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Weakly bound submonolayer adsorbates provide important insight into funda-

mental descriptions of physics that would otherwise be masked, or even suppressed,

by strong effects such as chemical binding. We focus on two surface effects: transient

mobility at the microscopic scale, and symmetry-breaking at the atomic one.

We present a novel island nucleation and growth model that explicitly in-

cludes, at the microscopic scale, the behavior of transient (ballistic) monomers. At

a deposition rate F , monomers are assumed to be in a hot precursor state before

thermalizing. In the limiting regimes of fast (diffusive) and slow (ballistic) ther-

malization, we recover the expected scaling of the island density, N : N ∝ Fα.

We construct effective growth exponents, αeff , and activation energies to properly

characterize the transitional regions between these limiting regimes. Through these

constructs, we describe a rich and complex structure of metastable limiting regimes,

asymptotic behavior and energetically driven transitions. Application to N(F, T ) of



recent organic-molecule deposition experiments yields excellent fits.

We have also studied, at the atomic scale, an effective potential mechanism

that breaks the intrinsic two-fold sublattice (hexagonal) symmetry of (honeycomb)

graphene using DFT calculations (VASP ver 5.3.3). We choose the specific system

of CF3Cl adsorbates on single layer graphene, to benefit from experimental results

obtained locally. Using ab initio van der Waals density functionals, we discover

a physisorbed phase with binding energies of about 280 meV. For low coverages,

sublattice symmetry-breaking effects are responsible for gap openings of 4 meV;

contrastingly, in large coverages, it is the formation of ordered overlayers that opens

gaps nearly 5 times as large, of roughly 18 meV. We discover that in both cases,

differentiation of graphene’s two sublattices induces symmetry-breaking by means of

adsorbate interactions that favor large ordered regions, coverage itself is insignificant.

For CF3Cl adsorbates on bilayer graphene, symmetry-breaking effects caused by the

formation of graphene-like overlayers, and not sublattice differentiation, opened gaps

of 25 meV, the largest in our study.
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Chapter 1: Introduction

Submonolayer Adsorbates

Adsorbate-substrate interactions may be one of the most fundamental pro-

cesses in chemistry and physics; the study of how the electronic, chemical, elec-

tromagnetic, mechanical (among others) properties of a substrate change when an

adsorbate is bound is the foundation of entire fields of study. Thus, in this work we

intend to focus on the subtler effects occurring from (or alongside) physisorption at

two different physical regimes. For these subtle physisorbed adsorbates some consid-

erations have to be raised: not only should there be weak binding between adsorbate

and substrate, but the coverage should be low enough that adsorbate-adsorbate in-

teractions are unimportant and, thus, negligible. We are focused on gap opening in

graphene at the atomic scale, and superthermal transient effects in diffusion-limited

aggregation (DLA) at the microscopic one, so these considerations will be applied

in different ways. Therefore, we consider surface effects in the limiting regime of

submonolayer coverage: when the adsorbate coverage is dense enough to appreciably

modify the physics of the substrate, but sparse enough to avoid masking the weak

effects we are interested in.

At the microscopic level, we examine the transport properties of superthermal

2



monomers alongside traditional diffusion-limited aggregation (DLA). By focusing on

the submonolayer regime we can ignore step dynamics [1] and multi-layer effects [2],

concentrating on the poorly understood equilibrium behavior of these superther-

mal monomers. At the atomic level, we examine adsorbate-induced band gaps in

graphene, particularly due to sublattice symmetry-breaking. As strain-induced ef-

fects have been studied from first principles [3] and experimentally [4], we consider

submonolayer coverage of weakly binding adsorbates to minimize the contribution

large deformations may have on the graphene substrate.
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Diffusion-Limited Aggregation (DLA) and Transient Effects

Diffusion-Limited Aggregation (DLA) was the term coined for a, now seminal,

computer model that attempted to explain the fractional power-law density corre-

lations of common aggregates [5]. DLA owes its success to three essential features:

the formalism’s simplicity, the small dependence on physical input, and the ability

to produce approximately self-similar complex behavior (much like natural systems

do); and yet, despite its simplicity and usefulness, no full solution is known [6].

The many applications include: adsorption and diffusion of monomers before

catalysis [7], nucleation and growth of thin films [8], formation of nanostructures at

surfaces via self-assembly [9], crystal growth [10–12], nucleation and aggregation in

epitaxial growth [13], and formation of 2-dimensional (and 3-dimensional) islands

[14], among others. Though the applications have been extensive, the effects of

transient motions (i.e. superthermal) have been mostly neglected.

We have introduced a rate-equations model that tackles island formation me-

diated by the presence of the transient motions [15]. We discuss both the conditions

in which the effects reduce to the usual DLA description of island growth and in

which they preclude superthermal island growth. Furthermore, we intend to extend

this rate-equations model and include an examination of its applicability to exper-

imental results, providing insight into the physical description of the hot-monomer

effects at equilibrium.
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Graphene’s Band Structure and Future Electronics

Silicon has been the driving force of computational advancements for the past

sixty years. Though modern engineering, science and medicine have relied on the

properties of the material, and its abundance, the steady increase in device density

for silicon based devices seems to be reaching a cusp. This preoccupation with

the limits of silicon devices is evident not only for specific applications, e.g. SiO2

has been the cornerstone of DRAM (volatile, but fast random access memory) for

microelectronic devices for decades [16], but for modern digital electronics in general

[17].

Though the need for these new materials, and associated new physics, is press-

ing, the remaining lifetime for silicon in consumer grade electronics can be as long as

30 more years [18]. This has opened the field to a wide variety of exotic new physics

trying to tackle this generational problem [19], though they all effectively attempt to

recreate the tunability, scalability (and ultimately manufacturability) of silicon [20].

Ever since the seminal work on graphene demonstrated that nearly-monolayer films

behaved in semimetal fashion [21], graphene has become a promising candidate to

become silicon’s heir. Notably, graphene’s electrical properties are certainly tun-

able, yet scalability remains an issue. Though mechanical exfoliation [21] remains a

popular technique for laboratory purposes, large-scale growth of graphene films [22]

and epitaxial graphene growth [23] have become candidates for the construction of

wafer-scale graphene that a manufacturing industry would require [24].

As graphene is a gapless semimetal, graphene devices are not suitable for logic
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operations [24]; however, the band structure of graphene can be modified and tuned

to allow for a gapped state that can be used in logical devices. Among others, gaps

have been obtained by modifying the widths of graphene nanoribbons [25], controlled

in bilayer graphene by adjusting the carrier concentration between graphene layers

via chemical doping [26], and tuned in bilayer graphene through a combination

of a field-effect transistor (FET) and infrared microspectroscopy without chemical

doping [27]. More interestingly, a mechanism of opening gaps through symmetry-

breaking adsorbates has been observed in epitaxially grown graphene [28] (though

this is by no means a settled issue [29]). Thus, the present work aims to explore,

theoretically, how adsorbates on graphene could open tunable gaps: a small but

necessary brick in the long road to finding new physics for future electronics beyond

silicon.
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Chapter 2: Microscopic Scale: Transient Mobility Effects

Introduction

When describing adsorption, nucleation and growth of films (and nanostruc-

tures), transient effects are largely ignored. Specifically, the kinetic energy contri-

butions of the adsorbates are assumed to be irrelevant to the description of growth

dynamics when compared to, for example, diffusive effects. The idea of describing

the lateral mobility of monomers before chemisorption is not new [30]. However, sur-

face phonon modes are usually thought to dissipate said kinetic energy via collisions,

and are thus removed from equilibrium descriptions. Despite the fact that transient

effects before chemisorption have been named in the literature for decades [31–34],

and that numerical studies suggest kinetic energy contributions could have effects

comparable to diffusion [35], theoretical models accounting for transient effects are

rare. In the context of island nucleation, hot-monomer adsorption has been consid-

ered [36], and studied via Monte Carlo simulations [37] and one-dimensional ana-

lytics [38]. Furthermore, it should be noted that the kinetics of island growth have

been tackled extensively through other methods, such as capture zone distribution

analysis [39] and attachment-limited aggregation [40,41]. However, it was until the

semi quantitative treatment of island growth [42] and our own rate-equations model
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for hot-monomer mediated nucleation [15], that the connection between transient

effects and island growth has been made explicit.

In previous work [15], we provided a novel rate-equations model that explicitly

connected the non-thermal behavior of deposited monomers to island growth rate.

The formalism presented an analytic model for island growth both in the regime

of small flux-deposition rate F , where DLA behavior should dominate, to large F ,

where a hot-monomer dominated regime is discovered. Additionally, definite scaling

regimes are discovered: some mediated by the critical nucleus size and others by

the characteristic energies of the system. A description for describing an effective

growth exponent and activation energies are discussed, as it becomes necessary to

discuss how the system behaves in between these definite regimes.

We extend our previous model by rigorously bounding our analytic solution,

and demonstrating that power-law behavior is necessary and not a consequence of

the experimental parameter space. Furthermore, these theoretical bounds give rise

to a natural asymptotic approximation for the model that is shown to be robust in

navigating the experimental parameter space and finding reasonable approximations

to the critical nucleus size of the islands. After revisiting the puzzling behavior of

certain organic molecular adsorbate systems [42] that were previously discussed [15],

we introduce energy-dependent indexing of these limiting scaling regimes in order to

meaningfully discuss transitions. More importantly, we provide a physical interpre-

tation of our analytic solution, and interpret dimensionless parameters employed to

simplify our closed equation of state to the distribution of unstable islands, and the

activation energy. Finally, we provide a prescription for simpler analysis of other ex-
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perimental systems, and manage to estimate the speed of the hot-monomers, which

is the capstone to an analytic model of island growth motivated by superthermal

effects.
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Theoretical Development

Assume that non-reacting molecules (or atoms), hereafter referred to as

monomers are deposited on a thin surface with high kinetic energy, which we regard

as a hot state. The deposition occurs at a constant flux-deposition rate F , and they

initially propagate ballistically for a time τh after thermalizing and propagating

diffusively (in a random-walk fashion) with diffusion coefficient D. Specifically, the

initial superthermal state in which the monomers enter the system can be modeled

by considering the ballistic dynamics to occur at a fixed, superthermal, speed v.

The total monomer density n, in units of particles per unit area, can be obtained

by adding the densities of the ballistic nh and the thermalized monomers nth.

Additionally, both the hot and thermalized monomers can become absorbed

into stable, i.e. non-decaying, islands with lifetimes τh→N and τth→N , respectively.

With these considerations, the evolution of the total monomer density n ≡ nh+nth,

and the density of stable islands, N , can be modeled as follows:

ṅh = F − nh
τh
− nh

τh→N
; ˙nth =

nh
τh
− nth

τth→N
(2.1)

Ṅ = σ (T, v)K (T, v)ni+1 (2.2)

where K (T, v) is the kinetic coefficient (see Eq. (2.5) below), σ (T, v) is the capture

coefficient (which traditionally depends on i), and i is the critical nucleus size, i.e.

the size of the largest unstable (decaying) island. These adsorption mechanisms are

illustrated in Fig. 2.1.
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Figure 2.1: An idealized illustration of the adsorption mechanisms in the hot-
monomer model. Thermalized monomers (red) are deposited on a substrate (yellow)
at a flux-deposition rate F ; and they can be immediately adsorbed into a cluster
(purple cluster) with lifetime τh→N . Hot-monomers have a lifetime τh before they
become classical thermalized monomers (red), which can in turn become adsorbed
into a cluster with lifetime τth→N . The interplay between these lifetimes is a key
component of the various limiting regimes of the model.
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It is important to note that deposition is the only mechanism increasing the

density of hot-monomers nh, while thermalization and island capture strictly de-

crease it; additionally, the thermalization process is the only mechanism considered

to increase nth. Naturally, the requirement that n only increases via deposition and

only decreases by adsorption into stable islands can be checked from (2.1). It should

be noted that in the regime of steady-state scaling behavior, the effects of monomer

capture by other monomers or by unstable clusters (s ≤ i+1) is largely ignored [8].

The lifetimes for the thermalized and ballistic monomers before adsorption

into a sub-critical cluster can be obtained by relating them to an average time-of-

flight for the monomers. Thus, by assuming that the mean travel distance is related

to the mean separation between islands ¯̀= N−1/2, then:

τh→N =
¯̀

v
=

1

vN1/2
; τth→N =

¯̀2

D
=

1

DN
, (2.3)

We propose that the evolution of the density of clusters of size s (s-clusters), Ns,

will be guided by the following rate equation:

Ṅs = σs−1nNs−1 − σsnNs +
1

τs+1

Ns+1 −
1

τs
Ns (2.4)

where τs and σs are the survival time before monomer detachment and the cap-

ture coefficient for a given s-cluster, respectively. This rate equation accounts for

an increase in Ns by monomer detachment(capture) from s + 1(s− 1)-clusters; ev-

idently, a decrease in Ns is a direct consequence of s-clusters either capturing or
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detaching a monomer. It should be noted that our rate equations do not con-

sider detachment(capture) of more than one monomer at a time. At this stage

some physical assumptions must be translated into initial conditions: N0 = 0 and

τ−1
1 = 0, as monomer destruction is not considered (molecules decaying into smaller

non-adsorbent or sublimating elements for instance); and N1 = n since monomers

can be regarded as sub-critical 1−clusters. It follows that the so-called Walton

relation [43] anticipated by (2.2) is recovered:

Ns =

(
s∏

k=2

σk−1τk

)
ns ≡ Ksn

s (2.5)

As an aside, the classic Walton relation could be written as Ns = exp
(
Eform
s β

)
ns,

where Eform
s is the energetic contribution when forming the cluster. For our model,

the temperature dependence for Ks is more complicated than an exponential form,

but the idea of characteristic energies does remain (see Eqns. 2.9 - 2.10 on how β

dependence is built into the kinetic coefficient). Furthermore, the classic Walton

relation also connects the growth rate of stable islands Ṅ , to the monomer density

in power-law fashion: Ṅ ∝ Ni ∝ ni, where i is the critical nucleus size. Notably, we

recover this classical result (2.7).

To solve our recovered Walton relation, we employ full mathematical induction:

thus, check that Eqn. (2.5) holds for s = 1 (trivially satisfied for N1 = n), and

perform a single inductive step (where we exploit the steady-state assumption on
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Eqn. 2.4):

Ns+1 =
τs+1 (1 + σsnτs)

τs
Ns − σs−1nτs+1Ns−1

=
τs+1 (1 + σsnτs)

τs

(
s∏

k=2

σk−1τk

)
ns − σs−1nτs+1

(
s−1∏
k=2

σk−1τk

)
ns−1

=
τs+1

τs

(
s∏

k=2

σk−1τk

)
ns + σsτs+1

(
s∏

k=2

σk−1τk

)
ns+1 − σs−1τs+1

(
s−1∏
k=2

σk−1τk

)
ns

=
τs+1

τs
σs−1τs

(
s−1∏
k=2

σk−1τk

)
ns +

(
s+1∏
k=2

σk−1τk

)
ns+1 − σs−1τs+1

(
s−1∏
k=2

σk−1τk

)
ns

=

(
s+1∏
k=2

σk−1τk

)
ns+1 (2.6)

Note that while the Walton relation provides the definition for Ks, the kinetic co-

efficient for subcritical clusters of size s, we are more concerned with the general

kinetic coefficient K(T, v). Correspondingly, its expression follows naturally by an-

alyzing the stable island density as expressed in terms of super-critical clusters,

N ≡ ∑s≥i+1Ns:

Ṅ =
∑
s≥i+1

n (σs−1Ns−1 − σsNs) = σinNi

= σi

(
i∏

k=2

σk−1τk

)
ni+1 ≡ σ (T, v)K (T, v)ni+1 (2.7)

where (by definition of i) τ−1
s = 0 for s > i. A particularly comforting result is that

both the kinetic and capture coefficients necessarily depend on the critical nucleus

size: K (T, v) = Ki and σ (T, v) = σi.

