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and Department of Physics

This dissertation investigates various aspects of helimagnets. Helimagnets are

magnets with spins aligned in helical order at low temperatures. It exists in materials

of crystal structure lacking the spatial inversion symmetry. The helical order is due

to the Dzyaloshinskii-Moriya (DM) mechanism. Examples of helimagnets include

MnSi, FeGe and Fe1−xCoxSi.

A field theory appropriate for such magnets is used to derive the phase di-

agram in a mean-field approximation. The helical phase, the conical phase, the

columnar phase and the non-Fermi-liquid (NFL) region in the paramagnetic phase

are discussed. It is shown that the orientation of the helical vector along an exter-

nal magnetic field within the conical phase occurs via two distinct phase transitions.

The columnar phase, believed to be a Skyrmion lattice, is found to exist as Abrikosov

Skyrmions near the helimagnetic phase boundary, and the core-to-core distance is

estimated.

The Goldstone modes that result from the long-range order in the various

phases are determined, and their consequences for electronic properties, in particu-



lar, the specific heat, single-particle relaxation rate and the electrical conductivity,

are derived.

In addition, Skyrmion gases and lattices in helimagnets are studied, and the

size of a Skyrmion in various phases is estimated. For isolated Skyrmions, the

long distance tail is related to the magnetization correlation functions and exhibits

power-law decay if the phase spontaneously breaks a continuous symmetry, but

decays exponentially otherwise. The size of a Skyrmion is found to depend on a

number of length scales. These length scales are related to the strength of DM

interaction, the temperature, and the external magnetic field.
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Chapter 1

Introduction

1.1 History of magnetism

Magnets have been known since the beginning of human civilizations. A mag-

netic needle aligns with Earth’s magnetic field, defining the astronomical true north.

They have been used as compasses for navigation since the Age of Discovery in West-

ern Europe in the 15th century. Despite its widespread application since the ancient

times, the physics of magnetism was not understood until the 19th century when

the theory of electromagnetism was constructed. Under the framework of Maxwell’s

equations, the motion of charged particles in a magnetic field can be described,

[1] but the origin of magnetic dipoles in materials was still not given. The born

of quantum mechanics in the 20th century increased our understanding on atomic

structure. The magnetic behavior of a solid is now understood to be the collective

effects of the magnetic dipoles produced by the orbital electrons, their spins, and

the presence of external magnetic field. [2]

There are many kinds of magnetism. In paramagnetism, the magnetic dipoles

align along the external magnetic field; whereas in diamagnetism, the dipoles align

opposite to the field. In both cases, the dipoles arrange in random directions without

any magnetic field, leading to a net zero magnetization.

There are, however, also spontaneous ordered arrangements of magnetic spin
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even without magnetic field. In ferromagnetism, the magnetic dipoles tend to align

in a certain direction even without an external magnetic field. This is due to the in-

teraction between spins within the material. However, ferromagnetism is destroyed

by thermal agitation. Above the Curie temperature, a material that exhibits fer-

romagnetism at lower temperature becomes paramagnetic. Antiferromagnetism is

similar, except that the consecutive dipoles align in opposite directions and the

transition temperature is called the Néel temperature.

1.2 Helimagnetism

Helimagnetism is another example of spontaneous ordered state, which we will

focus in this thesis. The most well-known helimagnet is manganese silicide (MnSi).

MnSi is a B20 cubic crystal with space group P213, in which there is no

spatial inversion symmetry, as shown in Fig. 2.1. It was found that MnSi was

ordered below the temperature 30 K. [3] It was first classified as a weak itinerant

ferromagnet. It was also suggested to be antiferromagnetic from its response to the

magnetic field, but no additional magnetic reflections have ever been detected by

neutron diffraction. [4] In 1976, a high resolution neutron diffraction study of MnSi

was carried out. [5] The neutron beam was perpendicular to the applied magnetic

field. Fig. 1.1 shows one of the typical measurement results. The solid circles in

the figures indicate the peak positions of the Bragg reflections. The results of zero

magnetic field show that there are peaks in four 〈111〉, separated from the center
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by 0.035
◦
A
−1

. 1 This indicates MnSi has a helical spin structure [6] with a period

of 180
◦
A in the 〈111〉 direction when H = 0, while the lattice constant is 4.56

◦
A,

see Table 1.1. The spin structure is shown in Fig. 1.2. A real-space Lorentz TEM

image of the helimagnet Fe0.5Co0.5Si was taken by Uchida et. al., as shown in Fig.

1.3. [7, 8]

Figure 1.1: Neutron diffraction patterns of MnSi at 4.2 K for different magnetic fields

(H). The magnetic field is applied along the vertical axis (close to 〈111〉 direction.)

Such helical order can be explained by the Dzyaloshinskii-Moriya (DM) mecha-

nism, [9, 10] due to spin-orbit coupling. [11] It is written in terms of
∫
d3xM·∇×M,

which is allowed by symmetry in MnSi since its lattice structure lacks inversion sym-

1The difference in the peak intensity between satellites in the [111] direction was due to a slight

misorientation of the sample. [5]
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Figure 1.2: Mangetic ordering in a helimagnet. On each plane, there is a ferromagnetic

order, but the direction of magnetization rotates along the helical direction. The arrow

denotes the direction of the helix.

Figure 1.3: Lorentz TEM image of Fe0.5Co0.5Si (left). The magnetic field is applied

normal to the plane. The bright and dark colors refer to different directions of the spin.

The helix is approximately vertical in the figure. The arrow indicates a dislocation. The

corresponding FFT image is also plotted. (right)

4



metry. [12] As in Fig. 1.2, on any given plane perpendicular to the helix, there is

ferromagnetic order, but the direction of the magnetization rotates as one goes along

the direction of the helix. The helix is characterized by the pitch vector, denoted

by q. Its direction is the direction of the helix. Its modulus q = |q| is the helical

wavenumber, where 2π
q

is the helical wavelength, describing the distance that the

ferromagnetic order repeats itself.

There are other metals and alloys exhibiting this kind of helical order at low

temperatures. Examples include Mn1−xFexSi, [13] FeGe [14] and Fe1−xCoxSi (for x

between 0.2 and 0.95).[15, 16] Their transition temperatures, helical wavelength and

lattice constants are tabulated in Table 1.1. A crystal of MnSi grown for experiments

are shown in Fig. 1.4. The helical wavelength are typically 100 times larger than

Figure 1.4: A crystal of MnSi grown for experimental purpose.

the lattice constant. 2

Increasing the magnetic field introduces a homogeneous component of the

magnetic order, and for some helimagnets such as MnSi and FeGe, tilts the pitch

vector q to the direction of the magnetic field. This is called the conical phase, as

2These helimagnets are known as Dzyaloshinskii-Moriya (DM) magnets. The DM interaction

is due to spin-orbit coupling, as stated in Chapter 2. However, there are also helimagnets realized,

such as FeCl3 [17] and MnO2, [18] that their helical wavelengths are of the same order as or at

most 10 times the lattice constants. Helimagnetism of this kind is realized in XY model with

nearest and second nearest neighbor coupling. [19, 20, 21]
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shown in Fig. 1.5. Thermal agitation and a large external magnetic field destroy

the helical order, and restore paramagnetism or ferromagnetism.

Figure 1.5: Conical phase in helimagnets. When the external magnetic field increases

(from left to right), the homogeneous component of magnization increases and the heli-

magnetic amplitude decreases. (adapted from Ref. [22])

These helimagnets are also highly clean. For example, for MnSi, the value of

kFl ≈ 3000. [23] This makes the theoretical study of the transport properties in the

ballistic weak disorder experimentally relevant. (See Chapter 5.)

Similar helical structures can also be found in cholestoric liquid crystal. Even

the defects in cholesterics are also similar to the one in Fig. 1.3. [24]

A summary of the properties of MnSi can be found in Ref. [25].
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Table 1.1: Lattice constants (a), helical wavelengths (
◦
A) and transition temperature (Tc)

of various DM helimagnets.

Material a (
◦
A) 2π

q
(
◦
A) Tc (K)

MnSi 4.56 180 29.5

FeGe 4.70 700 278.7

Fe0.5Co0.5Si 3.20 900 43.5

Fe0.65Co0.35Si 4.47 471 58.8

Fe0.8Co0.2Si 4.48 295 32.2

Mn0.9Fe0.1Si 4.55 100 6.8

1.3 Phase diagrams of helimagnets

The presense of DM interaction makes the phase diagram of helimagnets much

richer than the other metals. The interaction, which is responsible for the helical

order, is induced by spin-orbit coupling [11] characterized by a small dimensionless

constant gso. Because the crystal-field effects are also due to spin-orbit coupling

but of higher orders (g2
so), there should be some additional effects on the magnetic

ordering.

The phase diagrams of MnSi, FeGe, Fe0.5Co0.5Si and Fe0.8Co0.2Si are shown

in Figs. 1.6, [26] 1.7,[27] 1.8 [8] and 1.9 [16] respectively. For these helimagnets,

q is in 〈111〉 direction when there is no applied magnetic field. Increasing the

magnetic field tilts q from 〈111〉 direction to 〈001〉 direction at a critical field Hc1.

Further increasing the field increases the homogeneous magnetization and decreases

the helimagnet which vanishes at another critical field Hc2. (See Chapter 3.) There
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is a columnar phase 3 in all these diagams, which will be discussed in later parts of

this thesis.

Figure 1.6: Phase diagram of MnSi.

Figure 1.7: Phase diagram of FeGe.

Another interesting aspect of helimagnets such as MnSi is its sensitivity to

hydrostatic pressure. With increasing pressure, the transition temperature Tc de-

3The columnar phase is also refereed to as “A phase” in the literature. The labels “A phase”

in the figures in this thesis are the columnar phases.
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Figure 1.8: Phase diagram of Fe0.5Co0.5Si.

Figure 1.9: Phase diagram of Fe0.8Co0.2Si.
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creases until it vanishes at p = p c ≈ 14.6kbar. [26, 28] The transition is second order

or very weakly first order above a temperature of approximately 10 K, and strongly

first order at lower temperatures, with a tricritical point separating the two regimes.

These features have been explained as universal properties of quantum ferromag-

nets in an approximation that neglects the helical order at longer length scales. [29]

The phase diagram in the T -p plane is shown in Fig. 1.11. If a magnetic field is

applied in the vicinity of p c, tricritical wings, i.e., surfaces of first-order transitions,

emerge from the tricritical point that are believed to end in a pair of quantum crit-

ical points in the T = 0 plane. [23] This feature, which is depicted in Fig. 1.10, has

been explained theoretically in Refs. [29, 30].

Figure 1.10: Schematic phase diagram of MnSi in the space spanned by T , p, and H

showing the tricritical wings and quantum critical points (QCP).

There are also reports on an intermediate phase slightly above the transition
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Figure 1.11: Schematic phase diagram of MnSi in the T -p plane. The tricritical point

(TCP) separates a line of second order transitions (solid line) from a line of first-order

transitions (dashed line). The inset shows the resistivity data from Ref. [23] in the non-

Fermi-liquid (NFL) region. The boundary of the NFL region (dotted line) is not sharp.

SL1, SL2, and SL3 refer to the possible spin-liquid phases or regions reported.

temperature at zero magnetic field, making the transition first order. This interme-

diate phase is chiral. This may be a spin liquid phase or Skyrmion liquid phase, or

may be similar to blue phases of liquid crystal. [31, 32]

The columnar phase in MnSi and FeGe is also interesting. Unlike previous

neutron diffraction experiments such as Fig. 1.1, Mühlbauer et. al. put the neutron

beam to be parallel to the applied magnetic field, and found that the columnar

phase exhibits sixfold symmetry, as shown in Fig. 1.12. [33] This configuration is

a two-dimensional (2D) hexagonal periodic columnar structure on a plane which is

perpendicular to the applied magnetic field, as shown in Fig. 1.14. [33] A similar

six-fold pattern appears in Fe0.8Co0.2Si, as shown in Fig. 1.13. [34] This structure

resembles a vortex lattice in type-II superconductors, [35] rotating Bose-Einstein
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condensate (BEC), [36] the helical nanofilaments (HN) of smectic liquid crystals,

[37, 38] and blue phase III (BP III) in cholesteric liquid crystals. [39] Later, a

real-space observation using Lorentz TEM on the SkX phase of Fe0.5Co0.5Si reveals

the same hexagonal structure, as shown in Fig. 1.15. [8] And the same structure

occurs near the room temperatures in FeGe, as shown in Fig. 1.16. [40] These

individual magnetic vortices are believed to be Skyrmions. It was demonstrated

through calculating its Skyrmion density, as shown in Fig. 1.17. [33] Its chirality

nature suggests that DM interaction plays a role in stabilizing the lattice, making

some physicists believe that this phase exists in helimagnets in general. The lattice

of columns is a more stable ordered state of helimagnets.

Figure 1.12: Neutron scattering data in the columnar phase of MnSi. The applied mag-

netic field is perpendicular to the paper. The six-fold pattern implies the two-dimensional

hexagonal columnar structure.

1.4 Fluctuations and Goldstone modes

Even in the disordered phase of helimagnets, it was found that the fluctuations

have a chiral nature. [41] Moreover, a number of phases of helimagnets break the
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Figure 1.13: Neutron scattering data in the columnar phase of Fe0.8Co0.2Si. The applied

magnetic field is perpendicular to the paper.

Figure 1.14: A hexagonal lattice of Skyrmions in the columnar phase of MnSi.

Figure 1.15: Lorentz TEM image of Fe0.5Co0.5Si in the SkX phase at T = 25 K and

H = 50 mT. (left) The corresponding FFT image is plotted. (right)
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Figure 1.16: Lorentz TEM image of FeGe in the SkX phase at T = 260 K and H = 0.1

T.

Figure 1.17: Spin configuration of the columnar phase in MnSi projected onto the x-y

plane. The color denotes the Skyrmion density at different regions.
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translational symmetry spontaneously. By Goldstone theorem, there are massless

(or soft) modes associated with them. [42] Helimagnets have the same helical order

as the cholestoric liquid crystal. Therefore they should have the same dispersion

relation of the fluctuations given by [43, 24, 44]

Ω ∼ k2
z + c⊥k4

⊥, (1.1)

where k⊥ = (kx, ky). This is softer than ferromagnetic magnons (with spectrum k2

[2]) because of the invariance of the helimagnet under the rotations of q. The dis-

persion is anisotropic. These softer Goldstone modes make the helimagnet unstable

due to Mermin-Wagner theorem, [45, 46] as a pure helimagnet is similar to a 2D

ferromagnet, as shown in Fig. 1.2. 4 Therefore, the fluctuations of a helimagnet are

more significant than those of a ferromagnet, causing measurable consequences.

External magnetic field and additional crystal-field effects, such as pinning,

remove some of the symmetries of the system. However, they do not give the

helimagnon a mass, but make them less soft. [48] (See Chapter 4.)

On the other hand, the columnar phase breaks the continuous translational

symmetry on the lattice planes. Like the blue phase III in cholestoric liquid crystal,

this phase has two Goldstone modes. [24] They are phonons of the compression and

shear modes. Without magnetic field, the system is invariant under the rotation of

4A more rigorous way to see it is from its Goldstone mode in Eq. (1.1), as∫
d3xeik·x

(
k2z +

k4
⊥

2q2

)−1
=
√

2πq
∫
d2k⊥

1
k2
⊥
eik⊥·x⊥e

− k2
⊥√
2q
z
, which is essentially equivalent to the

Goldstone modes in d = 2, which leads to logarithmic divergence, according to Mermin-Wagner

theorem. [47, 46, 45]
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the 2D lattice plane. This gives the Goldstone modes a dispersion relation [49, 24, 50]

Ω ≈ k2
⊥ + czk

4
z . (1.2)

The 2D lattice forms columns of Skyrmions, and the column fluctuates about their

equilibrium positions, [50] as shown in Fig. 1.18. An external magnetic field makes

this mode less soft. [48] (See Chapter 4.)

Figure 1.18: Fluctuations of columns in the A phase of MnSi.

These Goldstone modes indicate the fluctuations are huge, as seen in Eqs.

(1.1) and (1.2). Due to these Goldstone modes, helimagnets exhibit transport prop-

erties different from Fermi liquids. [51] For example, it was found that in MnSi at

pressure above 14.6 kbar, the resistivity has the temperature dependence of the form

ρ(T ) = ρ0 + AT
3
2 , as shown in Fig. 1.19, [23, 52] contrary to the result from Fermi

liquid theory ρ(T ) = ρ0 + AT 2. [53] The existence of a two-dimensional lattice of

Skyrmions shed lights to the explanation of this anomaly because of its anisotropic

Goldstone modes. [50] Besides resistivity, other physical observables such as thermal
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Figure 1.19: Experimental results of the resistivity of the disordered phase of MnSi at

the pressure p ≈ 14.8 kbar.

conductivity and specific heat are also different from those of a Fermi liquid.

The explanation of this unusual transport properties lies in the Goldstone

modes, which couples to the conducting electrons, just like the electron-phonon

interactions. The anisotropic dispersion relations of the Goldstone modes lead to

non-analytic corrections to Fermi-liquid behaviors. [51] The effect of crystal fields

and the presence of quenched disorder should also play a role. To see the cou-

pling between helimagnons and the conduction electrons, one need microscopic

model for helimagnets with fermionic degrees of freedom. The scattering matrix

can be derived, which is used to calculate the single-particle relaxation rate and the

electron-electron scattering rate. With this model, we can make predictions of the

temperature dependence of these transport properties in various ordered phases of

helimagnets in addition to the NFL phase. (See Chapter 5.)
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1.5 Skyrmions in helimagnets

Skyrmions are excitations to the system. The Goldstone modes are also im-

portant in the long-range behavior of Skyrmions.

Skyrmions are non-trivial two-dimensional topological objects in various field

theories. They were first used to model baryons in nuclear physics. [54] More re-

cently, they have been discussed in quantum Hall ferromagnets, [55, 56] nematic

liquid crystals, [57] p-wave superconductors, [58, 59] spinor BEC [60, 61] and topo-

logical insulators. [62] Now the Skyrmion lattice is also a candidate for the columnar

phase in various helimagnets, with each column being one Skyrmion. Prior to this,

a lattice of Skyrmions was predicted in systems with DM interactions. [63, 64, 65]

On the other hand, a Skyrmion lattice may melt into a liquid of isolated Skyrmions.

[56] Because of its topological nature, a Skyrmion cannot be created or annihilated

through continuous deformation of the magnetic structure. An electron passing

through a Skyrmion has its spin rotated once, as shown in Fig. 1.20. [66] (See

Chapter 6.)

The topology of a Skyrmion is characterized by the winding number. Assume

that the magnetization is given by

M(x) = m(x)n(x), (1.3)

where m(x) and n(x) denotes the magnitude and direction of M. Then the winding

number is defined as [67]

W =

∫
dx

∫
dy

1

4π
n ·
(
∂n

∂x
× ∂n

∂y

)
. (1.4)
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Figure 1.20: When an electron moves through a Skyrmion, its spin twists to adjust to

the Skyrmionic configuration. (adapted from Ref. [66])

Upon continuous deformation of the configurations, the winding number W remains

unchanged. The Skyrmion in Fig. 1.20 has W = −1.

1.5.1 Skyrmion lattice

The columnar phase was discovered and believed to be a Skyrmion lattice. In

Ref. [33], the lattice is described as the superposition of three helimagnets perpen-

dicular to the magnetic field, stabilized by the fluctuations, as in Eq. (3.13), [33]

with six dominant Fourier modes as in the neutron scattering data in Figs. 1.12

and 1.13. This provides a good picture of the “vortex” lattice structure, but its

periodic description does not convey the localized nature of each Skyrmion, which

should have more Fourier modes. And this description fixes the core-to-core dis-

tance to the order of q−1, which is not necessarily true since there exist other system
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length scales. (See Chapter 2) The Abrikosov form of Skyrmion lattice [68] should

be explored with more details to understand more about the details of the lattice

structure. (See Chapters 3 and 7.)

1.5.2 Isolated Skyrmions

If the lattice of Skyrmions melts into a liquid of Skyrmion, the liquid is so

dilute that the Skyrmions do not interact with one another. There are also previous

studies suggesting that an isolated Skyrmion has a size of order q−1. [63, 64, 65]

However, there should be competitions of various length scales that contribute to

the size of a Skyrmions.

Moreover, the definition of the size of a Skyrmion is ambiguous, because a

Skyrmion affects the magnetic ordering globally. In the Skyrmion lattice, the size

of Skrymion can be thought of as the core-to-core distance. But for an isolated

Skyrmion, there is no core-to-core distance. We can define the size from the tail

behavior, which is of the order of the correlation length ξ if the correlation function

goes like e−
r
ξ . But when it is in an ordered phase such as conical phase or columnar

phase, the correlation function is algebraic in distance such that we cannot read off

correlation length. The size of the Skyrmion can also be estimated with its core

solution as R, with a variable f(ρ) ∼ 1− ρ
R

, where ρ is the radial distance from the

core. [69] But this leads to size often given by q−1 as DM interaction is the first

dominant interaction near the core. We need a better definition of the Skyrmion

size. (See Chapter 7)
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1.6 Outline of the thesis

In this thesis, we will discuss various aspects of the helimagnets. In Chapter

2, we will consider a model appropriate for the helimagents. We will explore the

hierarchy of energy scales in the order of the spin-orbit coupling gso. We will list

the physical length scales in the helimagnetic systems.

In Chapter 3, we will discuss, using mean-field theory, the ordered phases,

including the pinned helical phase, elliptic conical phase, aligned conical phase and

the A phase.

In Chapter 4, we will discuss the Goldstone modes of the ordered phases. We

will give the expressions for the Goldstone modes, and give arguments why they

have the forms as they are given.

In Chapter 5, we will give the temperature dependence of various transport

properties for different ordered phases. We will derive it from the microscopic model

of helimagnets by considering the electronic degrees of freedom and their fluctua-

tions.

In Chapter 6, we will review the basics of Skyrmions. In Chapter 7, we will

define the size of a Skyrmion in four ways, and evaluate it for each definition. We

will discuss the role of spontaneous symmetry breaking on the magnetic ordering of

Skyrmions.

In Chapter 8, we will end this thesis with a conclusion.
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Chapter 2

Model for Helimagnets

In this chapter, we introduce the field-theoretical model that is appropriate

for helimagnets. We explore the meaning and symmetry involved of various terms

in the action. We also relate these terms to a hierarchy of energy scale in terms of

the order of spin-orbit coupling, characterized by a small dimensionless constant gso.

And we give the expression of various physical length scales in terms of the model.

2.1 Landau-Ginzburg-Wilson (LGW) functional

We consider a Landau-Ginzburg-Wilson (LGW) functional for a three-dimensional

order parameter (OP) field M = Mxx̂+Myŷ +Mzẑ whose expectation value is pro-

portional to the magnetization. We will consider an action that is appropriate for

MnSi and FeGe, which crystallize in the cubic B20 structure with space group P213,

as shown in Fig. 2.1. We will organize the action according to the dependence of its

various constituents on powers of the spin-orbit interaction gso. Within this scheme,

we write

S[M] = SH[M] + SH′ [M] + SDM[M] + Scf[M], (2.1)
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2.1.1 Classical Heisenberg model

The first two terms in Eq. (2.1)

SH[M] =

∫
V

d3x
[r

2
M2(x) +

a

2
(∇M(x))2 +

u

4

(
M2(x)

)2 −H ·M(x)
]
,(2.2a)

SH′ [M] =

∫
V

d3x

[
d

2
(∇ ·M(x))2 +

w

4

(
∇M2(x)

)2
]
, (2.2b)

are the terms the action for an isotropic classical Heisenberg ferromagnet in a ho-

mogeneous external magnetic field H.
∫
V
d3x denotes a real-space integral over the

system volume. (∇M)2 stands for
∑3

i,j=1 ∂iMj ∂
iM j, with ∂i ≡ ∂/∂xi the compo-

nents of the gradient operator ∇ ≡ (∂x, ∂y, ∂z). r, a, d, u, and w are the parameters

of the Landau theory; they are of zeroth order in the spin-orbit coupling gso. Eqs.

(2.2) contain all analytic terms invariant under co-rotations of real space and OP

space up to quartic order in M and bi-quadratic order in M and ∇. SH in Eq.

(2.2a) contains the usual LGW term for ferromagnets, including the Zeeman term.

In SH′ in Eq. (2.2b), there is one higher-order term, with coupling constant w,

as an example of a class of terms that can stabilize unusual phases in helimagnets,

although they are not of qualitative importance in ferromagnets. 1 2

1∇ · (M× (∇×M)) = (∇×M)2 −M · ∇(∇ ·M) + M · ∇2M. [70]
2The term (∇ ·M)2 in SH′ or equivalently (if combined with the (∇M)2 term), (∇×M)2, is

not usually considered in the theory of classical Heisenberg ferromagnets. This term, as well as a

stronger one, |k ·M(k)|2/k2 in Fourier space, results from the classical dipole-dipole interaction,

which in turn results from the coupling of the order-parameter field to the electromagnetic vector

potential, see Ref. [11]. These terms have small coefficients due to the relativistic nature of

the dipole-dipole interaction, and therefore are usually neglected in the discussion of isotropic

ferromagnets, despite the fact that they are renormalization-group relevant with respect to the
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2.1.2 Dzyaloshinskii-Moriya (DM) interaction

The second term

SDM =
c

2

∫
V

dx M(x) · (∇×M(x)), (2.3a)

is the DM interaction term that favors a nonvanishing curl of the magnetization.

The existence of this term hinges on the spin-orbit coupling, 3 [10, 11] as well as on

the system not being invariant with respect to spatial inversion (due to the linear

dependence on the gradient operator). An example of such system includes MnSi,

a B20 cubic crystal with space group P213 as shown in Fig. 2.1. [72] This crystal

structure is said to be noncentrosymmetric, i.e., lack of a spatial inversion center.

[72] The coupling constant c is linear in gso, and on dimensional grounds we have

c = akFgso, (2.3b)

with kF the Fermi wave number which serves as the microscopic inverse length

scale. This can be considered the definition of gso. For MnSi, gso ≈ 0.05. For all

helimagnets listed in Table 1.1, gso � 1.

critical Heisenberg fixed point.[71] In the context of helimagnets, where many effects of qualitative

interest are small due to the smallness of gso, it is less obvious whether these terms can be ignored.

However, for the field configurations we will consider they are not qualitatively different from the

(∇M)2 term, and we will neglect them. The effect of dipole-dipole interaction on helimagnets will

not be discussed in this thesis.
3The DM interaction can be derived by considering a Hamiltonian of free electrons and a term

with spin-orbit coupling. By second-order perturbation, one can get the interaction energy in Eq.

(2.3a). [10]
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Figure 2.1: Crystal structure of MnSi and FeGe (tedrahedral P213). There are four metal

atoms in the positions (x, x, x), (x+ 1
2 ,

1
2−x,−x), (−x, x+ 1

2 ,
1
2−x) and (1

2−x,−x, x+ 1
2).

For MnSi, xMn = 0.137 and xSi = 0.835.

