
 
 

 
 
 

ABSTRACT 
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Simple random sampling is an assumption when using fit statistics to fit latent class (LC) 

models to data. However, LC models are often fit to datasets collected through complex 

survey sampling methods that may result in inaccurate estimates of standard errors, 

parameter estimates and fit statistics. This study examined how various comparison tests 

functioned for latent class models when using complex survey data. The motivation for 

this research is the issue of reported drug use patterns and whether changes in drug use 

have occurred over time. This issue was investigated using reported drug use data from 

the National Household Survey on Drug Abuse (NHSDA) for 1979 and 1988. Monte 

Carlo simulations were used to determine how well the various model comparison 

statistics (chi-square, AIC, BIC, RIC and Wald statistic) functioned for a variety of 

complex sample designs. In addition, a simulation based on the NHSDA data was used to 

answer the research question: Do patterns of reported drug use show change over time? 

The model comparison statistics were most accurate when sample sizes were large and 

item-specific error rates were low. Intraclass correlation, an indicator of how similar 



individuals are within the same cluster, appeared to have little effect on the accuracy of 

the model comparison statistics. Statistics were not as accurate when sampling from 

unequally weighted groups. The chi-square statistics and AIC were recommended for use 

with complex survey data based on their high rates of accuracy. More caution was 

recommended when using BIC and RIC.  Results indicated that reported drug use 

patterns changed between 1979 and 1988. Most patterns of reported drug use increased 

slightly, with the exception of respondents characterized by alcohol and tobacco use 

alone that decreased substantially. 

 



 

 

 

 

 
ASSESSING FIT OF LATENT CLASS MODELS TO 

COMPLEX SURVEY DATA: IMPLICATIONS FOR DRUG 
USE RESEARCH 

 
By 

 
Carrie Elizabeth Markovitz 

 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2003 
 
 
 
 
 
 
 

Advisory Committee: 
 
 Professor C. Mitchell Dayton, Chair 
 Professor David Cantor 
 Professor Greg Hancock 
 Professor George Macready 
 Professor Robert Mislevy 
 
 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©Copyright by 
 

Carrie Elizabeth Markovitz 
 

2003 



 

iii 

TABLE OF CONTENTS 
 

List of Tables ............................................................................................................... v 
 
List of Figures ............................................................................................................... vi 
 
Abstract 
 
Chapter I: Purpose and Rationale........................................................................... 1 

Rationale ........................................................................................................... 2 
Purpose of the Study ......................................................................................... 3 
Overview........................................................................................................... 4 
 

Chapter II: Review of Literature ............................................................................. 6 
Stages of Drug Use ......................................................................................  6 
The National Household Survey on Drug Abuse ........................................  9 
Latent Class Scaling.....................................................................................  12 
Simultaneous Latent Structure Analysis......................................................  14 
Model Comparison Statistics .......................................................................  16 

 
Chapter III: Preliminary Analysis of National Household Survey on  
 Drug Abuse Data................................................................................... 20 
 
Chapter IV: Methods................................................................................................. 28 

Simulation Sample Design...........................................................................  28 
Fixed Factors................................................................................................  31 
Manipulated Factors.....................................................................................  31 
Final Analysis of NHSDA ...........................................................................  35 
Simulation Details........................................................................................  36 
 

Chapter V: Simulation Results ................................................................................ 38 
Determining Best Fitting Model ..................................................................  38 
Accuracy for Equally Weighted Groups for X2, G2 and I2 ..........................  39 
Accuracy for Unequally Weighted Groups for X2*, G2* and I2* ................  50 
Overall Accuracy for X2, G2 and I2..............................................................  57 
Accuracy for Equally Weighted Groups for AIC, BIC and RIC .................  59 
Accuracy for Unequally Weighted Groups for AIC*, BIC* and RIC*.......  68 
Overall Accuracy for AIC, BIC and RIC.....................................................  75 
Comparisons among Model Comparison Statistics .....................................  76 
Accuracy for Wald Statistic .........................................................................  82 
NHSDA Simulation Results ........................................................................  87 

 
Chapter VI: Discussion and Conclusions ................................................................. 88 

Chi-Square Statistics....................................................................................  88 
Akaike Information Criterion (AIC) Statistic ..............................................  89 
Rissanen Statistic (RIC)...............................................................................  90 



 

iv 

Bayesian Information Criterion (BIC) Statistic ...........................................  90 
Wald Statistic ...............................................................................................  91 
Conclusions on the Use of Unequal Weighting and Clustering ..................  91 
Analysis Using the NHSDA Data ...............................................................  92 
Limitations of the Study...............................................................................  93 
Recommendations........................................................................................  94 
Implications for Further Research ...............................................................  95 

 
Appendix A ............................................................................................................... 96 
 
Appendix B-1 ............................................................................................................... 116 
 
Appendix B-2 ............................................................................................................... 140 
 
References ............................................................................................................... 158 
 
 



 

v 

LIST OF TABLES 
 

Table 1. Results from fitting error models to 1979 NHSDA data ................................. 21 
 
Table 2. Results of fitting item-specific error models to 1979 NHSDA data ................ 22 
 
Table 3. Estimated latent class proportions and item-specific error rates for six-class, 
item-specific error model fit to 1979 NHSDA data ....................................................... 23 
 
Table 4. Results from fitting six-class error models to 1988 NHSDA data................... 24 
 
Table 5. Results of fitting several item-specific error models to 1988 NHSDA data.... 24 
 
Table 6. Estimated latent class proportions and item-specific error rates for six-class, 
item-specific error model fit to 1988 NHSDA data ....................................................... 25 
 
Table 7. Results of fitting homogeneous, partial-homogeneous and heterogeneous 
models to 1979 and 1988 NHSDA data......................................................................... 25 
 
Table 8. Estimated latent class proportions and item-specific error rates by group 
membership from partial-homogeneous model fit to 1979 and 1988 NHSDA data...... 26 
 
Table 9. Design specifications for simulated cases........................................................ 30 
 
Table 10. ICCs of simulated cases ................................................................................. 35 
 
Table 11. Accuracy for equally weighted groups by sample size with .05  
significance level............................................................................................................ 41 
 
Table 12. Accuracy for unequally weighted groups by sample size with .05 
significance level............................................................................................................ 51 
 
Table 13. Accuracy for equally weighted groups for AIC, BIC and RIC...................... 60 
 
Table 14. Accuracy for unequally weighted groups for AIC*, BIC* and RIC*............ 69 
 
Table 15. Accuracy for Wald statistic for select cases................................................... 83 
 
Table 16. Accuracy for NHSDA Simulation ................................................................. 87 
 
 



 

vi 

LIST OF FIGURES 
 

Figure 1. Accuracy for equally weighted groups with item-specific error rate of 
.05 for Pearson chi-square (X2)...................................................................................... 42 
 
Figure 2.  Accuracy for equally weighted groups with item-specific error rate of 
.25 for Pearson chi-square (X2)...................................................................................... 43 
 
Figure 3. Accuracy for equally weighted groups with cluster size of 5 for Pearson 
chi-square (X2) ............................................................................................................... 44 
 
Figure 4. Accuracy for equally weighted groups with cluster size of 10 for 
Pearson chi-square (X2).................................................................................................. 44 
 
Figure 5. Accuracy for equally weighted groups with cluster size of 25 for 
Pearson chi-square (X2).................................................................................................. 45 
 
Figure 6. Accuracy for equally weighted groups with first LC pattern and sample 
size of 500 for Pearson chi-square (X2) ......................................................................... 46 
 
Figure 7. Accuracy for equally weighted groups with second LC pattern and 
sample size of 500 for Pearson chi-square X2) .............................................................. 46 
 
Figure 8. Accuracy for equally weighted groups with third LC pattern and sample 
size of 500 for Pearson chi-square (X2) ......................................................................... 47 
 
Figure 9. Accuracy for equally weighted groups with first LC pattern and sample 
size of 3,000 for Pearson chi-square (X2) ...................................................................... 48 
 
Figure 10. Accuracy for equally weighted groups with second LC pattern and 
sample size of 3,000 for Pearson chi-square (X2) .......................................................... 48 
 
Figure 11. Accuracy for equally weighted groups with third LC pattern and 
sample size of 3,000 for Pearson chi-square (X2) .......................................................... 49 
 
Figure 12. Accuracy for unequally weighted groups with item-specific error rate 
of .05 for Pseudo-Pearson chi-square (X2*)................................................................... 52 
 
Figure 13. Accuracy for unequally weighted groups with item-specific error rate 
.25 for Pseudo-Pearson chi-square (X2*) ....................................................................... 52 
 
Figure 14. Accuracy for unequally weighted groups with sample size of 500 and 
item-specific error rate of .05 for Pseudo-Pearson chi-square (X2*) ............................. 53 
 
Figure 15. Accuracy for unequally weighted groups with first LC pattern and 
sample size of 500 for Pearson chi-square (X2*) ........................................................... 54 



 

vii 

 
Figure 16. Accuracy for unequally weighted groups with second LC pattern and 
sample size of 3,000 for Pearson chi-square (X2*) ........................................................ 54 
 
Figure 17. Accuracy for unequally weighted groups with third LC pattern and 
sample size of 3,000 for Pearson chi-square (X2*) ........................................................ 55 
 
Figure 18. Accuracy for unequally weighted groups with second LC pattern and 
sample size of 500 for Pearson chi-square (X2*) ........................................................... 56 
 
Figure 19. Accuracy for unequally weighted groups with first LC pattern and 
sample size of 3,000 for Pearson chi-square (X2*) ........................................................ 56 
 
Figure 20. Accuracy for equally and unequally weighted groups with cluster size 
of 25 for Pearson chi-square (X2)................................................................................... 58 
 
Figure 21. Accuracy for equally weighted groups with item-specific error rate of 
.25 for AIC ..................................................................................................................... 61 
 
Figure 22. Accuracy for equally weighted groups with item-specific error rate of 
.05 for RIC ..................................................................................................................... 62 
 
Figure 23. Accuracy for equally weighted groups with item-specific error rate of 
.25 for BIC ..................................................................................................................... 63 
 
Figure 24. Accuracy for equally weighted groups with sample size of 500 and 
item-specific error rate of .05 for AIC ........................................................................... 64 
 
Figure 25. Accuracy for equally weighted groups with first LC pattern for AIC.......... 65 
 
Figure 26. Accuracy for equally weighted groups with first LC pattern and sample 
size of 3,000 for BIC...................................................................................................... 65 
 
Figure 27. Accuracy for equally weighted groups with first LC pattern and sample 
size of 500 for RIC......................................................................................................... 66 
 
Figure 28. Accuracy for equally weighted groups with second LC pattern and 
sample size of 3,000 for BIC.......................................................................................... 67 
 
Figure 29. Accuracy for unequally weighted groups with item-specific error rate 
of .05 for BIC* ............................................................................................................... 70 
 
Figure 30. Accuracy for unequally weighted groups with item-specific error rate 
of .05 and sample size of 500 for AIC* and RIC*......................................................... 71 
 



 

viii 

Figure 31. Accuracy for unequally weighted groups with item-specific error rate 
of .05 and sample size of 500 for AIC* ......................................................................... 72 
 
Figure 32. Accuracy for unequally weighted groups with first LC pattern and 
sample size of 3,000 for AIC*, BIC* and RIC* ............................................................ 73 
 
Figure 33. Accuracy for unequally weighted groups with third LC pattern and 
sample size of 500 for AIC*, BIC* and RIC* ............................................................... 73 
 
Figure 34. Accuracy for unequally weighted groups with third LC pattern and 
sample size of 3,000 for AIC*, BIC* and RIC* ............................................................ 74 
 
Figure 35. Accuracy for equally and unequally weighted groups with cluster size 
of 25 for AIC.................................................................................................................. 76 
 
Figure 36. Accuracy for equally weighted groups with cluster size of 25 for X2, 
G2, I2, AIC, BIC and RIC............................................................................................... 78 
 
Figure 37. Accuracy for unequally weighted groups with cluster size of 25 for 
X2*, G2*, I2*, AIC*, BIC* and RIC*............................................................................. 79 
 
Figure 38. Accuracy for equally weighted groups for X2, G2, I2, AIC, BIC, and RIC ......  81 
 
Figure 39. Accuracy for unequally weighted groups for X2*, G2*, I2*, AIC*, BIC*, 
and RIC*....................................................................................................................................  82 
 
Figure 40. A comparison among X2, G2, I2, AIC, BIC, RIC, and Wald ...............................  84 
 
Figure 41. Accuracy for equally weighted groups for X2, G2, I2, AIC, BIC, RIC, and 
Wald...........................................................................................................................................  85 
 
Figure 42. Accuracy for unequally weighted groups for X2*, G2*, I2*, AIC*, BIC*, 
RIC*, and Wald .........................................................................................................................  86 
 
 



 

1 

CHAPTER 1 

PURPOSE AND RATIONALE 

 

Latent class analysis (LCA) is a method of empirically identifying categorical 

latent underlying variables by observing discrete manifest variables. Latent class (LC) 

models allow the identification of a set of exclusive and exhaustive latent classes that 

account for the distribution of respondents in a population. Therefore, LCA can be used 

for testing whether a theoretical structure adequately fits a dataset. LC models have been 

fit to datasets collected through complex survey sampling methods. An important 

property of complex surveys is that the probability of selection may not be equal for all 

members of the population, so that sampling weights must be used to correct for this 

inequality. Also, it is frequently the case that clusters of respondents are selected within 

groups. This impacts the estimation of standard errors since respondents within clusters 

tend to be positively correlated. 

Due to the use of complex survey sampling, comparing latent structures across 

two or more periods of time or across independent groups, as in simultaneous latent 

structure analysis, presents problems. For example, it may be difficult to determine 

whether a homogenous, partial-homogeneous, or heterogeneous model best fits the data 

since the usual LC assumptions of simple random sampling (SRS) are not met. To date, 

no study has examined how model comparison statistics function for LC models when 

using complex survey data.  
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Rationale 

The motivation for this research was provided by the issue of reported drug use 

patterns among members of households located in the United States. It has been theorized 

that drug use occurs in stages that are specifically ordered. If this pattern of drug use 

exists, then respondents can be organized into a set number of classes representing 

different drug use states at various points in time. Furthermore, respondents should form 

mutually exclusive and exhaustive classes with class membership dependent on the 

history of drug use.  

Individuals can be organized into groups or classes depending on their sequence 

of reported drug use because the types of drugs used, in theory, form a linear relation. 

Latent class scaling is a form of latent class analysis that uses linear relations to 

categorize respondents with respect to some underlying, latent variable. If it is theorized 

that a lower order drug must be used before a higher order drug, then reported drug use 

should form a Guttman-like scale, organized around each drug’s level. In the context of a 

Guttman scale, a person’s experience with a drug is dependent on that individual’s 

experience with lower order drugs. In this case, latent class scaling can be used to study 

the research question: Do patterns of drug use show change over time?  

The question of drug use over time was examined using responses to questions 

from the National Household Survey on Drug Abuse (NHSDA) for the years 1979 and 

1988. The data for these two years were compared using a method developed by Clogg 

and Goodman (1984, 1985) referred to as simultaneous latent structure analysis. The 

simultaneous analysis of latent structures involves the comparison of latent structures 

across multiple groups or years.  
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Drug use data, such as the NHSDA, are often collected using complex survey 

sampling methods involving multistage sampling and sampling weights. Lee, Forthofer 

and Lorimor (1989) note that statistics routinely used for making inferences about 

population parameters will not produce accurate estimates when applied to data from 

complex survey designs. Typical statistics assume SRS and, when this assumption is not 

met, a potential source of error is introduced into the analysis. Lehtonen and Pahkinen 

(1994) argue that accounting for the sampling complexities involved in data collection is 

essential for producing accurate estimates. They note that the use of clustering affects 

modeling procedures, as well as variance and parameter estimation. However, at present 

these issues are often ignored in research where model comparison statistics are used for 

fitting LC models to complex survey data.  

 

Purpose of the Study 

 The accuracy of parameter and variance estimates in fitting LC models to a single 

group when using survey data has been studied by Patterson, Dayton and Graubard 

(2002). However, the accuracy of LC comparison statistics across multiple groups when 

using complex sampling data has not been explicitly addressed. To address this issue, the 

present study investigated the behavior of various model comparison statistics when 

performing simultaneous latent structure analyses on complex sample survey data by 

examining the effects of unequal sampling and clustering in the dataset. The focus of this 

study was to fit LC models to data from the 1979 and 1988 NHSDA and compare the 

latent structures across the two years. Building on the work of Patterson, Dayton and 

Graubard (2002), this study focused on determining which, if any, model comparison 
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statistics for simultaneous latent structure analysis are appropriate for use with complex 

sample surveys.  

The problem of fitting LC models to data across groups was addressed in two 

parts: 

1. An examination of the various model comparison statistics for simultaneous 

latent structure analysis to determine how the model comparison statistics 

behaved under various sampling conditions; and 

2. A simulation of the 1979 and 1988 NHSDA to determine if reported drug use 

patterns have changed over time. 

A Monte Carlo simulation was used to determine how well the various model 

comparison statistics function with respect to various complex samples. Each simulation 

involved drawing samples from two groups. A variety of simulations were performed to 

investigate how model comparison statistics function under various conditions, including: 

1) low, medium and high variability in latent class structures among groups; 2) low 

versus high item-specific error rates; 3) equal weighting versus oversampling of one 

group (unequal sampling weights); 4) three cluster sizes resulting in different intraclass 

correlations; and 5) small and large sample sizes. 

 

Overview 

 The remainder of this document is divided into five chapters: 2) Review of 

Literature; 3) Analysis of NHSDA Data; 4) Methods; 5) Simulation Results; and 6) 

Discussion and Conclusions. The Review of Literature includes findings from drug use 

research, a discussion of the sampling methods used in the NHSDA and a description of 
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latent class scaling and simultaneous latent structure analysis. Descriptions of the model 

comparison statistics used in this study are also offered.  

 In Chapter 3, two years of the NHSDA were analyzed individually using latent 

class software. The analysis was used to identify the latent class structures that exist in 

each of the years of the NHSDA. These latent class structures were used to build the 

simulated cases. The parameters used in the simulations are described in Chapter 4, 

Methods. An explanation of and justification for their selection is also offered. Results 

and conclusions are then presented in the final two chapters. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Stages of Drug Use 

Recent discussion concerning drug use has, in part, focused on the theory of 

“gateway” drugs, the use of which may influence or contribute to the use of more 

addictive, illicit drugs (Kandel & Faust, 1975; Yamaguchi & Kandel, 1984; Allebeck & 

Romelsjo, 1993). Several less addictive drugs, such as nicotine, alcohol and marijuana, 

are viewed as leading to more serious forms of illicit drug use, including cocaine, crack 

and heroin (Blaze-Temple & Lo, 1992; Johnson, Boles, & Kleber, 2000; Lai et al, 2000). 

As a result, the theory summarized here holds that the development of drug use follows a 

stage-like progression in which individuals make transitions from one level of drug use to 

another.  

There is interest in defining a common developmental pathway from licit to illicit 

drug use since the reported use of so called “street drugs,” such as cocaine, crack and 

heroin, has been a public policy concern since the 1960’s. If, in fact, more serious drug 

use is induced by the use of licit drugs, such as alcohol or cigarettes and then by the use 

of marijuana, it may be possible to reduce subsequent hard drug abuse by reducing or 

postponing the age of initiation of alcohol, cigarettes and marijuana (Golub & Johnson, 

2001). Therefore, a typical progression of reported drug use and the identification of 

“gateway” drugs have been a focus of much research. 

The type of relation described among different types of reported drug use is 

indicative of a Guttman model. A Guttman-type stages of drug use model would include 
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a specific sequence of use where only certain patterns would be allowable in the model. 

Guttman scaling assumes that a set of dichotomously scored, observable items can be 

ordered according to difficulty or degree. Therefore, individual responses to items higher 

on the scale are dependent on the responses to preceding items, forming a linear 

hierarchic structure. Thus, any response pattern that does not follow a Guttman sequence 

can be assumed to result from response errors (Guttman, 1947).  

In terms of measuring drug use or addiction, the same type of hierarchical relation 

is hypothesized with the use of different substances correlated such that a respondent’s 

reported use of one type of drug is dependent upon the reported use of lower order 

substances. Again, there is a permissible set of responses because the reported use of a 

higher order drug is dependent on the reported use of a lower order substance. 

Importantly, a key requirement of the stage hypothesis of drug use that arranges 

substance use on a Guttman-like scale is that those reporting use of higher order drugs 

will report having used lower order drugs. However, users of lower order drugs are not 

necessarily required to move to higher stages of drug use. A Guttman stages of drug use 

model has been suggested by several researchers (Yamaguchi & Kandel, 1984; Blaze-

Temple & Lo, 1992; Kandel, Yamaguchi, & Chen, 1992). The common, sequential 

model established in these numerous studies is the basis for the model that was used in 

this study.  

The model of drug use is typically characterized by four stages: 1) nonuse; 2) 

alcohol and/or tobacco (licit use); 3) marijuana; and 4) hard or “street drugs,” such as 

cocaine, crack and heroin. Consistent with prior research on gateway drugs, the first stage 

of reported drug use (after no use) is the use of alcohol or cigarettes. Progression to the 
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next stage, marijuana use, has been shown to be very unlikely without reporting prior 

experimentation with alcohol or cigarettes. This is the first step from licit drug use for 

adults to illicit drug use. After marijuana, the next step in the drug use sequence is 

believed to be cocaine and heroin use. It has been shown in studies, such as those listed 

above, that few individuals report trying more serious illicit drugs without reporting prior 

experience using marijuana. More recently, Yamaguchi and Kandel (1984) and Kandel, 

Yamaguchi and Chen (1992) have suggested the addition of a fifth stage, prescribed 

psychoactive drugs. However, defining this category has been difficult since it can 

include several types of prescription drugs and data on the use of these drugs are limited.  

Guttman scaling involves two basic assumptions: 1) the deterministic assumption 

of error free responses by respondents and 2) the assumption that all persons in the 

population of interest are scalable on the same response pattern, meaning that all 

deviations from allowable responses are due to random error (McCutcheon, 1987).  A 

common criticism of Guttman scaling is its deterministic form that implies error free 

measurement. Even if a scaling model correctly characterizes a population of 

respondents, response vectors that deviate from permissible response patterns are likely 

to occur. These deviations can be due to respondent errors such as mistakes in response 

selection or guessing. Several alternative models have been introduced that more 

realistically assume that each of the individual items has an associated measurement 

error. Therefore, items are not considered perfect measures of a true ability or attribute. 

Probabilistic models have been used in this context, including the Proctor model (Proctor, 

1970), the intrusion-omission error model (Dayton & Macready, 1976), the item-specific 
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error model (Clogg & Sawyer, 1981) and the latent class-specific model (Clogg & 

Sawyer, 1981). 

 

The National Household Survey on Drug Abuse 

The NHSDA is designed to measure the prevalence of illicit drug, alcohol and 

tobacco use among members of the household population aged 12 and older, and includes 

information on both licit and illicit reported drug use dating from 1972. The National 

Commission on Marijuana and Drug Abuse sponsored the first surveys in response to the 

growing concern over drug abuse. Currently, the survey is sponsored by the Substance 

Abuse and Mental Health Services Administration (SAMHSA).  

The 1979 and 1988 NHSDA used similar methodologies. The sample has always 

been a stratified, multistage, area probability sample of the target population with the 

target population being members of households located in the continental United States 

age 12 and older.  Each year a national probability sample of households has been 

selected from approximately 100 primary sampling units (PSUs). The household 

population includes more than 98 percent of the United States population, excluding 

persons living in institutional group quarters, such as military installations, college 

dormitories, hotels, hospitals and jails and the homeless.  PSUs are selected from various 

strata that vary from year to year. These strata are defined by groups the study is 

interested in focusing on for a particular year of data collection. Between 1971 and 1990 

the NHSDA was conducted in households located in the continental United States. 

Starting in 1991, however, the sample was redesigned and more areas and populations 

were added to the sample frame. For instance, residents of Alaska and Hawaii were added 
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to the NHSDA sampling frame in 1991, as well as college students living in dormitories 

and military personnel living in the United States. For these reasons, data from years 

prior to 1990 were compared.  

The sample design involved several selection stages. First, primary areas, 

specifically counties, groups of counties, or metropolitan areas, were selected, then sub-

areas (area segments) within these primary areas and households within the sub-areas. 

Next, households were screened for basic demographics and between zero and two 

eligible residents were selected from each sampled household. 

The basic methodology of the survey has remained the same over the three 

decades that data have been collected. One household member of each sample dwelling 

unit is asked screening questions on the household composition, including the age, race, 

gender and ethnicity of all household members. Based on this information, between zero 

and two household members are selected to participate in the interview. Face-to-face 

interviews are then conducted with the sampled participates, with more sensitive drug-use 

questions being self-administered. Response rates have generally been approximately 90 

percent for the screening stage and 80 percent for the interview.  

 At the conclusion of data collection, sample weights are calculated that reflect the 

complex structure of the sampling and adjust for respondents’ probability of selection. 

When conducting statistical analyses on complex survey samples, sampling weights, wFi, 

must be assigned to each respondent to compensate for unequal selection probabilities 

and nonresponse or noncoverage. Therefore, the analysis technique used requires 

sampling weights to estimate the characteristics of the target population from the reports 

of the sample. Sample weights are then adjusted for non-response and refusal to 
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participate. Finally, these sampling weights are post-stratified to census projections of 

population totals for age, sex, race/ethnicity and population groups. The resulting weights 

were used in the analyses reported in this document.  

Although sections of the survey have undergone changes and additions over the 

years, the core questions about drug use have remained the same allowing for 

comparisons across years. Each respondent’s history of drug use was determined from 

answers to the following questions: “How old were you the first time you…[used 

alcohol, cigarettes, marijuana, cocaine and heroin]?” The respondent’s answers to these 

questions were then recoded into a reported drug use flag that records 1 if the respondent 

has used the drug of interest and 0 if the respondent has not used the drug of interest. The 

recoded answers calculated for the flag item were used to establish a pattern of reported 

drug use for each respondent.  

Based on the models identified in the literature and the data available in the 

NHSDA, a number of allowable sequences of reported drug use that resemble a modified 

Guttman scale were identified. Drugs are ordered according to their understood order of 

use: 1) alcohol; 2) tobacco; 3) marijuana; 4) cocaine and/or heroin. The model follows a 

typical Guttman scale with one exception; tobacco can be used without prior use of 

alcohol {0,1,0,0}. This modified version of a Guttman scale, called a biform scale, allows 

for six latent classes: {0,0,0,0}, {0,1,0,0}, {1,0,0,0}, {1,1,0,0}, {1,1,1,0} and {1,1,1,1}. 

A biform scale is a combination of two different linear scales. In this case, two five-class, 

linear structures would be combined to allow six permissible response vectors. 
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Latent Class Scaling 

Lazarsfeld and Henry (1968) provided a comprehensive examination of models 

that relate latent variables to scores or categories of manifest variables. Later named 

“latent class analysis,” LCA is a method of empirically identifying categorized latent 

variables from discrete observed variables. LCA allows the identification of a set of 

exclusive and exhaustive latent classes that account for the distribution of respondents. 

Therefore, LCA can be used for testing whether a theoretical structure adequately fits a 

dataset.  

 Latent class scaling is a special use of LC models that assumes that the classes of 

the latent variable can be ordered by degree from lowest to highest. In the context of the 

NHSDA data, the observed measures can be rank ordered in terms of their acceptability 

and ease of use. Thus, members of higher latent classes have experience with higher 

order drugs, while members of lower latent classes have experience with lower order 

drugs or no experience at all. 

 For four observed variables, an unconditional probability for a response vector, ys, 

is: 

( )
T

AX BX CX DX X
s it jt kt lt t

t 1
P

=

= π π π π π∑y  

The conditional probabilities, AX BX CX DX
it jt kt lt, , ,π π π π , represent the probabilities of a 

respondent in class t of latent variable X being at a particular level of the observed 

variables. Thus, if A represents reported alcohol use and i = 0 represents no use of 

alcohol, then AX
01π  is the probability of a respondent in class 1 of latent variable X 

reporting no use of alcohol. In addition, X
tπ , represents latent class probabilities for the 
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distribution of classes of the latent variable X. In the case of NHSDA data, the number of 

latent classes represents the number of allowable reported drug use classes (Goodman, 

1974). 

Restrictions on the probabilities are:  

1) Within each of the T latent classes, the item conditional 

probabilities sum to 

one AX BX CX DX
it jt kt lt

i j k l
i.e. 1.00
⎛ ⎞

π = π = π = π =⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑ ; and  

2) The sum of the latent class probabilities over the T classes of latent 

   variable X is one ( )X
ti.e., 1.00π =∑ .  

 Given that P(ys) is the unconditional probability for a response vector, then the 

log-likelihood for a sample of N respondents, assuming SRS, is: 

( )
N

s
s 1

ln L ln P( )
=

=∑ y  

The maximum likelihood (ML) estimates for the LC proportions and conditional 

probabilities for a specific LC model can be determined by maximizing L with respect to 

the parameters. The ML estimator is the value that generates the greatest probability for 

the observed response pattern (Hambleton & Swaminathan, 1985). ML parameter 

estimates can be calculated using iterative algorithms, such as the estimation 

maximization (EM) algorithm (Dempster, Laird & Rubin, 1977), Fisher’s method of 

scoring (Rao, 1965) or Newton-Raphson iterations (Haberman, 1979). The fit of LC 

models to data is typically assessed using chi-square tests. The degrees of freedom (DF) 

for such tests is, in general, the number of possible response patterns decreased by the 

number of identified parameter estimates plus one. 
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 When complex survey sampling methods are used in data collection, sample 

weights, wi, are assigned to each respondent. Thus, incorporating sample weights into the 

log-likelihood, a pseudo-likelihood can be defined as: 

( )
N

s s
s 1

ln(L*) w ln P
=

=∑ y  

 As shown by Patterson, Dayton and Graubard (2002), the sample-weighted, 

pseudo-likelihood method can be used to obtain LC proportions and conditional 

probabilities from the survey data. Pfeffermann (1993) also supports the use of the 

pseudo-likelihood method by finding that its application results in accurate parameter 

estimates. 

 Scaling models represent restricted LC models. The latent classes correspond to 

permissible scale types such as those representing a Guttman scale (e.g., 0000, 1000, 

1100, 1110, 1111). Conditional probabilities are restricted so that deviations from the 

permissible response patterns can be interpreted as errors. Specifically, the Proctor model 

posits a single overall error rate. The intrusion-omission error model posits two distinct 

types of errors: intrusion errors and omission errors. The item-specific error model 

restricts conditional probabilities such that there are distinct error rates for each variable 

and the latent class-specific model has distinct error rates for each of the latent classes. 