To obtain the expressions for σ (T, v) and τs, it is necessary to consider how

they behave under primarily diffusive or ballistic effects: quantitatively defining fast
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and slow thermalization regimes. Said regimes are characterized by the dominant

survival time in the system, viz. τh � τh→N , and τh � τh→N for fast and slow

thermalization, respectively. Equivalently, if we define the dimensionless parameter

z:

z ≡ τh/τh→N = vτhN
1/2, (2.8)

these limits become z�1 and z�1, respectively. Considering the existence of two

well-defined limiting regimes, we express σ (T, v) and τ−1
s as linear combinations of

the limiting regimes’ contributions:

σ̃s (T, v) =
nth

n
σth
s (T ) +

nh
n
σBs (v) , (2.9)

1

τ̃s (T, v)
=

1

τ th
s (T )

+
1

τBs (v)
, (2.10)

where subscripts -th and -B correspond to thermal and ballistic contributions, re-

spectively. The capture coefficient is assumed to be a weighted average of the ther-

mal and ballistic contributions, where the weight is the fraction of the monomers

in a given state; in contrast, the decay rate of the sub-critical clusters is simply

additive.
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Analytic Solution

Now that we have a description for the dynamics in terms of the thermal-

ization regimes, an exploration of each will provide an explicit dependence of the

individual capture coefficients, and lifetimes. For fast thermalization, τh � τh→N ,

there are negligibly few hot-monomers: n ≈ nth. Thermal effects overwhelm ballis-

tic contributions, so σs (T, v)→ σth
s (T ) and K (T, v)→ Kth (T ), where -th refers to

exclusively thermal contributions. Since the BCF formalism [44] applies,

σth
s (T ) = D = D0e

−βED ; Kth(T ) = κ0e
βEi (2.11)

where ED is the diffusion energy, Ei is the cohesion energy of a cluster of size i,

β ≡ (kBT )−1 is the inverse thermal energy, and D0 and κ0 are constants. It is

simpler to work in terms of the coverage θ ≡ Ft, so Ṅ = FdN/dθ. In the stationary

regime, ṅh = ˙nth = 0, (2.1) simplifies:

nh = Fτh; nth =
F

DN
;

dN

dθ
= κ0

(
F

D

)i eβEi

N i+1
. (2.12)

Furthermore, as z � 1, we find the familiar case of DLA. Integrating dN/dθ yields

the DLA hallmarks [7–9,45]:

N = CαFα exp
[
β
iED + Ei
i+ 2

]

C =
[(i+ 2)κ0θ]

1/i

D0

, α = i/(i+ 2) (2.13)
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For slow thermalization, z � 1, we find a novel hot-monomer aggregation

(HMA) regime: since our goal is to understand the scaling behavior of Ns rather

than its distribution, we neglect the much-studied [8, 14, 46] dependence of σs on

s. Thus, the pertinent effect on capture and decay is the superthermal speed v,

which for dimensional reasons is regarded as σBs = `v, where the coefficient ` is a

characteristic microscopic length and B refers to this ballistic regime. Effectively,

we are assuming that v is a proportionality constant for the capture coefficient in

this regime. Since a hot-monomer colliding with a small cluster is likely to transfer

energy to the latter and cause (thermally improbable) detachment of a previously

attached monomer, we expect the lifetime should also be related to v. Adopting

the simplest assumption that this athermal detachment rate is proportional to the

monomer speed, we get the cluster decay rate
(
τBs
)−1

= v/`′, where `′ is another

microscopic length and v is once more a proportionality constant. The kinetic

coefficient in the ballistic regime is then:

KB
s =

(
s∏

k=2

σBk−1τ
B
k

)
= (``′)

s−1
(2.14)

The noteworthy independence of KB
s on v is robust, requiring only that σBs and

(τBs )−1 have the same speed dependence; in the event that a non-linear function of

v works as a proportionality constant, then the microscopic lengths can be dimen-

sionally rescaled to accommodate that. Even if σBs and (τBs )−1 had different speed

dependences, both would still be independent of T and F , so that the effective expo-

nents and energies in Table 2.1 would not change [15]. For n ≈ nh, in steady-state,
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and assuming ` = `′ for simplicity:

nh=
F

vN1/2
; nth =

Fτ−1
h

DvN3/2
;

dN

dθ
=
`KB

i

N
i+1
2

(
F

v

)i
, (2.15)

which remarkably leads to the scaling form N ∝ Fα with

N = CαFα ,where C =
1

v

[
i+ 3

2

(
lKB

i θ
)]1/i

, and

α = 2i/(i+ 3) . (2.16)

Interestingly, the same scaling exponent as in attachment-limited aggregation (ALA)

[47–49] is obtained, which should be immediately surprising considering that ALA is

highly dependent on thermally activated processes. Contrastingly, the novel HMA

regime is effectively athermal, as demonstrated by the absence of temperature depen-

dence on the coefficients of (2.15). The Walton relation in (2.4) can be generalized

to accommodate the thermal and athermal contributions:

Ṅs = σ̃s−1nNs−1 − σ̃snNs +
1

τ̃s+1

Ns+1 −
1

τ̃s
Ns (2.17)

which is justified by our discussion in (2.1) not assuming either thermal or athermal

behavior. Thus, generalize (2.7) by substituting σs → σ̃s and τs → τ̃s. Addition-

ally, from our assumptions for the slow thermalization, along with distributional

concerns, the s dependence of σ̃s and τ̃s can be neglected. We are left with two un-

determined lifetimes: τh for molecules before thermalization and τth for thermalized
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monomers before adsorption into an island. Following the BCF model [44]:

τ th
s ≡ τ0e

βEb , τh ≡ τ0e
βEph , (2.18)

where τ0 is a characteristic inverse phonon frequency, Eb is the barrier to detachment

of a monomer from a cluster (Eb > ED), and Eph is a typical phonon energy. In

the steady-state regime (dt = 0), the algebraic forms of nh and nth in (2.1) along

with the survival time considerations in (2.3) allow us to solve (2.9) for the capture

coefficient and monomer density:

nh =
Fτh

1 + vτhN1/2
= NDτhnth (2.19)

σ̃ =
nh

nτhN
(1 + `vτhN) = D

(
1 + `vτhN

1 +NDτh

)
(2.20)

n =
(
F

D

)
1 +NDτh

N (1 + vτhN1/2)
(2.21)

By substituting (2.19-2.21) into (2.7) we obtain:

dN

dθ
=

(τF )i

Dτ

(1 +NDτh) (1 + `vτhN)i

N i+1
(
1 + vτhN

1/2
)i+1 (2.22)

using the approximation `≈`′ as before.
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Growth Exponents

In the limits z � 1 and z � 1, the key characteristics of dN/dθ shown in (2.13)

and (2.16), can be recovered to leading order in N : specifically, the dependence on

F , N and the DLA and HMA/ALA scaling exponents. By inspecting (2.22), we

note that this is a rational function of N1/2 (evident after a change of variables from

N), which guarantees an analytic solution via partial-fraction decomposition for

arbitrary values of i. However, the result is both unenlightening (as no immediate

results can be constructed) and unwieldy (as the actual value of i determines the

functions in the solution). A more elegant approach is to study the dependence of

N on six dimensionless parameters that can be formed from the physical quantities

θ, F , D, τh, v, and τ̃ :

N̂ ≡ N(vτh)
2 = z2; F̂ ≡ F`vτ 2

h ; θ̂ ≡ θv

D`
(vτh)

4 (2.23)

RC ≡
`

vτ0

e−βEb ; Rn ≡ NDτh; RB ≡ `vτhN

Thus, (2.22) is solved implicitly:

θ̂ F̂ i

(1 +RC)i−1 =
∫ N̂

0
f(ε) dε, f(ε)≡

εi+1
(
1+ε1/2

)i+1

(1+Rnε)(1+RBε)
i ,

(2.24)

where we introduce Rn ≡ Rn/N̂ and RB ≡ RB/N̂ to easily identify prefactors of

N̂ within numerical computations, and ε is an integration variable. In both the fast
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and slow thermalization limits, one can unambiguously observe power-law behavior

N ∝ Fα and assign an exponent α. Thus, it is natural to define an effective exponent

αeff(F ) ≡ d lnN/d lnF to account for scaling behavior in the transitional regime.

The explicit form of αeff follows directly from (2.24):

αeff (F ) =
i
∫ N̂

0 f(ε) dε

N̂f(N̂)
= i 〈1〉 |N̂ (2.25)

where αeff depends implicitly on F via N̂ . Note that we introduced a notational

shorthand, 〈· · ·〉:

〈g〉 |N̂ ≡
[
N̂f(N̂)

]−1
∫ N̂

0
f(ε)g(ε) dε. (2.26)

where the N̂ indexation indicates that the arbitrary function g is indeed a function

of N̂ . However, since we will only discuss functions of N̂ , said indexation is omitted

from further notation.

The effective exponent, αeff , has rich structure that can be accessed by vary-

ing Rn, RB and z, as exemplified in Figs. (2.2-2.3) and tabulated in Table 2.1.

Specifically, by exhausting the limits log10 z, log10Rn, log10RB → ±∞, 8 separate

plateaus (condensation regions) of αeff are discovered. This motivates a physical

interpretation of the dimensionless parameters: using the exact solution from (2.19)

and our definition for the ballistic decay rate:

RC =
τB

τ th
; Rn =

nh
nth

; RB =
τB

τh
z2 (2.27)

These recast forms reveal that the coefficients act as channels indicating whether
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or not different ballistic phenomena are in effect: the behavior of αeff is chiefly

modified by Rn and RB, so a discussion of RC is left for later considerations of

activation energy. An interpretation of these channels requires proper indexation

of the regimes, so we identify states by the indexing D*** (H***), where D(H)

indicates DLA (HMA), that is z � (�)1. The numbering relates the limits of

Rn, RB and RC , by a smooth mapping from R = [0,∞) to [0, 1) that depends on

activation energy (see Eqn. 2.42). For the purposes of understanding the growth

exponent, we only need to be concerned with the mapping’s endpoints. It should

be noted that a state with only two numerical indexes, e.g. D00, refers to D00*, i.e.

any state regardless of RC behavior.

Notably, the effect of Rn is quite straightforward: to act as the ratio between

the density of hot-monomers to thermalized monomers, for which we consider it to

be the density channel. Note that in Fig. (2.2) the effects on the effective exponent

for the D00 → D10 transition, are similar to the D01 → D11 transition: in both an

increase in the relative density of hot-monomers causes an increase of the ballistic

effects in the fast thermalization region. However, this deformation of the growth

exponent does not survive into the slow thermalization regime, as all modeled sys-

tems in Fig. (2.2) converge to the same limit in the slow thermalization regime.

Analogously, Fig. (2.3) reveals a similar effect for the H10 → H00 and H11 → H01

transitions in the slow thermalization regime: a decrease in the relative density of

hot-monomers impacts behavior in the slow thermalization regime that vanishes

after the crossover into fast thermalization. The density channel, Rn, welcomes a

comfortingly simple description: that an uncharacteristic change in the ratio of hot
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to thermalized monomers will heighten ballistic effects in the fast thermalization

regime, and diminish them in the slow thermalization one.

Unfortunately, RB defies such a clean interpretation to its analytic descrip-

tion (2.27). It is clear that the ratio of the ballistic component of the lifetime before

adsorption into an island vs. the ballistic thermalization lifetime is of import; but

the modulation by z (which sets thermalization regime) muddies this interpretation.

Hence, RB does describe how important the ballistic effects are when compared to

the dominant τh, but the effects are only observed in an uncharacteristic thermal-

ization regime. Specifically, in the fast thermalization regime, not only do ballistic

effects in island adsorption have to be large enough to offset the ballistic thermal-

ization rate, but large enough to offset the general fast thermalization of the regime

via z (similarly small enough in the slow thermalization regime to offset large z).

This makes RB effects truly anomalous, challenging both the natural description

of rates for a regime and the behavior of the regime itself: furthermore, why we

regard RB as the anomalous ballistics channel. Note that in Fig. (2.2) the effects on

the effective exponent for the D00 → D01 transition are similar to the D10 → D11

transition: dramatic in both scale (size of the growth exponent) and overall behav-

ior (shape of the plateau). This is not unique to fast thermalization, as a similar

effect is seen in the slow thermalization regime in Fig. (2.3) for the H01→ H00 and

H11→ H10 transitions, where the smooth limiting plateau into αH11 is transformed

into a sharp inflection at high z. Despite any effects presented by Rn or RB, αeff

always converges to its limiting DLA (HMA) values for small (large) enough N̂—or

equivalently, for small(large) F or z: this is much more obvious when exploring the
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full parameter space of αeff Figs. (2.4 - 2.5). The crossover behavior can lock αeff

into plateaus of rational values, over which the island density exhibits well-defined

power-law behavior (cf. various examples in Figs. 2.2-2.3). With Taylor expansions

of (2.25) in N̂ or N̂−1, such values are found analytically and given in Table 2.1.
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Figure 2.2: The effective exponent αeff vs. N̂(F ) for i = 4 with focus on the fast
thermalization regime. The crossover region between the limiting DLA (D00) and
HMA (H11) scaling is explored by varying Rn and RB.
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Rn=10-10, RB=10-10

Rn=10-10, RB=100

Rn=100 , RB=10-10

Rn=100 , RB=100
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Figure 2.3: The effective exponent αeff vs. N̂(F ) for i = 4 with focus on the slow
thermalization regime. The crossover region between the limiting DLA (D00) and
HMA (H11) scaling is explored by varying Rn and RB.
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Figure 2.4: The effective exponent αeff explored in the parameter space (Rn×RB)
in the fast thermalization regime z = 10−6, i = 4. Note that as Rn and RB tend
to the limiting regimes (� 1 and � 1), the effective exponent matches the plateau
values: αD00 = 2/3, αD01 = 2, αD10 = 4/5, and αD11 = 4.
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Figure 2.5: The effective exponent αeff explored in the parameter space (Rn×RB)
in the slow thermalization regime z = 10+6, i = 4. Note that as Rn and RB tend
to the limiting regimes (� 1 and � 1), the effective exponent matches the plateau
values: αH00 = 8/17, αH01 = 8/9, αH10 = 8/15, and αH11 = 8/7.
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Especially interesting, and relevant to experiments discussed below, is the

behavior of the growth exponent at the plateaus. Consider Fig. 2.2, which has

i = 4: in the interval −8 ≥ log10 z ≥ −4, and log10Rn = 10, log10RB = 0 (solid

yellow line), a cursory analysis of the growth exponent would lead to the conclusion

that the system is in a well-behaved DLA state. Since the growth exponent shows

αD10 = 4/5, one would naturally infer from a DLA analysis that i = 8 (8/10 =

4/5). In fact, i = 4 as αD10 = i/(i + 1). For a more exotic state such as D01

(dotted red line), DLA analysis would lead to seemingly impossible results: αD01 =

i/2 = 2, which implies (incorrectly) a DLA exponent of i = −4. Without our

ballistic considerations, these plateaus would, at best, refer to DLA behavior with

grossly different growth exponents, and, at worst, to un-physical DLA regimes. It

is important to mention though, that this DLA interpretation is unavoidable if

experimental data for a system is limited to a small region in phase space, as in

regions close to the plateaus, the power-law regimes will make a DLA interpretation

