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Intensity modulated optical transmitters, wide-bandwidth electro-optical re-

ceivers, highspeed digitizers, and digital matched-filters are being used in hybrid

lidar-radar systems to measure the range and reflectivity of objects located within

degraded visual underwater environments. These methods have been shown to mit-

igate the adverse effects of the turbid underwater channel due to the de-correlation

of the modulated optical signal after undergoing multiple scattering events. The ob-

served frequency-dependent nature of the underwater channel has driven the desire

for wider bandwidth waveforms modulated at higher frequencies in order to improve

range accuracy and resolution. While the described system has shown promise, the

matched filter processing scheme, which is also widely used in the fields of radar and

sonar, suffers from inherent limitations. One limitation is based on the achievable

range resolution as dictated by the classical time-frequency uncertainty principle,

where the bandwidth dictates the measurable resolution. The side-lobes generated



during the matched filtering process also present a challenge when trying to detect

multiple targets. These limitations are further constrained by currently-available

analog-to-digital conversion technologies which restrict the ability to directly sam-

ple the wide-band modulated signals. Even in cases where the technology exists

that can operate at sufficient rates, often it is prohibitively expensive for many

applications and high data rates can pose processing challenges.

This research effort addresses both the restrictions imposed by the available

analog-to-digital conversion technologies and the limited resolution of the existing

time-frequency methods for wide-band signal processing. The approach is based on

concepts found within the fields of compressive sensing and sparse signal recovery

and will be applied to the detection of objects illuminated with wide-band intensity

modulated optical signals. The underlying assumption is that given the directive

nature of laser propagation, the illuminated scene is inherently sparse and the lim-

ited number of reflecting objects can be treated as point sources. The main objec-

tive of this research is to provide results that show, when sampling at rates below

those dictated by the traditional Shannon-Nyquist sampling theorem, it is possible

to make more efficient use of the samples collected and detect a limited number of

reflecting targets using specialized recovery algorithms without reducing system res-

olution. Through theoretical derivations, empirical simulations, and experimental

investigation, it will be shown under what conditions the sub-Nyquist sampling and

sparse recovery techniques are applicable, and how the described methods influence

resolution, accuracy, and overall performance in the presence of noise.
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Chapter 1: Introduction

Maintaining situational awareness in underwater environments has been a sub-

ject of interest for many years. Traditionally, acoustic wave based technologies have

been the primary methods used to measure the distance to objects located in un-

derwater environments. Due to the propagation characteristics of acoustic waves

and speed of sound in water, these methods are limited in terms of achievable reso-

lution and update rates [3]. While electrically steered arrays and synthetic aperture

techniques can be used to improve system resolution [4,5], these techniques cannot

be utilized for all applications. Furthermore, traditional sonar methods allow for

identification of the source’s location which is often undesirable. These limitations

have spurred interest in active electro-optical systems which could provide measure-

ments of the range and reflectivity of illuminated objects. Specifically, laser based

technologies are of interest [6,7] due to their highly directive nature and potential for

high speed range measurements with increased resolution and improved accuracy.

1.1 Underwater Optics

Laser-based methods for underwater optical ranging are attractive due to their

covertness as well as the potential for improvements in resolution, accuracy, and
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detection speed. However, there exist significant challenges imposed by the under-

water environment that must be addressed. This section will introduce the basics

of underwater optics and will provide details on how the underwater optical channel

adversely affects optical ranging methods. An optical ranging system based on a

hybrid lidar-radar architecture will be introduced, and signal processing methods to

determine the range to targets will be discussed. The limitations of these method

will then be highlighted.

1.1.1 Absorption and Scattering

Optical signals propagating through underwater environments suffer from two

fundamental adverse effects: absorption and scattering. These inherent optical prop-

erties are predominately a consequence of the composition of the water sample and

are typically reported as a function of wavelength. In open ocean environments, blue

light is absorbed least while in turbid coastal waters, green wavelengths propagate

the furthest. The shift in the absorption spectrum is due to the presence of particu-

lates and dissolved material [8,9] in the water sample. The effect of absorption can

be minimized by choosing wavelengths that are tailored to the specific underwater

environment. Scattering occurs due to the interaction between the transmitted light

and particulates in the water column. The angular distribution of scattered light is

described by the volume scattering function [10], which is the probability that light

will scatter into a certain angle. For typical natural waters, the volume scattering

function is highly peaked at small angles (<10degrees) due to the fact that the par-
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ticles are larger than the blue-green wavelengths used for illumination [11,12]. This

forward-scattered light is that which interacts with the target of interest. A small

percentage of light is scattered in the backward direction (near 180 degrees) and

contains no information about the target.

The optical power transmitted through the underwater channel decays ex-

ponentially as a function of both scattering and absorption. This relationship is

given by (1.1), where Po is the initial optical power, a and b are the absorption and

scattering coefficients respectively in units of m−1. The absorption and scattering

coefficients can be combined to create c, the total beam attenuation coefficient.

P (z) = Poe
−(a+b)z = Poe

−cz (1.1)

The propagation distance z is commonly multiplied by the total beam attenuation

coefficient to give a unit-less parameter, cz, the number of attenuation lengths. At

one attenuation length, the received power would decrease by a factor of e−1.

1.1.2 Underwater Optical Impulse Response

The scattering caused by the turbid underwater environment also gives rise to

temporal dispersion of optical signals propagating through the channel [13]. Lasers

with short pulse durations have been applied to ranging and imaging applications.

However, the temporal dispersion caused by scattering limits the range resolution

and accuracy due to broadening of the transmitted pulse [14]. These techniques

also suffer from the effects of backscatter which generates a large, distributed return

that arrives before target-reflected light, cluttering the signal of interest and limiting
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Figure 1.1: Example of the turbid underwater channel frequency response

detection performance. To overcome these effects, range gated receivers have been

used to reduce the observed backscatter signal [15]. However, these methods create

undesirable blind spots for ranges outside of the gate ’on’ time.

By measuring the dispersion of short pulses through the underwater optical

channel, the channel’s frequency response can be determined via a Fourier Trans-

form. An example of the frequency response of backscattered and forward-scattered

light is show in figure 1.1. The example frequency response shows that when

scattering is observed in the underwater optical channel, the light scattered in the

backwards direction has a low-pass nature, while light scattered in the forward di-

rection observes minimal variation across the entire spectrum. This implies that

backscattered and forward-scattered light have different spectral content. In the

next section, it will be described how the frequency-dependent nature of the un-
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derwater channel’s response to modulated light can be leveraged to discriminate

between forward and backward scattered light.

1.2 Hybrid Lidar-Radar

The frequency-dependent nature of the turbid underwater channel has led to

the exploration of hybrid lidar-radar schemes [1] where the optical carrier is intensity

modulated with a radar waveform. The hybrid lidar-radar ranging system has four

main components: the radar waveform generator, the laser transmitter, the electro-

optic detector, and the radar waveform receiver. The system geometry targeted in

this research is a pseudo mono-static architecture, highlighted in figure 1.2. This

type of geometry is considered pseudo mono-static because the transmitter and

receiver are on the same platform but do not have the same optical axis or share

the same aperture. Systems with this geometry are affected by light backscattered

within the overlap region between the transmitted laser beam and the receiver field

of view. Light that is scattered back towards the receiver without reaching the target

will contain no information of the object’s range and reflectivity. In addition to the

effects of backscattered light, photons that scatter multiple times in the forward

direction will cause blurring of the system point spread function and can increase

the measured propagation delay due to the effective increased path length. Systems

utilizing this architecture can suppress the observed backscatter and forward scatter

by reducing the receiver/transmitter overlap region via minimizing the receiver field

of view. While this is beneficial for scatter suppression, it creates blind spots where

5



Figure 1.2: Pseudo mono-static laser ranging setup [1]

the receiver/transmitter field of view does not overlap.

Using the hybrid lidar-radar methods, it has been shown that modulation

frequencies over 100 MHz can provide discrimination between backscattered and

forward scattered light [16–18]. This claim is also supported by the frequency char-

acteristics of the underwater channel shown in figure 1.1 Research also supports

that when operating at higher frequencies, the effect of forward scatter can be min-

imized [19,20]. The hybrid lidar-radar technologies rely on the de-correlation of the

modulated signal as light is randomly scattered throughout the round trip prop-

agation to the target. Meanwhile, the modulation on the light that is minimally

scattered remains correlated. In addition to the scatter discrimination feature of in-

tensity modulated optical signals, the use of wide-band radio frequency waveforms

allows for the application of radar processing techniques after the optical to electrical

conversion [21–24]. This feature provides a way to apply the well established radar
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Figure 1.3: Example of Hybrid Lidar Radar system utilizing a matched
filter receiver. (a) highlights the time delay due to propagation, (b)
points to the dc offset caused by the de-correlated backscatter, (c) high-
lights the frequency dependent amplitude attenuation caused by forward
scatter, and (d) points to the matched filter output which has a peak lo-
cation proportional to the target distance and a resolution proporational
to the waveform bandwidth.

processing techniques to an underwater ranging application where typical radar

methods can not be used directly due high attenuation. The detailed operation of

this method is highlighted in figure 1.3. In this figure, it is illustrated how scattering

affects the intensity modulated waveforms, and how the matched filtering technique

can be used to recover the target’s range.

1.2.1 Benefits and Limitations

The use of wide-band waveforms and traditional radar processing methods

such as matched filtering has shown substantial improvements in the field of under-

water optical ranging and imaging [20, 22, 23]. These benefits include the suppres-

sion of temporal dispersion caused by forward scattering and the ability to remove

backscatter through selective filtering. Additionally, system resolution is improved
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due to the lack of pulse broadening after the matched filter [14]. These observed

benefits have prompted the desire for higher modulation frequencies and waveforms

with increasing bandwidths. Similar to wide-band technologies in radar and sonar,

these detection methods are fundamentally resolution-limited by the classical time-

frequency uncertainty principles [25]. Additionally, currently-available analog to

digital conversion technology is a limiting factor in the design of wide-band detec-

tion systems. Following similar trends in software defined radios [26], it is desirable

to put the analog to digital conversion process as close to the receiver element as

possible to directly digitize the RF waveforms. Using this approach, receiver flex-

ibility can be maximized, and the number of noise sources can be reduced. Given

the high speed and wide bandwidth nature of optical sources, and the current state

of analog to digital conversion technologies, it is possible to transmit much more

bandwidth than a single wide-band receiver can digitize. Even if components ex-

ist that can operate at the exceedingly high frequencies and bandwidths, they are

prohibitively expensive for many applications [27]. Additionally, the necessary high

data rates make real time processing a challenging effort.