Dayton (1999) shows the required restrictions for these models in detail. 

 

Simultaneous Latent Structure Analysis 

Clogg and Goodman (1984, 1985) present a method for comparing latent 

structures among groups called simultaneous latent structure analysis. Clogg and 

Goodman (1986) extended this method for multiple group comparisons for use with 
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scaling models. They refer to three types of models for comparing latent structures: 1) the 

unconstrained or heterogeneous model; 2) the partial-homogeneous model; and 3) the 

model of complete homogeneity. The unconstrained heterogeneous model has no 

restriction placed on the within group parameters—error rates and latent class 

probabilities are unrestricted. In other words, it is the usual LC model with the addition of 

a blocking variable (Dayton, 1999). 

 Clogg and Goodman (1984, 1985) also refer to models that can be partially- 

homogeneous. In this case, some of the error rates and latent class probabilities are 

constrained to be equal. According to McCutcheon (1987), constraints on the error rates 

are usually the first type of restrictions imposed when testing hypotheses about group 

differences. Constraints on the latent class probabilities are considered last. This order of 

imposing constraints allows us to first learn if the groups’ classes are similar in structure 

by comparing probabilities of responses for corresponding classes across groups. Latent 

class probabilities can then be constrained to study whether the proportions in each class 

are similar. Models with various types of partial homogeneity constraints can be 

developed to test between-group similarities by imposing sets of constraints on different 

error rates and latent class probabilities (Dayton, 1999). For the purposes of this study, a 

partial-homogeneous model refers to a model with constraints on the error rates. 

 Clogg and Goodman (1984, 1985) also present a completely homogeneous model 

where the latent classes of all groups are the same. For this type of model equality 

restrictions are placed on all error rates and conditional latent class probabilities.  
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Model Comparison Statistics 

 A variety of model comparison statistics is available for selecting a best fitting 

model for a given dataset. Five model comparison indices that are frequently used in 

applications were considered in this study: 1) chi-square difference tests; 2) Akaike 

Information Criterion (AIC); 3) Bayesian Information Criterion (BIC); 4) Rissanen (RIC) 

(1978) statistic; and 5) Wald test. 

 Random sampling leads to the assumption of an approximate chi-square 

distribution for the familiar Pearson statistic, X2, the likelihood-ratio statistic, G2 and the 

Read-Cressie statistic, I2 (Read & Cressie, 1988) setting their λ parameter to 2/3. When 

using complex survey data, it is not possible to make this assumption (Lohr, 1999). This 

issue is compounded when clustering is used in data collection. Clustering can often lead 

to a loss in accuracy when individuals within clusters are more similar to one another 

than to individuals in other clusters. The intraclass correlation coefficient (ICC) is an 

indicator of how similar individuals are within the same cluster. That is, it is a measure of 

the level of homogeneity among members of the same cluster. The ICC, or ρ, is a 

coefficient that takes on values between -1 and 1, where 1 occurs when individuals in the 

same cluster have identical values. The ICC is a comparison of the within cluster and 

between cluster variation and is defined as: 

2 2
w b
2 2

S SN1
S N 1 S

ρ = − ≈
−

 

where 2
wS is the variance within clusters, 2

bS  is the variance between clusters and S2 is the 

total sample variance. When 2
wS = 0, all units within each cluster have the same value and 
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ρ = 1. When 2
bS = 0, all cluster means are equal (i.e. all variance is within clusters) and ρ 

= 0. 

 Generally, when cluster sampling is used, there is a positive intraclass correlation 

that results in underestimation of sampling variances and consequent underestimation of 

p-values for significance tests (Kalton, 1983). In reality, a p-value can be much larger 

than the one reported when the sampling method is not considered. For this reason, 

clustering can not be ignored when using chi-square tests with complex survey data. 

 The Akaike (1973, 1987) Information Criterion, AIC, favors models that are 

expected to show the smallest decrease in likelihood when cross-validated on another 

sample selected from the same population. Therefore, the model with the lowest AIC is 

preferred. AIC for the hth of H different models is defined as: 

AICh = -2ln (Lh) + 2mh 

where mh is the number of independent parameters estimated when fitting the hth model 

to the data. When unequal sampling weights are applied, a pseudo-likelihood is used and 

Lh is replaced by Lh*. 

 The Bayesian Information Criterion, BIC, is an alternative comparison index to 

AIC. BIC is similar to AIC, except that BIC corrects for the criticism that AIC is not 

asymptotically consistent (that is, it does not account for the sample size, n, when making 

comparisons). BIC is given by: 

BIC = -2ln (Lh) + ln(n)mh 

Due to the fact that ln(n) is greater than two if n is greater than seven, BIC tends to favor 

less complex models than AIC. When unequal sampling weights are applied, Lh is 

replaced by Lh*. 
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 Sclove (1987) describes another variation on AIC presented by Rissanen (1978). 

The Rissanen RIC statistic is given by: 

RIC = -2ln (Lh) + ln n 2
24
+⎛ ⎞

⎜ ⎟
⎝ ⎠

mh 

The likelihood is replaced with a pseudo-likelihood (Lh*) when unequal sampling weights 

are applied. 

AIC, BIC and RIC vary in terms of  the penalty per parameter. For instance, using 

the sample size from the 1979 NHSDA, n = 7224, the penalty for each parameter for the 

AIC formula is 2 and for BIC is 8.88, while the penalty per parameter used in RIC falls 

between these two at 5.7. The latent variable program, LEM (Vermunt, 1997), reports 

both AIC and BIC. Although AIC and BIC have been used in assessing fit in LC models, 

their effectiveness when using complex survey data is not known (Patterson, Dayton & 

Graubard, 2002).  

 The Wald test is an alternative to chi-square statistics for testing model fit. If θ = 

[θ1, θ2…θp]T is a p x 1 vector of parameters, the Wald statistic is given by: 

2 1
WX V−′= θ θ  

where V is the estimated covariance matrix of the maximum likelihood estimate,θ .  

 The Wald statistic approximately follows a X2 distribution for large samples 

(Lohr, 1999). The Wald test has been adapted to data from complex surveys by using a 

jackknife estimate of the variance/covariance matrix (Patterson, Dayton & Graubard, 

2002). In the context of LC models, θ is a vector of unique LC proportions and 

conditional probabilities. For example, with a single sample and a unconstrained model 

with two latent classes and four manifest, dichotomous variables,  
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θ = 1 11 11 11 11 12 12 12 12, , , , , , , ,
TX AX BX CX DX AX BX CX DXπ π π π π π π π π⎡ ⎤

⎣ ⎦ . 

 The jackknife method is a resampling method where one observation is removed 

and the statistic of interest is then recalculated. This process is repeated until the statistic 

of interest has been calculated n number of times. Note that an observation may be a 

single respondent, a cluster or some other unit. Lee, Forthofer and Lorimor (1986) and 

Wolter (1985) demonstrate this method for sample weighted data.  

 Jackknife estimates can also be calculated by deleting individual PSUs or clusters 

without organizing them into groups. It is important to note that because the standard 

error of an estimated parameter can be accurately estimated from the variation among 

cluster totals, it is possible to calculate jackknife estimates while ignoring the 

subsampling procedures used within clusters. As long as the first-stage sampling fraction 

is low, the contribution from later stage variances is incorporated in the sampling error 

estimated using the clusters (Lee, Forthofer & Lorimor, 1986). 
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CHAPTER 3 

PRELIMINARY ANALYSIS OF  

NATIONAL HOUSEHOLD SURVEY ON DRUG ABUSE DATA 

 

The design of the simulations conducted in this study was based on preliminary 

analyses of the data from the 1979 and 1988 NHSDA. Although test statistics, such as 

chi-square and AIC, have not been evaluated for use with complex survey data, they were 

used as indicators of fit for the preliminary analyses. However, the main purpose was to 

identify LC proportions and error rates that represented realistic values for use in 

simulations. 

Both five- and six-class models were fit to the sample data from the 1979 and 

1988 NHSDA. The five-class model represents a linear hierarchy following a Guttman 

scale as supported by the literature. However, the literature on reported drug use also 

suggests a six-class model representing a biform scale. That is, prior drug-use research 

suggests a model that follows a Guttman scale with the possible exceptions of the use of 

alcohol and tobacco (Collins et al., 1994). This exception includes the use of tobacco 

without prior use of alcohol.  

 Table 1 shows results of fitting various error models to the 1979 NHSDA data 

using a five- and six-class structure using the latent class program LEM (Vermunt, 1997). 

The chi-square statistics for the models are relatively large and, as is often the case with 

large sample sizes, none of the models yields a non-significant fit statistic. However, the 

six-class, item-specific error model has the lowest chi-square values (X2 = 19.4, G2 = 
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20.1 and I2 = 18.9 with 6 degrees of freedom), with an index of dissimilarity that is 

relatively low (Id = .005).1 

 Each of the other error models, comprising Proctor, intrusion-omission and latent 

class-specific error models, for both five- and six-class models produced relatively higher 

chi-square values and dissimilarity indices. The five-class, item-specific error model also 

produced poor fit statistics and higher AIC, BIC and RIC values than the six-class, item-

specific error model. For these reasons, the six-class, item-specific error model was 

selected as the best fit to the data. Although the six-class, item-specific error model does 

not have a good absolute fit to the data, it does appear to be a reasonable approximating 

model. In the context of the drug use data, an item error would occur, for example, if a 

respondent who had never smoked accidentally responded positively to tobacco use or if 

a tobacco user denied use. 

Table 1. Results from fitting error models to 1979 NHSDA data 
 

Latent 
Classes 

Error 
Model 

X2 G2 I2 Id AIC BIC RIC DF

Proctor 366.2 437.1 374.1 .029 22486 22520 22505 10
Intrusion-
Omission 

149.8 203.5 160.9 .022 22254 22296 22277 9

Item-
Specific 

92.9 116.2 97.2 .019 22171* 22226* 22201* 7

Five 

LC–
Specific 

339.5 409.3 348.1 .024 22466 22528 22500 6

Proctor 312.3 278.3 287.6 .021 22329 22370 22352 9
Intrusion-
Omission 

155.0 172.3 155.2 .014 22225 22273 22251 8

Item-
Specific 

19.4 20.1 18.9 .005 22077* 22139* 22111* 6

Six 

LC–
Specific 

112.5 125.9 113.7 .009 22187 22262 22228 4

*Minimum value 

                                                      
1 According to Dayton (1999), it is desirable to have an index of dissimilarity less than .05.  
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 Because the item-specific error model appeared to demonstrate the best fit of the 

four models examined, the fit of several item-specific error models with more than six 

classes were tested to determine whether a better fitting model could be found. Table 2 

shows the number of latent classes in each model tested and also lists the additional 

classes added. These classes were selected because they fit potential patterns of reported 

drug use that may not have been included in the six-class model. 

Table 2. Results of fitting item-specific error models to 1979 NHSDA data 
 
Latent 
Classes 

Added 
Classes 

X2 G2 I2 Id AIC BIC RIC DF

5 None 92.9 116.2 97.2 .019 22171 22226 22201 7
6 {0100} 19.4 20.1 18.9 .005 22077 22139* 22111 6
7 {0100} 

{1010} 
13.1 13.7 12.6 .002 22072* 22141 22110* 5

8 {0100} 
{1010} 
{1011} 

13.1 13.7 12.6 .002 22074 22150 22116 4

*Minimum value 

 As shown in Table 2, adding additional classes {1010} and {1011} to the six-

class model improves model fit. The chi-square statistics shrink somewhat and the index 

of dissimilarity is lowered. Although these fit statistics suggest that a seven- or eight-

class model may fit the data better than the six-class model, the latent classes that are 

added to the original model constitute a very small proportion of the population. The 

additional latent class in the seven-class model only represents .0064 of the population 

and the additional latent class in the eight-class model was nearly zero. Also, the addition 

of a class or two to the original six-class model only affected fit in one cell in the design, 

suggesting that the improvement in fit is negligible in practical terms.  

Because the literature on reported drug use favors a biform scale, the LC 

proportions are reasonable and practical, with adequate model fit, it was concluded that 
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the six-class, item-specific error model is the most reasonable approximating model for 

this study (Table 3). In addition, BIC is lowest for this model, which is an important 

indicator given the large size of the sample. The index of dissimilarity is also relatively 

low for the six-class model (Id = .005). Because of the reasonable approximating fit of the 

model to the 1979 NHSDA data, the six-class, item-specific error model appears to be the 

most appropriate model for this research.  

 Table 3. Estimated latent class proportions and item-specific error rates for six-
class, item-specific error model fit to 1979 NHSDA data 

Latent Classes 
and Item-
Specific Error 
Rates 

Proportion 

X
1π  .08
X
2π  .03
X
3π  .09
X
4π  .51
X
5π  .21
X
6π  .09

e1π  .004

e2π  .060

e3π  .005

e4π  .009
 

 In addition to the 1979 NHSDA data, a six-class model also was fit to the sample 

data from the 1988 NHSDA. Table 4 shows the results of fitting the various error models 

to these data. As with the 1979 NHSDA data, the absolute fit of the models to the data is 

not satisfactory. However, model selection was based on the best reasonable fit.  

 The chi-square statistics for each of the models are relatively large. Similar to the 

analysis of the 1979 NHSDA, the item-specific error model does not have a good 
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absolute fit to the data, but it does appear to be a reasonable approximating model. The 

chi-square statistics are high, indicating a poor fit. However, the index of dissimilarity is 

quite good. Also, when examining the AIC, BIC and RIC measures, the item-specific 

error model produced the lowest statistics.  

Table 4. Results from fitting six-class error models to 1988 NHSDA data 
 

Error 
Model 

X2 G2 I2 Id AIC BIC RIC DF 

Proctor 333.1 308.0 314.2 .023 29834 29877 29858 10
Intrusion-
Omission 

180.9 193.2 181.1 .016 29721 29771 29749 8

Item-
Specific 

20.7 18.6 19.5 .004 29551* 29615* 29586* 6

Latent 
Class –
Specific 

133.1 137.7 132.5 .010 29674 29752 29717 4

    *Minimum value 

 Although the item-specific error model was the best fitting of the four models 

examined, the fit of several item-specific error models with more and less than six classes 

were tested to determine whether a better fitting model could be found (Table 5). 

Table 5. Results of fitting several item-specific error models to 1988 NHSDA data 
 

Latent 
Classes 

Added 
Classes 

X2 G2 I2 Id AIC BIC RIC DF

5 None 191.6 213.0 195.3 .032 29743 29800 29775 7
6 {0100} 20.7 18.6 19.5 .004 29551 29615* 29586* 6
7 {0100} 

{1010} 
18.0 15.8 16.8 .002 29550* 29621 29590 5

8 {0100} 
{1010} 
{1011} 

18.0 15.7 16.7 .002 29552 29630 29595 4

*Minimum value 

 As with the 1979 NHSDA data, adding classes improves the model fit indices but 

the additional classes represent only a small portion of the population. The fourth class of 

the seven-class model only represents .0043 of the population and in the eight-class 
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model, once again, the eighth class went nearly to zero. For these reasons, and due to the 

BIC and RIC values that favor the six-class model, the less complex, six-class model was 

selected as the best approximating model. Table 6 shows the LC proportions and item-

specific error rates resulting from the analysis of the 1988 NHSDA.  

Table 6. Estimated latent class proportions and item-specific error rates for six-class, 
item-specific error model fit to 1988 NHSDA data 

Latent Classes 
and Item-
Specific Error 
Rates 

Proportion 

X
1π .11
X
2π .03
X
3π .10
X
4π .42
X
5π .23
X
6π .11

e1π .007

e2π .062

e3π .004

e4π .003
 

Six-class homogeneous, partial-homogeneous and heterogeneous models were fit 

to the data from the 1979 and 1988 NHSDA and model comparison statistics were 

calculated (Table 7). 

Table 7. Results of fitting homogeneous, partial-homogeneous and heterogeneous models 
to 1979 and 1988 NHSDA data 

Comparison 
Model 

X2 G2 I2 Id AIC BIC RIC DF 

Homogeneous 184.1 182.3 181.5 .043 73831 73908 73876 21
Partial 46.1 43.2 43.3 .005 73702* 73817* 73770* 16
Heterogeneous 40.2 38.7 38.4 .005 73706 73852 73792 12

*Minimum values 
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Based on the model comparison statistics, the partial-homogeneous model is the 

best approximating model for the NHSDA data. AIC, BIC and RIC favor the partial-

homogeneous model and the chi-square and index of dissimilarity measures are no worse 

than the other two models. In addition, the LC proportions and item-specific error rates in 

the partial-homogeneous model are similar to the LC proportions and item-specific error 

rates identified in the separate analyses of each year. Table 8 presents the latent classes 

and item-specific error rates conditional on group membership from the partial-

homogeneous model. 

Table 8. Estimated latent class proportions and item-specific error rates by group 
membership for partial-homogeneous model fit to 1979 and 1988 NHSDA data 

Latent Classes 
and Item-
Specific Error 
Rates 

1979 1988 

X
1π .08 .11
X
2π .02 .04
X
3π .09 .10
X
4π .51 .42
X
5π .21 .22
X
6π .09 .11

e1π .006 .006

e2π .061 .061

e3π .005 .005

e4π .002 .002
 

 As shown in Table 8, the latent class parameter estimates for the two years of data 

resulted in very similar LC proportions with the exception of the fourth latent class. Each 

of the latent classes increased slightly, apart from the fourth latent class, which decreased. 

The fourth class is characterized by individuals who have used alcohol and tobacco, but 
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have refrained from marijuana and harder “street drugs.” The LC proportions and item-

specific error rates of the six-class, item-specific error model for the 1979 and 1988 

NHSDA (Tables 3 and 6) were similar to those resulting from fitting the partial-

homogeneous model, where item-specific error rates are constrained to be equal across 

groups (Table 8).  



 

28 

CHAPTER 4 

METHODS 

 

The purpose of this study was to assess how well model comparison statistics 

function when using complex survey data with latent class comparison methods. To 

examine this issue, simulations were conducted that use data with weighting and 

clustering. A partial-homogeneous model was assumed to be the true model as identified 

in the preliminary analysis of the NHSDA for 1979 and 1988. Then, the nature of the 

relation among groups (i.e. heterogeneous, partial-homogeneous, or homogeneous) was 

analytically derived from the data and compared to the "true" relation among groups.  

The fit of homogeneous, partial-homogenous and heterogeneous models was 

assessed using seven model comparison statistics: 1) X2; 2) G2; 3) I2; 4) AIC; 5) BIC; 6) 

RIC; 7) Wald test. The proportion of times each model comparison statistic detected the 

true relation among groups was used as a measure of the overall accuracy of the model 

comparison statistic with complex sample survey data. 

 

Simulation Sample Design 

 The basic sample design consisted of two groups from which certain numbers and 

sizes of clusters were sampled. Each group corresponded to a different pattern of LC 

proportions that were compared across groups using the model comparison statistics 

above. Item-specific error rates were held constant across groups, clusters and classes. 

Sample weights were applied either equally across groups using a 1:1 ratio or unequally 
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using a 1:5 ratio. A 1:5 ratio was used as in Patterson, Dayton, and Graubard (2002) to 

ensure a clear difference between the two groups. 

 We assumed that samples were drawn from a very large finite population of size 

N with K clusters representing the primary sampling unit (PSU) so it was reasonable to 

ignore the finite sampling correction. A design similar to that used in the 1988 NHSDA, 

consisting of two groups and several clusters, was used. The number of clusters sampled 

was between 20 and 600 depending on the sample size. This design is consistent with the 

NHSDA data that tends to sample large numbers of clusters across two years. A number 

of factors were fixed throughout all simulations and other factors were manipulated so 

the differences in behavior between the model comparison statistics under differing 

circumstances could be studied. Table 9 shows the parameters of the simulated cases. 
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Table 9. Design specifications for simulated cases 

Factor Specifications 

  500 Sample Sizes 

3000 

.05 Item Error Rates 

.25 

          1
G X
tπ = {.08, .03, .08, .50, .23, .08} 

LCP1: 

          2
G X

tπ = {.10, .05, .10, .40, .25, .10} 

 

          1
G X
tπ = {.14, .14, .14, .30, .14, .14} 

LCP2: 

          2
G X

tπ = {.17, .17, .17, .17, .17, .17} 

 

LC Patterns 

          1
G X
tπ = {.11, .11, .11, .22, .22, .22} 

LCP3: 

          2
G X

tπ = {.22, .22, .22, .11, .11, .11} 

 

1:1 Sample Weights 

1:5 

  5 (ICC=.05) 

10 (ICC=.10) 

Cluster Sizes 

25 (ICC=.20) 
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Fixed Factors 

The following factors were fixed throughout the simulations: the number of items and 

the number of latent classes. 

1) The number of items was set at four. This is the same number of items often found in 

drug use research and used in the preliminary analysis of the NHSDA data.  

2) Based on the results of the preliminary analysis, a biform scale was fit to the data 

using six latent classes. 

 

Manipulated Factors 

To examine the ways in which the competing model comparison statistics function, 

various factors were manipulated to produce simulations with varying characteristics. 

The manipulated factors were: sample size, item-specific error rates, LC proportions, 

sample weights and cluster size. 

1) The sample sizes, 500 and 3000, were chosen to correspond to relatively small and 

relatively large drug use studies.  

2) The item-specific error rates were chosen to be equal across groups to correspond to a 

partial-homogeneous model. The item-specific error rates were set equal across items 

and latent classes based on the results of fitting the partial-homogeneous model to the 

NHSDA data. In the preliminary analysis, the item-specific error rates from the 

partial model were very low for each item. Therefore the item-specific error rates 

were set low at (1)eπ = {.05,.05,.05,.05} for one set of simulations. Since this group of 

item-specific error rates represents an extreme case, item-specific error rates were set 
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to .25 for a second set of simulations to explore how the model comparison statistics 

function when the item-specific error rates are higher. (Table 9). 

3) LC proportions were selected that were similar to those identified in the analysis of 

the NHSDA data. As discussed previously, the LC proportions for the two years of 

data were similar with the exception of the fourth latent class. Each of the latent 

classes increased slightly between years, apart from the fourth latent class that 

decreased. Therefore, two sets of latent class values that were similar to those found 

in the preliminary analysis were replicated in the simulation. These latent class values 

were: 1
G X
tπ = {.08,.03,.08,.50,.23,.08} and 2

G X
tπ = {.10,.05,.10,.40,.25,.10}.  

 Since the differences among these sets of LC proportions are relatively small, 

meaning it may be difficult for the model comparison statistics to detect, more 

extreme cases were explored. A second pattern of latent classes was compared in 

which the difference among groups was larger in the fourth latent class: 1
G X
tπ = 

{.14,.14,.14,.30,.14,.14} and 2
G X
tπ = {.17,.17,.17,.17,.17,.17}. Thus, the only major 

difference can be detected in the fourth group. However, this difference involves 

reducing the fourth class by almost half. In a third pattern, the latent classes were 

varied in a more extreme manner, making the differences in the latent structures more 

obvious: 1
G X
tπ = {.11,.11,.11,.22,.22,.22} and 2

G X
tπ = {.22,.22,.22,.11,.11,.11}. Thus, 

the first LC pattern has low variability, the second LC pattern has medium variability 

and the third LC pattern has high variability. 

 To obtain random variation across clusters, LC proportions were generated using 

a Dirichlet distribution, the multivariate generalization of the beta distribution. The 

Dirichlet distribution is the natural conjugate prior for the multinomial distribution 
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and is often used when Bayesian LCA is performed (Vermont & Magidson, 2000). 

For constants ci > 0, i = 1,…,k and c0 with 
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 with a mean nci /c and variances and covariances that correspond to those of a 

multinomial distribution with pi = ci/c. When k = 1, the Dirichlet distribution is 

equivalent to a beta distribution (Evans, Hastings & Peacock, 1993).    

  Values were generated from a Dirichlet density by transforming random variates 

generated from gamma distributions. Let Y1,…,Yk+1 be independent gamma random 

variables with parameters (1, c1) with c0 = 1. If we define Y = ΣYi then Xi = Y1/Y for 

i = 1,2,…,k. The result is (X1,…,Xk) with a Dirichlet distribution with parameters 

(c11,…, ck+1). For a six-class simulation, the result is (X1,…,X5) with parameters, say, 

α1,…,α6. The ratio of Dirichlet values is the same as the ratio of these α-values so a 

set of latent class sizes could be generated to conform in expectation to a specified 

pattern of LC proportions. 

4) To demonstrate the effects of equal sample weights, all sample weights were set to 

1.0 for some of the simulated cases. The effect of unequal sampling weights was 

explored by using sampling fractions representing the selection of respondents 

following a 1:5 ratio, in favor of group 1. Thus, respondents in group 1 have a higher 

probability of selection than respondents in group 2. Following Patterson, Dayton and 

Graubard (2002), a large ratio was selected so that the difference was sufficient to 
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demonstrate the effect of unequal sampling weights. When the sample weights used 

in the 1988 NHSDA were plotted, they followed a lognormal distribution with a 

median of .510 and a variance of 1.56. Therefore, sample weights were generated for 

the observations in the simulations using a lognormal distribution with comparable 

mean and variance.  

5) The intraclass correlation coefficient (ICC) is an indicator of how similar individuals 

are within clusters. Lohr (1999) and Kalton (1983) note that positive intraclass 

correlation between observations is a likely result when performing complex survey 

sampling. For this reason, the cluster size and number were varied to introduce 

different levels of the ICC into the samples. The cluster size varied between 5, 10 and 

25 that in turn determined the number of possible clusters depending on the sample 

size. This yielded ICCs of .05, .10 and .20. 

  Clusters of responses were developed around the LC proportions derived from the 

Dirichlet distributions. Let θlh be the LC proportion in the first latent class in group h 

and kh clusters of equal size b exist within group h. To induce intraclass correlation, 

sets of values of θlh were generated from Dirichlet values so that θ1hs,…,θ6hs where s 

refers to the set of values and s = 1,…, kh. These values θ1hs,…,θ6hs were then used to 

generate b respondents and assign them to latent classes. This process was repeated kh 

times until the desired sample size was achieved. By following this procedure, kh 

clusters containing b individuals were formed around kh or s sets of LC proportions. 

Three cluster sizes were selected because they were reasonable values (Kalton, 1983) 

and their ICCs varied in size (Table 10).  
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Table 10. ICCs of simulated cases 

Cluster Size Number of 
Clusters 

Group Sample 
Size 

ICC 

5 100 500 .20 
5 600 3000 .20 

10 50 500 .10 
10 300 3000 .10 
25 20 500 .04 
25 120 3000 .05 

 

Final Analysis of NHSDA 

 Because NHSDA data are collected using complex survey sampling methods, it is not 

possible to rely on traditional model comparison statistics to understand how patterns of 

drug use have changed over time in the U.S. population. In the preliminary analysis, each 

of the latent classes in the six-class model increased slightly, apart from the fourth latent 

class, which decreased more substantially. Therefore, using traditional model comparison 

statistics, it is possible to conclude that the proportion of individuals in the fourth class, 

characterized by individuals who have reported alcohol and tobacco use, but have 

refrained from marijuana and harder drugs, have decreased, while all other proportions of 

individuals in various stages of drug use have increased slightly.  

 Nevertheless, the accuracy of the model comparison statistics is unknown. 

Therefore, a portion of this simulation exercise was dedicated to reproducing two 

samples that have similar parameters to those observed in the 1979 and 1988 NHSDA 

data. The simulations were based on the assumption of a correct model. In this case, 

however, two samples representing respondents from the 1979 and 1988 NHSDA were 

simulated following the latent class and item-specific error rates defined similar to those 

from the preliminary analysis of the NHSDA data: 1
G X
tπ = {.08,.03,.08,.50,.23,.08}; 2

G X
tπ = 
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{.10,.05,.10,.40,.25,.10}; (1)eπ = {.05,.05,.05,.05}; and (2)eπ = {.25,.25,.25,.25}, 

corresponding to groups. Model comparison statistics were calculated using 

nontraditional methods for both real and simulated data. The simulated cases were used 

to determine the accuracy of our conclusions based on the model comparison statistics 

calculated from the real data. 

 The difference in fit of models for two groups was assessed, specifically 

comparing the latent structures between the NHSDA for 1979 and 1988. A partial-

homogeneous model was assumed as identified in the preliminary analysis.  A simple 

random sample design with replacement, consisting of 100 clusters of 80 observations, 

was used based on the parameters of the 1988 NHSDA. Clusters were selected from two 

groups following a 1:1 ratio because the 1979 and 1988 NHSDA samples were similar in 

size.  

Five model comparison indices were examined that are often used in 

simultaneous latent structure analysis to determine the difference in fit between 

homogeneous and heterogeneous models: 1) chi-square; 2) AIC; 3) BIC; 4) RIC; 5) Wald 

statistic. The variance of the Wald statistic was jackknifed. However, the matrix of 

differences was calculated by taking the difference between expected values for the 

homogeneous and partial-homogeneous models and from the partial-homogeneous and 

heterogeneous models (Korn & Graubard, 1999). 

 

Simulation Details 

There is no general purpose LC software for analyzing complex survey data. 

LEM (Vermunt, 1997) can be used to obtain weighted estimates of LC parameters, 
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although, it does not provide estimates of the standard errors that take into account 

clustering. Therefore, SAS IML code (SAS Institute, 1995) was written to implement an 

EM algorithm and jackknife variances for the Wald statistic. SAS IML was also used for 

simulating data for analysis. The programming criteria used in all simulations was: 

 Each simulation consisted of 1000 replications. 

 The convergence criterion was 10-5 in most cases. When item-specific error 

rates were .25, the convergence criterion was set to 10-4 to maintain 

reasonable computational time. 

 An EM algorithm was programmed in SAS IML to calculate actual estimates 

of LC proportions and item-specific error rates.  

 The maximum number of iterations allowed to achieve convergence in the 

LCA algorithm was set to 500. If the model did not converge within the set 

number of iterations, the results were ignored and an additional run was 

completed.  The results from the additional run were substituted for the 

original.  
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CHAPTER 5 

SIMULATION RESULTS 

 

The proportion of correct decisions for each model comparison statistic for each 

set of specifications is reported as a measure of its accuracy in Table 11. Findings for X2, 

G2 and I2 are discussed first, assessing their performance depending on sample size, item-

specific error rates, cluster size and LC proportions. The performance of these model 

comparison statistics when using unequal sampling weights was also evaluated. Next, the 

results from AIC, BIC and RIC are reviewed. Again, their performances under various 

conditions were assessed, including sample size, item-specific error rates, cluster size, LC 

proportions and the use of unequal sampling weights. Finally, results for the Wald 

statistic were discussed while varying some of the same conditions. Because the 

calculation of the Wald statistic was computationally intensive, all of the same conditions 

were not evaluated. Finally, how each of the seven model comparison statistics 

performed based on the simulation of the 1979 and 1988 NHSDA data was discussed. 