2.1.3 Crystal-field effects

The preceding contributions to the action are all invariant under either sepa-

rate rotations, or co-rotations, in spin (or magnetization) space and real space. The

spin-orbit interaction couples the electron spin, and hence the magnetization, to the

underlying lattice. Therefore, in addition to the rotationally invariant terms, any

term that is invariant under elements of the space group connected with the crystal

lattice is allowed. For the B20 structure of MnSi and FeGe, the appropriate space

group is P213, [73] as in Fig. 2.1. To quartic order in M, and bi-quadratic order in

∇ and M, the allowed terms in the action are the crystal-field terms

Scf =

∫
V

dx
3∑
i=1

[
b

2
(∂iMi(x))2 +

b1

2
(∂iMi+1(x))2 +

v

4
M4

i (x)

]
, (2.4a)
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where M4 ≡M1. The last term is the usual cubic anisotropy that is always present

in a magnet on a cubic lattice, and

v = u′g4
so (2.4b)

with |u′| ≈ u. Of the gradient-squared terms, the first term, the pinning term, also

has cubic symmetry; the second one does not, but is invariant under elements of

P213, which contains screw axes along the cubic directions that involves a two-fold

rotations and half-lattice translation, and three-fold rotation axes along the 〈111〉

direction. [72] On dimensional grounds, we have

b = a′g2
so,

b1 = a′1 g
2
so, (2.4c)

with |a′| ≈ |a′1| ≈ a.

The model including the terms with coefficients r, a, c, u and H in CP 1

representation (for studying Skyrmion lattice) and its saddle-point equations are

detailed in Appendix B.

2.2 Energy scales

The various contributions to the action S, and their dependencies on gso, imply

a hierarchy of energy scales.
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2.2.1 O(g0
so)

At zeroth order in gso, we have the microscopic scale, which is represented by

the Fermi energy εF and the Fermi wave number kF. Fluctuations renormalize this

to the critical scale, which is represented by the magnetic ordering temperature Tc

and the corresponding length scale. The physics at these scales is described by SH,

Eq. (2.2a). This affects the magnitude of the magnetic ordering for different ordered

phases.

2.2.2 O(g2
so)

The chiral DM term is balanced by the rotationally invariant gradient squared

term in Eq. (2.1) that makes magnetization gradients energetically costly. As a

result, the relevant gradient or momentum scale is of O(gso), and hence the chiral

wave number scale is given by the microscopic scale times gso. SDM contains one

explicit factor of gso and one gradient, and hence its contribution to the free energy is

of O(g2
so). The physics at this scale is described by SDM in Eq. (2.3a) in conjunction

with SH. The helical and conical phases are related to this scale through its helical

period. The smallness of gso gives a long helical wavelength.

2.2.3 O(g4
so)

At fourth order in gso, crystal-field effects come into play. They pin the helix,

are small compared to the chiral energy scale by another factor of g2
so, and are de-

scribed by Scf, Eq. (2.4a). Since gradients are effectively of O(gso), the contributions
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of all three terms in Scf to the free energy are of O(g4
so). Crystal-field effects are

generally very small due to the smallness of gso.

2.3 Physical length scales

There are a few physical length scales associated with the energy scales in

Section 2.2 in various phases. Some of these length scales are related to the phases

with details found in Chapter 3. The Goldstone modes will be expressed in these

lengths in Chapter 4, and the sizes of Skyrmions in Chapter 7.

2.3.1 Pitch Wavenumber

The pitch wavenumber of the helix given by

q =
c

2a
. (2.5)

It is proportional to the strength of DM interaction, and therefore gso. The helical

period is 2π
q

, which is typically 100 times larger than the lattice constant, as shown

in Table 1.1. Therefore, q is 100 times smaller than the Fermi wavenumber.

2.3.2 Thermal Correlation Lengths

There is a range for the correlations in fluctuations for each of the phases.

The range is called the correlation length. This correlation length diverges when

the relevant phase boundary or transition point is reached. [71]

The paramagnet is stable or metastable only for r > 0. The corresponding

correlation length is given by ξp, which diverges when r approaches 0. In LGW
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model, it is [71]

ξp =

√
a

r
, (2.6)

in both longitudinal and transverse directions.

The ferromagnet is stable or metastable only for r < 0. The longitudinal

correlation length of the ferromagnet is given by

ξf =

√
a

2|r|
, (2.7)

which diverges for r → 0. The transverse correlation length is infinite when there

is no external magnetic field, i.e., H = 0. But it becomes finite when the field

is present. It is defined by the magnetic length l̄H in Eq. (2.11) and expressed

approximately in Eq. (2.12c) for r < 0.

There are correlation lengths associated with the helimagnetic phases as well.

Without magnetic field, the correlation length approaching the helimagnetic-paramagnetic

phase transition from the paramagnetic phase (r > aq2) is given by

ξh =

√
a

r − aq2
=

(
1

ξ2
p

− q2

)− 1
2

. (2.8)

If the phase transition is approaching from the helimagnetic phase (r < aq2), it is

given by

ξ′h =

√
a

aq2 − r
=

(
q2 − 1

ξ2
p

)− 1
2

. (2.9)

Note that at the transition point between the helimagnet and paramagnet at H = 0,

qξp = 1. (2.10)
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2.3.3 Magnetic Length

We define a magnetic length for the paramagnet and the ferromagnet without

the DM interaction: [74]

l̄H =

√
am

H
. (2.11)

It is basically the thermal and magnetic field dependent transverse correlation

length.

For paramagnet (r > 0), if r � u
1
3H

2
3 , it is

l̄H ≈ ξp. (2.12a)

But for r � u
1
3H

2
3 , m ≈ (u−1H)

1
3 . Hence the length becomes

l̄H ≈
a

1
2

u
1
6H

1
3

, (2.12b)

which is related to the mean-field critical exponent δ = 3. [71]

For ferromagnet (r < 0), it is infinite for zero magnetic field. However, in the

magnetic field, it is

l̄H ≈
|r| 14a 1

2

u
1
4H

1
2

. (2.12c)

We expect this because the transverse fluctuations of ferromagnet have the spectrum

schematically in the form ω(k) = k2 +H, as in Eq. (4.3).

2.4 Conclusion

To summarize, we have introduced an LGW functional appropriate for a he-

limagnet. The functional contains a term of classical Heisenberg ferromagnet, a
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DM interaction term that is induced by spin-orbit coupling, and the crystal-field

terms. The DM interaction is responsible for stabilizing the helimagnet over the

ferromagnet. The smallness of spin-orbit coupling gives a helical period larger than

the lattice constant.

We then introduced the hierarchy of energy scales in ascending order of the

spin-orbit coupling gso, and the terms in the action associated with each scale. In

the end, we introduced various physical length scaled associated with the model.
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Chapter 3

Ordered Phases of Helimagnets

In this chapter, we derive the mean-field phase diagram for systems described

by the action given by Eq. (2.1). [48] We will use the hierarchy of energy scales,

listed in the order of gso in Section 2.2 to show how a more sophisticated phase

diagram emerges as one keeps effects of higher order in gso.

To do so, we consider field configurations of the following form:

M(x) = m+
spê+ cos(q · x) +m−spê− sin(q · x) + m||. (3.1a)

Here m|| is a homogeneous component of the magnetization, m±sp are amplitudes of

Fourier components with wave vector q, and ê± are two unit vectors that form a

right-handed dreibein together with q:

ê+ × ê− = q̂, (3.1b)

q̂× ê+ = ê−, (3.1c)

ê− × q̂ = ê+ (3.1d)

where q̂ = q
q
. The sinusoidal terms in Eq. (3.1a) describe a helix with pitch vector q.

The helix is in general elliptically polarized, and it is useful to define a polarization

parameter

π =
m−1
m+

1

, (3.2)

Special cases are circular polarization, π = 1, and linear polarization, π = 0 or
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π = ∞. The motivation for the ansatz in Eqs. (3.1) is provided by the fact that

it gives the functional form of the global minimum of the action S in Eq. (2.1) at

some temperature and magnetic fields, if one neglects the crystal-field terms Scf in

Eq. (2.4a); that is, for the action up to O(g2
so).

We discuss different phases in the mean-field theory according to the hierarchy

of the energy scale in Section 2.2. The schematic phase diagram is shown in Fig.

3.1. [48]

Figure 3.1: Schematic phase diagram of MnSi in the H-T plane showing the helical,

conical, and A phases, as well as the field-polarized ferromagnetic (FM) and paramagnetic

(PM) states.

Throughout this thesis, the z-axis is taken to the the direction of the magnetic

field H, i.e.,

H = H ẑ. (3.3)
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3.1 O(g0
so): Ferromagnet

To zeroth order in gso the system is approximated by a ferromagnet. According

to the action SH in Eq. (2.2a), for H = 0 there is a second-order phase transition

which in mean-field approximation occurs at r = 0. [71] Putting m±sp = 0 in Eq.

3.1a, the free energy density f = S
V

is a function of m||, and is

f(m||) =
r

2
m2
|| +

u

4
m4
||. (3.4)

To find the ground state,

df(m||)

dm||
= rm|| + um3

|| = 0. (3.5)

It is the disordered paramagnet for r > 0, with zero magnetization, and the ordered

ferromagnet for r < 0, with magnetization given by Eq. (A.3b)

m|| = M
(0)
F =

√
|r|
u
, (3.6)

so that its free energy density in mean-field approximation for H = 0, is

fFM = f(m|| = M
(0)
F ) = − r

2

4u
. (3.7)

For H 6= 0 there is a crossover at r = 0 from a paramagnetic state, where the

magnetization extrapolates to zero for H → 0, to a ferromagnetic state where the

magnetization extrapolates to m|| =
√
|r|
u

. Its free energy has the form

f(m||) =
r

2
m2
|| +

u

4
m4
|| −Hm||, (3.8a)

where m|| is the solution of the mean-field equation of state

rm|| + um3
|| −H = 0. (3.8b)
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The solution of Eq. (3.8b) can be found in Appendix A.

This is just a classical Heisenberg model, so it cannot explain the tricritical

point and the associated tricritical wings in Fig. 1.10. The latter emerge within a

renormalized mean-field theory that takes into account the coupling of the magne-

tization to other electronic degrees of freedom.[29, 75] However, the ferromagnetic

approximation suffices for understanding the gross features of the phase diagram in

the T -p plane, as shown in Fig. 1.11.

3.2 O(g2
so): Helimagnet, aligned conical phase

To second order in gso, we need to add the DM interaction term, Eq. (2.3a), to

the action. This term favors a nonzero curl of the magnetization, with the direction

of the curl depending on the sign of c. However, the spatial variation of M will be

limited by the other gradient terms in the action, the (∇M)2 term in particular.

We thus expect a spatial modulation of M on a length scale on the order of a
c
, or

q−1 which is given by Eq. (2.5).

It is easy to check that the ansatz in Eq. (3.1a) solves the saddle-point equa-

tions for the action SH + SDM, with π = 1, i.e., m−sp = m+
sp ≡ msp, and q̂ = ẑ. The

free energy density is a function of the variational parameters msp, m|| and q, and

given by

f(msp,m||, q) =
r + aq2 − cq

2
m2
sp +

u

4
m4
sp +

r

2
m2
|| +

u

4
m4
|| −Hm|| +

u

2
m2
spm

2
||. (3.9)
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To find the ground state, we take the following derivatives,

(
∂f

∂msp

)
m||,q

= 0,

(
∂f

∂m||

)
msp,q

= 0,

(
∂f

∂q

)
msp,m||

= 0,

and we get

q =
c

2a
, (3.10a)

m|| =
H

aq2
, (3.10b)

msp = m2
H −m2

||, (3.10c)

where

m2
H =

aq2 − r
u

. (3.10d)

A picture of this phase is depicted in Fig. 3.2.

Figure 3.2: Spin orientation of an aligned conical phase. The magnetic field and the pitch

vector is pointing along the vertical axis.

This solution is a minimum for r < aq2 and H < aq2

√
aq2−r
u

. With this, we

have the critical field

Hc2 = aq2

√
aq2 − r
u

, (3.11)

which defines the region of stability or metastability of the conical state in the phase
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diagram in Fig. 3.1. 1 The aligned conical phase is actually a global minimum, as

can be seen by writing the action as a sum of positive semi-definite terms that are

individually minimized by this state. [33] The mean-field free energy density in that

range is, by putting Eqs. (3.10) in Eq. (3.9),

fACP =
−1

2

[
(aq2 − r)2

2u
+
H2

aq2

]
. (3.12)

Eqs. (3.10) describe the helical phase for H = 0 and the conical phase for 0 < H <

Hc2. Comparing Eqs. (3.12) and (3.7) we see that the helical transition preempts

the ferromagnetic one at H = 0.

For H → Hc2 from below the helical component of the magnetization vanishes,

and the free energy, Eq. (3.12), approaches that of the ferromagnet, Eqs. (3.8a).

For H > Hc2, the equation of state and the free energy for the DM action SH +SDM

are the same as for a ferromagnet with action SH.

These considerations account for the structure of the phase diagram shown in

Fig. 3.1 except for the field Hc1 and the columnar phase.

3.3 O(g2
so): Helimagnet, columnar phase

3.3.1 Description of three helices perpendicular to the magnetic field

The neutron-scattering experiments by Mühlbauer et al. [33] showed a six-

fold pattern in the Fourier space in the columnar phase, as shown in Fig. 3.3.

This is consistent with the notion that the columnar phase is characterized by spin

1We refer to this state as the aligned conical phase, or simply conical phase, to distinguish it

from the perpendicular conical phase discussed in Ref. [76].
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textures that form line defects in the direction of the magnetic field, with the lines

forming a hexagonal lattice, the A crystal, in the plane perpendicular to the field.

This experimental observation led the authors of Ref. [33] to suggest a Skyrmion

state consisting of three co-planar helices as underlying the A phase, which we will

describe in details in the following paragraphs.

Figure 3.3: Sixfold symmetry exhibited in the neutron scattering experiment in the A

phase of MnSi reported in Ref. [33].

Consider 3 helices which are perpendicular to the magnetic field (in ẑ direc-

tion). We write the ansatz

M = m⊥ẑ +
3∑
i=1

m0(x̂′′i cos(qi · x + φi) + ŷ′′i sin(qi · x + φi)), (3.13)

where all qi’s have the same magnitude q and
∑3

i=1 qi = 0. Define

qi = q

(
cos

2π(i− 1)

3
x̂ + sin

2π(i− 1)

3
ŷ

)
, (3.14)
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for i = 1, 2 or 3. The unit vectors for each helix are

x̂′′i = sin
2π(i− 1)

N
x̂− cos

2π(i− 1)

N
ŷ, (3.15)

ŷ′′i = −ẑ, (3.16)

for i = 1, 2 or 3. Then for any i 6= j, cos 2π(i−j)
3

= −1
2
. And

〈cos2(qi · x + φi) cos2(qj · x + φj)〉 =
1

4
,

〈cos2(qi · x + φi) sin2(qj · x + φj)〉 =
1

4
,

〈sin2(qi · x + φi) sin2(qj · x + φj)〉 =
1

4
,

〈sin(qi · x + φi) cos(qi · x + φi) sin(qj · x + φj) cos(qj · x + φj)〉 = 0,

For the terms with three sines or cosines, the integral does not vanish only if i, j

and k are all unequal. And the integral is given by

〈sin(qk · x + φk) cos(qi · x + φi) cos(qj · x + φj)〉 =
1

4
sin(φi + φj + φk),

〈sin(qk · x + φk) sin(qi · x + φi) sin(qj · x + φj)〉 = −1

4
sin(φi + φj + φk).

The free energy density f = SH+SDM

V
is

f(m⊥,m0, q, φ1, φ2, φ3) =

∫
d3x

{(r
2
m2
⊥ +

u

4
m4
⊥ −Hm⊥

)
(3.17)

+

[
3

2
(r + aq2 − cq)m2

0 +
51u

16
m4

0

]
+3um2

⊥m
2
0 +

9u

4
m⊥m

3
0 sin(φ1 + φ2 + φ3)

}
.

From Eq. (3.17), the three-helix state has the lowest free energy if the relative

phases of the three helices satisfy

sin(φ1 + φ2 + φ3) = −1, (3.18)
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The thermodynamic ground state is given by taking the derivatives

(
∂f

∂m⊥

)
m0,q

= 0,

(
∂f

∂m0

)
m⊥,q

= 0,

(
∂f

∂q

)
m0,m⊥

= 0,

and for m0 6= 0,

rm⊥ + um3
⊥ + 6um2

0m⊥ +
9u

4
m3

0 sin(φ1 + φ2 + φ3)−H = 0, (3.19a)

[
r + aq2 − cq

]
+

17u

4
m2

0 + 2um2
⊥ +

9u

4
m0m⊥ sin(φ1 + φ2 + φ3) = 0, (3.19b)

q =
c

2a
. (3.19c)

Eqs. (3.19) can be solved numerically. A solution of this is plotted in Fig. 3.4. It

describes a hexagonal array of line defects with the spin antiparallel to the magnetic

field at the defect centers, and parallel at points on the cell boundaries, see Fig. 3.4,

in qualitative agreement with the neutron scattering data.

The free energy difference between this state and the conical one has a min-

imum at H ≈ 0.4Hc2, but it is still positive even at the minimum. However, Ref.

[33] found that taking into account Gaussian fluctuations stabilizes the state with

respect to the conical one. It should be noted that Eq. (3.13) is not a solution of the

saddle-point equations for the action given by Eqs. (2.2) and (2.3a), and therefore

cannot be a true local minimum of the free energy. 2 Also, the relation between

this ansatz and what are commonly called Skyrmionic spin configurations, which

are solutions of the saddle-point equations, [77, 68, 74] is not clear.

2While Eq. (3.13) is not a saddle point of the action, a true saddle point has been constructed

numerically by perturbatively adding Fourier components in Ref. [33]. The quantitative difference

between the true saddle point and Eq. (3.13) was found to be small.
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Figure 3.4: Spin configuration as given by the solution of Eq. (3.19) with the q vectors

in the x-y plane, q = 0.0133, m⊥ = 0.0146, and m0 = 0.0323. The arrows represent

projections of the spins into the plane. The dark and light regions denote spin directions

antiparallel and parallel to ẑ (out of paper), respectively.

Earlier, Grigoriev et. al.[76] had proposed a single-helix state with the pitch

vector oriented perpendicular to the external field. Although current experimental

evidence favors a Skyrmion state as a candidate for the columnar phase, it is still

of interest to discuss such a perpendicular conical state (PCS), since it might be

a viable candidate for the ground state in some other part of the phase diagram

of helimagnets. Such perpendicular helix is possible if the longitudinal magnetic

susceptibility is larger than the transverse magnetic susceptibility. Similar helix can

be found in cholestoric liquid crystals. [78, 24]

41



3.3.2 Abrikosov lattice

The description of the columnar phase in Eq. (3.13) is not an exact solution

of the saddle-point equation of the model. However, an exact solution of the model

as a Skyrmion lattice can be derived from the model. Numerical work on the exact

decription of a Skyrmion lattice was derived. [64] On the other hand, it can be

described as an Abrikosov lattice, as in vortex lattices in type-II superconductors

[35] and rotating Bose-Einstein condensates (BEC). [36] It is convenient to use CP 1

representation because Skyrmions are like vortices in the representation (see Section

6.2). The details of this representation can be found in Appendix B, where we

consider the model given by Eqs. (2.2) and (2.3a) only. The saddle-point equations

in this representation are Eq. (B.6a) and Eq. (B.6b).

In Eq. (B.6b), the gauge A depends on z as in Eq. (B.4), leading to the

non-linearity. To fix the gauge, set A = −hxŷ. The dimension of h is that of

the reciprocal of area, and it will be shown later that it is related to the area of

a single Skyrmion site. Because of the periodic nature of the lattice, the term

−iqmnα∂αzi → −iqm〈nα〉∂αzi is ignored. This can be justified by the final solution.

The term − i
2
qmzi∂αnα is also zero because the Skyrmions are azimuthal. Moreover,

instead of keeping strictly z†z = 1, we relax the condition to 〈z†z〉 = 1 where the

average is over one lattice. Following Abrikosov, [35] one part of the solution is

given by [68]

z =

√√√√ h

3
1
4 π

1 + |d0|2
eikye−

h
2 (x+ k

h)
2

 1

d0

√
2h
(
x+ k

h

)
 , (3.20a)
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Figure 3.5: Hexagonal Skyrmion lattice described by (3.21), for h ∼ q2, where the vectors

denote the projection of the spin on the plane, and the color denotes nz = z∗i σ
ij
z zj where

deep blue denotes spin reversed from the magnetic field.

where the prefactor is for normalization, and

d0 = − iq√
2h

1

1
2

+ H
4ahm

+
√

1
4

+ q2

2h
+ H

4ahm
+
(

H
4ahm

)2
. (3.20b)

Let lx and ly be the distances between cores along the x and y axes respectively,

where lxly = 2π
h

. Then z can be seen as the superposition of the above solution with

different values of k where kj = 2πj
ly

, then

z =

√√√√ h

3
1
4 π

1 + |d0|2
∞∑

j=−∞

cje
i 2πj
ly
y
e−

h
2

(x+jlx)2

 1

d0

√
2h (x+ jlx)

 . (3.21)

For a triangular lattice, cj = cj+2. [79, 80] Choose cj to be 1√
2

and i√
2

for even and

odd j’s respectively. And ly =
√

3
2
lx. Such configuration is plotted as shown in Fig.

3.5 for h ∼ q2, which denotes a Skyrmion lattice. On the other hand, a graph with

spin projected on the basal plane (x-y plane) and a density plot of nz = z∗i σ
ij
z zj is

plotted in Fig. 3.5.
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To know the magnetization and the core size, we have to put Eq. (3.21) back

to the action in Eq. (B.5) and determine them by variational method. Since the

lattice is periodic, it is valid and convenient to consider the solution of a single site

in Eq. (3.20a). Define

h̃ =
h

q2
, (3.22a)

D =

1

2
+

H

4aq2mh̃
+

√
1

4
+

1

2h̃
+

H

4aq2mh̃
+

(
H

4aq2mh̃

)2
−1

, (3.22b)

the free energy per unit volume of one Skyrmion in the lattice is given by

F
V

=
r

2
m2 +

u

4
m4 + aq2m2

h̃
(

1 + 3D2

2h̃

)
− 2D

1 + D2

2h̃

−Hm
1− D2

2h̃

1 + D2

2h̃

. (3.23)

Then we evaluate magnetization m and the reciprocal of core area h by minimizing

the free energy. There exists no analytic closed form solution for m and h, but we

do it by qualitative analysis. We expect that m is of the same order of magnitude

of m|| in the aligned conical phase or the paramagnet, and h
q2 < 1. Expanding Eq.

(3.23) for small h
q2 , we get

F
V
≈ r

2
m2 +

u

4
m4 −Hm+ aq2m2

(
h

q2

)
− 4a3q6m4

H2

(
h

q2

)2

.

Minimizing it with respect to h and m, we get

h

q2
≈ H2

8a2q4m2
,

rm+ um3 −H ≈ 0.

The second equation indicates that the magnetization is approximately equal to the

paramagnet or ferromagnet. For small magnetic field r > 0, using Eq. (A.2a), we
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get

h ≈ 1

8q2ξ4
p

. (3.24)

Therefore, the core-to-core distance goes like qξ2
p . We will discuss more about this

result in Section 7.5. In this representation, we derived an Abrikosov lattice of

Skyrmion as a solution to the saddle-point equation of the model given by Eqs.

(2.2) and (2.3a).

3.4 O(g4
so): Crystal-field effects

To fourth order in gso, we need to take into account the crystal-field terms

shown in Eq. (2.4a). This makes the saddle-point equations very complicated, and

no exact solution is known. We therefore take a variational approach by inserting

Eq. (3.1a) into the action and minimizing with respect to the parameters of the

ansatz. Of all the members of the class of functions represented by Eqs. (3.1) this

will yield the one with the lowest free energy.

By writing Eq. (2.4a) we have fixed the coordinate system by choosing the

crystallographic axes to be the x, y, z ≡ 1, 2, 3 axes. We thus are no longer free to

choose the direction of H, m||, or q. For simplicity, we will consider only the case

of a magnetic field along the z-axis: H = (0, 0, H). Define q̂ ≡ q
q
. We parameterize

in terms of angles ϑ and ϕ as follows,

q̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ≡ (β1, β2, β3), (3.25a)

with
∑3

i=1 β
2
i = 1. This leaves one free parameter for ê+, namely, an azimuthal
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angle ϕe:

ê+ = (cosϑ cosϕ sinϕe−sinϕ cosϕe, cosϑ sinϕ sinϕe+cosϕ cosϕe,− sinϑ sinϕe).

(3.25b)

This uniquely determines ê− = q̂ × ê+. Finally, m|| in general needs to be decom-

posed into components parallel and perpendicular, respectively, to q. [81] However,

while a perpendicular component can lead to a slightly lower free energy, it has no

qualitative effects on the structure of the phase diagram, and we therefore restrict

our ansatz to

m|| = m||q̂. (3.25c)

We further assume that the system is sufficiently close to a second order or weakly

first order phase transition that one can neglect the last term in Eq. (2.4a). With

these approximations, the free energy does not depend on the angle ϕe and is com-

pletely parameterized in terms of six parameters, namely: two amplitudes, m|| and

msp =
[(m+

sp)2+(m−sp)2]1/2√
2

, the polarization parameter π, the modulus q, and the two

direction angles ϑ and ϕ. We find

f(m||,msp, δπ, q, ϑ, ϕ) =
1

2
δtm2

|| +
r − aq2

2
(m2
|| +m2

sp) +
u

4
(m2
|| +m2

sp)
2

+
1

2
m2
sp

[
δt+ aq2 − cq +

1

2
cq(δπ)2

]
−Hm|| cosϑ

+
b

4
m2
spq

2Bs(ϑ, ϕ) +
b1

4
m2
spq

2B1s(ϑ, ϕ)

− b
4
m2

1q
2δπBa(ϑ, ϕ)− b1

4
m2

1q
2δπB1a(ϑ, ϕ) +O(g8

so).

(3.26a)

Here we have defined δt = cq
2

at this point. We also have made use of the fact that we
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know, from Section 3.2, that the physical solution has the property π = 1 + δπ with

δπ = O(g2
so), and have expanded in powers of δπ. The angle-dependent functions in

Eq. (3.26a) are

Bs,a(ϑ, ϕ) = B+(ϑ, ϕ)±B−(ϑ, ϕ),

B1s,a(ϑ, ϕ) = B+
1 (ϑ, ϕ)±B−1 (ϑ, ϕ), (3.26b)

where

B+(ϑ, ϕ) = 2 sin2 ϑ sin2 ϕ cos2 ϕ,

B−(ϑ, ϕ) = sin2 ϑ cos2 ϑ(1 + sin4 ϕ+ cos4 ϕ),

B+
1 (ϑ, ϕ) = sin2 ϑ cos4 ϕ+ cos2 ϑ sin2 ϕ,

B−1 (ϑ, ϕ) = sin4 ϑ sin2 ϕ+ cos4 ϑ cos2 ϕ

+ sin2 ϑ cos2 ϑ sin2 ϕ cos2 ϕ. (3.26c)

We now need to minimize the free energy with respect to the six parameters.