1.3 Research Goals

The objective of this research effort is to address both the limited resolution

of the existing time-frequency methods for wide-band signal processing and the

restrictions imposed by the available analog to digital conversion technologies. The

studied approach is based on concepts within the theory of compressed sensing and

8



Figure 1.4: Block Diagram of the sub-Nyquist Hybrid lidar-radar
system. The red highlighted portion shows the changing hard-
ware/processing when compared to figure 1.3

sparse signal reconstruction. The research aims to show that for the detection of a

limited number of reflecting targets, specialized recovery algorithms can be used to

improve system resolution and reduce the rate at which samples must be collected.

In turn, this will prove that it is possible to reduce the necessary sampling rate of

the analog to digital components to below the traditional Nyquist sampling rate. As

related to the Hybrid lidar-radar sensing system, this will be achieved by replacing

the the high speed Analog to Digital (A/D) converter and the matched filter with

a low rate A/D and a specialized recovery algorithm. This change is highlighted in

red in figure 1.4. The hybrid lidar-radar system will be used as the target test bed

for theoretical investigations and experimental verification. The research objectives

will be met by first providing theoretical and empirical evidence that sub-Nyquist

rates can be used successfully. Simulations and experiments will also be used to

prove that these methods can be applied to optical ranging systems.
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1.3.1 Paper Organization

The dissertation is organized as follows. In chapter 2, the sub-Nyquist sens-

ing framework will be introduced and the linear algebraic formulation of the hybrid

lidar-radar sensing system will be derived. Theoretical conditions that must be met

for successful recovery will also be described. Chapter 3 will introduce two different

types of waveforms commonly used in ranging systems, and their application to the

sub-Nyquist sensing framework will be discussed. Empirical metrics will be mea-

sured and a trade-off analysis will be made. Chapter 4 will introduce three different

recovery algorithms and will report on the results of simulations conducted to mea-

sure performance as a function sampling rate. Chapter 5 will investigate how noise

affects the performance of the sub-Nyquist sensing and sparse recovery methods,

and the relationships between noise susceptibility and sensing system parameters

will be made. The matched filter detector typically used in Nyquist rate wide-band

sensing systems will be used as a baseline comparison of performance. Chapter 5 will

also provide the initial experimental proof that accurate sparse vectors can be re-

covered from noise corrupted sub-Nyquist measurements. Chapter 6 will investigate

the resolution of the sparse recovery techniques and will describe how the sensing

system can be re-derived to achieve higher resolution than those of typical matched

filter detection methods. The resolution study will address two common problems

observed in not only lidar systems but also those of radar and sonar. The first

difficulty is the recovery of targets spaced within the ambiguity function, and the

second is weak reflectors near larger more reflective targets. Chapter 7 will provide

10



model and experimental proof that sub-Nyquist sensing and sparse recovery can be

used to measure the range to targets located in turbid underwater environments.

Lastly, chapter 8 will discuss the potential future directions for this research.
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Chapter 2: Sub-Nyquist Sensing and Sparse Recovery

The Shannon-Nyquist sampling theorem dictates the need to sample signals

at a rate greater than twice the signal bandwidth. This central principle of signal

processing theory has been thought of as necessary for the error free reconstruction

of band-limited signals [28,29]. Recently, an alternative theory of compressive sens-

ing has emerged and states that given certain conditions it is possible to recover

signals that are sparse or compressible with far fewer measurements than what is

traditionally considered necessary [30,31]. These methods rely on non-adaptive lin-

ear projections/measurements that preserve signal information and allow for the

reconstruction through some recovery process. The following section will describe

what it means for a signal to be sparse and how that approximation is valid for the

hybrid lidar-radar ranging application. The measurement process for such systems

will be recast as a linear program, and the methods for signal recovery along with

the necessary conditions required for a successful recovery process will be detailed.

2.1 The Sparse Approximation

A signal or vector s ∈ IRN is said to be K-sparse if its support, the number

of non-zero elements, is far less than the total number of elements N . Similarly, a

12



signal is compressible if it has a K-sparse representation in an orthonormal basis

or tight frame [32]. For example, a signal comprising a collection of Dirac pulses

is inherently sparse, whereas a collection of sinusoidal signals is compressible in the

Fourier Basis. For the hybrid lidar-radar ranging application, the first approxima-

tion is that the optically illuminated scene is only composed of a finite number of

K point reflecting objects. For many cases, K = 1 due to the directive nature

of laser source illumination. However, to maintain initial generality, that limit is

not imposed here. The sparse approximation can be represented by (2.1) where

the variables αi and τi are the ith object’s reflectivity and propagation time delay,

respectively. Sparse representations of this type belong to a broader set of signals

with a finite rate of innovation [33].

s(t) =
K∑
i=1

αiδ(t− τi) (2.1)

When considering the hybrid lidar-radar application, the sparse approxima-

tion is related to the optical impulse response of the underwater optical channel.

As scattering increases, the point spread function broadens, and the probability

increases that multiple reflections could occur. Additionally, as light propagates,

the temporal dispersion can invalidate the representation of a target reflection as a

delta function in (2.1). This dispersion could potentially break the sparse approxi-

mation. To better tailor the sparse approximation in (2.1), the impulse response of

the underwater channel ρ(t) and the attenuation coefficient c are taken into account

(2.2):

s(t) =
K∑
i=1

αie
−cντiρ(t− τi) (2.2)
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In this representation, ν is the speed of light in water, and the optical impulse

response function ρ(t) takes into account the pulse spreading caused by scatter as

well as the time delay to the target. The goal of any ranging system is to recover

the amplitude α and time delay τ for any and all reflecting objects. In the following

sections, the methods for recovering this information will be discussed.

2.2 Sensing Matrix Formulation

Given a known periodic transmitted waveform h(t) with period T , the sparse

reflectivity scene can be convolved with the transmitted waveform to model the

signal at the receiver, x(t). This relationship is described by equation (2.3). The

signal at the receiver is then sampled at a rate FD = FN/D and is represented by

y[m] as the received signal post-digitization (2.4).

x(t) = (h ∗ s)(t) =
∫
h(t− τ)s(τ)δτ (2.3)

y(m) =
N∑
n=1

h(mD − n)s(n) (2.4)

In this formulation, FN is the traditional Nyquist sampling rate, N is the number

of total Nyquist samples given by N = bFN × T c, M = bFD × T c is the number

of measurements, and D = N/M is a parameter that controls the system’s sam-

pling rate. It is important to note that M and N are strictly integer which causes

D to be contained within the set of rational numbers, and that within the realm

of sub-Nyquist sensing, D > 1 and is inversely proportional to the downsampling

parameter δ = 1/D. Given that the signal is periodic, the convolution operator in

2.4 can be represented by a matrix multiplication where the kernel of the integral

14
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Figure 2.1: Pictoral representation of the sub-Nyquist sensing system.
The sparse vector s has a non-zero elements at the targets location and
multiplies the waveform matrix Ψ which has columns that correspond to
all possible time shifts. The time shifted signal is then multiplied by the
sampling matrix Φ which generates the sub-Nyquist rate measurements,
y, of the time shifted waveform.

transform is the N × N circulant matrix Ψ. The columns of this matrix are cir-

cularly shifted versions of the transmit waveform stored at the Nyquist rate. The

sampling operation of the low rate A/D can be modeled by a matrix multiplication

where the M ×N sampling function is the linear interpolation matrix Φ that maps

the transmitted waveform’s Nyquist rate to the system’s sampling rate. The two

operations are combined to create the M ×N Sub-Nyquist sensing matrix Θ shown

in equation (2.5) and demonstrated pictorally in figure 2.1.

y = ΦΨs = Θs (2.5)

To summarize the above, the hybrid lidar-radar ranging system was reformulated

as a linear system of equations that relies on the transmitted waveform to spread

the sparse target vectors information across the observed time domain. A uniform

sampling process was then introduced that is linear and non-adaptive. In this formu-

lation, the sparse vector s is the unknown impulse response of the illuminated scene

and has non zero elements at the time bin locations related to the targets range.
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The vector y is the output of the low rate digitizer, and can be referred to as the

measurements. The question remains though if it is possible to recover the sparse

vector s, and thus the range and reflectivity of the target, from the sub-Nyquist

measurements y.

2.3 Recovery of Sparse Vectors

For the system described, detection and recovery methods traditionally use a

matched filter which is the optimal linear filter for maximizing the SNR in the pres-

ences of noise [34], but it is only optimal in the sense of minimizing the L2 norm of

error. This method requires the signal of interest be sampled at or above the Nyquist

rate where M ≥ N , and is not applicable to under-determined systems. In addition,

the matched filter suffers from limited resolution due to the ambiguity function of

the waveform of choice. Given the sensing and sampling methods described previ-

ously, the sub-Nyquist measurement matrix is under-determined, and basic linear

algebra principles state that there are infinitely many vectors s that could give the

vector y. Methods to recover sparse vectors originate from optimization problems

that are subject to additional linear equality constraints which converge to a finite

number of solutions even when the system is under-determined. These methods are

based on the minimization of cost functions that are derived from norms other than

the L2 norm.
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2.3.1 L-1 Minimization

To address the issues due to the under-determined nature of the sensing matrix,

theories of over-complete signal representations and sparse recovery techniques can

be applied to the sub-Nyquist problem [35]. These alternative minimization methods

exploit the sparsity of the signal to be recovered. Sparsity can be measured by the

l0 norm which measures the number of non-zero entries in a vector. While it is not

proper norm, it has been used extensively within the fields of functional analysis,

probability theory, and harmonic analysis [36]. Ideally one would hope to solve the

primal problem by optimizing over the l0 norm to obtain the minimum number of

non-zero elements. This optimization problem is give in equation (2.6).

min
s
||s||0 subject to Θs = y (2.6)

Unfortunately, this method has been proven to be NP-hard [37] and can not be

used to effectively and efficiently recover sparse vectors. Basis pursuit (BP) [38]

is a method that aims to solve an alternate optimization problem. This method

utilizes a different cost function, where the optimal solution is characterized by the

minimum l1 norm (2.7).

min
s
||s||1 subject to Θs = y (2.7)

This relaxation is advantageous because it leads to a problem that is no longer NP-

hard, and it has been shown [39], that the minimal l1 solution is a valid approximate

of the sparsest solution. Even further, under certain conditions to be discussed, the

solution to the minimal l1 norm problem is exactly the solution to the minimal l0
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norm problem.