 

Determining Best Fitting Model 

The accuracy of the model comparison statistics for selecting the correct model 

(i.e., partial-homogeneous model) for each of the simulated cases was tested by 

calculating chi-square statistics for each possible model—homogeneous, partial-

homogeneous and heterogeneous. Since the homogeneous model is nested within the 

partial-homogeneous model and the partial-homogeneous model is nested within the 

heterogeneous model, the best fitting model can be determined by conducting chi-square 
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difference tests. If the null is rejected for the test comparing the homogeneous and 

partial-homogeneous models and accepted for the test comparing the partial-

homogeneous and heterogeneous models, then the chi-square difference test will have 

selected the correct model. A similar method was used for the Wald statistic. The matrix 

of variances and covariances was replaced by matrices of differences in estimated values 

from the homogeneous and partial-homogeneous models and from the partial-

homogeneous and heterogeneous models. Again, if the null was rejected for the 

difference test between the homogeneous and partial-homogeneous models and accepted 

for the difference test between the partial-homogeneous and heterogeneous models, then 

the Wald test selected the correct model. AIC, BIC and RIC indicate the best fitting 

model by their minimum value. For each statistic, the model that produced the lowest 

value was preferred. For the seven model comparison statistics, the proportion of correct 

decisions out of 1000 replications was recorded for each of the simulations. Sometimes 

the computing algorithm failed to converge to the ML estimator within 500 iterations. 

This occurred with a maximum rate of 1.2 percent and an average rate of .154 percent. 

 

Accuracy for Equally Weighted Groups for X2, G2 and I2 

First, the results from equally weighted groups using X2, G2 and I2 were 

examined. As expected, these model comparison statistics tended to perform well under 

similar circumstances. I2 was not necessarily a more accurate model comparison statistic 

than the other two when sample sizes were small, although this is often noted as an 

advantage of I2 (Read & Cressie, 1988). Tables 11 and 12 show results for X2, G2 and I2. 
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Because results were very similar among the three chi-square statistics, bar graphs are 

presented only for X2.  

The accuracy of the three model comparison statistics was assessed by varying the 

sample size of comparison groups between 500 and 3000 respondents.  Table 11 shows 

the proportion of times out of 1000 when X2, G2 and I2 selected the correct model at the 

.05 significance level. Appendix A shows the proportion correct at both .05 and .01 

significance levels. Highlighted cells indicate a proportion greater than .5. Light shading 

indicates accuracy levels between .501 and .750, medium shading indicates accuracy 

levels between .751 and .900 and the darkest shading indicates over 90 percent accuracy. 

When an incorrect model was selected by X2, in 82 percent of the cases the homogeneous 

model was selected. Seventy-eight percent of the inaccurate results for G2 and 81 percent 

of the inaccurate results for I2 resulted in the selection of the homogeneous model. 

Table 11 shows that all of the cases where sample sizes were large resulted in 

better than expected levels of accuracy (>50%). When sample sizes were large and item-

specific error rates were low, the rate of correct model detection was greater than 90 

percent. Similar levels of accuracy were observed in only two-thirds of the cases where 

the sample sizes were small. Simulations where the item-specific error rates were low and 

sample sizes were small resulted in less accurate results. 
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Table 11. Accuracy for equally weighted groups by sample size  

with .05 significance level 

 
Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item-
Specific 
Error 
Rate 

X2 G2 I2  

KEY 

.05 .532 .530 .541     < .500 1 

.25 .131 .162 .146      

.05 .864 .849 .862     .501 to .750 2 

.25 .231 .261 .246      

.05 .953 .945 .952     .751 to .900 

5 

3 
.25 .965 .913 .949      
.05 .529 .530 .533     > .901 1 
.25 .142 .164 .145      
.05 .877 .872 .881      2 
.25 .243 .270 .257      
.05 .953 .944 .958      

10 

3 
.25 .965 .922 .943      
.05 .546 .545 .553      1 
.25 .134 .170 .149      
.05 .869 .863 .871      2 
.25 .249 .299 .278      
.05 .943 .928 .945      

500 

25 

3 
.25 .962 .924 .948      
.05 .944 .938 .943      1 
.25 .636 .840 .791      
.05 .968 .968 .970      2 
.25 .930 .939 .942      
.05 .947 .948 .945      

5 

3 
.25 .962 .841 .898      
.05 .958 .957 .958      1 
.25 .604 .858 .811      
.05 .948 .947 .950      2 
.25 .917 .921 .927      
.05 .953 .954 .953      

10 

3 
.25 .964 .825 .907      
.05 .942 .945 .945      1 
.25 .627 .867 .812      
.05 .951 .955 .955      2 
.25 .899 .890 .894      
.05 .961 .958 .960      

3000 

25 

3 
.25 .970 .824 .893      

 

Figures 1 and 2 show the results by low and high item-specific error rates. As 

expected, the model comparison statistics were more accurate when simulated cases 
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included low item-specific error rates, especially for small sample sizes.  When sample 

sizes were large, the model comparison statistics were more accurate at identifying the 

correct model regardless of the item-specific error rates used. 
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Figure 1. Accuracy for equally weighted groups with item-specific error rate of .05 

for Pearson chi-square (X2) 
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Figure 2.  Accuracy for equally weighted groups with item-specific error rate of .25 

for Pearson chi-square (X2) 
 

The results indicate that the accuracy of X2, G2 and I2 were unaffected by the 

cluster size. Figures 3, 4 and 5 demonstrate little difference in the results based on cluster 

size. The figures show that the model comparison statistics performed well when item-

specific error rates were low and sample sizes were large.  
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Figure 3. Accuracy for equally weighted groups with cluster size of 5 for Pearson 

chi-square (X2) 
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Figure 4. Accuracy for equally weighted groups with cluster size of 10 for Pearson 

chi-square (X2) 
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Figure 5. Accuracy for equally weighted groups with cluster size of 25 for Pearson 

chi-square (X2) 
 

Next, the results by LC pattern used were examined. As noted earlier, three 

patterns of LC proportions with differing levels of variability were tested. In other words, 

the difference between group LC proportions becomes more obvious between LC 

patterns one through three.  

LC variability was examined in terms of sample size. Figures 6, 7 and 8 show the 

results for each of the LC patterns when group sample sizes were small. In instances 

where the first and second pattern of LC proportions were present, the model comparison 

statistics were more accurate when item-specific error rates were low. However, the 

model comparison statistics did not produce satisfactory results when the item-specific 

error rates were high. Simulations involving the third pattern of LC proportions resulted 

in accurate model identification despite the item-specific error rates introduced.  
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Figure 6. Accuracy for equally weighted groups with first LC pattern and sample 

size of 500 for Pearson chi-square (X2) 
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Figure 7. Accuracy for equally weighted groups with second LC pattern and sample 

size of 500 for Pearson chi-square (X2) 
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Figure 8. Accuracy for equally weighted groups with third LC pattern and sample 

size of 500 for Pearson chi-square (X2) 
 

Figures 9, 10 and 11 show the results for each of the LC patterns when group 

sample sizes were large. In each case, the LC patterns used did not greatly affect the 

model comparison statistics’ accuracy.  
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Figure 9. Accuracy for equally weighted groups with first LC pattern and sample 

size of 3,000 for Pearson chi-square (X2) 
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Figure 10. Accuracy for equally weighted groups with second LC pattern and sample 

size of 3,000 for Pearson chi-square (X2) 
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Figure 11. Accuracy for equally weighted groups with third LC pattern and sample 

size of 3,000 for Pearson chi-square (X2) 
 

In summary: 

• As expected, sample size was an important factor in the accuracy of X2, G2 

and I2. Typically, model comparison statistics were more accurate for large 

sample sizes. 

• Also, as expected, model comparison statistics were more accurate for the 

third pattern of LC proportions.  

• Item-specific error rates did not have a substantial effect on the accuracy of 

X2, G2 and I2 for large sample sizes. When sample sizes were small, the model 

comparison statistics were not accurate under all error rate conditions. 

• Cluster size (i.e., ICC) had virtually no effect on the accuracy of X2, G2 and I2. 
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Accuracy for Unequally Weighted Groups for X2*, G2* and I2* 

 In addition to the other factors considered in the simulated cases, the effect of 

unequal sampling was examined. Sampling fractions were used that selected respondents 

following a 5:1 ratio, favoring group 1. Unequally weighted observed and expected 

values were used to calculate X2*, G2* and I2* that can be considered pseudo-chi-square 

values. 

 When using equally weighted groups, high levels of accuracy were found in all of 

the cases where the sample sizes were large. When using unequally weighted groups, as 

shown in Table 12, X2*, G2* and I2* still were more accurate with large sample sizes. 

However, some of the other factors being evaluated in the simulated cases appeared to 

interact with the sample size and affect the accuracy of the model comparison statistics. 

For instance, when item-specific error rates were examined by sample size, some 

clear patterns were found. Figure 12 demonstrates that X2*, G2* and I2* was more accurate 

at detecting the correct model when item-specific error rates were low and sample sizes 

were large. In instances where the opposite occurred (i.e., sample sizes were small and 

item-specific error rates were high) the model comparison statistics demonstrated high 

levels of accuracy in only three of nine cases.  
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Table 12. Accuracy for unequally weighted groups by sample size  

with .05 significance level 

 Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item  
Error 
Rate 

X2* G2* I2*  

KEY 

.05 .161 .194 .173     < .500 1 

.25 .031 .041 .034      

.05 .638 .641 .644     .501 to .750 2 

.25 .071 .072 .069      

.05 .953 .974 .966     .751 to .900 

5 

3 
.25 .937 .928 .938      
.05 .148 .187 .163     > .901 1 
.25 .025 .042 .027      
.05 .642 .624 .636      2 
.25 .087 .085 .086      
.05 .953 .963 .963      

10 

3 
.25 .931 .911 .927      
.05 .177 .220 .187      1 
.25 .027 .038 .032      
.05 .643 .641 .645      2 
.25 .066 .063 .063      
.05 .943 .963 .962      

500 

25 

3 
.25 .919 .911 .917      
.05 .977 .984 .980      1 
.25 .298 .360 .336      
.05 .992 .996 .993      2 
.25 .697 .701 .708      
.05 .972 .975 .973      

5 

3 
.25 .961 .933 .959      
.05 .975 .981 .979      1 
.25 .306 .356 .331      
.05 .988 .991 .990      2 
.25 .670 .684 .677      
.05 .969 .974 .970      

10 

3 
.25 .972 .934 .963      
.05 .972 .976 .973      1 
.25 .310 .368 .314      
.05 .990 .994 .992      2 
.25 .729 .732 .732      
.05 .974 .976 .974      

3000 

25 

3 
.25 .964 .936 .958      
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Figure 12. Accuracy for unequally weighted groups with item-specific error rate of 

.05 for Pseudo-Pearson chi-square (X2*) 
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Figure 13. Accuracy for unequally weighted groups with item-specific error rate .25 

for Pseudo-Pearson chi-square (X2*) 
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Figure 14. Accuracy for unequally weighted groups with sample size of 500 and 

item-specific error rate of .05 for Pseudo-Pearson chi-square (X2*) 
 

No clear patterns emerged when the results were examined by cluster size. In the 

instances when item-specific error rates were high, some improvement was noted as 

cluster size increased, but no obvious pattern was observed. 

The LC pattern used appears to have had some effect on the accuracy of the 

model comparison statistics. As expected X2*, G2* and I2* had greater success when LC 

proportions were more variable. Moreover, the model comparison statistics were more 

accurate for large sample sizes. Figure 15, for instance, shows the results for cases with 

low LC variability and small sample sizes. In this case, the model comparison statistics 

were not accurate. However, Figures 16 and 17 show high rates of accuracy for large 

sample sizes and medium to high LC variability.  
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Figure 15. Accuracy for unequally weighted groups with first LC pattern and sample 

size of 500 for Pearson chi-square (X2*) 
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Figure 16. Accuracy for unequally weighted groups with second LC pattern and 

sample size of 3,000 for Pearson chi-square (X2*)  
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Figure 17. Accuracy for unequally weighted groups with third LC pattern and 

sample size of 3,000 for Pearson chi-square (X2*) 
 

Also, item-specific error rates appeared to interact with these other factors in 

affecting the accuracy of the model comparison statistics. Figure 18 shows results for 

small sample sizes and medium LC variability. The model comparison statistics were 

only accurate in these instances when the item-specific error rates were low. This was 

also the case in Figure 19 where there was low LC variability and large sample sizes. 

Even though the group differences in LC proportions were less variable and the sample 

sizes were large, the same pattern was observed where the model comparison statistics 

were accurate only when item-specific error rates were low. Thus, the model comparison 

statistics had difficulty accurately detecting the correct model when sample sizes were 

small, item-specific error rates were high and differences in LC patterns were less 

variable.  
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Figure 18. Accuracy for unequally weighted groups with second LC pattern and 

sample size of 500 for Pearson chi-square (X2*) 
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Figure 19. Accuracy for unequally weighted groups with first LC pattern and sample 

size of 3,000 for Pearson chi-square (X2*) 
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In summary: 

• Sample size was an important factor in the accuracy of X2*, G2* and I2* when 

using unequally weighted groups. X2*, G2* and I2* were more accurate in 

detecting the correct model, especially when item-specific error rates were 

low and sample sizes were large.  

• LC proportions of the unequally weighted groups had some effect on the 

accuracy of the model comparison statistics. However, this occurred mainly in 

combination with other important factors, such as sample size and item-

specific error rates. 

• Cluster size (ICC) only had a moderate effect on the accuracy of X2*, G2* and 

I2* when high item-specific error rates were present in the data. 

 

Overall Accuracy for X2, G2 and I2  

In examining the results from both equally and unequally weighted groups, 

several similarities and differences were found (Figure 20): 

• All three chi-square and pseudo-chi-square model comparison statistics 

performed similarly. 

• Sample size was an important factor in the accuracy of X2, G2 and I2. 

• The model comparison statistics were not accurate in detecting the correct 

model in some instances regardless of whether groups were equally or 

unequally weighted. When sample sizes were small, item-specific error rates 

were high and LC variability was low, the model comparison statistics did not 

perform well. 
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• When sample sizes were large, the model comparison statistics performed 

consistently well with equally weighted groups. This was not necessarily the 

case for the unequally weighted groups. When item-specific error rates were 

high, the model comparison statistics continued to perform poorly even in 

cases with large sample sizes.  

• Cluster size (ICC) alone had little effect on the accuracy of X2, G2 and I2 

whether groups were equally or unequally weighted. 
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Figure 20. Accuracy for equally and unequally weighted groups with cluster size of 

25 for Pearson chi-square (X2) 
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Accuracy for Equally Weighted Groups for AIC, BIC and RIC  

As with the chi-square statistics, the accuracy of the three model comparison 

statistics was assessed by varying the sample size of comparison groups between 500 and 

3000 respondents.  Table 13 shows the proportion of times out of 1000 where AIC, BIC 

and RIC selected the correct model. The highlighted cells indicate a proportion greater 

than .5. Darker shading indicates higher accuracy levels and the darkest cells indicate 

correct model selection occurred more than 90 percent of the time. Additional tables are 

available in Appendix A. 

AIC demonstrated higher levels of accuracy in more cases than BIC and RIC. 

Although RIC did not perform as well as AIC, it demonstrated high accuracy in more 

cases than BIC. AIC was accurate in most cases with large sample sizes, while BIC and 

RIC showed relatively high accuracy in two-thirds of the cases. When sample sizes were 

small, similar levels of accuracy were observed in only two-thirds of the cases for AIC, 

half of the cases for RIC and one-third of the cases for BIC. When the statistics were 

inaccurate, 71 percent of the inaccurate results for AIC resulted in the selection of the 

homogeneous model. Ninety-six percent of the inaccurate results for BIC and 94 percent 

for RIC resulted in the selection of the homogeneous model. 
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Table 13. Accuracy for equally weighted groups for AIC, BIC and RIC 

 
Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item 
Specific 
Error 
Rate 

AIC BIC  RIC  

KEY 

.05 .569 .004 .157     < .500 1 

.25 .208 .000 .019      

.05 .814 .111 .637     .501 to .750 2 

.25 .305 .000 .042      

.05 .901 1.0 .994     .751 to .900 

5 

3 
.25 .852 .661 .967      
.05 .562 .007 .188     > .901 1 
.25 .210 .000 .024      
.05 .835 .112 .635      2 
.25 .319 .000 .043      
.05 .892 1.0 .995      

10 

3 
.25 .880 .666 .968      
.05 .574 .011 .231      1 
.25 .201 .000 .015      
.05 .841 .129 .662      2 
.25 .348 .001 .053      
.05 .873 1.0 .992      

500 

25 

3 
.25 .871 .659 .968      
.05 .899 .702 .968      1 
.25 .846 .009 .167      
.05 .929 1.0 1.0      2 
.25 .902 .080 .514      
.05 .899 1.0 1.0      

5 

3 
.25 .802 1.0 .987      
.05 .923 .694 .969      1 
.25 .866 .004 .160      
.05 .916 1.0 1.0      2 
.25 .877 .082 .494      
.05 .902 1.0 1.0      

10 

3 
.25 .781 .999 .988      
.05 .905 .713 .964      1 
.25 .871 .008 .185      
.05 .910 1.0 1.0      2 
.25 .865 .044 .337      
.05 .916 1.0 1.0      

3000 

25 

3 
.25 .766 1.0 .991      

 
The item-specific error rates used also affected the accuracy of AIC, BIC and 

RIC. AIC was accurate in all cases where item-specific error rates were low. In contrast, 

when the item-specific error rates were high, as shown in Figure 21, AIC was only highly 
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accurate in cases where sample sizes were large and the differences in LC proportions 

were more variable. 
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Figure 21. Accuracy for equally weighted groups with item-specific error rate of .25 

for AIC 
 

RIC was accurate in detecting the correct model in all cases where item-specific 

error rates were low and also sample sizes were large. When item-specific error rates 

were high, RIC was only accurate in cases with high LC variability. 
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Figure 22. Accuracy for equally weighted groups with item-specific error rate of .05 

for RIC 
 

Similar to RIC, BIC was accurate in all cases where sample sizes were large and 

item-specific error rates were low. However, in cases where sample sizes were small 

and/or item-specific error rates were high, BIC was only accurate when there was low LC 

variability. 
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Figure 23. Accuracy for equally weighted groups with item-specific error rate of .25 

for BIC 
 
Results did not vary by cluster size. AIC, BIC and RIC produced mixed results 

depending on other factors unrelated to cluster size.  
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Figure 24. Accuracy for equally weighted groups with sample size of 500 and item-

specific error rate of .05 for AIC 
 

As expected, the model comparison statistics demonstrated higher levels of 

accuracy with high LC variability. Sample size in combination with LC variability were 

the most important factors in determining the accuracy of the model comparison 

statistics. In cases where the patterns of LC proportions were more variable, AIC 

demonstrated high levels of accuracy in all cases where sample sizes were large. BIC and 

RIC were often more accurate for large sample sizes and low item-specific error rates. 
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Figure 25. Accuracy for equally weighted groups with first LC pattern for AIC 

 

0

0.5

1

Cluster size =5 Cluster size =10 Cluster size =25

n= 3,000

IER = .05
IER = .25

 
Figure 26. Accuracy for equally weighted groups with first LC pattern and sample 

size of 3,000 for BIC 
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As the LC variability became higher, RIC and BIC improved in accuracy. RIC 

was more accurate in cases where the item-specific error rates were low, despite the 

sample size. BIC only demonstrated high levels of accuracy in cases where sample sizes 

were large and item-specific error rates were low. All three model comparison statistics 

were accurate in the cases where LC variability was high.  
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Figure 27. Accuracy for equally weighted groups with first LC pattern and sample 

size of 500 for RIC 
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Figure 28. Accuracy for equally weighted groups with second LC pattern and sample 

size of 3,000 for BIC 
 

In summary: 

• As with the chi-square statistics, sample size was an important factor in the 

accuracy of the model comparison statistics. The model comparison statistics 

tended to be more accurate for large sample sizes. 

• AIC performed well in more cases than BIC or RIC and RIC demonstrated 

high levels of accuracy in more cases than BIC. 

• An important factor affecting the accuracy of AIC, BIC and RIC was the item-

specific error rates. AIC was highly accurate in all cases where item-specific 

error rates were low and BIC and RIC showed high levels of accuracy in all 

cases where the item-specific error rates were low and sample sizes were 

large. 



 

68 

• As expected, model comparison statistics were more accurate for the third 

pattern of LC proportions. Sample size in combination with LC variability 

affected the accuracy of the model comparison statistics. 

• Similar to the results of the chi-square statistics, cluster size (ICC) had 

virtually no effect on the accuracy of AIC, BIC and RIC. 

 

Accuracy for Unequally Weighted Groups for AIC* BIC* and RIC* 

 As with the other model comparison statistics, a pseudo-likelihood was used to 

calculate AIC*, BIC* and RIC* for unequally weighted groups. When equally weighted 

groups were used, AIC was highly accurate in most cases where the sample sizes were 

large. However, when the groups were unequally weighted, Table 14 shows that AIC* 

was only accurate in instances when item-specific error rates were low that amounts to 

less than 80 percent of the cases where sample sizes were large when equally weighted 

groups were used. BIC* and RIC* also did not perform as well as when the groups were 

equally weighted. RIC* was somewhat accurate in less than two-thirds of the cases and 

BIC* was accurate in only half of the cases where sample sizes were large. When sample 

sizes were small, similar levels of accuracy were observed in only half of the cases for 

AIC*, one-quarter of the cases for RIC* and one-sixth of the cases for BIC*.  
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Table 14. Accuracy for unequally weighted groups for AIC*, BIC* and RIC* 

 
Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item 
Specific 
Error 
Rate 

AIC* BIC* RIC*  

KEY 

.05 .261 .000 .008     < .500 1 

.25 .055 .000 .000      

.05 .702 .008 .210     .501 to .7502 

.25 .096 .000 .005      

.05 .949 .970 .999     .751 to .900

5 

3 
.25 .913 .098 .687      
.05 .240 .000 .013     > .901 1 
.25 .060 .000 .002      
.05 .691 .005 .201      2 
.25 .126 .000 .005      
.05 .945 .966 .997      

10 

3 
.25 .893 .078 .663      
.05 .275 .001 .023      1 
.25 .051 .000 .001      
.05 .695 .005 .247      2 
.25 .093 .000 .003      
.05 .933 .973 .998      

500 

25 

3 
.25 .896 .088 .699      
.05 .971 .073 .563      1 
.25 .435 .000 .004      
.05 .983 .946 1.0      2 
.25 .760 .000 .039      
.05 .945 1.0 1.0      

5 

3 
.25 .894 1.0 .999      
.05 .972 .073 .568      1 
.25 .427 .000 .002      
.05 .977 .957 1.0      2 
.25 .734 .000 .032      
.05 .946 1.0 1.0      

10 

3 
.25 .899 1.0 .999      
.05 .972 .066 .543      1 
.25 .445 .000 .004      
.05 .985 .938 .999      2 
.25 .781 .000 .029      
.05 .955 1.0 1.0      

3000 

25 

3 
.25 .899 1.0 1.0      

 
 AIC*, BIC* and RIC* also did not perform as well with the unequally weighted 

groups as with the equally weighted groups when item-specific error rates were high. 
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When the item-specific error rates were high, all three model comparison statistics were 

not accurate in most cases despite other factors such as sample size and LC variability. 

AIC* and RIC* continued to demonstrate high levels of accuracy in all cases where 

sample sizes were large and item-specific error rates were low. However, BIC* did not 

perform well when LC variability was low. When sample sizes were small, AIC* and 

RIC* also did not detect the correct model in most cases when using the first pattern of 

LC proportions. 
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Figure 29. Accuracy for unequally weighted groups with item-specific error rate of .05 
for BIC* 
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Figure 30. Accuracy for unequally weighted groups with item-specific error rate of 

.05 and sample size of 500 for AIC* and RIC* 
 

 Again, cluster size had little effect on the model comparison statistics’ accuracy. 

The cases in which AIC*, BIC* and RIC* were accurate remained relatively similar 

across cluster sizes. 
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Figure 31. Accuracy for unequally weighted groups with item-specific error rate of 

.05 and sample size of 500 for AIC* 
 
 As with the equally weighted groups, the LC proportions had a notable effect on 

the performance of AIC*, BIC* and RIC*. The model comparison statistics again were 

more accurate when LC variability was high and sample sizes were large.  In contrast, 

none of the model comparison statistics were highly accurate in any of the cases where 

LC variability was low and sample sizes were small. AIC* and RIC* improved in their 

accuracy when the sample sizes were large. However, BIC* remained inaccurate in all 

cases where LC variability was low.  
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Figure 32. Accuracy for unequally weighted groups with first LC pattern and sample 

size of 3,000 for AIC*, BIC* and RIC* 
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Figure 33. Accuracy for unequally weighted groups with third LC pattern and 

sample size of 500 for AIC*, BIC* and RIC* 
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 When LC variability was medium (LCP = 2), AIC* was able to detect the correct 

model in cases where item-specific error rates were low and sample sizes were small. 

However, BIC* and RIC* remained inaccurate in all cases where sample sizes were 

small.  

 When LC variability was high as in Figure 34, all three model comparison 

statistics improved in accuracy. BIC* and RIC* were especially accurate when the 

sample sizes were large. 
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Figure 34. Accuracy for unequally weighted groups with third LC pattern and 

sample size of 3,000 for AIC*, BIC* and RIC* 
 

In summary: 

• AIC* and RIC* were accurate in all cases where sample sizes were large and 

item-specific error rates were low. BIC* also performed well in these cases 

except when the LC variability was low. 
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• In most cases, all three model comparison statistics were not accurate when 

item-specific error rates were high despite other factors such as sample size 

and LC variability. 

• Improvement in accuracy was observed when LC variability was high for all 

three model comparison statistics. BIC* and RIC* were especially accurate in 

these cases when the sample sizes were large. 

• As with the equally weighted groups, cluster size (ICC) had little effect on the 

accuracy of AIC*, BIC* and RIC*. 

 

Overall Accuracy for AIC, BIC and RIC  

The results of both equally and unequally weighted groups shown in Figure 35 

suggest the following conclusions: 

• AIC and BIC were more accurate when groups were equally weighted than 

when groups were unequally weighted. RIC retained the same level of 

accuracy for the use of equal or unequal sampling weights. 

• As with the chi-square statistics, sample size affected the accuracy of AIC, 

BIC and RIC with both equally and unequally weighted groups. In all cases, 

the model comparison statistics were typically more accurate with large 

sample sizes. 

• AIC was accurate in more cases than BIC and RIC and RIC was accurate in 

more cases than BIC. 

• When item-specific error rates were high, AIC, BIC and RIC generally did not 

perform as well with the unequally weighted groups as with the equally 
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weighted groups. The item-specific error rates used had more of an influence 

on the model comparison statistics’ accuracy with unequally weighted groups 

than with equally weighted groups.  

• Cluster size (ICC) had little effect on the accuracy of AIC, BIC and RIC 

whether groups were equally or unequally weighted. 
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Figure 35. Accuracy for equally and unequally weighted groups with cluster size of 

25 for AIC 
 

Comparisons among Model Comparison Statistics 

 Figures 36 and 37 offer a comparison among X2, G2, I2, AIC, BIC and RIC when 

groups are equally and unequally weighted. X2, G2, I2 and AIC tended to perform 

similarly to one another and they were especially accurate when sample sizes were large. 

BIC and RIC did not perform as well as the other model comparison statistics under some 

of the same conditions. When item-specific error rates were high and LC variability was 
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low, BIC and RIC did not have as accurate model detection as the other model 

comparison statistics. BIC and RIC tended to perform at similar levels as the other model 

comparison statistics when LC variability was high, as in the third LC pattern. 
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Figure 36. Accuracy for equally weighted groups with cluster size of 25 for X2, G2, I2, AIC, BIC and RIC 
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Figure 37. Accuracy for unequally weighted groups with cluster size of 25 for X2*, G2*, I2*, AIC*, BIC* and RIC* 
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 Figure 38 provides scatter plots of the results from X2, G2, I2, AIC, BIC and RIC 

using equally weighted groups. The X2, G2 and I2 results correlate well as demonstrated 

by the regression lines that capture most of the data points. These results were not 

surprising given the fact that these model comparison statistics performed equally well in 

the various simulated cases. The results of the scatter plot from the chi-square statistics 

and AIC again indicate that these model comparison statistics performed similarly under 

the various conditions of the cases. When comparing the results from AIC and BIC and 

from AIC and RIC, the results from these model comparison statistics do not correlate as 

well as the chi-square statistics and AIC. The lines drawn were unable to capture most of 

the data points, indicating a lack of correlation.  Again, these results are not surprising 

given that AIC performed accurately in a number of cases where BIC and RIC did not. 
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Figure 38: Accuracy for equally weighted groups for X2, G2, I2, AIC, BIC and RIC  

Figure 39 shows scatter plots of the results for X2*, G2*, I2*, AIC*, BIC* and 

RIC* using unequally weighted groups. The results again indicate that the pseudo-chi-

square model comparison statistics performed similarly under the various conditions of 

the cases. There is obvious correlation between these sets of model comparison statistics. 

Also, the pseudo-chi-square statistics and AIC* again show similar accuracy. In contrast, 

the results from the graphs of AIC* and BIC* and AIC* and RIC* imply less correlation 

between the sets of model comparison statistics. 
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Figure 39: Accuracy for unequally weighted groups for X2*, G2*, I2*, AIC*, BIC* 
and RIC*  
 

Accuracy for Wald Statistic 

The Wald statistic involves computing jackknifed variance estimates and 

consumes much longer computational time than other model comparison statistics. For 

this reason, the Wald statistic was only tested on a select number of cases. Cases were 

selected based on the results from the tests of the other model comparison statistics. 

Cases where the model comparison statistics were especially accurate or inaccurate were 

examined using the Wald statistic.  
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Table 15 shows the results of the Wald test. Cases where the sample size, item-

specific error rates and LC proportions varied were examined. Cluster size was not 

considered because it appeared to have a negligible effect on the accuracy of the other 

model comparison statistics tested.  