(albeit with a wrong i), mathematically reasonable.
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Approximations to Analytic Solution

We note that both the full analytic solution (2.24), and the effective activa-

tion energy (2.25) have a close connection with the kernel. Rewriting the effective

exponent to highlight the importance of the kernel:

αeff (F ) =
i

N̂

∫ N̂
0 f(ε) dε

f(N̂)
=

i

N̂

 ∂
∂N̂

∫ N̂
0 f(ε) dε∫ N̂

0 f(ε) dε

−1

=
i

N̂

[
∂

∂N̂
ln
∫ N̂

0
f(ε) dε

]−1

(2.28)

shows that the functional behavior of f(ε) has direct repercussions on the shape of

the activation energy, and thus, on the location of the limiting regimes. Consider an

arbitrary power-law relationship ψ = aεb; then, the modified logarithmic derivative:

∂ lnψ

∂ ln ε
=
∂ (ln a+ b ln ε)

∂ ln ε
= b (2.29)

describes the power-law exponent b. Therefore, fL, the modified logarithmic deriva-

tive of the kernel, would adequately describe the kernel’s power-law structure (even

at transitional regimes):

fL =
∂ ln f(N̂)

∂ ln N̂
=
∂ ln f

∂f
· ∂f
∂N̂
· ∂N̂

∂ ln N̂
=
N̂

f

∂f

∂N̂

= (i+ 1)
[
1 +

z

2 + 2z

]
− Rn

1 +Rn

− iRB

1 +RB

(2.30)
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To globally maximize (minimize) fL, we require solving for all possible extrema.

Note that finding local extrema requires solving an 8-th degree polynomial in z due

to the term (1 + z)2(1 +Rn)2(1 +RB)2 in the denominator of f
′
L. Fortunately, since

all terms (2.30) exhibit monotonic growth, it is sufficient to consider the behavior

at the endpoints of the parameter space (z,Rn,RB). Thus, fL is bounded, as it

exhibits global minima and maxima at (0,∞,∞) and (∞, 0, 0), respectively:

0 ≤ fL ≤
3

2
(i+ 1). (2.31)

We can then make the formal argument for f(ε) behaving in power-like fashion, with

its behavior as a kernel dominated by the largest values of ε in the integration regime.

Therefore, to approximate the growth exponent in (2.25) it is valid to expand the

kernel about the values closest to the upper integration limit:

αeff ≈ i

N̂

[
∂

∂N̂
ln
∫ N̂

0
f(N̂) dε

]−1

=
i

N̂

[
∂

∂N̂
ln N̂f(N̂)

]−1

=
i

N̂

 N̂f(N̂)

f(N̂) + N̂ ∂
∂N̂
f(N̂)

 =
i

1 +
N̂

f(N̂)

∂f(N̂)

∂N̂

=
i

1 + fL
(2.32)

This approximation results in a natural definition for an asymptotic approximation

to the effective exponent, and leads to a simplified equation of state:

αasy
eff (F ) =

i

1 +
N̂

f(N̂)

∂f(N̂)

∂N̂

, F̂ i = N̂f(N̂)
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2i/(3i+ 5) ≤ αasy
eff ≤ i (2.33)

with αasy
eff strictly bound by the behavior of the logarithmic derivative. Note that

the bounding values correspond to the smallest and largest plateaus found in Table

(2.1) by exploring parameter space. Since both the channel-decay information and

the initial coverage dependence have been eliminated, this approximation does lose

important β behavior. Furthermore, consider the plateaus in the effective growth

exponent as described by the approximation:

0 =
∂αeff

∂N̂
= − i

N̂2

∫ N̂
0 f(ε) dε

f(N̂)
+

i

N̂
− i

N̂

∫ N̂
0 f(ε) dε

f(N̂)2

∂f

∂N̂

= −αeff

N̂
+

i

N̂
− αeff

f

∂f

∂N̂
→ αeff = αasy

eff at plateaus. (2.34)

so not only is the asymptotic approximation bound by the same extrema as the

full solution, but it reproduces the plateaus from the exact solution. More than

a mathematical artifact, these plateaus are important regions in parameter space,

as they describe the metastable regimes for the system. Thus, at the expense of

losing exactness when dealing with Arrhenius data at transition regimes, we gain

computational efficiency without losing information about the critical nucleus size.

Though unsuitable for a complete understanding of the island growth, when ana-

lyzing unknown systems, this is an acceptable trade off in order to obtain a first

estimate for the general critical nucleus size governing the system.

The effectiveness of the approximate solution αasy
eff at modeling the full system

can be explored by analyzing its fractional difference with the full solution. Con-
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sistent with αasy
eff sensitivity to the behavior of fL, the asymptotic approximation is

most effective at the extrema, log10Rn, log10RB, log10 z → ±∞ (see Figs. 2.6 - 2.7);

contrastingly, for z = 100, the asymptotic approximation is overall less effective in

determining definite regimes (see Fig. 2.8) (the concern being not the magnitude

of the error, but how non-monotonic the domains are). For i = 4, the asymp-

totic approximation is then reliable to within 10% for the slow thermalization and

transitional regimes, and up to 18% for the fast thermalization regime: the highest

discrepancy comes from the transitional values of the anomalous channel, RB, for

all three cases. Ultimately, the asymptotic approximation is a useful initial guess

to fit experimental data to our model. Considering the large parameter space we

are dealing with, an educated guess for the likely region of parameter space that is

being sampled by experiment is crucial before embarking on a full modeling of the

system.
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Figure 2.6: The percentage difference, |αeff − αasy
eff | /αeff , between the growth expo-

nent αeff , and its asymptotic approximation αasy
eff explored in the parameter space

(Rn ×RB) for the fast thermalization regime (established by fixing z = 10−6) and
i = 4. Note the presence of a large error about RB ∼ 1. General monotonic features
are observed, as values in the parameter space are fixed to the D** regime (z � 1).
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Figure 2.7: The percentage difference, |αeff − αasy
eff | /αeff , between the growth expo-

nent αeff , and its asymptotic approximation αasy
eff explored in the parameter space

(Rn ×RB) for the slow thermalization regime (established by fixing z = 10+6) and
i = 4. Note the presence of a slight error aboutRB ∼ 1. General monotonic features
are observed, as values in the parameter space are fixed to the H** regime (z � 1).
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Figure 2.8: The percentage difference, |αeff − αasy
eff | /αeff , between the growth expo-

nent αeff , and its asymptotic approximation αasy
eff explored in the parameter space

(Rn×RB) for the transitional thermalization regime (established by fixing z = 100)
and i = 4. Note the increasing error with increasing RB and at RB ∼ 1. Non-
monotonic features are observed, particularly for RB ∼ 1 and Rn ∼ 1, as values in
this region of parameter space are transitional (not in a limiting regime).
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Activation Energy

In simple cases of surface growth, the density of stable islands is expected to

change with temperature as N ∝ exp(βEA), where EA is a well-defined activation

energy. For general cases, we seek an effective activation energy, Eeff
A ≡ d lnN/dβ,

in order to meaningfully talk about energy scaling in the transitional regions (where

the temperature dependence is not simple). Making a change of variables from dN

to dN̂ gives:

Eeff
A ≡ d lnN

dβ
=

1

N

dN

dβ
=

1

N (vτ0)2

d
(
N̂e−2βEph

)
dβ

=
e−2βEph

N (vτ0)2

(
dN̂

dβ
− 2EphN̂

)
=

1

N̂

dN̂

dβ
− 2Eph (2.35)

Thus, showing that the effective activation energy can be recast in terms of the

dimensionless variable N̂ , with a minor modification in terms of the phonon energy.

By differentiating both sides of (2.24) by β:

d

dβ

[∫ N̂

0
f(ε) dε

]
= f(N̂)

dN̂

dβ
+
∫ N̂

0
∂βf(ε) dε, with (2.36)

∫ N̂

0
∂βf(ε) dε =

∫ N̂

0
f(ε)

[
(ED + Eph)Rn

1 +Rn

+ i
EphRB

1 +RB

]
dε.

and,

d

dβ

[
θ̂ F̂ i

(1 +RC)i−1

]

=
[
(4 + 2i)Eph + ED + (i− 1)

EbRC

1 +RC

] ∫ N̂

0
f(ε) dε (2.37)
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we find the β dependence implicit, through kernel derivatives. By equating (2.36)

and (2.37) we find:

1

N̂

dN̂

dβ
= Eb(i− 1)

RC

1 +RC

〈1〉+ iEph

〈 RB

1 +RB

〉
+

〈
2iEph

1 +RB

〉
+
〈

ED
1 +Rn

〉
−
〈
EphRn

1 +Rn

〉
+ 〈4Eph〉 (2.38)

Since the term −2Eph can be rewritten as:

−2Eph = −2Eph
1

N̂f(N̂)

∫ N̂

0

∂

∂ε
[εf(ε)] dε

= −Eph(i+ 1)
〈

z

1 + z

〉
− 2iEph

〈
1

1 +RB

〉
+ 2Eph

〈 Rn

1 +Rn

〉
− 4Eph 〈1〉 (2.39)

The combined results of (2.38), (2.39), and (2.35) give an explicit form for the

activation energy:

Eeff
A = Eb(i−1)

〈 RC

1 +RC

〉
− Eph (i+ 1)

〈
z

1 + z

〉
+ iEph

〈 RB

1 +RB

〉
+
〈

ED
1 +Rn

+
EphRn

1 +Rn

〉
(2.40)

Here the bracket notation from (2.26) is employed, while z, RC , RB, and Rn remain

functions of N̂ (important to note that RC is a constant in terms of the operator,

but is depicted as shown in (2.40) for symmetry). Two constraints follow naturally

from these results: first, the condition that z(β → 0) → 0 (no stable islands at
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infinite temperature), imposes a fixed value for θ̂F̂ i:

θ̂ F̂ i
∣∣∣
β=0

= (1 +RC)i−1
∫ N̂

0
f(ε) dε

∣∣∣∣∣
β=0

(2.41)

It should be pointed out that since our model deals with equilibrium states, the

initial density of stable islands is described in terms of β-space, and not temporally:

this explains why the initial conditions are linked to the deposition rate F and the

final coverage at equilibrium. Second, in the limit β → ∞, (2.24) implies N̂ → ∞

if ED > Eph, as Rn would vanish in the kernel. Physically, at zero temperature the

density of stable islands should be large, but undeniably finite: hence, Eph ≥ ED is

necessary. With these considerations, there are 24 = 16 energetic regimes realizable

by varying z, Rn, RB and RC . Notice that we can identify pairs of effective energies

Eeff
A to growth exponents, and illustrate their primary dependence on the original

energies by a clever division by 〈1〉: the regimes are presented in Table 2.1, with

representative plots in Figs. (2.9) - (2.12).

39



Label Rn RB RC αeff = i〈1〉 Eeff
A /〈1〉 = Eeff

A i/αeff

D000 �1 �1 �1 i/(i+2) ED
D001 �1 �1 �1 " ED+(i−1)Eb
D010 �1 �1 �1 i/2 ED+iEph
D011 �1 �1 �1 " ED+iEph+(i−1)Eb
D100 �1 �1 �1 i/(i+1) Eph
D101 �1 �1 �1 " Eph+(i−1)Eb
D110 �1 �1 �1 i (1+i)Eph
D111 �1 �1 �1 " (1+i)Eph+(i−1)Eb

H000 �1 �1 �1 2i/ (3i+5) ED−(i+1)Eph
H001 �1 �1 �1 " ED−(i+1)Eph+(i−1)Eb
H010 �1 �1 �1 2i/ (i+5) ED−Eph
H011 �1 �1 �1 " ED−Eph+(i−1)Eb
H100 �1 �1 �1 2i/ (3i+3) −iEph
H101 �1 �1 �1 " −iEph+(i−1)Eb
H110 �1 �1 �1 2i/ (i+3) 0
H111 �1 �1 �1 " (i−1)Eb

Table 2.1: The 16 regimes for extremal values of z, Rn, RB and RC , along with
the associated rescaled effective exponents (cf. Figs. 2.2-2.3) and effective activation
energies. D (H) indicates DLA (HMA): z � (�)1. The subscripts give the limiting
value of the R ’s, with 1 denoting R=∞, i.e. index = exp(−1/R). For αeff , RC

is inconsequential, so that only the first 2 subscripts are needed, yielding just 8
regimes. Note that the reduced values of Eeff

A in the last column must be multiplied
by the corresponding αeff/i to get the actual Eeff

A .
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i=4., βc=5

ED=1.0, Eph=5.2, Eb=4.0
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Figure 2.9: Eeff
A vs. β for i=4 and some values of R0

n and R0
B, R0

x meaning Rx(β=0).
The fast (slow) thermalization regimes are left (right) of the crossover value z = 1
(note F and θ are chosen to satisfy z(βc = 20) = 1). Energies are chosen so that
RC � 1.
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i=4, βc=5
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Figure 2.10: Eeff
A vs. β for i = 4 and some values of R0

n and R0
B, R0

x meaning
Rx(β = 0). The fast (slow) thermalization regimes are left (right) of the crossover
value z= 1 (note F and θ are chosen to satisfy z(βc = 5) = 1). Energies are chosen
so that RC � 1.
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i=4, βc=5
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Figure 2.11: Eeff
A vs. β for i = 4 and some values of R0

n and R0
B, R0

x meaning
Rx(β = 0). The fast (slow) thermalization regimes are left (right) of the crossover
value z= 1 (note F and θ are chosen to satisfy z(βc = 5) = 1). Energies are chosen
so that RC � 1.
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i=4, βc=10
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Figure 2.12: Eeff
A vs. β for i = 4 and some values of R0

n and R0
B, R0

x meaning
Rx(β = 0). The fast (slow) thermalization regimes are left (right) of the crossover
value z=1 (note F and θ are chosen to satisfy z(βc=10)=1). Energies are chosen
so that RC � 1.
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Additional insight into the activation energy can be gained by interpreting

the effect of the limiting R values on the rescaled form Eeff
A /〈1〉. Consider the

distribution, fs, of the unstable clusters Ns≤i. Since fs ∝ Ns, Ns = Ksn
s implies

fs ∝ (σ̃τ̃n)s.

For the thermalization parameter the distribution becomes fs ∝ ns ∝ z−s.