The downside to L1 minimization techniques is that the most common way to

solve this problem is through the use of interior point methods which are computa-

tionally complex. While L1 techniques are ideal, and have been proven to exactly

recover a sparse vector with a minimal amount of measurements, there exist other

algorithms for recovery as well. These alternative methods are not optimal, meaning

that they require more measurements than L1 minimization. This fact prompts the

classification of these methods as ”greedy” algorithms [40]. While they might re-

quire more measurements, they are less computationally expensive, and many have

fast methods for implementation [41]. In a later section, these algorithms will be

discussed in more detail. Regardless of algorithm, all of these methods require that

certain constraints be met in order to achieve successful recovery of the sparse vector.

In the following section, these necessary conditions for recovery will be discussed.

2.3.2 Necessary Conditions for Recovery

The previous section alluded to conditions on the measurement matrix that

must be met in order to successfully recover a sparse vector from the described under-

determined system of equations. There has been substantial work completed in the

compressive sensing community in an attempt to theoretically prove the minimum

number of measurements necessary for exact recovery. The most famous of which

is the Restricted Isometry Property (RIP) which guarantees that the solution to

BP and other sparse recovery methods are the exact solution [40, 42, 43]. The RIP
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(2.8) states that given the sub-matrix θT with T ⊂ (1, · · · , N) generated through

the extraction of columns of Θ corresponding to the indexes of T, there is a K-

restricted isometry constant δK which is the smallest quantity that satisfies (2.8) for

all possible subsets T ≤ K and all possible sparse vectors.

(1− δK)||s||22 ≤ θT s||22 ≤ (1 + δK)||s||22 (2.8)

The RIP implies that to recover a sparse vector with support K, all possible K

combinations of the measurement matrix columns must be approximately orthonor-

mal. While this is a very tight bound on the recovery of sparse vectors, it is also

something that is theoretically difficult to prove for arbitrary or deterministic mea-

surement matrices, and it is computationally difficult to empirically measure. To

prove RIP for an arbitrary matrix one would need to investigate all
(
N
K

)
possible

sub-matrices which is combinatorially difficult. It is possible to loosen the bound by

looking at the coherence of the measurement matrix. The coherence µ is the mea-

sure of the maximum absolute correlation between different column elements of the

measurement matrix given by (2.9), and is a fundamental characteristic associated

with compressive sensing.

µ = max
i 6=j

|〈θi, θj〉|
||θi||22||θj||22

(2.9)

Given the coherence of a measurement matrix it has been proven that both BP

and similar greedy algorithms will recover the sparse vector if the condition (2.10)

is true [40], and this mutual coherence property is a sufficient condition for exact

recovery.

K <
1

2
(µ−1 + 1) (2.10)
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To extend the coherence property as applied to hybrid lidar-radar system, it can be

stated that if the coherence of the measurement matrix is strictly less than one, it

is possible to recover a sparse vector with a single non-zero element.

In compressive sensing literature, there are many other sparse recovery con-

ditions that have been presented. For example the Null-Space property [44] was

introduced and provides a sufficient condition for satisfying the RIP. Bounds on

the spark and eigenvalues of sensing matrices have also been used theoretically but

verifying that any general measurement matrix satisfies these condition has a com-

putational complexity that is combinatorial [45]. Given the overwhelming popularity

as well as the ease of calculation, this research effort will rely on the coherence to

make predictions of sparse recovery characteristics of the derived sensing matrix. It

is acknowledge that the bound on coherence is only a sufficient condition, and is one

of the more pessimistic bounds which under-predicts sparse recovery performance.

2.4 Discussion

In the following sections, the coherence of sensing matrices derived from wide

band modulated waveforms will be explored, and the performance of sparse re-

covery algorithms will be measured. Additionally, empirical evidence will be pro-

vided through simulations and experimental tests that these methods can be used

to measure the range to an object. It is important to first state how the above

sub-Nyquist formulation differs from previously-proposed compressive sensing and

sampling methods.
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The original work that showed it is possible to reduce the number of mea-

surements using compressive sensing theory was introduced in the seminal papers

by E. Cands, J. Romberg, T. Tao, and D. Donoho [30, 42, 46, 47]. They provided

theoretical proofs for recovery that relied on random projections of the sparse vec-

tor and it was shown that these random projections were optimal. Given that fully

random measurements are often unrealizable in practice, other sampling methods

have been proposed such as Non-uniform Multicoset Sampling [48], X-ampling [49],

and measurements through random convolutions [50]. These methods have all had

substantial success within the fields of compressive sensing and address a wide ar-

ray of applications. Most proposed methods involve complicated analog hardware,

non-uniform sampling methods, or require multiple measurement vectors to obtain

the necessary number of projections for successful recovery.

The research presented in this effort differs in that only a specific application

is being targeted, and not the recovery of broad classes of signals. In turn, it

is hypothesized that by using long duration wide-band signals to modulate laser

sources, it is possible to recover the range and reflectivity of illuminated objects by

directly sampling the RF signal using a single low rate A/D converter and utilizing

sparse recovery algorithms. It is also interesting to highlight that while laser ranging

systems are being targeted, these results could also potentially be applied to many

different types of systems that use active sensors and wide-band modulation.
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Chapter 3: Waveform Design Consideration for Sub-Nyquist Sensing

The original research and theory of compressive sensing typically relied on the

use of a random measurement matrix to sample the sparse or compressible vector.

To prove that exact recovery conditions such as the RIP can be met, sensing matrices

were derived from iid Gaussian, Bernoulli, or other random distributions [42]. While

these types of measurement matrices are useful in proofs and can be applied to

certain applications like the single pixel camera, [51], they are not always realizable

do to causality constraints.

For the hybrid lidar-radar system, causality must be maintained in the mea-

surement process, and random sensing matrices are inherently non-causal. To make

sub-Nyquist measurements while maintaining causality, the measurement process

previously described utilized uniform under-sampling of a waveform that had been

convolved with a sparse vector. This measurement process leads to a sensing matrix

that is inherently deterministic. While there are no proofs of RIP satisfaction for

deterministic sensing matrices, there has been substantial work which details how

to empirically prove that a given sensing matrix satisfies the RIP [52]. One such

method is to measure the coherence of a the sensing matrix and use the Mutual

Coherence Property (2.10) to make prediction on the recoverable support through
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L1 minimization methods. In this section, the relationship between waveform se-

lection, sampling rate, and sensing matrix coherence will be investigated, and an

initial estimate on expected recoverable support will be reported.

3.1 Coherence Investigation

In the previous section, the measurement matrix for an arbitrary waveform

was derived, and sufficient conditions for recovery of sparse vectors from sub-Nyquist

measurements were presented. This section will investigate how waveform choice can

affect the coherence of the measurement system and will provide the initial evidence

that it is indeed possible to recover sparse vectors from sub-Nyquist sampled versions

of the modulated waveforms. The motivation for waveform selection stems from the

mutual coherence property and its relation to the correlation function [53]. When

revisiting the equation for coherence, it can be observed that the inner product

of two columns of the measurement matrix is the inner product between two time

shifted waveforms. The coherence in this application can then be defined as the max

correlation between two waveforms with different time shifts. Wide-band waveforms

have been used in many application specifically because of their low correlation

between time shifted versions of the original signal, which leads to large peak to

side-lobe ratios. This property motivates the selection of two specific types of wide-

band waveforms to be studied: a Pseudo-Noise (PN) Code, and a linearly frequency

modulated chirp.

For this investigation, sensing matrices will be generated based on a given
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waveform which has a fixed bandwidth dictated by ∆f = FN

2
, where FN is the

Nyquist rate for the transmitted waveform. The number of columns of the sensing

matrix, N , is proportional to the Nyquist rate and the duration of the waveform, T ,

shown in equation (3.1). The variable N is adjusted by changing the duration of the

given waveform. The number of measurements, M , is equal to the number of rows

of the sensing matrix and is given by equation (3.2). The number of measurements

is controlled by altering the sampling rate FD.

N = bFN × T c (3.1)

M = bFD × T c (3.2)

In the following section, the sensing matrix coherence µ will be measured as a

function of the waveform’s discrete duration, N and down-sampling ratio, δ = M
N

.

3.1.1 Pseudo-Noise Code

PN codes repeat a deterministic yet noise like sequence of bits, ±1, at a given

interval, and can be generated in numerous ways [54]. They have been used in many

applications such as radar and communications systems due the the low correlation

between different time shifted returns [55]. PN codes can be implemented in a hybrid

lidar-radar system by modulating the laser on and off in the same pattern as the

given sequence and then DC coupling the received signal to obtain the ±1 pattern.

A typical correlation function for a PN code is shown in figure 3.1. The correlation

function shows that when given the fully sampled sequence, the non-zero sample

shifts are not well correlated. This implies that sensing matrices derived from these

24



-200 -100 0 100 200
Sample Shift

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

PN Sequence Auto-correlation

Figure 3.1: Auto-Correlation Function for a PN-Coded sequence

waveforms should have low coherence, but it remains to be shown that this is also

the case for sub-Nyquist sampled versions of the PN coded waveforms.

Using the methods described by equations (2.3 - 2.5), a sensing matrix can be

generated given the PN coded sequence. The number of measurements m are altered

for various levels of N , and the coherence is measured given (2.9) over multiple

independent trials. The number of measurements is adjusted by changing the system

sampling rate, and the number of Nyquist samples is altered by changing the total

number of bits in the PN sequence. Figure 3.2(a), shows the measured coherence

as a function of the down-sampling parameter δ = m/N , where the number of

measurements was varied for three different values of N. As the down-sampling

parameter approaches the Nyquist sampled case, δ = 1, the coherence values are

strictly less than one and decrease monotonically. It is important to note that the

coherence also has a dependence on the total number of columns of the sensing

matrix, which is related to the total number of bits in the original sequence. This
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Figure 3.2: Empirically measured coherence values for the sub-Nyquist
sensing matrices derived from PN-coded sequences. (a) shows the coher-
ence as a function of the down-sampling parameter δ = m/N , (b) is the
estimated max recoverable support for a given sensing matrix.

can be described by the fact that for binary noise like sequences, the peak to side-

lobe ratio increases as the number of bits increase [56]. These initial coherence

measurements are promising because µ < 1 for a majority of the generated sensing

matrices implying that at least a single target can be recovered for the sub-Nyquist

measurements of the transmitted waveform.