We will first consider the case H = 0 to understand the pinning of the helix by the

crystal-field terms, and then determined the effects of a magnetic field. Furthermore,

in order to keep the discussion transparent we will initially restrict ourselves to an

ansatz with a circular polarization, δπ = 0. This suffices to understand the existence

of the critical field Hc1. We will then generalize the ansatz to allow for a non-circular

polarization and show that this leads to a splitting of the transition at Hc1, with a

first order transition from a circularly polarized helix to an elliptically polarized one

at a critical field H ′c1 < Hc1 preceding the alignment transition at Hc1.
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3.4.1 Pinning of the helix

We consider the system at H = 0 and initially restrict our ansatz to the case of

circular polarization, δπ = 0. The remaining angular dependence in the free energy,

Eq. (3.26a), is contained in the functions Bs and B1s. Minimizing with respect to

ϕ we find that there are two cases.

Case (1): ϕ = 0, π
2
, π, 3π

2
. This implies q̂ = (0,± sinϑ, cosϑ) or (± sinϑ, 0, cosϑ),

and Bs = 1
2

sin2 2ϑ, B1s = sin2 ϑ+ cos4 ϑ. Minimizing with respect to ϑ leads

to two subcases:

Case (1a): 2b < b1. The free energy is minimized by ϑ = π
4
, 3π

4
, 5π

4
, 7π

4
, which

implies q̂ = (1,0,1)√
2

or equivalent.

Case (1b): 2b > b1. The free energy is minimized by ϑ = 0, π
2
, π, 3π

2
, which

implies q̂ = (1, 0, 0) or equivalent.

Case (2): ϕ = π
4
, 3π

4
, 5π

4
, 7π

4
. This implies q̂ = ( sinϑ√

2
, sinϑ√

2
, cosϑ) or equivalent, and

Bs = 1− sin4 ϑ
2
− cos4 ϑ, B1s = 1− sin2 ϑ+ 3 sin4 ϑ

4
. Minimizing with respect to

ϑ yields

Case (2a): 2b < b1. The free energy is minimized by ϑ = ± arcsin
√

2
3
, which

implies q̂ = (1,1,1)√
3

or equivalent.

Case (2b): 2b > b1. The free energy is minimized by ϑ = 0, π, which implies

q̂ = (0, 0,±1).

By comparing the resulting free energies for these cases we see that Case (1b)

provides the minimum for b > b1
2

, whereas Case (2a) provides the minimum for

48



b < b1
2

. This is a generalization of the result obtained in Ref.[73], which considered

a model with b1 = 0.

In helimagnets such as MnSi and FeGe, the pinning is observed to be in the

〈1, 1, 1〉-directions, which implies b < b1
2

, and we will mostly consider this case from

now on. Minimizing the free energy with respect to q, we find

q =
c

2
[
a+ b+b1

3

] , (3.27)

which generalizes Eq. (2.5). Minimizing with respect to m1 we finally have

f = −(r − δt)2

4u
, (3.28a)

where

δt =
c2

4
[
a+ b+b1

3

] . (3.28b)

These results are valid for H = 0 and b < b1
2

.

3.4.2 The alignment transition, and the critical field Hc1

For H > 0 we expect the pitch vector to move away from (1, 1, 1) towards

(0, 0, 1). The calculation proceeds as for H = 0, except that now the minimization

with respect to ϑ yields an H-dependent result. For Case (2a) we find

β3 ≡ cosϑ =


1 if H ≥ Hc1

1
3

(
1 + 2H2

Hc1
2

)
if H < Hc1,

(3.29a)

where (remember r < δt and b < b1/2 in the ordered phase for Case (2a))

H2
c1 =

(r − δt)
(
b− b1

2

)
(δt)2

ua
. (3.29b)
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The helical pitch vector q̂ thus moves continuously along the shortest path from its

initial value, (1,1,1)√
3

at H = 0, to (0, 0, 1) at H = Hc1, and remains in that position

for H > Hc1. There thus is a second order transition at H = Hc1 [81] that we refer

to as the alignment transition. An inspection shows that Case (1b) has a larger free

energy for all H < Hc1.

For reference in the next subsection we mention that if one expands the free

energy for small values of ϑ, and looks for the instability of the solution with ϑ = 0,

one finds that the latter occurs at H = Hc1, as expected.

3.4.3 The polarization transition, and the critical field H ′c1

The circular polarization ansatz we have used so far explains the two critical

fields Hc1 and Hc2 observed in MnSi. However, the solution obtained in this way

misses a qualitative feature, as was first pointed out in Ref. [82] on symmetry

grounds. Since in general b 6= b1, the crystal-field contribution to the action, Eq.

(2.4a), is not invariant under x ↔ y. As a result, there is no reason for the x

and y-components of q̂ to become nonzero at the same value of H as H is lowered

from above, yet the solution constructed in the previous subsection has this property.

Clearly, this is a result of the fact that our ansatz with circular polarization possesses

cubic symmetry, while the action does not. In general, one therefore expects two

separate transitions in the vicinity of Hc1; one where the x-component of q̂ becomes

nonzero, and a separate one where the y-component becomes nonzero. We now show

that this expectation is borne out if we allow for a non-circular polarization of the
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helix, which breaks the cubic symmetry of the ansatz.

Consider the full Eq. (3.26a), allowing for δπ 6= 0. Minimizing with respect

to ϕ we see that there are two distinct cases.

Case (1): ϕ = 0, π
2
, π, 3π

2
and δπ arbitrary. Minimizing with respect to δπ yields

δπ(ϑ) =
q

2c
[bBa(ϑ) + b1B1a(ϑ)] . (3.30a)

That is, the polarization is in general elliptical. We have B+ = 0, B− =

2 sin2 ϑ cos2 ϑ, which leads to

Bs,a = ±1

2
sin2 2ϑ, (3.30b)

B1s = sin2 ϑ+ cos4 ϑ. (3.30c)

Considering B1a, we find two subcases. The first one is

Case (1)(i): ϕ = 0, π, which implies

q̂ = (± sinϑ, 0, cosϑ), (3.31a)

and

B1a = sin2 ϑ− cos4 ϑ. (3.31b)

The second one is

Case (1)(ii): ϕ = π
2
, 3π

2
, which implies

q̂ = (0,± sinϑ, cosϑ), (3.32a)

and

B1s,a = cos2 ϑ± sin4 ϑ. (3.32b)
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The second case is

Case (2): ϕ = π
4
, 3π

4
, 5π

4
, 7π

4
and

δπ = 0. (3.33a)

That is, the polarization is circular. This implies

q̂ =

(
1√
2

sinϑ,
1√
2

sinϑ, cosϑ

)
, (3.33b)

and

Bs = 1− 1

2
sin4 ϑ− cos4 ϑ, (3.33c)

B1,s = 1− sin2 ϑ+
3

4
sin4 ϑ (3.33d)

Now first consider the case H = 0. Minimizing with respect to ϑ one finds

that, for b < b1
2

, Case (2) yields the lower free energy. 3 The physical solution is thus

a circularly polarized helix pinned in the 〈1, 1, 1〉 directions, and the relaxation of the

condition we had imposed in Sec. 3.4.1 does not change anything. For b > b1
2

, the

physical solution is an elliptically polarized helix pinned in the 〈0, 0, 1〉 directions.

Next we consider a solution with ϑ = 0, which we expect to be stable for

sufficiently large H. It is easy to see that Case (1), which takes advantage of the

possibility of an elliptical polarization, has a free energy that is lower than that of

Case (2) by a term of O(g6
so) everywhere in the conical phase, i.e., for H < Hc2. We

next look for the instability of the ϑ = 0 solution at small H, which can be found by

3More precisely, the criterion is b < b1/2 − 3b21q/c. The reason for this correction is the (δπ)2

term in the free energy, Eq. (3.25a). We neglect this and other corrections that are of higher order

in gso. For instance, there are higher-order corrections to Hc1.
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expanding the action to second order in ϑ and looking for the zero of the coefficient

of the quadratic term. As expected, this instability occurs at a field Hc1 = O(g3
so).

To leading order in gso, Hc1 is given by Eq. (3.29b). The values of Hc1 for the

two cases are different, but the difference is only of O(g5
so) and is irrelevant for the

following argument.

We now have the following situation. For H < Hc1, the free energy of Case

(1) is lower by a term of O(g6
so). However, we know that at H = 0 the free energy

of Case (2) is lower by a term of O(g4
so). The two solutions cross at a field H ′c1 given

by

H ′c1
Hc1

= 1− 1

2

√
3b2

1

4a|b− b1
2
|

= 1−O(g4
so), (3.34)

see Fig. 3.6.

Figure 3.6: Schematic plot of the free energy density as a function of H for Case (1)

(dashed line) and Case (2) (dotted line), respectively.

At this value of H, the state will change discontinuously from an elliptically

polarized helix with a pitch vector given by either Eq. (3.31a) or (3.32a) to a

circularly polarized one with a pitch vector given by Eq. (3.33b).
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We now have the following progression of phases and phase transitions as

the magnetic field is lowered from a value greater than Hc2: H > Hc2: Field-

polarized state, no helix. H = Hc2 ∝ g2
so: Second-order transition to a conical

state with an elliptically polarized helix, q̂ = (0, 0, 1). H = Hc1 ∝ g3
so: Second-

order transition to a conical state with elliptical polarization as above, but q̂ =

(0, sinϑ, cosϑ). ϑ increases from zero with decreasing H. H = H ′c1 = Hc1[1 −

O(gso)]: First-order transition to a conical state with circular polarization and q̂ =

( 1√
2

sinϑ, 1√
2

sinϑ, cosϑ). ϑ increases from its value at H ′c1 with decreasing H.

H = 0: System reaches helical state with circular polarization and q̂ = (1,1,1)√
3

.

The phase diagram is thus predicted to have the structure shown in Fig. 3.1,

with the second order alignment transition at Hc1 followed by a first-order polariza-

tion (and re-alignment) transition at H ′c1. The latter has so far not been observed

experimentally.

It is an explicit realization of the type of transition first predicted by Walker

[82] on symmetry grounds. It needs to be stressed that the detailed features of

this transition are restricted by our ansatz, Eqs. (3.1); the states obtained are not

true minima of the action. However, the basic physical idea, which is expected to be

realized in the true ground state as well, is as follows. In the conical phase, where the

helical pitch vector is aligned with the magnetic field, the system can take advantage

of the lack of cubic symmetry of the action, Eq. (2.4a), by forming a helix with

a non-circular polarization. This leads to an energy gain, compared to a circularly

polarized state, of order g6
so. However, it forces the pitch vector into either the y = 0

or x = 0 plane, i.e., Case (1) above. At low fields, these states have a free energy
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that is larger by a term of O(g4
so) than the states with the pitch vector along a cubic

diagonal, which requires a circular polarization. The competition between these two

effects leads to the first order transition at Hc1, where both the polarization and the

orientation of the pitch vector change discontinuously.

The preceding discussion pertains to the case b < b1. It is worthwhile noting

that the case b > b1 is qualitatively different since the polarization is elliptical for

any value of the magnetic field, see the remark after Eqs. (3.33). In this case, the

transition at H ′c1 is a re-alignment transition, but not a polarization transition.

3.4.4 Pinning of the columnar phase and the NFL region

Experimentally, the columnar phase is found to be pinned very weakly, and

theoretical considerations conclude that the pinning potential is only of O(g6
so). [33]

This is a consequence of its six-fold rotation symmetry. Similarly one expects the

(average) direction of the fluctuating defect lines in the NFL region to be pinned

only very weakly.

3.5 Beyond classical mean-field theory

We have treated the phase transitions that we have discussed in this chapter

within classical mean-field theory, and the question arises what changes will result

from the consideration of fluctuations, classical or quantum. One example of the

effects of fluctuations is the tricritical point and the associated tricritical wings

shown in Fig. 1.10, which result from quantum fluctuations that can be taken into
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account within a renormalized mean-field theory. [29, 75] Elsewhere in the phase

diagram, fluctuations are also of qualitative importance. Consider, for instance, the

transition from the conical phase to the field-polarized phase at the critical field Hc2,

see Fig. 3.1. The transition is characterized by the vanishing of the one-dimensional

order parameter msp, the amplitude of the helix, see Eqs. (3.10). The action is

invariant under msp → −msp, and we therefore expect this transition at nonzero

temperature to be in the universality class of the classical Ising model. [71] At zero

temperature the statics and the dynamics will couple, [83, 84, 85] and one expects

the quantum phase transition to be described by Hertz’s model [83] (see Appendix

D) with a scalar order parameter. Quantum phase transition in itinerant helimagnet

has been studied in Refs. [86] and [87].

3.6 Conclusion and Discussion

In this chapter, through mean-field theory, the phase diagram is a helimagnet

is given as shown in Fig. 3.1. Our model gives the phases of the paramagnet,

ferromagnet, conical phase, pinned helical phase, and the columnar phase. They

were all found in experiments on helimagnets such as MnSi, FeGe and Fe0.8Co0.2Si,

with their measured phase diagrams in Figs. 1.6, 1.7 and 1.9 respectively.

We have also predicted an elliptical conical phase, just beneath the critical

field Hc1, due to the crystal-field effects.

On the other hand, we have not studied the phase diagram due to the change

of pressure. The disordered phase at p > pc is analogous to the blue phase III in
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cholestoric liquid crystal. [88] There are known hexagonal columnar phase in the

liquid crystals. The blue phase III is believed to be an amorphous state, melted

from these hexagonal structures. [39]

Similarly, the Skyrmion lattice approximately described by Eqs. (3.13) or

(3.21) can melt, which will lead to a Skyrmion liquid. In such a state the line

defects shown in Fig. 3.4 still exist, but they no longer form a lattice. Rather,

their fluctuations in the plane perpendicular to the line, which are illustrated in

Fig. 1.18, have become so large that the long-range order is destroyed. Such a state

has recently been proposed to represent the NFL region shown in Fig. 1.11. [50]

Although it is not an ordered phase, such a state has much in common with the

columnar phase and we will discuss it in the context of the ordered phases. Further

studies are needed to understand the nature of the NFL state.
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Chapter 4

Goldstone Modes of Ordered Phases

Goldstone’s theorem [42] states that if a continuous symmetry described by a

Lie group G is spontaneously broken, with the remaining subgroup in the broken-

symmetry phase being H (not to be confused with the magnetic field), then in the

ordered phase there are n soft or massless modes, with n equal to the dimensionality

of the coset space G/H. [89, 90] All of the ordered states discussed in Chapter 3

break a continuous symmetry, and therefore there must be one or more soft modes

in each of the ordered phases. 1 The number and functional form of the Goldstone

modes in the various phases can be determined from general arguments. In this

chapter, we will do so, and augment these arguments by explicit calculations in

some cases where this is feasible. Via a coupling to the conduction electrons, the

Goldstone modes have interesting consequences for various observables.

1Strictly speaking, this is true only within a continuum model. In real magnets, the underlying

lattice means that translational as well as rotational invariance is broken already in the disordered

phase, and no truly massless modes will result from the order. However, since all of the phases of

interest show some kind of helical order with a characteristic wave number q that obeys qa � 1,

with a the lattice constant, the masses of the pseudo-Goldstone modes are exponentially small, see

the discussion in Ref. [44]. Any gaps in the excitation spectra are thus unobservably small, and I

will ignore this effect in this thesis.
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4.1 O(g0
so): Ferromagnons

To zeroth order in gso the system is a ferromagnet. (See Section 3.1.) The

relevant symmetry is the rotation group, G = O(3), which in the ordered state is

spontaneously broken to H = O(2). Hence there are dim(O(3)/O(2)) = 2 Goldstone

modes, the well-known ferromagnons (FM). Their dispersion relation for small wave

numbers is [71]

ωFM(k) = Dk2, (4.1)

with D the spin wave stiffness, which depends on the magnetization and vanishes

as the magnetization goes to zero.

The easiest way to derive this result is to consider a nonlinear σ model ver-

sion of the Heisenberg action. [90] Neglecting fluctuations of the amplitude of the

magnetization, which can be shown to be massive, one parameterizes the order

parameter

M(x) = m||


π1(x)

π2(x)√
1− π2

1(x)− π2
2(x)

 (4.2)

and expands the action to bilinear order in π1,2. Here, m|| is the solution of Eq.

(3.8b). If we neglect the small relativistic term with coupling constant d in Eq.

(2.2b), the resulting quadratic form has two identical eigenvalues

λ =
m||
2

(ak2 +H) (4.3)

For H = 0, one has λ(k → 0) → 0, which reflects the two Goldstone modes.

Physically, the homogeneous transverse magnetic susceptibility diverges. This is the
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static manifestation of the spontaneously broken continuous symmetry. Determining

the dynamics requires an additional step. One either needs to solve an appropriate

Langevin equation within a classical context, [71] or treat the problem quantum

mechanically. [83] Either way one obtains Eq. (4.1) with D ∝ m||.

4.2 O(g2
so): Helimagnons

When the spin-orbit coupling is taken into account, we have the various phases

involving helical spin textures discussed in Chapter 3. For all of these phases the rel-

evant symmetry is the translational one. Let T be the Lie group of one-dimensional

translations. Then the action is invariant under G = T ⊗ T ⊗ T ≡ T 3.

4.2.1 Symmetry arguments

Consider the aligned conical state (ACS) discussed in Section 3.2, from which

the unpinned helical phase emerges as a special case at H = 0. T 3 is broken down

to T 2 (translations in the two directions perpendicular to q̂ = Ĥ), so we expect

one Goldstone mode. At H = 0, one expects the soft fluctuations in the ordered

phase to be phase fluctuations of the helix, and one might naively expect them

to be governed by an action S =
∫
dx (∇φ(x))2, with φ the phase variable, which

would lead to a soft eigenvalue proportional to k2, as in the ferromagnons. However,

the ordered state is also invariant under rotations of q, which can be written as a

phase fluctuation with a nonvanishing gradient, so this cannot be the correct answer.

The lowest-order term allowed by rotational symmetry that involves the gradients
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perpendicular to q is of the form (∇2
⊥u)2, with u a generalized phase variable, and

this leads to an eigenvalue, or inverse order parameter susceptibility, proportional

to the square of 2

ωHM(k) =
√
c|| k

2
|| + c⊥ k4

⊥. (4.4)

The spin wave corresponding to a helimagnon is shown in Fig. 4.1. [44] The dy-

Figure 4.1: Sketch of a longitudinal (left) and transverse (right) helimagnon. The solid

lines delineate planes of spins pointing out of (dotted) or into (crossed circle) the paper

plane.

namics again require additional considerations, which lead to a resonance frequency

that is proportional to the square root of the inverse susceptibility, unlike the ferro-

magnetic case, and this is expressed in Eq. (4.4). 3 These results were first obtained

2These arguments are the same as for cholesteric or smectic liquid crystals, see Ref. [24]. It

should be noted, however, that the result is slightly different for electronic smectics and heli-

cal magnets, respectively, whereas for liquid crystals there is no difference between smectics and

cholesterics in this respect, see Ref. [91].
3It is not entirely obvious that the dynamical part of the action density is (∂tu)2, which leads

to the square root in Eq. (4.4). Establishing this requires an explicit calculation, see Ref. [44].
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by means of an explicit calculation for both classical and quantum helimagnets in

Ref. [44].

A magnetic field breaks the rotational invariance, so a k2
⊥-term will be present

in the dispersion relation. The prefactor is expected to be analytic in H, and we

thus expect for the dispersion relation of this “conimagnon”, the Goldstone mode

of the ACS in Eqs. (3.10),

ωACS(k) =
√
c|| k

2
|| + c′⊥ k2

⊥ + c⊥ k4
⊥, (4.5)

with c′⊥ ∝ H2.

4.2.2 Model calculation

For the action to O(g2
so), Eqs. (3.10) constitute an exact saddle-point solution,

and we can perform an explicit calculation of the Goldstone mode. A complete

parameterization of fluctuations about the saddle point can be written

M(x) =
(
m|| + δm||(x)

)


π1(x)

π2(x)√
1− π2

1(x)− π2
2(x)

+
msp + δmsp(x)√

1 + ψ2(x)


cos(qz + ϕ0(x))

sin(qz + ϕ0(x))

ψ(x)

 .

(4.6)

The first term is the nonlinear σ-model for the homogeneous magnetization from

Section 4.1, and the second one parameterizes fluctuations of the helix in terms of

an amplitude modulation, a phase ϕ0, and a third component ψ. [44] The amplitude

fluctuations one expects to be massive, and an explicit calculation confirms this, so
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we drop δm|| and δmsp. The field ψ(x) is conveniently written

ψ(x) = ϕ+(x) cos(q · x) + ϕ−(x) sin(q · x), (4.7)

which ensure that ϕ± and ϕ0 at zero wave number both correspond to M at wave

number q. Double counting is avoided by restricting the theory to wave numbers

small compared to q. If we use Eq. (4.6) in the action to O(g2
so), Eqs. (2.2a)

and (2.3a), and expand to bilinear order in the fluctuations (φ1, φ2, φ3, φ4, φ5) ≡

(ϕ0, ϕ+, ϕ−, π1, π2), we obtain a Gaussian action

S(2) =
am2

sp

2V

∑
k

5∑
i=1

φi(k)γij(k)φj(−k), (4.8a)

where

γ(k)

=



k2 −iqky iqkx 0 0

iqky q2 + k2

2
+ 1

ξ′2h

H2

H2
c2

−iqkz 0 1
ξ′2h

H2

H2
c2

−iqkx iqkz q2 + k2

2
+ 1

ξ′2h

H2

H2
c2

1
ξ′2h

H2

H2
c2

0

0 0 1
ξ′2h

H2

H2
c2

m2
||

m2
sp

(
q2 + k2 + 1

ξ′2h

)
2iqkz

m2
||

m2
sp

0 1
ξ′2h

H2

H2
c2

0 −2iqkz
m2
||

m2
sp

m2
||

m2
sp

(
q2 + k2 + 1

ξ′2h

)


.

(4.8b)

Of the five eigenvalues, one goes to zero for k→ 0, in agreement with the expectation

from the symmetry arguments given above. It takes the form

λ1 = αk2
z + βk2

⊥ + δk4
⊥, (4.9a)
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with coefficients

α = 1, (4.9b)

β =
ξ′−2
h

q2 + ξ′−2
h

(
H

Hc2

)2

, (4.9c)

δ =
1

2q2(q2 + ξ′−2
h )3

{[
q2 +

1

ξ′2h

(
1− H2

H2
c2

)]3

− 1

ξ′2h

H2

H2
c2

[
q4 +

1

ξ′4h

(
1− H2

H2
c2

)2
]}

.

(4.9d)

This result is consistent with Eq. (4.5). For H = 0, which implies msp = 0, it

reduces to the helimagnon result of Ref. [44]. In addition, there are four massive

eigenvalues that appear in pairs. At zero wave number, they are

λ2 = λ3 ≡ λϕ = q2[1 +
1

q2ξ′2h

H2

H2
c2

+O(H4)], (4.10a)

λ3 = λ4 ≡ λπ =
q2H2

H2
c2 −H2

[1 +
1

ξ′2h

H2
c2 −H2

H2
c2

] +O(H4). (4.10b)

We recognize λϕ as representing the massive helimagnon modes, [44] modified by

the presence of homogeneous magnetization m||, and λπ as the massive (due to the

presence of a magnetic field) ferromagnons, Eq. (4.3), modified by the presence

of helimagnetic component msp. The massless helimagnon mode is given by Eq.

(7.10).

4.3 O(g2
so): Goldstone modes in the columnar phase and the NFL

region

The helical states that have been proposed as candidates for the A phase

and were discussed in Section 3.3.1 are not saddle-point solutions of the action,
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which precludes a model calculation of the Goldstone modes resulting from this

type of order. 4 The solution in Section 3.3.2 is exact, but the fluctuation around

it is still yet to be studied. However, assuming that the order is stabilized by

some mechanism, the functional form of the soft modes can still be determined by

symmetry arguments analogous to those put forward in the previous subsection.

Like all other columnar phases, the state described by Eq. (3.13) or Eq. (3.21)

is invariant only under translations in one direction, viz., the direction perpendicular

to the plane of helices. The same is true for any state that is characterized by

columnar order, so this property does not depend on the precise nature of the

columns. Any such state will thus have dim(T 3/T ) = 2 Goldstone modes. This was

to be expected: Since the columns form a two-dimensional lattice, there should be

two generalized phonon modes, namely, a compression mode and a shear mode. In

zero magnetic field, the energy would still be invariant under global rotations of the

skyrmion lattice. Hence, the soft eigenvalue can have no k2
z contribution. For H 6= 0

this is no longer true, and we thus expect

λ = αk2
⊥ + βk4

z + γk2
z , (4.11)

for the soft eigenvalue, with γ ∝ H2, and

ωSL(k) =
√
c⊥k2

⊥ + c′zk
2
z + czk4

z , (4.12)

for the dispersion relation, with c⊥, cz = O(1) and c′z = O(H2).

4After our paper [48] was published, the spectrum of the Goldstone modes of this three-helix

form of Skyrmion lattice was derived in Ref. [92].
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If the NFL region can be interpreted as a molten A crystal (see Chapter 3),

then one of the two Goldstone modes, the compression mode, will persist as long as

their is columnar structure. This is analogous to the fact that longitudinal phonons,

or ordinary sound, exist in a liquid, whereas in a crystal one has transverse phonons

or shear modes in addition. The NFL region extends to H = 0, where the dispersion

relation of the compressional Goldstone mode is given by Eq. (4.12) with c′z = 0 to

first order in gso.

4.4 O(g4
so): Effects of the crystal-field terms

4.4.1 Symmetry arguments

Now consider the crystal-field terms in the action that first appear at O(g4
so),

Eq. (2.4a). For simplicity, let us consider the term with coupling constant b (the

pinning term) with H = 0. It breaks rotational invariance, which invalidates the ar-

gument that leads to the absence of a k2
⊥-term in the soft mode resonance frequency.

The system must remain stable regardless of the sign of b, and we thus expect for

the dispersion relation of the helimagnons in the pinned helical state

ωHM(k) =
√
c||k2
|| + c′′⊥k2

⊥ + c⊥k4
⊥, (4.13)

with c′′⊥ ∝ |b|, which replaces Eq. (4.4). For the more general model given by Eqs.

(2.1) - (2.4), b1, v, and H will also contribute to the elastic constant c′′⊥.

66



4.4.2 Model calculation

We now check this expectation by means of an explicit calculation. For the

model with only the first of the crystal-field terms present, we have an exact saddle-

point solution, namely,

M(x) = msp [ê+ cos(q · x) + ê− sin(q · x)] , (4.14a)

with ê+, ê−, and q a dreibein, and

msp =

√
aq2 − r
u

, (4.14b)

where

q = q


(1,1,1)√

3
if b < 0

(1, 0, 0) if b > 0,

(4.14c)

q =


c

2(a+ b
3)

if b < 0

c
2a

if b > 0.

