / Total(m(n), j) + e; 
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    pcslashj(2,j) = abs(1 -  pcslashj(1,j)) + e; 
end 
 
Sjspecies(m) = 0; 
Slocationsspecies(m(n)) = 0; 
Slocation(m) = 0; 
 
for j = 1:M 
    Sjspecies(m(n)) = 0; 
    for c=1:2 
    Sjspecies(m(n)) =   Sjspecies(m(n)) - pcslashj(c,j)*log(pcslashj(c,j)); 
    end 
pj(j) = Total(m(n),j)/sum(Total(m(n),:)); 
Slocationsspecies(m(n)) = Slocationsspecies(m(n)) + pj(j)*Sjspecies(m(n)); 
lnpj(j) = log(pj(j)); 
Slocations(m(n)) = Slocation(m(n)) - pj(j)*log(pj(j)); 
end 
 
NormalizeSlocationsspecies(m(n)) = Slocationsspecies(m(n))/log(2); 
S(m(n))=Slocationsspecies(m(n))+Slocations(m(n)); 
end 
 
n = 1:1:17; 
 
%P20 
figure(1) 
plot(m(n)/100, S(m(n)),'c-') 
hold on 
plot(m(n)/100, S(m(n)),'cv') 
hold on  
set(gca,'fontsize',12) 
xlabel('Time (s)','fontsize',16) 
ylabel('S','fontsize',16)  
grid off 
axis([0 1.6 2 5]) 
 
figure(2) 
plot(m(n)/100, NormalizeSlocationsspecies(m(n)),'c-') 
hold on 
plot(m(n)/100, NormalizeSlocationsspecies(m(n)),'cv') 
hold on  
set(gca,'fontsize',12) 
xlabel('Time (s)','fontsize',16) 
ylabel('S_l_o_c_a_t_i_o_n_s(species)/ln(2)','fontsize',16)  
grid off 
axis([0 1.6 0 0.7]) 
figure(3) 
plot(m(n)/100, Slocations(m(n)),'c-') 
hold on 
plot(m(n)/100, Slocations(m(n)),'cv') 
hold on 
set(gca,'fontsize',12) 
xlabel('Time (s)','fontsize',16) 
ylabel('S(locations)','fontsize',16)  
grid off 
axis([0 1.6 2 5]) 
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4. Program for calculating stretching 
 
clear all 
clc 
 
load xL54T75SP20 xx; 
load yL54T75SP20 yy; 
 
clear temp 
real(xx); 
real(yy); 
for t = 1:1:160; 
%Final distance 
dx (t,:) = sqrt((xx(t, 263:524) - xx(t, 1:262)).^2 + (yy(t, 263:524) - yy(t, 1:262)).^2); 
%Initial distance 
dx0(t,:) = sqrt((xx(1, 263:524)  - xx(1, 1:262)).^2 + (yy(1, 263:524) - yy(1, 1:262)).^2); 
%Ratio of final to initial 
rp(t,:) = real(dx(t,:)./dx0(t,:)); 
%Average ratio 
mean(t) = sum(rp(t,:))/262;  
meanlamda(t) = log10(mean(t)); 
end 
 
figure(1) 
%P20 
t = 1:1:160; 
plot(t/100, meanlamda(t), 'c-');    
hold on 
 
axis([0 1.6 -1 3]) 
xlabel('Time (s)','fontsize',16)  
ylabel('Mean Log(\lambda)','fontsize',16)  
title('','fontsize',16) 
set(gca,'fontsize',14) 
grid off 
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