While these results imply that recovery of a single sparse vector is possible,

they also imply that sparse vectors with support greater than one can also be re-

covered exactly. Figure 3.2(b) shows the prediction of the maximum recoverable

support for the given sensing matrix calculated using equation (2.9) While this

estimate ensures that the solution to the L1 minimization problem is the unique

minimizer, it is important to note that it is only a sufficient condition and provides

a loose bound on the recoverable support.
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3.1.2 Frequency Modulated Continuous Wave

Frequency modulated continuous wave (FMCW) signals are generated by lin-

early sweeping through a range of frequencies for a given duration. Just like the PN

coded sequences, FMCW modulation techniques have been used extensively within

the field of radar, and there has a well known correlation function. The correlation

function of a FMCW waveform is dictated by two main parameters: the bandwidth

∆f and the duration T . The resolution is inversely proportional to the waveform

bandwidth, and the time bandwidth product dictates the pulse compression gain.

Figure 3.3 shows an example of the auto-correlation function for a FMCW signal.

When compared to the auto-correlation of the PN-coded sequence with the same

bandwidth and duration, figure 3.1, there is a clear benefit in terms of the reduced

amplitude at the non-zero time shift positions. This implies that the coherence of

sensing matrices derived from the FMCW signals might be lower that those derived

from PN coded sequences.

Similar to the previous section, simulations were conducted to measure the

coherence by keeping the bandwidth fixed, and changing the system sampling rate

and waveform duration to alter m and N , respectively. Figure 3.4(a) shows the

empirically measured values of coherence for the sensing matrices derived from the

FMCW signal as a function of down-sampling parameter, δ = m/N , given three

values of N . Comparing the coherence values measured when investigating the PN

coded sequence, there are three main differences. The first difference is that the

coherence of sensing matrices derived from FMCW signals is largely independent of

27



-200 -100 0 100 200
Sample Shift

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

FMCW Auto-correlation

Figure 3.3: Autocorrelation function of a frequency modulated continu-
ous wave signal.
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Figure 3.4: Empirically measured coherence values for the sub-Nyquist
sensing matrices derived from FMCW signals. (a) shows the coherence
as a function of the down-sampling parameter δ = m/N , (b) is the
estimated max recoverable support for a given sensing matrix.
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the waveform duration. This stems from the fact that the peak to side-lobe ratio

for the FMCW auto-correlation function is independent of the signal duration. This

result implies that for a given bandwidth, the recoverable support characteristics

should not change if the duration is altered. The second observed difference when

comparing figure 3.2 and figure 3.4 is the relationship between the coherence and

the down-sampling parameter. While the coherence for matrices derived from PN

coded sequences had a approximately logarithmic dependence on δ, the coherence

relationship for the FMCW-derived matrices can be described by a piecewise linear

function. The coherence appears to linearly decrease up until δ = 1
2

and then

remains relatively constant. Further analysis also shows that for certain parameters,

the coherence for FMCW matrices is less than that of PN coded sequences when

δ ≥ .35. These differences are highlighted in figure 3.5, where the coherence results

for the two different types of sensing matrices with N = 512 are displayed on the

same chart.

The third and most important difference is that the coherence is no longer

strictly less than one. When µ = 1, it is implied that there are two columns within

the sensing matrix that are identical. This is problematic during sparse recovery

because it means that there are two possible solutions to the sparse recovery problem.

In figure 3.4, this case happens specifically when δ = 1
4
, 1

8
. These discontinuities were

investigated and it was shown that they are an side effect of the symmetric aliasing

of the FMCW signal’s spectral content [53]. When sub-Nyquist sampling a linear

FMCW signal, the aliased frequencies are mirrored across the system sampling rate,

FD/2. When the down-sampling parameter is inversely proportional to a power of
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Figure 3.5: Comparison of coherence results for sensing matrices derived
from PN-coded and FMCW waveforms, N = 512. Shown on a log-log
plot to highlight the PN-Coded waveforms logarithmic dependence on δ

two, multiple columns of the sensing matrix, which correspond to different time

shifts, can be identical. This leads to multiple possible solutions that can minimize

the L1 norm. This effect can be mitigated, and the coherence can be minimized

by selecting sensing matrix generation parameters M and N to be relatively prime.

By implementing this restriction, each Nyquist rate sample-shifted column ψn of

the waveform matrix Ψ with n ∈ 1, 2, · · · , N , is sampled at a slightly different time

by the sensing matrix Φ given that the least common multiple between M and N

is their product. Figure 3.6(a) shows the mutual coherence as a function of the

down-sampling parameter, and 3.6(b) shows the predicted max recoverable sparse

vector support when using L1 minimization and the tested sensing matrix derived

from FMCW signals. The results show that by selecting parameters that require

M and N to be relatively prime the coherence is strictly less than one, and that
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Figure 3.6: Empirically measured coherence values for the sub-Nyquist
sensing matrices derived from FMCW signals with relatively prime m
and N . (a) shows the coherence as a function of the down-sampling
parameter δ, (b) is the estimated max recoverable support for a given
sensing matrix.

recovery of sparse vectors with unit support should be possible.

3.2 Discussion

In this section, two different wide-band waveforms were explored and the initial

bounds of sparse recovery performance were presented. Sensing matrices derived

from PN coded sequences benefited from the non-symmetric and random nature

of their modulation, and the coherence was dependent on the number of Nyquist

rate samples N . When compared to the coherence of sensing matrices derived from

FMCW signals, they suffered from overall higher coherence at down-sampling ratios

δ ≥ .35. Additionally, sensing matrices that were based on FMCW signals were

prone to aliasing due to the symmetry of their time-frequency content. Initially, it
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seemed that there would be conditions where finding a unique solution to the L1

minimization problem would not be possible. However, by using relatively prime

numbers for the number of measurements M and number of Nyquist samples N ,

these adverse effects could be avoided. It is interesting to note that the use of

relatively prime numbers is also useful when applying compressed sensing theory to

wide-band spectrum sensing [57], and sub-Nyquist beam-forming [58].

In the following sections, the recovery of sparse vectors will be simulated with

both noiseless and noisy observations. The recoverable support will also be inves-

tigated, and tighter bounds on support recovery will be explored. Although the

coherence for sensing matrices derived from PN-Coded waveforms was lower when

δ ≤ .35 only sensing matrices derived from FMCW waveforms will be further stud-

ied. This choice has been made for three main reasons. The first reason is the

independent relationship between the coherence and the duration of the FMCW

waveform. This is desirable because it implies that the sparse support recovery per-

formance should be similar for short or long duration waveforms. The second reason

is due to the deterministic nature of sensing matrices derived from FMCW wave-

forms. The deterministic nature leads to low storage requirements for the sensing

matrix because it can be generated knowing only three parameters: the duration,

bandwidth, and system sampling rate. The third reason is because FMCW signals

allow for the transmission of pass-band waveforms more easily than the base-band

binary PN-code which would require additional carrier modulation and demodula-

tion steps. This is advantageous for underwater ranging in turbid environments to

reduce the effects of the backscatter by transmitting outside of the backscatter’s
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frequency response region.
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Chapter 4: Sparse Recovery Algorithms

Solving the under determined system of equations derived from compressive

or sub-Nyquist sensing systems is a problem that cannot be solved using traditional

methods of matrix inversion or least square estimation. As mentioned previously,

the notion of sparsity is a powerful constraint and can be used to guarantee the

recovery of sparse vectors. While the ||s||0 cost function is NP-hard and cannot

be minimized directly; relaxing the cost function to ||s||1 has been proven to be

acceptable provided RIP is satisfied [40]. While the sparse recovery problem can be

reformulated in many ways, there are three main optimization problems that are

targeted in this effort. The first is L1 minimization with equality constrains shown

in equation (4.1), and is commonly referred to as basis pursuit.

min
s
||s||1 subject to Θs = y (4.1)

However, when noise is present in the measurement process, shown in equation (4.2),

it would be impossible to obtain the equality constraint. This realization requires

the use of different constraints.

y = Θs+ n (4.2)

There are two main ways to address this problem of measurement noise. The first

involves minimizing the L1 cost function while utilizing quadratic constraints on the
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residual error. This formulation is shown in equation (4.3) where ε > 0 and can be

related to the power of the measurement noise.

min
s
||s||1 subject to ||Θs− y||22 ≤ ε (4.3)

min
s

1

2
||Θs− y||22 + λ||s||1 (4.4)

The second method, equation (4.4), introduces a regularization parameter on the

sparsity of the final solution, and is commonly referred to basis pursuit denoising.

In this formulation, the variable λ is the regularization parameter and controls the

trade off between sparsity and reconstruction accuracy in the L2 sense. While the

addition of noise will be discussed later in the text, the question remains: how does

one actually solve the minimization problem to recover the sparse vector?

4.1 Convex Optimization

Generally, optimization problems are very difficult to solve and most meth-

ods involve compromises between computation time, stability, and convergence. The

minimization problems presented previously can be recast as linear programs or sec-

ond order cone programs, and are convex optimization problems. While there are

no analytical solutions to convex optimization problems, there exist many reliable

algorithms to solve them. Methods such as the primal-dual interior-point methods

and log-barrier algorithms [59, 60] have been used traditionally within the fields of

convex optimization, and the application of these methods to compressive sensing

and sparse recovery has been extensively explored. To test the application of convex

optimization to the sub-Nyquist hybrid lidar-radar system, the L1-Magic software
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package [2] was used. This software package can solve many different types of L1

minimization problems, but in this research effort, the Basis Pursuit and Basis Pur-

suit Denoising optimization problems were studied. The software package utilizes a

primal dual interior point method to solve the system of equations generated when

the basis pursuit problem is recast as a linear program. Alternatively for the Basis

Pursuit Denoising problem, the quadratically constrained L1 minimization problem

is recast as a second-order cone program and solved via a log barrier algorithm.

While these methods are quite robust and require no a priori knowledge of

the sparse vector to be recovered, they are computationally expensive and do not

scale well for larger problems. The computation complexity of convex optimiza-

tion problems are roughly proportional to O(N2M), where N is the number of

variables and M is the number of constraints [61]. When applied to our hybrid

lidar-radar system, N is proportional to the waveform duration and the Nyquist

rate and M is the number of sub-Nyquist samples. While other algorithms exist

that are faster, there is a trade-off to be made between speed and the total number

of constraints/measurements needed. In the following sections, these algorithms

will be introduced, and results from simulations that were completed to test and

compare the different recovery methods will be presented.