Table 15. Accuracy for Wald statistic for select cases 
Sample 
Size 

Item Specific 
Error Rates 

Latent Class 
Proportions 

Cluster 
Size 

Weighting Accuracy

3000 .05 1 25 Equal 1.0
3000 .05 2 25 Equal 1.0
3000 .05 3 25 Equal  .997
500 .05 3 25 Equal .993
500 .25 1 25 Equal .464
3000 .25 3 25 Equal .387
500 .05 3 25 Unequal .969
3000 .05 3 25 Unequal 1.0

 

Figure 40 offers a comparison of the results of the Wald statistic with the other 

model comparison statistics in the study. The Wald test performed similarly to X2, G2, I2 

and AIC. The Wald statistic demonstrated high levels of accuracy when sample sizes 

were large, item-specific error rates were low and LC variability was lower. These results 

were found when using both equally and unequally weighted groups. The only instances 

when the Wald statistic failed to select the correct model, were when item-specific error 

rates were high. Thus, high item-specific error rates may result in poor performance by 

the Wald test. However, other factors appear to have little effect on the accuracy of the 

Wald statistic. 
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Case IER LCP Cluster Wt N Wald X2 G2 I2 AIC BIC RIC 
A .05 1 25 Equal 3,000 1.000 0.942 0.945 0.945 0.905 0.713 0.964 
B .05 2 25 Equal 3,000 1.000 0.951 0.955 0.955 0.910 1.000 1.000 
C .05 3 25 Equal 3,000 0.997 0.961 0.958 0.960 0.916 1.000 1.000 
D .05 3 25 Equal 500 0.993 0.943 0.928 0.945 0.873 1.000 0.992 
E .25 1 25 Equal 500 0.464 0.134 0.170 0.149 0.201 0.000 0.015 
F .25 3 25 Equal 3,000 0.387 0.970 0.824 0.893 0.766 1.000 0.991 
G .05 3 25 Unequal 500 0.969 0.943 0.963 0.962 0.933 0.973 0.998 
H .05 3 25 Unequal 3,000 1.000 0.974 0.976 0.974 0.955 1.000 1.000 
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Figure 40. A comparison among X2, G2, I2, AIC, BIC, RIC and Wald  
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Figure 41 provides scatter plots of the results from X2, G2, I2, AIC, BIC, RIC and the 

Wald statistic using equally weighted groups. The relationships between the Wald 

statistic and the other statistics examined is somewhat obscured by the low number of 

cases in the scatter plot. However, the limited results of the Wald statistic and the chi-

square statistics and AIC indicate that these model comparison statistics performed 

similarly in the cases examined. The results of the Wald statistic did not appear to be as 

correlated with the results of the BIC and RIC. 
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Figure 41: Accuracy for equally weighted groups for X2, G2, I2, AIC, BIC, RIC and 

Wald  
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 Figure 42 shows scatter plots of the results for X2*, G2*, I2*, AIC*, BIC*, RIC* 

and the Wald statistic using unequally weighted groups. In this figure the results are 

limited to two data points because of the small number of cases examined with the Wald 

statistic. Again the results of the Wald statistic were correlated with the results of the 

pseudo-chi-square statistics and the AIC*. The results of the BIC* were also similar to 

those of the Wald statistic. The results of the RIC*, however, did not appear to be as 

correlated with the results of the Wald statistic. 
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Figure 42: Accuracy for unequally weighted groups for X2*, G2*, I2*, AIC*, BIC* 
RIC* and Wald  
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NHSDA Simulation Results 

 A simulation was performed based on the 1979 and 1988 NHSDA data. The first 

pattern of LC proportions (LCP1) were used as found in the analysis of the NHSDA data. 

In addition, since the two years of data were similar in size and sampled from the same 

size population, 100 clusters of size 80 were used in both groups and equal sampling 

weights were applied. The results of the NHSDA simulation at the .05 alpha level are 

reported in Table 16. The proportion of times out of 1000 where the model comparison 

statistic selected the correct model is shown. 

 
Table 16. Accuracy for NHSDA Simulation 

 
X2 G2 I2 AIC BIC RIC  Wald 

.941 .945 .941 .907 1.0 1.0 .987 

 

As the table demonstrates, all of the model comparison statistics were highly 

accurate. The Wald statistic performed well, selecting the correct model in a large 

majority of the replications. These results are predictable based on the findings from the 

simulations reported above. In the NHSDA simulation, the sample sizes were large, the 

item-specific error rates were low and the groups were equally weighted.  
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

In this study, latent class scaling was used to study the research question: Do 

patterns of drug use show change over time?  This question was explored using 

traditional LCA methods in LEM on the NHSDA data and the results indicated that 

indeed reported drug use patterns changed somewhat between 1979 and 1988. However, 

these findings can be considered questionable due to the use of complex survey sampling 

methods in collecting the NHSDA data. To address this issue, this study performed two 

analyses. First, how select model comparison statistics function when performing 

simultaneous latent structure analyses on complex sample survey data was examined. The 

characteristics of the samples were varied to understand how the model comparison 

statistics functioned under various conditions, including sample size, error level, ICC, LC 

variability and use of unequal sample weights. Second, data were simulated to be 

comparable to the 1979 and 1988 NHSDA and the accuracy of various model comparison 

statistics in detecting the correct model was tested. 

 

Chi-Square Statistics 

The three chi-square statistics (the Pearson statistic, X2, the likelihood-ratio 

statistic, G2 and the Read-Cressie statistic, I2) were tested for their abilities to determine 

the best fitting model. Results showed that the chi-square statistics performed well under 

certain conditions. A large sample size was found to be essential to obtaining accurate 
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results with these model comparison statistics. The chi-square statistics also performed 

well with all of the ICCs in the simulations.  

When samples included other types of characteristics, the chi-square statistics 

were not necessarily accurate at identifying the best fitting models. High item-specific 

error rates were the greatest barrier to identifying the correct model. When sample sizes 

were large, item-specific error rates tended to have less of an effect on the model 

comparison statistics’ accuracy. However, for small sample sizes and unequally weighted 

groups, a high item-specific error rate often resulted in incorrect model identification. 

Further, when LC variability was low and, therefore, more difficult to detect, the chi-

square statistics were not necessarily accurate.  

 

Akaike Information Criterion (AIC) Statistic  

AIC was also evaluated for its ability to determine the best fitting model. Results 

showed that AIC performed well under most conditions, especially when groups were 

equally weighted. As with the chi-square statistics, however, item-specific error rates 

appear to be an important determinant of AIC’s accuracy. When item-specific error rates 

were high, AIC did not necessarily perform well. This was especially the case for small 

sample sizes and unequally weighted groups. When groups were unequally weighted, 

AIC had difficulty identifying the correct model when LC variability was low and item-

specific error rates were high. 
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Rissanen Statistic (RIC) 

RIC did not perform as well as AIC. It was an accurate model comparison statistic 

when item-specific error rates were low. Also, sample size did not have as much of an 

influence over its accuracy as some of the other model comparison statistics examined 

when groups were equally weighted. However, for large sample sizes, RIC was able to 

detect the more subtle variability between latent class structures that it could not detect 

for small sample sizes.  

When groups were unequally weighted, sample size became an important 

determinant of RIC’s accuracy. RIC performed well in twice as many cases with large 

sample sizes than with small sample sizes. Also, RIC was moderately accurate at 

detecting the correct model with low LC variability as long as sample sizes were large 

and item-specific error rates were low. 

Item-specific error rates had the most obvious influence over the performance of 

RIC. In most cases, when item-specific error rates were high, RIC was unable to detect 

the correct model. The only exception to this rule, was when LC variability was high. 

Then, RIC was sometimes able to detect the correct model despite high item-specific 

error rates.  

 

Bayesian Information Criterion (BIC) Statistic 

Although conceptually similar to them, BIC did not perform as well as AIC and 

RIC. In fact, BIC was a poor performer in many of the simulations. For small sample 

sizes, BIC was not accurate with low LC variability. In fact, even for large sample sizes, 
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BIC was unable to detect the correct model with low LC variability when item-specific 

error rates were high.  

When groups were unequally weighted, BIC was even less accurate. The model 

comparison statistic was unable to detect the correct model in a majority of simulations, 

especially for small sample sizes. When sample sizes were large, BIC was generally only 

able to detect the correct model in cases where LC variability was high. 

 

Wald Statistic 

Although fewer simulations were performed using the Wald statistic, some 

important conclusions can be drawn about its performance. The Wald statistic performed 

well in a majority of the simulations tested. The Wald statistic was very accurate despite 

low LC variability, small sample sizes, or unequal sampling weights. The only instance, 

which resulted in poor performance by the Wald statistic, was when high item-specific 

error rates were present in the sample. This result is consistent with the performance of 

the other model comparison statistics, which tended to perform poorly with high item-

specific error rates. 

 

Conclusions on the Use of Unequal Weighting and Clustering 

Model comparison statistics routinely used for making inferences about 

populations may not produce accurate estimates when applied to data from complex 

survey designs. Typical model comparison statistics assume SRS. When this assumption 

is not met, the model comparison statistics may not produce accurate results. To address 

the problem of calculating valid model comparison statistics, this study investigated the 
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behavior of various model comparison statistics when performing simultaneous latent 

structure analyses on complex sample survey data by examining the effects of unequal 

sampling and clustering in the dataset. 

Our results offer support for ignoring clustering when applying these model 

comparison statistics. This study explored typical ICC levels, such as .05 and .10 and 

atypically high ICC levels, such as .20. In all cases, ICC level did not appear to have an 

effect on the accuracy of the model comparison statistics in detecting the correct model. 

However, due to our use of Dirichlet values, we were unable to vary the ICC level while 

holding the cluster size constant. Therefore, this issue needs further scrutiny before 

drawing firm conclusions on the effects of ICC level. 

When sampling across groups was largely unequal, the model comparison 

statistics did not perform as well as when sampling was the same across groups. 

Therefore, we would advise caution when applying these model comparison statistics to 

data with unequal weighting across groups. However, in this study the weighting was 

strongly skewed towards one group, so the model comparison statistics may be more 

accurate when the weighting ratio is less severe. 

 

Analysis using the NHSDA Data 

The second part of the study that involved developing a simulation based on the 

NHSDA data, showed that the chi-square statistics and AIC, BIC and RIC were accurate 

for use in detecting the correct model. In the preliminary analysis of the NHSDA data 

AIC, BIC and RIC selected the partial-homogeneous model as the best fitting model to 

the data.  
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 As the LEM analysis showed, each of the latent classes increased slightly between 

1979 and 1988, apart from the fourth latent class, which decreased more substantially. 

The fourth class is characterized by individuals who have used alcohol and tobacco, but 

have refrained from marijuana and harder “street drugs.”  

 Based on the results of the simulation, it is possible to conclude that the 

preliminary analysis conducted with LEM is accurate and therefore, reported drug use 

patterns did change between 1979 and 1988. Most of the reported drug use classes 

increased slightly, while the group characterized by reported alcohol and tobacco use 

alone decreased more substantially. 

 

Limitations of the Study 

There were several limitations of the present research. This study determined the 

accuracy of a small number of model comparison statistics for a two-group comparison. 

Results may differ for the model comparison statistics examined when comparing more 

than two groups. Also, a number of other model comparison statistics could be examined 

in addition to those reviewed in this study. Additionally, this research only examined 

three common models used in simultaneous latent structure analysis, heterogeneous, 

partial-homogeneous and homogeneous. However, more complicated models were not 

examined and should be examined in future research. It is possible that the model 

comparison statistics examined may result in different levels of accuracy when tested 

with more complicated models.  
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Recommendations 

The model comparison statistics examined were not accurate in all instances that 

were tested. For this reason, some guidelines are offered for using these model 

comparison statistics in LCA: 

• All of the model comparison statistics performed best with large sample sizes 

(3000 observations per group). In several cases, many of the other factors 

affecting the model comparison statistics, including LC variability, item-specific 

error rates and weighting, were minimized for large sample sizes. For this reason, 

a large number of observations is preferred when performing any of these model 

comparison statistics.  

• High item-specific error rates resulted in poor identification for most of the model 

comparison statistics. Therefore, caution is recommended when using these model 

comparison statistics when high item-specific error rates are suspected. 

• ICC level appeared to have little effect on the model comparison statistics. For 

this reason, these model comparison statistics most likely can be used with high or 

low ICC levels. 

• BIC was inaccurate at model identification in most of the simulations performed. 

So this model comparison statistic should be used with caution in simultaneous 

latent structure analysis. 
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Implications for Further Research 

1. Future research should focus on testing the Wald statistic and its accuracy 

depending on various factors. Because the Wald test is time-consuming to 

calculate, more study should be dedicated to its performance under various 

conditions. 

2. More investigation should be given to the issue of ICC levels and how they 

affects model comparison statistics. It may be possible to vary the ICC values 

while holding cluster size constant in a two class model because the 

conversion to Dirichlet values is unnecessary. Therefore, a future study may 

want to focus on the effects of ICC level in a two-class, simultaneous latent 

structure analysis.  

3. It may be of interest to replicate data that mirrors past simultaneous latent 

structure analysis research to determine if conclusions are accurate. This 

would be especially useful in the field of drug use research where a number of 

studies have employed this and similar methods for studying reported drug 

use over time. 
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APPENDIX A: RESULTS TABLES 
 

   KEY TO TABLES 
     < .500 
      
     .501 to .750 
      
     .751 to .900 
      
     > .901 
      

Table A-1: Accuracy for equally weighted groups by sample size 
Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item  
Error Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

.05 .532 .530 .541 .300 .300 .296 1 

.25 .131 .162 .146 .039 .047 .043 

.05 .864 .849 .862 .763 .770 .770 2 

.25 .231 .261 .246 .084 .103 .093 

.05 .953 .945 .952 .989 .984 .992 

5 

3 
.25 .965 .913 .949 .989 .979 .988 
.05 .529 .530 .533 .317 .334 .324 1 
.25 .142 .164 .145 .049 .063 .056 
.05 .877 .872 .881 .801 .798 .803 2 
.25 .243 .270 .257 .093 .116 .102 
.05 .953 .944 .958 .992 .989 .992 

10 

3 
.25 .965 .922 .943 .986 .970 .979 
.05 .546 .545 .553 .363 .360 .360 1 
.25 .134 .170 .149 .037 .050 .043 
.05 .869 .863 .871 .792 .789 .795 2 
.25 .249 .299 .278 .099 .119 .107 
.05 .943 .928 .945 .987 .987 .989 

500 

25 

3 
.25 .962 .924 .948 .983 .967 .980 
.05 .944 .938 .943 .983 .985 .985 1 
.25 .636 .840 .791 .433 .723 .604 
.05 .968 .968 .970 .993 .995 .994 2 
.25 .930 .939 .942 .860 .922 .905 
.05 .947 .948 .945 .986 .983 .986 

5 

3 
.25 .962 .841 .898 .992 .921 .965 
.05 .958 .957 .958 .991 .991 .991 1 
.25 .604 .858 .811 .382 .720 .594 
.05 .948 .947 .950 .990 .992 .990 2 
.25 .917 .921 .927 .838 .904 .890 
.05 .953 .954 .953 .989 .989 .988 

10 

3 
.25 .964 .825 .907 .994 .917 .964 
.05 .942 .945 .945 .987 .986 .988 1 
.25 .627 .867 .812 .445 .738 .624 
.05 .951 .955 .955 .992 .992 .993 2 
.25 .899 .890 .894 .832 .823 .828 
.05 .961 .958 .960 .993 .995 .994 

3000 

25 

3 
.25 .970 .824 .893 .996 .918 .971 
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Table A-2: Accuracy for equally weighted groups with item error rate of .05 
Sample 
Size 

Cluster 
Size 

LC Pattern X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

1 .532 .530 .541 .300 .300 .296 
2 .864 .849 .862 .763 .770 .770 

5 

3 .953 .945 .952 .989 .984 .992 
1 .529 .530 .533 .317 .334 .324 
2 .877 .872 .881 .801 .798 .803 

10 

3 .953 .944 .958 .992 .989 .992 
1 .546 .545 .553 .363 .360 .360 
2 .869 .863 .871 .792 .789 .795 

500 

25 

3 .943 .928 .945 .987 .987 .989 
1 .944 .938 .943 .983 .985 .985 
2 .968 .968 .970 .993 .995 .994 

5 

3 .947 .948 .945 .986 .983 .986 
1 .958 .957 .958 .991 .991 .991 
2 .948 .947 .950 .990 .992 .990 

10 

3 .953 .954 .953 .989 .989 .988 
1 .942 .945 .945 .987 .986 .988 
2 .951 .955 .955 .992 .992 .993 

3000 

25 

3 .961 .958 .960 .993 .995 .994 
 
 

Table A-3: Accuracy for equally weighted groups with item error rate of .25 
Sample 
Size 

Cluster 
Size 

LC Pattern X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

1 .131 .162 .146 .039 .047 .043 
2 .231 .261 .246 .084 .103 .093 

5 

3 .965 .913 .949 .989 .979 .988 
1 .142 .164 .145 .049 .063 .056 
2 .243 .270 .257 .093 .116 .102 

10 

3 .965 .922 .943 .986 .970 .979 
1 .134 .170 .149 .037 .050 .043 
2 .249 .299 .278 .099 .119 .107 

500 

25 

3 .962 .924 .948 .983 .967 .980 
1 .636 .840 .791 .433 .723 .604 
2 .930 .939 .942 .860 .922 .905 

5 

3 .962 .841 .898 .992 .921 .965 
1 .604 .858 .811 .382 .720 .594 
2 .917 .921 .927 .838 .904 .890 

10 

3 .964 .825 .907 .994 .917 .964 
1 .627 .867 .812 .445 .738 .624 
2 .899 .890 .894 .832 .823 .828 

3000 

25 

3 .970 .824 .893 .996 .918 .971 
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Table A-4: Accuracy for equally weighted groups with cluster size of 5 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

1 .532 .530 .541 .300 .300 .296 
2 .864 .849 .862 .763 .770 .770 

500 

3 .953 .945 .952 .989 .984 .992 
1 .944 .938 .943 .983 .985 .985 
2 .968 .968 .970 .993 .995 .994 

.05 

3000 

3 .947 .948 .945 .986 .983 .986 
1 .131 .162 .146 .039 .047 .043 
2 .231 .261 .246 .084 .103 .093 

500 

3 .965 .913 .949 .989 .979 .988 
1 .636 .840 .791 .433 .723 .604 
2 .930 .939 .942 .860 .922 .905 

.25 

3000 

3 .962 .841 .898 .992 .921 .965 
 
 
Table A-5: Accuracy for equally weighted groups with cluster size of 10 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

1 .529 .530 .533 .317 .334 .324 
2 .877 .872 .881 .801 .798 .803 

500 

3 .953 .944 .958 .992 .989 .992 
1 .958 .957 .958 .991 .991 .991 
2 .948 .947 .950 .990 .992 .990 

.05 

3000 

3 .953 .954 .953 .989 .989 .988 
1 .142 .164 .145 .049 .063 .056 
2 .243 .270 .257 .093 .116 .102 

500 

3 .965 .922 .943 .986 .970 .979 
1 .604 .858 .811 .382 .720 .594 
2 .917 .921 .927 .838 .904 .890 

.25 

3000 

3 .964 .825 .907 .994 .917 .964 
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Table A-6: Accuracy for equally weighted groups with cluster size of 25 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

1 .546 .545 .553 .363 .360 .360 
2 .869 .863 .871 .792 .789 .795 

500 

3 .943 .928 .945 .987 .987 .989 
1 .942 .945 .945 .987 .986 .988 
2 .951 .955 .955 .992 .992 .993 

.05 

3000 

3 .961 .958 .960 .993 .995 .994 
1 .134 .170 .149 .037 .050 .043 
2 .249 .299 .278 .099 .119 .107 

500 

3 .962 .924 .948 .983 .967 .980 
1 .627 .867 .812 .445 .738 .624 
2 .899 .890 .894 .832 .823 .828 

.25 

3000 

3 .970 .824 .893 .996 .918 .971 
 

Table A-7: Accuracy for equally weighted groups with LC pattern of 1 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
Α=.01 

I2  
Α=.01 

.05 .532 .530 .541 .300 .300 .296 5 

.25 .131 .162 .146 .039 .047 .043 

.05 .529 .530 .533 .317 .334 .324 10 

.25 .142 .164 .145 .049 .063 .056 

.05 .546 .545 .553 .363 .360 .360 

500 

25 
.25 .134 .170 .149 .037 .050 .043 

 
 

Table A-8: Accuracy for equally weighted groups with LC pattern of 2 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

.05 .864 .849 .862 .763 .770 .770 5 

.25 .231 .261 .246 .084 .103 .093 

.05 .877 .872 .881 .801 .798 .803 10 

.25 .243 .270 .257 .093 .116 .102 

.05 .869 .863 .871 .792 .789 .795 

500 

25 
.25 .249 .299 .278 .099 .119 .107 
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Table A-9: Accuracy for equally weighted groups with LC pattern of 3 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
Α=.01 

I2  
α=.01 

.05 .953 .945 .952 .989 .984 .992 5 

.25 .965 .913 .949 .989 .979 .988 

.05 .953 .944 .958 .992 .989 .992 10 

.25 .965 .922 .943 .986 .970 .979 

.05 .943 .928 .945 .987 .987 .989 

500 

25 
.25 .962 .924 .948 .983 .967 .980 

 
 
Table A-10: Accuracy for equally weighted groups with LC pattern of 1 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

.05 .944 .938 .943 .983 .985 .985 5 

.25 .636 .840 .791 .433 .723 .604 

.05 .958 .957 .958 .991 .991 .991 10 

.25 .604 .858 .811 .382 .720 .594 

.05 .942 .945 .945 .987 .986 .988 

3000 

25 
.25 .627 .867 .812 .445 .738 .624 

 
 
Table A-11: Accuracy for equally weighted groups with LC pattern of 2 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

.05 .968 .968 .970 .993 .995 .994 5 

.25 .930 .939 .942 .860 .922 .905 

.05 .948 .947 .950 .990 .992 .990 10 

.25 .917 .921 .927 .838 .904 .890 

.05 .951 .955 .955 .992 .992 .993 

3000 

25 
.25 .899 .890 .894 .832 .823 .828 

  
 
Table A-12: Accuracy for equally weighted groups with LC pattern of 3 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2 
α=.05 

G2 
α=.05 

I2 
α=.05 

X2 
α=.01 

G2  
α=.01 

I2  
α=.01 

.05 .947 .948 .945 .986 .983 .986 5 

.25 .962 .841 .898 .992 .921 .965 

.05 .953 .954 .953 .989 .989 .988 10 

.25 .964 .825 .907 .994 .917 .964 

.05 .961 .958 .960 .993 .995 .994 

3000 

25 
.25 .970 .824 .893 .996 .918 .971 
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Table A-13: Accuracy for unequally weighted groups by sample size 
Sample 
Size 

Cluster 
Size 

LC 
Pattern 

Item  
Error Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2*  
α=.01 

I2*  
α=.01 

.05 .161 .194 .173 .044 .047 .040 1 

.25 .031 .041 .034 .004 .009 .004 

.05 .638 .641 .644 .401 .373 .387 2 

.25 .071 .072 .069 .014 .015 .014 

.05 .953 .974 .966 .990 .997 .997 

5 

3 
.25 .937 .928 .938 .849 .855 .856 
.05 .148 .187 .163 .040 .050 .040 1 
.25 .025 .042 .027 .001 .002 .002 
.05 .642 .624 .636 .420 .392 .414 2 
.25 .087 .085 .086 .017 .016 .016 
.05 .953 .963 .963 .987 .995 .994 

10 

3 
.25 .931 .911 .927 .843 .829 .835 
.05 .177 .220 .187 .054 .071 .055 1 
.25 .027 .038 .032 .005 .005 .005 
.05 .643 .641 .645 .453 .430 .442 2 
.25 .066 .063 .063 .019 .018 .019 
.05 .943 .963 .962 .985 .997 .993 

500 

25 

3 
.25 .919 .911 .917 .857 .850 .849 
.05 .977 .984 .980 .961 .968 .963 1 
.25 .298 .360 .336 .111 .149 .130 
.05 .992 .996 .993 .999 1.0 .999 2 
.25 .697 .701 .708 .430 .441 .433 
.05 .972 .975 .973 .997 .996 .997 

5 

3 
.25 .961 .933 .959 .992 .981 .991 
.05 .975 .981 .979 .953 .957 .955 1 
.25 .306 .356 .331 .104 .154 .130 
.05 .988 .991 .990 .998 1.0 .998 2 
.25 .670 .684 .677 .424 .415 .417 
.05 .969 .974 .970 .999 .998 .999 

10 

3 
.25 .972 .934 .963 .993 .986 .993 
.05 .972 .976 .973 .943 .949 .945 1 
.25 .310 .368 .314 .103 .156 .129 
.05 .990 .994 .992 .999 1.0 1.0 2 
.25 .729 .732 .732 .472 .482 .478 
.05 .974 .976 .974 .995 .993 .995 

3000 

25 

3 
.25 .970 .824 .893 .996 .918 .971 
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Table A-14: Accuracy for unequally weighted groups with item error rate of .05 
Sample 
Size 

Cluster 
Size 

LC Pattern X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

1 .161 .194 .173 .044 .047 .040 
2 .638 .641 .644 .401 .373 .387 

5 

3 .953 .974 .966 .990 .997 .997 
1 .148 .187 .163 .040 .050 .040 
2 .642 .624 .636 .420 .392 .414 

10 

3 .953 .963 .963 .987 .995 .994 
1 .177 .220 .187 .054 .071 .055 
2 .643 .641 .645 .453 .430 .442 

500 

25 

3 .943 .963 .962 .985 .997 .993 
1 .977 .984 .980 .961 .968 .963 
2 .992 .996 .993 .999 1.0 .999 

5 

3 .972 .975 .973 .997 .996 .997 
1 .975 .981 .979 .953 .957 .955 
2 .988 .991 .990 .998 1.0 .998 

10 

3 .969 .974 .970 .999 .998 .999 
1 .972 .976 .973 .943 .949 .945 
2 .990 .994 .992 .999 1.0 1.0 

3000 

25 

3 .974 .976 .974 .995 .993 .995 
 
 

Table A-15: Accuracy for unequally weighted groups with item error rate of .25 
Sample 
Size 

Cluster 
Size 

LC Pattern X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

1 .031 .041 .034 .004 .009 .004 
2 .071 .072 .069 .014 .015 .014 

5 

3 .937 .928 .938 .849 .855 .856 
1 .025 .042 .027 .001 .002 .002 
2 .087 .085 .086 .017 .016 .016 

10 

3 .931 .911 .927 .843 .829 .835 
1 .027 .038 .032 .005 .005 .005 
2 .066 .063 .063 .019 .018 .019 

500 

25 

3 .919 .911 .917 .857 .850 .849 
1 .298 .360 .336 .111 .149 .130 
2 .697 .701 .708 .430 .441 .433 

5 

3 .961 .933 .959 .992 .981 .991 
1 .306 .356 .331 .104 .154 .130 
2 .670 .684 .677 .424 .415 .417 

10 

3 .972 .934 .963 .993 .986 .993 
1 .310 .368 .314 .103 .156 .129 
2 .729 .732 .732 .472 .482 .478 

3000 

25 

3 .964 .936 .958 .997 .985 .995 
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Table A-16: Accuracy for unequally weighted groups with cluster size of 5 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

1 .161 .194 .173 .044 .047 .040 
2 .638 .641 .644 .401 .373 .387 

500 

3 .953 .974 .966 .990 .997 .997 
1 .977 .984 .980 .961 .968 .963 
2 .992 .996 .993 .999 1.0 .999 

.05 

3000 

3 .972 .975 .973 .997 .996 .997 
1 .031 .041 .034 .004 .009 .004 
2 .071 .072 .069 .014 .015 .014 

500 

3 .937 .928 .938 .849 .855 .856 
1 .298 .360 .336 .111 .149 .130 
2 .697 .701 .708 .430 .441 .433 

.25 

3000 

3 .961 .933 .959 .992 .981 .991 
 
 

Table A-17: Accuracy for unequally weighted groups with cluster size of 10 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

1 .148 .187 .163 .040 .050 .040 
2 .642 .624 .636 .420 .392 .414 

500 

3 .953 .963 .963 .987 .995 .994 
1 .975 .981 .979 .953 .957 .955 
2 .988 .991 .990 .998 1.0 .998 

.05 

3000 

3 .969 .974 .970 .999 .998 .999 
1 .025 .042 .027 .001 .002 .002 
2 .087 .085 .086 .017 .016 .016 

500 

3 .931 .911 .927 .843 .829 .835 
1 .306 .356 .331 .104 .154 .130 
2 .670 .684 .677 .424 .415 .417 

.25 

3000 

3 .972 .934 .963 .993 .986 .993 
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Table A- 18: Accuracy for unequally weighted groups with cluster size of 25 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

1 .177 .220 .187 .054 .071 .055 
2 .643 .641 .645 .453 .430 .442 

500 

3 .943 .963 .962 .985 .997 .993 
1 .972 .976 .973 .943 .949 .945 
2 .990 .994 .992 .999 1.0 1.0 

.05 

3000 

3 .974 .976 .974 .995 .993 .995 
1 .931 .911 .927 .843 .829 .835 
2 .066 .063 .063 .019 .018 .019 

500 

3 .919 .911 .917 .857 .850 .849 
1 .310 .368 .314 .103 .156 .129 
2 .729 .732 .732 .472 .482 .478 

.25 

3000 

3 .964 .936 .958 .997 .985 .995 
 
 
Table A-19: Accuracy for unequally weighted groups with LC pattern of 1 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .161 .194 .173 .044 .047 .040 5 

.25 .031 .041 .034 .004 .009 .004 

.05 .148 .187 .163 .040 .050 .040 10 

.25 .025 .042 .027 .001 .002 .002 

.05 .177 .220 .187 .054 .071 .055 

500 

25 
.25 .027 .038 .032 .005 .005 .005 

 
 
Table A-20: Accuracy for unequally weighted groups with LC pattern of 2 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .638 .641 .644 .401 .373 .387 5 

.25 .071 .072 .069 .014 .015 .014 

.05 .642 .624 .636 .420 .392 .414 10 

.25 .087 .085 .086 .017 .016 .016 

.05 .643 .641 .645 .453 .430 .442 

500 

25 
.25 .066 .063 .063 .019 .018 .019 
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Table A-21: Accuracy for unequally weighted groups with LC pattern of 3 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .953 .974 .966 .990 .997 .997 5 

.25 .937 .928 .938 .849 .855 .856 

.05 .953 .963 .963 .987 .995 .994 10 

.25 .931 .911 .927 .843 .829 .835 

.05 .943 .963 .962 .985 .997 .993 

500 

25 
.25 .919 .911 .917 .857 .850 .849 

 
 

Table A-22: Accuracy for unequally weighted groups with LC pattern of 1 
and sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .977 .984 .980 .961 .968 .963 5 

.25 .298 .360 .336 .111 .149 .130 

.05 .975 .981 .979 .953 .957 .955 10 

.25 .306 .356 .331 .104 .154 .130 

.05 .972 .976 .973 .943 .949 .945 

3000 

25 
.25 .310 .368 .314 .103 .156 .129 

 
 