This indicates that the energy contribution is related to the behavior of hot-monomers

in the dynamics, namely the energy Eph. In the slow thermalization regime, z � 1

(β → ∞), with N → 0; we expect a negative energetic contribution (decreasing

stable islands) with monomers dominating the unstable clusters (f1 → 1). The

dominating mechanism is then monomers attaching to the most common stable is-

land, Ni+1, which suggests a contribution by the Eph with a pre-factor i + 1. In

contrast, the fast thermalization regime, z � 1 (β → 0) has (fi → 1), which sug-

gests no monomer effects and no energetic contribution. The second term on the

right hand side of (2.40) reflects these effects.

In the case of the anomalous ballistics channel, the distribution becomes fs ∝

σ̃s ∝ Rs
B. This indicates that the energy contribution is related to the capture

dynamics of hot-monomers, again, the energy Eph. For RB � 1 (β → ∞), with

N → ∞; we expect a positive energetic contribution (increasing stable islands)

with the largest unstable clusters dominating the dynamics (fi → 1). The main

mechanism is then, monomers attaching to the largest unstable island, Ni, which

suggests a contribution by Eph with a prefactor i. In contrast, for RB � 1 (β → 0),

with f1 → 1, which suggests no real unstable islands (other than monomers) so no

net energetic contribution is expected. The third term on the right hand side of
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(2.40) reflects these effects. Note that this explains the behavior of the anomalous

ballistics channel : when either z,RB � 1 or z,RB � 1, the energetic contributions

approximately cancel each other. In the regimes where they act in opposite ways:

z,R−1
B � 1 or z,R−1

B � 1, we see a dramatic change in the activation energy of

|iEph|, explaining the aforementioned anomalies.

For the density channel, the distribution depends on the limit of Rn itself.

Given Rn � 1 (β → ∞), fs ∝ exp (sβEph) with N → ∞. As fi → 1, we expect a

positive energetic contribution related to the largest unstable islands, Ni, capturing

monomers to become stable and scaled by the energy Eph. Contrastingly, forRn � 1

(β → 0), fs ∝ exp (sβED) with N → 0. Since fi → 1 is also reproduced, we expect

a similar positive energetic contribution, but scaled by ED instead. The fourth term

on the right hand side of (2.40) reflects these effects, which notably do not depend

on i. We attribute this independence from the critical nucleus size as the reason Rn

is such a well-behaved parameter.

Finally, we consider RC = τB/τ th, the ratio of the ballistic component of the

monomer lifetime, to the thermalization lifetime for hot-monomers. In short, this

sets a timescale for the different lifetimes in the system, suggesting RC should be

identified as the timescale channel. The distribution of sub-critical clusters is given

by fs ∝ τ̃ s = (1 +RC)−s. Given RC � 1 (β → 0) with N → 0, then f1 → 1. Thus,

we expect a positive energetic contribution related to the net effect of unstable

islands Ns≤i decaying into monomers, i.e., the energy Eb with prefactor (i− 1) as

linearly modeled islands have (i− 1) bonds. Contrastingly, for RC � 1 (β → ∞),

fs ∝ 1 with N →∞. As no subcritical clusters dominate, there is no net energetic

46



contribution given that unstable islands are as likely to absorb or detach a monomer.

The first term on the right hand side of (2.40) reflects these effects.

A tabulation of these results is given in Table (2.2). Moreover, for the regimes

in Table (2.1), it should be noted that z � 1 (slow thermalization regime) allows

values of Eeff
A to be negative: notably when Eph>EB. The observation of Eeff

A < 0

in similar surface experiments [50–52] was attributed to a Langmuir-Hinshelwood

mechanism [53, 54]. Here the key phenomenon is the onset of long-distance (� `′)

ballistic motion with decreasing T that competes with diffusive aggregation to reduce

N over a range of T [15].
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Label R Limit fs

Dominant Eeff
A /〈1〉 =

sub-critical Eeff
A i/αeff

cluster (fx → 1) contribution

(* 0 * *) Rn �1 exp (βEphs) fi +ED
(* 1 * *) Rn �1 exp (βEDs) fi +Eph

(* * 0 *) RB �1 Rs
B

f1 0
(* * 1 *) RB �1 fi +iEph

(* * * 0) RC �1
(1 +RC)−s

None 0
(* * * 1) RC �1 f1 + (i− 1)Eb

(D * * *) z �1
z−s

fi 0
(H * * *) z �1 f1 − (i+ 1)Eph

Table 2.2: The 8 possible individual energy contributions to the activation energy
Eeff
A for extremal values of z, Rn, RB and RC . D (H) indicates DLA (HMA):

z � (�)1. The subscripts give the limiting value of the R ’s, with 1 denoting
R = ∞, i.e. index = exp(−1/R). An asterisk (*) indicates an arbitrary value.
Note that the reduced values of Eeff

A in the last column must be multiplied by the
corresponding αeff/i to get the actual Eeff

A .
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Experimental Fit

Consider the growth experiment for hexaphenyl (6P) deposited on sputter-

modified mica (001), in which the behavior of island density was mapped against

flux-deposition rate at different temperatures T = 150, 200, 300, and 400K [55–

57]. Although our model is arguably closed, the high dimensionality of the space

along with the integral dependence make fitting to experiment a highly difficult

proposition. In previous work [15], we attempted a fit that was descriptive, but had

difficulties presenting a quantitative value for v. Using the following formalism, we

attempt to provide a fit that accounts for v and leans heavily on the asymptotic

approximation for sensible initial conditions:

1. In this treatment, the critical nucleus size i is an integer, so consider fixed

values of i: for a given value of i fit the experimental data to the asymptotic

approximation (2.33) to obtain a broad description of the parameter space.

2. Augment the asymptotic solution with a temperature dependent prefactor, see

the left side of (2.24), to create a hybrid solution in order to obtain values for

energies.

3. Fit to the full solution (2.24), and obtain values for i and v.

4. Discard all solutions that do not exhibit superthermal speeds: the one with

the largest correlation is the most representative fit.

The fitted results (see Table 2.3) can be arranged with respect to correlation
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parameter (0 ≥ r2 ≥ 1), expected thermal speed, and superthermal monomer speed

v.

Using this rigorous formalism, we are able to distinguish different values for the

energies (in eV) ED = 0.0170, Eph = 0.0171, and Eb = 0.333, which obey ED < Eph,

Eb. In addition, we estimate the critical nucleus size i = 4± 1, which is consistent

with i = 5± 2 and i = 7± 2 estimated experimentally [57]. Finally, we find sensible

values for the speed of hot-monomers log10 v (µm/s) = 8.5, the undetermined lifetime

prefactor log10 τ0(s) = −11.05, and the characteristic length log10 `(µm) = 2.61.

A valid concern is whether the asymptotic approximation creates a false fit, so

an analysis of the error when compared with the full solution is desirable. We plot

the parameter space ofRn×RB (cf. Fig. 2.14) and recover a straight-line dependence

(as Rn ∼ RB), but most importantly, we estimate an error of 2 − 18% for the

transitional region ofRB (which is not unexpected). Hence, the approximation gives

sensible initial values to the full solution. More dramatically, the growth exponent

evolves monotonically in the experimental space (cf. Fig. 2.13), and it is clear

that the experiment describes a transitional regime. The effective growth exponent

changes on each temperature run, but for any fixed β it is purely transitional as

metastable states would be represented as sharp elevation changes in (cf. Fig. 2.13)
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i r2 Range log10 vrms (µm/s) log10 v (µm/s) Superthermal?

1 0.824 [8.0, 8.2] 5.1 No
2 0.981 [8.0, 8.2] 6.4 No
3 0.979 [8.0, 8.2] 6.6 No
4 0.979 [8.0, 8.2] 8.5 Yes
5 0.941 [8.0, 8.2] 5.4 No
6 0.945 [8.0, 8.2] 5.9 No

Table 2.3: The converged fits for different values of i. The results for i = 4 are
in bold, as they are the best fitting results that describe hot-monomers being su-
perthermal.
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The notation devised in Table 2.1 to describe states is unambiguous for the lim-

its R± → 0. In a technical sense, there are infinitely many monotonic parametriza-

tions of the real interval [0, 1] to the open interval [0,∞), so we need a physically

compelling extension to this notation in order to accommodate transitional states.

Note that the general structure of the effective activation energy (2.40) relies on

terms of the form
〈

Rx

1+Rx

〉
, which present the limits: limRx→0

〈
Rx

1+Rx

〉
→ 0, and

limRx→∞
〈

Rx

1+Rx

〉
→ 〈1〉. Hence, it is natural to define a dynamic-index :

Jx ≡
〈

Rx

1 +Rx

〉
· 1

〈1〉
(2.42)

More than a mere notational complication, this insight allows us to understand that

the effective activation energy is not only proportional to the effective exponent

(via 〈1〉), but that the impact of the theoretical energies establish a well-defined

way to discuss transitional states in our model. When investigating the behavior

of the indexes in the domain sampled by experiment (see Figs. 2.15-2.18), one can

now identify states (see Table 2.4). Using the dynamic indexes we can explain the

experimental evolution in the experiment [57]. First, all temperature runs exist in

the fast thermalization regime, with Rn � 1. Indeed, the density channel implies

the system consists of mostly thermalized monomers. In the case of RC , the fixed

β for each run necessarily fixes RC , so RC is a constant for each run. For β =

77.4, 58.0 eV−1, RC � 1, so the timescale channel introduces no energetic effects

since the ballistic component of the decay lifetime for the monomers is relatively

short lived. For β = 38.7eV−1, RC shows a dynamic index of 0.3, which we describe
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as transitional. Furthermore, for β = 29.0eV−1, RC � 1 with a full transition into

D0*1. In this instance, the timescale channel implies the ballistic component of

the decay lifetime has moved from being a long timescale to being the dominant

timescale.

True to its name, the anomalous ballistic channel presents dynamic changes

for each run. In general we expect a transition from dynamic index 0.2 to dynamic

index 0.9. Hence, for each β we can see the following transition: from RB effects

being masked by z � 1, to RB effects overwhelming z and introducing energetic

anomalies. Ultimately, the ballistic component of the lifetime eventually overwhelms

the thermalization lifetime of the hot-monomers; and one can interpret the transi-

tions as activating the RB channel. In all four instances, the most notable effect is

the transition from RB � 1 to RB � 1, and thus, the addition of an iEph energetic

term to the rescaled activation energy which is the source of the transitional scaling

in the growth exponent. Previously, this transitional scaling was understood to lead

to two critical nucleus size regimes in the experiment [57].
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Inverse Temperature (β) (eV−1) Low F State High F State

77.4 D(0 0.4 0) D(0 0.9 0)
58.0 D(0 0.3 0) D(0 0.9 0)
38.7 D(0 0.2 0.3) D(0 1 0.3)
29.0 D(0 0.1 0.9) D(0 1 0.9)

Table 2.4: The dynamic indexes for each of the four experimental runs, for i = 4 at
fixed β. D (H) indicates DLA (HMA): z � (�)1; and the numbers represent the
dynamic indexes for Rn, RB and RC , respectively.
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Figure 2.15: Dynamic-index, Jx as given in 2.42, values for ẑ (blue),RB (green),RC

(red-concealed by horizontal axis), and Rn (yellow-concealed by horizontal axis) vs.
log10 F for β = 77.36 ev−1 and F in the sampled experimental range. As constructed,
the index is constrained to the [0, 1] interval. The dynamic index for RB is notable,
as it is the only one transitioning for this temperature run from 0.4 at low F to 0.9
at high F . Since Rn,RC � 1, they appear close to the horizontal axis.
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Figure 2.16: Dynamic-index, Jx as given in 2.42, values for ẑ (blue), RB (green),
RC (red-concealed by horizontal axis), and Rn (yellow-concealed by horizontal axis)
against log10 F for β = 58.02 ev−1 and F in the sampled experimental range. As
constructed, the index is constrained to the [0, 1] interval. The dynamic index for
RB is notable, as it is the only one transitioning for this temperature run from 0.3
at low F to 0.9 at high F . Since Rn,RC � 1, they appear close to the horizontal
axis.

58



-4 -3 -2 -1 0
Log10F

0.2

0.4

0.6

0.8

1.0

{β=38.6817}

Figure 2.17: Dynamic-index, Jx as given in 2.42, values for ẑ (blue),RB (green),RC

(red), andRn (yellow-concealed by horizontal axis) against log10 F for β = 38.68 ev−1

and F in the sampled experimental range. As constructed, the index is constrained
to the [0, 1] interval. The dynamic indexes for RB and RC are notable: RB for
being the only one transitioning for this temperature run (from 0.2 at low F to 1.0
at high F ), and RC for being transitional (index is 0.3, and no evolution occurs as
fixed β implies a fixed RC). Since Rn � 1, it appears close to the horizontal axis.
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Figure 2.18: Dynamic-index, Jx as given in 2.42, values for ẑ (blue),RB (green),RC

(red), andRn (yellow-concealed by horizontal axis) against log10 F for β = 29.01 ev−1

and F in the sampled experimental range. As constructed, the index is constrained
to the [0, 1] interval. The dynamic indexes for RB and RC are notable: RB for
being the only one transitioning for this temperature run (from 0.1 at low F to 1.0
at high F ), and RC for completely transitioning into the state D**1. Since Rn � 1,
it appears close to the horizontal axis.
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Figure 2.19: Island density vs. deposition rate F in the aggregation regime for 6P
on sputter-modified mica (001) [57] at T = 150K (black, square dots), 200K (red,
round dots), 300K (blue, star dots), and 400K (green, triangular dots), with best-fit
parameters: i= 4, log10R0

n =−5.57, log10R0
B = 5.08, log10 vτ0 [µm] = 2.54, and, in

eV, ED = 0.0170, Eph = 0.0171, and Eb = 0.333. The final effective coverage θeff is
given by log10 (θeffτ

i
0 [µm−2si])=−25.4.
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Summary and Conclusion

Our work has shown that non-thermal (high-energy) adsorption states have

dramatic effects on monomer aggregation and island nucleation. A full solution

for the model is constructed, along with a quantitative description of the effective

growth exponent that can model transition regions. Additionally, a description of

the effective activation energy is obtained, which leads to the discovery of 16 well-

defined limiting regimes for the activation energy and 8 for the growth exponent.

More importantly, we identify four dimensionless parameters that capture the lim-

iting regions giving rise to said regimes, and we are able to imbue the parameters

with physical interpretations. Importantly, an interpretation of the distribution of

sub-critical islands leads to a physical description of the activation energy for the

system.

Additionally, we provide an approximate treatment for the solution that can be

more easily used to fit experimental systems. The approximation is robust enough to

capture the general behavior of the growth exponent, and we can theoretically pro-

vide limits for the maximum errors due to the approximation. Also, we introduced a

well-defined way to discuss transitional regions in the form of a dynamic-index: this

allowed us to meaningfully discuss and label transitional regimes in a general sense.

Specifically for [57], the dynamic-index formalism highlighted the effect monomer

decay from unstable islands had on the system. That is, how the ballistic component

of said decay could be the source of the non-monotonic (read anomalous) behavior

in the growth exponent.