4.2 Greedy Algorithms

Greedy methods are generally defined as algorithms that attempt to solve for a

globally optimal solution by finding the locally optimal solution at each iteration [62].
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While greedy algorithms do not generally guarantee the globally optimal solution,

they are significantly less computationally complex and typically lend themselves

to fast implementations. Despite the iterative local optimization approach, it as

been shown that when applied to sparse recovery, it is provable that these methods

will recover the optimally sparse solution when the mutual coherence condition is

met [40, 63]. Greedy algorithms are a broad class of algorithms, and there are

many different types that have been created in various fields to solve different types

of optimization problems. Specifically, in this section, the Orthogonal Matching

Pursuit (OMP), and Hard Thresholding Pursuit (HTP) will be presented.

4.2.1 Orthogonal Matching Pursuit

OMP is a recursive algorithm that was originally designed and applied to

wavelet decomposition [64], and it was an alteration of the original Matching Pursuit

(MP) algorithm [65]. It has been shown that when compared to MP, OMP converges

to a solution much faster than MP. It was also shown that OMP can exactly solve the

optimization problem as long as the Mutual Coherence condition (2.10) is satisfied

[40]. OMP belongs to a broader class of algorithms call residual correlation based

algorithms. These types of algorithms use the correlation between the measurement

matrix and the residual estimate error to update the estimate support set. The

OMP algorithm is shown in Algorithm 1. This algorithm takes the measurement

matrix Θ, the measurements y, an estimate of the sparse vector’s support Kest, and

a parameter ε as inputs. The outputs of the algorithm are the estimated sparse
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vector ŝ, and the estimated support indexes Λ. The algorithm as presented here

utilizes both the estimated sparsity as well as a condition that stops the algorithm

if the residual error drops below the threshold parameter ε.

Algorithm 1 Orthogonal Matching Pursuit
Inputs: Θ, y,Kest, ε
Outputs: ŝ,Λ
Initialize: r0 = y, Λ0 = ∅
Iterate: j = 1, 2, · · · , Kest

(1) Choose λj = arg max
i
|〈rj−1, θi〉| subject to i ∈ (1, · · · , N)

(2) Update Λj = Λj−1 ∪ λj
(3) Update ŝj = arg min

s
||y −Θs||22 subject to si = 0 ∀ i /∈ Λj

(4) Update rj = y −Θŝj
(5) Stop if ||rj||2 ≤ ε or ||rj||2 > ||rj−1||2

The OMP algorithm is iterative and only completes up to Kest iterations.

At each step, the algorithm identifies the column of the measurement matrix λj

that is maximally correlated with the residual rj and adds that column to the

support set Λ. It then solves a linear least squares error estimation to approximate

ŝ but limits the minimizer to those elements within the support set Λ. Lastly, the

residual is updated, and the stopping condition is checked. The stopping criteria

used here is based on the idea of a minimal residual error condition, as well as a

bounded residual. The residual is bounded from growing which implies error should

constantly decrease, and if measurement noise is present, ε should be proportional

to the noise power.
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4.2.2 Hard Thresholding Pursuit

HTP is a method for recovering sparse vectors which is based on an iterative

thresholding approach [66]. These types of algorithms are typically much more

efficient than residual correlation based algorithms because the total number of

matrix inversions is reduced. This efficiency comes at a cost because such algorithms

tend to require more measurements in order to converge to the optimally sparse

solution [67]. The HTP algorithm is shown in Algorithm 2. The variables are

similar to the OMP algorithm with the addition of J , the maximum number of

iterations. It is important to note that both greedy algorithms require an estimate

of the sparsity, and this feature will be discussed further in later sections.

Algorithm 2 Hard Thresholding Pursuit
Inputs: Θ, y, Kest, ε, J
Outputs: ŝ, Λ
Initialize: r0 = y, ŝ0 = 0, Λ0 = HKest(Θ

∗y)
Iterate: j = 1, 2, · · · , J

(1) Calculate: µ =
||(Θ∗(y−Θŝj−1))Λj−1

||22
||Θ((Θ∗(y−Θŝj−1))Λj−1

)||22
(2) Threshold: Λj = HKest(ŝj−1 + µΘ∗rj−1)
(3) Update: ŝj = arg min

s
||y −Θs||22 subject to supp(s) ⊆ Λj

(4) Update: rj = y − (Θŝj)Λj

(5) Stop if ||rj||2 ≤ ε or ||rj||2 > ||rj−1||2

One of the main difference between the OMP and HTP algorithms is that

HTP updates the sparse estimate across the entire index set at every iteration

whereas OMP only selects one sparse element at a time. The subset to estimate

over is calculated using a hard threshold defined by HS(f(x)), which is a non-linear

operator that returns the indexes of the S largest entries of f(x). This feature

can potentially decreases the convergence time, but it can lead to errors when the
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coherence of the sensing matrix is high. In this implementation of HTP, the same

stopping condition is included which ends the algorithm once the error as been

reduced past a certain threshold ε, or if the residual power begins to increase.

4.3 Analysis of Recovery of Sparse Vectors

To determine the performance of the aforementioned sparse recovery algo-

rithms, simulations were designed to compare their performance. These simulations

will help predict how sub-Nyquist sensing and sparse recovery can be expected to

perform when applied to the hybrid lidar-radar system. The performance metrics

that will be tracked include the computation time, δt, Normalized Square Error,

NSE, between the actual sparse signal and the estimate, and the Probability of Ex-

act Recovery PER. How these performance metrics are calculated will be explained

in the following sections along with a description of the simulation design.

4.3.1 Simulation Design

The goal of these simulations is to track the performance of the sparse recov-

ery algorithms for a noiseless measurement system. While this is not realizable in

practice given that noise will always be present, it is an important step to empir-

ically determine the conditions that must be satisfied in order to exactly recover

sparse vectors. There are four main parameters that must be studied in order to ex-

haustively compare the different sparse recovery algorithms and measure the exact

recovery conditions. The first parameter is the number of columns in the sensing
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matrix, N , which is proportional to the waveform duration and the Nyquist rate.

The second parameter is the down-sampling ratio δ = m/N , and is controlled by

changing the desired number of measurements, m. The third parameter is the sup-

port of the sparse vector, K, which equal to the total number of non-zero elements.

By adjusting these three parameters, and by conducting multiple independent trials,

the limits of the sparse recovery algorithms can be tested.

4.3.1.1 Performance Metrics

To measure performance, three key metrics will be tracked for comparison.

The first performance metric is the normalized square error between the known

sparse vector s, and the recovered sparse estimate ŝ. This metric is calculated by

equation (4.5) and is calculated for each random trial t.

NSE(t) =
||s− ŝ||22
||s||22

(4.5)

This metric provides an indicator for the ”correctness” of the sparse estimate. Using

the NSE measurement, the second performance metric, PER, can be calculated.

By using multiple independent trials T , this metric can provide a measure of the

likelihood of exact recovery given certain simulation parameters. This metric is

first calculated by checking the condition (4.6). If this condition is true, a success

is reported for trial t, and the Exact Recovery Probability can be calculated by

equation (4.7).

NSE(t) ≤ εs (4.6)

PER =
Total Number of Success

Total Number of Trials
(4.7)
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The choice of εs is a tolerance parameter for the acceptable correctness. This param-

eter is used often in literature, and the typical tolerance has been studied [68] and is

set to 10−3. The probability of exact recovery can then be used to find the maximum

recoverable support Kmax for a given down-sampling parameter δ = m/N .

4.3.2 Simulation Results

To test the sparse recovery performance as a function of the previously men-

tioned metrics, Monte Carlo simulations were run to generate an understanding of

the necessary conditions for recovery. These simulations involved parameter sweeps

and multiple trials to measure the average NSE, PER, Kmax, and computation time.

The simulation steps are listed below and are the same for all of the algorithms.

Simulation Steps
(1) Select recovery algorithm
(2) Set N, M and K values
(3) Generate sensing matrix, Θ
(4) For each independent trial

(4.1) Generate the sparse vector s
(4.2) Generate the measurements y = Θs
(4.3) Implement recovery algorithm
(4.4) Record Performance Metrics

(5) Calculate Average Performance Metrics over all Trials

The simulation was tailored to accurately represent the hybrid lidar-radar

ranging system by making one important design choice. This choice restricts the

amplitude values of the sparse vector during step 4.1 to be strictly positive. This

restriction was based on the fact that there is no physical explanation for a negative

reflection coefficient, and this implies that the amplitude values of s must be strictly

positive. During these initial simulations the parameter N is fixed and the parame-
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ters M and K are swept from 1 to N in a linear fashion. The following sections will

present the results of these simulations.

4.3.2.1 Results for Convex Optimization Algorithm

When attempting to solve the Basis pursuit problem, Convex Optimization

algorithms require only the measurement matrix and the measurements as input

parameters. The algorithm then attempts to solve the minimization problem and

only exits when either the error gap between the primal dual problem has been

sufficiently reduced, or the algorithm iterates a maximum number of times. The

first parameter to be investigated is the average NSE as a function of the changing

parameters K and δ = m/N . To visualize the joint effect that the two independent

parameters have on the metric, the average NSE is mapped to a color value and the

metric is displayed in figure 4.1 as a two dimensional image.

When analyzing the NSE results, it is noted that there is a clear transition

region between high error and low error. The transition is approximately at NSE =

10−3, and this type of feature is expected for sensing matrices that satisfy the exact

recovery conditions dictated by the RIP. As mentioned before, a threshold on the

NSE for the independent trials can be used to generate a measure of the probability

of exact recovery. Similarly, the measured probability can be mapped to a color value

for each K and δ = m/N , and the results are shown in figure 4.2. A PER(δ, k) = 1

implies that every non-zero element of the sparse vector was found in the right

location with the right amplitude. This also implies that given the sensing matrix
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Figure 4.1: Average NSE value of the convex optimization algorithm
L1-magic [2] mapped to a color value and displayed as a function of the
vector support K and the down-sampling parameter δ = m/N . Simula-
tion has N = 199.

designed by the parameters δ, and N , one would expect to recover a vector with

support k through L1 minimization. In the hybrid lidar-radar sense, this provides

a limit for the maximum number of reflecting objects that can be detected. The

probability of exact recovery results can be used to empirically measure the bound

on the maximum recoverable sparsity as a function of the down-sampling parameter.