Table A-23: Accuracy for unequally weighted groups with LC pattern of 2 
and sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .992 .996 .993 .999 1.0 .999 5 

.25 .697 .701 .708 .430 .441 .433 

.05 .988 .991 .990 .998 1.0 .998 10 

.25 .670 .684 .677 .424 .415 .417 

.05 .990 .994 .992 .999 1.0 1.0 

3000 

25 
.25 .729 .732 .732 .472 .482 .478 

 
 

Table A- 24: Accuracy for unequally weighted groups with LC pattern of 3 
and sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

X2* 
α=.05 

G2* 
α=.05 

I2* 
α=.05 

X2* 
α=.01 

G2* 
α=.01 

I2* 
α=.01 

.05 .972 .975 .973 .997 .996 .997 5 

.25 .961 .933 .959 .992 .981 .991 

.05 .969 .974 .970 .999 .998 .999 10 

.25 .972 .934 .963 .993 .986 .993 

.05 .974 .976 .974 .995 .993 .995 

3000 

25 
.25 .964 .936 .958 .997 .985 .995 
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Table A-25: Accuracy for equally weighted groups 
Sample 
Size 

Cluster 
Size 

LC Pattern Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .569 .004 .157 1 

.25 .208 .000 .019 

.05 .814 .111 .637 2 

.25 .305 .000 .042 

.05 .901 1.0 .994 

5 

3 
.25 .852 .661 .967 
.05 .562 .007 .188 1 
.25 .210 .000 .024 
.05 .835 .112 .635 2 
.25 .319 .000 .043 
.05 .892 1.0 .995 

10 

3 
.25 .880 .666 .968 
.05 .574 .011 .231 1 
.25 .201 .000 .015 
.05 .841 .129 .662 2 
.25 .348 .001 .053 
.05 .873 1.0 .992 

500 

25 

3 
.25 .871 .659 .968 
.05 .899 .702 .968 1 
.25 .846 .009 .167 
.05 .929 1.0 1.0 2 
.25 .902 .080 .514 
.05 .899 1.0 1.0 

5 

3 
.25 .802 1.0 .987 
.05 .923 .694 .969 1 
.25 .866 .004 .160 
.05 .916 1.0 1.0 2 
.25 .877 .082 .494 
.05 .902 1.0 1.0 

10 

3 
.25 .781 .999 .988 
.05 .905 .713 .964 1 
.25 .871 .008 .185 
.05 .910 1.0 1.0 2 
.25 .865 .044 .337 
.05 .916 1.0 1.0 

3000 

25 

3 
.25 .766 1.0 .991 
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Table A-26: Accuracy for equally weighted groups with item error rate of .05 
Sample 
Size 

Cluster 
Size 

LC Pattern AIC 
 

BIC 
 

RIC 
 

1 .569 .004 .157 
2 .814 .111 .637 

5 

3 .901 1.0 .994 
1 .562 .007 .188 
2 .835 .112 .635 

10 

3 .892 1.0 .995 
1 .574 .011 .231 
2 .841 .129 .662 

500 

25 

3 .873 1.0 .992 
1 .899 .702 .968 
2 .929 1.0 1.0 

5 

3 .899 1.0 1.0 
1 .923 .694 .969 
2 .916 1.0 1.0 

10 

3 .902 1.0 1.0 
1 .905 .713 .964 
2 .910 1.0 1.0 

3000 

25 

3 .916 1.0 1.0 
 
 

Table A-27: Accuracy for equally weighted groups with item error rate of .25 
Sample 
Size 

Cluster 
Size 

LC Pattern AIC 
 

BIC 
 

RIC 
 

1 .208 .000 .019 
2 .305 .000 .042 

5 

3 .852 .661 .967 
1 .210 .000 .024 
2 .319 .000 .043 

10 

3 .880 .666 .968 
1 .201 .000 .015 
2 .348 .001 .053 

500 

25 

3 .871 .659 .968 
1 .846 .009 .167 
2 .902 .080 .514 

5 

3 .802 1.0 .987 
1 .866 .004 .160 
2 .877 .082 .494 

10 

3 .781 .999 .988 
1 .871 .008 .185 
2 .865 .044 .337 

3000 

25 

3 .766 1.0 .991 
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Table A-28: Accuracy for equally weighted groups with cluster size of 5 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern AIC 
 

BIC 
 

RIC 
 

1 .569 .004 .157 
2 .814 .111 .637 

500 

3 .901 1.0 .994 
1 .899 .702 .968 
2 .929 1.0 1.0 

.05 

3000 

3 .899 1.0 1.0 
1 .208 .000 .019 
2 .305 .000 .042 

500 

3 .852 .661 .967 
1 .846 .009 .167 
2 .902 .080 .514 

.25 

3000 

3 .802 1.0 .987 
 
 

Table A-29: Accuracy for equally weighted groups with cluster size of 10 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern AIC 
 

BIC 
 

RIC 
 

1 .562 .007 .188 
2 .835 .112 .635 

500 

3 .892 1.0 .995 
1 .923 .694 .969 
2 .916 1.0 1.0 

.05 

3000 

3 .902 1.0 1.0 
1 .210 .000 .024 
2 .319 .000 .043 

500 

3 .880 .666 .968 
1 .866 .004 .160 
2 .877 .082 .494 

.25 

3000 

3 .781 .999 .988 
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Table A-30: Accuracy for equally weighted groups with cluster size of 25 
CPs Sample 

Size 
LC Pattern AIC 

 
BIC 

 
RIC 

 
1 .574 .011 .231 
2 .841 .129 .662 

500 

3 .873 1.0 .992 
1 .574 .011 .231 
2 .841 .129 .662 

.95 

3000 

3 .873 1.0 .992 
1 .201 .000 .015 
2 .348 .001 .053 

500 

3 .871 .659 .968 
1 .871 .008 .185 
2 .865 .044 .337 

.75 

3000 

3 .766 1.0 .991 
 
 
Table A-31: Accuracy for equally weighted groups with LC pattern of 1 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .569 .004 .157 5 

.25 .208 .000 .019 

.05 .562 .007 .188 10 

.25 .210 .000 .024 

.05 .574 .011 .231 

500 

25 
.25 .201 .000 .015 

 
 
Table A-32: Accuracy for equally weighted groups with LC pattern of 2 and sample size of 500 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .814 .111 .637 5 

.25 .305 .000 .042 

.05 .835 .112 .635 10 

.25 .319 .000 .043 

.05 .841 .129 .662 

500 

25 
.25 .348 .001 .053 
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Table A-33: Accuracy for equally weighted groups with LC pattern of 3 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .901 1.0 .994 5 

.25 .852 .661 .967 

.05 .892 1.0 .995 10 

.25 .880 .666 .968 

.05 .873 1.0 .992 

500 

25 
.25 .871 .659 .968 

 
 
Table A-34: Accuracy for equally weighted groups with LC pattern of 1 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .899 .702 .968 5 

.25 .846 .009 .167 

.05 .923 .694 .969 10 

.25 .866 .004 .160 

.05 .905 .713 .964 

3000 

25 
.25 .871 .008 .185 

 
 
Table A-35: Accuracy for equally weighted groups with LC pattern of 2 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .929 1.0 1.0 5 

.25 .902 .080 .514 

.05 .916 1.0 1.0 10 

.25 .877 .082 .494 

.05 .910 1.0 1.0 

3000 

25 
.25 .865 .044 .337 

 
 
Table A-36: Accuracy for equally weighted groups with LC pattern of 3 and sample size of 3000 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC 
 

BIC 
 

RIC 
 

.05 .899 1.0 1.0 5 

.25 .802 1.0 .987 

.05 .902 1.0 1.0 10 

.25 .781 .999 .988 

.05 .916 1.0 1.0 

3000 

25 
.25 .766 1.0 .991 
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Table A-37: Accuracy for unequally weighted groups 
Sample 
Size 

Cluster 
Size 

LC Pattern Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .261 .000 .008 1 

.25 .055 .000 .000 

.05 .702 .008 .210 2 

.25 .096 .000 .005 

.05 .949 .970 .999 

5 

3 
.25 .913 .098 .687 
.05 .240 .000 .013 1 
.25 .060 .000 .002 
.05 .691 .005 .201 2 
.25 .126 .000 .005 
.05 .945 .966 .997 

10 

3 
.25 .893 .078 .663 
.05 .275 .001 .023 1 
.25 .051 .000 .001 
.05 .695 .005 .247 2 
.25 .093 .000 .003 
.05 .933 .973 .998 

500 

25 

3 
.25 .896 .088 .699 
.05 .971 .073 .563 1 
.25 .435 .000 .004 
.05 .983 .946 1.0 2 
.25 .760 .000 .039 
.05 .945 1.0 1.0 

5 

3 
.25 .894 1.0 .999 
.05 .972 .073 .568 1 
.25 .427 .000 .002 
.05 .977 .957 1.0 2 
.25 .734 .000 .032 
.05 .946 1.0 1.0 

10 

3 
.25 .899 1.0 .999 
.05 .972 .066 .543 1 
.25 .445 .000 .004 
.05 .985 .938 .999 2 
.25 .781 .000 .029 
.05 .955 1.0 1.0 

3000 

25 

3 
.25 .899 1.0 1.0 
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Table A-38: Accuracy for unequally weighted groups with item error rate of .05 
Sample 
Size 

Cluster 
Size 

LC Pattern AIC* 
 

BIC* 
 

RIC* 
 

1 .261 .000 .008 
2 .702 .008 .210 

5 

3 .949 .970 .999 
1 .240 .000 .013 
2 .691 .005 .201 

10 

3 .945 .966 .997 
1 .275 .001 .023 
2 .695 .005 .247 

500 

25 

3 .933 .973 .998 
1 .971 .073 .563 
2 .983 .946 1.0 

5 

3 .945 1.0 1.0 
1 .972 .073 .568 
2 .977 .957 1.0 

10 

3 .946 1.0 1.0 
1 .972 .066 .543 
2 .985 .938 .999 

3000 

25 

3 .955 1.0 1.0 
 
 
Table A-39: Accuracy for unequally weighted groups with item error rate of .25 
Sample 
Size 

Cluster 
Size 

LC Pattern AIC* 
 

BIC* 
 

RIC* 
 

1 .055 .000 .000 
2 .096 .000 .005 

5 

3 .913 .098 .687 
1 .060 .000 .002 
2 .126 .000 .005 

10 

3 .893 .078 .663 
1 .051 .000 .001 
2 .093 .000 .003 

500 

25 

3 .896 .088 .699 
1 .435 .000 .004 
2 .760 .000 .039 

5 

3 .894 1.0 .999 
1 .427 .000 .002 
2 .734 .000 .032 

10 

3 .899 1.0 .999 
1 .445 .000 .004 
2 .781 .000 .029 

3000 

25 

3 .899 1.0 1.0 
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Table A-40: Accuracy for unequally weighted groups with cluster size of 5 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern AIC* 
 

BIC* 
 

RIC* 
 

1 .261 .000 .008 
2 .702 .008 .210 

500 

3 .949 .970 .999 
1 .971 .073 .563 
2 .983 .946 1.0 

.05 

3000 

3 .945 1.0 1.0 
1 .055 .000 .000 
2 .096 .000 .005 

500 

3 .913 .098 .687 
1 .435 .000 .004 
2 .760 .000 .039 

.25 

3000 

3 .894 1.0 .999 
 
 

Table A-41: Accuracy for unequally weighted groups with cluster size of 10 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern AIC* 
 

BIC* 
 

RIC* 
 

1 .240 .000 .013 
2 .691 .005 .201 

500 

3 .945 .966 .997 
1 .972 .073 .568 
2 .977 .957 1.0 

.05 

3000 

3 .946 1.0 1.0 
1 .060 .000 .002 
2 .126 .000 .005 

500 

3 .893 .078 .663 
1 .427 .000 .002 
2 .734 .000 .032 

.25 

3000 

3 .899 1.0 .999 
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Table A-42: Accuracy for unequally weighted groups with cluster size of 25 
Item 
Error 
Rate 

Sample 
Size 

LC Pattern AIC* 
 

BIC* RIC* 
 

1 .275 .001 .023 
2 .695 .005 .247 

500 

3 .933 .973 .998 
1 .972 .066 .543 
2 .985 .938 .999 

.05 

3000 

3 .955 1.0 1.0 
1 .051 .000 .001 
2 .093 .000 .003 

500 

3 .896 .088 .699 
1 .445 .000 .004 
2 .781 .000 .029 

.25 

3000 

3 .899 1.0 1.0 
 
 
Table A-43: Accuracy for unequally weighted groups with LC pattern of 1 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .261 .000 .008 5 

.25 .055 .000 .000 

.05 .240 .000 .013 10 

.25 .060 .000 .002 

.05 .275 .001 .023 

500 

25 
.25 .051 .000 .001 

 
 
Table A-44: Accuracy for unequally weighted groups with LC pattern of 2 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .702 .008 .210 5 

.25 .096 .000 .005 

.05 .691 .005 .201 10 

.25 .126 .000 .005 

.05 .695 .005 .247 

500 

25 
.25 .093 .000 .003 
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Table A-45: Accuracy for unequally weighted groups with LC pattern of 3 and sample size of 500 
Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .949 .970 .999 5 

.25 .913 .098 .687 

.05 .945 .966 .997 10 

.25 .893 .078 .663 

.05 .933 .973 .998 

500 

25 
.25 .896 .088 .699 

 
 

Table A-46: Accuracy for unequally weighted groups with LC pattern of 1 and 
sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .971 .073 .563 5 

.25 .435 .000 .004 

.05 .972 .073 .568 10 

.25 .427 .000 .002 

.05 .972 .066 .543 

3000 

25 
.25 .445 .000 .004 

 
 

Table A-47: Accuracy for unequally weighted groups with LC pattern of 2 and 
sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .983 .946 1.0 5 

.25 .760 .000 .039 

.05 .977 .957 1.0 10 

.25 .734 .000 .032 

.05 .985 .938 .999 

3000 

25 
.25 .781 .000 .029 

 
 

Table A-48: Accuracy for unequally weighted groups with LC pattern of 3 and 
sample size of 3000 

Sample 
Size 

Cluster 
Size 

Item 
Error 
Rate 

AIC* 
 

BIC* 
 

RIC* 
 

.05 .945 1.0 1.0 5 

.25 .894 1.0 .999 

.05 .946 1.0 1.0 10 

.25 .899 1.0 .999 

.05 .955 1.0 1.0 

3000 

25 
.25 .899 1.0 1.0 
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APPENDIX B-1: CHI-SQUARE, AIC, BIC AND RIC SAS PROGRAM 

 
libname savelib "c:\final"; 
options nosymbolgen nomprint nomlogic noNOTES; 
%let cp=.95; 
DATA _NULL_;CALL SYMPUT('START',PUT(TIME(),TIME8.));RUN; 
%put &START; 
data blank16;input y;cards; 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;run; 
data blank16_2;input y2;cards; 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;run; 
%macro FIRST;%do  k=1 %to 1000; 
 
/*CREATE DATA*/ 
data cmg1;do i = 1 to 100;       /*create Dirichlet values*/ 
gamma1=rangam(0,8);gamma2=rangam(0,3);gamma3=rangam(0,8); 
gamma4=rangam(0,50); 
gamma5=rangam(0,23);gamma6=rangam(0,8);gamma7=rangam(0,10); 
gamma8=rangam(0,5);gamma9=rangam(0,10);gamma10=rangam(0,40); 
gamma11=rangam(0,25);gamma12=rangam(0,10); 
total1=sum(of gamma1-gamma6); 
 d1=gamma1/total1;d2=gamma2/total1;d3=gamma3/total1; 
     d4=gamma4/total1;d5=gamma5/total1;d6=gamma6/total1; 
total2=sum(of gamma7-gamma12); 
     d7=gamma7/total2;d8=gamma8/total2;d9=gamma9/total2; 
     d10=gamma10/total2;d11=gamma11/total2;d12=gamma12/total2; 
 
do j=1 to 80;    /*create clusters*/ 
     x=ranuni(0); 
       if x le D1 then c=1;else if D1 lt x le D1+D2 then c=2; 
else if D1+D2 lt x le D1+D2+D3 then c=3; 
else if D1+D2+D3 lt x le D1+D2+D3+D4 then c=4; 
else if (D1+D2+D3+D4) lt x le D1+D2+D3+D4+D5 then c=5; 
else if x gt D1+D2+D3+D4+D5 then c=6; 
     x6=ranuni(0); 
       if x6 le D7 then c2=1;else if D7 lt x6 le D7+D8 then c2=2; 
else if D7+D8 lt x6 le D7+D8+D9 then c2=3; 
else if D7+D8+D9 lt x6 le D7+D8+D9+D10 then c2=4;         
else if (D7+D8+D9+D10) lt x6 le D7+D8+D9+D10+D11 then c2=5;        
else if x6 gt D7+D8+D9+D10+D11 then c2=6;output;end;end; 
data cmg1(keep=V1 V2 V3 V4 V12 V22 V32 V42);set cmg1(keep=c c2);  
 x2=ranuni(0);x3=ranuni(0);x4=ranuni(0);x5=ranuni(0);cp=&cp; 
if c=1 then do; 
if x2 le cp then v1=0; else v1=1;if x3 le cp then v2=0; else 2=1; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0; else 4=1; 
end; 
if c=2 then do;if x2 le cp then v1=0; else v1=1;if x3 le cp then 
v2=1;  
else v2=0;if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;  
else v4=1; end; 
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if c=3 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=0;else v2=1; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;else v4=1; 
end; 
if c=4 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1;else v2=0; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;else v4=1; 
end; 
if c=5 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1;else v2=0; 
if x4 le cp then v3=1; else v3=0;if x5 le cp then v4=0;else v4=1; 
end; 
if c=6 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1;else v2=0; 
if x4 le cp then v3=1; else v3=0;if x5 le cp then v4=1;else v4=0; 
end; 
x7=ranuni(0);x8=ranuni(0);x9=ranuni(0);x10=ranuni(0); 
if c2=1 then do; 
if x7 le cp then v12=0; else v12=1;if x8 le cp then v22=0; 
else v22=1; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1; end; 
if c2=2 then do; 
if x7 le cp then v12=0; else v12=1;if x8 le cp then v22=1; 
else v22=0; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1; end; 
if c2=3 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=0;  
else v22=1; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1; end; 
if c2=4 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1; end; 
if c2=5 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=1; else v32=0;if x10 le cp then v42=0;  
else v42=1; end; 
if c2=6 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=1; else v32=0;if x10 le cp then v42=1;  
else v42=0; end;run; 
 
%let LC1=.08;        /*HETEROGENEOUS MODEL*/ 
%let LC2=.03;%let LC3=.08;%let LC4=.50;%let LC5=.23; 
%let LC6=.08;%let LC12=.10; 
%let LC22=.05;%let LC32=.10;%let LC42=.40;%let LC52=.25; 
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%let LC62=.10; 
%let CPA1=.95;%let CPB1=.95;%let CPC1=.95;%let CPD1=.95; 
%let CPA2=.05;%let CPB2=.05;%let CPC2=.05;%let CPD2=.05; 
%let CPA1_2=.95;%let CPB1_2=.95;%let CPC1_2=.95;%let CPD1_2=.95; 
%let CPA2_2=.05;%let CPB2_2=.05;%let CPC2_2=.05;%let CPD2_2=.05; 
data cmg1(keep=y y2); set cmg1; 
%let cnt=0;%let endvar=0;%let j=25;  
IF V1=0 AND V2=0 AND V3=0 AND V4=0 THEN Y=1; ELSE  
IF V1=0 AND V2=0 AND V3=0 AND V4=1 THEN Y=2; ELSE 
IF V1=0 AND V2=0 AND V3=1 AND V4=0 THEN y=3; ELSE 
IF V1=0 AND V2=0 AND V3=1 AND V4=1 THEN y=4; ELSE 
IF V1=0 AND V2=1 AND V3=0 AND V4=0 THEN y=5; ELSE 
IF V1=0 AND V2=1 AND V3=0 AND V4=1 THEN y=6; ELSE 
IF V1=0 AND V2=1 AND V3=1 AND V4=0 THEN y=7; ELSE 
IF V1=0 AND V2=1 AND V3=1 AND V4=1 THEN y=8; ELSE 
IF V1=1 AND V2=0 AND V3=0 AND V4=0 THEN y=9; ELSE 
IF V1=1 AND V2=0 AND V3=0 AND V4=1 THEN y=10; ELSE 
IF V1=1 AND V2=0 AND V3=1 AND V4=0 THEN y=11; ELSE 
IF V1=1 AND V2=0 AND V3=1 AND V4=1 THEN y=12; ELSE 
IF V1=1 AND V2=1 AND V3=0 AND V4=0 THEN y=13; ELSE 
IF V1=1 AND V2=1 AND V3=0 AND V4=1 THEN y=14; ELSE 
IF V1=1 AND V2=1 AND V3=1 AND V4=0 THEN y=15; ELSE 
IF V1=1 AND V2=1 AND V3=1 AND V4=1 THEN y=16; 
  IF V12=0 AND V22=0 AND V32=0 AND V42=0 THEN Y2=1; ELSE  
  IF V12=0 AND V22=0 AND V32=0 AND V42=1 THEN Y2=2; ELSE 
  IF V12=0 AND V22=0 AND V32=1 AND V42=0 THEN Y2=3; ELSE 
  IF V12=0 AND V22=0 AND V32=1 AND V42=1 THEN Y2=4; ELSE 
  IF V12=0 AND V22=1 AND V32=0 AND V42=0 THEN Y2=5; ELSE 
  IF V12=0 AND V22=1 AND V32=0 AND V42=1 THEN Y2=6; ELSE 
  IF V12=0 AND V22=1 AND V32=1 AND V42=0 THEN Y2=7; ELSE 
  IF V12=0 AND V22=1 AND V32=1 AND V42=1 THEN Y2=8; ELSE 
  IF V12=1 AND V22=0 AND V32=0 AND V42=0 THEN Y2=9; ELSE 
  IF V12=1 AND V22=0 AND V32=0 AND V42=1 THEN Y2=10;ELSE 
  IF V12=1 AND V22=0 AND V32=1 AND V42=0 THEN Y2=11;ELSE 
  IF V12=1 AND V22=0 AND V32=1 AND V42=1 THEN Y2=12;ELSE 
  IF V12=1 AND V22=1 AND V32=0 AND V42=0 THEN Y2=13;ELSE 
  IF V12=1 AND V22=1 AND V32=0 AND V42=1 THEN Y2=14;ELSE 
  IF V12=1 AND V22=1 AND V32=1 AND V42=0 THEN Y2=15;ELSE 
  IF V12=1 AND V22=1 AND V32=1 AND V42=1 THEN Y2=16;RUN; 
data cmg2; set cmg1;notagain1=0; notagain2=0; 
data blank16;set blank16; notagain1=0; notagain2=0; 
data blank16_2;set blank16_2; notagain1=0; notagain2=0;run; 
PROC FREQ NOPRINT data=cmg2; TABLES Y / 
OUT=YFREQ(DROP=PERCENT);RUN; 
PROC SORT DATA=CMG2; BY Y; run; 
DATA CMG3;MERGE YFREQ(RENAME=(COUNT=CNT1))  
CMG2;BY Y;if first.Y;run; 
data cmg3;MERGE CMG3 blank16; BY Y;RUN; 
data cmg3 (drop=y2);SET CMG3; if cnt1=. then cnt1=0;RUN; 
PROC SORT DATA=CMG2; BY Y2; run; 
PROC FREQ  NOPRINT data=cmg2; TABLES Y2 / 
OUT=Y2FREQ(DROP=PERCENT);RUN; 
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DATA CMG32(keep=y2 cnt2);MERGE Y2FREQ(RENAME=(COUNT=cnt2))  
CMG2;BY Y2;if first.Y2;run; 
proc sort data=cmg32; by y2; 
proc sort data=blank16_2; by y2; run; 
data cmg32;MERGE CMG32 blank16_2; BY Y2;RUN; 
DATA CMG3; SET CMG3;YH=Y; all=1; 
DATA CMG32; SET CMG32;YH=Y2; all=1; 
proc SORT data=CMG3; BY YH; 
proc SORT data=CMG32; BY YH;run; 
DATA CMG3; MERGE CMG3 CMG32; BY YH;run;                                     
%macro cm;  
%do %until (&endvar=1); 
%let OLDLC1 = &LC1;%let OLDLC2 = &LC2;%let OLDLC3 = &LC3; 
%let OLDLC4 = &LC4;%let OLDLC5 = &LC5;%let OLDLC6 = &LC6; 
%let OLDCPA1 = &CPA1;%let OLDCPB1 = &CPB1; 
%let OLDCPC1 = &CPC1;%let OLDCPD1 = &CPD1; 
data cmg3; set cmg3(keep=cnt1 y y2 yh all cnt2 notagain1 
notagain2); 
retain grpcnt1 0 bigl1 0 bigl2 0 bigl3 0 bigl4 0 bigl5 0 bigl6 0; 
    if Y=1 then do;    
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD1;      
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD1;            
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD2; 
end;else if Y=2 then do;         
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD2;            
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD2;            
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD1; 
end;else if Y=3 then do;            
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD1;            
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD1;            
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD2; 
end;else if Y=4 then do;            
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD2;            
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD2;            
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD1; 
end;else if Y=5 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD1;            
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD1;            
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD2; 
end;else if Y=6 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD2;            
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD2;            
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD1; 
end;else if Y=7 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD1;            
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD1;            
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD2; 
end;else if Y=8 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD2;            
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD2;            
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD1; 
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end;else if Y=9 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD1;            
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD1;            
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD2; 
end;else if Y=10 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD2;            
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD2;            
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1; 
end;else if Y=11 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD1;            
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD1;            
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1; 
end;else if Y=12 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD2;            
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD2;            
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC1*&CPD1; 
end;else if Y=13 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD1;            
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD1;            
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD2; 
end;else if Y=14 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD2;            
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD2;            
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD1; 
end;else if Y=15 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD1;            
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD1;            
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD2; 
end;else if Y=16 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD2;            
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD2;            
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD1; 
end;TOTP1=P1+P2+P3+P4+P5+P6; 
retain A1LC1 0 A1LC2 0 A1LC3 0 A1LC4 0 A1LC5 0 A1LC6 0; 
 L1=(CNT1*P1)/TOTP1;L2=(CNT1*P2)/TOTP1;L3=(CNT1*P3)/TOTP1; 
 L4=(CNT1*P4)/TOTP1;L5=(CNT1*P5)/TOTP1;L6=(CNT1*P6)/TOTP1; 
if Y ge 9 then do;A1LC1+L1;A1LC2+L2;end; 
if Y le 8 then do;A1LC3+L3;A1LC4+L4;A1LC5+L5;A1LC6+L6;end; 
if Y IN (5,6,7,8,13,14,15,16)then do;B1LC1+L1;B1LC3+L3;end; 
if Y IN (1,2,3,4,9,10,11,12)then do; 
     B1LC2+L2;B1LC4+L4;B1LC5+L5;B1LC6+L6;end; 
if Y IN (3,4,7,8,11,12,15,16)then do;  
     C1LC1+L1;C1LC2+L2;C1LC3+L3;C1LC4+L4;END; 
if Y IN (1,2,5,6,9,10,13,14)then do;C1LC5+L5;C1LC6+L6;END; 
if Y IN (2,4,6,8,10,12,14,16)then do; 
     D1LC1+L1;D1LC2+L2;D1LC3+L3;D1LC4+L4;D1LC5+L5;END; 
if Y IN (1,3,5,7,9,11,13,15)then do;D1LC6+L6;END; 
grpcnt1+cnt1;bigl1+l1; 
bigl2+l2;bigl3+l3;bigl4+l4;bigl5+l5;bigl6+l6; 
all=1;yh=y;run; 
%let OLDLC12=&LC12;%let OLDLC22=&LC22;%let OLDLC32=&LC32; 
%let OLDLC42=&LC42;%let OLDLC52=&LC52;%let OLDLC62=&LC62; 



 