62



Finally, we fit our model to experimental data and managed to describe a truly

superthermal system. Our description of states in terms of the activation energy

allowed us to describe the different transitions occurring in the system, and test the

robustness of the asymptotic approximation in a real setting.
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Chapter 3: Atomic Scale: Symmetry-Breaking

Introduction

Since the publication of the seminal work on graphene [21], the material has

been an experimental and theoretical workhorse for both physicists and chemists. Of

the many remarkable features of the material, the presence of Dirac cones in the elec-

tronic band structure is particularly relevant to electronic and transport properties.

Theoretical descriptions of graphene, most notably tight-binding approximations,

have been a staple of electronic analysis for decades [58]. These descriptions have

demonstrated that the delicate nature of the Dirac cones can easily be perturbed

to give rise to gaps in the band structure of graphene. In an engineering sense, it

is this electromagnetic structure that makes graphene such an attractive candidate

for the construction of devices, due to the presence of a gapped, i.e. zero current,

state.

Specifically, graphene can be described as having a honeycomb structure, i.e.,

a hexagonal Bravais lattice with a 2-atom basis. Equivalently, one can consider

graphene as occupying two of the three possible distinct sites in a triangular lattice

(see Fig. 3.1).
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Figure 3.1: Top) The electronic structure of graphene: note that the conduction
band (BC as in bande de conduction) and the valence band (BV as in bande de
valence) are separated at the K (Dirac point) and K ′ points in reciprocal space. The
local structure at the Dirac point, i.e. the Dirac cone, is responsible for the semimetal
nature of graphene as a single point separates the hole band (vide d’électrons) from
the electron band (pleine d’électrons) [59]. Bottom) Schematic of single layer
graphene (SLG) as a subset of a triangular lattice. Sublattices S1 (red sites) and S2

(blue sites) represent the two carbon atoms that constitute the smallest supercell
of infinitely periodic graphene, while sublattice S3 (black dot) marks the hollow
sites (honeycomb) in graphene. Note that there are no C atoms in S3, but the
marker is included to stress the unoccupied site in the triangular lattice, useful
when considering symmetry-breaking effects.
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Since there is no mechanism differentiating between the two sublattices, there

is an intrinsic sublattice symmetry for the system (graphene remains invariant un-

der non-trivial translations and rotations, i.e. the D6 point group in Schoenflies

notation). By differentiating one of the sublattices and breaking the symmetry, it

is possible to obtain the coveted gaps in the band structure. This approach has

proven effective for adsorbates on graphene, namely a pseudo-commensurate hexag-

onal boron nitride (h-BN) adsorbate on SLG (single layer graphene) [60]. In the

h-BN system, the graphene substrate’s sublattices are differentiated by the applica-

tion of a C−N bond with one sublattice, and C−B bond with the other one, opening

a gap of 53meV (see Fig. 3.2). While the results are impressive [60], and have been

confirmed experimentally [61], there are concerns regarding the lattice mismatch of

2% in h-BN: since we expect small changes to the band structure, the possibility

of shearing effects being mistaken for symmetry-breaking ones motivates finding an

adsorbate that is commensurate with graphene.
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Figure 3.2: Top) Differentiation of graphene substrate’s sublattices by application
of a hexagonal boron nitride adsorbate (hBN). In this case, the C−N bond with
one sublattice, and C−B bond with the other one create the required effective
potential [60]. Bottom) Calculated band structure from DFT calculations on the
graphene-hBN system. Note the gap at the K point of 53.0 meV [60].
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One of our earlier attempts was the study of trimesic acid (TMA) overlayers

on SLG [62]. Trimesic acid, atomic formula C6H3(CO2H)3, is a massive molecule

(by physics standards with an atomic weight of 210.14u for a single TMA molecule

compared with the atomic weight for the smallest graphene supercell of 24.02u) con-

sisting of a benzene ring with three attached carboxyl groups. Promising features

of TMA include the molecule being commensurate with graphene because of the

presence of a central benzene ring, and having the capability to induce an effective

potential through the action of a carboxyl group. Furthermore, TMA has a ten-

dency to arrange in overlayers, notably a honeycomb-like overlayer commensurate

with a (7 × 7) graphene supercell. In this particular case, there were two unique

configurations for the TMA honeycomb overlayer, one in which the carboxyl groups

affect both graphene sublattices equally (non-symmetry-breaking), and another in

which the groups affect them differently (symmetry-breaking). Using VASP 5.3.3,

with ab initio van der Waals density functionals (vdW-DF), we computed through

DFT calculations that the symmetry-breaking overlayer opened a gap of 15.3 meV,

contrary to the non-symmetry-breaking overlayer that preserved the Dirac point

(see Fig. 3.3).

Though initial results were promising, we ran into several complications that

made the system less auspicious for study. First, despite the overlayers being com-

mensurate with graphene, supercell size led to prohibitive computational issues: the

smallest supercell containing 2 TMA molecules consisted of 140 separate atoms and

a large 12Å vacuum. Of even greater concern were the supercells for TMA on BLG

(bilayer graphene) and TLG (trilayer graphene), with atom counts of 238 and 336
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atoms, respectively. Furthermore, as supercell sizes increased from 4645 Å3 in SLG,

to 5420 Å3 in BLG, and 6194 Å3 in TLG, the computational cost incurred by the

non-local van der Waals functionals became prohibitive; that is even before making

considerations for even larger supercells in order to account for changes in coverage.

In response, and inspired by local experimental results [63], we explore CF3Cl

overlayers on SLG and BLG graphene via DFT calculations. As supercell sizes are

commensurate and more manageable than those in TMA, we are able to explore

the effects of orientation, and coverage on the electronic structure of graphene.

Ultimately, we observe gaps in the band structure, and attribute the modifications

in the electronic properties of graphene to symmetry-breaking effects by eliminating

the possibility of shearing effects being responsible for them.
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Figure 3.3: Top) Supercell for TMA overlayers in SLG; note the graphene supercell
is (7× 7) with 2 TMA molecules per cell [62]. Bottom) Calculated band structure
of SLG with TMA adsorbate. Note the gap at the K point of 15.3 meV [62].
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Tight-Binding Considerations

Tight-binding considerations for SLG are not a recent development [58], but

they remain relevant despite their deceptive simplicity due to their flexibility and

adaptability to extension. Since simple shearing deformations parallel to a periodic

SLG sheet can induce gap openings [64], we model the effects of these deformations

on the band structure along with those of the effective potential using tight-binding

calculations. Since the presence of CF3Cl molecules is liable to induce both parallel

and perpendicular components of shearing to the graphene substrate, previous tight-

binding results [64] need to be extended in order to account for deformation along

the SLG plane and its normal. First, consider the fundamental lattice vectors:

~a1 = a
(

cos
π

6
x̂+ sin

π

6
ŷ
)

~a2 = a
(

cos
π

6
x̂− sin

π

6
ŷ
)

~a3 = −Lẑ (3.1)

where a refers to the C−C bond length for an undisturbed SLG lattice, L > a

is a distance large enough to minimize adsorbate-adsorbate interactions across the

void, and (x̂, ŷ, ẑ) are the standard Cartesian unit vectors. Second, consider the

symmetric shearing tensor:

~xS =



1 ε12 ε13

ε12 1 ε23

ε13 ε23 1


~x (3.2)
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where ~xS is the sheared position vector obtained by applying the symmetric de-

formation on the original position vector ~x, and ε∗∗ are dimensionless shearing co-

efficients. Additionally, consider symmetry-breaking through the addition of two

effective potentials on the sublattices in the form of energies δ1 and δ2. Therefore,

the tight-binding Hamiltonian for the system is given by:

H
(
~k
)

=

 δ1 Vppπf
(
~k
)

Vppπf
(
~k
)∗

δ2

 with, (3.3)

f
(
~k
)

=
3∑

n=1

exp
(
i~aSn · ~k

)
(3.4)

Note that f
(
~k
)

encodes the ppπ nearest neighbor interactions, with the shearing

effects present in the rescaling of the lattice vectors, while Vppπ is found through

fitting (see section 3.5). Having defined the lattice vectors for the system (3.1), the

reciprocal lattice (k-space lattice) lattice is given by:

~k1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
=

2π

a

(
1√
3
x̂+ ŷ

)
(3.5)

~k2 = 2π
~a3 × ~a1

~a2 · (~a3 × ~a1)
=

2π

a

(
1√
3
x̂− ŷ

)
(3.6)

~k3 = 2π
~a1 × ~a2

~a3 · (~a1 × ~a2)
= −2π

L
ẑ (3.7)

In SLG any gap should open at the K point (Dirac point), K = 1
3
~k1− 1

3
~k2, thus, for

small substrate deformations:

f (K) = lim
~k→K

f
(
~k
)

= −2πi√
3

(
ε12 +

2L√
3a
ε23

)
+O

(
ε212

)
+O

(
ε223

)
(3.8)
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to first order in ε∗∗. Having obtained a linear dependence for the nearest neighbor

interactions, consider the tight-binding Hamiltonian at the Dirac point:

H (K) =

 δ1 −Vppπ
2πi√

3

(
ε12 + 2L√

3a
ε23

)
Vppπ

2πi√
3

(
ε12 + 2L√

3a
ε23

)
δ2

 with, (3.9)

Egap =
√
V 2

eff + V 2
shear (3.10)

Veff = |δ1 − δ2| (3.11)

Vshear =
4π√

3
|Vppπ|

∣∣∣∣∣ε12 +
2L√
3a
ε23

∣∣∣∣∣ (3.12)

where Egap is the gap in the band structure at the Dirac point, Veff and Vshear are the

energy contributions to the gap by symmetry-breaking and shearing, respectively.

After obtaining Vppπ from the band structure, and ε∗∗ from direct calculations of the

graphene substrate’s deformation, we can isolate the net effect of symmetry-breaking

on gap opening.

A final consideration should be given to SLG tight-binding calculations for

supercells larger than (1×1). In such cases, as the lattice vectors increase in size,

the reciprocal vectors are compressed by the same factor. This causes a folding

in of the band structure. Equivalently, tight-binding calculations on (2×2) cells

(discussed below) would imply solving a 8 × 8 tight-binding Hamiltonian, whereas

(
√

3 ×
√

3) would imply solving a 18 × 18 tight-binding Hamiltonian. For weakly

bound systems, and small dispersions, we approximate the band structure of these

extended supercells through the obtained SLG results as a way to quantify the

effective potential for differently sized systems.
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Supercell Construction

In order to perform DFT calculations, proper supercells must be constructed.

Our decision to use CF3Cl as the adsorbate on graphene comes after methodical

deliberation. First, the molecule is tetrahedral with 3 F atoms forming a triangular

base, 1 Cl atom at the cusp and a C atom at its center (see Fig. 3.4). Experi-

mentally [63], the small size of CF3Cl adsorbates in BLG along with the presence

of various phases that modify the electronic structure of graphene, make CF3Cl a

promising candidate for symmetry-breaking effects. Specifically, three phases ex-

hibit interesting physical properties, namely, the E phase, the IC phase and the C

phase.

The E phase presents electrical ordering of the molecules, and can be described

by a supercell of 4 CF3Cl molecules. However, in this phase the C−Cl bond in

CF3Cl presents parallel and perpendicular components to the normal of the graphene

substrate, causing potentially large deformation effects in graphene. Moreover, even

if the deformations are found to be small, the basic supercell would be (8×2)2,

where (1×1)2 refers to the smallest supercell that can generate a periodic BLG

lattice. Thus, for the study of weak symmetry-breaking effects, the E phase is both

computationally expensive and potentially too intrusive on the substrate.

The IC phase has similar orientation problems as the E phase, with the addi-

tional complication that CF3Cl molecules are randomly oriented. While a supercell

commensurate with (1×1) cannot be constructed for the IC phase, and DFT calcu-

lations have been performed on disordered systems [65], the usual prescription is to
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account for disorder using large supercells, discouraging modeling the IC phase un-

der our considerations. Experimentally, changes in the transport properties of BLG

are largely attributed to surface potentials variations from the film and dielectric

screening from the adsorbate in the case of the E phase and IC phase, respectively,

and not to gap opening. Hence, disregarding these phases as candidates for our

symmetry-breaking studies seems sensible.

Finally, the C phase presents several convenient characteristics. First, the

C−Cl bond is parallel to the normal of the graphene substrate; second, the size

of the F3 tetrahedron projected onto the graphene surface is commensurate with

a single graphene honeycomb. Third, experimentally, it is only in the case of the

C phase that the opening of a band gap has been suggested as a dominant effect.

Thus, we study variations on coverage and orientation of CF3Cl molecules in the C

phase, but begin our discussion working on SLG rather than BLG.
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Figure 3.4: Left) Ball-and-stick model for a single CF3Cl molecule. The C atom
(yellow) connects the tetrahedral base made up of 3 F atoms (purple) to a cusp con-
sisting of 1 Cl atom (green). Molecule dimensions are representative and calculated
using optB86b-vdW. Right) Experimental phases of CF3Cl on BLG [63]: Right,
Top) ordered E Phase with CF3Cl non-perpendicular to graphene surface, Right,
Middle) disordered IC Phase with CF3Cl non-perpendicular to graphene surface,
and Right, Bottom) ordered C Phase with CF3Cl perpendicular to graphene sur-
face.
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We can explore supercells as small as (2×2) (containing 1 CF3Cl molecule)

and (
√

3 ×
√

3) (containing 3 CF3Cl molecules), where (1×1) denotes the simplest

supercell that can generate a periodic SLG lattice. Note that (2×2) corresponds to

a known submonolayer arrangement for the C phase, and (
√

3 ×
√

3) is a natural

extension of this supercell to a larger coverage. Exploration of higher coverage

supercells indicates that (
√

3 ×
√

3) is the maximal coverage for molecules in the

C phase, as no DFT calculations with CF3Cl molecules for coverages higher than

(
√

3 ×
√

3) were found to converge either in maximal atomic forces per atom, nor

total cell pressure. Hence, (
√

3 ×
√

3) and (2×2) represent 1.00ML and 0.75ML

coverage, respectively (see Figs. 3.5 and 3.6 for an illustration of the coverage).