(4.14d)

The parameterization of fluctuations about this state is given by the second term

in Eq. (4.6):

M(x) = (msp + δmsp)
[
ê+ cos(q ·x+ϕ0(x))+ ê− sin(q ·x+ϕ0(x))+ q̂ψ(x)

]
, (4.15)

with ψ(x) given by Eq. (4.7). We again drop the massive amplitude fluctuations

and expand the action to quadratic order in the phase fluctuations. The Gaussian

action is of the form

A(2)[ϕi] =
m2

1

2

∑
k

∑
α=0,±

ϕα(k)Γαβ(k)ϕβ(k). (4.16)
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The explicit form of the matrix Γ depends on the sign of b. Neglecting rapidly

fluctuating Fourier components proportional to einq·x with n ≥ 2 one finds

A(2)[δM]

m2
sp

=
1

2

∫
dxϕ0(x)

[
r + aq2 − cq + um2

sp +
b

2

3∑
i=1

q2
i

[
(êi+)2 + (êi−)2

]]
ϕ0(x)

+
1

4

∫
dx

∑
α=±

ϕα(x)

[
r + aq2 + um2

sp + bq2

3∑
i=1

q̂4
i

]
ϕα(x)

−1

2
bq2

∫
dx

∑
α=±

3∑
i=1

êiαq̂
3
iϕ0(x)ϕα(x) + (gradient terms) (4.17)

An explicit calculation shows that

3∑
i=1

q̂2
i

[
(êi+)2 + (êi−)2

]
= 1− f(q̂), (4.18a)

3∑
i=1

q̂4
i = f(q̂), (4.18b)

with

f(q̂) = β4
1 + β4

2 + β4
3 , (4.18c)

where β1,2,3 are the direction cosines of q̂. Furthermore,

3∑
i=1

êiα (q̂i)
3 = 0 (4.18d)

for α = +,− and for both q̂ = (1,1,1)√
3

and q̂ = (1, 0, 0). Then ϕ0-ϕα vertices vanish.

Using the equation of state, Eq. (4.14b), we see that the ϕ0-ϕ0 vertex and the

ϕα-ϕα vertices all vanish. At zero wave number we thus have one zero eigenvalue

that corresponds to one Goldstone mode, in agreement with the expectation from

Section 4.2.1.

We next calculate the gradient-squared terms. Geometric identities similar to

those expressed in Eqs. (4.18) allow to determine the vertices. One finds a Gaussian
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action of the form given by Eq. (4.16). For b > 0, the matrix Γ is given by

Γ(k) =


ak2 + b

2
k2
⊥ −i c

2
ky −i c

2
kx

i c
2
ky

cq
2

+ a
2
k2 + b

2
k2
z i(a+ b)qkz

i c
2
kx −i(a+ b)qkz

cq
2

+ a
2
k2 + b

2
k2
z

 .

(4.19)

For b < 0, the matrix Γ takes the form

Γ00(k) =

(
a+

b

3

)
k2,

Γ0+(k) = Γ+0(k)∗ = i

(
c

2
+
bq

3

)
1√
2

(k|| − 3kz) +
b

2
√

6
(k2
x − k2

y),

Γ0−(k) = Γ−0(k)∗ = i

(
c

2
+
bq

3

)
1√
2

(kx − ky)−
b

2
√

6
(k2
x + k2

y − 2k2
z),

Γ++(k) = Γ−−(k) =
cq

2
+

1

2

(
a+

b

3

)
k2,

Γ+−(k) = Γ−+(k)∗ = i

(
a+

b

3

)
qk|| (4.20)

An inspection of the eigenvalues shows that in either case there is one eigen-

value λ that vanishes as k → 0 and hence represents the Goldstone mode, as ex-

pected from the symmetry argument given above. To order k2
|| and k4

⊥ we find

λ =


ak2
|| +

b
2
k2
⊥ + a+b

2

k4
⊥
q2 , if b > 0,

(
a+ b

3

)
k2
|| +

2
3
|b|k2

⊥ + a+b+O(g4
so)

2

k4
⊥
q2 , if b < 0.

(4.21)

In the case b < 0 we have neglected terms proportional to b2 = O(g4
so) in the

prefactor of
k4
⊥
q2 . This result agrees with the functional form obtained by symmetry

arguments alone, Eq. (4.13), and for b = 0 it correctly reduces to the result for the

isotropic model in Eq. (4.4). [44]
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4.4.3 Generalized helimagnons

We can now summarize the results for the single-helix phases discussed above

as follows. In the helical and conical phases, including pinning effects, there is a

single Goldstone mode with a resonance frequency

ω0(k) =
√
c||k

2
|| + c̃⊥k2

⊥ + c⊥k4
⊥, (4.22)

with c̃⊥ = O(H2, g2
so) small compared to c|| and c⊥. This comprises Eqs. (4.5) and

(4.13). From our results, we can also see the crossover between the regimes where c̃⊥

is dominated by pinning and magnetic field effects, respectively. Eqs. (4.16), (4.21),

(4.8a) and (4.9) imply that deep inside the ordered phase c̃⊥ is well represented by

c̃⊥ ∝ |b|+ a
H2

H2
c2

. (4.23)

Since H2
c1 ≈ H2

c2
|b|
a

,, it follows that c̃⊥ is dominated by pinning and magnetic field

effects for H < Hc1 and H > Hc1, respectively.

4.4.4 Columnar phase, and NFL region

In the columnar phase, pinning effects are weaker than in the helical phase

due to the hexagonal nature of the lattice. When this weak pinning is taken in

to account, the Goldstone mode is thus given by Eq. (4.12) with c′z = O(g6
so, H

2).

While in MnSi the columnar phase is observed only in an external magnetic field,

there is no intrinsic reason why in some other system it could not be stable in a zero

field. The Goldstone modes in such a system would be given by Eq. (4.12) with an

extremely small c′z. By the same argument, in the NFL region at H = 0 we expect

a Goldstone mode given by Eq. (4.12) with c′z = O(g6
so).
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4.5 Temperature regimes of the generalized helimagnons

The analytical structures of the various Goldstone modes, and the fact that

the various elastic coefficients have very different magnitudes, leads to the formation

of different temperature regimes that are dominated by different physics. We now

explain this using the generalized helimagnons, Eq. (4.22), as an example; the

argument for the other cases works analogously. As far as the coupling of the

magnetic Goldstone mode to the electronic degrees of freedom is concerned, the

resonance frequency ω0 scales as the temperature, ω0 ∼ T . If we scale k|| with T√
c||

and k⊥ with
√
T

c
1/4
⊥

, we obtain

ω0(k) = T

√
k2
|| + k2

⊥
c̃⊥

T
√
c⊥

+ k4
⊥, (4.24)

where k now denotes the scaled, dimensionless, wave number. For T � c̃⊥√
c⊥

the

symmetry-breaking k2
⊥ term is negligible, and the Goldstone mode is effectively what

it would be in a rotationally invariant system. In this regime the physics is dom-

inated by universal hydrodynamic effects that are independent of the microscopic

details of the solid and analogous to the corresponding effects in liquid crystals. In

the opposite limit, T � c̃⊥√
c⊥

, the crystal-field effects due to the underlying ionic lat-

tice, or the external magnetic field, if present, dominate and the Goldstone mode has

the same functional form as (anisotropic) acoustic phonons. Due to the smallness

of c̃⊥ the universal hydrodynamic regime is sizable, and it is in this region that the

most interesting effects of the magnetic order manifest themselves in the electronic

properties of the system. This is true especially if the Goldstone mode appears in

zero magnetic field and the pinning is very small, such as in the NFL region or a

71



(so far hypothetical) A phase in zero field.

We finally mention that the generalized helimagnon dispersion relation as given

by Eq. (4.22) is valid only for wave numbers k < q. As a result, the anisotropy

dominates the temperature dependence of observables only for temperatures [93]

T � Tq =
√
c|| q. (4.25)

Tq thus provides an upper bound for the universal hydrodynamic regime.

Distinguishing between the universal hydrodynamic regime and the crystal-

field regime is essential in deriving the electronic properties of the helimagnets, see

Chapter 5.

4.6 Conclusion

To summarize, we have found that the (single) Goldstone mode in the pinned

helical and conical phases is given by Eq. (4.22). In the pinned helical phase, the

parallel direction is determined by the crystal-field effects that pin the helix; in the

conical phase, it is the direction of the magnetic field (which we have chosen to

be the z-direction for all of our considerations). The elastic constant c̃⊥ is small

compared to the other elastic constants. In the pinned helical phase it is of O(g2
so),

and in the conical phase it is of O(H2). By contrast, c|| and c⊥ are of O(gso) and

O(g0
so), and of O(H0), respectively.

In the columnar phase, there are two Goldstone modes whose dispersion rela-

tion is given by Eq. (4.12). The elastic constant c′z is small of O(H2) and O(g6
so)

compared to the others. In the NFL region, the single Goldstone mode is also given
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by Eq. (4.12), with c′z = O(g6
so).
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Chapter 5

Electronic Properties of Different Phases

In this chapter, we discuss the consequences of the Goldstone modes in Chap-

ter 4 on various transport properties of the helimagnet, via a coupling between the

Goldstone modes and the conduction electrons. We derive the consequences for the

specific heat, the single-particle relaxation rate, and the thermal and electrical resis-

tivities. The temperature dependence of the specific heat can be found readily. For

other properties, we have to first consider a microscopic model in terms of electronic

degrees of freedom that leads to the helimagnet, and build in the Goldstone bosons

as the fluctuations. The single-particle relaxation rate and the transport relaxation

rate can be derived from the microscopic model.

In all cases we consider the contribution of the Goldstone mode in isolation;

it comes in addition to all other contributions to these observables, and the results

given are valid for T � Tq, given by Eq. (4.25).

In this chapter, we use units such that kB = ~ = 1.

5.1 Specific heat

Any well-defined (i.e., not overdamped) excitation with a dispersion relation

ω(k) yields a contribution to the specific heat C given by [71]

C(T ) =
∂

∂T

1

V

∑
k

ω(k)nB(ω(k)). (5.1)
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Here nB(x) = 1

exp( xT )−1
is the Bose distribution function, and V is the system volume.

This allows one to determine the contributions to the specific heat by the various

Goldstone modes.

5.1.1 Generalized helimagnons

We first consider the helical and aligned conical phase. The dispersion relation

is given by Eq. (4.22). Performing the integral in Eq. (5.1) yields

C(T ) = const.×


T 3
√
cz c̃⊥

if T � c̃⊥√
c⊥

T 2
√
czc⊥

if T � c̃⊥√
c⊥

, (5.2)

The universal hydrodynamic result, C(T ) ∝ T 2 is subleading to, but distinct from,

the Fermi-liquid result C(T ) ∝ T + O(T 3 lnT ). [53] At asymptotically low tem-

peratures it crosses over to a T 3 behavior consistent with the acoustic-phonon-like

dispersion relation in either the pinned helical phase or the aligned conical phase at

asymptotically small wave numbers.

5.1.2 Columnar phase

In the columnar phase, we find from Eq. (4.12) in conjunction with Eq. (5.1)

C(T ) = const.×


T 3

c⊥c′z
if T � c′z/

√
cz

T 5/2

c⊥c
1/4
z

if T � c′z√
cz
.

(5.3)
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5.2 Microscopic model for helimagnets

5.2.1 The action in terms of canonical variables

To get the relaxation times, we need a model beyond the LGW functional so

that the electronic degrees of freedom are considered. In Refs. [44, 93], an effective

action for clean itinerant electrons in the presence of long-range helical magnetic

order, and helical magnetic fluctuations interacting with the electronic degrees of

freedom was derived. This action can be written as

Seff[ψ̄, ψ] = S0[ψ̄, ψ] +
Γ2

t

2

∫
dxdy δnis(x)χijs (x, y)δnjs(y), (5.4)

where nis(x) = ψ̄α(x)σiαβψβ(x) is the electronic spin density, σi (i = 1, 2, 3) denotes

the Pauli matrices, δnis = nis − 〈nis〉 is the spin density fluctuation, Γt is the spin-

triplet interaction amplitude, and
∫
dx =

∫
d3x

∫ 1/T

0
dτ . In Eq. (5.4), S0 denotes an

action,

S0[ψ̄, ψ] = S̃0[ψ̄, ψ] +

∫
dxH0(x) · ns(x), (5.5a)

where,

H0(x) = Γt〈ns(x)〉 = Γtm(x) (5.5b)

is proportional to the average magnetization m(x) = 〈ns(x)〉. In the helimagnetic

state,

H0(x) = λ[cos(q · x)x̂ + sin(q · x)ŷ], (5.5c)

where we will take the pitch vector q to point in the z-direction, q = qẑ, and

λ = Γtmsp is the Stoner gap, with msp the helimagnetic amplitude. S̃0 in Eq. (5.5a)

contains the action for non-interacting band electrons plus, possibly, an interaction
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in the spin-singlet channel. Finally, fluctuations of the helimagnetic order are taken

into account by generalizing H0 to a fluctuating classical field H(x) = ΓtM(x) =

bH0 +ΓtδM(x), where M(x) represents the spin density averaged over the quantum

mechanical degrees of freedom. χijs (x, y) = 〈δMi(x)δMj(y)〉 in Eq. (5.4) is the

magnetic susceptibility in the helimagnetic state, and the action (5.4) has been

obtained by adding a part that governs the fluctuations δM to the electronic part,

and then integrating out δM.

The susceptibility χs was calculated, [44] and is related to the Goldstone modes

for helimagnetic phases in Eq. (4.22), or A phase in Eq. (4.12). For example, the he-

limagnon is given in terms of magnetization fluctuations that can be parameterized

by

δMx(x) = −mspφ(x) sin qz (5.6a)

δMy(x) = mspφ(x) cos qz. (5.6b)

δMz = 0 in an approximation that suffices to determine the leading behavior of

observables. In Eqs. (5.6), φ is a phase variable. In Fourier space, the phase-phase

correlation function in the long-wavelength and low-frequency limit is,

χ(k) ≡ 〈φ(k)φ(−k)〉 =
1

2NF

q2

3k2
F

1

ω2
0(k)− (iΩ)2

, (5.7)

with NF the electronic density of states per spin at the Fermi surface, kF the Fermi

wave number, 1 and k = (k, iΩ). The bosonic Matsubara frequency is given by [94]

iΩ ≡ iΩn = i2πTn, (5.8)

1Due to the Stoner splitting, one strictly speaking has to distinguish between Fermi-surface

properties, such as the Fermi wave number, the density of states at the Fermi surface etc., in
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where n = 0,±1,±2, etc. The pole frequency is either Eqs. (4.22) or (4.12). For

later reference, we also list its spectral function

χ′′(k, u) = Imχ(k, iΩ→ u+ i0) =
π

12NF

q2

k2
F

1

ω0(k)
[δ(u− ω0(k))− δ(u+ ω0(k))] .

(5.9)

This specifies the action given in Eq. (5.4). In Fourier space, and neglecting

any spin-singlet interaction, it can be written,

Seff[ψ̄, ψ] = S0[ψ̄, ψ] + Sint[ψ̄, ψ], (5.10a)

S0[ψ̄, ψ] =
∑
p

(iω − ξp)
∑
σ

ψ̄σ(p)ψσ(p) + λ
∑
p

[
ψ̄↑(p)ψ↓(p+ q) + ψ̄↓(p)ψ↑(p− q)

]
,

(5.10b)

Sint[ψ̄, ψ] = −λ
2

2

T

V

∑
k

χ(k) [δn↑↓(k − q)− δn↓↑(k + q)] [δn↑↓(−k − q)− δn↓↑(−k + q)] ,

(5.10c)

where V is the system volume, and

iω ≡ iωn = i2πT

(
n+

1

2

)
, (5.10d)

(where n = 0,±1,±2, . . .) is a fermionic Matsubara frequency,

nσ1σ2(k) =
∑
p

ψ̄σ1(p)ψσ2(p− k), (5.10e)

and

δnσ1σ2(k) = nσ1σ2(k)− 〈nσ1σ2(k)〉. (5.10f)

the two Stoner bands. For a weak helimagnet the differences between these quantities are small,

and we will systematically neglect them. This amounts to working to lowest order in the small

parameter λ
εF

.
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Here p = (p, iω), and q denotes the four-vector (q, 0). In Eq. (5.10b), ξp = εp− εF ,

with εF the Fermi energy, and εp the single-particle energy-momentum relation. The

latter we will specify in Eq. (5.21) below.

In the above effective action, S0 represents noninteracting electrons on the

background of helimagnetic order that has been taken into account in a mean-field

or Stoner approximation. Fluctuations of the helimagnets or columnar phase lead

to an effective interaction between the electrons via an exchange of helimagnons or

phonons in the columnar phase. This is reflected by the term Sint, and the effective

potential is proportional to the susceptibility χ.

5.2.2 Canonical transformation to quasiparticle variables

The action S0 in Eq. (5.10b) above is not diagonal in either the spin index

or the wave number. A cursory inspection shows that by a suitable combination

of the fermion fields it is possible to diagonalize S0 in spin space. It is much less

obvious that it is possible to find a transformation that simultaneously diagonalizes

S0 in wave number space. This makes the calculation of transport properties very

complicated as in Ref. [93]. In what follows we construct such a transformation,

i.e. we map the electronic helimagnon problem onto an equivalent problem in which

space is homogeneous, according to the transformation scheme detailed in Ref. [95].

Let us define a canonical transformation of the electronic Grassmann fields ψ̄
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and ψ to new quasiparticle fields η̄ and η, which also are Grassmann-valued, by

ψ̄↑(p) =
[η̄↑(p) + αp η̄↓(p)]√

1 + α2
p

, (5.11a)

ψ̄↓(p) =
[η̄↓(p− q)− αp−q η̄↑(p− q)]√

1 + α2
p−q

, (5.11b)

ψ↑(p) =
[η↑(p) + αpη↓(p)]√

1 + α2
p

, (5.11c)

ψ↓(p) =
[η↓(p− q)− αp−qη↑(p− q)]√

1 + α2
p−q

. (5.11d)

The coefficient αp is determined by inserting the Eqs. (5.11) into Eq. (5.10b) and

requiring this noninteracting part of that action to be diagonal in the spin labels.

This requirement can be fulfilled by choosing it to be real and frequency independent,

and given by

αp =
1

2λ

[
ξp+q − ξp +

√
(ξp+q − ξp)2 + 4λ2

]
. (5.12)

The transformation of variables changes the path integration measure as follows:

D[ψ̄, ψ] ≡
∏
p,σ

dψ̄σ(p)dψσ(p)

=
∏
p,σ

dη̄σ(p)dησ(p) = D[η̄, η], (5.13)

with Jacobian equal to unity. Then the partition function is given by

Z =

∫
D[ψ̄, ψ]eSeff[ψ̄,ψ] =

∫
D[η̄, η]eSeff[η̄,η]. (5.14)

In terms of these new Grassmann fields the Jacobian is unity, and the noninteracting

part of the action reads

S0[η̄, η] =
∑
p,σ

[iω − ωσ(p)] η̄σ(p)ησ(p). (5.15a)
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Here σ = (↑, ↓) ≡ (1, 2), and

ω1,2(p) =
1

2

[
ξp+q + ξp ±

√
(ξp+q − ξp)2 + 4λ2

]
. (5.15b)

The noninteracting quasiparticle Green function thus is

G0,σ(p) =
1

iω − ωσ(p)
. (5.15c)

Physically, the Eqs. (5.15) represent soft fermionic excitations about the two Fermi

surfaces that result from the helimagnetism splitting the original band. This Gaus-

sian action is diagonal in wave number space, so the quasiparticle system is homo-

geneous.

The interacting part of the action consist of two pieces. One contains terms

that couple the two Fermi surfaces. Because there is an energy gap, namely, the

Stoner gap λ, between these surfaces, these terms always lead to exponentially small

contributions to the electronic properties at low temperatures, and will be neglected

here. The second piece is, in terms of the quasiparticle fields,

Sint[η̄, η] = −λ
2q2

8m2
e

T

V

∑
k

χ(k)δρ(k)δρ(−k). (5.16a)

Here we have defined

ρ(k) =
∑
p

γ(k,p)
∑
σ

η̄σ(p)ησ(p− k), (5.16b)

with

γ(k,p) =
2me

q

αp − αp−k√
1 + α2

p

√
1 + α2

p−k

, (5.16c)

where me is the electron effective mass, and

δρσ(k) = ρσ(k)− 〈ρσ(k)〉. (5.16d)
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An important feature of this result is the vertex function γ(k,p), which is propor-

tional to k for k → 0. The physical significance is that φ is a phase, and hence

only the gradient of φ is physically meaningful. Therefore, the φ-susceptibility χ

must occur with a gradient squared in Eq. (5.16a). 2 Also note the wave number

structure of the fermion fields in Eq. (5.16b), it the same as in a homogeneous

problem.

5.2.3 Nonmagnetic disorder

In the presence of nonmagnetic disorder there is an additional term in the

action. In terms of the original Grassmann variables, it reads

Sdis[ψ̄, ψ] =

∫
d3x

∑
σ

u(x)ψ̄σ(x)ψσ(x). (5.17)

Here u(x) is a random potential that we assume to be governed by a Gaussian

distribution with a variance given by

{u(x)u(y)}dis =
1

2πNFτ
δ(x− y). (5.18)

Here {. . .}dis denotes an average with respect to the Gaussian probability distribu-

tion function, and τ is the (bare) elastic mean-free time. Inserting the Eqs. (5.11)

into Eq. (5.17) yields Sdis[η̄, η]. Ignoring terms that couple the two Fermi surfaces

(which lead to exponentially small effects at low temperatures) yields

Sdis[η̄, η] =
∑
k,p

∑
iω

∑
σ

1 + αkαp√
(1 + α2

k)(1 + α2
p)
u(k− p)

×η̄σ(k, iω)ησ(p, iω). (5.19)

2In the formalism of Ref. [93] this feature became apparent only after complicated cancellations;

in the current formalism it is automatically built in.
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5.2.4 Explicit quasiparticle action

So far we have been very general in our discussion. In order to perform explicit

calculations, we need to specify certain aspects of our model. First of all, we make

the following simplification. In most of our calculations below we will work in the

limit where λ � vFq = 2εF q
kF

with vF the Fermi velocity; i.e., the Stoner splitting

of the Fermi surfaces is large compared to the Fermi energy times the ratio of the

pitch wave number to the Fermi momentum. Since the dominant contributions to

the observables will come from wave vectors on the Fermi surface, this implies that

we can replace the transformation coefficients αp, Eq. (5.12), by unity in Eq. (5.19),

and in the denominator of Eq. (A.3d). In particular, this means that the disorder

potential in Eq. (5.19) couples to the quasiparticle density:

Sdis[η̄, η] =
∑
k,p

u(k− p)
∑
iω

∑
σ

η̄σ(k, iω)ησ(p, iω). (5.20)

Second, we must specify the electronic energy-momentum relation εp. Many of

the electronic effects in metallic helimagnets are stronger when the underlying lattice

and the resulting anisotropic energy-momentum relation is taken into account, as

opposed to working within a nearly-free electron model. [93] We will assume a cubic

lattice, as appropriate for helimagnets such as MnSi, so any terms consistent with

cubic symmetry are allowed. To quartic order in p the most general εp consistent

with a cubic symmetry can be written

εp =
p2

2me

+
ν

2mek2
F

(p2
xp

2
y + p2

yp
2
z + p2

zp
2
x), (5.21)

with ν a dimensionless measure of deviations from a nearly-free electron model.

Generically one expects ν = O(1). Other quartic terms that are consistent with a
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Figure 5.1: The effective quasiparticle interaction due to helimagnons.

cubic symmetry, e.g., the cubic anisotropy k4
x + k4

y + k4
z can be obtained by adding

an isotropic (k2)2 term to Eq. (5.21). Cases for ν = 0 and ν 6= 0 yield different

temperature dependences for transport coefficients. [93]

With this model, and assuming λ � qvF, which is typically satisfied, given

the weakness of the spin-orbit interaction, we obtain for the interaction part of the

action from Eqs. (5.16)

Sint = −T
V

∑
k,p1,p2

V (k; p1,p2)
∑
σ1

[η̄σ1(p1 + k)ησ1(p1)− 〈η̄σ1(p1 + k)ησ1(p1)〉]

×
∑
σ2

[η̄σ2(p2 − k)ησ2(p2)− 〈η̄σ2(p2 − k)ησ2(p2)〉] , (5.22)

where the effective potential is

V (k; p1,p2) = V0χ(k)γ(k,p1)γ(−k,p2). (5.23a)

Here,

V0 =
λ2q2

8m2
e

, (5.23b)

and,

γ(k,p) =
1

2λ

[
kz +

ν

k2
F

(
kzp

2
⊥ + 2(k⊥ · p⊥)pz

)]
+O(k2). (5.23c)

The effective interaction is depicted diagrammtically in Fig. 5.1.
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Examining the Eqs. (5.22) and (5.23), we see two important features. First,

the effective potential is indeed proportional to k2χ(k). As was mentioned after

Eq. (5.16d), this is required for a phase fluctuation effect. Second, the effective

interaction is long-ranged, due to the singular nature of the susceptibility χ(k) at

long wave lengths and low frequencies, see Eq. (5.7). This is a consequence of the

soft mode, the helimagnon, that mediates the interaction.

In summary, we now have the following quasiparticle action:

SQP[η̄, η] = S0[η̄, η] + Sint[η̄, η] + Sdis[η̄, η], (5.24a)

with S0 from Eqs. (5.15), Sint from Eqs. (5.22) and (5.23), and Sdis given by Eq.

(5.20). The partition function is given by

Z =

∫
D[η̄, η] eSQP[η̄,η], (5.24b)

with a canonical measure

D[η̄, η] =
∏
p,σ

dη̄σ(p)dησ(p). (5.24c)

5.2.5 Screening of the quasiparticle interaction

The quasiparticle interaction potential shown in Eqs. (5.23) must be screened,

and an important question is whether this will change its long-ranged nature. In

the usual ladder or random-phase approximation the screened potential Vsc is deter-

mined by an integral equation that is shown graphically as, like Dyson’s equation,
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[94]

� =�+�,

(5.25a)

and analytically given by

Vsc(k; p1,p2) = V (k; p1,p2)+
T

V

∑
p3

V (k; p1,p3)
∑
σ

G0,σ(p3−k)G0,σ(p3)Vsc(k; p3,p2).