This bound will provide an upper limit on the total number of detectable targets

and is achieved by finding the points where PER(δ, k) > .99. Additional simulations

were run for various values of N in order to investigate the effect that waveform

duration has on exact recovery when using convex optimization. The simulation

results are shown in figure 4.3.

These results provide the initial empirical proof that exact recovery of a sparse
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Figure 4.2: Probability of exact recovery as a function of the Support K
and the down-sampling parameter δ = m/N where N = 199
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Figure 4.3: Maximum number of recoverable sparse elements within a
single vector as a function of the down-sampling parameter.
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vector using a sub-Nyquist sensing and wide band waveforms is possible. From fig-

ure 4.3, it can be seen that a vector with unit support can be exactly recovered given

only 10% of the measurements traditionally necessary as dictated by the Nyquist

sampling theorem. Additionally, it is shown that multiple sparse elements can be

exactly recovered with high probability as the number of measurements increases.

For a given down-sampling parameter, the maximum recoverable support is also

much higher than that predicted by the mutual coherence bound. Another interest-

ing feature observed in figure 4.3 is that the max recoverable support seems to grow

proportionally with the parameter N , the total number of columns in the sensing

matrix. To prove this point, the ratio ρ = k/N is introduced as a measure of spar-

sity. This parameter is the ratio between the total number of non-zero elements in

a sparse vector and the total number of possible elements. When ρ = 1 this implies

that every element in the vector is non zero. When the max recoverable sparsity is

plotted as a function of the down-sampling parameter, figure 4.4, it can be observed

that the recoverable sparsity ρ = k/N is independent of the total number of sensing

matrix columns, and it only depends on the down-sampling parameter.

Figure 4.5 shows the average computation time necessary to exactly recover a

given sparse vector. This metric is a measure of the amount of time it would take to

recover a signal with maximal support at a given down-sampling ratio. This result

is highly dependent on computation environment, and it should not be taken as

the exact recovery time necessary, but as a useful way to compare algorithms given

that all were implemented on the same machine. This plot displays the downside

of convex optimization and how the computational complexity grows quickly as the
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Figure 4.4: Max recoverable sparsity of a vector using convex optimiza-
tion techniques.
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Figure 4.5: Average computation time necessary to recover a signal with
maximal support at a given down-sampling ratio parameter δ = m/N
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size of the minimization problem grows.

4.3.2.2 Results for OMP and HTP Algorithms

While L1 minimization through convex optimization provided reliable and ro-

bust recovery of sparse vectors, the computation time and its dependence on the

size of the measurement matrices makes it an intractable problem to be applied to

real time systems. The greedy algorithms can operate in fast modes, but there are

difficulties with implementation. One difficulty arises from the fact that both OMP

and HTP require a prior knowledge of the support of the sparse vector as an input

to the algorithm. This presents a complication because often times there is no oracle

that tells how many sparse elements one should expect to find. One solution is to

first understand that it is impossible to recover a sparse vector with support greater

than the number of measurements. Using this fact, the total number of measure-

ments can be used as the support estimate, implying that there is the possibility of

recovering one sparse element for every measurement made. To compare the two

greedy algorithms, they are implemented first assuming a-priori knowledge of the

sparsity, and then removing that assumption and using the number of measurements

as a limit on the recoverable support.

The NSE values achieved for both greedy algorithms OMP and HTP are shown

in figure 4.6. These initial results were achieved by assuming that there was a priori

knowledge of the sparse vector’s support. Through similar methods as discussed

during the previous section, the max recoverable sparsity can be measured using
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Figure 4.6: Average NSE value of the greedy optimization algorithms
HTP and OMP mapped to a color value and displayed as a function
of the vector support K and the down-sampling parameter δ = m/N .
Simulation has N = 199.
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Figure 4.7: Max recoverable sparsity ρ of a vector using greedy algorithms.
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Figure 4.8: Computation time needed to obtain the optimally sparse
solution using greedy algorithms.

the results of the simulations and is presented in figure 4.7. When compared to the

results presented in figure 4.4, it is evident that the convex optimization algorithms

recover signals with greater support than the greedy methods. However, greedy

methods can still recover sparse vectors with appreciable support. Another interest-

ing result of these simulations is that, similar to the convex optimization methods,

the recoverable sparsity of greedy algorithms is independent of the number of sam-

ples traditionally needed as dictated by the Nyquist rate. When comparing the

greedy algorithms to each other, HTP has slightly better recovery performance, and

as shown in figure 4.8, achieves the optimal solution significantly faster as the size

of the problem gets larger.

While the results shown for the greedy algorithms are promising, they rely on

an often unrealistic assumption that there is a-prior knowledge of the support. For

most applications, the details of the sparse vector are completely unknown. What
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Figure 4.9: Max recoverable sparsity using the greedy OMP and HTP
algorithms. The support estimate was set such that KEST = m

is known is that the max recoverable support must be less than the total number

of measurements. With this knowledge, the sparse support estimate can be limited

to be equal to the total number of measurements M . This limitation drastically

affects the results of recovery for the HTP algorithm. Using the same methods as

described previously, the max recoverable sparsity can be measured as a function

of the down-sampling parameter, and the results are shown in figure 4.9. These

results show that the HTP algorithm is highly susceptible to the sparsity estimate

whereas the OMP algorithm is not. The differences between the data presented

in figures 4.7 and 4.9 is because of the different way each algorithm updates the

sparse solution. For OMP, a sparse element is added at each iteration one by one

according to the highest remaining residual correlation. Once the proper support

is reached, the algorithm terminates because the error is below the threshold. The

HTP algorithm however attempts to solve the problem using the entire estimated
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support set and then updates the solution based on the stepping and threshold

parameter. This leads to a potential solution that might minimize the error, but it

is not the unique sparsest solution.

These simulations show that the OMP algorithm leads to a uniquely sparse

solution more reliably than the HTP algorithm despite the initial support estimate.

In figure 4.9, an empirically measured relationship between the recoverable sparsity

ρ = k
N

and the down sampling ratio δ = m
N

was found using a least squares fit. This

relationship was measured to be ρ ≈ O(3
5
δ2), and provides a rough estimate on the

number of measurements necessary to recover a sparse vector with a given support.

This relationship between the number of measurements M, number of traditional

Nyquist samples N, and support k is shown in equation (4.8).

M > O(

√
5

3

√
Nk) (4.8)

4.3.2.3 Discussion and Algorithm Selection

In this section three different methods for recovering sparse vectors from sub-

Nyquist sampled versions of a chirp waveform were explored. While the convex op-

timization techniques performed the best in terms of max recoverable sparsity, the

computational complexity was far higher than the alternative greedy algorithms.

The two greedy matching pursuit algorithms, Orthogonal Matching pursuit and

Hard Thresholding pursuit, both performed well when provided with an exact sup-

port estimate. However, HTP was unable to recover multiple sparse elements when
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that ideal estimate was removed. Due to its relatively low computational burden

and its exceptional sparse recovery characteristics, the OMP algorithm will be used

for the remainder of this work to recover sparse vectors.

At this point, it has been shown empirically that the coherence of the the

sub-Nyquist sensing matrix derived from linear frequency modulated waveforms

satisfies the mutual coherence property for successful recovery. Through Monte

Carlo simulations, an estimate for the max recoverable sparsity has been provided

as a function of the down-sampling parameter. It was also shown that the max

recoverable sparsity is independent of the total number of columns of the sensing

matrix, and non-ideal estimates of the support of the sparse vector can be used. In

the following chapters, the noise susceptibility of sub-Nyquist sensing systems will

be explored.
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Chapter 5: Analysis of Noise Susceptibility

In real world sensing systems, noise is an important factor to consider, and

incorporating a noise model into a compressive sensing framework is necessary to

predict potential system performance. The main source of noise is identified as the

optical to electrical conversion process at the PMT, which introduces shot noise [69].

Before sampling, the noise from the photo-cathode is amplified over the multiple

dynode amplification stages and increases total noise. To properly simulate this,

the noise is added according to equation (5.1).

y = Φ(Ψs+ n) (5.1)

In this model, the noise is added prior to the measurement processes, and this

method is considered noise folding [70]. This processes has effects that are very

different from the case when only measurement noise is assumed.

5.1 Recovery of Sparse Vectors in the Presence of Noise

The goal of this section is to provide a robust analysis of the noise suscepti-

bility of the sub-Nyquist measurement and the OMP algorithm as applied to sparse

recovery. In the previous section, it was shown that these methods can recover mul-

tiple sparse elements with high probability given sampling rates much lower than
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those dictated by the traditional Nyquist sampling theorem. While recovery of mul-

tiple sparse elements is an interesting problem, for the hybrid lidar-radar problem

often it is only necessary to recover a sparse vector with a single non zero value. Due

to the fact that these methods are targeting optical ranging systems where only a

single reflection is expected, the following simulations will be limited to the recovery

of a single sparse vector.

5.1.1 Simulation Method

To test the susceptibility of the sub-Nyquist sensing system to noise, three

independent variables were targeted. The first two variables are similar to the

simulations conducted before, and they are the total number of sensing matrix

columns, N , which is related to the waveform duration, and the down-sampling ratio

δ = m/N which is related to the sub-Nyquist sample rate. The third parameter is

the Signal to Noise Ratio (SNR) where the signal is defined as x = Ψs, the noise is

n from equation (5.1) and the SNR is measured in dB.

While the exact recovery conditions provide useful insight into the recovery

characteristics of the chosen algorithms, exact recovery is not a necessary condition

for the hybrid lidar-radar ranging system. For ranging applications, typically the

only necessary information is the range to the illuminated object. This is equatable

to the concept of support set recovery where the proper index set for the sparse

vector is found versus exactly recovering the index and amplitude of each non-zero

element in the sparse vector [71]. For these simulations, the average probability of

55



detection can then be calculated by (5.2) which averages the total number of correct

detections over the number of trials. For these simulations because it is assumed

that the sparse vector has unit support, the detection can only be a correct detection

or missed detection as defined by binary hypothesis testing [72].

PD =
Number of Correct Detections

Total Number of Trials
(5.2)

The simulation steps are outlined in 5.1.1 and define the independent trials

that were used to calculate the statistics on the sparse recovery performance of sub-

Nyquist measurement systems. The sparse vector had a single non-zero element

with unit amplitude and a random range index λ ∈ [1 · · ·N ]. The noise was drawn

from a random Gaussian distribution and scaled so that the noise power provided

the desired SNR. The OMP algorithm was used for sparse recovery, and the sparsity

estimate was set to one given the nature of the ranging application. The probability

of detection performance metric was caclulated using 100 independent trials.