While the coverage is experimentally accessible, the orientation of the molecules

is not; hence, a complete accounting of all orientations is necessary for an under-

standing of any symmetry-breaking effects. Recall that graphene consists of two

occupied sublattices (S1 and S2), and a hollow site (S3). Thus, consider all possi-

ble orientations of CF3Cl molecules on the C phase, where we take the approach

of identification through nomenclature. First, when the C-atom is located above

an occupied site (S1 or S2), we denote the orientation as C*, whereas the C-atom

located above the unoccupied site (hollow S3) would be denoted by H*. Second,

rotations about the C-Cl bond leave two possible orientations: when the F atoms

eclipse occupied sites (S1 or S2), the orientation is referred as *E; and when the F

atoms are otherwise staggered, the orientation is referred as *S. All possible orien-

tations are illustrated in Fig. 3.7, with the connecting transformations presented in

Table 3.1.
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Figure 3.5: Sample supercells of coverage (2×2) , with orientation HS (C atom in
hollow, with staggered F atoms). Shown are 3×3 = 9 instances of a (2×2) supercell,
where a (2×2) supercell contains 1 CF3Cl molecule.
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Figure 3.6: Sample supercells of coverage (
√

3×
√

3) , with orientation HS (C atom
in hollow, with staggered F atoms). Shown are 2× 2 = 4 instances of a (

√
3×
√

3)
supercell, where a (

√
3×
√

3) supercell contains 3 CF3Cl molecules.
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Figure 3.7: All four possible orientations of CF3Cl molecules in the C phase. The
graphene sublattices S1 and S2 are stylized as line bonds (red and blue). In H* ori-
entations the CF3Cl molecule sits on a honeycomb hollow, while in C* orientations
it sits on an occupied graphene sublattice. For the F atoms, the eclipsed orienta-
tions (*E) refer to F atoms eclipsing an occupied sublattice, while the staggered
orientations (*S) do otherwise.
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HS HE CS CE

HS ∼ −30◦ (0,−1), 30◦ (0,−1), −30◦

HE 30◦ ∼ −60◦, (1, 0) (0,−1)

CS −30◦, (0, 1) (−1, 0), 60◦ ∼ 60◦

CE 30◦, (0, 1) (0, 1) −60◦ ∼

Table 3.1: The transformations required to convert an orientation in the first
column into an orientation in the first row for CF3Cl molecules in the C phase. For
the transformations, positive numbers, e.g. 30◦, refer to a clockwise rotation by an
amount in degrees (and a negative number to a counter-clockwise rotation); while,
ordered pairs, e.g. (1, 0), refer to translations by the lattice vectors ~a1, and ~a2 (as
defined in Eqn. 3.1). If two transformations are present, then the left-to-right order
indicates the order of application.
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DFT Considerations

Calculations were performed with VASP 5.3.3, using grid resources at the

Texas Advanced Computing Center at the University of Texas at Austin (TACC)

[66], and a similar prescription as for other systems with sensitive substrates [67].

A large energy cutoff for the wave functions (of 600eV) is necessary to account for

surface effects. Most importantly, supercells are constructed with a large vacuum of

18Å, along with (up to) electric quadrupole corrections, to capture sensitive effects

in the band structure of graphene. A technique to bypass dipole corrections is to

add a second adsorbate layer on an additional substrate slab [68]. However, for SLG

and BLG there would be strong interactions between adsorbates in the opposite side

of the vacuum, so we opt not to take this bypassing approach.

As we explore differently sized supercells, it is of great concern to make the

k-point meshes between supercells commensurate. As seen in similar systems [67],

when dealing with a large supercell, a folding mechanism occurs for the reciprocal

space: namely, k-meshes become denser by the same factor that the lattice vectors

are augmented. Though reciprocal vectors in (2×2) and (
√

3 ×
√

3) have to be

carefully analyzed to account for folding, the silver lining is an overall denser effective

k-point mesh. We employ k-point meshes of 17× 17× 1 and 13× 13× 1, for (2×2)

and (
√

3×
√

3) , which lead to effective k-point meshes of 34×34×1 and 39×39×1,

respectively. The large k-point density and similar sizes, justifies energy comparisons

between both supercells, even though they do not present similar physical sizes.

Lastly, k-point convergence is achieved when iterations between steps differs by less
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than 0.01 meV; which sets our least significant energy in the study.

Finally, we consider the inclusion of van der Waals potentials in our DFT

calculations. The accuracy [69], implementation in arbitrary geometries [70], and

overall efficient implementation of the potentials [71] has been extensively studied.

Without such potentials, we could not find a stable, i.e. hardly any binding, C-

phase supercell, which suggests the symmetry-breaking effect could depend on the

implementation of the approximation. To that effect, we perform our calculations

with four different van der Waals implementations, in order to confirm that any

observed results are physical, and not just DFT artifacts. We employ several poten-

tials: optB86b-vdW1 as it targets large-gradient behavior (of note is its modeling of

Cl and F) [70], the exchange optimized optPBE and optB88 potentials [72] aimed

at improving on the original revPBE, and having better chemical accuracy with the

S22 data set (mostly biological dimers, of which C-C is of particular importance

to us), and the enhanced rPW86 potential [73], which through a finer semilocal

exchange functional and the use of asymptotic gradient corrections better predicts

binding energy, equilibrium separation, and potential-energy on the S22 data set.

These potentials are useful when describing most relevant features, though they are

not without problems (notably they do not capture hybridization properly and some

of the earlier ones have problems with asymptotic effects) [74].

Listing all these implementations of vdW potentials can obscure their ultimate

goal: by employing a combination of semi-local and non-local correlation functionals,

along with the classic revPBE exchange functional, vdW-DF1 (and correlation-

energy-corrected vdW-dF2) are a good starting point for the description of general
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matter [75]. Though the formalism is not without shortcomings (e.g. overestimating

binding separations), the accounting of weakly covalent systems is crucial to our

description of adsorbates on a carbon-based substrate such as graphene. There

have been efforts to improve the potentials: some attempts take the view of adding

empirical corrections by fitting to real systems (such as rev-vdW-DF2 or vdW-DF2-

B86R) [76–78], while others focus on a first principles description by improving

(or replacing) revPBE with another exchange functional (such as vdW-DF-cx0 and

vdW-DF2-0) [79,80].
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Symmetry-Breaking Effects

Having obtained converged DFT calculations on all orientations (and poten-

tials), we compute the adsorption energy, Eads, of the CF3Cl adsorbate:

Eads = Ebulk
Freon + Ebulk

Graphene − Ebulk
total (3.13)

where Eads is in units of energy per CF3Cl molecule, Ebulk
Freon is the free energy of the

frozen (i.e. not relaxed) CF3Cl overlayer, Ebulk
Graphene is the free energy of the frozen

graphene substrate, and Ebulk
total is the total free energy of the converged system.

Inspection of the adsorption energy for all vdW1 potentials reveals that optB86b,

optB88 and optPBE predict an adsorption energy per molecule of approximately

280meV. Notably, coverage and orientation seem to have no meaningful effect on

the adsorption energy of the CF3Cl adsorbate (see Figs. 3.8 - 3.10). Similarly, the

rPW86-vdW2 potential predicts an adsorption energy of around 220meV with the

same insensitivity to coverage and orientation (see Fig. 3.11). The system can be

regarded as physisorbed (adsorption energy of 200meV per molecule), with little

sensitivity to coverage and orientation.

We also consider whether potentials exhibit different physics for different ori-

entations. When the adsorption energies of every orientation are plotted against

coverage, a consistent energetic hierarchy of vdW potentials arises (see Figs. 3.12 -

3.15). Based on the consistency of the adsorption results, we regard optB86b to be

representative for the physics in the system. For every orientation, the gap (if any)
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should open at the folded Dirac point, and the effective Vppπ can be obtained from

band structure results at ~k = 0 for (2×2) and ~k = M = 1
2
~k1 for (

√
3×
√

3) (as these

points are invariant under folding). Contrary to SLG, where Vppπ is interpreted as

the interaction energy between nearest neighbors, in these folded systems it should

be regarded as an effective nearest neighbor interaction. To illustrate, in (1×1) SLG

there is a single instance of S1 and S2 atoms, so Vppπ is truly the nearest neighbor

interaction. However, in (2×2) SLG there are four instances of S1 and S2 atoms, so

a (1×1) interpretation of the (2×2) supercell aggregates these effects into an effec-

tive Vppπ. Despite this new physical interpretation, Vppπ results allow us to compute

the shearing and effective potential contributions to the band gap according to our

tight-binding model.

We also obtain gaps for pristine graphene lattices, which correspond to band

structures of the SLG substrate when the CF3Cl adsorbate is removed (though

leaving the deformations). These systems are mechanically deformed into an excited

state, so the interpretation of any gaps is qualitative at best. However, these pristine

graphene lattices do provide insight into the magnitude of the deformations, where

similar pristine graphene gaps imply similar deformation effects.
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Figure 3.8: Adsorption energy for CF3Cl adsorbates on graphene in units of en-
ergy per CF3Cl molecule, as computed via DFT calculations using the optB86b-
vdW1 implementation of van der Waals interactions. For every possible orientation,
adsorption energy is plotted against coverage: notably, though adsorption energy
changes depending on orientation, it remains insensitive to coverage.
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Figure 3.9: Adsorption energy for CF3Cl adsorbates on graphene in units of energy
per CF3Cl molecule, as computed via DFT calculations using the optB88-vdW1 im-
plementation of van der Waals interactions. For every possible orientation, adsorp-
tion energy is plotted against coverage: notably, though adsorption energy changes
depending on orientation, it remains insensitive to coverage.
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Figure 3.10: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule, as computed via DFT calculations using the optPBE-
vdW1 implementation of van der Waals interactions. For every possible orientation,
adsorption energy is plotted against coverage: notably, though adsorption energy
changes depending on orientation, it remains insensitive to coverage.
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Figure 3.11: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule, as computed via DFT calculations using the rPW86-
vdW2 implementation of van der Waals interactions. For every possible orientation,
adsorption energy is plotted against coverage: notably, though adsorption energy
changes depending on orientation, it remains insensitive to coverage.
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Figure 3.12: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule vs. coverage, as computed via DFT calculations for the
HE orientation. Note that the hierarchy in the estimation of adsorption energy for
every potential is not unique to the HE orientation.
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Figure 3.13: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule vs. coverage, as computed via DFT calculations for the
HS orientation. Note that the hierarchy in the estimation of adsorption energy for
every potential is not unique to the HS orientation.
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Figure 3.14: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule vs. coverage, as computed via DFT calculations for the
CE orientation. Note that the hierarchy in the estimation of adsorption energy for
every potential is not unique to the CE orientation.
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Figure 3.15: Adsorption energy for CF3Cl adsorbates on graphene in units of
energy per CF3Cl molecule vs. coverage, as computed via DFT calculations for the
CS orientation. Note that the hierarchy in the estimation of adsorption energy for
every potential is not unique to the CS orientation.
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For calculations at low coverage, (2×2) supercells reveal changes in the band

structure of graphene (results are presented in Table 3.2, and visualized in Fig.

3.16). In general, symmetry-breaking effects are responsible for gap openings (when

present), while shearing effects present negligible contributions to the gap (smaller

than our least significant energy). Moreover, Vppπ has a consistent value regardless

of orientation, consistent with effective nearest neighbor interactions not being the

cause of gap formation. Finally, the pristine systems present gaps of around 3.6

meV for the gapped states, suggesting similarly sized deformations in the graphene

substrate.

The HS orientation does not produce a gap at the Dirac point, with even

the pristine system not exhibiting a gap opening. Moreover, when considering the

adsorption energy curves (Figs. 3.12 - 3.15), HS is consistently the weakest binding

orientation. The C atom in CF3Cl is located at a honeycomb hollow, with the

F atoms slotted in between lattice sites; thus, HS can be visualized as roughly

fitting into the substrate, which correlates with weaker binding. Additionally, this

mechanical wedging does not single out either graphene sublattice, consistent with

a gapless orientation (see Fig. 3.17), but also causes minimal stress of the substrate

as its pristine variant is notably gapless.

For both HE and CE, deformations of the SLG substrate did cause gap-opening

in the band structure. In both instances, the symmetry-breaking effect did not come

from the location of the C−Cl bond, but rather from the eclipsing of a graphene

sublattice by the F atoms. Note that both the gaps in the band structure (4.14 meV

and 4.34 meV) and the gaps in the pristine systems (3.65 meV and 3.63 meV) are
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of comparable size for HE and CE, reinforcing the idea that sublattice identification

is the source of the effect (see Figs. 3.18 and 3.20).

In the CS orientation, symmetry-breaking effects are still present, and open a

smaller gap. CS has consistently the largest adsorption energy in terms of the other

orientations, which explains the smaller gap in its pristine counterpart (small de-

formations). In this orientation, CF3Cl molecules are localized around a sublattice,

so the symmetry-breaking contribution comes from a small depleted region in be-

tween the CF3Cl molecules (see Fig. 3.19). The result is a weak symmetry-breaking

orientation, which is consistent with a gap of 1.50 meV.

96



Orientation Egap (meV) Veff Vshear Vppπ Epristine

HS 0.00 0.00 0.00 666 0.00

HE 4.14 4.14 0.00 666 3.65

CS 1.50 1.50 0.00 667 3.57

CE 4.34 4.34 0.00 664 3.63

Table 3.2: Gaps and energies (in meV) in the band structure of SLG graphene for
low coverage (2×2) in the C phase. Egap is the gap in the band structure at the Dirac
point, Veff is the magnitude of the effective potential inducing symmetry-breaking
and Vshear the shearing potential due to stress on the graphene substrate. Epristine

represents the gap in pristine (frozen and without the CF3Cl adsorbate) graphene
due to deformations. Vppπ represents the effective nearest neighbor interactions for
the folded (2×2) supercell.
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Figure 3.16: Gaps (meV) in the band structure of SLG graphene for low coverage
(2×2) at the C phase. Note that due to folding, the K point in (1×1) is mapped
to K ′ in (2×2) . Gaps (when present) open the valence band (blue) from the
conduction band (red) below the Fermi level (n-type). The band structure about
K ′ is presented for all orientations: Top, Left) HS, Top, Right) HE, Bottom,
Left) CS, and Bottom, Right) CE.
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Figure 3.17: LDOS for HS orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at low coverage (2×2) . Graphene sublattices are colored
brown and cyan, respectively. Note the complete lack of symmetry-breaking effects
in this orientation, as all sublattices are affected by the CF3Cl molecules equally
(emphasis in red).
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Figure 3.18: LDOS for HE orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at low coverage (2×2) . Graphene sublattices are colored
brown and cyan, respectively. Note symmetry-breaking effects in this orientation,
as one sublattice is largely unaffected by the CF3Cl molecules (emphasis in red).
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Figure 3.19: LDOS for CS orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at low coverage (2×2) . Graphene sublattices are colored
brown and cyan, respectively. Note weaker symmetry-breaking effects in this orien-
tation, as one sublattice is slightly less affected by the CF3Cl molecules (emphasis
in red).
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Figure 3.20: LDOS for CE orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at low coverage (2×2) . Graphene sublattices are colored
brown and cyan, respectively. Note symmetry-breaking effects in this orientation,
as one sublattice is largely unaffected by the CF3Cl molecules (emphasis in red).
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In the case of high coverage, i.e. (
√

3 ×
√

3) supercells, deformations on the

graphene substrate increase with CF3Cl density (results are presented in Table 3.3,

and visualized in Fig. 3.21). In general, symmetry-breaking effects are responsible for

gap openings (when present), while shearing effects present negligible contributions

to the gap (smaller than our least significant energy). While, Vppπ has a consistent

value regardless of orientation, the effective nearest neighbor interactions have in-

creased to 1.2 eV, so that they are also accounting for electrical effects due to the

CF3Cl adsorbate. Since the graphene substrate is saturated with as much CF3Cl

as possible in a monolayer, symmetry-breaking does not come through sublattice

identification, but rather from the way orientations create larger meta sublattices.

Two orientations, HS and HE, have enhanced gaps at the Dirac point. For

HS the result is most dramatic, as the largest gap for this coverage (18.0 meV)

arises from a gapless orientation at low coverage; results for HE also present an

enhanced gap of 8.51 meV. If we visualize the localized CF3Cl molecules as sites in

a triangular meta overlayer (of effective bond length
√

3a), the gaps can be explained

as symmetry-breaking effects in these meta sublattices. For HE, the meta overlayer

is formed by small depletion zones that act as meta graphene sublattices (see Fig.