(5.25b)

It is convenient to define a screening factor fsc by writing

Vsc(k; p1,p2) = V (k; p1,p2)fsc(k; p1,p2). (5.26)

Inserting Eq. (5.26) in Eq. (5.25b) leads to an algebraic equation for fsc with a

solution

fsc(k; p1,p2) =
1

1− V0
1
V

∑
p γ(k,p)γ(−k,p)χL(p, iΩ)

, (5.27a)

where

χL(p, iΩ) = −T
∑
iω

∑
σ

G0,σ(p, iω)G0,σ(p, iω − iΩ). (5.27b)

The most interesting effect of the screening is at k → 0, and therefore we need to

consider only χL(p, iΩ = i0) ≡ χL(p). This is essentially the Lindhard function,

[96] and we use the approximation 1
V

∑
p |p|nχL(p) ≈ knFNF. Neglecting prefactors

of O(1) this yields

1

V

∑
p

γ(k,p) γ(−k,p)χL(p) ≈ NF

4λ2

[
(1 + ν)2k2

z + ν2k2
⊥
]
.
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We finally obtain

Vsc(k; p1,p2) = V0χsc(k)γ(k,p1)γ(−k,p2), (5.28a)

where

χsc(k) =
1

2NF

q2

3k2
F

1

ω̃2
0(k)− (iΩ)2

. (5.28b)

Here for pure helimagnons,

ω̃2
0(k) = c̃zk

2
z + V0

ν2

24

q2

k2
Fλ

2
k2
⊥ + c⊥k4

⊥, (5.28c)

with

c̃z = cz

[
1 +

q2

k2
F

(εF
λ

)2
]
, (5.28d)

where [44, 95]

cz = λ2 q
2

36
k4

F, (5.28e)

c⊥ =
λ2

96
k4

F. (5.28f)

We see that the screening has two effects on the frequency ω̃0 that enters the

screened potential instead of the helimagnon frequency ω0. First, it renormalizes

the elastic constant cz by a term of order
(

q
kF

)2

( εF
λ

)2. This is a small effect as long

as qvF � λ. Second, it leads to a term proportional to k2
⊥ in ω̃2

0. Such a term also

exists in the helimagnon frequency proper, since the cubic lattice in conjunction

with spin-orbit effects breaks the rotational symmetry that is responsible for the

absence of a k2
⊥ term in ω0, and it is of order

bczq2k2
⊥

k2
F

, with b = 0(1). The complete

expression for ω̃2
0 is thus given by

ω̃2
0(k) = c̃zk

2
z + b̃cz

(
q

kF

)2

k2
⊥ + c⊥k4

⊥, (5.29a)
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with

b̃ = b+ (εF/λ)2. (5.29b)

This puts a lower limit on the temperature range where the isotropic helimagnon

description is valid. In the absence of screening, this lower limit is given by

T > Tso = bλ

(
q

kF

)4

. (5.30a)

This lower limit reflects the spin-orbit interaction effects that break the rotational

symmetry, and it is small of order (q/kF)4. Screening changes this condition to

T > T̃so = b̃λ

(
q

kF

)4

, (5.30b)

which is still small provided qvF � λ. We will therefore ignore the screening in the

remainder of this thesis.

Similar argument for the negligence of quasiparticle screening holds for the

columnar phase.

5.3 Transport properties of a clean helimagnet

5.3.1 Single particle relaxation rates

In this section, we determine the single-particle relaxation rate due to inter-

actions in conical phase and columnar phase, and its modification due to disorder

in ballistic limit.

To this end we calculate the quasiparticle self energy for an action S0 + Sint

from Eqs. (5.15a), (5.22) and (5.23c). To first order in the interaction there are two
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Figure 5.2: Hartree (a), and Fock (b), contributions to the quasiparticle self energy due

to the effective interaction potential V (dotted line).

self-energy diagrams are shown in Fig. 5.2. The direct or Hartree contribution, in

Fig. 5.2(a), is purely real and hence does not contribute to the scattering rate. The

exchange or Fock contribution, in Fig. 5.2(b), is given by

Σσ(p) = −T
V

∑
k

V (k; p− k,p)G0,σ(k − p). (5.31)

We consider the Fermi surface given by ω1(p) = 0, with ω1(p) given in Eq. (5.15b).

The single-particle relaxation rate is given by 1
τ(k,ε)

= −2Im Σ1(k, ε+ i0). With Eqs.

(5.15c) and (5.23) in Eq. (5.31), we find

1

τ(k, ε)
= 2

∫ ∞
−∞

du
∑
p

[
nB

( u
T

)
+ nF

(
ε+ u

T

)]
V ′′(p− k; k,p;u)δ(ε+ u− ω1(p)).

(5.32)

Here

nB(x) =
1

ex − 1
, (5.33a)

nF(x) =
1

ex + 1
, (5.33b)

are the Bose and Fermi distribution functions, respectively, and V ′′(k; p1,p2;u) =

ImV (k = (k, iΩ→ u+ i0); p1 p2) is the spectrum of the potential. [97] To find the
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relaxation rate, we calculate

1

τ(k)
≡ 1

τ(k, ε = 0)
, (5.34)

where ε = 0 and ω1(k) = 0 on the Fermi surface.

The single-particle relaxation rate, and hence the thermal conductivity, will

be calculated in Section 5.3.3.

5.3.2 Electrical conductivity

In this section, we set up a standard technical formalism for transport the-

ory in the context of the effective model for metallic helimagnets. The electrical

conductivity tensor σij can be expressed in terms of an equilibrium current-current

correlation function by means of the Kubo formula

σij(iΩ) =
i

iΩ
[πij(iΩ)− πij(iΩ = 0)] , (5.35a)

where

πij(iΩ) = −e2T
∑
iω1,iω2

1

V

∑
p1,p2

ji(p1)jj(p2) (5.35b)

×
∑
σ1,σ2

〈η̄σ1(p1, iω1)ησ1(p1, iω1 + iΩ)η̄σ2(p2, iω2)ησ2(p2, iω2 − iΩ)〉,

is the current-current susceptibility or polarization function, with η̄ and η the

fermionic fields. 〈. . .〉 denotes an average with respect to the action in Eqs. (5.24).

For simplicity we suppress the index n. And

j(p) =
∂εp
∂p

, (5.36)
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Figure 5.3: Graphical representation of the polarization function. The directed solid lines

denote Green functions.

is the current vertex. The conductivity here is actually the transport coefficient

for the quasiparticles described by the fermionic fields η̄ and η. The physical con-

ductivity is given in terms of the electron fields ψ̄ and ψ, which are related to the

quasiparticle fields by the transformation given in Eqs. (5.11). However, we will

work to lowest order in the small parameter q
kF

, 3 and to this accuracy the quasi-

particle conductivity is the same as the physical conductivity, as can readily be seen

from Eqs. (5.11).

The four-point fermionic correlation function in Eq. (5.35b) is conveniently

expressed in terms of Green functions G and a vector vertex function Γ with com-

ponents Γi,

πij(iΩ) = −e2T
∑
iω

1

V

∑
σ

iji(p)Gσ(p, iω)Gσ(p, iω − iΩ)Γjσ(p; iω, iω − iΩ),

(5.37)

see Fig. 5.3. This expression is valid if the Green function 〈ησ1(p1, iω1)η̄σ2(p2, iω2)〉

is diagonal in both momentum and spin. For the effective model here, this is the

case (whereas it was not the case in Ref. [93]), and G is expressed in terms of the

3For long-wavelength helimagnets, q is small compared to kF. For MnSi, q = 0.035
◦
A
−1

and

kF = 1.45
◦
A
−1

. Hence q
kF
≈ 0.02� 1.
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self energy Σ by means of the usual Dyson equation

Gσ(p, iω) =
1

G−1
0,σ(p, iω)− Σσ(p, iω)

. (5.38)

Here G0 is the bare Green function by Eq. (5.15c). Eqs. (5.37) and (5.38) just shift

the problem into the determination of the self energy Σ and the vertex function Γ.

In the clean limit, it is well known that care must be taken to treat the self

energy Σ, which enters the Green function G, and the vertex function Γ consistently

in a conserving approximation. [98] The simplest consistent approximation, which is

equivalent to the Boltzmann equation, is to treat the self energy in a self-consistent

Born approximation, and the vertex function in a ladder approximation. [99] The

self energy is given by the Schwinger-Dyson equation in Eq. (5.31), and

Γσ(p; iω, iω − iΩ)

= ij(p)− 1

V

∑
k

T
∑
iΩ′

V (k; p− k,p; iΩ′)Gσ(p− k, iω − iΩ′)Gσ(p− k, iω − iΩ′ − iΩ)

×Γσ(p− k; iω − iΩ′, iω − iΩ′ − iΩ), (5.39)

which is the Bethe-Salpeter equation, for the vertex function. In what follows, we

consider the contribution from the pole ω1(p) and drop the spin label elsewhere. In

the end, the contribution from the pole ω2(p) can simply be added.

If we define a scalar vertex function γ by Γ(p; iω, iω− iΩ) = ij(p)γ(p; iω, iω−

iΩ), we find that γ obeys an integral equation

γ(p; iω, iω − iΩ) = 1− 1

V

∑
k

T
∑
iΩ′

j(p) · j(p− k)

j2(p)
V (k; p− k,p; iΩ′)

×G(p− k, iω − iΩ′)G(p− k, iω − iΩ′ − iΩ)

×γ(p− k; iω − iΩ′, iω − iΩ′ − iΩ). (5.40)
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The polarization function and conductivity tensors are diagonal, σij(iΩ) = δij σ(iΩ).

The sum over fermionic Matsubara frequencies in Eq. (5.40) can be transformed

into an integral along the real axis by standard methods. This procedure yields two

terms where the frequency arguments of the Green functions lie on the same side

of the real axis, and two other terms where they lie on opposite sides. Only the

latter contribute to the leading result as the self energy goes to zero. Since the real

part of the self energy just renormalizes the Fermi energy, and the imaginary part,

which gives the relaxation rate, indeed goes to zero as T → 0, we need to keep only

these retarded-advanced combinations for the purpose of determining the leading

low-temperature dependence of the conductivity. The Kubo formula for the static

conductivity σ = limΩ→0 Reσ(iΩ→ Ω + i0) becomes

σ =
e2

3π

∫ ∞
−∞

dε

4T

1

cosh2
(
ε

2T

) 1

V

∑
p

(j(p))2 |G(p, ε+ i0)|2 γ(p; ε+ i0, ε− i0). (5.41)

The Green functions in Eq. (5.41) ensure that the dominant contribution to the

sum over wave vectors in the limit of a vanishing self energy comes from p such that

ξp = ε. Furthermore, since ε scales with T , for the leading temperature dependence

we can neglect all ε-dependencies that do not occur in the form ε
T

. In a nearly-free

electron model, with a spherical Fermi surface with Fermi wave number kF, and

j(p) = p
me

with me the effective electron mass, we thus have

σ =
e2k2

F

3m2
e

∫ ∞
−∞

dε

4T

1

cosh2
(
ε

2T

) Λ(ε)

Γ0(ε)
. (5.42a)
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Here we have defined

Λ(ε) ≡ 1

V

∑
p

δ(ξp)γ(p; ε+ i0, ε− i0), (5.42b)

Γ0(ε) ≡ − 1

V

∑
p

δ(ξp)Im Σ(p, ε+ i0), (5.42c)

and we neglect the real part of the self energy, which only redefines the zero of

energy.

Using analogous arguments, we find from Eq. (5.40) that Λ obeys an integral

equation

Λ(ε) = 1−NF

∫
duV̄ ′′(u)

[
nB

( u
T

)
+ nF

(
ε+ u

T

)]
Λ(ε+ u)

Γ0(ε+ u)
. (5.43)

Here

V̄ ′′(u) =
1

S2
F

1

V 2

∑
k,p

δ(ξk)δ(ξp)V ′′(k− p; k,p;u)
k · p
k2

(5.44a)

with SF = 1
V

∑
k δ(ξk), is an l = 1 average of the spectrum of the potential over the

Fermi surface. For the purpose of finding the leading temperature dependence of

the conductivity, it can be written

V̄ ′′(u) = V̄ ′′0 (u)− V̄ ′′1 (u), (5.44b)

with

V̄ ′′n (u) =
1

2k2
F

∫ 2kF

0

dp p
(
p2/2k2

F

)n
V ′′(p, u). (5.44c)

The integral equation in Eq. (5.43) is not easy to solve. However, in an

approximation that replaces Λ(ε+u)
Γ0(ε+u)

under the integral by Λ(ε)
Γ0(ε)

, 4 it turns into an

4Details of the analysis can be found in Ref. [100], which discusses the structure of the in-

tegral equation for the vertex function Λ(ε) in Eq. (5.43). It was shown that it leads to the
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algebraic equation whose solution is

Λ(ε) =
Γ0(ε)

Γ1(ε)
, (5.45a)

Here we have used the fact that, in the limit of a small self energy, one find from

Eqs. (5.42c) and (5.31),

Γ0(ε) = −NF

∫
du V̄ ′′0 (u)

[
nB

( u
T

)
+ nF

(
ε+ u

T

)]
, (5.45b)

and we have defined

Γ1(ε) = −NF

∫
du V̄ ′′1 (u)

[
nB

( u
T

)
+ nF

(
ε+ u

T

)]
. (5.45c)

We see that the vertex function Λ effective replaces the single-particle relax-

ation rate Γ with the transport relaxation rate Γ1. To see the relation between

the two, we recall that the frequency u scales with the temperature. For potentials

where the frequency scales with some (positive) power of the wave number, Γ1 will

thus depend on a higher power of the temperature as T → 0 than Γ. 5 It has to be

stressed that the approximate solution, Eq. (5.45a), of the integral equation, Eq.

same temperature dependence of conductivity derived from the Boltzmann equation in the case of

electron-phonon interaction (i.e., the Block-Grüneisen law). For helimagnon case, it also leads to

the same temperature dependences in Ref. [93].
5As an example, consider the case of electron scattering by acoustic phonons, where V ′′(p, u) ∝

cp [δ(u − cp) − δ(u + cp)], with c the speed of sound. In this case, Γ0(ε) ∝ T 3 γ0(ε/T ), whereas

Γ1(ε) ∝ T 5 γ1(ε/T ), where

γn(y) =

∫ ∞
0

dxx2(n+1) [2nB(x) + nF(x+ y) + nF(x− y)] . (5.46)

In this case, the single-particle scattering rate shows a T 3 dependence, whereas the transport

scattering rate, and hence the resistivity, display the familiar Bloch-Grüneisen law, σ ∝ T 5. [99]

95



(5.43), yields the asymptotically exact temperature dependence (although not the

prefactor) of the conductivity. It can been seen from the fact that the asymptotic

solution reproduces the lowest-order variational solution of the Boltzmann equation.

[101]

5.3.3 Summary of transport properties of a clean helimagnet

With the microscopic model developed from Section 5.2, the temperature de-

pendence of the single-particle relaxation rate, as well as that of the electrical trans-

port relaxation rate or the electrical resistivity, can be obtained. The single-particle

relaxation rate is given by putting ε = 0 (Fermi surface) in Eq. (5.32),

1

τ(k)
= 2

∫ ∞
−∞

du

sinh u
T

1

V

∑
p

V ′′(p− k; k,p;u)δ(u− ω1(p)), (5.47)

where the scattering potential V ′′(p − k; k,p;u) is given by Eq. (5.23). On the

other hand, the electrical transport relaxation time, which determines the electri-

cal resistivity, is effectively given by averaging a similar expression over the Fermi

surface,

1

τ tr
el

=
1

NF

∫ ∞
−∞

du

sinh u
T

1

V 2

∑
p,k

(p− k)2

k2
F

V ′′(p− k; k,p;u)δ(u− ω1(p))δ(ω1(k)).

(5.48)

We can compare this with the transport rate in Eq. (5.45c). Note the additional,

compared to Eq. (5.47), factor of (p − k)2 under the integral in Eq. (5.48). This

is characteristic of the description of electrical transport in a Boltzmann approxi-

mation and leads to a temperature dependence of the electrical resistivity that is

different from that of the single-particle relaxation rate. [101, 102] In contrast, in
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a Boltzmann description of thermal transport this additional factor is absent, and

the temperature dependence of the thermal conductivity is given by that of the

single-particle relaxation rate. [102]

For a non-spherical Fermi surface (i.e., ν 6= 0 in Eq. (5.21)), and for generic

wave vectors k, the temperature scaling behavior of the single-particle relaxation

rate 1/τ ≡ 1/τ(k), the thermal resistivity ρth, and the electrical resistivity ρel can

be represented schematically by the expressions

1

τ
∼ ρth ∼

∫
dp||

∫
dp2
⊥

p2
⊥ + p2

||

sinh ω0(p)
T

δ(ω0(p)− p⊥ − p||)
ω0(p)

. (5.49a)

ρel ∼
∫
dp||

∫
dp2
⊥

(p2
⊥ + p2

||)
2

sinh ω0(p)
T

δ(ω0(p)− p⊥ − p||)
ω0(p)

. (5.49b)

The resonance frequency always scales as the temperature, ω0 ∼ T , and the temper-

ature dependence of the relaxation rates thus is determined by how the momentum

components scale with temperature.

5.3.3.1 Generalized helimagnons

For the helical and conical phases we have, from Eq. (4.22), p|| ∼ T , and p⊥ ∼

T and ∼ T 1/2 at asymptotically low and intermediate temperatures, respectively.

This yields the following temperature dependence for the single-particle relaxation

rate and the thermal resistivity:

1

τ
∝ ρth ∝


T 3 if T � c̃⊥√

c⊥

T 3/2 if T � c̃⊥√
c⊥

. (5.50)
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The corresponding result for the electrical resistivity is

ρel ∝


T 5 if T � c̃⊥√

c⊥

T 5/2 if T � c̃⊥√
c⊥

. (5.51)

In a vanishing external field, and in a temperature regime where pinning effects are

not relevant, we recover the T 3/2 and T 5/2 behavior for 1/τ and ρel, respectively, of

Refs. [93] and [103].

5.3.3.2 Columnar phase

For the columnar phase, we obtain by using Eq. (4.12)

1

τ
∝ ρth ∝


T 3 if T � c′z√

cz

T 2 if T � c′z√
cz

. (5.52)

for the single-particle relaxation rate, and

ρel ∝


T 5 if T � c′z√

cz

T 3 if T � c′z√
cz

. (5.53)

for the electrical resistivity.

5.4 Systems with quenched disorder

The preceding results hold for clean systems. In the presence of quenched

disorder, elastic scattering of the conduction electrons leads to profound effects that

manifest themselves in the transport properties. In this section, we evaluate the

leading corrections of disordered to the transport properties.
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One needs to distinguish between the strong-disorder regime, where the trans-

port is diffusive, and the weak-disorder regime, where it is ballistic. In a Fermi

liquid, these two regimes are characterized by Tτ � 1 and Tτ � 1, respectively.

[104] In the diffusive limit, it is well known that an infinite resummation of impurity

diagrams is needed to work to a given order in the disorder. In the ballistic limit,

this is not the case, and a straightforward diagrammatic perturbative expansion in

the number of impurity lines is possible. This yields impurity corrections to the

clean conductivity. In a helical magnet, the weak-disorder or ballistic regime is

characterized by [95, 103] √
(εFτel)2T

λ
� 1, (5.54)

where τel is the elastic relaxation time, which enters the disordered average Green

function in the following section.

5.4.1 Elastic relaxation time

Helimagnetism modifies the elastic scattering rate, even in the absence of in-

teraction effects. To see this we calculate the quasiparticle self energy from the

action S0 + Sdis from Eqs. (5.15a) and (5.17). To first order in the disorder the

relevant diagram is given by the diagram in Fig. 5.4. Analytically it is given by,

Σel
σ (p, iω) = − 1

8πNFτ

1

V

∑
k

[1 + αpαk]2G0,σ(k, iω), (5.55)

with G0 the noninteracting Green function from Eq. (5.15c). For simplicity we put

ν = 0 in Eq. (5.21), i.e., we consider nearly free electrons. In the limit qvF � λ we
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Figure 5.4: Quasiparticle self energy due to weak disorder. The directed solid line denotes

the Green function, the dashed lines denote the disorder potential, and the cross denotes

the disorder average.

obtain for the elastic scattering rate, 1
τel

= −2Im Σσ(p, i0),

1

τel

=
1

τ

√
1− λ

εF
, (5.56a)

In the opposite limit, qvF � λ, we find

1

τel

=
1

4τ

[
1− q

2kF

+O

(
q

kF

)2
]
. (5.56b)

To first order in the disorder and to zeroth order in interactions, the disorder

averaged Green function is [105]

Gσ(p) =
1

iω − ωσ(p) + i
2τel

sgn (ω)
. (5.57)

5.4.2 Single-particle relaxation rate

With the disorder Green’s function, we can calculate its leading correction to

relaxation rates. To first order in the disorder there are two types of diagrammatic

contributions to the single-particle relaxation rate: (A) diagrams that are formally

the same as those shown in Fig. 5.2, except that the solid lines represent the

disorder-averaged Green function given by Eq. (5.57), and (B) diagrams that have

one explicit impurity line. The latter are shown in Fig. 5.5. It is easy to show that
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Figure 5.5: Fock (a,b) and Hartree (c-e) ontributions to the self-energy in the ballistic

limit.

the various Hartree diagrams do not contribute. The class (A) Fock contribution to

the self energy is given by Eq. (5.31), with G0,σ replaced by Gσ from Eq. (5.57).

Power counting shows that, (1) the leading contribution to the single-particle

relaxation rate in the ballistic limit is proportional to T for helimagnons, and T 3/2

for columnar phase, (2) the diagrams of class (A) do not contribute to this leading

term, and (3) of the diagrams of class (B) only diagram (a) in Fig. 5.5 contributes.

Analytically, the contribution of this diagram to the self energy is

Σ(a)
σ (p, iω) ≡ Σ(a)

σ (iω)

= − 1

2πNFτ

T

V

∑
k,iΩ

1

V

∑
p′

V (k, iΩ; p′ − k,p′)G2
σ(p′, iω)Gσ(p′ − k, iω − iΩ).(5.58)

Notice that Σ(a) does not depend on the wave vector. This leads to the following

leading disorder correction to the clean single-particle rate in Eqs. (5.50) and (5.52),
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δ

(
1

τ(p)

)
≡ δ

(
1

τ

)
=

V0

2πNFτ

1

V

∑
k

∫ ∞
−∞

du

π
nF

( u
T

)
χ′′(k, u)ImL++,−(k). (5.59a)

Here χ′′ is the spectral function is the spectral function of the susceptibility, given

by Eq. (5.9), and L++,− is an integral

L++,−(k) =
1

V

∑
p

γ(k,p)γ(k,p− k)G2
R(p)GA(p− k)

= iν2 2π

3

NFm
2
e

λ2k2
F

+O(1/τ,k2
⊥), (5.59b)

with GR,A(p) = G1(p, iω → ±i0) the retarded and advanced Green functions re-

spectively. For temperature scaling purpose, the leading correction to the relaxation

time is given by [48]

δ

(
1

τ

)
∝ δρel ∝ δρth

∼
∫
dunF

( u
T

)∫
dp||

∫
dp2
⊥

1

ω0(p)
δ(u− ω0(p)). (5.60)

5.4.3 Electrical conductivity

Now we come to electrical conductivity. Using the bare disorder averaged

Green function in Eq. (5.57), the Green function G can now be written as

G(p, iω) =
1

G−1(p, iω)− δΣ(p, iω)
, (5.61)

where the self energy δΣ does not contain the simple impurity self-energy that is

incorporated in G.
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We are interested in the leading disorder correction to the clean resistivity,

and in the leading temperature dependence of that correction. To find this, it

suffices to work to first order in both the disorder and the effective potential, and

we can expand the conductivity up to linear order in δΣ and the vertex function Γ.

From Eqs. (5.35a), (5.37) and (5.61) we find the following expression for the static

conductivity σij = Re limΩ→0 σij(iΩ→ Ω + i0):

σij = σ
(0)
ij + δσΣ

ij + δσΓ
ij, (5.62a)

with

σ
(0)
ij =

1

V

∑
p

ji(p) jj(p)
1

2T

∫
dε

4π

1

cosh2
(
ε

2T

) [GR(p, ε)GA(p, ε)− Re (GR(p, ε))2] ,
(5.62b)

δσΣ
ij =

1

V

∑
p

ji(p) jj(p)
1

2T

∫
dε

4π

1

cosh2
(
ε

2T

)2Re
[
(GR(p, ε))2GA(p, ε)δΣR(p, ε)

+ (GR(p, ε))3 δΣR(p, ε)
]
, (5.62c)

δσΓ
ij =

1

V

∑
p

ji(p)
1

2T

∫
dε

4π

1

cosh2
(
ε

2T

)Re
[
GR(p, ε)GA(p, ε)Γj(p; ε+ i0, ε− i0)

− (GR(p, ε))2 Γj(p; ε+ i0, ε+ i0)
]
. (5.62d)

To write Eqs. (5.62) we have performed the Matsubara frequency sums and have

introduced retarded and advanced Green functions GR,A(p, ε) = G(p, iω → ε± i0),

and a retarded self energy δΣR(p, ε) = δΣ(p, iω → ε + i0). Diagrammatically,

these contributions to the conductivity are shown in Fig. 5.6. In evaluating these

diagrams, we again make use of the small parameter q
kF
� 1. To lowest order in

q
kF

, in many cases the Green function G can be replaced by the free-electron Green

function, which greatly simplifies the integrals.
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Figure 5.6: Leading disorder corrections to the clean conductivity. Solid lines denote

the Green function G, dotted lines denote the effective potential, and dashed lines with

crosses denote the impurity factor u0.

Furthermore, the conductivity tensor is not isotropic, since the integrand de-

pends on the helix pitch vector q. However, simple symmetry considerations show

that it is still diagonal, with different components in the directions parallel and

perpendicular to q, respectively,

δσij = δij [δizδσL + (1− δiz)δσ⊥] . (5.63)

The diagrams can be classified as follows. Diagram (o) in Fig. 5.6(a) represents

σ(0). To lowest order in the disorder, and in q
kF

, it yields the Drude conductivity,

σ
(0)
ij = δijσ0

[
1 +O

(
1

εFτ
,

(
q

kF

)2
)]

, (5.64)
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where

σ0 =
ne2τ

me

, (5.65)

with n the electron number density, e the electron charge, me the effective electron

mass, and τ the elastic mean-free time between collisions.

Diagrams (i), (iii), (vii), and (ix) contribute to δσΣ, and the remaining dia-

grams contribute to δσΓ. Diagrams (i) and (ii) in Fig. 5.6(b) do not contain explicit

impurity lines, and hence need to be evaluated to next-to-leading order in the dis-

order. The diagrams in Fig. 5.6(c) contain an explicit impurity line, and evaluating

them to leading order suffices.

5.4.3.1 Diagrams without explicit impurity lines

Let us first consider the diagrams (i) and (ii). Standard techniques yield

δσ
(i)
ij = −V0

4π

1

T

∫ ∞
−∞

dε

cosh2
(
ε

2T

) 1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)

[
nB

( u
T

)
Re J++−,+

ij (k)

+
1

2
nF

(
u− ε
T

)
Re
[
J++−,+
ij (k)− J++−,−

ij (k)
]]
, (5.66a)

δσ
(ii)
ij = −V0

8π

1

T

∫ ∞
−∞

dε

cosh2
(
ε

2T

) 1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)

[
nB

( u
T

)
Re
[
J+−,+−
ij (k)− I+−,+−

ij (k)
]

+nF

(
u− ε
T

)
Re
[
J+−,+−
ij (k)− I+−,+−

ij (k)− J+−,++
ij (k) + I+−,++

ij (k)
]]
. (5.66b)

105



Here the J are defined by convolutions of Green functions,

J++−,+
ij (k) =

1

V

∑
p

ji(p)jj(p)γ(k,p)γ(k,p− k)GR(p)GR(p)GA(p)GR(p− k),

(5.67a)

J++−,−
ij (k) =

1

V

∑
p

ji(p)jj(p)γ(k,p)γ(k,p− k)GR(p)GR(p)GA(p)GA(p− k),

(5.67b)

J+−,+−
ij (k) =

1

V

∑
p

ji(p)jj(p)γ(k,p)γ(k,p− k)GR(p)GA(p)GR(p− k)GA(p− k),

(5.67c)

I+−,+−
ij (k) =

1

V

∑
p

ji(p)jj(k)γ(k,p)γ(k,p− k)GR(p)GA(p)GR(p− k)GA(p− k),

(5.67d)

where GR,A(p) = GR,A(p, ε = 0). Other convolutions are defined analogously,

with the upper ± indices denoting retarded and advanced Green functions, and

the comma separating them denoting the momentum structure of the convolution.