 121

%let OLDCPA1_2=&CPA1_2;%let OLDCPB1_2=&CPB1_2; 
%let OLDCPC1_2=&CPC1_2;%let OLDCPD1_2=&CPD1_2; 
data cmg32; set CMG32(keep = y2 cnt2 notagain1 notagain2 yh all); 
retain grpcnt2 0 bigl12 0 bigl22 0 bigl32 0 bigl42 0 bigl52 0 
bigl62 0; 
    if Y2=1 then do;   
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=2 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=3 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=4 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=5 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=6 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=7 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
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P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=8 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=9 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=10 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=11 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=12 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=13 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=14 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=15 then do; 
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P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=16 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
TOTP2=P12+P22+P32+P42+P52+P62;IF CNT2=. THEN CNT2=0; 
retain A1LC12 0 A1LC22 0 A1LC32 0 A1LC42 0 A1LC52 0 A1LC62 0; 
L12=(CNT2*P12)/TOTP2;L22=(CNT2*P22)/TOTP2;L32=(CNT2*P32)/TOTP2; 
L42=(CNT2*P42)/TOTP2;L52=(CNT2*P52)/TOTP2;L62=(CNT2*P62)/TOTP2; 
if Y2 ge 9 then do;A1LC12+L12;A1LC22+L22;end; 
if Y2 le 8 then do;  
      A1LC32+L32;A1LC42+L42;A1LC52+L52;A1LC62+L62;end; 
if Y2 IN (5,6,7,8,13,14,15,16)then do; 
      B1LC12+L12;B1LC32+L32;end; 
if Y2 IN (1,2,3,4,9,10,11,12)then do;  
      B1LC22+L22;B1LC42+L42;B1LC52+L52;B1LC62+L62;end; 
if Y2 IN (3,4,7,8,11,12,15,16)then do; 
      C1LC12+L12;C1LC22+L22;C1LC32+L32;C1LC42+L42;END; 
if Y2 IN (1,2,5,6,9,10,13,14)then do; 
      C1LC52+L52;C1LC62+L62;END; 
if Y2 IN (2,4,6,8,10,12,14,16)then do;  
      D1LC12+L12;D1LC22+L22;D1LC32+L32;D1LC42+L42;D1LC52+L52;END; 
if Y2 IN (1,3,5,7,9,11,13,15)then do;D1LC62+L62;END;grpcnt2+cnt2; 
bigl12+l12;bigl22+l22;bigl32+l32; 
bigl42+l42;bigl52+l52;bigl62+l62; 
all=1;yh=y2;run;proc SORT data=CMG3; BY YH; run; 
proc SORT data=CMG32; BY YH; run;DATA CMG3; MERGE CMG3 CMG32;  
BY YH; run;                                     
data cm4(keep=y y2 lc1-lc6 cpa1 cpb1 cpc1 cpd1 cpa2 cpb2 cpc2 
cpd2  
lc12 lc22 lc32 lc42 lc52 lc62 cpa1_2 cpb1_2 cpc1_2 cpd1_2 cpa2_2 
cpb2_2  
cpc2_2 cpd2_2 cnt1 cnt2 grpcnt1 grpcnt2 totp1 totp2 yh); 
set cmg3; by all;if last.all; 
LC1=BIGL1/GRPCNT1;LC2=BIGL2/GRPCNT1;LC3=BIGL3/GRPCNT1; 
LC4=BIGL4/GRPCNT1;LC5=BIGL5/GRPCNT1;LC6=BIGL6/GRPCNT1; 
LCA2=A1LC1+A1LC2+A1LC3+A1LC4+A1LC5+A1LC6; 
LCB2=B1LC1+B1LC2+B1LC3+B1LC4+B1LC5+B1LC6; 
LCC2=C1LC1+C1LC2+C1LC3+C1LC4+C1LC5+C1LC6; 
LCD2=D1LC1+D1LC2+D1LC3+D1LC4+D1LC5+D1LC6; 
CPA2=LCA2/GRPCNT1;CPB2=LCB2/GRPCNT1; 
CPC2=LCC2/GRPCNT1;CPD2=LCD2/GRPCNT1; 
CPA1=(1-CPA2);CPB1=(1-CPB2);CPC1=(1-CPC2);CPD1=(1-CPD2); 
%if &endvar=0 %then %do; 
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    call symput('lc1',lc1);call symput('lc2',lc2); 
    call symput('lc3',lc3);call symput('lc4',lc4); 
    call symput('lc5',lc5);call symput('lc6',lc6); 
    call symput('cpa1',cpa1);call symput('cpb1',cpb1); 
    call symput('cpc1',cpc1);call symput('cpd1',cpd1); 
    call symput('cpa2',cpa2);call symput('cpb2',cpb2); 
    call symput('cpc2',cpc2);call symput('cpd2',cpd2);%end; 
ablc1=abs(&oldlc1-lc1);ablc2=abs(&oldlc2-lc2); 
ablc3=abs(&oldlc3-lc3);ablc4=abs(&oldlc4-lc4); 
ablc5=abs(&oldlc5-lc5);aba1=abs(&oldcpa1-cpa1); 
abb1=abs(&oldcpb1-cpb1);abc1=abs(&oldcpc1-cpc1); 
abd1=abs(&oldcpd1-cpd1); 
TOTABS=ABLC1+ABLC2+ABLC3+ABLC4+ABLC5+ABA1+ABB1+ABC1+ABD1; 
IF TOTABS LE .0001 AND NOTAGAIN1 NE 1 THEN DO;NOTAGAIN1=1; 
call symput('lc1',lc1);call symput('lc2',lc2); 
call symput('lc3',lc3);call symput('lc4',lc4); 
call symput('lc5',lc5);call symput('lc6',lc6); 
call symput('cpa1',cpa1);call symput('cpb1',cpb1); 
call symput('cpc1',cpc1);call symput('cpd1',cpd1); 
call symput('TOTP1',TOTP1);call symput('CNT1',CNT1); 
call symput('GRPCNT1',GRPCNT1);END; 
LC12=BIGL12/GRPCNT2;LC22=BIGL22/GRPCNT2;LC32=BIGL32/GRPCNT2; 
LC42=BIGL42/GRPCNT2;LC52=BIGL52/GRPCNT2;LC62=BIGL62/GRPCNT2; 
 LCA22=A1LC12+A1LC22+A1LC32+A1LC42+A1LC52+A1LC62; 
 LCB22=B1LC12+B1LC22+B1LC32+B1LC42+B1LC52+B1LC62; 
 LCC22=C1LC12+C1LC22+C1LC32+C1LC42+C1LC52+C1LC62; 
 LCD22=D1LC12+D1LC22+D1LC32+D1LC42+D1LC52+D1LC62; 
CPA2_2=LCA22/GRPCNT2;CPB2_2=LCB22/GRPCNT2; 
CPC2_2=LCC22/GRPCNT2;CPD2_2=LCD22/GRPCNT2; 
CPA1_2=(1-CPA2_2);CPB1_2=(1-CPB2_2); 
CPC1_2=(1-CPC2_2);CPD1_2=(1-CPD2_2); 
%if (&endvar=0) %then %do; 
call symput('lc12',lc12);call symput('lc22',lc22); 
call symput('lc32',lc32);call symput('lc42',lc42); 
call symput('lc52',lc52);call symput('lc62',lc62); 
call symput('cpa1_2',cpa1_2);call symput('cpb1_2',cpb1_2); 
call symput('cpc1_2',cpc1_2);call symput('cpd1_2',cpd1_2); 
call symput('cpa2_2',cpa2_2);call symput('cpb2_2',cpb2_2); 
call symput('cpc2_2',cpc2_2);call symput('cpd2_2',cpd2_2);%end; 
ablc12=abs(&oldlc12-lc12);ablc22=abs(&oldlc22-lc22); 
ablc32=abs(&oldlc32-lc32);ablc42=abs(&oldlc42-lc42); 
ablc52=abs(&oldlc52-lc52);ablc62=abs(&oldlc62-lc62); 
aba12=abs(&oldcpa1_2-cpa1_2);abb12=abs(&oldcpb1_2-cpb1_2); 
abc12=abs(&oldcpc1_2-cpc1_2);abd12=abs(&oldcpd1_2-cpd1_2); 
TOTABS2=sum(ABLC12,ABLC22,ABLC32,ABLC42,ABLC52,ABA12,ABB12,ABC12,
ABD12); 
IF TOTABS2 LE .0001 AND NOTAGAIN2 NE 1 THEN DO;NOTAGAIN2=1; 
call symput('lc12',lc12);call symput('lc22',lc22); 
call symput('lc32',lc32);call symput('lc42',lc42); 
call symput('lc52',lc52);call symput('lc62',lc62); 
call symput('cpa1_2',cpa1_2);call symput('cpb1_2',cpb1_2); 
call symput('cpc1_2',cpc1_2);call symput('cpd1_2',cpd1_2); 



 

 125

call symput('TOTP2',TOTP2);call symput('CNT2',CNT2); 
call symput('GRPCNT2',GRPCNT2);end; 
    IF NOTAGAIN1=1 AND NOTAGAIN2=1 THEN DO; 
CALL SYMPUT ('endvar',1);END;run; 
%if (&endvar^=1) %then %let cnt=%eval(&cnt+1); 
%if (&cnt>=500) %then %do;%let endvar=1;%end;%end; 
%mend cm;%cm  
data WHET1 (keep=lc1-lc5 cpa1 cpb1 cpc1 cpd1) 
     WHET2 (keep=lc12 LC22 LC32 LC42 LC52 cpa1_2 cpb1_2 cpc1_2 
cpd1_2);set cm4;run; 
DATA HOMO (KEEP=CNT1 CNT2 YH GRPCNT1 GRPCNT2 ALL NOTAGAIN1);set 
cmg3;run; 
 
/*CHI-SQ/AIC FOR HETERO*/ 
data chi1(keep=all cnt1 totp1 y); set cmg3;if cnt1=.  
then cnt1=0;all=1; 
data chi2(keep=all grpcnt1 BIGCNT);  
set cm4;BIGCNT=GRPCNT1+GRPCNT2;all=1;run; 
data hetchi1;merge chi1 chi2; by all;run; 
data hetchiTS1(KEEP=expx1 TCHI2_1 TG2_1 LN1 RC1 GRPCNT1 BIGCNT 
CNT1 all); set hetchi1;             
EXPX1=TOTP1*GRPCNT1;  
CHI21=((EXPX1-CNT1)**2)/EXPX1;TCHI2_1+chi21; 
if cnt1 ne 0 then expg1=log(cnt1/expx1); 
else expg1=.;retain g21 tg2_1 ln1;G21=2*CNT1*EXPG1;TG2_1+g21; 
PROP1=GRPCNT1/BIGCNT;TOTPP1=PROP1*TOTP1;lg1=log(totpP1); 
LL1=lg1*cnt1;LN1+LL1;I=CNT1/EXPX1; 
I=(I**.6667)-1;RC11=CNT1*I;RC1+RC11;RUN; 
data chi1(keep=all cnt2 totp2); set cmg32;if cnt2=.  
then cnt2=0;all=1; 
data chi2(keep=all grpcnt2 BIGCNT);set cm4; 
BIGCNT=GRPCNT1+GRPCNT2;all=1;run; 
data hetchi2;merge chi1 chi2; by all;run; 
data hetchiTS2(KEEP=expx2 TCHI2_2 TG2_2 LN2 RC2 GRPCNT2 BIGCNT 
all cnt2);  
set hetchi2;EXPX2=TOTP2*GRPCNT2;CHI22=((EXPX2-CNT2)**2)/EXPX2; 
TCHI2_2+chi22;If cnt2 ne 0 then expg2=log(cnt2/expx2); 
else expg2=.;retain g22 tg2_2 ln2;G22=2*CNT2*EXPG2;TG2_2+g22; 
PROP2=GRPCNT2/BIGCNT;TOTPP2=PROP2*TOTP2;lg2=log(totpP2); 
LL2=lg2*cnt2;LN2+LL2;I=CNT2/EXPX2;I=(I**.6667)-1; 
RC22=CNT2*I;RC2+RC22;RUN; 
proc sort data=hetchiTS1; by all;proc sort data=hetchiTS2;  
by all; 
DATA hetchi; RETAIN TCHI2_1 TCHI2_2 TG2_1 TG2_2 LN1 LN2 RC1 RC2  
GRPCNT1 GRPCNT2 all;Merge hetchiTS1 hetchiTS2; BY ALL;RUN; 
proc sort data=hetchi;by all;run; 
DATA HETCHI(KEEP=HETCHI2 HETG2 HETLN HETRC BIGCNT); SET HETCHI; 
by all; 
IF LAST.ALL;RC1=1.7999999*RC1;RC2=1.7999999*RC2; 
HETCHI2=TCHI2_1+TCHI2_2;HETG2=TG2_1+TG2_2;HETLN=LN1+LN2; 
HETRC=RC1+RC2;RUN; 
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DATA HET_ABR(KEEP=HETCHI2 HETG2 HETRC HETAIC HETBIC HETRIC 
CNT_HET); SET hetchi;HETAIC=(-2*HETLN)+36; 
HETBIC=(-2*HETLN)+LOG(BIGCNT)*18;HETR=(BIGCNT+2)/24; 
HETRIC=(-2*HETLN)+LOG(HETR)*18;CNT_HET=&CNT.;run; 
 
%let LC1=.08;        /*PARTIAL MODEL*/ 
%let LC2=.03;%let LC3=.08;%let LC4=.50;%let LC5=.23; 
%let LC6=.08;%let LC12=.10; 
%let LC22=.05;%let LC32=.10;%let LC42=.40;%let LC52=.25; 
%let LC62=.10; 
%let CPA1=.95;%let CPB1=.95;%let CPC1=.95;%let CPD1=.95; 
%let CPA2=.05;%let CPB2=.05;%let CPC2=.05;%let CPD2=.05; 
%let CPA1_2=.95;%let CPB1_2=.95;%let CPC1_2=.95;%let CPD1_2=.95; 
%let CPA2_2=.05;%let CPB2_2=.05;%let CPC2_2=.05;%let CPD2_2=.05; 
%let H_LC1=.09;  /*HOMO SPECS*/ 
%let H_LC2=.04;%let H_LC3=.09;%let H_LC4=.45;%let H_LC5=.24; 
%let H_LC6=.09; 
%let cnt=0;%let endvar=0;%let j=25;  
%macro cm;  
%do %until (&endvar=1); 
%let OLDLC1 = &LC1;%let OLDLC2 = &LC2;%let OLDLC3 = &LC3; 
%let OLDLC4 = &LC4;%let OLDLC5 = &LC5;%let OLDLC6 = &LC6; 
%let OLDCPA1 = &CPA1;%let OLDCPB1 = &CPB1; 
%let OLDCPC1 = &CPC1;%let OLDCPD1 = &CPD1; 
data pcmg3; set cmg3(keep=cnt1 y y2 yh all cnt2 notagain1 
notagain2); 
retain grpcnt1 0 bigl1 0 bigl2 0 bigl3 0 bigl4 0 bigl5 0 bigl6 0; 
    if Y=1 then do;              
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD1;           
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD1;            
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD2; 
end;else if Y=2 then do;            
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD2;            
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD2;            
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD1; 
end;else if Y=3 then do;            
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD1;            
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD1;            
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD2; 
end;else if Y=4 then do;            
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD2;            
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD2;            
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD1; 
end;else if Y=5 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD1;            
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD1;            
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD2; 
end;else if Y=6 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD2;            
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD2;            
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD1; 
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end;else if Y=7 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD1;            
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD1;            
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD2; 
end;else if Y=8 then do;            
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD2;            
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD2; 
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD1; 
end;else if Y=9 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD1;            
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD1;            
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD2; 
end;else if Y=10 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD2;            
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD2;            
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1; 
end;else if Y=11 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD1;            
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD1;            
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1; 
end;else if Y=12 then do;            
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD2;            
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD2;            
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC1*&CPD1; 
end;else if Y=13 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD1;            
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD1;            
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD2; 
end;else if Y=14 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD2;            
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD2;            
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD1; 
end;else if Y=15 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD1;            
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD1;            
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD2; 
end;else if Y=16 then do;            
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD2;            
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD2;            
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD1; 
end;PTOTP1=P1+P2+P3+P4+P5+P6; 
retain A1LC1 0 A1LC2 0 A1LC3 0 A1LC4 0 A1LC5 0 A1LC6 0; 
 L1=(CNT1*P1)/PTOTP1;L2=(CNT1*P2)/PTOTP1; 
 L3=(CNT1*P3)/PTOTP1;L4=(CNT1*P4)/PTOTP1; 
 L5=(CNT1*P5)/PTOTP1;L6=(CNT1*P6)/PTOTP1; 
if Y ge 9 then do;A1LC1+L1;A1LC2+L2;end; 
if Y le 8 then do;A1LC3+L3;A1LC4+L4;A1LC5+L5;A1LC6+L6;end; 
if Y IN (5,6,7,8,13,14,15,16)then do;B1LC1+L1;B1LC3+L3;end; 
if Y IN (1,2,3,4,9,10,11,12)then do; 
B1LC2+L2;B1LC4+L4;B1LC5+L5;B1LC6+L6;end; 
if Y IN (3,4,7,8,11,12,15,16)then do; 
C1LC1+L1;C1LC2+L2;C1LC3+L3;C1LC4+L4;END; 
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if Y IN (1,2,5,6,9,10,13,14)then do;C1LC5+L5;C1LC6+L6;END; 
if Y IN (2,4,6,8,10,12,14,16)then do; 
D1LC1+L1;D1LC2+L2;D1LC3+L3;D1LC4+L4;D1LC5+L5;END; 
if Y IN (1,3,5,7,9,11,13,15)then do;D1LC6+L6;END; 
grpcnt1+cnt1;bigl1+l1;bigl2+l2bigl3+l3; 
bigl4+l4;bigl5+l5;bigl6+l6; 
all=1;yh=y;run; 
%let OLDLC12=&LC12;%let OLDLC22=&LC22;%let OLDLC32=&LC32; 
%let OLDLC42=&LC42;%let OLDLC52=&LC52;%let OLDLC62=&LC62; 
 %let OLDCPA1_2=&CPA1_2; %let OLDCPB1_2=&CPB1_2; 
 %let OLDCPC1_2=&CPC1_2; %let OLDCPD1_2=&CPD1_2; 
data Pcmg32; set CMG32(keep = y2 cnt2 notagain1 notagain2 yh 
all); 
retain grpcnt2 0 bigl12 0 bigl22 0 bigl32 0 bigl42 0 bigl52 0 
bigl62 0; 
    if Y2=1 then do;   
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=2 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=3 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=4 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=5 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=6 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
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P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=7 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=8 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=9 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=10 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=11 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=12 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=13 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
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P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=14 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=15 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=16 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
PTOTP2=P12+P22+P32+P42+P52+P62; 
retain A1LC12 0 A1LC22 0 A1LC32 0 A1LC42 0 A1LC52 0 A1LC62 0; 
 L12=(CNT2*P12)/PTOTP2;L22=(CNT2*P22)/PTOTP2; 
 L32=(CNT2*P32)/PTOTP2;L42=(CNT2*P42)/PTOTP2; 
 L52=(CNT2*P52)/PTOTP2;L62=(CNT2*P62)/PTOTP2; 
if Y2 ge 9 then do;A1LC12+L12;A1LC22+L22;end; 
if Y2 le 8 then do; 
A1LC32+L32;A1LC42+L42;A1LC52+L52;A1LC62+L62;end; 
if Y2 IN (5,6,7,8,13,14,15,16)then do;B1LC12+L12;B1LC32+L32;end; 
if Y2 IN (1,2,3,4,9,10,11,12)then do;  
B1LC22+L22;B1LC42+L42;B1LC52+L52;B1LC62+L62;end; 
if Y2 IN (3,4,7,8,11,12,15,16)then do;  
C1LC12+L12;C1LC22+L22;C1LC32+L32;C1LC42+L42;END; 
if Y2 IN (1,2,5,6,9,10,13,14)then do;C1LC52+L52;C1LC62+L62;END; 
if Y2 IN (2,4,6,8,10,12,14,16)then do;  
D1LC12+L12;D1LC22+L22;D1LC32+L32;D1LC42+L42;D1LC52+L52;END; 
if Y2 IN (1,3,5,7,9,11,13,15)then do;D1LC62+L62;END; 
grpcnt2+cnt2;bigl12+l12; 
bigl22+l22;bigl32+l32;bigl42+l42;bigl52+l52;bigl62+l62; 
all=1;yh=y2;run;proc SORT data=PCMG3; BY YH; run;proc SORT 
data=PCMG32; BY YH; run; 
DATA PCMG3; MERGE PCMG3 PCMG32; BY YH; run;                                 
DATA pcmg3; set pcmg3; bigcnt=grpcnt1+grpcnt2; run; 
data Pcm4(keep=y y2 lc1-lc6 cpa1 cpb1 cpc1 cpd1 cpa2 cpb2 cpc2 
cpd2  
lc12 lc22 lc32 lc42 lc52 lc62 cpa1_2 cpb1_2 cpc1_2 cpd1_2 cpa2_2 
cpb2_2 cpc2_2 cpd2_2 
cnt1 cnt2 grpcnt1 grpcnt2 bigcnt ptotp1 ptotp2 yh); 
set Pcmg3; by all;if last.all; 
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LC1=BIGL1/GRPCNT1;LC2=BIGL2/GRPCNT1;LC3=BIGL3/GRPCNT1; 
LC4=BIGL4/GRPCNT1;LC5=BIGL5/GRPCNT1;LC6=BIGL6/GRPCNT1; 
 LCA2=A1LC1+A1LC2+A1LC3+A1LC4+A1LC5+A1LC6+ 
     A1LC12+A1LC22+A1LC32+A1LC42+A1LC52+A1LC62; 
 LCB2=B1LC1+B1LC2+B1LC3+B1LC4+B1LC5+B1LC6+ 
     B1LC12+B1LC22+B1LC32+B1LC42+B1LC52+B1LC62; 
 LCC2=C1LC1+C1LC2+C1LC3+C1LC4+C1LC5+C1LC6+ 
     C1LC12+C1LC22+C1LC32+C1LC42+C1LC52+C1LC62; 
 LCD2=D1LC1+D1LC2+D1LC3+D1LC4+D1LC5+D1LC6+ 
     D1LC12+D1LC22+D1LC32+D1LC42+D1LC52+D1LC62; 
CPA2=LCA2/BIGCNT;CPB2=LCB2/BIGCNT; 
CPC2=LCC2/BIGCNT;CPD2=LCD2/BIGCNT; 
CPA1=(1-CPA2);CPB1=(1-CPB2); 
CPC1=(1-CPC2);CPD1=(1-CPD2); 
%if &endvar=0 %then %do; 
call symput('lc1',lc1);call symput('lc2',lc2); 
call symput('lc3',lc3);call symput('lc4',lc4); 
call symput('lc5',lc5);call symput('lc6',lc6); 
call symput('cpa1',cpa1);call symput('cpb1',cpb1); 
call symput('cpc1',cpc1);call symput('cpd1',cpd1); 
call symput('cpa2',cpa2);call symput('cpb2',cpb2); 
call symput('cpc2',cpc2);call symput('cpd2',cpd2);%end; 
ablc1=abs(&oldlc1-lc1);ablc2=abs(&oldlc2-lc2); 
ablc3=abs(&oldlc3-lc3);ablc4=abs(&oldlc4-lc4); 
ablc5=abs(&oldlc5-lc5); 
    aba1=abs(&oldcpa1-cpa1);abb1=abs(&oldcpb1-cpb1); 
    abc1=abs(&oldcpc1-cpc1);abd1=abs(&oldcpd1-cpd1); 
TOTABS=ABLC1+ABLC2+ABLC3+ABLC4+ABLC5+ABA1+ABB1+ABC1+ABD1; 
IF TOTABS LE .0001 AND NOTAGAIN1 NE 1 THEN DO;NOTAGAIN1=1; 
    call symput('PTOTP1',PTOTP1);call symput('CNT1',CNT1); 
    call symput('GRPCNT1',GRPCNT1);END; 
LC12=BIGL12/GRPCNT2;LC22=BIGL22/GRPCNT2; 
LC32=BIGL32/GRPCNT2;LC42=BIGL42/GRPCNT2; 
LC52=BIGL52/GRPCNT2;LC62=BIGL62/GRPCNT2; 
CPA1_2=CPA1;CPB1_2=CPB1;CPC1_2=CPC1;CPD1_2=CPD1; 
CPA2_2=CPA2;CPB2_2=CPB2;CPC2_2=CPC2;CPD2_2=CPD2; 
%if (&endvar=0) %then %do; 
    call symput('lc12',lc12);call symput('lc22',lc22); 
    call symput('lc32',lc32);call symput('lc42',lc42); 
    call symput('lc52',lc52);call symput('lc62',lc62); 
    call symput('cpa1_2',cpa1_2);call symput('cpb1_2',cpb1_2); 
    call symput('cpc1_2',cpc1_2);call symput('cpd1_2',cpd1_2); 
    call symput('cpa2_2',cpa2_2);call symput('cpb2_2',cpb2_2); 
    call symput('cpc2_2',cpc2_2); 
    call symput('cpd2_2',cpd2_2);%end; 
ablc12=abs(&oldlc12-lc12);ablc22=abs(&oldlc22-lc22); 
ablc32=abs(&oldlc32-lc32);ablc42=abs(&oldlc42-lc42); 
ablc52=abs(&oldlc52-lc52);ablc62=abs(&oldlc62-lc62); 
aba12=abs(&oldcpa1_2-cpa1_2);abb12=abs(&oldcpb1_2-cpb1_2); 
abc12=abs(&oldcpc1_2-cpc1_2);abd12=abs(&oldcpd1_2-cpd1_2); 
TOTABS2=sum(ABLC12,ABLC22,ABLC32,ABLC42,ABLC52,ABA12,ABB12,ABC12,
ABD12); 
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IF TOTABS2 LE .0001 AND NOTAGAIN2 NE 1 THEN DO;NOTAGAIN2=1; 
call symput('PTOTP2',PTOTP2);call symput('CNT2',CNT2); 
call symput('GRPCNT2',GRPCNT2);end; 
IF NOTAGAIN1=1 AND NOTAGAIN2=1 THEN DO; 
CALL SYMPUT ('endvar',1);END;run; 
%if (&endvar^=1) %then %let cnt=%eval(&cnt+1); 
%if (&cnt>=500) %then %do;%let endvar=1;%end;%end; 
%mend cm;%cm  
 