3.23). Though there is no differentiation between the meta graphene sublattices,

the discrepancy in lattice constant from the meta overlayer with that of graphene,

breaks the underlying sublattice symmetry. A similar effect occurs for HS, with

the additional consideration that the meta graphene sublattices are not depletion

zones, but rather CF3Cl molecules themselves and sparse LDOS regions. Hence,

in addition to the lattice constant mismatch, there is a meta graphene sublattice
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differentiation, which accounts for the large gap (see Fig. 3.22).

Contrastingly, for CS and CE, the S1 and S2 sublattices are not significantly

differentiated (see Figs. 3.24 - 3.25). More importantly, in both orientations the meta

overlayer does not present a graphene-like structure, but rather a triangular one

that does not conflict with the underlying graphene substrate. Therefore, the only

symmetry-breaking effects are those coming from weak sublattice differentiation,

and not meta overlayer formation; hence, the small gaps.

Finally, as the substrate is maximally dense, the pristine gaps can be ex-

plained mechanically. In increasing order, CE, CS, HE, and HS present pristine

gaps from 1.73 meV up to 9.29 meV, and are consistent with CF3Cl molecules

increasingly wedging into the substrate at the ground state. Nevertheless, given

maximal coverage, these deformations are more akin to packing effects, rather than

symmetry-breaking ones
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Orientation Egap (meV) Veff Vshear Vppπ Epristine

HS 18.0 18.0 0.00 1999 9.29

HE 8.51 8.51 0.00 1999 7.30

CS 1.55 1.55 0.00 2012 7.01

CE 3.68 3.68 0.00 2001 1.73

Table 3.3: Gaps and energies (in meV) in the band structure of SLG graphene for
high coverage (

√
3 ×
√

3) in the C phase. Egap is the gap in the band structure at
the Dirac point, Veff is the magnitude of the effective potential inducing symmetry-
breaking and Vshear the shearing potential due to stress on the graphene substrate.
Epristine represents the gap in pristine (frozen and without the CF3Cl adsorbate)
graphene due to deformations. Vppπ represents the effective nearest neighbor inter-
actions for the folded (

√
3×
√

3) supercell.
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Figure 3.21: Gaps (meV) in the band structure of SLG graphene for high coverage
(
√

3×
√

3) at the C phase. Note that due to folding, the K point in (1×1) is mapped
to Γ in (

√
3 ×
√

3) . Gaps (when present) open the valence band (blue) from the
conduction band (red) above the Fermi level (p-type). The band structure about Γ
is presented for all orientations: Top, Left) HS, Top, Right) HE, Bottom, Left)
CS, and Bottom, Right) CE.
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Figure 3.22: LDOS for HS orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at high coverage (

√
3 ×
√

3) . Graphene sublattices are
colored brown and cyan, respectively. Note symmetry-breaking effects in this orien-
tation are due to the formation of a graphene-like meta overlayer (lattice constant√

3a), with differentiated meta sublattices (emphasis in red).
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Figure 3.23: LDOS for HE orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at high coverage (

√
3 ×
√

3) . Graphene sublattices are
colored brown and cyan, respectively. Note symmetry-breaking effects in this orien-
tation are due to the formation of a graphene-like meta overlayer (lattice constant√

3a), with mismatching lattice constant with respect to the underlying graphene
substrate (emphasis in red).
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Figure 3.24: LDOS for CS orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at high coverage (

√
3 ×
√

3) . Graphene sublattices are
colored brown and cyan, respectively. Note symmetry-breaking effects in this ori-
entation are due to weak sublattice differentiation, as the formation of a triangular
meta overlayer does not conflict with the underlying graphene substrate (emphasis
in red).
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Figure 3.25: LDOS for CE orientation with LDOS localization about the CF3Cl
overlayer in the C-phase at high coverage (

√
3 ×
√

3) . Graphene sublattices are
colored brown and cyan, respectively. Note symmetry-breaking effects in this ori-
entation are due to weak sublattice differentiation, as the formation of a triangular
meta overlayer does not conflict with the underlying graphene substrate (emphasis
in red).
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We consider symmetry-breaking effects on BLG at low coverage, (2× 2)2

(see Table 3.4), to avoid the formation of meta overlayers that may complicate

symmetry-breaking effects due to sublattice differentiation. Without loss of gener-

ality, consider the top SLG stack to be the one closest to the adsorbate with sub-

lattices S1 and S2; there are two possible arrangements for the bottom SLG stack,

one with sublattices S1 and S3, and the other with sublattices S2 and S3 (see Fig.

3.26). As evidenced in tight-binding calculations for BLG [81], adsorbates can open

a gap Egap ≈ |δ3 − δoff |, where δx is the effective potential on sublattice Sx, and δoff

is the potential on the top SLG sublattice not shared with the bottom SLG stack

(labeled Soff). Note that deformation effects, graphene-graphene stack interactions,

and the effective potential on the shared sublattice are remarkably absent from the

energy gap.

Two orientations are chosen, HS and HE, both with CF3Cl molecules at the

hollow S3 site. For orientations HS1 and HS2 (where the subscript denotes the

sublattice shared by both SLG stacks), the lack of symmetry-breaking effects for HS

in SLG renders HS1 and HS2 as chiral copies of one another, with an F atom acting

directly on Soff . Hence, we observe large gaps of about 25 meV in both instances.

For orientations HE1 and HE2, CF3Cl is placed such that F atoms act on the S1

sublattice for the top SLG stack. Therefore, Soff is S2, so HE2 should exhibit a

larger gap than HE1, which is confirmed through gaps of 8.9 meV and 7.1 meV,

respectively.

The last consideration should be the difference in gap size between HSx and

HEx orientations. Notably, HSx orientations have CF3Cl localized much more di-
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rectly above S3 when compared to HEx, making Egap considerably stronger in the

former. Finally, the pristine gaps confirm that deformations play an even smaller

role in gap opening for BLG, since pristine gaps are at most 2 meV.
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Figure 3.26: Schematic of the two possible configurations for BLG. In the top
stack, sublattices are identified as S1 (blue sites) and S2 (black sites). The bottom
SLG stack can consist of S1 and S3 (red sites) sublattices (subscript 1), or S2 and
S3 sublattices (subscript 2).
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Orientation Egap (meV) Epristine (meV)

HS1 23.8 0.1

HS2 24.5 0.1

HE1 7.1 1.9

HE2 8.9 0.2

Table 3.4: Gaps (in meV) in the band structure of BLG for low coverage (2×2) in
the C phase. Egap is the gap in the band structure at the Dirac point, and Epristine

represents the gap in pristine (frozen and without the CF3Cl adsorbate) BLG due to
deformations. The subscript in the orientations denotes the sublattice in the bottom
SLG stack shared with the top SLG stack, as the CF3Cl molecule is localized about
S3 in both cases.
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Summary and Conclusion

We performed DFT calculations of CF3Cl adsorbed onto SLG and BLG, mo-

tivated by previous DFT results of adsorbates on graphene [60] and by experiments

that measured interesting electrical properties of CF3Cl on BLG [63]. The super-

cells were devised to minimize self-interaction effects of the adsorbate with itself and

to maximize the k-point density to observe the likely weak effects on the electrical

structure of graphene. High energy cutoffs (600eV) for the wave functions and dense

k-point meshes (denser than 30 × 30 × 1 due to supercell folding) were employed

along with different types of van der Waals interactions in VASP 5.3.3.

Calculation of the adsorption energy reveals that the system is physisorbed

with sample adsorption energy of 220meV per CF3Cl molecule, which suggests any

changes to the electrical properties of graphene are the result of symmetry-breaking

effects, as we have used tight-binding analysis to show that shearing effects on gap

opening are negligible.

For low CF3Cl coverage, molecules are sparse enough to make sublattice differ-

entiation the definitive mechanism for symmetry-breaking. For CE and HE with F

atoms from CF3Cl acting on a given SLG sublattice, sublattice differentiation is di-

rectly related to symmetry-breaking effects and the opening of small gaps (4 meV)

in the band structure. Analogous, but weaker effects are observed in CS, which

opens a gap of 1.5 meV. The most striking result, however, is HS, in which CF3Cl

molecules are located in a graphene honeycomb with F atoms affecting sublattices

equally, thus not opening gaps.
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For maximal coverage, shearing considerations cannot be relied upon, as all

possible orientations deform the SLG substrate similarly. Explicitly, the deforma-

tion is uniform across orientations, and the ∼ 7 meV gaps of the pristine systems

reveal that shearing at high coverage does not induce symmetry-breaking by itself.

Additionally, dense packing makes it difficult to argue for sublattice differentiation,

since the molecules are no longer meaningfully localized about any given SLG sub-

lattice. Symmetry-breaking effects come from the creation of a graphene-like meta

overlayer, in which the CF3Cl molecules (or depleted zones) represent meta sublat-

tices. In CS and CE orientations (with the C−Cl bond above a SLG sublattice),

the meta overlayer is a triangular one, with no identification between any of the

meta sublattices, thus, not breaking SLG symmetry. Contrastingly, the HE and

HS orientations (with C−Cl bonds in the honeycomb hollows) induce a graphene-

like meta overlayer in which the CF3Cl molecules act as meta sublattices. These

meta overlayers have bond length
√

3a, which creates an effective potential on SLG

due to bond size mismatch. Thus, we observe gaps for HE and HS at high cover-

age, of 8.51 meV and 18.0 meV, where the enhanced HS gap comes not only from

the graphene-like meta overlayers, but from meta sublattice differentiation, further

breaking symmetry.

Additional calculations were performed on BLG, where symmetry-breaking

effects come from the application of an effective potential to the sublattice in the

top SLG stack that is not shared with the bottom SLG stack, Soff . At low coverage,

HS and HE configurations were employed to apply different effective potentials to

Soff , as CF3Cl molecules sit at the hollow S3 site. Overall, gap openings were
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enhanced, with the most dramatic effect that of the HS configuration (gapless in

SLG): in BLG, the localization of CF3Cl about S3 and the strong potential on S1

and S2 was enough to break sublattice symmetry between the top and bottom SLG

stacks, producing a gap of 25 meV (the largest in our study).
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Chapter 4: Conclusion and Future Work

Transient Mobility Effects

Of our many assumptions, modeling binding energy as a constant Eb was

reasonably effective. This assumption allowed us to compare thermal and athermal

effects for the lifetime of the sub-critical clusters, without considering the size of

the clusters themselves. An exploration of the underlying substrate, and how it

impacts the binding energy can probe the limits of this assumption. For example,

in a triangular or hexagonal substrate, for sub-critical islands larger than s = 2 but

smaller than the critical nucleus size i, one can access unstable islands of size s with

different binding energies. These energies are connected both to the geometry of the

substrate, and to the accessible configurations for the specific monomer under study.

Specifically, in a triangular substrate, N3 can be linear (with one nearest neighbor)

or triangular (with two nearest neighbors), and should exhibit two different binding

energies and decay rates. Thus, we propose a new thermal component of the island

lifetime: (
τ̃ th
s

)−1
=
∑
j

wj,s exp (−βEb,s) (4.1)
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where wj,s are proportionality constants that depend on the geometry of the sub-

strate, and Eb,s are the associated binding energies. Notice that this new β de-

pendence would introduce finer energetic regimes in the transitional terms, much

like Rn and RB do at the limiting regimes, so we are likely to access a new lattice

channel. However, as these effects would present on the left side of Eqn. 2.24, it is

likely that only a richer effective activation energy space could be accessed, while

the growth exponents would remain unchanged.

A second possible extension to the model would focus not on the lifetime of

unstable islands, but on the formation of multiple levels in subcritical (and critical)

islands. In this case, the modifications occur earlier in the development of the

solution, so our intuition is more limited. One of the most obvious consequences is

that the density of thermalized monomers would have independent rate equations

per level (much like Eqn. 2.18), but would introduce a new lifetime τNi→Ni+1
with an

associated energy Ehop describing the likelihood that these thermalized monomers

step down (step up) from a particular level. An even more insidious matter would

be modeling the hot-monomers: should they be considered truly athermal and act

like so for all levels, and under what conditions is this approximation justifiable?

Finally, a more straightforward extension would be applying to model to other

growth-like experiments with interesting transitional regimes. Any experimental

space with a large sampling of temperature runs would be welcome, as a broad β

space is crucial to constraining the energies in the model: growth scaling data is

also important, but energy scaling remains a harder problem to tackle than finding

the critical nucleus size in a system.
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CF3Cl Overlayers and Symmetry-Breaking

Though we performed exhaustive work on CF3Cl SLG adsorbates, BLG results

were not explored for all possible configurations. A good confirmation test would

be exploration of CE1 and CE2 configurations for CF3Cl on the S1 sublattice: as

δoff is either S1 (acted on by CF3Cl ) or S2 (acted on by F atoms), there should be

two distinct band gaps.

Though van der Waals potentials were essential to binding the CF3Cl adsor-

bate to SLG and BLG, the requirement of a large supercell vacuum to minimize

self-interaction effects (of adsorbate repetitions across the vacuum), was certainly

taxing in a computational sense (due to the non-localities present in the implemen-

tation). Therefore, in the case of studying different adsorbates on SLG, special

care must be given to justifying a smaller supercell vacuum, hopefully diminishing

the computational cost of including these non-local effects. Additionally, our under-

standing of symmetry-breaking systems should account for the newest developments

in vdW potentials, which further improve on weakly covalent systems.

In this work we exploited the folding of the reciprocal space due to the in-

creased dimension of the supercell, and treated the weak symmetry-breaking effects

as effectively acting on a representative SLG substrate. However, a more complete

examination of the system would put aside the folding approximation, and construct

the full tight-binding Hamiltonian for the (2×2) and (
√

3 ×
√

3) supercells. With

the full Hamiltonian, symmetry-breaking effects could be specifically accounted for

on a sublattice-by-sublattice basis, and provide a quantitative correlation between
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effective potential and gap opening. However, this non-trivial analysis does not

provide analytic solutions for the gaps, as the tight-binding calculations would ne-

cessitate solving characteristic polynomials of degree 8 and 18, respectively. Though

we would lose the well-behaved results constructed in this work, we would gain more

accurate insight into the particular sublattices being differentiated.

Finally, we suggest an examination of TLG (trilayer graphene), in which the

most common experimental form (namely ABA graphene) can be visualized as AB2A

using the notation from Fig. 3.26. For this system, CF3Cl adsorbates acting on the

shared sublattice should not open a gap, as they do not break sublattice symmetry.

Instead, CF3Cl adsorbates acting on non-shared sublattices are expected to open

gaps. Extending our BLG results into TLG could certainly confirm that sublattice

differentiation across SLG stacks is in fact a symmetry-breaking mechanism.
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Appendix A: Code for Hot-Monomer Analysis

All Mathematica code employed to compute and fit the kernel, asymptotic

solution, and full solution is presented here.

Header Code

To be loaded in all notebooks used in hot-monomer analysis.