Simulation Steps
(1) Set SNR and N
(2) Adjust M to change δ
(3) Generate the Chirp Matrix Ψ and Sampling Matrix Φ
(4) For each trial

(4.1) Generate the sparse vector s
(4.2) Generate the noisy signal x = Ψs+ n
(4.3) Generate the Sub-Nyquist Measurements y = Φx
(4.4) Implement the OMP Algorithm
(4.5) Determine Correct/Failed Detection

(5) Calculate the Probability of Detection
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5.1.2 Simulations Results

Simulations varied the SNR from 0 to -14 dB, and the recovery probability

was measured as a function of N and δ. Figure 5.1 shows the results of these

simulation and in this figure, the probability of detection was mapped to a color

value and displayed as a function of δ and N . These initial results show that it is

indeed possible to correctly recover the support of the sparse elements and, thus,

an object’s range even in the presence of significant amounts of noise. A deviation

from the noiseless results is observed, where in the noiseless simulation there was no

observable dependence on the waveform duration, and recovery was solely dependent

on the vector’s sparsity and the down sampling ratio. In the presence of noise, the

probability of detection is observed to be highly dependent on the waveform duration

N .

To further investigate the relationship between SNR and the waveform du-

ration N the minimum down-sampling parameter was measured which guaranteed

a probability of detection greater than 99%. This measured parameter provides a

bound on the minimum number of measurements necessary to recover a sparse vec-

tor with support one as a function of waveform duration and SNR. The results of

these simulations are summarized in figure 5.2, and a more detailed analysis can be

seen in [53]. These results show that sub-Nyquist sensing methods can overcome

noise limitations by increasing the duration of the waveform. This implies that given

a system designed to operate at a sample rate some ratio lower than Nyquist, the

only change necessary to improve performance in the presence of noise would be
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Figure 5.1: Simulation results for various SNR levels. Results show that
even when sampling at rates far less than Nyquist it is possible to recover
a sparse vector with unit support.
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to change the waveform duration and generate a new sub-Nyquist sensing matrix.

A detailed example of this from the provided results is as follows. Given a system

operating at δ ≈ .2, or at 20% the Nyquist rate, the system could recover a target

with an SNR as low as 0 dB using a waveform only 223 samples long. If the SNR

was reduced to -6 dB, the same system could still operate at the same rate but the

duration would need to be increased to 769 samples. This is easily accomplished us-

ing software defined radios which can adjust waveform parameters without changing

any hardware.

This result is very closely related to the concept of the time bandwidth prod-

uct gain observed when using matched filtering detection methods [73]. Matched

filters are the ideal filter in the presence of noise and have been used extensively in

radar and sonar to maximize SNR when determining the range to objects. To com-

pare the sparse recovery methods to this traditional detection scheme, the previous

simulations are re-run using the Nyquist sampled version of the FMCW waveform

and a matched filter instead of the OMP algorithm. The results of these simulations

are shown in figure 5.3 where the probability of detection is plotted as a function

of waveform duration, N, and SNR. The results show that when using matched fil-

tering methods, there is also a minimum waveform duration needed to recover the

correct range in the presence of noise.

To compare the results of the matched filter and sub-Nyquist simulations, the

results from figure 5.3, and 5.2 are used. For a given SNR, the minimum waveform

duration N resulting in a 99% probability of detection for the matched filter detector

method is found. This parameter is obtained from the data in figure 5.3 and reported
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Figure 5.3: Simulation results showing the Matched Filter performance
as a function of chirp duration and SNR

in table 5.1 in the second column, where the first column is the SNR. To quantify the

sub-Nyquist results for a given SNR, the minimum waveform duration was found for

a number of different downsampling parameters that led to successful reconstruction

from figure 5.2. The minimum waveform duration necessary for successful recovery

is reported in 5.1 as a function of the downsampling parameter and SNR.

The results presented in table 5.1 show that the sub-Nyquist sensing system

can recover signals at the same SNR as matched filtering methods while using sam-

pling rates much lower than the Nyquist sampling rate, FD ≤ .5×FN . However, the

results from these simulation also show that the OMP recovery algorithm typically

requires a longer waveform duration to recover a signal in the presence of noise when

compared to the matched filter under similar noise levels. These results highlight

the trade-off between sampling rate and noise performance when attempting to use
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Table 5.1: Summary of Matched Filter and Sub-Nyquist sensing methods in the
presence of noise. The first column is the SNR. The second column is the minimum
waveform duration necessary to recover a target using matched filter processing.
The subsequent columns are the minimum waveform duration for a given δ = m

N

used to successfully recover a target at the same SNR using OMP

SNR
Matched Sparse Recovery

Filter δ = .5 δ = .4 δ = .3 δ = .2 δ = .1

0 79 61 89 131 223 541
-2 113 101 127 173 293 719
-4 131 157 199 311 457 >997
-6 181 251 359 457 743 >997
-8 251 397 541 787 >997 >997
-10 293 659 881 >997 >997 >997

sub-Nyquist sensing and sparse recovery. As the sampling rate is reduced more

measurements are necessary to successfully recover the sparse vector, which implies

that the duration must be increased. It is important to note though that while

the sparse recovery methods are more susceptible to noise, there is relatively little

cost to increase waveform duration to improve the detection of sparse vectors in the

presence of noise.

5.2 Experimental Verification

Experimental verification was completed to provide certification that the sim-

ulation results are able to be recreated using available hardware and in the presence

of real noise. The experiment was designed in a way to test different simulated

system setups so that comparisons could be made between the simulated results

and the experimental verification data. The results were achieved using FMCW
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waveforms, variable rate A/D converters, and analog noise sources.

5.2.1 Experimental Design

For these preliminary tests, the AD9914 digital synthesizer board was used

as the source to generate FMCW waveforms with a bandwidth that matched the

simulated waveform parameters, and a variable chirp duration was used to increase

the number of traditionally necessary Nyquist samples. A constant delay line was

used to approximate the propagation delay between the source and transmitter,

and an Agilent noise source was used to generate signals with various SNRs. A SP-

Devices variable rate digitizer was used to implement a range of sampling rates, and

the OMP sparse recovery algorithm was implemented to determine the measured

time delay using the sensing matrix generated by the known chirp parameters. Prior

to the experiment, the matched filter detection method was used to measure the

constant delay to provide a ground truth for calculation of the recovery probability.

Recovery probability was measured by comparing the previously measured time

delay to that of the recovered sparse index across multiple trials. This definition of

recovery probability is more closely related to that of sparse support set recovery as

defined in the compressive sensing literature [71]. The experimental block diagram

is shown in figure 5.4.
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Figure 5.4: Block diagram for preliminary experiments

5.2.2 Experimental Results

Given that the goal of this experiment is to validate the simulated results,

similar parameters to those used in prior simulations were tested. The experimental

results are displayed alongside those found during simulations. Figures 5.5 and 5.6

show the results of these experiments and simulated results for Nyquist sample values

N ≈ 250 and 1000 respectively, and the noise source was set to achieve SNRs of 0

and -10dB for both data sets. For the given scenarios, the recovery probability was

measured and plotted as a function of the downsampling ratio which was adjusted

by changing the digitizer sampling rate.

It is observed that when using the experimental equipment and under-sampling

the recovery statistics displayed trends similar to those achieved during simulation.

However, the experimental data had slightly worse recovery probability and lacked

features found in the simulation data when the down-sampling ratio was close to

even integer multiples of the duration, N . The slightly decreased performance was

studied [53, 74] and can be attributed to dictionary mismatch [75]. The dictionary
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Figure 5.5: Experimental Vs Simulated Results for N ≈ 250 with a SNR
of 0 and -10 dB.
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SNR of 0 and -10 dB.
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mismatch stems from the fact that the generated sub-Nyquist sensing system is

based off of an ideal linear FMCW waveform, whereas the DDS board generates a

waveform based on discrete frequency steps. This mismatch results in measurements

that are not as well correlated with the sensing matrix elements. The missing

features in the experimental data when the down-sampling ratio is close to even

integer multiples can be described by the fact that for a real sensing system, it is

highly unlikely for a sparse element to fall directly into a single range bin. This is

often referred to as sampling off the grid [76]. This feature implies that the system

is never sampling the linear FMCW signal on the same grid that the dictionary is

stored at, and it is highly unlikely that it will be perfectly correlated with more than

on column of the sensing matrix. Despite the differences between experimental and

simulated data, these results prove that it is possible to recover the accurate time

of flight information from sub-Nyquist measurements of wide-band waveforms.

5.3 Summary

In this section, simulated and experimental evidence for the sub-Nyquist hy-

brid lidar-radar system was provided showing that the recovery of sparse vectors in

the presence of noise is possible. The results from the initial simulations showed

that while the sub-Nyquist methods perform worse than matched filter methods at

high levels of down-sampling, performance in the presence of noise can be improved

by increasing N , the waveform duration. The experimental verification of the con-

ducted simulations provides increased confidence in the simulation results, and it
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provides evidence that it is possible to improve performance in the presence of noise

by increasing the waveform duration.

These results are promising because it implies that it is possible for a sub-

Nyquist ranging system to improve its performance in the presence of noise in-situ.

If the environment causes reduced SNR, the system could increase the duration of

the chirp waveform that is modulating the laser and the sensing matrix could be

updated given the new values of N . If the sampling rate of the digitizer remains

constant, the downsampling ratio remains the same. Given the results from figure

5.2 and the described changes, it has been shown that the noise performance would

be improved.
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Chapter 6: Resolution of Sparse Recovery Techniques

In the previous section, it was shown that it is possible to recovery sparse

vectors with various levels of sparsity, and even possible to recover sparse vectors

in the presence of noise. Furthermore, it was shown that the sub-Nyquist sensing

framework and the OMP algorithm is capable of performing in similar noise envi-

ronments as traditional matched filters at rates lower than the traditional Nyquist

rate. In this section, the achievable resolution of the sub-Nyquist sensing and sparse

recovery methods will be investigated, and the differences between these techniques

and traditional matched filter methods will be described.

6.1 Resolution of Traditional Methods

Traditional methods for determining the range to an object involve the use

of wide-band waveforms and matched filters. The gain of these methods was de-

scribed in chapter 5 where the time bandwidth product provides amplification for

signal detection in noisy environments. Wide-bandwidth techniques also utilize

pulse compression, where the modulated waveform with duration proportional to N

is compressed in time to be inversely proportional to the bandwidth ∆f [25,77]. The

output of the pulse compression process has a well know ambiguity function for the
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Figure 6.1: Example of the LFM waveform and the ambiguity function
arising from pulse compression

linear frequency modulated waveform (LFM). An example of the LFM waveform

and its associated ambiguity function are shown in figure 6.1.