/*CHI-SQ/AIC FOR PARTIAL*/ 
data chi1(keep=all cnt1 ptotp1 y); set pcmg3;if cnt1=.  
then cnt1=0;all=1; 
data chi2(keep=all grpcnt1 bigcnt); set pcm4;all=1;run; 
data parchi1;merge chi1 chi2; by all;run; 
data parchiTS1(KEEP=expx1 TCHI2_1 TG2_1 LN1 RC1 GRPCNT1 BIGCNT 
CNT1 all); set parchi1;             
EXPX1=PTOTP1*GRPCNT1;CHI21=((EXPX1-CNT1)**2)/EXPX1; 
TCHI2_1+chi21;If cnt1 ne 0 then expg1=log(cnt1/expx1); 
else expg1=.; 
retain g21 tg2_1 ln1; 
G21=2*CNT1*EXPG1;TG2_1+g21;PROP1=GRPCNT1/BIGCNT; 
TOTPP1=PROP1*PTOTP1;lg1=log(totpP1);LL1=lg1*cnt1;LN1+LL1; 
I=CNT1/EXPX1;I=(I**.6667)-1;RC11=CNT1*I;RC1+RC11;RUN; 
data chi1(keep=all cnt2 ptotp2);set Pcmg32;if cnt2=.  
then cnt2=0;all=1; 
data chi2(keep=all grpcnt2 bigcnt);set Pcm4;all=1;run; 
data parchi2;merge chi1 chi2; by all;run; 
data parchiTS2(KEEP=TCHI2_2 TG2_2 LN2 RC2 GRPCNT2 BIGCNT all); 
set parchi2; 
EXPX2=PTOTP2*GRPCNT2;CHI22=((EXPX2-CNT2)**2)/EXPX2;TCHI2_2+chi22; 
If cnt2 ne 0 then expg2=log(cnt2/expx2);else expg2=.; 
retain g22 tg2_2 ln2; 
G22=2*CNT2*EXPG2;TG2_2+g22;PROP2=GRPCNT2/BIGCNT; 
TOTPP2=PROP2*PTOTP2; 
lg2=log(totpP2);LL2=lg2*cnt2;LN2+LL2;I=CNT2/EXPX2;I=(I**.6667)-1; 
RC22=CNT2*I;RC2+RC22;RUN; 
proc sort data=parchiTS1; by all;proc sort data=parchiTS2;  
by all; 
DATA parchi; RETAIN TCHI2_1 TCHI2_2 TG2_1 TG2_2 LN1 LN2 RC1 RC2  
GRPCNT1 GRPCNT2 all;Merge parchiTS1 parchiTS2; BY ALL;RUN; 
proc sort data=parchi; by all;run; 
DATA PARCHI(KEEP=PARCHI2 PARG2 PARLN PARRC BIGCNT); SET PARCHI; 
by all; 
IFLAST.ALL;RC1=1.7999999*RC1;RC2=1.7999999*RC2; 
PARCHI2=TCHI2_1+TCHI2_2; 
PARG2=TG2_1+TG2_2;PARLN=LN1+LN2;PARRC=RC1+RC2;RUN; 
DATA PAR_ABR(KEEP=PARCHI2 PARG2 PARRC PARAIC PARBIC PARRIC 
CNT_PAR); SET parchi; 
PARAIC=(-2*PARLN)+28; 
PARBIC=(-2*PARLN)+LOG(BIGCNT)*14;PARR=(BIGCNT+2)/24; 
PARRIC=(-2*PARLN)+LOG(PARR)*14;CNT_PAR=&CNT.;run; 
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%let H_LC1=.09;  /*HOMOGENEOUS MODEL*/ 
%let H_LC2=.04;%let H_LC3=.09;%let H_LC4=.45;%let H_LC5=.24; 
%let H_LC6=.09; 
%let H_CPA1=.95;%let H_CPB1=.95;%let H_CPC1=.95;%let H_CPD1=.95; 
%let H_CPA2=.05;%let H_CPB2=.05;%let H_CPC2=.05;%let H_CPD2=.05; 
%let cnt=0;%let endvar=0;%let j=25;  
data homo1; set homo;cnth=sum(cnt1,cnt2);IF CNTH=.  
THEN CNTH=0;RUN; 
%macro cm;  
%do %until (&endvar=1); 
%let OLDLC1 = &H_LC1;%let OLDLC2 = &H_LC2;%let OLDLC3 = &H_LC3; 
%let OLDLC4 = &H_LC4;%let OLDLC5 = &H_LC5;%let OLDLC6 = &H_LC6; 
%let OLDCPA1 = &H_CPA1;%let OLDCPB1 = &H_CPB1; 
%let OLDCPC1 = &H_CPC1;%let OLDCPD1 = &H_CPD1; 
data HOMO1; set HOMO1(keep=cntH CNT1 CNT2 GRPCNT1 GRPCNT2 yh all 
notagain1); 
retain bigcnth 0 bigl1 0 bigl2 0 bigl3 0 bigl4 0 bigl5 0 bigl6 0; 
if YH=1 then do;   
P1=&H_LC1*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1; 
P2=&H_LC2*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1; 
P3=&H_LC3*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1; 
P4=&H_LC4*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1; 
P5=&H_LC5*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1; 
P6=&H_LC6*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2;end; 
        else if YH=2 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2; 
P2=&H_LC2*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD2; 
P3=&H_LC3*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2; 
P4=&H_LC4*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2; 
P5=&H_LC5*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2; 
P6=&H_LC6*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1;end; 
        else if YH=3 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1; 
P2=&H_LC2*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1; 
P3=&H_LC3*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1; 
P4=&H_LC4*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1; 
P5=&H_LC5*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1; 
P6=&H_LC6*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2;end; 
    else if YH=4 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2; 
P2=&H_LC2*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2; 
P3=&H_LC3*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2; 
P4=&H_LC4*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2; 
P5=&H_LC5*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2; 
P6=&H_LC6*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1;end; 
    else if YH=5 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1; 
P2=&H_LC2*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1; 
P3=&H_LC3*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1; 
P4=&H_LC4*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1; 
P5=&H_LC5*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1; 
P6=&H_LC6*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2;end; 
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    else if YH=6 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD2; 
P2=&H_LC2*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2; 
P3=&H_LC3*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2; 
P4=&H_LC4*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2; 
P5=&H_LC5*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2; 
P6=&H_LC6*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1;end; 
    else if YH=7 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1; 
P2=&H_LC2*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1; 
P3=&H_LC3*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1; 
P4=&H_LC4*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1; 
P5=&H_LC5*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1; 
P6=&H_LC6*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2;end; 
    else if YH=8 then do; 
P1=&H_LC1*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2; 
P2=&H_LC2*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2; 
P3=&H_LC3*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2; 
P4=&H_LC4*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2; 
P5=&H_LC5*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2; 
P6=&H_LC6*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1;end; 
    else if YH=9 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1; 
P2=&H_LC2*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1; 
P3=&H_LC3*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1; 
P4=&H_LC4*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1; 
P5=&H_LC5*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1; 
P6=&H_LC6*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2;end; 
    else if YH=10 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2; 
P2=&H_LC2*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2; 
P3=&H_LC3*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2; 
P4=&H_LC4*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD2; 
P5=&H_LC5*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2; 
P6=&H_LC6*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1;end; 
    else if YH=11 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1; 
P2=&H_LC2*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1; 
P3=&H_LC3*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1; 
P4=&H_LC4*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1; 
P5=&H_LC5*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1; 
P6=&H_LC6*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1;end; 
    else if YH=12 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2; 
P2=&H_LC2*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2; 
P3=&H_LC3*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2; 
P4=&H_LC4*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2; 
P5=&H_LC5*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD2; 
P6=&H_LC6*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1;end; 
    else if YH=13 then do;  
P1=&H_LC1*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD1; 
P2=&H_LC2*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD1; 
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P3=&H_LC3*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD1; 
P4=&H_LC4*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1; 
P5=&H_LC5*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1; 
P6=&H_LC6*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2;end; 
    else if YH=14 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB2*&H_CPC1*&H_CPD2; 
P2=&H_LC2*&H_CPA2*&H_CPB1*&H_CPC1*&H_CPD2; 
P3=&H_LC3*&H_CPA1*&H_CPB2*&H_CPC1*&H_CPD2; 
P4=&H_LC4*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2; 
P5=&H_LC5*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2; 
P6=&H_LC6*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1;end; 
    else if YH=15 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD1; 
P2=&H_LC2*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD1; 
P3=&H_LC3*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD1; 
P4=&H_LC4*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD1; 
P5=&H_LC5*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1; 
P6=&H_LC6*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2;end; 
    else if YH=16 then do; 
P1=&H_LC1*&H_CPA2*&H_CPB2*&H_CPC2*&H_CPD2; 
P2=&H_LC2*&H_CPA2*&H_CPB1*&H_CPC2*&H_CPD2; 
P3=&H_LC3*&H_CPA1*&H_CPB2*&H_CPC2*&H_CPD2; 
P4=&H_LC4*&H_CPA1*&H_CPB1*&H_CPC2*&H_CPD2; 
P5=&H_LC5*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD2; 
P6=&H_LC6*&H_CPA1*&H_CPB1*&H_CPC1*&H_CPD1;end; 
HTOTP=P1+P2+P3+P4+P5+P6; 
retain A1LC1 0 A1LC2 0 A1LC3 0 A1LC4 0 A1LC5 0 A1LC6 0; 
L1=(CNTH*P1)/HTOTP;L2=(CNTH*P2)/HTOTP;L3=(CNTH*P3)/HTOTP; 
   L4=(CNTH*P4)/HTOTP;L5=(CNTH*P5)/HTOTP;L6=(CNTH*P6)/HTOTP; 
if YH ge 9 then do;A1LC1+L1;A1LC2+L2;end; 
if YH le 8 then do;A1LC3+L3;A1LC4+L4;A1LC5+L5;A1LC6+L6;end; 
if YH IN (5,6,7,8,13,14,15,16)then do; B1LC1+L1;B1LC3+L3;end; 
if YH IN (1,2,3,4,9,10,11,12)then do; 
B1LC2+L2;B1LC4+L4;B1LC5+L5;B1LC6+L6;end; 
if YH IN (3,4,7,8,11,12,15,16)then do; 
C1LC1+L1;C1LC2+L2;C1LC3+L3;C1LC4+L4;END; 
if YH IN (1,2,5,6,9,10,13,14)then do;C1LC5+L5;C1LC6+L6;END; 
if YH IN (2,4,6,8,10,12,14,16)then do; 
D1LC1+L1;D1LC2+L2;D1LC3+L3;D1LC4+L4;D1LC5+L5;END; 
if YH IN (1,3,5,7,9,11,13,15)then do;D1LC6+L6;END; 
bigcnth+cnth; 
bigl1+l1;bigl2+l2;bigl3+l3;bigl4+l4;bigl5+l5;bigl6+l6;ALL=1;run; 
proc sort data=homo1; by all;run; 
data HOMO_4(keep=yh cnt1 cnt2 CNTH grpcnt1 grpcnt2 BIGCNTH Htotp 
NOTAGAIN1); 
set HOMO1;by all;if last.all; 
H_LC1=BIGL1/BIGCNTH;H_LC2=BIGL2/BIGCNTH;H_LC3=BIGL3/BIGCNTH; 
H_LC4=BIGL4/BIGCNTH;H_LC5=BIGL5/BIGCNTH;H_LC6=BIGL6/BIGCNTH; 
LCA2=A1LC1+A1LC2+A1LC3+A1LC4+A1LC5+A1LC6; 
LCB2=B1LC1+B1LC2+B1LC3+B1LC4+B1LC5+B1LC6; 
LCC2=C1LC1+C1LC2+C1LC3+C1LC4+C1LC5+C1LC6; 
LCD2=D1LC1+D1LC2+D1LC3+D1LC4+D1LC5+D1LC6; 
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H_CPA2=LCA2/BIGCNTH;H_CPB2=LCB2/BIGCNTH; 
H_CPC2=LCC2/BIGCNTH;H_CPD2=LCD2/BIGCNTH; 
H_CPA1=(1-H_CPA2);H_CPB1=(1-H_CPB2); 
H_CPC1=(1-H_CPC2);H_CPD1=(1-H_CPD2); 
%if &endvar=0 %then %do; 
 call symput('H_lc1',H_lc1);call symput('H_lc2',H_lc2); 
 call symput('H_lc3',H_lc3);call symput('H_lc4',H_lc4); 
 call symput('H_lc5',H_lc5);call symput('H_lc6',H_lc6); 
 call symput('H_cpa1',H_cpa1);call symput('H_cpb1',H_cpb1); 
 call symput('H_cpc1',H_cpc1);call symput('H_cpd1',H_cpd1); 
 call symput('H_cpa2',H_cpa2);call symput('H_cpb2',H_cpb2); 
 call symput('H_cpc2',H_cpc2); 
 call symput('H_cpd2',H_cpd2);%end; 
    ablc1=abs(&oldlc1-H_lc1);ablc2=abs(&oldlc2-H_lc2); 
    ablc3=abs(&oldlc3-H_lc3);ablc4=abs(&oldlc4-H_lc4); 
    ablc5=abs(&oldlc5-H_lc5); 
    aba1=abs(&oldcpa1-H_cpa1);abb1=abs(&oldcpb1-H_cpb1); 
    abc1=abs(&oldcpc1-H_cpc1);abd1=abs(&oldcpd1-H_cpd1); 
TOTABS=ABLC1+ABLC2+ABLC3+ABLC4+ABLC5+ABA1+ABB1+ABC1+ABD1; 
IF TOTABS LE .0001 THEN DO;NOTAGAIN1=1; 
    call symput('H_lc1',H_lc1);call symput('H_lc2',H_lc2); 
 call symput('H_lc3',H_lc3);call symput('H_lc4',H_lc4); 
 call symput('H_lc5',H_lc5);call symput('H_lc6',H_lc6); 
 call symput('H_cpa1',H_cpa1);call symput('H_cpb1',H_cpb1); 
 call symput('H_cpc1',H_cpc1);call symput('H_cpd1',H_cpd1); 
 call symput('HTOTP',HTOTP);end;IF NOTAGAIN1=1 THEN DO; 
     CALL SYMPUT ('endvar',1);END;run; 
%if (&endvar^=1) %then %let cnt=%eval(&cnt+1); 
%if (&cnt>=500) %then %do;%let endvar=1;%end;%end; 
%mend cm;%cm  
 
/*CHI-SQ/AIC FOR HOMO*/ 
data chi1(keep=all cnt1 Htotp YH); set HOMO1;if cnt1=.  
then cnt1=0;all=1; 
data chi2(keep=all grpcnt1 BIGCNTH); set HOMO_4;all=1;run; 
data HOMchi1;merge chi1 chi2; by all;run; 
data HOMchiTS1(KEEP=TCHI2_1 TG2_1 LN1 RC1 GRPCNT1 BIGCNTH CNT1 
all); set HOMchi1;             
EXPX1=HTOTP*GRPCNT1;CHI21=((EXPX1-CNT1)**2)/EXPX1;TCHI2_1+chi21; 
If cnt1 ne 0 then expg1=log(cnt1/expx1);else expg1=.; 
retain g21 tg2_1 ln1; 
G21=2*CNT1*EXPG1;TG2_1+g21;PROP1=GRPCNT1/BIGCNTH; 
TOTPP1=PROP1*HTOTP; 
lg1=log(totpP1);LL1=lg1*cnt1;LN1+LL1;I=CNT1/EXPX1;I=(I**.6667)-1; 
RC11=CNT1*I;RC1+RC11;RUN; 
data chi1(keep=all cnt2 Htotp); set HOMO1;if cnt2=.  
then cnt2=0;all=1; 
data chi2(keep=all grpcnt2 BIGCNTH); set HOMO_4;all=1;run; 
data HOMchi2;merge chi1 chi2; by all;run; 
data HOMchiTS2(KEEP=TCHI2_2 TG2_2 LN2 RC2 GRPCNT2 BIGCNTH all 
cnt2); set HOMchi2; 
EXPX2=HTOTP*GRPCNT2;CHI22=((EXPX2-CNT2)**2)/EXPX2;TCHI2_2+chi22; 
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If cnt2 ne 0 then expg2=log(cnt2/expx2);else expg2=.; 
retain g22 tg2_2 ln2; 
G22=2*CNT2*EXPG2;TG2_2+g22;PROP2=GRPCNT2/BIGCNTH; 
TOTPP2=PROP2*HTOTP; 
lg2=log(totpP2);LL2=lg2*cnt2;LN2+LL2;I=CNT2/EXPX2;I=(I**.6667)-1; 
RC22=CNT2*I;RC2+RC22;RUN; 
proc sort data=HOMchiTS1; by all; 
proc sort data=HOMchiTS2; by all; 
DATA HOMchi; RETAIN TCHI2_1 TCHI2_2 TG2_1 TG2_2 LN1 LN2 RC1 RC2  
GRPCNT1 GRPCNT2 all;Merge HOMchiTS1 HOMchiTS2; BY ALL;RUN; 
proc sort data=HOMchi; by all;run; 
DATA HOMCHI(KEEP=HOMCHI2 HOMG2 HOMLN HOMRC BIGCNTH); SET HOMCHI; 
by all; 
IF LAST.ALL;RC1=1.7999999*RC1;RC2=1.7999999*RC2; 
HOMCHI2=TCHI2_1+TCHI2_2; 
HOMG2=TG2_1+TG2_2;HOMLN=LN1+LN2;HOMRC=RC1+RC2;RUN; 
DATA HOM_ABR(KEEP=HOMCHI2 HOMG2 HOMRC HOMAIC HOMBIC HOMRIC 
CNT_HOM); SET HOMchi; 
HOMAIC=(-2*HOMLN)+18;HOMBIC=(-2*HOMLN)+LOG(BIGCNTH)*9; 
HOMR=(BIGCNTH+2)/24; 
HOMRIC=(-2*HOMLN)+LOG(HOMR)*9;CNT_HOM=&CNT.;run; 
 
/*COUNTING*/ 
data het_abr;set het_abr;dummy=1;data hom_abr; 
set hom_abr;dummy=1; 
data par_abr;set par_abr;dummy=1; 
Data countnew(DROP= HETCHI2 PARCHI2 HOMCHI2 HETRC PARRC HOMRC 
PRC1 PRC2 PARAIC  
HETAIC HOMAIC PARBIC HETBIC HOMBIC PARRIC HETRIC HOMRIC HETG2 
PARG2 HOMG2 CNT_HET  
CNT_PAR CNT_HOM PX1 PX2 PG1 PG2); 
        merge het_abr par_abr hom_abr;by dummy;drop dummy; 
  IF HETCHI2>21.03 THEN HETFIT05=1;ELSE HETFIT05=0; 
  IF PARCHI2>26.30 THEN PARFIT05=1;ELSE PARFIT05=0; 
  IF HOMCHI2>32.67 THEN HOMFIT05=1;ELSE HOMFIT05=0; 
  IF HETCHI2>26.22 THEN HETFIT01=1;ELSE HETFIT01=0; 
  IF PARCHI2>32.00 THEN PARFIT01=1;ELSE PARFIT01=0; 
  IF HOMCHI2>38.93 THEN HOMFIT01=1;ELSE HOMFIT01=0; 
  IF CNT_HET>=500 THEN HET_NOT=1;ELSE HET_NOT=0; 
  IF CNT_PAR>=500 THEN PAR_NOT=1;ELSE PAR_NOT=0; 
  IF CNT_HOM>=500 THEN HOM_NOT=1;ELSE HOM_NOT=0; 
  PX1=abs(HOMCHI2-PARCHI2);PX2=abs(PARCHI2-HETCHI2); 
  IF PX1<11.0705 & PX2<9.4877 THEN CNT_HOMX205=1; 
Else cnt_HOMX205=0; 
  IF PX1>11.0705 & PX2<9.4877 THEN CNT_PX205=1; 
Else cnt_PX205=0; 
  IF PX1>11.0705 & PX2>9.4877 THEN CNT_HETX205=1; 
Else cnt_HETX205=0; 
  IF PX1<11.0705 & PX2>9.4877 THEN CNT_HET2_X205=1; 
Else cnt_HET2_X205=0; 
PG1=abs(HOMG2-PARG2);PG2=abs(PARG2-HETG2); 
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  IF PG1<11.0705 & PG2<9.4877 THEN 
CNT_HOMG205=1;Elsecnt_HOMG205=0; 
  IF PG1>11.0705 & PG2<9.4877 THEN 
CNT_PG205=1;Elsecnt_PG205=0; 
  IF PG1>11.0705 & PG2>9.4877 THEN 
CNT_HETG205=1;Elsecnt_HETG205=0; 
  IF PG1<11.0705 & PG2>9.4877 THEN 
CNT_HET2_G205=1;Elsecnt_HET2_G205=0; 
  PRC1=abs(HOMRC-PARRC);PRC2=abs(PARRC-HETRC); 
  IF PRC1<11.0705 & PRC2<9.4877 THEN 
CNT_HOMRC05=1;Elsecnt_HOMRC05=0; 
  IF PRC1>11.0705 & PRC2<9.4877 THEN 
CNT_PRC05=1;Elsecnt_PRC05=0; 
  IF PRC1>11.0705 & PRC2>9.4877 THEN 
CNT_HETRC05=1;Elsecnt_HETRC05=0; 
  IF PRC1<11.0705 & PRC2>9.4877 THEN 
CNT_HET2_RC05=1;Elsecnt_HET2_RC05=0; 
  PX1=abs(HOMCHI2-PARCHI2);PX2=abs(PARCHI2-HETCHI2); 
  IF PX1<15.09 & PX2<13.28 THEN CNT_HOMX201=1; 
Else cnt_HOMX201=0; 
  IF PX1>15.09 & PX2<13.28 THEN CNT_PX201=1; 
Else cnt_PX201=0; 
  IF PX1>15.09 & PX2>13.28 THEN CNT_HETX201=1; 
Else cnt_HETX201=0; 
  IF PX1<15.09 & PX2>13.28 THEN CNT_HET2_X201=1; 
Else cnt_HET2_X201=0; 
        PG1=abs(HOMG2-PARG2);PG2=abs(PARG2-HETG2); 
  IF PG1<15.09 & PG2<13.28 THEN CNT_HOMG201=1; 
Else cnt_HOMG201=0; 
  IF PG1>15.09 & PG2<13.28 THEN CNT_PG201=1; 
Else cnt_PG201=0; 
  IF PG1>15.09 & PG2>13.28 THEN CNT_HETG201=1; 
Else cnt_HETG201=0; 
  IF PG1<15.09 & PG2>13.28 THEN CNT_HET2_G201=1; 
Else cnt_HET2_G201=0; 
  PRC1=abs(HOMRC-PARRC);PRC2=abs(PARRC-HETRC); 
    IF PRC1<15.09 & PRC2<13.28 THEN CNT_HOMRC01=1; 
Else cnt_HOMRC01=0; 
    IF PRC1>15.09 & PRC2<13.28 THEN CNT_PRC01=1; 
Else cnt_PRC01=0; 
    IF PRC1>15.09 & PRC2>13.28 THEN CNT_HETRC01=1; 
Else cnt_HETRC01=0; 
    IF PRC1<15.09 & PRC2>13.28 THEN CNT_HET2_RC01=1; 
Else cnt_HET2_RC01=0; 
    IF PARAIC<HETAIC & PARAIC<HOMAIC then PAR_AIC=1; 
Else PAR_AIC=0; 
       IF PARBIC<HETBIC & PARBIC<HOMBIC then PAR_BIC=1; 
Else PAR_bic=0; 
    IF PARRIC<HETRIC & PARRIC<HOMRIC then PAR_RIC=1; 
Else PAR_ric=0; 
       IF HOMAIC<PARAIC & HOMAIC<HETAIC then HOM_AIC=1; 
Else HOM_AIC=0; 
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       IF HOMBIC<PARBIC & HOMAIC<HETBIC then HOM_BIC=1; 
Else HOM_BIC=0; 
       IF HOMRIC<PARRIC & HOMAIC<HETRIC then HOM_RIC=1; 
Else HOM_RIC=0; 
    IF HETAIC<PARAIC & HETAIC<HOMAIC then HET_AIC=1; 
Else HET_AIC=0; 
    IF HETBIC<PARBIC & HETBIC<HOMBIC then HET_BIC=1; 
Else HET_bic=0; 
    IF HETRIC<PARRIC & HETRIC<HOMRIC then HET_RIC=1; 
Else HET_ric=0;run;%if &k=1 %then  
 %do;data count;set countnew;%end;%else 
%do;data count; set count countnew;%end;%END; 
%MEND FIRST;%FIRST; 
proc means data=count noprint nway; 
output out=savelib.nhsda sum=;run; 
DATA _NULL_;CALL SYMPUT('END',PUT(TIME(),TIME8.));RUN;%put &END; 
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APPENDIX B-2 WALD SAS PROGRAM 
 
LIBNAME SAVELIB "C:\FINAL"; 
DATA _NULL_;CALL  
SYMPUT('START',PUT(TIME(),TIME8.));RUN; 
%put &START;%let cp=.75; 
data blank16;input y;cards; 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;run; 
data blank16_2;input y2;cards; 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16;run; 
%macro JACK;%do k=1 %to 1000;options nosymbolgen nomprint 
nomlogic noNOTES; 
/*CREATE DATA*/ 
data cmg1;           
    do i = 1 to 20;       /*create Dirichlet values--# OF 
CLUSTERS*/ 
gamma1=rangam(0,8);gamma2=rangam(0,3);gamma3=rangam(0,8); 
gamma4=rangam(0,50);gamma5=rangam(0,23);gamma6=rangam(0,8); 
gamma7=rangam(0,10);gamma8=rangam(0,5);gamma9=rangam(0,10); 
gamma10=rangam(0,40);gamma11=rangam(0,25);gamma12=rangam(0,10); 
total1=sum(of gamma1-gamma6); 
  d1=gamma1/total1;d2=gamma2/total1;d3=gamma3/total1; 
  d4=gamma4/total1;d5=gamma5/total1;d6=gamma6/total1; 
total2=sum(of gamma7-gamma12); 
  d7=gamma7/total2;d8=gamma8/total2;d9=gamma9/total2; 
        d10=gamma10/total2;d11=gamma11/total2;d12=gamma12/total2; 
                do j=1 to 25;    /* create clusters-- CLUSTER 
SIZE*/ 
                x=ranuni(0); 
           if x le D1 then c=1;else if D1 lt x le D1+D2 then c=2; 
           else if D1+D2 lt x le D1+D2+D3 then c=3; 
  else if D1+D2+D3 lt x le D1+D2+D3+D4 then c=4; 
           else if (D1+D2+D3+D4) lt x le D1+D2+D3+D4+D5 then c=5; 
           else if x gt D1+D2+D3+D4+D5 then c=6; 
               x6=ranuni(0); 
         if x6 le D7 then c2=1;else if D7 lt x6 le D7+D8 then 
c2=2; 
         else if D7+D8 lt x6 le D7+D8+D9 then c2=3; 
         else if D7+D8+D9 lt x6 le D7+D8+D9+D10 then c2=4; 
         else if (D7+D8+D9+D10) lt x6 le D7+D8+D9+D10+D11 then 
c2=5;               else if x6 gt D7+D8+D9+D10+D11 then 
c2=6;output;end;end; 
data cmg1(keep=V1 V2 V3 V4 V12 V22 V32 V42);set cmg1(keep=c c2); 
x2=ranuni(0);x3=ranuni(0);x4=ranuni(0);x5=ranuni(0);cp=&cp; 
if c=1 then do; 
if x2 le cp then v1=0; else v1=1;if x3 le cp then v2=0; else 
v2=1; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;  
else v4=1;end;if c=2 then do; 
if x2 le cp then v1=0; else v1=1;if x3 le cp then v2=1; else 
v2=0; 
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if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;  
else v4=1;end;if c=3 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=0; else 
v2=1; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;  
else v4=1;end;if c=4 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1; else 
v2=0; 
if x4 le cp then v3=0; else v3=1;if x5 le cp then v4=0;  
else v4=1;end; 
if c=5 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1; else 
v2=0; 
if x4 le cp then v3=1; else v3=0;if x5 le cp then v4=0;  
else v4=1;end;if c=6 then do; 
if x2 le cp then v1=1; else v1=0;if x3 le cp then v2=1; else 
v2=0; 
if x4 le cp then v3=1; else v3=0;if x5 le cp then v4=1;  
else v4=0;end; 
x7=ranuni(0);x8=ranuni(0);x9=ranuni(0);x10=ranuni(0); 
if c2=1 then do; 
if x7 le cp then v12=0; else v12=1;if x8 le cp then v22=0;  
else v22=1; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1;end;if c2=2 then do; 
if x7 le cp then v12=0; else v12=1;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1;end;if c2=3 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=0;  
else v22=1; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1;end;if c2=4 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=0; else v32=1;if x10 le cp then v42=0;  
else v42=1;end; 
if c2=5 then do;if x7 le cp then v12=1; else v12=0; 
if x8 le cp then v22=1; else v22=0; 
if x9 le cp then v32=1; else v32=0;if x10 le cp then v42=0;  
else v42=1;end;if c2=6 then do; 
if x7 le cp then v12=1; else v12=0;if x8 le cp then v22=1;  
else v22=0; 
if x9 le cp then v32=1; else v32=0;if x10 le cp then v42=1;  
else v42=0;end;run; 
%let LC1=.08;        
%let LC2=.03;%let LC3=.08;%let LC4=.50;%let LC5=.23;%let LC6=.08; 
%let LC12=.10;%let LC22=.05;%let LC32=.10;%let LC42=.40; 
%let LC52=.25;%let LC62=.10; 
%let CPA1=.75;%let CPB1=.75;%let CPC1=.75;%let CPD1=.75; 
%let CPA2=.25;%let CPB2=.25;%let CPC2=.25;%let CPD2=.25; 
%let CPA1_2=.75;%let CPB1_2=.75;%let CPC1_2=.75;%let CPD1_2=.75; 
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%let CPA2_2=.25;%let CPB2_2=.25;%let CPC2_2=.25;%let CPD2_2=.25; 
data cmg1(keep=y y2); set cmg1; 
%let cnt=0;%let endvar=0;%let j=25;  
IF V1=0 AND V2=0 AND V3=0 AND V4=0 THEN Y=1; ELSE  
IF V1=0 AND V2=0 AND V3=0 AND V4=1 THEN Y=2; ELSE 
IF V1=0 AND V2=0 AND V3=1 AND V4=0 THEN y=3; ELSE 
IF V1=0 AND V2=0 AND V3=1 AND V4=1 THEN y=4; ELSE 
IF V1=0 AND V2=1 AND V3=0 AND V4=0 THEN y=5; ELSE 
IF V1=0 AND V2=1 AND V3=0 AND V4=1 THEN y=6; ELSE 
IF V1=0 AND V2=1 AND V3=1 AND V4=0 THEN y=7; ELSE 
IF V1=0 AND V2=1 AND V3=1 AND V4=1 THEN y=8; ELSE 
IF V1=1 AND V2=0 AND V3=0 AND V4=0 THEN y=9; ELSE 
IF V1=1 AND V2=0 AND V3=0 AND V4=1 THEN y=10; ELSE 
IF V1=1 AND V2=0 AND V3=1 AND V4=0 THEN y=11; ELSE 
IF V1=1 AND V2=0 AND V3=1 AND V4=1 THEN y=12; ELSE 
IF V1=1 AND V2=1 AND V3=0 AND V4=0 THEN y=13; ELSE 
IF V1=1 AND V2=1 AND V3=0 AND V4=1 THEN y=14; ELSE 
IF V1=1 AND V2=1 AND V3=1 AND V4=0 THEN y=15; ELSE 
IF V1=1 AND V2=1 AND V3=1 AND V4=1 THEN y=16; 
IF V12=0 AND V22=0 AND V32=0 AND V42=0 THEN Y2=1; ELSE  
IF V12=0 AND V22=0 AND V32=0 AND V42=1 THEN Y2=2; ELSE 
IF V12=0 AND V22=0 AND V32=1 AND V42=0 THEN Y2=3; ELSE 
IF V12=0 AND V22=0 AND V32=1 AND V42=1 THEN Y2=4; ELSE 
IF V12=0 AND V22=1 AND V32=0 AND V42=0 THEN Y2=5; ELSE 
IF V12=0 AND V22=1 AND V32=0 AND V42=1 THEN Y2=6; ELSE 
IF V12=0 AND V22=1 AND V32=1 AND V42=0 THEN Y2=7; ELSE 
IF V12=0 AND V22=1 AND V32=1 AND V42=1 THEN Y2=8; ELSE 
IF V12=1 AND V22=0 AND V32=0 AND V42=0 THEN Y2=9; ELSE 
IF V12=1 AND V22=0 AND V32=0 AND V42=1 THEN Y2=10; ELSE 
IF V12=1 AND V22=0 AND V32=1 AND V42=0 THEN Y2=11; ELSE 
IF V12=1 AND V22=0 AND V32=1 AND V42=1 THEN Y2=12; ELSE 
IF V12=1 AND V22=1 AND V32=0 AND V42=0 THEN Y2=13; ELSE 
IF V12=1 AND V22=1 AND V32=0 AND V42=1 THEN Y2=14; ELSE 
IF V12=1 AND V22=1 AND V32=1 AND V42=0 THEN Y2=15; ELSE 
IF V12=1 AND V22=1 AND V32=1 AND V42=1 THEN Y2=16;RUN; 
data cmg2;set cmg1;notagain1=0;notagain2=0; 
data blank16;set blank16;notagain1=0;notagain2=0; 
data blank16_2;set blank16_2;notagain1=0;notagain2=0;run; 
PROC FREQ NOPRINT data=cmg2; TABLES Y / 
OUT=YFREQ(DROP=PERCENT);RUN; 
PROC SORT DATA=CMG2; BY Y; run; 
DATA CMG3;MERGE YFREQ(RENAME=(COUNT=CNT1)) CMG2;BY Y;if 
first.Y;run; 
data cmg3;MERGE CMG3 blank16; BY Y;RUN; 
data cmg3 (drop=y2);SET CMG3;if cnt1=. then cnt1=0;RUN; 
PROC SORT DATA=CMG2; BY Y2; run;PROC FREQ  NOPRINT data=cmg2;  
TABLES Y2 / OUT=Y2FREQ(DROP=PERCENT);RUN; 
DATA CMG32(keep=y2 cnt2);MERGE Y2FREQ(RENAME=(COUNT=cnt2)) CMG2; 
BY Y2;if first.Y2;run; 
proc sort data=cmg32; by y2;proc sort data=blank16_2; by y2; run; 
data cmg32;MERGE CMG32 blank16_2; BY Y2;RUN; 
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DATA CMG3; SET CMG3;YH=Y; all=1;DATA CMG32; SET 
CMG32;YH=Y2;all=1; 
proc SORT data=CMG3; BY YH;proc SORT data=CMG32; BY YH;run; 
DATA CMG3; MERGE CMG3 CMG32; BY YH;run;                                     
%macro cm; 
%do %until (&endvar=1); 
%let OLDLC1 = &LC1;%let OLDLC2 = &LC2;%let OLDLC3 = &LC3; 
%let OLDLC4 = &LC4;%let OLDLC5 = &LC5;%let OLDLC6 = &LC6; 
%let OLDCPA1 = &CPA1;%let OLDCPB1 = &CPB1; 
%let OLDCPC1 = &CPC1;%let OLDCPD1 = &CPD1; 
data cmg3; set cmg3(keep=cnt1 y y2 yh all cnt2 notagain1 
notagain2); 
retain grpcnt1 0 bigl1 0 bigl2 0 bigl3 0 bigl4 0 bigl5 0 bigl6 0; 
    if Y=1 then do;  
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD1; 
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD1; 
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD2;e
nd; 
    else if Y=2 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD2; 
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD2; 
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD1;e
nd; 
    else if Y=3 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD1; 
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD1; 
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD2;e
nd; 
    else if Y=4 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD2; 
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD2; 
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD1;e
nd; 
    else if Y=5 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD1; 
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD1; 
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD2;e
nd; 
    else if Y=6 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD2; 
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD2; 
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD1;e
nd; 
    else if Y=7 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD1; 
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD1; 
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD2;e
nd; 
    else if Y=8 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD2; 
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD2; 
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P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD1;e
nd; 
    else if Y=9 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD1; 
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD1; 
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD2;e
nd; 
    else if Y=10 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD2; 
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD2; 
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1;e
nd; 
    else if Y=11 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD1; 
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD1; 
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1;e
nd; 
    else if Y=12 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD2; 
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD2; 
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC1*&CPD1;e
nd; 
    else if Y=13 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD1; 
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD1; 
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD2;e
nd; 
    else if Y=14 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD2; 
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD2; 
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD1;e
nd; 
    else if Y=15 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD1; 
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD1; 
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD2;e
nd; 
    else if Y=16 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD2; 
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD2; 
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD1;e
nd; 
TOTP1=P1+P2+P3+P4+P5+P6; 
retain A1LC1 0 A1LC2 0 A1LC3 0 A1LC4 0 A1LC5 0 A1LC6 0; 
L1=(CNT1*P1)/TOTP1;L2=(CNT1*P2)/TOTP1;L3=(CNT1*P3)/TOTP1; 
L4=(CNT1*P4)/TOTP1;L5=(CNT1*P5)/TOTP1;L6=(CNT1*P6)/TOTP1; 
if Y ge 9 then do;A1LC1+L1;A1LC2+L2;end; 
if Y le 8 then do;A1LC3+L3;A1LC4+L4;A1LC5+L5;A1LC6+L6;end; 
if Y IN (5,6,7,8,13,14,15,16)then do;B1LC1+L1;B1LC3+L3;end; 
if Y IN (1,2,3,4,9,10,11,12)then 
do;B1LC2+L2;B1LC4+L4;B1LC5+L5;B1LC6+L6;end; 
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if Y IN (3,4,7,8,11,12,15,16)then 
do;C1LC1+L1;C1LC2+L2;C1LC3+L3;C1LC4+L4;END; 
if Y IN (1,2,5,6,9,10,13,14)then do;C1LC5+L5;C1LC6+L6;END; 
if Y IN (2,4,6,8,10,12,14,16)then 
do;D1LC1+L1;D1LC2+L2;D1LC3+L3;D1LC4+L4;D1LC5+L5;END; 
if Y IN (1,3,5,7,9,11,13,15)then do;D1LC6+L6;END; 
grpcnt1+cnt1;bigl1+l1;bigl2+l2;bigl3+l3;bigl4+l4;bigl5+l5;bigl6+l
6;all=1;yh=y;run; 
%let OLDLC12=&LC12;%let OLDLC22=&LC22;%let OLDLC32=&LC32; 
%let OLDLC42=&LC42;%let OLDLC52=&LC52;%let OLDLC62=&LC62; 
%let OLDCPA1_2=&CPA1_2;%let OLDCPB1_2=&CPB1_2; 
%let OLDCPC1_2=&CPC1_2;%let OLDCPD1_2=&CPD1_2; 
data cmg32; set CMG32(keep = y2 cnt2 notagain1 notagain2 yh all); 
retain grpcnt2 0 bigl12 0 bigl22 0 bigl32 0 bigl42 0 bigl52 0 
bigl62 0; 
    if Y2=1 then do;  /*calculate P values FOR GRP2*/ 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=2 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=3 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=4 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=5 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=6 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
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P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=7 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=8 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=9 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=10 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=11 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=12 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
    else if Y2=13 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
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P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
    else if Y2=14 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
    else if Y2=15 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
    else if Y2=16 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
TOTP2=P12+P22+P32+P42+P52+P62;IF CNT2=. THEN CNT2=0; 
retain A1LC12 0 A1LC22 0 A1LC32 0 A1LC42 0 A1LC52 0 A1LC62 0; 
L12=(CNT2*P12)/TOTP2;L22=(CNT2*P22)/TOTP2;L32=(CNT2*P32)/TOTP2; 
L42=(CNT2*P42)/TOTP2;L52=(CNT2*P52)/TOTP2;L62=(CNT2*P62)/TOTP2; 
if Y2 ge 9 then do;A1LC12+L12;A1LC22+L22;end; 
if Y2 le 8 then 
do;A1LC32+L32;A1LC42+L42;A1LC52+L52;A1LC62+L62;end; 
if Y2 IN (5,6,7,8,13,14,15,16)then do;B1LC12+L12;B1LC32+L32;end; 
if Y2 IN (1,2,3,4,9,10,11,12)then do; 
B1LC22+L22;B1LC42+L42;B1LC52+L52;B1LC62+L62;end; 
if Y2 IN (3,4,7,8,11,12,15,16)then do; 
C1LC12+L12;C1LC22+L22;C1LC32+L32;C1LC42+L42;END; 
if Y2 IN (1,2,5,6,9,10,13,14)then do;C1LC52+L52;C1LC62+L62;END; 
if Y2 IN (2,4,6,8,10,12,14,16)then do; 
D1LC12+L12;D1LC22+L22;D1LC32+L32;D1LC42+L42;D1LC52+L52;END; 
if Y2 IN (1,3,5,7,9,11,13,15)then do;D1LC62+L62;END;grpcnt2+cnt2; 
bigl12+l12;bigl22+l22;bigl32+l32;bigl42+l42;bigl52+l52;bigl62+l62
;all=1;yh=y2;run; 
proc SORT data=CMG3; BY YH; run;proc SORT data=CMG32; BY YH; run; 
DATA CMG3; MERGE CMG3 CMG32; BY YH; run;                                    
data cm4(keep=y y2 lc1-lc6 cpa1 cpb1 cpc1 cpd1 cpa2 cpb2 cpc2 
cpd2  
lc12 lc22 lc32 lc42 lc52 lc62 cpa1_2 cpb1_2 cpc1_2 cpd1_2 cpa2_2 
cpb2_2 cpc2_2 cpd2_2 cnt1 cnt2 grpcnt1 grpcnt2 totp1 totp2 yh); 
set cmg3; by all;if last.all; 
LC1=BIGL1/GRPCNT1;LC2=BIGL2/GRPCNT1;LC3=BIGL3/GRPCNT1; 
LC4=BIGL4/GRPCNT1;LC5=BIGL5/GRPCNT1;LC6=BIGL6/GRPCNT1; 
LCA2=A1LC1+A1LC2+A1LC3+A1LC4+A1LC5+A1LC6; 
LCB2=B1LC1+B1LC2+B1LC3+B1LC4+B1LC5+B1LC6; 
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LCC2=C1LC1+C1LC2+C1LC3+C1LC4+C1LC5+C1LC6; 
LCD2=D1LC1+D1LC2+D1LC3+D1LC4+D1LC5+D1LC6; 
CPA2=LCA2/GRPCNT1;CPB2=LCB2/GRPCNT1; 
CPC2=LCC2/GRPCNT1;CPD2=LCD2/GRPCNT1; 
CPA1=(1-CPA2);CPB1=(1-CPB2); 
CPC1=(1-CPC2);CPD1=(1-CPD2); 
%if &endvar=0 %then %do; 
call symput('lc1',lc1);call symput('lc2',lc2); 
call symput('lc3',lc3);call symput('lc4',lc4); 
call symput('lc5',lc5);call symput('lc6',lc6); 
call symput('cpa1',cpa1);call symput('cpb1',cpb1); 
call symput('cpc1',cpc1);call symput('cpd1',cpd1); 
call symput('cpa2',cpa2);call symput('cpb2',cpb2); 
call symput('cpc2',cpc2);call symput('cpd2',cpd2);%end; 
ablc1=abs(&oldlc1-lc1);ablc2=abs(&oldlc2-lc2); 
ablc3=abs(&oldlc3-lc3);ablc4=abs(&oldlc4-lc4); 
ablc5=abs(&oldlc5-lc5); 
aba1=abs(&oldcpa1-cpa1);abb1=abs(&oldcpb1-cpb1); 
abc1=abs(&oldcpc1-cpc1);abd1=abs(&oldcpd1-cpd1); 
TOTABS=ABLC1+ABLC2+ABLC3+ABLC4+ABLC5+ABA1+ABB1+ABC1+ABD1; 
IF TOTABS LE .0001 AND NOTAGAIN1 NE 1 THEN DO;NOTAGAIN1=1; 
call symput('lc1',lc1);call symput('lc2',lc2); 
call symput('lc3',lc3);call symput('lc4',lc4); 
call symput('lc5',lc5);call symput('lc6',lc6); 
call symput('cpa1',cpa1);call symput('cpb1',cpb1); 
call symput('cpc1',cpc1);call symput('cpd1',cpd1); 
call symput('TOTP1',TOTP1);call symput('CNT1',CNT1); 
call symput('GRPCNT1',GRPCNT1);END; 
LC12=BIGL12/GRPCNT2;LC22=BIGL22/GRPCNT2;LC32=BIGL32/GRPCNT2; 
LC42=BIGL42/GRPCNT2;LC52=BIGL52/GRPCNT2;LC62=BIGL62/GRPCNT2; 
LCA22=A1LC12+A1LC22+A1LC32+A1LC42+A1LC52+A1LC62; 
LCB22=B1LC12+B1LC22+B1LC32+B1LC42+B1LC52+B1LC62; 
LCC22=C1LC12+C1LC22+C1LC32+C1LC42+C1LC52+C1LC62; 
LCD22=D1LC12+D1LC22+D1LC32+D1LC42+D1LC52+D1LC62; 
CPA2_2=LCA22/GRPCNT2;CPB2_2=LCB22/GRPCNT2; 
CPC2_2=LCC22/GRPCNT2;CPD2_2=LCD22/GRPCNT2; 
CPA1_2=(1-CPA2_2);CPB1_2=(1-CPB2_2); 
CPC1_2=(1-CPC2_2);CPD1_2=(1-CPD2_2); 
%if (&endvar=0) %then %do; 
call symput('lc12',lc12);call symput('lc22',lc22); 
call symput('lc32',lc32);call symput('lc42',lc42); 
call symput('lc52',lc52);call symput('lc62',lc62); 
call symput('cpa1_2',cpa1_2);call symput('cpb1_2',cpb1_2); 
call symput('cpc1_2',cpc1_2);call symput('cpd1_2',cpd1_2); 
call symput('cpa2_2',cpa2_2);call symput('cpb2_2',cpb2_2); 
call symput('cpc2_2',cpc2_2);call symput('cpd2_2',cpd2_2);%end; 
ablc12=abs(&oldlc12-lc12);ablc22=abs(&oldlc22-lc22); 
ablc32=abs(&oldlc32-lc32);ablc42=abs(&oldlc42-lc42); 
ablc52=abs(&oldlc52-lc52);ablc62=abs(&oldlc62-lc62); 
        aba12=abs(&oldcpa1_2-cpa1_2);abb12=abs(&oldcpb1_2-
cpb1_2); 
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        abc12=abs(&oldcpc1_2-cpc1_2);abd12=abs(&oldcpd1_2-
cpd1_2); 
TOTABS2=sum(ABLC12,ABLC22,ABLC32,ABLC42,ABLC52, 
ABA12,ABB12,ABC12,ABD12); 
IF TOTABS2 LE .0001 AND NOTAGAIN2 NE 1 THEN DO;NOTAGAIN2=1; 
call symput('lc12',lc12);call symput('lc22',lc22); 
call symput('lc32',lc32);call symput('lc42',lc42); 
call symput('lc52',lc52);call symput('lc62',lc62); 
call symput('cpa1_2',cpa1_2);call symput('cpb1_2',cpb1_2); 
call symput('cpc1_2',cpc1_2);call symput('cpd1_2',cpd1_2); 
call symput('TOTP2',TOTP2);call symput('CNT2',CNT2); 
call symput('GRPCNT2',GRPCNT2);end; 
IF NOTAGAIN1=1 AND NOTAGAIN2=1 THEN DO; 
CALL SYMPUT ('endvar',1);END;run; 
%if (&endvar^=1) %then %let cnt=%eval(&cnt+1);%if (&cnt>=500)  
%then %do;%let endvar=1;%end;%end; 
%mend cm;%cm 
data WHET1 (keep=lc1-lc5 cpa1 cpb1 cpc1 cpd1) 
     WHET2 (keep=lc12 LC22 LC32 LC42 LC52 cpa1_2 cpb1_2 cpc1_2 
cpd1_2);set cm4;run; 
 