1 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

2 (∗ ∗ PRE−PROCESSOR CODE FOR ALL NOTEBOOKS ∗)

3 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

4 Needs [ ” NumericalCalculus ‘ ” ] ;

5 Off [ NIntegrate : : inumr ] ;

6 Off [ FindRoot : : nlnum ] ;

7 Off [ ReplaceAl l : : r eps ] ;

8

9 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

10 (∗ ∗ SIMPLIFICATION RULES ∗ ∗)

11 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

12 (∗ ∗ Logarithmic r u l e ∗ ∗)

13 r e v l o g r u l e = {Log [ x y ] :> Log [ x ] + Log [ y ] , Log [ x ˆ n ] :> n Log [ x ] } ;

14
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15 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

16 (∗ ∗ BASIC FORMS ∗ ∗)

17 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

18 (∗ ∗ f Kernel ∗ ∗)

19 f [ ε , i , Rn ,

20 Rb ] = εˆ( i +

21 1)∗ (1 + εˆ (1/2 ) )ˆ ( i + 1)/(1 + Rn∗ε )/(1 +

22 Rb∗ε )ˆ ( i ) ;

23

24 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

25 (∗ ∗ APPROXIMATIONS ∗ ∗)

26 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

27 (∗ ∗ Approximate ln F : ln N, β , i , ED=∆Dˆ2 , Eph=\

28 ∆pˆ2+ED, o f f s e t s ∗ ∗)

29 sFA0 [ sN , β , β1 , β2 , β3 , β4 ,

30 i , ∆D , ∆p , γN , λn , \

31 λB , λ1 , λ2 , λ3 , λ4 ] = \

32 ( Log [

33 S imp l i f y [

34 ε∗

35 f [ ε , i , Exp [ γn − β ∗(ED + Eph ) ] ,

36 Exp [ γB − β∗Eph ] ] ∗

37 Exp[−(2 + i ) (γN +

38 2 β (∆Dˆ2 + \

39 ∆p ˆ 2 ) ) ] / . {ε −>

40 Exp [ sN + γN +

41 2 β∗Eph ]} / . {Eph −> ∆pˆ2 + ED,
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42 Eb −> ∆bˆ2 +

43 ED} / . {ED −> ∆Dˆ2}

44 ,

45 Assumptions −> {Im [ sN ] == 0 , Im [ γN] == 0 ,

46 Im [β ] == 0 , Im [ ∆D] == 0 ,

47 Im [ ∆p ] == 0 , Im [ γb ] == 0} ]

48 ] / . {γB −> λB − γN, γn −> \

49 λn − γN} // . r e v l o g r u l e )/ ( i ) +

50 KroneckerDelta [β − β 1 ]∗λ1 +

51 KroneckerDelta [β − β 2 ]∗λ2 +

52 KroneckerDelta [β − β 3 ]∗λ3 +

53 KroneckerDelta [β − β 4 ]∗λ4 ;

54

55 (∗ ∗ Approximate ln F : ln N, β , i , ED=∆Dˆ2 , Eph=\

56 ∆pˆ2+ED, Eb=∆bˆ2+ED ∗ ∗)

57 sFA [ sN , β ,

58 i , ∆D , ∆p , ∆b , \

59 γN , λn , γB , λθ ] = S imp l i f y [

60 Log [

61 S imp l i f y [

62 ε∗

63 f [ ε , i , Exp [ γn − β ∗(ED + Eph ) ] ,

64 Exp [ γB − β∗Eph ] ] ∗ ( 1 +

65 Exp [ γB − β∗Eb ] ) ˆ ( i − 1)/

66

67 Exp [β ∗(2∗Eph∗ i + 4∗Eph +

68 ED) + γθ ] / . {ε −>
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69 Exp [ sN + γN +

70 2 β∗Eph ]} / . {Eph −> ∆pˆ2 + ED,

71 Eb −> ∆bˆ2 +

72 ED} / . {ED −> ∆Dˆ2} / . {γθ \

73 −> (2 + i ) γN − λθ , γn −> λn − \

74 γN}

75 , Assumptions −> {Im [ sN ] == 0 , Im [ γN] == 0 ,

76 Im [β ] == 0 , Im [ ∆D] == 0 ,

77 Im [ ∆p ] == 0 , Im [ γb ] == 0} ]

78 ] // . r e v l o g r u l e

79 ] / i ;

80

81 (∗ ∗ λ vs β : Used to f i n d an approximation f o r Eb ∗ ∗)

82 sFB [β ,

83 i , ∆D , ∆b , γN , λB , \

84 λθ ] =

85 S imp l i f y [ S imp l i f y [

86 S imp l i f y [

87 sFA [ sN , β ,

88 i , ∆D, ∆p , ∆b , \

89 γN, λn , λB − γN, λθ ] −

90 sFA0 [ sN , β , β 1 , β 2 , β 3 , β 4 ,

91 i , ∆D, ∆p , γN, \

92 λn , λB, 0 , 0 , 0 ,

93 0 ] ] / . {λB −> λX + γN + β ∗(\

94 ∆bˆ2 + ∆Dˆ 2 )} ] // .

95 r e v l o g r u l e ] / . {λX −> λB − (γN + \
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96 β ∗(∆bˆ2 + ∆Dˆ 2 ) )} ;

97

98 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

99 (∗ ∗ FULL SOLUTION ∗ ∗)

100 (∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)

101 (∗ ∗ Ful l ln F : ln N, β , i , ED=∆Dˆ2 , Eph=\

102 ∆pˆ2+ED, Eb=∆bˆ2+ED ∗ ∗)

103 sFF [ sN , β ,

104 i , ∆D , ∆p , ∆b , \

105 γN , γn , γB , γθ ] :=

106 Log [ NIntegrate [

107 Exp [ zε (2 + i ) ] ∗ ( 1 +

108 Exp [ zε + γB − β ∗(∆Dˆ2 + \

109 ∆pˆ2)])ˆ(− i )∗ (1 + Exp [ zε/ 2 ] ) ˆ ( i + 1)/(1 +

110 Exp [ zε + γn − β ∗(2 ∆Dˆ2 \

111 + ∆p ˆ 2 ) ] ) , {zε , −I n f i n i t y ,

112 sN + γN +

113 2 β ∗(∆Dˆ2 + ∆p ˆ2)} ,

114 Method −> {Automatic , ” Symbol icProcess ing ” −> 0 } ] ] / i + ( i − 1)∗

115 Log [ 1 +

116 Exp [ γB − β ∗(∆Dˆ2 + \

117 ∆b ˆ 2 ) ] ] / i − γθ/

118 i − β ∗ ( (2 i +

119 4) (∆Dˆ2 + ∆pˆ2) + \

120 ∆Dˆ2)/ i ;

121

122 (∗ ∗ Ful l ln F : R e a l i s t i c e n e r g i e s ∗ ∗)
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123 sFFT0 [ sN , β , i , ED , Eph ,

124 Eb , γN , γn , γB , γθ ] :=

125 Log [ NIntegrate [

126 Exp [ zε (2 + i ) ] ∗ ( 1 +

127 Exp [ zε + γB − β∗Eph])ˆ(− i )∗ (1 +

128 Exp [ zε/ 2 ] ) ˆ ( i + 1)/(1 +

129 Exp [ zε + γn − β ∗(ED +

130 Eph ) ] ) , {zε , −I n f i n i t y ,

131 sN + γN + 2 β∗Eph} ,

132 Method −> {Automatic , ” Symbol icProcess ing ” −> 0 } ] ] / i + ( i − 1)∗

133 Log [ 1 + Exp [ γB − β∗Eb ] ] / i − γθ/

134 i − β ∗ ( (2 i + 4) Eph + ED)/ i ;

135

136 (∗ ∗ Ful l ln F : R e a l i s t i c e n e r g i e s , r e a l i s t i c c o e f f i c i e n t s ∗ ∗)

137 sFFT1 [ sN , β , i , ED , Eph ,

138 Eb , γN , γn , γB , γ0 ] :=

139 Log [ NIntegrate [

140 Exp [ zε (2 + i ) ] ∗ ( 1 +

141

142 Exp [ zε + γB − β∗Eph])ˆ(− i )∗ (1 +

143 Exp [ zε/ 2 ] ) ˆ ( i + 1)/(1 +

144 Exp [ zε + γn − β ∗(ED +

145 Eph ) ] ) , {zε , −I n f i n i t y ,

146 sN + γN + 2 β∗Eph} ,

147 Method −> {Automatic , ” Symbol icProcess ing ” −> 0 } ] ] / i + ( i − 1)∗

148 Log [ 1 + Exp [ γB − β∗Eb ] ] / i

149 − β ∗ ( (2 i + 4) Eph + ED)/ i − ( ( i + 1)∗γN
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150 + ( i − 1)∗γB − γn + γ 0)/ i ;

151

152 (∗ ∗ Ful l ln N: R e a l i s t i c e n e r g i e s ∗ ∗)

153 sNF [ sF0 , β , i , ED , Eph ,

154 Eb , γN , γn , γB , γ0 ] := sN0 / . FindRoot [

155 Log [ NIntegrate [

156 Exp [ zε (2 + i ) ] ∗ ( 1 +

157 Exp [ zε + γB − β∗Eph])ˆ(− i )∗ (1 +

158 Exp [ zε/ 2 ] ) ˆ ( i + 1)/(1 +

159 Exp [ zε + γn − β ∗(ED +

160 Eph ) ] ) , {zε , −I n f i n i t y ,

161 sN0 + γN + 2 β∗Eph} ,

162 Method −> {Automatic , ” Symbol icProcess ing ” −> 0 } ] ] /

163 i + ( i − 1)∗

164 Log [ 1 + Exp [ γB − β∗Eb ] ] / i − β ∗ ( (2 i + 4) Eph + ED)/ i

165 − ( ( i + 1)∗γN + ( i − 1)∗γB − γn + γ 0)/ i == sF0 , {sN0 , 0} ]
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Fit Analysis

Sample fitting routine with dataset wrkW and initial conditions A1.

1 A2 = Quiet [

2 FindFit [

3 wrkW

4 ,

5 sFA0 [ sN , β , wrkW[ [ 1 , 2 ] ] , wrkW[ [ 9 , 2 ] ] , wrkW[ [ 1 6 , 2 ] ] ,

6 wrkW[ [ 2 4 , 2 ] ] ,

7 Round [ i ] , ∆D, ∆p , γN, \

8 λn , λB, λ1 , λ2 , λ3 , λ4 ]

9 ,

10 {{∆D, ∆D / .

11 A1} , {∆p , ∆p / .

12 A1} , {γN, γN / . A1} , {λn , λn / .

13 A1} , {λB, λB / .

14 A1} , {λ1 , λ1 / .

15 A1} , {λ2 , λ2 / .

16 A1} , {λ3 , λ3 / .

17 A1} , {λ4 , λ4 / . A1}}

18 ,

19 {sN , β}

20 ,

21 MaxIterat ions −> 10000

22 ,

23 Method −> {NMinimize ,

24 Method −> {” SimulatedAnneal ing ” , ” Per turbat i onSca l e ” −> 4 ,
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25 ” L e v e l I t e r a t i o n s ” −> 1000}}

26 ]

27 ] ;
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Appendix B: VASP Code

All molecule, supercell, and LDOS visualizations for Chapter 3 where rendered

with VESTA [82]. Key auxiliary VASP files required for DFT calculations are

presented here.

INCAR (Calculation Parameters)

In VASP, INCAR controls most parameters of the DFT calculation. Values

should be tweaked as needed; an additional architecture-dependent batch script

may be required for your particular implementation of VASP.

1 ISTART = 1 # Star t job from past c o n f i g u r a t i o n

2 PREC = High # High p r e c i s i o n

3 ENCUT = 600.00 # Energy c u t o f f used in a l l c a l c u l a t i o n s

4 LREAL = .FALSE. # Real space p r o j e c t i o n no

5 NELMIN = 6 # Minimum e l e c t r o n i c s t ep s

6 EDIFF = 1e−4 # Allowed e r r o r in t o t a l energy

7 NPAR = 4 # Number o f c o r e s ( depends on l o c a l machine )

8 SYMPREC = 1E−8 # S i m i l a r i t y c r i t e r i o n

9 ADDGRID = .TRUE. # Adds secondary g r id f o r s e n s i t i v e c a l c u l a t i o n s

10 ### RELAXATION (uncomment code f o r r e l a x a t i o n run )

11 ISMEAR = −5 # Bloch smearing
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12 #SIGMA = 0.20 # Small sigma

13 #EDIFFG = −1e−2 # Max al lowed f o r c e

14 #NSW = 10 # I o n i c s t ep s

15 #IBRION = 1 # Relaxat ion method

16 #ISIF = 2 # Relax ions , but no c e l l shape or s i z e

17 #POTIM = 0.2 # Step s i z e

18 ### OTHER PARAMETERS

19 IDIPOL = 3 # Normal vec to r p o l a r i z a t i o n ( s u r f a c e )

20 LDIPOL = .TRUE. # Dipole c o r r e c t i o n s

21 ### KEEP DFT FILES

22 LCHARG = .TRUE. # Charge f i l e

23 LWAVE = .TRUE. # Wave func t i on f i l e

24 ### POTENTIAL optB86b (vdW p o t e n t i a l dependent )

25 GGA = MK

26 PARAM1 = 0.1234

27 PARAM2 = 1.0000

28 LUSE VDW = .TRUE.

29 AGGAC = 0.0000

30 # CENTER OF MASS ( r equ i r ed f o r d i p o l e c o r r e c t i o n s )

31 DIPOL = 0.333333333333 0.333333333333 0.899732919319
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POSCAR (Atom Locations)

In VASP, POSCAR contains the initial positions of the system: this file is sen-

sitive to line numbering. This sample POSCAR models a (2×2) cell without CF3Cl

molecules.

1 2v2 c e l l # System name

2 2.47081554790000 # General l a t t i c e constant ( l a t t i c e v e c to r s )

3 1.7320508075999999 1.0000000000000000 0.0000000000000000

4 1.7320508075999999 −1.0000000000000000 0.0000000000000000

5 0.0000000000000000 0.0000000000000000 −8.4992180081999997

6 C # Atomic s p e c i e s

7 8 # Number o f atoms

8 Direc t # Frac t i ona l p o s i t i o n coo rd ina t e s f o r atoms

9 0.0000000000000000 0.0000000000000000 0.9998741832348941

10 0.9999961792121184 0.5000144254076133 0.9999547779783455

11 0.4999893953802754 0.9999961792121184 0.9999547779783455

12 0.5000144254076133 0.4999893953802754 0.9999547779783455

13 0.1666772713197346 0.1666522412923896 0.9999547779783455

14 0.1666522412923896 0.6666704874878846 0.9999547779783455

15 0.6666704874878846 0.1666772713197346 0.9999547779783455

16 0.6666666667000030 0.6666666667000030 0.9998741832348941
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KPOINTS (Grid Points)

In VASP, KPOINTS contains the k-point mesh for the calculation: this file

is sensitive to line numbering. This sample KPOINTS automatically generates a

17 × 17 × 1 k-point mesh at the reciprocal origin. While running, VASP may fine

tune the mesh if necessary.

1 Automatic mesh

2 0 # Automatic gene ra t i on scheme

3 G # Generate a G ( o r i g i n ) cente red g r id

4 17 17 1 # k−Point Mesh

5 0 . 0 . 0 . # O f f s e t ( in r e c i p r o c a l space ) f o r mesh
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