In writing Eqs. (5.66), we have neglected contributions from other convolutions of

four Green functions that are easily shown to be of higher order in the disorder

than the ones we kept. For instance, a complete expression for diagram (i) contains

contributions from J+++,−
ij and J+++,+

ij , which are subleading in this sense. Also, a

complete evaluation of the diagrams yields nominal contributions proportional to χ′,

the Kramers-Kronig transform of χ′′. These vanish once the real part is taken, as is

to be expected: by Fermi’s golden rule, to first order in the interaction potential, the

scattering cross-section and hence the conductivity depend only on the spectrum of

the potential. Finally, we have used the fact that the internal frequencies u and ε
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in Eqs. (5.66) scale as the temperature T . To find the leading temperature depen-

dence, we therefore can drop the frequency dependence of the Green functions, and

this is reflected in Eqs. (5.67).

To evaluate the integrals in Eqs. (5.67) we work to lowest order in q
kF

. We

further neglect λ, since in our effective single-spin-projection model it amounts (at

q = 0) to just a shift of the Fermi energy. That is, we replace ω1(p) in Eq. (5.15b)

by ξp. We further use a nearly-free electron expression for ξp, i.e., we put ν = 0

in Eq. (5.21). These simplifications lead in particular to ji(p) = pi
me

, and to lowest

order in the disorder the integrals can be evaluated in the familiar approximation

that replaces the integration over |p| by a contour integration over ξp, [53] which

we refer to as the Abrikosov-Gorkov-Dzyaloshinskii (AGD) approximation. With

calculations outlined in Appendix F, we obtain, for helimagnons,

δσ
(i)
ij + δσ

(ii)
ij = O(τ 2T 5/2) + o(τT ). (5.68a)

and for A phase,

δσ
(i)
ij + δσ

(ii)
ij = O(τ 2T 7/2) + o(τT 2). (5.68b)

5.4.3.2 Diagrams with explicit impurity lines

We now turn to the diagrams in Fig. 5.6(c), which carry an explicit impurity

line. Their contribution to the conductivity is of O(τ), and it thus suffices to cal-

culate them to leading order in the disorder. Before we do so, we identify the small

parameter that controls our disorder expansion. As we point out in Appendix F for

diagrams (i) and (ii), the expansion parameter for the convolutions J that appear
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in the integrand in Eqs. (5.66) is δ = 1
vFk⊥τ

, with vF = kF

me
the Fermi velocity.

According to Eq. (4.22), the transverse wave number scales as the square root of

the helimagnon frequency at intermediate temperatures. For helimagnons, the small

expansion parameter is thus

δ =
λ√

(εFτ)2T
, (5.69)

and this will turn out to be true for the diagrams in Fig. 5.6(c) as well. For A

phase, as the transverse wavenumber scales as the frequency of the corresponding

Goldstone modes, the small parameter that controls the ballistic regime is 1
Tτ

, just

as the Coulomb case [104].

The diagrams in Fig. 5.6(c) all contain six Green functions that factorize

into two sets of momentum convolutions containing n and 6 − n Green functions,

respectively, with n = 3 or n = 4. Diagrams (iii) - (vi) contain the (3, 3) partitions,

whereas diagrams (vii) - (x) contain the (4, 2) partitions. The same power-counting

arguments that we employed for diagrams (i) and (ii), and that are explained in

Appendix F, reveal the following:

First, to lowest order in the small parameter q
kF

(i.e., replacing the helimagnon

Green functions by nearly-free electron Green functions), only the (3, 3) partitions

contribute to O(τT ), whereas the (4, 2) partitions are of higher order in the tem-

perature. That is,

δσ
(vii)−(x)
ij = o(τT ) (5.70)

to lowest order in q
kF

, and we will evaluate all other diagrams to lowest order in this

small parameter as well. Details can be found with diagram (vii) in Appendix F.
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Second, for the conductivity correction δσ⊥ in⊥ (x, y) directions, only diagram

(iii) contributes to O(τT ), whereas for δσz the other (3, 3) partitions also contribute.

In addition, by considering the reality properties of the convolutions involved,

one finds that, third, diagram (vi) is given in terms of the real part of a convolution

that is purely imaginary, and hence does not contribute.

Finally, a cursory inspection of the integrals in addition to power counting

shows that the terms that contain a bosonic distribution function (in analogy to

the first terms in Eqs. (5.66a) and (5.66b), respectively), have a potential to be of

O(τT ln δ) rather than of O(τT ). However, the leading contribution to diagram (iii)

does not contain such terms. Diagrams (iv) and (v) do, but the logarithmic terms

cancel between these two diagrams, and this can be seen without performing the

integrals.

Hence we give analytic expression for different terms.

Diagram (iii) After the above preliminary considerations, we now evaluate dia-

gram (iii). The leading contribution can be written

δσ
(iii)
ij =

u0V0

8π

1

T

∫ ∞
−∞

dε

cosh2
(
ε

2T

) 1

V

∑
k

∫ ∞
−∞

du

π
nF

(
u− ε
T

)
χ′′(k, u)K++−

ij L++,−(k).

(5.71)

Here

K++−
ij =

1

V

∑
p

pipj
m2

e

GR(p)GR(p)GA(p)

= −δij
2πi

3

k2
FNF

m2
e

τ 2 +O(τ), (5.72)
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and

L++,−(k) =
1

V

∑
p

γ(k; p)γ(k; p− k)GR(p)GR(p)GA(p− k)

= iν2 2π

3

NFm
2
e

λ2k2
F

+O(
1

τ
, k2
⊥). (5.73)

The second lines in Eqs. (5.72) and (5.73) are easy to obtain in the AGD approx-

imation. Only the term proportional to k⊥ for helimagnon, or kz, in γ(k; p), Eq.

(5.23c), contributes to the leading temperature dependence, hence the proportional-

ity to ν2. We again have dropped the frequency dependence of the Green functions,

since it does not contribute to the leading temperature dependence. Consequently,

the integral over ε in Eq. (5.71) can be performed. Using the fact that the heli-

magnon spectrum χ′′ is an odd function of the frequency, we can write

δσ
(iii)
ij = −u0V0

4π

1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)C(u/2T )K++−

ij L++,−(k), (5.74a)

with

C(x) = coth x− x

sinh2 x
. (5.74b)

We next cast the expressions corresponding to diagrams (iv) and (v) in an

analogous form, before performing the final integrals.

Diagrams (iv) and (v) Using the same techniques as for diagram (iii), we find

for the leading contributions to diagrams (iv) and (v)

δσ
(iv)+(v)
ij = −u0V0

2π

1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)C(u/2T )M+−,+

i (k)M+−,+
j (k).(5.75)
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Here

M+−,+
i (k) =

1

V

∑
p

pi
me

γ(k; p)GR(p)GA(p)GR(p− k)

= −δiz
2π

3
ν
NF

λ
τ +O(τ 0). (5.76)

5.4.3.3 The conductivity in the ballistic limit

Collecting our results of the leading order, we now have

δσij = −u0V0

4π

1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)C

( u

2T

) [
K++,−
ij L++,−(k) + 2M+−,+

i (k)M+−,+
j (k)

]
.

(5.77)

Because the terms in the square bracket in Eq. (5.77) do not depend on the tem-

peratures, its dependence of temperature depends on the other part of the integrals.

For temperature scaling purposes, the change in conductivity can be seen as

δσ ∝ δρel ∝ δρth

∼
∫
dunF

( u
T

)∫
dp||

∫
dp2
⊥

1

ω0(p)
δ(u− ω0(p)), (5.78)

which is the same as the correction of single-particle relaxation time in Eq. (5.60).

The expression Eq. (5.78) can be seen as the correction to the transport rate 1
τel

through Taylor’s expansion.

5.4.4 Summary

In the ballistic regime there is an additional contribution δ
(

1
τ

)
to the relax-

ation rates that is qualitatively the same for both the single-particle rate and the
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electron transport rate, and thus provides the temperature dependence of the cor-

rections to both the electrical and thermal resistivities. It was shown above that,

for temperature scaling purposes, this contribution can be represented by

δ(1/τ) ∝ δρel ∝ δρth

∼
∫
dunF

( u
T

)∫
dp||

∫
dp2
⊥

1

ω0(p)
δ(u− ω0(p)). (5.79)

5.4.4.1 Generalized helimagnons

From Eq. (5.79), we see that at temperatures where pinning effects are not

important, generalized helimagnons lead to δ
(

1
τ

)
∝ T , a result first obtained in Ref.

[103]. At asymptotically low temperatures, characterized by T � c̃⊥√
c⊥

, one finds a

T 2-behavior. In the pinned helical phase the crossover temperature between these

two regimes is determined by the strength of the crystal-field effects; in the conical

phase the magnetic field also cuts off the universal hydrodynamics T -behavior.

5.4.4.2 Columnar phase

For the columnar phase, Eq. (4.12) yields

δ

(
1

τ

)
∝


T 2 if T � c′z√

cz

T 3/2 if T � c′z√
cz

. (5.80)

The pinning effects in the columnar phase are very weak due to the hexagonal

nature of the lattice, with c′z only of O(g6
so), see Sections 3.4.4 and 4.4.4. The size of

the asymptotic region is therefore likely to be dominated by the H-dependence of

c′z. Whether or not the universal hydrodynamic T 3/2-behavior is observable in the
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columnar phase (there currently are no experimental indications that it is) would

require a detailed quantitative analysis that goes beyond the scope of the this thesis.

5.5 NFL region

The preceding result is also of interest with respect to the non-Fermi-liquid

region shown in Fig. 1.11, which is not a phase with long-range order, but where

the electrical conductivity shows a pronounced T 3/2-behavior. [23] An explanation

that has been proposed [50] is as follows. The T 3/2-behavior derived above is a

consequence of the structure of the Goldstone modes due to columnar fluctuations,

Eq. (4.12), in conjunction with weak quenched disorder. In the columnar phase,

which displays long-range order in the form of a columnar lattice, there are two such

Goldstone modes, see Sections 4.3. If the NFL region can be interpreted as a melted

columnar lattice, then the resulting liquid of columns will still have one Goldstone

mode with the same structure, namely, the compression mode mentioned in Sec.

4.3. Weak quenched disorder will then still produce a contribution to the electrical

resistivity, as well as to the single-particle relaxation rate, that is proportional to

T 3/2 in a pre-asymptotic region. The NFL region is observed to extend to a vanishing

external magnetic field, so the low-T boundary of the universal hydrodynamic region

is determined by the pinning effects, which are very weak, see Secs. 3.4.4 and 4.4.4.

The universal hydrodynamic T 3/2 behavior is therefore expected to extend to very

low temperatures. A remaining question is the size of the prefactor, which in a bare

theory is expected to be small due to the long length scale set by the lattice in the
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columnar phase. The resolution proposed in Ref. [50] is that mode-mode coupling

effects drastically enhance the magnitude of the effect, in analogy to what is believed

to happen in the blue phases of liquid crystals. [39] (See Chapter 3.)

5.6 Conclusion

In this chapter, we analyzed the effects of the Goldstone modes in helimagnets

to the temperature dependences of specific heat, thermal resistivity and electrical

resistivity. The specific heat was calculated by treating the Goldstone modes as

gases in the system. The transport properties were treated by a microscopic model

that couples the Goldstone modes and the fluctuations of electronic density. We

calculated the thermal and electrical resistivities by considering the effect of coupling

to the Green functions. We also evaluated the corrections to the resistivities due

to weak disorder. Our results are summarized in Table 5.1. We successfully met

our result in NFL phase with the experimental results, that the electrical resistivity

∆ρ ∼ T 3/2. On the other hand, we deduced the temperature dependences of these

transport properties in other ordered phases.
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pinned helical columnar NFL

/conical

no. of Goldstone modes 1 2 1

universal hydrodynamic regime T 2 T 5/2

C(T )
crystal-field regime T 3 T 3

T 5/2

τ(T )−1 universal hydrodynamic regime T 3/2 T 2

cl
ea

n

ρth(T ) crystal-field regime T 3 T 3
T 2

universal hydrodynamic regime T 5/2 T 3

ρel(T )
crystal-field regime T 5 T 5

T 3

b
a
ll
is

ti
c

d
is

o
rd

er δρel(T ) universal hydrodynamic regime T T 3/2

δρth(T ) crystal-field regime T 2 T 2
T 3/2

Table 5.1: Properties of various ordered phases and the proposed state representing the

non-Fermi-liquid region. Listed are the number of Goldstone modes, and the temperature

dependence of various observables. The universal hydrodynamic regime is the temperature

region where crystal-field effects are not important. It is bounded above by Tq, see Eq.

(4.25). The true asymptotic behavior as T → 0 is dominated by the crystal-field effects

and is realized only at very low temperatures. In the presence of weak ballistic disorder,

the regime dominated by crystal-field effects is bounded below as well as above and does

not represent the true asymptotic low-temperature regime, see Eq. (5.54).
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Chapter 6

Basics of Skyrmions

The columnar phase in helimagnets has been identified as a hexagonal lat-

tice of columnar Skyrmions. It has been described by the superposition of three

helimagnets with pitch vectors perpendicular to the applied magnetic field, as in

Section 3.3.1, and an Abrikosov lattice, as in Section 3.3.2. On the other hand,

the NFL-phase in Fig. 1.11 is believed to be a phase of Skyrmion liquid, from its

electronic properties, [48] see Section 4.3. Therefore, it is important to understand

more about isolated Skyrmions, or Wannier Skyrmions, as opposed to Skyrmion

lattice, or Bloch Skyrmions, as excitations. In this chapter, we review some basic

properties of a Skyrmion. We discuss about Skyrmions as excitations in the next

chapter.

6.1 Winding number

Skyrmions are two-dimensional topological objects. Assume that

M(x) = m(x)n(x), (6.1)

where m(x) and n(x) denotes the magnitude and direction of M. The winding

number for Skyrmion is defined as, [67]

W =

∫
dx

∫
dy

1

4π
n ·
(
∂n

∂x
× ∂n

∂y

)
, (6.2)

116



as in Eq. (1.4). Upon continuous deformation of the configurations, the winding

number W remains unchanged. A Skyrmion is topologically non-trivial because its

winding number is non-zero.

Note that all phases in Chapter 3, except the columnar phase, have W = 0,

which means they are all topologically trivial.

6.2 Skyrmion as a saddle point of the non-linear σ model

A Skyrmion embedded in a ferromagnet can be studied with the two-dimensional

non-linear σ model, with the action given by [106, 107]

S[n] =
J

2

∫
d2x(∇n)2, (6.3)

with a constraint n2(x) = 1. There exists a metastable mean-field solution that

corresponds to a Skyrmion given by 1 [108, 109, 110]

nx = −2lρ sinϕ

l2 + ρ2
, (6.4a)

ny =
2lρ cosϕ

l2 + ρ2
, (6.4b)

nz =
ρ2 − l2

ρ2 + l2
. (6.4c)

where l is an arbitrary length that characterizes the size of the Skyrmion core.

From Eq. (6.2), this solution has a winding number W = −1, confirming that it

is a Skyrmion. This refers to an azimuthal Skyrmion. However, Ref. [110] does

not exclude the possibility of a radial Skyrmion. For example, the Skyrmion in the

p-wave superconductors [58, 59] is a radial one.

1We adopt the cylindical coordinates, x = ρ cosϕx̂ + ρ sinϕŷ + zẑ, which is the notation that

we are using in this and the next chapters.
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In CP 1 representation (see Appendix B), the Skyrmion in Eqs. (6.4) can be

written as, as in Eq. (B.9a),

z =

√
ρ2

ρ2 + l2

 ei(
π
2
−ϕ)

l
ρ

 , (6.5)

which is an anti-vortex. [68] This provides the basis of using the analogy of Abrikosov

vortices to study the Skyrmion lattice as in Section 3.3.2.

This Skyrmion has the asymptotic expression for its tail (ρ→∞) given by

θ(ρ) ≈


π − ρ

2l
, for ρ ≈ 0

2l
ρ
, for ρ→∞.

(6.6)

We cannot determine l unless we have additional interactions that give extra length

scales to the system, [110, 74] see Chapter 7.

6.3 Description of Skyrmions

To illustrate a topologically non-trivial solution, we write the configuration in

the form of [24] (in cylindrical coordinates)

n(x) = sin θ(x) cosα(x)ρ̂+ sin θ(x) sinα(x)ϕ̂+ cos θ(x)ẑ, (6.7)

so that the winding number can be written as

W =
1

4π

∫ ∞
0

dρ

∫ 2π

0

dϕ · sin θ(x)

[
−∂θ(x)

∂ϕ

∂α(x)

∂ρ
+

(
1 +

∂α(x)

∂ϕ

)
∂θ(x)

∂ρ

]
. (6.8)

In terms of this representation, the Skyrmion in the non-linear σ model in the

Section 6.2 is [111, 58]

α(x) =
π

2
, (6.9a)

θ(x) = 2 tan−1 l

ρ
. (6.9b)
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Note that this refers to an azimuthal Skyrmion.

For all the Skyrmions we review and present in this thesis, θ(ρ = 0) = π and

θ(ρ =∞) = 0. This means a reverse spin at the core of the Skyrmion. In addition,

we set α = π
2
, meaning it is an azimuthal Skyrmion. We exclude the consideration

of a radial Skyrmion because the presence of DM interaction forces the Skyrmions

be azimuthal. This also ensures that W = −1. [74] Such a Skyrmion is depicted in

Fig. 6.1. The winding number describes how the electron changes its spin when it

passes through the core, as shown in Fig. 1.20. [66]

Figure 6.1: The picture of an isolated azimuthal Skyrmion with W = −1.

Although Skyrmions are topological objects, linear response ensures that the

asymptotic behaviors of the tails of Skyrmions are no different from the decay of

other kinds of perturbations, see Appendix C. It is the characteristics of the core

that constitutes the topology. In understanding Skyrmions in various ordered phases

of the helimagnets, we study the core by differential equations with boundary con-

ditions that give a non-zero winding number, and the tail through perturbation

theory.
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6.4 Saddle-point equations for m(x), θ(x) and α(x)

To study Skyrmions, from now onwards, we consider only the Landau-Ginzburg

terms, Zeeman terms and the DM interactions in Eq. (2.1), which corresponds to

the saddle-point equation [112]

rM− a∇2M + c∇×M + uM2M−H = 0. (6.10)

6.4.1 In paramagnets and ferromagnets

Putting Eqs. (6.1) and (6.7) with α(x) = π
2

in Eq. (6.10), the saddle-point

equation becomes

rm− a

[(
∂2m

∂ρ2
+

1

ρ

∂m

∂ρ

)
−m

(
∂θ

∂ρ

)2

− 1

ρ2
m sin2 θ

]

+cm

(
∂θ

∂ρ
+

1

ρ
sin θ cos θ

)
+ um3 −H cos θ = 0, (6.11a)

am

(
∂2θ

∂ρ2
+

1

ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ +

2

m

∂m

∂ρ

∂θ

∂ρ

)
+c

(
∂m

∂ρ
+

1

ρ
m sin2 θ

)
−H sin θ = 0. (6.11b)

These two equations are useful for describing a Skyrmion in paramagnets and fer-

romagnets in Chapter 7.

6.4.2 In helimagnetic phases

Putting Eqs. (6.1) and (6.7), and with

ξ = qz − ϕ, (6.12)
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in Eq. (6.10), the Eq. (6.10) gives the following equations:

rms sin θ cosα− a
{

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
(ms sin θ cosα)

]}
−a
{(

1

ρ2
+ q2

)
∂2

∂ξ2
(ms sin θ cosα) +

2

ρ2

∂

∂ξ
(ms sin θ sinα)− 1

ρ2
ms sin θ cosα

}
+c

[
−1

ρ

∂

∂ξ
(ms cos θ)− q ∂

∂ξ
(ms sin θ sinα)

]
+ um3

s sin θ cosα = 0,

(6.13a)

rms sin θ sinα− a
{

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
(ms sin θ sinα)

]}
−a
{(

1

ρ2
+ q2

)
∂2

∂ξ2
(ms sin θ sinα)− 2

ρ2

∂

∂ξ
(ms sin θ cosα)− 1

ρ2
ms sin θ sinα

}
+c

[
− ∂

∂ρ
(ms cos θ) + q

∂

∂ξ
(ms sin θ cosα)

]
+ um3

s sin θ sinα = 0,

(6.13b)

rms cos θ − a
{

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
(ms cos θ)

]
+

(
1

ρ2
+ q2

)
∂2

∂ξ2
(ms cos θ)

}
+c

[
1

ρ

∂

∂ρ
(ρms sin θ sinα) +

1

ρ

∂

∂ξ
(ms sin θ cosα)

]
+ um3

s cos θ −H = 0. (6.13c)

These equations are particularly hard to solve. But they are important for detailed

analysis for Skyrmions in anti-conical phases in Chapter 7.

6.5 Conclusion

In this chapter, we reviewed the basis of a single Skyrmiom, such as its topo-

logical winding number. We defined a form of representation, Eq. (6.7), suitable for

describing Skyrmions in helimagnet, with the corresponding saddle-point equations,

Eqs. (6.13).
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Chapter 7

Skyrmions and Their Sizes

In this chapter, we discuss the core and tail behaviors of a single Skyrmion,

as an excitation, for various phases in helimagnets, as shown in Fig. 7.1, without

considering crystal-field effects. We find the core and tail solution of the Skyrmions,

and match the two solutions together. We estimate the size of Skyrmions with

different definitions. At the end, we estimate the core-to-core distance with the

Abrikosov solution of Skyrmion lattice in Sec. 3.3.2.

Figure 7.1: Phase diagram predicted by the action with SM[M] +SDM[M] in Eqs. (2.2a)

and (2.3a).
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7.1 Skyrmion cores

7.1.1 Ferromagnet and paramagnet

We first explore the cases of paramagnets and ferromagnets. And as we have

stated in Section 6.3, θ(ρ = 0) = π. Then we write, for ρ→ 0,

m(x) = m∞ + δm(ρ), (7.1a)

θ(x) = π + δθ(ρ), (7.1b)

where all behavior depends only on the radial distance ρ, and where m∞ = MP (for

paramagnet, r > 0, as in Eq. (A.2a)) or MF (for ferromagnet, r < 0, as in Eq.

(A.3a)). Putting Eqs. (7.1) in the saddle-point equations, Eqs. (6.11), ignoring all

higher order terms, we can find that for ρ→ 0, δθ = Θcρ and δm = Mcρ
2, with

Mc =
m∞

2l̄2H(1 + 4q2l̄2H)
, (7.2a)

Θc = − 2q

1 + 4q2l̄2H
, (7.2b)

where l̄H is the transverse correlation length for paramagnets or ferromagnets in Eq.

(2.12a), Eq. (2.12b) or Eq. (2.12c). Note that this calculation breaks down if there

is no DM interaction, or the Skyrmion is in an ordered phase.

The size of the core can be estimated with this solution as R, where θ =

π
(
1− ρ

R

)
, as shown in Fig. 7.2. [69] Let us consider different cases in ferromagnets

and paramagnets, and the relation of Skyrmion in paramagnets in some situations

to the Skyrmion lattice.
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Figure 7.2: Different characterizations of the Skyrmion sizes. [74]

7.1.1.1 Ferromagnet

For a ferromagnet with non-zero magnetic field, the core size R is given by the

following cases (with the phase stable or metastable):

1. l̄H � q−1: R ≈ π
2q

.

2. q−1 � l̄H : R ≈ 2πql̄2H .

The first case refers to the region where the magnetic field is much larger than the

critical field Hc2. The core size is proportional to q−1. The second case refers to the

region closer to H = Hc2, where the magnetic length l̄H plays a role.

7.1.1.2 Paramagnet

For a paramagnet, the core size R is given by (in which the phase can be stable

or metastable):

1. ξp � q−1: R ≈ π
2q

.

2. ξp ≈ q−1 and along H ≈ Hc2: R ≈ 5π
2q

.
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The magnetic field does not play a role in the core behavior for paramagnets. It is

because close to r ≈ 0, the paramagnet appears for H > Hc2 and l̄H is less significant

than the contribution of q−1. For r > u
1
3H

2
3 , l̄H ≈ ξp, as in Eq. (2.12a).

7.1.2 Aligned conical phase

The core behavior for aligned conical phase is different from paramagnets and

ferromagnets in Section 7.1.1 because of the Goldstone mode in this phase. To

understand it, we first study ferromagnet without external magnetic field and DM

interaction. This is for illustrative purpose, because it breaks a continuous symmetry

just like the conical phase does.

7.1.2.1 Ferromagnet without external magnetic field and DM inter-

action

With H = 0 and q = 0, the ferromagnet (with r < 0) is an ordered phase

that breaks the continuous rotational symmetry of the action in Eq. (2.2a). The

differential equation for δθ in Eq. (7.1b) as in Eq. (6.11b) becomes

d2δθ

dρ2
+

1

ρ

dδθ

dρ
− 1

ρ2
δθ = 0. (7.3)

The differential equation is due to the gradient term in the action. Then

δθ = Aρ, (7.4)

with an arbitrary coefficients A. In fact, the approximation in Eq. (6.6) from the

exact Skyrmion solution to the non-linear σ model near the core gives the same.
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Therefore, we cannot determine the core size. To determine the core size just from

the core behavior, external perturbations that provide extra length scales are needed.

See Section 7.2.2.1.

7.1.2.2 Aligned conical phase

The aligned conical phase breaks the continuous translational symmetry of the

action in Eq. (2.1), see Chapter 4. [48] Because of the helical nature of this phase,

we expect m(x), θ(x) and α(x) depend on ξ (defined in Eq. (D.17)) in addition to

the radial distance ρ. After analyzing Eqs. (6.13), the dominant variation near the

core is ρ sin ξ. However, the coefficients is undetermined for the same reason as the

ferromagnet above. The perturbation for conical phase can be written as Eq. (7.10).

The differential equations for the fluctuations for conical phase can be written as a

Laplace equation as in Eq. (7.11), although both gradient terms and curl term (due

to DM interaction) in the action in Eq. (2.1) are important for the aligned conical

phase.

7.2 Skyrmion tails

The tail behavior of the Skyrmions is closely related to the correlations in the

bulk of the phase. [97] This can be shown by linear response theory, see Appendix C.

In the following, we show by each case that the presence of spontaneous symmetry

breaking gives the Skyrmion an algebraic tail, but an exponentially decaying tail

otherwise. The decay length of the tail, lT , is in general not the same as the core
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size, as shown in Fig. 7.2.

7.2.1 Paramagnet and Ferromagnet

We study the system using perturbation techniques. As we have stated in

Section 6.3, θ(ρ =∞) = 0. Then we write, for ρ→∞,

m(x) = m∞ + δm(ρ), (7.5a)

θ(x) = 0 + δθ(ρ), (7.5b)

where all behavior depends only on the radial distance ρ, and m∞ = MP (for

paramagnet, r > 0, as in Eq. (A.2a)) or MF (for ferromagnet, r < 0, as in Eq.