/*Start Wald*/ 
%let LC1=.08;%let LC2=.03;%let LC3=.08;%let LC4=.50; 
%let LC5=.23;%let LC6=.08; 
%let LC12=.10;%let LC22=.05;%let LC32=.10;%let LC42=.40; 
%let LC52=.25;%let LC62=.10; 
%let CPA1=.75;%let CPB1=.75;%let CPC1=.75;%let CPD1=.75; 
%let CPA2=.25;%let CPB2=.25;%let CPC2=.25;%let CPD2=.25; 
%let CPA1_2=.75;%let CPB1_2=.75;%let CPC1_2=.75;%let CPD1_2=.75; 
%let CPA2_2=.25;%let CPB2_2=.25;%let CPC2_2=.25;%let CPD2_2=.25; 
%let cnt=0;%let endvar=0; 
%macro wald;%do cell=1 %to 16;%let cnt=0;%let endvar=0; 
data Wald&cell.;set cmg3;IF Y=&CELL THEN PSCNT1=(CNT1-1); 
ELSE PSCNT1=CNT1;run; 
%do %until (&endvar=1);%if &cnt>0 %then %do;   
%let LC1=&LC1_n;%let LC2=&LC2_n;%let LC3=&LC3_n; 
%let LC4=&LC4_n;%let LC5=&LC5_n;%let LC6=&LC6_n; 
%let CPA1=&CPA1_n;%let CPB1=&CPB1_n; 
%let CPC1=&CPC1_n;%let CPD1=&CPD1_n; 
%let CPA2=&CPA2_n;%let CPB2=&CPB2_n; 
%let CPC2=&CPC2_n;%let CPD2=&CPD2_n;%end; 
 DATA Wald&cell.;set Wald&cell.(keep=y pscnt1);  
retain grpcnt1 0 bigl1 0 bigl2 0 bigl3 0 bigl4 0 bigl5 0 bigl6 0;  
if Y=1 then do;   
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD1; 
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD1; 
P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD2;e
nd; 
        else if Y=2 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC1*&CPD2; 
P3=&LC3*&CPA2*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC1*&CPD2; 
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P5=&LC5*&CPA2*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC2*&CPD1;e
nd; 
        else if Y=3 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD1; 
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD1; 
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD2;e
nd; 
        else if Y=4 then do; 
P1=&LC1*&CPA1*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB2*&CPC2*&CPD2; 
P3=&LC3*&CPA2*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB2*&CPC2*&CPD2; 
P5=&LC5*&CPA2*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB2*&CPC1*&CPD1;e
nd; 
        else if Y=5 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD1; 
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD1; 
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD2;e
nd; 
        else if Y=6 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC1*&CPD2; 
P3=&LC3*&CPA2*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC1*&CPD2; 
P5=&LC5*&CPA2*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC2*&CPD1;e
nd; 
        else if Y=7 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD1; 
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD1; 
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD2;e
nd; 
        else if Y=8 then do; 
P1=&LC1*&CPA1*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA1*&CPB1*&CPC2*&CPD2; 
P3=&LC3*&CPA2*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA2*&CPB1*&CPC2*&CPD2; 
P5=&LC5*&CPA2*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA2*&CPB1*&CPC1*&CPD1;e
nd; 
        else if Y=9 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD1; 
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD1; 
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD2;e
nd; 
        else if Y=10 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC1*&CPD2; 
P3=&LC3*&CPA1*&CPB1*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC1*&CPD2; 
P5=&LC5*&CPA1*&CPB2*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1;e
nd; 
        else if Y=11 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD1; 
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD1; 
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB2*&CPC2*&CPD1;e
nd; 
        else if Y=12 then do; 
P1=&LC1*&CPA2*&CPB1*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB2*&CPC2*&CPD2; 
P3=&LC3*&CPA1*&CPB1*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB2*&CPC2*&CPD2; 
P5=&LC5*&CPA1*&CPB2*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB2*&CPC1*&CPD1;e
nd; 
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        else if Y=13 then do;  
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD1; 
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD1; 
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD2;e
nd; 
        else if Y=14 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC1*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC1*&CPD2; 
P3=&LC3*&CPA1*&CPB2*&CPC1*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC1*&CPD2; 
P5=&LC5*&CPA1*&CPB1*&CPC2*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC2*&CPD1;e
nd; 
        else if Y=15 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD1;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD1; 
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD1;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD1; 
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD1;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD2;e
nd; 
        else if Y=16 then do; 
P1=&LC1*&CPA2*&CPB2*&CPC2*&CPD2;P2=&LC2*&CPA2*&CPB1*&CPC2*&CPD2; 
P3=&LC3*&CPA1*&CPB2*&CPC2*&CPD2;P4=&LC4*&CPA1*&CPB1*&CPC2*&CPD2; 
P5=&LC5*&CPA1*&CPB1*&CPC1*&CPD2;P6=&LC6*&CPA1*&CPB1*&CPC1*&CPD1;e
nd; 
  TOTP=P1+P2+P3+P4+P5+P6; 
  retain A1LC1 0 A1LC2 0 A1LC3 0 A1LC4 0 A1LC5 0 A1LC6 
0; 
 L1=(pscnt1*P1)/TOTP;L2=(pscnt1*P2)/TOTP;L3=(pscnt1*P3)/TOTP
; 
 L4=(pscnt1*P4)/TOTP;L5=(pscnt1*P5)/TOTP;L6=(pscnt1*P6)/TOTP
; 
if Y ge 9 then do;A1LC1+L1;A1LC2+L2;end; 
if Y le 8 then do; 
A1LC3+L3;A1LC4+L4;A1LC5+L5;A1LC6+L6;end; 
if Y IN (5,6,7,8,13,14,15,16)then do;B1LC1+L1;B1LC3+L3;end; 
if Y IN (1,2,3,4,9,10,11,12)then do; 
B1LC2+L2;B1LC4+L4;B1LC5+L5;B1LC6+L6;end; 
if Y IN (3,4,7,8,11,12,15,16)then do; 
C1LC1+L1;C1LC2+L2;C1LC3+L3;C1LC4+L4;END; 
if Y IN (1,2,5,6,9,10,13,14)then do;C1LC5+L5;C1LC6+L6;END; 
if Y IN (2,4,6,8,10,12,14,16)then do; 
D1LC1+L1;D1LC2+L2;D1LC3+L3;D1LC4+L4;D1LC5+L5;END; 
if Y IN (1,3,5,7,9,11,13,15)then do;D1LC6+L6;END;grpcnt1+pscnt1;  
bigl1+l1;bigl2+l2;bigl3+l3;bigl4+l4;bigl5+l5;bigl6+l6;all=1;run; 
%let OLDLC1=&LC1;%let OLDLC2=&LC2;%let OLDLC3=&LC3; 
%let OLDLC4=&LC4;%let OLDLC5=&LC5;%let OLDLC6=&LC6; 
%let OLDCPA1=&CPA1;%let OLDCPB1=&CPB1; 
%let OLDCPC1=&CPC1;%let OLDCPD1=&CPD1; 
 data wald&cell.last;set wald&cell.;by all; 
if last.all;cell=&cell; 
LC1=BIGL1/GRPCNT1;LC2=BIGL2/GRPCNT1;LC3=BIGL3/GRPCNT1; 
LC4=BIGL4/GRPCNT1;LC5=BIGL5/GRPCNT1;LC6=BIGL6/GRPCNT1; 
LCA2=A1LC1+A1LC2+A1LC3+A1LC4+A1LC5+A1LC6; 
LCB2=B1LC1+B1LC2+B1LC3+B1LC4+B1LC5+B1LC6; 
LCC2=C1LC1+C1LC2+C1LC3+C1LC4+C1LC5+C1LC6; 
LCD2=D1LC1+D1LC2+D1LC3+D1LC4+D1LC5+D1LC6; 



 

 152

CPA2=LCA2/GRPCNT1;CPB2=LCB2/GRPCNT1; 
CPC2=LCC2/GRPCNT1;CPD2=LCD2/GRPCNT1; 
CPA1=(1-CPA2);CPB1=(1-CPB2);CPC1=(1-CPC2);CPD1=(1-CPD2); 
  %if &endvar=0 %then %do; 
call symput('lc1_n',lc1);call symput('lc2_n',lc2); 
call symput('lc3_n',lc3);call symput('lc4_n',lc4); 
call symput('lc5_n',lc5);call symput('lc6_n',lc6); 
call symput('cpa1_n',cpa1);call symput('cpb1_n',cpb1); 
call symput('cpc1_n',cpc1);call symput('cpd1_n',cpd1); 
call symput('cpa2_n',cpa2);call symput('cpb2_n',cpb2); 
call symput('cpc2_n',cpc2);call symput('cpd2_n',cpd2);%end; 
ablc1=abs(&oldlc1-lc1);ablc2=abs(&oldlc2-lc2); 
ablc3=abs(&oldlc3-lc3);ablc4=abs(&oldlc4-lc4); 
ablc5=abs(&oldlc5-lc5);ablc6=abs(&oldlc6-lc6); 
aba1=abs(&oldcpa1-cpa1);abb1=abs(&oldcpb1-cpb1); 
abc1=abs(&oldcpc1-cpc1);abd1=abs(&oldcpd1-cpd1); 
TOTABS=ABLC1+ABLC2+ABLC3+ABLC4+ABLC5+ABA1+ABB1+ABC1+ABD1; 
if totabs le .0001 then call symput('endvar',1);run; 
     %if (&endvar^=1) %then %let cnt=%eval(&cnt+1); 
        %if &cnt>= 500 %then %do; %let endvar=1;%end;%end;  
  data wald&cell.last(keep=lc1-lc5 cpa1 cpb1 cpc1 cpd1);  
  set wald&cell.last;run;%end;  
%mend wald;%wald; 
data waldall_1; 
set wald1last wald2last wald3last wald4last wald5last wald6last 
wald7last wald8last wald9last wald10last wald11last wald12last 
wald13last wald14last wald15last wald16last; 
%let cnt=0;%let endvar=0; 
%macro wald2;  
%do cell=1 %to 16;%let cnt=0;%let endvar=0; 
data Wald2_&cell.; set cmg32;IF Y2=&CELL THEN PSCNT2=(CNT2-1); 
ELSE PSCNT2=CNT2;run; 
 %do %until (%eval(&endvar)=1);%if &cnt>0 %then %do; 
%let LC12=&LC12_n;%let LC22=&LC22_n;%let LC32=&LC32_n; 
%let LC42=&LC42_n;%let LC52=&LC52_n;%let LC62=&LC62_n; 
%let CPA1_2=&CPA12_n;%let CPB1_2=&CPB12_n; 
%let CPC1_2=&CPC12_n;%let CPD1_2=&CPD12_n; 
%let CPA2_2=&CPA22_n;%let CPB2_2=&CPB22_n; 
%let CPC2_2=&CPC22_n;%let CPD2_2=&CPD22_n;%end; 
 DATA Wald2_&cell.;set Wald2_&cell.(keep=y2 pscnt2);  
retain grpcnt2 0 bigl12 0 bigl22 0 bigl32 0 bigl42 0 bigl52 0  
bigl62 0; 
if Y2=1 then do;   
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
                else if Y2=2 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
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P32=&LC32*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
                else if Y2=3 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2;end; 
            else if Y2=4 then do; 
P12=&LC12*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
            else if Y2=5 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
            else if Y2=6 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
            else if Y2=7 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
            else if Y2=8 then do; 
P12=&LC12*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
            else if Y2=9 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
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P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2;end; 
            else if Y2=10 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
            else if Y2=11 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2;end; 
            else if Y2=12 then do; 
P12=&LC12*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2;end; 
            else if Y2=13 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2;end; 
            else if Y2=14 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC1_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2;end; 
            else if Y2=15 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD1_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD1_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2;end; 
            else if Y2=16 then do; 
P12=&LC12*&CPA2_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P22=&LC22*&CPA2_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P32=&LC32*&CPA1_2*&CPB2_2*&CPC2_2*&CPD2_2; 
P42=&LC42*&CPA1_2*&CPB1_2*&CPC2_2*&CPD2_2; 
P52=&LC52*&CPA1_2*&CPB1_2*&CPC1_2*&CPD2_2; 
P62=&LC62*&CPA1_2*&CPB1_2*&CPC1_2*&CPD1_2;end; 
  TOTP2=P12+P22+P32+P42+P52+P62; 
retain A1LC12 0 A1LC22 0 A1LC32 0 A1LC42 0 A1LC52 0 A1LC62 0; 
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L12=(PSCNT2*P12)/TOTP2;L22=(PSCNT2*P22)/TOTP2; 
L32=(PSCNT2*P32)/TOTP2;L42=(PSCNT2*P42)/TOTP2; 
L52=(PSCNT2*P52)/TOTP2;L62=(PSCNT2*P62)/TOTP2; 
if Y2 ge 9 then do;A1LC12+L12;A1LC22+L22;end; 
if Y2 le 8 then 
do;A1LC32+L32;A1LC42+L42;A1LC52+L52;A1LC62+L62;end; 
if Y2 IN (5,6,7,8,13,14,15,16)then do;B1LC12+L12;B1LC32+L32;end; 
if Y2 IN (1,2,3,4,9,10,11,12)then do; 
B1LC22+L22;B1LC42+L42;B1LC52+L52;B1LC62+L62;end; 
if Y2 IN (3,4,7,8,11,12,15,16)then do; 
C1LC12+L12;C1LC22+L22;C1LC32+L32;C1LC42+L42;END; 
if Y2 IN (1,2,5,6,9,10,13,14)then do;C1LC52+L52;C1LC62+L62;END; 
if Y2 IN (2,4,6,8,10,12,14,16)then do; 
D1LC12+L12;D1LC22+L22;D1LC32+L32;D1LC42+L42;D1LC52+L52;END; 
if Y2 IN (1,3,5,7,9,11,13,15)then 
do;D1LC62+L62;END;grpcnt2+pscnt2; 
bigl12+l12;bigl22+l22;bigl32+l32; 
bigl42+l42;bigl52+l52;bigl62+l62;all=1;run; 
 %let OLDLC12=LC12;%let OLDLC22=LC22;%let OLDLC32=LC32; 
     %let OLDLC42=LC42;%let OLDLC52=LC52;%let OLDLC62=LC62; 
      %let OLDCPA1_2=CPA1_2;%let OLDCPB1_2=CPB1_2; 
      %let OLDCPC1_2=CPC1_2;%let OLDCPD1_2=CPD1_2; 
 data wald2_&cell.last;set wald2_&cell.;by all;if 
last.all;cell=&cell 
 
 LC12=BIGL12/GRPCNT2;LC22=BIGL22/GRPCNT2;LC32=BIGL32/GRPCNT2
; 
 LC42=BIGL42/GRPCNT2;LC52=BIGL52/GRPCNT2;LC62=BIGL62/GRPCNT2
; 
  LCA22=A1LC12+A1LC22+A1LC32+A1LC42+A1LC52+A1LC62; 
  LCB22=B1LC12+B1LC22+B1LC32+B1LC42+B1LC52+B1LC62; 
  LCC22=C1LC12+C1LC22+C1LC32+C1LC42+C1LC52+C1LC62; 
  LCD22=D1LC12+D1LC22+D1LC32+D1LC42+D1LC52+D1LC62; 
  CPA2_2=LCA22/GRPCNT2;CPB2_2=LCB22/GRPCNT2; 
        CPC2_2=LCC22/GRPCNT2;CPD2_2=LCD22/GRPCNT2; 
  CPA1_2=(1-CPA2_2);CPB1_2=(1-CPB2_2); 
  CPC1_2=(1-CPC2_2);CPD1_2=(1-CPD2_2); 
  %if &endvar=0 %then %do; 
call symput('lc12_n',lc12);call symput('lc22_n',lc22); 
call symput('lc32_n',lc32);call symput('lc42_n',lc42); 
call symput('lc52_n',lc52);call symput('lc62_n',lc62); 
call symput('cpa12_n',cpa1_2);call symput('cpb12_n',cpb1_2); 
call symput('cpc12_n',cpc1_2);call symput('cpd12_n',cpd1_2); 
call symput('cpa22_n',cpa2_2);call symput('cpb22_n',cpb2_2); 
call symput('cpc22_n',cpc2_2);call symput('cpd22_n',cpd2_2);%end; 
ablc12=abs(&oldlc12-lc12); 
ablc22=abs(&oldlc22-lc22);ablc32=abs(&oldlc32-lc32); 
ablc42=abs(&oldlc42-lc42); 
ablc52=abs(&oldlc52-lc52);ablc62=abs(&oldlc62-lc62); 
aba12=abs(&oldcpa1_2-cpa1_2);abb12=abs(&oldcpb1_2-cpb1_2); 
abc12=abs(&oldcpc1_2-cpc1_2);abd12=abs(&oldcpd1_2-cpd1_2); 
TOTABS2=sum(ABLC12,ABLC22,ABLC32,ABLC42,ABLC52, 
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ABA12,ABB12,ABC12,ABD12); 
 if totabs2 le .0001 then call symput('endvar',1);run; 
     %if (&endvar^=1) %then %let cnt=%eval(&cnt+1);%if &cnt>= 500 
%then %do;%let endvar = 1;%end;%end;  
data wald2_&cell.last(keep=LC12 LC22 LC32 LC42 LC52  
cpa1_2 cpb1_2 cpc1_2 cpd1_2);  
set wald2_&cell.last;run;%end;  
%mend wald2;%wald2; 
data waldall_2; 
set wald2_1last wald2_2last wald2_3last wald2_4last wald2_5last  
    wald2_6last wald2_7last wald2_8last wald2_9last wald2_10last  
    wald2_11last wald2_12last wald2_13last wald2_14last 
wald2_15last    wald2_16last; 
proc iml;  
use waldall_1; read all into W1;/*16X9*/  
use waldall_2; read all into W2;/*16X9*/ 
reset log NOprint;tmp=(W1-
repeat(W1[:,],nrow(W1)));c1=(tmp`*tmp)/(nrow(W1)-1); 
   create ZZ1 from c1;append from c1; 
reset log NOprint;tmp=(W2-
repeat(W2[:,],nrow(W2)));c2=(tmp`*tmp)/(nrow(W2)-1); 
create ZZ2 from c2;append from c2; 
X=j(9,9,0);X2=j(9,9,0);WF1=c1//X;WF2=X2//c2; 
VAR=WF1||WF2; VAR=VAR # 500; 
Use WHET1; read all into H1;Use WHET2; read all into H2; /*9X1*/ 
H1=T(H1);H2=T(H2);THETA=H1//H2; 
RHOM={ 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0, 
   0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0, 
       0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0, 
   0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0, 
   0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0, 
   0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0, 
   0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0, 
   0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0, 
   0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1}; 
RPAR={ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0, 
    0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0, 
   0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0, 
   0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1}; 
HOMF=RHOM*THETA;T_HOMF=T(HOMF);T_RHOM=T(RHOM); 
VHOM=RHOM*VAR*T_RHOM;IVHOM=INV(VHOM); 
WALDH=T_HOMF*IVHOM*HOMF;PARF=RPAR*THETA; 
T_PARF=T(PARF);T_RPAR=T(RPAR); 
VPAR=RPAR*VAR*T_RPAR;IVPAR=INV(VPAR); 
WALDP=T_PARF*IVPAR*PARF;WALD=WALDH||WALDP; cname={"WALDH" 
"WALDP"}; 
   create COUNTW from wald[COLNAME=CNAME];append from WALD;Quit; 
   /*COUNTING*/ 
data COUNTNEW_W(KEEP=CNT_W HET_NOT); SET COUNTW;  
  IF Waldp<9.4877 & Waldh>16.91898 THEN 
CNT_W=1;Elsecnt_W=0;cnt_het=&cnt;  
  IF CNT_HET>=500 THEN HET_NOT=1;ELSE HET_NOT=0;RUN; 
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%if &k=1 %then %do;data finalW;set countnew_W;run;%end;%else %do; 
proc append base=finalW data=countnew_W;run;%end;%end; 
%mend jack;%Jack; 
proc means data=finalW noprint NWAY; 
output out=SAVELIB.countsumW2 sum=;run; 
DATA _NULL_;CALL SYMPUT('END',PUT(TIME(),TIME8.));RUN;%put &END; 
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