(A.3a)) as in Section 7.1. We expect that the tail is exponential. Hence, we assume

δm = M̃e−Kρ and δθ = Θe−Kρ. One of the solutions for K, called K−, is used to

define the length of the tail

lT =
1

|K−|
, (7.6)

which is another measure of the size of Skyrmions. In some cases, K− has an

imaginary part, which indicates the tails are oscillating in addition to the exponential

decay, but we will omit oscillations below despite its existence in some cases.

7.2.1.1 Ferromagnet

For ferromagnet, the lengths of the Skyrmion tails are:

1. l̄H � q−1 � ξf : lT ≈ l̄H .

2. l̄H � ξf � q−1 and ξf � l̄H � q−1: lT ≈ l̄H .
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For both cases, the tails has a length lT ∼ H−
1
2 as in Eq. (2.12c). We expect this

because the transverse fluctuations of ferromagnet have the spectrum schematically

in the form of ω(k) = k2 +H, as in Eq. (4.3).

7.2.1.2 Paramagnet

For paramagnet, the lengths of the tails are:

1. l̄H � q−1 � ξp: lT ≈ l̄H .

2. ξp � q−1 � l̄H : lT ≈ ξp.

3. ξp . q−1 and small H: lT ≈ ξh.

4. Along H ≈ Hc2: lT ≈
√

2
κ−

,

where for the fourth case,

κ± =

√√√√q

√
q2 +

2

ξ′2h
±
(
q2 − 1

ξ′2h

)
. (7.7)

The first case corresponds to the the paramagnet with large magnetic field and

the boundary with ferromagnet, where l̄H is given by Eq. (2.12a). The second case

refers to the paramagnet far away from the transition points, making lT ≈ ξp. The

third case refers to the paramagnet very close to the helimagnetic transition point,

making lT ≈ ξh.

The fourth case refers to the paramagnet along H ≈ Hc2, the critical field in

Eq. (3.11). The Skyrmion lattice is formed along part of this critical line.
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7.2.2 Aligned Conical Phase

By Goldstone theorem and linear response, any perturbation in the conical

phase shows long distance algebraic decay. Therefore, a Skyrmion in this phase

shows a long tail. For illustrative purpose, we study the ferromagnet without mag-

netic field and DM interaction which breaks the rotational symmetry.

7.2.2.1 Ferromagnet without external magnetic field and DM inter-

action

The spectrum of the Goldstone modes in ferromagnet in H = 0 and q = 0

is ω(k) = k2, [71] and the modes are readily diagonalized as δmx and δmy. As a

result, they behaves |r|−1, as illustrated in Appendix C. We expect the Skyrmion

tail to behave in the same way.

We still employ the perturbation schemes in Eqs. (7.5) for this ferromagnet

with H = 0 and q = 0. The differential equations kept to the relevant order is given

as

∂2δm

∂ρ2
+

1

ρ

∂δm

∂ρ
−M (0)

F

(
∂δθ

∂ρ

)2

− M
(0)
F

ρ2
(δθ)2 =

δm

ξ2
f

,

(7.8a)

∂2δθ

∂ρ
+

1

ρ

∂δθ

∂ρ
− 1

ρ2
δθ = 0. (7.8b)

From an analysis of the differential equations, Eqs. (6.11), we get

δθ =
Θf

ρ
, (7.9a)

δm = −2ξ2
fM

(0)
F

Θ2
f

ρ4
. (7.9b)
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From Eq. (7.8b), we know that the coefficients Θf is arbitary, as in core solution the

coefficients in Eq. (7.4) in Section 7.1.2 is undetermined as well. It is the result of the

equation for the fluctuations given by a Laplace equation for a symmetry-breaking

ferromagnet. δm(ρ) and δθ(ρ) can be expressed in the scaling form f
(
ξ2
f

L2 ,
ρ
L

)
,

for some length scale L. Moreover, the approximation in Eq. (6.6) far from the

Skyrmion core in the non-linear σ model has the same behavior.

Similarly, as in the Skyrmion core, the coefficients can be fixed by additional

interactions that carry other length scales as discussed in Section 7.1.2. To fix

the Skyrmion size, these interactions have to change the symmetries of the system

such that the ferromagnet is no longer a phase of spontaneous symmetry breaking.

Examples include cubic anisotropy, magnetic field, longitudinal stiffness etc. How-

ever, interactions such as DM interaction cannot fix the Skyrmion size because it

removes the merely spatial inversion symmetry but the ferromagnet remains to be

symmetry-breaking. 1

7.2.2.2 Aligned conical phase

While the ferromagnet has the readily diagonalized Goldstone modes with

spectrum ω(k) = k2, the aligned conical phase has the Goldstone modes given by

Eqs. (4.9), similar to that of the cholesteric liquid crystal. [43] For zero magnetic

1This can be confirmed by analyzing Eq. (6.11b) for c 6= 0 and H = 0 asymtotically and

numerically. For both ρ → 0 and ρ → ∞, terms with coefficient a vanish, and terms with

coefficient c alone cannot fix the Skyrmion core size and tail length. The numerical analysis is also

disastrous because the solution is sensitive to step and system sizes.
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field makes, the second term vanishes. [44] For the parametrization of fluctuations

about the conical phase can be written as in Eq. (4.6). The Goldstone mode that

corresponds to Eq. (4.9) is given by the “diagonalized” form as

δmG(x)

≈ φ0(x)−
q2 + ξ′−2

h

[
1−

(
H
Hc2

)2
]

q(q2 + ξ′−2
h )

∂ϕ+(x)

∂y
+

q2 + ξ′−2
h

[
1−

(
H
Hc2

)2
]

q(q2 + ξ′−2
h )

∂ϕ−(x)

∂x

−
ξ′−2
h

[
1−

(
H
Hc2

)2
]

q(q2 + ξ′−2
h )

∂π1(x)

∂x
+

ξ′−2
h

[
1−

(
H
Hc2

)2
]

q(q2 + ξ′−2
h )

∂π2(x)

∂y
, (7.10)

which satisfies the partial differential equation[
∂2

∂z2
+

ξ′−2
h

q2 + ξ′−2
h

(
H

Hc2

)2

∇2
⊥

]
δmG(x) ≈ 0, (7.11)

for H 6= 0. Eq. (7.11) has a solution

δmG(x) =
A

ρ
sin(ϕ+B), (7.12)

with undetermined coefficients A and B. (Note that the Skyrmion core in conical

phase has arbitrary size R and goes like ρ sin(ϕ + B) for the same argument.)

Therefore, similar to ferromagnets, the Skyrmion tail in the conical phase has a

power law form. A detailed analysis of the saddle-point equations, Eqs. (6.13),

shows that Skyrmion tail in the conical phase goes like ρ−1 sin ξ, where ξ is defined

in Eq. (D.17), with arbitrary coefficients.
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7.3 Core size as the matching distance between core behavior and

Skyrmion tail

The definition of R in Section 7.1.1 deals only with the core behavior. Here we

introduce a new distance L, which is defined as tbe distance where the core behavior

and tail of the Skyrmion meet. By finding L, we consider both the core and the

tail of the Skyrmion, as shown in Fig. 7.2. In some cases, R and L are not too

different in terms of order of magnitudes, but their difference becomes greater when

the magnetic field becomes large.

In the following cases, we match the core behavior and the tail at a point L,

and then we solve for L.

7.3.1 Paramagnet and ferromagnet

For paramagnet and ferromagnet, by matching the core behavior in Section

7.1 and the tail in Section 7.2, we solve for the matching point L tabulated in Table

7.1. We verify that for all cases in Table 7.1 have winding number W = −1, by

putting the solutions of θ(x) back to Eq. (6.8).

From Table 7.1, we can see that R’s are mostly of the order of magnitude of

q−1, and lT ’s are mostly the thermal correlation lengths. However, L shows much

more complicated dependence on the various length scales. lT is generally not a

good measure of a Skyrmion size because the correlation length is related to the

thermodynamic phase of the bulk, the size of an additional object. Both R and L

is of the order of magnitude of q−1 near the helimagnetic transition point at H ≈ 0,
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Table 7.1: Isolated Skyrmions in ferromagnets and paramagnets in different regions of

the phase diagram in Fig. 7.1. (PM = paramagnet, FM = ferromagnet)

PM/FM Region in Phase Diagram lT R L

FM ξf � q−1 � l̄H l̄H 2πql̄2H
√

32πq3l̄3Hξf

FM ξf � l̄H � q−1 l̄H
π
2q

√
4πql̄Hξf

FM l̄H � ξf � q−1 l̄H
π
2q

√
2πql̄H l̄H

FM l̄H � q−1 � ξf l̄H
π
2q

√
2πql̄H l̄H

PM ξp � q−1 � l̄H ξp
π
2q

[2π(qξp)2]
1
3

q

PM q−1 � l̄H � ξp q−2l̄−1
H 2πql̄2H 2πql̄2H

PM l̄H � q−1 � ξp l̄H
π
2q

√
2πql̄H l̄H

PM ξp . q−1 ξh
5π
2q

1.48q−1

PM Along H ≈ Hc2

√
2

κ−
5π
2q

π√
2κ+
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indicating that the Skyrmion size is of q−1 in this region. Far from this point, L and

R differs in orders of magnitude. In general, L is better to characterize the size of

Skyrmions because it takes into account both the core and the tail. Whether L or

R is a better measure depends on the situations, as listed below:

1. If L and R are of the same order of magnitude (∼ K−1 or oscillating) as in

Fig. 7.3 (a), they are equally good. Examples: paramagnets in q−1 � l̄H � ξp

and ξp . q−1.

2. If R� L as in Fig. 7.3 (b), L is a better measure because L depicts where the

tail starts and the slope of the core behavior was underestimated. Examples:

ferromagnets in ξf � q−1 � l̄H , ξf � l̄H � q−1, l̄H � ξf � q−1 and

l̄H � q−1 � ξf , and paramagnets in l̄H � q−1 � ξp and ξp � q−1 � l̄H .

3. If L � R as in Fig. 7.3 (c), R is a better measure. The matching method is

not working so well because at ρ = L, θ(ρ) becomes negative. However, There

are no such examples in all cases considered in Table 7.1.

Therefore, for our purpose, L is a better characterization of the Skyrmion size in

general.

For pure ferromagnets (q = 0 and H = 0) and aligned conical phase, matching

does not fix the size of the Skyrmion due to the same reason stated in Section 7.2.2.

For pure ferromagnets, matching the solutions in Eq. (6.6) for small and large ρ

does not give L.
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Figure 7.3: Plots for θ(ρ) for Skyrmions in paramagnets and ferromagnets, and the

meanings of R and L as the sizes of the Skyrmion core. (a) R ≈ L. Both are equally good

measures for the core size. (b) R� L. L is a better measure for the core size. (c) R� L.

R is a better measure for the core size.

7.4 Matching length of aligned conical phase

Because of the technical complexities of aligned conical phase, we do not match

the core and tail solutions as we did for other magnets. And due to spontaneous

symmetry breaking, it does not have a definite core size and tail length. However,

we assume a form of Syrmionic solution here and estimate the range of the core size

by matching. We describe an isolated Skyrmion in terms of

M = [1− η1(ρ, ξ)]msp(cos qzx̂ + sin qzŷ)

+m||n̂sk − η3(ρ, ξ)m||ẑ, (7.13)

where n̂sk is the same Skyrmion in Eqs. (6.4a-6.4c). The first and third term are

with variational parameters η1 and η3 which does not alter the winding number.

The second term with n̂sk keeps the winding number to be −1. Because Eq. (7.13)
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already captures the long-range behavior as n̂sk · (− sin qzx̂ + cos qzŷ) ∼ 1
ρ

sin ξ far

from the core (ρ→∞), there is no term in the direction of (− sin qzx̂ + cos qzŷ) in

Eq. (7.13).

We then solve for η1 and η3 by putting Eq. (7.13) to the saddle-point equations,

Eqs. (6.13), for regions far from the core (ρ → ∞) and near the core (ρ ≈ 0). Far

from the core (ρ→∞), we find that

η1 ≈
(3aq2 − 2r)m||

2um3
sp

(
2l

ρ
sin ξ

)
, (7.14)

η3 ≈ −
m||
msp

(
2l

ρ
sin ξ

)
, (7.15)

where l is an undetermined parameter that we estimate below. At the core (ρ ≈ 0),

with linearization of the parameters in the saddle-point equations, Eqs. (6.13), we

find that

η1 ≈ −E1

(
2ρ

l
sin ξ

)
, (7.16)

η3 ≈ 1−B3

(ρ
l

)2

− E3

(
2ρ

l
sin ξ

)
, (7.17)
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where (in terms of bare parameters in the action)

E1 =

[
r(1− lq) + 4a

l2
(2− q2l2)

]
m||

r − 2aq
l

+ u(3m2
sp + 4m2

||)
(7.18)

−
2u(m2

|| − 2m2
sp)m||m

2
sp

(7m2
|| − 4m2

sp)
[
r − 2aq

l
+ u(3m2

sp + 4m2
||)
]

−
uql(28m5

|| − 23m3
||m

2
sp + 4m||m

4
sp)

(7m2
|| − 4m2

sp)
[
r − 2aq

l
+ u(3m2

sp + 4m2
||)
] ,

B3 =
4qlm2

sp

7m2
|| − 4m2

sp

+
l2
(

4a
l2
− 4aq

l
+ r − 4um2

|| + um2
sp

)
2a

, (7.19)

E3 =
4m||msp

7m2
|| − 4m2

sp

. (7.20)

Then we match Eq. (7.14) and Eq. (7.16), and η3 by matching Eq. (7.15) and Eq.

(7.17) at some distance ρ = L, and we can solve for l. Matching is only possible if

B3 and E3 are positive, and E1 is negative. For E3 to be positive, the denominator

7m2
|| − 4m2

sp has to be positive. (This makes the Skyrmion gas to appear only if

H ≥ 0.798Hc2.) L depends on ξ slightly. The lack of an analytic solution forces us

to explore the core size numerically.

In Table 7.2, the sizes of Skyrmions in the aligned conical phase with different

values of the correlation length ξ′h and H = 0.8Hc2 are listed. L is the size of a

Skyrmion found by matching method. It depends on the phase angle ξ but it does

not vary significantly. In general, as the system goes away from the phase boundary

(as ξ′h decreases), the size of the Skyrmion decreases.
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Table 7.2: Isolated Skyrmions in aligned conical phase for different values of ξ′h all for

H = 0.8Hc2.

ξ′h l L ξ = qz − ϕ

3.16q−1 (r = 0.7aq2) 1.59q−1 2.38q−1 0

1.59q−1 2.31q−1 π
2

1.59q−1 2.38q−1 π

1.58q−1 2.24q−1 3π
2

1.83q−1 (r = 0.7aq2) 1.13q−1 2.13q−1 0

1.13q−1 1.88q−1 π
2

1.13q−1 2.13q−1 π

1.12q−1 1.38q−1 3π
2

1.41q−1 (r = 0.5aq2) 0.88q−1 1.35q−1 0

0.88q−1 1.29q−1 π
2

0.88q−1 1.35q−1 π

0.88q−1 1.23q−1 3π
2

1.29q−1 (r = 0.4aq2) 0.79q−1 1.13q−1 0

0.79q−1 1.15q−1 π
2

0.79q−1 1.13q−1 π

0.80q−1 1.20q−1 3π
2
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7.5 Core-to-core distance of a Skyrmion lattice

Lastly, we discuss the core-to-core distance as a kind of characterization of the

Skyrmion size in the columnar phase with the Abrikosov solution given in Section

3.3.2.

With the solution given in Section 3.3.1, the core-to-core distance is q−1. How-

ever, it is not the case for the Abrikosov solution given in Section 3.3.2. Near the

helimagnetic phase boundary ξpq ≈ 1, as in Eq. (2.10), and in this region the core-

to-core distance goes like q−1, agreeing with previous theoretical [64, 77, 69, 33, 68]

and experimental studies. [8, 26]. Both description in Sections 3.3.1 and 3.3.2 are

good. However, further away from the phase boundary, from Eq. (3.24), the core-

to-core distance is ∼ qξ2
p . However, we also predict that the size increases away

from the phase boundary, provided the Skyrmion lattice is still the thermodynamic

ground state when the correlation length ξp gets larger.

7.6 Conclusion

In this chapter, we evaluated the sizes of a single Skyrmion as excitations by

defining them from their core and tail behaviors in various phases in helimagnets.

In phases without spontaneous symmetry breaking, the sizes are the competi-

tion of various physical length scales in the system, contrary to the belief that the

sizes depend merely on the strength of DM interaction.

In phases with symmetry breaking, the sizes are undetermined. More physical

length scales or matching the core and tail are needed. An example for latter is the
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conical phase, where in our study the size is fixed by imposing one more matching

constraint in our problem.

We also discussed about the core-to-core distance of the Skyrmion lattice. It is

of the order of q−1 near the transition temperature, as shown in various experiments.

Our result shows that it increases as the system further decreases its temperature.
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Chapter 8

Conclusion and Outlook

We first present a summary of our findings as a conclusion to the dissertation

and then discuss open problems that can be pursued in the future. In Chapter

1, we introduced the concept of helimagnetism, and reviewed a number of experi-

mental findings about typical helimagnets such as MnSi, FeGe and Fe1−xCoxSi. In

Chapter 2, we introduced the LGW model appropriate for these helimagnets, and

the associated energy scales (in terms of the hierarchy of the order of spin-orbit

coupling) and the physical length scales. In Chapter 3, we presented the phase di-

agram realized by our model using mean-field theory. Our model gives the helical,

conical, columnar, paramagnetic and ferromagnetic phases, those measured by ex-

periments. We also predicted a new elliptical conical phase between the helical and

conical phases. In Chapter 4, we studied the Goldstone modes of various phases

by perturbation, and compared these with the fluctuations in liquid crystals. In

Chapter 5, we studied the effects of the Goldstone modes on specific heat, thermal

conductivity and electrical resistivity by considering a microscopic model of heli-

magnets with coupling between the Goldstone modes and the conduction electrons.

We considered the properties in both clean and ballistic disorder limits. We deduced

the T 3/2-dependence of the resistivity in the NFL phase found in the experiment,

and predicted the dependences in other ordered phases. In Chapter 6, we reviewed
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the basis of Skyrmions. In Chapter 7, we studied the sizes of Skyrmions through

analyzing the saddle-point equations. We found that the sizes of Skyrmions depend

not only on helical wavelength, but also other physical length scales permitted by

the system.

We now discuss open problems as possible future projects that extend the

work in this dissertation. Firstly, further studies are needed to understand the

NFL phase at p > pc. This, called the blue quantum flog, is the helimagnetic

analog of blue phase in cholestoric liquid crystals. [88] The columnar fluctuations

in columnar phase and its consequences on electrical resisitivity in the presence

of disorder already shed light on the understanding of NFL phase. It is believed

that this NFL phase is the melted columnar crystal, (as in Ref. [56]) which needs

verification experimentally and theoretically.

Secondly, the Goldstone boson in the helical phases of helimagnets is called a

helimagnon, and the Goldstone modes in the columnar phase are called Skyrmioni-

ans. We can study the interaction between the conducting electrons, helimagnons

and columns of Skyrmions. This will advance our understanding about the forma-

tion of columnar lattice, its transport behavior in the phase of Skyrmion lattice,

and the dynamics of Skyrmions in helimagnets. The lattice may melt into a liquid.

[56] The columns are moving freely like particles, as in vortices in high-temperature

superconductors [113] and two-dimensional superfluids. [114, 115] They are formed

by crossing the energy barrier due to different topologies, just like vortices in two-

dimensional Bose gas. [116] Skyrmions are magnetic vortices, with their dynam-

ics that is still yet to explore. [117] The dynamics is also related to the interac-
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tions between these Skyrmions, Goldstone bosons and conduction electrons, just

like electron-phonon interactions. [99]

Thirdly, we can study the helimagnet with pitch vector perpendicular to the

external magnetic field. Such a helimagnet was proposed as a candidate for the

columnar phase before the discovery of the six-fold neutron scattering pattern, [76]

and its electronic properties were analyzed in our paper [48] as well. This is possible

if the longitudinal magnetic susceptibility is larger than the transverse one, while

in aligned conical phase it is the opposite, as in cholestoric liquid crystals. [24] The

helical period increases as the magnetic field increases until the helix is unwound.

[78]

Lastly, we can study the dynamics of the formation of ordered phases in he-

limagnets. Suppose that there is a quench in the system (sudden change of tem-

perature or magnetic field), or a slow decrease of temperature across the phase

transition, as in Kibble-Zurek (KZ) mechanism. [118, 119, 120, 121] We expect that

the magnet evolves to the thermodynamically stable phase. However, because the

helimagnet has a softer Goldstone modes than ferromagnets, we expect the forma-

tion of ordered phases in helimagnets be different from that of ferromagnets (with

domain size grows as t
1
2 , where t is the time). The dynamics of the formation or

growth of the new magnetic order can be studied with a time-dependent equation

for magnets. [71] If the quenching occurs at absolute zero, the dynamics of the

growth of the new ordered can be studied with influence functional. [122]
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Appendix A

Analytic Expressions for the Paramagnet and the Ferromagnet in

Mean-field LGW Model

For the paramagnet and the ferromagnet, the magnetization can be solved by

the saddle-point equation derived from LGW functional,

rm+ um3 −H = 0. (A.1)

Its analytic solutions are given in the following.

A.1 Paramagnet

The paramagnet phase is only valid for r > 0. Its full analytic expression is

given by

MP =
H

r
f1

(√
u

r3
H

)
, (A.2a)

where

f1(x) =
1

x

[
x

2
+

√
1

27
+
(x

2

)2
] 1

3

+
1

x

[
x

2
−
√

1

27
+
(x

2

)2
] 1

3

. (A.2b)

A Taylor’s expansion for small H confirms that Mp ≈ χpH, where χp = 1
r
. However,

when r approaches 0, Mp ≈
(
H
u

) 1
3 , giving the critical exponent δ = 3 for the mean-

field theory. [71]
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A.2 Ferromagnet

The ferromagnet is valid only for r < 0. In general the magnetization is given

by

MF =


M

(0)
F

(
cos γ

3
+ 1√

3
sin γ

3

)
, for H < 2|r|√

27

√
|r|
u

H
|r|f2

(√
u
|r|3H

)
, for H > 2|r|√

27

√
|r|
u

(A.3a)

where M
(0)
F is given by

M
(0)
F =

√
|r|
u
, (A.3b)

f2(x) =
1

x

[
x

2
+

√
− 1

27
+
(x

2

)2
] 1

3

+
1

x

[
x

2
−
√
− 1

27
+
(x

2

)2
] 1

3

. (A.3c)

and

sin γ =

√
27

2|r|

√
u

|r|
H. (A.3d)

A Taylor’s expansion for small H confirms that m ≈M
(0)
F + χfH, where ξf = 1

2|r| .
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Appendix B

Model in CP 1 Representation

B.1 Basics

To facilitate the study of topologically non-trivial Skyrmions, it is useful to

write the model SH +SDM in Eqs. (2.2a) and (2.3a) in terms of the CP 1 representa-

tion, which is commonly used in the study of quantum Hall ferromagnets. [55] We

first write

M(x) = m(x)n(x), (B.1)

where m(x) and n(x) denotes the magnitude and direction of M(x). The direction

n can be written in terms of two-component spin through the Hopf mapping: [123]

nα = z∗i σ
ij
α zj, (B.2)

where σα is the Pauli matrix. Greek indices denote spatial component and Latin

indices matrix component in spins. The constraint n2 = 1 gives

z∗i zi = 1. (B.3)

Because n has a definite magnitude, there are only two degrees of freedom.

Therefore, z should have two degrees of freedom only, accomplished by the constraint

Eq. (B.3) and fixing the gauge [68]

Aα = − i
2

(z∗i ∂αzi − zi∂αz∗i ), (B.4)
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such that the transformation zi(x)→ e−iθ(x)zi(x) and z∗i (x)→ eiθ(x)z∗i (x) does not

lead to a change in the physical system.

In this representation, we write the action as

S[m,A, z]

=

∫
d3x

[r
2
m2 +

u

4
m4 +

a

2
∂αm∂αm−Hαmz

∗
i σ

ij
α zj

]
+2am2 [(∂αz

∗
i )(∂αzi)− AαAα]

+cm2

[
z∗i σ

ij
α zjAα +

i

2
(∂αz

∗
i )σ

ij
α zj −

i

2
z∗i σ

ij
α ∂αzj

]
. (B.5)

The saddle-point equation associated with this representation has to be done with

Lagrangian multiplier because of the constraint in Eq. (B.3). Consider S+λ
∫
d3x(z∗i zi−

1) with λ being the Lagrangian multiplier, the saddle-point equations are

(r − 3aq2 − 4aAαAα)m− a∂α∂αm− 4aqmnαAα + um3

−Hαnα + 4am

[(
δij∂α −

iq

2
σijα

)
z∗j

] [(
δik∂α +

iq

2
σikα

)
zk

]
= 0, (B.6a)

m

(
δij∂α − iδijAα +

iq

2
σijα

)(
δjk∂α − iδjkAα +

iq

2
σjkα

)
zk

−iqm
(
nα∂αzi +

1

2
zi∂αnα

)
+
Hα

2a
σijα zj = λzi, (B.6b)

where q = c
2a

as in Eq. (2.5). These are convenient for studying a lattice of

Skyrmions.
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B.2 CP 1 representation of some phases in helimagnets

B.2.1 Ferromagnet and paramagnet

The magnitudes of ferromagnet and paramagnet can be expressed as Eqs.

(A.2a) and (A.3a), with details given in Appendix A. Its direction can be given in

CP 1 representation as

z =

 1

0

 , (B.7a)

with

A = 0. (B.7b)

B.2.2 Aligned conical phase

The magnitude of aligned conical phase is given by mH in Eq. (3.10d). Its

direction can be given in CP 1 representation as

z =

 e−
iqz
2

√
1
2

(
1 +

m||
mH

)
e
iqz
2

√
1
2

(
1− m||

mH

)
 , (B.8a)

with

A =
qm||
2mH

ẑ. (B.8b)
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B.2.3 Isolated Skyrmion

The isolated Skyrmion, given as a solution of the non-linear σ model in Eqs.

(6.4), can be expressed in CP 1 representation as [68]

z =

√
ρ2

ρ2 + l2

 ei(
π
2
−ϕ)

l
ρ

 , (B.9a)

with

A = − ρϕ̂

ρ2 + l2
. (B.9b)
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Appendix C

Linear Response Theory

Linear response theory relates external perturbations of a physical system to

the correlation functions in the unperturbed one. [97] This ensures that the pertur-

bations have long-ranged behaviors if there exist correlation functions for massless

modes for fluctuations. In contrast, the perturbations are of short-ranged if there

do not exist any massless modes. This explains the behaviors of Skyrmion tails

in different phases in Chapter 7 in relation to the Goldstone theorem. This ap-

pendix also briefly explains the ideas behind the calculation of transport properties

in Chapter 5. Linear response theory was treated in various standard textbooks.

[94, 97, 124, 125, 126]

Assume there is a field M(x) with a known mean-field solution M0, with

the corresponding free energy per temperature being S0. Let the kernel matrix for

fluctuations be K(x,x′) and an external perturbation H(x). Then the corresponding

partition function is

Z = e−S0

∫
DM ·

exp

[
−
∫
ddx

∫
ddx′

1

2
δMi(x)Kij(x,x

′)δMj(x
′)

+β

∫
ddx ·Hi(x)δMi(x)

]
, (C.1)

where summation is on repeated indices and β = (kBT )−1. By carrying out the

functional integral, we get the fluctuation determinant. [127] The equation for δM ,
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by variational principle, is

∫
ddx′ ·Kij(x,x

′)δMj(x
′)− βHi(x) = 0, (C.2)

and hence,

δMi(x) = β

∫
ddx′ ·K−1

ij (x,x′)Hj(x
′). (C.3)

Note that the inverse of the kernel matrix is actually the correlation matrix. We can

see from here that the perturbation δM(x) has the same behavior as the correlation

functions K(x,x′). If K−1(x,x′) = K−1(x − x′), the Fourier representation of Eq.

(C.3) is

δMi(k) = βK−1
ij (k)Hj(k). (C.4)

We illustrate this with the example of a pure ferromagnet with q = 0 and

H = 0. Assume that the magnet is aligned along z direction. Then the kernel

matrices (the inverse of the correlation functions) are given by [71]

Kij(k) = δij(ak
2 − 2rδjz).

This indicates that along x and y directions, the fluctuations are massless as expected

by Goldstone theorem. Along z direction, it is massive. Then, we get

ak2δMx(k)− βHx(k) = 0,

ak2δMy(k)− βHy(k) = 0,

(ak2 − 2r)δMz(k)− βHz(k) = 0.

This gives δMx(x), δMy(x) ∼ |x|−1 and δMz(x) ∼ |x|−1e
− |x|
ξf . Here, we have demon-

strated that the correlation function of a massless mode leads to long-range behaviors
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of the perturbations. Similar behavior exists in the perturbations to aligned conical

phase in Section 7.2.2.

Here, we illustrate an example of a pure paramagnet with q = 0 and H = 0

here. In this case, M0 = 0. The kernel matrices are [71]

Kij(k) = δij(ak
2 − r).

Then

(ak2 − r)δMi(k)− βHi(k) = 0,

for i = x, y and z. This gives δM(x) ∼ |x|−1e
− |x|
ξp . Here we have demonstrated

that if the correlation functions of all modes are massive, then the perturbations are

short-ranged.
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Appendix D

Hertz’s Theory of Quantum Critical Phenomena

This appendix reviews the derivation of the Landau-Ginzburg Hamiltonian

from the microscopic Hubbard Model, as shown in Hertz’s article. [83] This is a

theory of quantum critical phenomena.

D.1 Hubbard Model

The Hubbard model is given by

H =

∫
d3x · ψ̂†α(x)

(
−∇

2

2m

)
ψ̂α(x) +

U

2

∫
d3x · ψ̂†α(x)ψ̂†β(x)ψ̂β(x)ψ̂α(x) (D.1)

where ψ̂α(x) is the field operator for the electrons. Since it is a fermionic operator,

by anti-commutation relation we have

ψ̂†α(x)ψ̂†β(x)ψ̂β(x)ψ̂α(x) = ψ̂†α(x)ψ̂α(x)ψ̂†β(x)ψ̂β(x)− ψ̂†α(x)ψ̂α(x) (D.2)

The identity about the Pauli matrices [123]

σiαβσ
i
α′β′ = 2δαβ′δβα′ − δαβδα′β′ (D.3)

applied in (D.2) gives

ψ̂†α(x)ψ̂†β(x)ψ̂β(x)ψ̂α(x) = −1

4
ψ̂†α(x)σiαβψ̂β(x)ψ̂†α′(x)σiα′β′ψ̂β′(x) (D.4)
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As a result, the Hubbard model (D.1) can be rewritten in terms of the magnetization

as

H =

∫
d3x · ψ̂†α(x)

(
−∇

2

2m

)
ψ̂α(x)− U

8

∫
d3x · ψ̂†α(x)σiαβψ̂β(x)ψ̂†α′(x)σiα′β′ψ̂β′(x)

(D.5)

The quantum partition function Z is then given by

Z =

∫
Dψ̄Dψ · e−

∫ β
0 dτ

∫
d3x{ψ̄α(x,τ)( ∂

∂τ
−µ)ψα(x,τ)+H[ψ̄(x,τ),ψ(x,τ)]}

=

∫
Dψ̄Dψ · e−

∫ β
0 dτ

∫
d3x
[
ψ̄α(x,τ)

(
∂
∂τ
−∇

2

2m
−µ
)
ψα(x,τ)−U

8
ψ̄α(x,τ)σiαβψβ(x,τ)ψ̄α′ (x,τ)σi

α′β′ψβ′ (x,τ)
]

Using Hubbard-Stratonovich transformation

∫
dM · e−

1
2
M2+λM·(Φ̄σψ) ∼ e

λ2

2
(Φ̄σψ)2

(D.6)

the partition function can be rewritten in terms of the new Grassman variable M:

Z =

∫
Dψ̄Dψ · e−

∫ β
0 dτ

∫
d3x
[
ψ̄α(x,τ)

(
∂
∂τ
−∇

2

2m
−µ
)
ψα(x,τ)

]

·
∫
DM · e

−
∫ β
0 dτ

∫
d3x

[
M2(x,τ)

2
−
√
U
2
M i(x,τ)ψ̄α(x,τ)σiαβψβ(x,τ)

]

=

∫
DM · e−

1
2

∫ β
0 dτ

∫
d3x·M2(x,τ)

·
∫
DψDψ̄ · e−

∫ β
0 dτ

∫
d3x·ψ̄α(x,τ)

[(
∂
∂τ
−∇

2

2m
−µ
)
−
√
U
2
M i(x,τ)σiαβ

]
ψβ(x,τ)

=

∫
DM · e−

1
2

∫ β
0 dτ

∫
d3x·M2(x,τ)Det

[(
∂

∂τ
− ∇

2

2m
− µ

)
−
√
U

2
M iσiαβ

]

For we write the partition function in the form of the following functional integral

Z =

∫
DM · e−H[M ] (D.7)
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the functional on the exponent is then given by

H[M ] =
1

2

∫ β

0

dτ

∫
d3x ·M2(x, τ)− ln

{
Det

[(
∂

∂τ
− ∇

2

2m
− µ

)
−
√
U

2
M iσiαβ

]}

=
1

2

∫ β

0

dτ

∫
d3x ·M2(x, τ)− Tr

{
ln

[(
∂

∂τ
− ∇

2

2m
− µ

)
−
√
U

2
M iσiαβ

]}

=
1

2

∫ β

0

dτ

∫
d3x ·M2(x, τ)− Tr ln

(
1− G0

√
U

2
M iσiαβ

)
(D.8)

where in the second line we use Tr lnA = ln Det(A), and in the third line we invoke

the definition of the non-interacting Green’s function

(G0)−1 =
∂

∂τ
− ∇

2

2m
− µ (D.9)

and an additive constant term is omitted.

The next task is to expand the trace term. Using the identity

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− . . . (D.10)

and the fact that the traces of an odd power of the Pauli matrices are zero, we have

Tr ln

(
1− G0

√
U

2
M iσiαβ

)
= −1

2
Tr

(
G0

√
U

2
M iσiαβ

)2

− 1

4
Tr

(
G0

√
U

2
M iσiαβ

)4

− . . .

(D.11)

D.2 The φ2 Term

With the identity [123]

Tr(σiσj) = 2δij (D.12)
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the second order term of the expansion (D.11) is given by

−1

2
Tr

(
G0

√
U

2
M iσi

)2

= −U
8

Tr
(
G0M iG0M jσiσj

)
= −U

4
Tr
(
G0M iG0M i

)
= −U

4

∫
d3x1

∫ β

0

dτ1

∫
d3x2

∫ β

0

dτ2

G0(x1 − x2, τ1 − τ2)M i(x2, τ2)G0(x2 − x1, τ2 − τ1)M i(x1, τ1)

= − 1

(2π)6β2

U

4

∫
d3k1

∞∑
n1=−∞

∫
d3k2

∞∑
n2=−∞

G0(k1, ωn1)M i(k2, ωn2)G0(k1 − k2, ωn1 − ωn2)M i(−k2,−ωn2)

= − 1

(2π)3β

U

4

∫
d3k

∞∑
n=−∞

|M(k, ωn)|2Γ(k, ωn)

Fourier transform has been carried out. The bosonic Matsubara frequency ωn is

given by

ωn =
2nπ

β
(D.13)

for any integers n. The function Γ(k, ωn) is given by the integral

Γ(k, ωn) =
1

(2π)3β

∫
d3k′

∞∑
n′=−∞

G0(k′, ωn′)G0(k′ − k, ωn − ωn′) (D.14)

=
1

(2π)3β

∫
d3k′

∞∑
n′=−∞

1

iωn′ −
(

k′2

2m
− µ

) 1

i(ωn′ − ωn)−
[

(k′−k)2

2m
− µ

]
where the frequency ωn′ in the summation is fermionic and is given by

ωn′ =
(2n′ + 1)π

β
(D.15)
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We first carry out the frequency summation. Consider the contour C which is

circular, centered at origin and with radius tending to infinity.

0 =

∮
C

dz

2πi

1

eβz + 1

1

z −
(

k′2

2m
− µ

) 1

(z − iωn)−
[

(k′−k)2

2m
− µ

]
=

1

e
β
(

(k′−k)2

2m
−µ+iωn

)
+ 1
· 1

iωn + (k′−k)2

2m
− k′2

2m

− 1

e
β
(

k′2
2m
−µ
)

+ 1
· 1

iωn + (k′−k)2

2m
− k′2

2m

− 1

β

∞∑
n′=−∞

1

iωn′ −
(

k′2

2m
− µ

) · 1

i(ωn′ − ωn)−
[

(k′−k)2

2m
− µ

]
1

β

∞∑
n′=−∞

1

iωn′ −
(

k′2

2m
− µ

) · 1

i(ωn′ − ωn)−
[

(k′−k)2

2m
− µ

] =
nF (ξk′−k)− nF (ξk′)

iωn + ξk′−k − ξk′

(D.16)

where

ξk =
k2

2m
− µ (D.17)

and the Fermi distribution function is

nF (ξk) =
1

eβξk + 1
(D.18)

As a result, the function Γ(k, ωn) is given by

Γ(k, ωn) =

∫
d3k′

(2π)3
· nF (ξk′−k)− nF (ξk′)

ξk′−k − ξk′ + iωn
(D.19)

To evaluate this function, consider the following expression for susceptibility

χR0 (k, ω + iη) =

∫
d3k′

(2π)3
· nF (ξk′−k)− nF (ξk′)

ξk′−k − ξk′ − ω − iη
(D.20)

This is the famous Lindhard function that the result of the integral can be found in

any textbook. Its real part is given by [105]

ReχR0 (k, ω + iη) = −d(εF )

(
1

2
+
f(x, x0) + f(x,−x0)

8x

)
(D.21)
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where x = k
2kF

and x0 = ω
4εF

. The density of states is given by

d(εF ) =
1

2π2
(2m)

3
2 εF

1
2 (D.22)

and the function f(x, x0) is

f(x, x0) =

[
1−

(x0

x
− x
)2
]

ln

∣∣∣∣x+ x2 − x0

x− x2 + x0

∣∣∣∣ (D.23)

The imaginary part is given by [105]

ImχR0 (k, ω) = −d(εF )

2



π
8x

[
1−

(
x0

x
− x
)2
]

for |x− x2| < x0 < x+ x2

πx0

2x
for 0 < x0 < x− x2

0 for other x0 >= 0

(D.24)

For long-wavelength approximation, we can expand the functions for small x and

x0

x
,

ln

∣∣∣∣x+ x2 − x0

x− x2 + x0

∣∣∣∣ = ln

∣∣∣∣1 + x− x0

x

1− x+ x0

x

∣∣∣∣
≈ 2

(
x− x0

x

)
+

2

3

(
x− x0

x

)3

+ . . .

f(x, x0) ≈ 2

[
1−

(
x− x0

x

)2
](

x− x0

x

)
+ . . .

f(x,−x0) ≈ 2

[
1−

(
x+

x0

x

)2
](

x+
x0

x

)
+ . . .

f(x, x0) + f(x,−x0) ≈ 4x− 2
(
x− x0

x

)3

− 2
(
x+

x0

x

)3

= 4x− 12x0
2

x
− 4x3

f(x, x0) + f(x,−x0)

8x
≈ 1

2
− x2

2
− 3

2

x0
2

x2
≈ 1

2
− x2

2

As a result, the real and the imaginary parts of the Lindhard function (D.17) is

given by

ReχR0 (k, ω) ≈ −d(εF )

(
1− x2

2

)
(D.25)

ImχR0 (k, ω) ≈ −d(εF )
πx0

4x
(D.26)
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Substituting the expressions for x and x0, we get the total Lindhard function under

long-wavelength approximation as

χR0 (k, ω) ≈ −d(εF )

(
1− x2

2
+ i

πx0

4x

)
= −(2m)

3
2

2π2
εF

1
2

(
1− k2

8kF
2 + i

πm

4kF
· ω
k

)
(D.27)

By the analytic continuation iωn → ω + iη, the long-wavelength approximation for

Γ(k, ωn) is given by

Γ(k, ωn) ≈ −(2m)
3
2

2π2
εF

1
2

(
1− 1

2

(
k

2kF

)2

− πm

4kF

|ωn|
k

)
(D.28)

Putting (D.28) back to (D.11) and (D.8), we know that the ψ2 is

H(2)[M ] ≈
∫

d3k

(2π)3β

∞∑
n=−∞

{[
1

2
− (2m)

3
2

2(2π)2
εF

1
2U

]
+

(2m)
3
2

4(2π)2
εF

1
2U

(
k

2kF

)2

+
(2m)

3
2

2(2π)2

π

4

|ωn|
vFk

}
|M(k, ωn)|2

Or it can be written in the compact form

H(2)[M ] ≈
∫

d3k

(2π)3β

∞∑
n=−∞

1

2

(
r0 + c1k

2 + c2
|ωn|
k

)
|M(k, ωn)|2 (D.29)

where r0 is a parameter which can be controlled (by U) so that it can be positive or

negative, thus it is a control parameter around the criticality. At criticality, r0 = 0.

D.3 The φ4 Term

Using the identity [123]

Tr(σaσbσcσd) = 2(δabδcd − δacδbd + δadδbc) (D.30)
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the fourth order term of the expansion (D.11) is given by

−1

4
Tr

(
G0

√
U

2
M iσi

)4

= −3U2

25
Tr(G0M iG0M iG0M jG0M j)

= −3U2

25

∫
d3x1

∫ β

0

dτ1

∫
d3x2

∫ β

0

dτ2

∫
d3x3

∫ β

0

dτ3

∫
d3x4

∫ β

0

dτ4

·G0(x1 − x2, τ1 − τ2)M i(x2, τ2)G0(x2 − x3, τ2 − τ3)M i(x3, τ3)

·G0(x3 − x4, τ3 − τ4)M i(x4, τ4)G0(x4 − x1, τ4 − τ1)M i(x1, τ1)

= −3U2

25

∫
d3k1

∞∑
n1=−∞

∫
d3k2

∞∑
n2=−∞

∫
d3k3

∞∑
n3=−∞

·Γ(k1, ωn1 ; k2, ωn2 ; k3, ωn3)M i(k1, ωn1)M i(k2, ωn2)

·M j(k3, ωn3)M j(−k1 − k2 − k3,−ωn1 − ωn2 − ωn3)

where the function Γ(k1, ωn1 ; k2, ωn2 ; k3, ωn3) is given by

Γ(k1, ωn1 ; k2, ωn2 ; k3, ωn3) =
1

β

∞∑
n=−∞

∫
d3k

(2π)3

·G0(k, ωn)G0(k + k1, ωn + ωn1)G0(k− k2, ωn − ωn2)

·G0(k− k1 − k2, ωn − ωn1 − ωn2) (D.31)

For long-wavelength approximation, take ki ≈ 0 and ωni ≈ 0 for i = 1, 2, 3,

then

Γ(k1, ωn1 ; k2, ωn2 ; k3, ωn3) ≈ Γ(0, 0; 0, 0; 0, 0) =
1

β

∞∑
n=−∞

∫
d3k

(2π)3
[G0(k, ωn)]4

(D.32)

which is a positive constant and we denote it as u. Then, up to a constant factor,
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the fourth-order term of the functional is given by

H(4)[M ] ≈ u

4

∫
d3k1

(2π)3β

∞∑
n1=−∞

∫
d3k2

(2π)3β

∞∑
n2=−∞

∫
d3k3

(2π)3β

∞∑
n3=−∞

·M i(k1, ωn1)M i(k2, ωn2)M j(k3, ωn3)

·M j(−k1 − k2 − k3,−ωn1 − ωn2 − ωn3) (D.33)

D.4 LGW Functional

From the Hubbard model, the Landau-Ginzburg form of the Hamiltonian can

be derived. The result can be generalized to other dimensions and written as

H[M ] ≈
∫

ddk

(2π)dβ

∞∑
n=−∞

1

2

(
r0 + c1k

2 + c2
|ωn|
k

)
|M(k, ωn)|2

+
u

4

∫
ddk1

(2π)dβ

∞∑
n1=−∞

∫
ddk2

(2π)dβ

∞∑
n2=−∞

∫
ddk3

(2π)dβ

∞∑
n3=−∞

·M i(k1, ωn1)M i(k2, ωn2)M j(k3, ωn3)

·M j(−k1 − k2 − k3,−ωn1 − ωn2 − ωn3) (D.34)

And this Hamiltonian is the starting point of studying quantum critical phenomena.

This Hamiltonian can be expressed in real space. The real space representation

of terms with r, c1 and u can be found easily by Fourier transform, but the term

involving c2 is more complicated and is shown below. The Fourier transform of the

order parameter is given by

M(k, ωn) =

∫
ddx

∫ β

0

dτM(x, τ)e−i(k·x−ωnτ) (D.35)
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Then the term involving c2 is∫
ddk

(2π)dβ

∞∑
n=−∞

ωn
k
|M(k, ωn)|2

=

∫
ddk

(2π)dβ

∞∑
n=−∞

ωn
k

∫
ddx1

∫ β

0

dτ1M
i(x1, τ1)e−i(k·x1−ωnτ1)

·
∫
ddx2

∫ β

0

dτ2M
ix2, τ2)e−i(k·x2−ωnτ2)

=

∫
ddx1

∫ β

0

dτ1

∫
ddx2

∫ β

0

dτ2M
i(x1, τ1)M i(x2, τ2)

·
∫

ddk

(2π)dβ

∞∑
n=−∞

e−ik·(x1−x2)

ik

[
∂

∂τ1

eiωn(τ1−τ2)

]
= i

∫ β

0

dτ

∫
ddx1

∫
ddx2

(
∂

∂τ
M i(x1, τ1)

)
M i(x2, τ2)

∫
ddk

(2π)d
e−ik·(x1−x2)

k

The integral in the momentum space can be evaluated using the technique in Ap-

pendix E with the use of (E.3):∫
ddk

(2π)d
e−ik·(x1−x2)

k
=

Kd−1

2π

∫ Λ

0

dk

∫ π

0

dθkd−1 sind−2 θ
e−ik|x1−x2| cos θ

k

=
Kd−1

2π

∫ Λ

0

dk · kd−2

∫ π

0

dθ sind−2 θ · e−ik|x1−x2| cos θ

=
Kd−1(d− 2)!

2π(i|x1 − x2|)d−1

[
1− e−iΛ|x1−x2|ed−2(iΛ|x1 − x2|)

] ∫ π

0

dθ sind−2 θ

where Kd is given in (E.4) and en(x) is the exponential sum function as

en(x) =
n∑
j=0

xj

j!
(D.36)

The integral involving the powers of sine and angle is given as

1

2

∫ π

0

dθ · sind−2 θ =
(d− 3)!!

(d− 2)!!


π
2

for even d

1 for odd d

(D.37)

As a result, this term becomes

−
∫ β

0

dτ

∫
ddx1

∫
ddx2

Ed[1− e−iΛ|x1−x2|ed−2(iΛ|x1 − x2|)]
|x1 − x2|d−1

[
∂M(x1, τ1)

∂τ

]
·M(x2, τ2)

(D.38)
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where Ed is given by

Ed =
Kd−1(d− 2)!

idπ

(d− 3)!!

(d− 2)!!


π
2

for even d

1 for odd d

(D.39)
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Appendix E

Multiple Integrals Involving Angles

In the study of field theory in condensed matter, integrals of the following

form are always encountered:

Im(k1,k2, . . . ,km) =

∫
ddk

(2π)d
f(k2; k · k1,k · k2, . . . ,k · km) (E.1)

Usually, the situations are either m = 0 or m = 1. It has been listed in Ref. [128]

that

I0 =

∫
ddk

(2π)d
f(k2) = Kd

∫
dk · kd−1f(k2) (E.2)

and

I1(k1) =

∫
ddk

(2π)d
f(k2,k · k1) =

Kd−1

2π

∫
dk

∫ π

0

dθkd−1 sind−2 θf(k2; k1k cos θ)

(E.3)

where Kd is defined by

Kd =
2−(d−1)π−

d
2

Γ
(
d
2

) (E.4)
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Appendix F

Power counting in calculating diagrams for conductivity

In this appendix, we discuss the power counting for diagrams in Fig. 5.6.

F.1 Power counting for diagrams (i) and (ii)

Here we provide the arguments that lead to Eq. (5.68). We first do a power-

counting analysis of Eqs. (5.66). We first discuss the result of helimagnons, and

for columnar phase, there is one more order of T . From Eqs. (4.22), (5.7) and

(5.66) we see that the soft helimagnon wave number k scales with temperature

as kz ∼ k2
⊥ ∼ T . The frequencies scale as u ∼ ε ∼ T , and χ′′(k, u) ∼ 1/T 2.

Consequently, the conductivity corrections δσ(i,ii) scale as δσ ∼ TJ for a given

integrand J(k) (or I(k)).

First consider the integral J++−,+
ij (k), Eqs. (5.67). For power-counting pur-

poses, the integration variable p scales as T 0, and the leading term in the vertex γ

scales as γ(k,p) ∼ k⊥ ∼ T 1/2. 1 A representation that suffices for power counting

is thus

J++−,+
ij (k) ∝ k2

⊥

∫ ∞
−∞

dξ

∫ 1

−1

dη
1

(ξ − i/2τ)2

1

ξ + i/2τ

1

ξ − i/2τ − vFkη
∝ τ 2k2

⊥
k

∫ vFkτ

0

dx

1 + x2

(F.1a)

in the AGD approximation. [53] For vFk � 1/τ we thus have J++−,+
ij (k) ∝ τ 2k2

⊥/k,

1For columnar phase, γ(k,p) ∼ kz ∼ T 1/2.
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with corrections carrying an extra factor of 1/vFkτ ∼ 1/τT 1/2, or

J++−,+
ij (k) ∼ τ 2T 1/2 + τ, (F.1b)

which leads to δσ ∝ τ 2T 3/2 + τT . Analogous arguments yield

J++−,−
ij (k) ∼ τ 2T 1/2 + τ, (F.2)

J+−,+−
ij (k) ∼ τ 2T 1/2 + τ, (F.3)

J+−,++
ij (k) ∼ τ. (F.4)

The convolutions I, compared to the corresponding J , carry an additional factor

of k⊥ ∼ T 1/2. In addition, the resulting vector nature of the integrand leads to an

another factor of either k⊥ ∼ T 1/2, or kz ∼ T . Therefore, the I carry an additional

factor of T compared to the corresponding J . Terms that were dropped in writing

Eqs. (5.66) involved J+++,+, J+++,−, J++,++, and J++,−−, which are of higher order

in the disorder by at least three powers of 1/τ . Including terms of O(τT ), we thus

can write the conductivity correction, Eqs. (5.66),

δσ
(i)
ij + δσ

(ii)
ij

= −V0

4π

1

T

∫ ∞
−∞

dε

cosh2(ε/T )

1

V

∑
k

∫ ∞
−∞

du

π
χ′′(k, u)

[
nB

( u
T

)
Re

[
J++−,+
ij (k) +

1

2
, J+−,+−

ij (k)

]

+
1

2
nF

(
u− ε
T

)
Re
[
J++−,+
ij (k) + J+−,+−

ij (k)− J++−,−
ij (k)− J+−,++

ij (k)
]]
. (F.5)

The J can be simplified by means of partial fraction decompositions. For the relevant

combinations one finds for helimagnons

Re

[
J++−,+
ij (k) +

1

2
, J+−,+−

ij (k)

]
∝ τ 2k3

⊥ ∼ τ 2T 3/2, (F.6a)

Re
[
J++−,+
ij (k) + J+−,+−

ij (k)− J++−,−
ij (k)− J+−,++

ij (k)
]

= o(τT 0). (F.6b)
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This leads to Eq. (5.68a) for helimagnons.

For the columnar phase, there is an extra power of T in Eqs. (F.6).

F.2 Diagram (vii)

Here we consider diagram (vii) in Fig. 5.6(c) as a prototype of a class of

diagrams that do not contribute to the leading behavior of the conductivity if eval-

uated to lowest order in q/kF. We first perform the calculation for helimagnons.

The leading contribution to the conductivity correction from this diagram can be

written

δσ
(vii)
ij = − u0V0

8πm2
e

1

T

∫ ∞
−∞

dε

cosh2(ε/2T )∫ ∞
−∞

du

π
nF

(
u− ε
T

)
Im

1

V

∑
k

χR(k, u)
1

V

∑
p

γ(k,p)GR(p)GA(p− k)

× 1

V

∑
p′

p′ip
′
jγ(k,p′)GR(p′)GR(p′)GA(p′)GA(p′ − k), (F.7)

which shows the (2,4) structure mentioned in Section 5.4.3.2. The bosonic distribu-

tion function does not contribute to this diagram, so it can be at most of O(τT ).

With the convolutions evaluated for q = 0, power counting shows that it is of

O(τT 2), and an explicit calculation confirms this. Now we expand the resonance

frequency ω1(p), Eq. (5.15b), to first order in q: ω1(p) = ξp + p · q/2me + O(q2).

For the leading contribution to the first convolution in Eq. (F.7) we then find

N+,−(k) ≡ 1

V

∑
p

γ(k,p)GR(p)GA(p− k)

∝ ν

λk2
F

[
k2
⊥kz
k3

+
k2
⊥q

k2kF

+O(q2)

]
. (F.8)
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We see that, at linear order in q, a factor that used to be kz/k ∼ kz/k⊥ ∼ T 1/2 gets

replaced by q/kF ∼ T 0. The same holds for the other convolution. As a result, the

diagram is of O(τT ), and an explicit calculation shows that the dependence of the

prefactor on εF/λ and q/kF are the same as for diagram (iii), with the exception of

the additional factor of (q/kF)2. We thus have

δσ
(vii)
ij ∝ T. (F.9)

For the columnar phase, both terms in Eq. (F.8) have dependence ∼ T , which

leads to

δσ
(vii)
ij ∝ T 7/2, (F.10)

which is not the leading term.
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