Radar pulse compression techniques have been applied to various hybrid lidar-

radar type systems [14,78]. Similar to radar applications, these methods suffer from

two main limitations in terms of resolution. The first limitation is that for targets

spaced such that they both reside within the ambiguity function, it is impossible

to resolve them. This effect can be seen in figure 6.2. Another common problem is

when large returns can shadow nearby weaker signals. This effect is shown in figure

6.3 where the weaker target is shown to be irrecoverable from the side-bands of
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Figure 6.2: Example of the inherent resolution limit of the pulse com-
pression techniques.

the stronger return. Methods have been studied to circumvent these issues [79, 80].

However, the implementation often requires multiple observations of the scene which

is not often possible.

The following section will explore how the Sub-Nyquist sensing formulation

and sparse recovery techniques can be used to improve achievable resolution using

an alteration to the structure and design of the measurement matrix. These tech-

niques will be applied to the two previously discussed problems of closely spaced

targets and shadowing, and empirical evidence will be provided that the sparse re-

covery techniques do not suffer from the same ambiguity function limitation. The

theory stems from the work within the fields of super resolution and over-complete

dictionary representations [81,82].

69



0

0.2

0.4

0.6

0.8

1

450 500 550 600

Targets
MF Out

Figure 6.3: Example of the shadowing effect from large returns near
weaker returns.

6.2 Resolution Enhancement of Sub-Nyquist Chirp Sensing Matrix

When the sub-Nyquist sensing matrix was original defined, the columns of

the sensing matrix represented all possible time shifts that could potentially be

recovered. The resolution for these times shifts was defined by the Nyquist rate of

the transmitted waveform and given by δt = 1/FN where FN is the Nyquist rate for

the given waveform. Instead of generating a sensing matrix defined by the Nyquist

rate, the sensing matrix can be defined where the columns represent more highly

resolved time shifts. This leads to an over complete representation of the original

waveform matrix, Ψ, where the elements are given by equations (6.1) and (6.2).

In this representation, the discrete duration NS is now given by NS = bT × FSc,

where T is the waveform duration, and FS is the new sampling rate of the stored

FMCW waveform such that FS > FN . The normalized frequencies are represented
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by ω0, ω1 ∈ [0, FN

FS
] and the indexes m,n ∈ [0, N ].

h[m] = sin
[
FN
FS

(
ω0m+

ω1 − ω0

N
m2
)]

(6.1)

ψn =
N∑
m=1

h[m]δ[m− n] (6.2)

For this framework, what has now been described is a resolution enhanced

chirp dictionary Ψ = [ψ1, ψ2, · · · , ψN ] where the columns are time shift versions of

an over-sampled FMCW waveform. The measurement matrix Φ would be generated

using the same method as previously described and used to implement a model for

the uniform under-sampling of the signal from a rate of FS to the desired analog to

digital conversion rate, FD. When using this enhanced resolution sensing matrix,

the sparse vector to be recovered now has a time bin spacing inversely proportional

to the column sampling rate FS, while the measurements are made at the rate FD.

Increasing the resolution of the sensing matrix comes at a cost. For the same

duration waveform it increases the size of the problem thus increasing the compu-

tational complexity. Additionally by increasing the time resolution, the coherence

of the sensing matrix is significantly altered. The higher resolution causes an over

complete dictionary which leads to an increased coherence. The effect that over com-

plete representations have on coherence is shown in figure 6.4. Here, the coherence

is plotted as a function of the down sampling parameter for various levels of column

wise time resolution enhancement measured as the number of times over Nyquist.

There is a slight change in representation where the down sampling parameter is

now the ratio between the sub-Nyquist sampling rate, FD, and the Nyquist rate,

FN . These results show that as the time resolution of the sensing matrices columns
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Figure 6.4: Coherence shown as a function of the down sampling param-
eter for the over complete sub-Nyquist sensing matrix.

increase so does the coherence. The increasing coherence as a function of column

wise resolution enhancement implies that the recovery of multiple sparse vectors is

unlikely. However, as mentioned previously, the mutual coherence condition is not a

necessary condition. While OMP will likely fail for highly coherent sensing matrices,

it has been shown that L1 minimization techniques such as the previously described

interior point methods can be used to recover sparse vectors even when the sensing

matrix is highly coherent [83,84]. In the following sections, the enhanced resolution

sub-Nyquist sensing system and sparse recovery methods will be applied to the sce-

narios where traditional matched filter-based detectors have limited resolution due

to the ambiguity function.
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Figure 6.5: Recovery of closely spaced sparse vectors using the resolution
enhanced sensing matrix compared to matched filter detection.

6.2.1 Recovery of Closely Spaced Returns

In the previous section, the first scenario presented was the simulation of

two targets of equal amplitude spaced within the ambiguity function of the matched

filter output. By simulating the same scenario and implementing the sparse recovery

methods, the potential benefit of these methods can be observed in figure 6.5. In

this simulation, the sensing matrix resolution was enhanced to FS = 8×FN and the

measurement matrix was generated using a sampling rate equal to the Nyquist rate,

FD = FN . This data provides a comparison between the sparse recovery techniques

and matched filter detection methods.

Figure 6.5 shows that, as predicted, the OMP algorithm fails to recover both

closely spaced returns and provides a maximal output similar to that of the matched

filter. This is due to the highly coherent nature of the resolution enhanced sensing
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matrix and the fact that OMP depends on the minimization of the residual corre-

lations. While OMP was unsuccessful, the data shows that if convex optimization

methods for sparse recovery replaced the matched filter, the detectable resolution

could potentially be far higher then what is achievable with the traditional matched

filter approach.

To provide further analysis of the resolution of the sparse recovery methods,

a simulation was designed where the spacing between two equal amplitude targets

was varied, and the different detection methods were implemented. The amplitudes

of the recovered outputs using the matched filter, OMP, and convex optimization

algorithms where mapped to a color value and plotted as a function of the recov-

ered target index and the target spacing. The recovered target index and target

spacing, both measured in samples, are equivalent to the measured range and range

separation respectively in a ranging application. The actual target indexes are su-

perimposed onto the resulting image as solid and dashed red lines. The results of

this simulation can be seen in figure 6.6, where the sampling rate of the sensing

system is set to be the Nyquist rate of the transmitted waveform, allowing for a

direct comparison of the Matched Filter and Sparse Recovery algorithms. For the

OMP algorithm, similar assumptions to the previous sections were used, where the

sparse estimate Kest was set to equal the total number of measurements M .

The results presented in figure 6.6 provide an insight into the minimal separa-

tion between targets necessary for successful recovery of their individual locations.

For the matched filter method, the minimum spacing necessary is roughly twice the

ratio FS

FN
which is as expected given the ambiguity function. These results show that
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Figure 6.6: Detection method results for the resolution test. Two closely
spaced targets of equal magnitude with varying separation were used and
the magnitude of the detection method outputs were mapped to a color
value. Plotted as a function of recovered index and target separation.
The solid and dashed red lines represent the actual target indexes. Yel-
low values are the estimated target location for the given method.
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by simply increasing the time resolution of the sampling method, there is no benefit

in terms of recoverable target separation for the matched filter method. The OMP

detection method provides similar results to the matched filter and only tracks the

two separate targets reliably when they are spaced ≈ 12 samples/range bins apart, a

slight improvement over the matched filter method. Aside from the slight improve-

ment, one major difference between OMP and the matched filter method is that, by

increasing time resolution of the sensing matrix, the OMP algorithm results in an

output that has better temporal accuracy. This highlights the improved accuracy of

the OMP detection method and shows how the output is not affected by the same

time-frequency uncertainty as the matched filtering methods. When applying the

convex optimization schemes, specifically L1-Magic [2], a substantial improvement

in achievable resolution can be obtained. From these results, it is shown that two

separate targets with equal amplitude can be recovered at a spacing as close as two

samples, or equivalently two range bins, apart. This result implies that by simply in-

creasing the column wise time resolution of the stored chirp matrix, sampling at the

Nyquist rate, and using convex optimization, it is possible to achieve a time/range

resolution that is proportional to the resolution of the stored sensing matrix, not

the bandwidth of the transmitted waveform.

The previous results proved that resolution enhancement can be achieved by

increasing the column wise time resolution of the sensing matrix and using con-

vex optimization instead of matched filtering to recover the assumed sparse vector.

These simulations utilized a sampling rate equal to the Nyquist rate of the trans-

mitted waveform. To test the achievable resolution of the sub-Nyquist methods, the
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Figure 6.7: Results of the simulations where two targets are spaced
at varying distances, and multiple sub-Nyquist rates are utilized. The
OMP and Convex Optimization algorithms were used to recover the
sparse vector, and the magnitude of the recovered results was mapped
to a color.
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simulations were conducted again while implementing a sampling rate 70%, 80%,

and 90% slower than the transmitted waveforms Nyquist rate. The results are pre-

sented in figure 6.7 using similar conventions as described previously. These results

can be interpreted by inspecting each graph from left to right and noting when the

two separate targets, represented by yellow pixels, match the solid and dashed red

lines. It can be seen that even when sampling at a rates 80% lower than the Nyquist

rate, the convex optimization techniques can realize and recover the target given a

higher resolution sensing matrix. These results show that even when sampling at

rates much lower than the Nyquist rate, it is possible to improve the range resolution

by utilizing a sensing matrix that is derived from a waveform stored at rates higher

than Nyquist. It has also been shown that sparse recovery techniques do not suffer

from the same time-frequency uncertainty principles as the matched filter methods,

and that resolution enhancement allows for the detection of objects spaced within

the traditional ambiguity function produced by the matched filter.

6.2.2 Recovery of Shadowed Returns

The second major challenge for traditional matched filtering methods is shown

in figure 6.3 where strong returns shadow nearby weaker returns. This effect is due

to the relatively strong side-lobes of the chirp waveform ambiguity function. While

methods exist to reduce the side-lobes [80,85,86], these come at various costs such as

broadening the main lobe through pulse shaping, increasing integration time using

adaptation, and reducing the pulse compression gain. In this section, the recovery of
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weak returns in close proximity to strong returns will be tested using the OMP and

convex optimization algorithms presented previously. The resulting sparse solutions

of these algorithms will be compared to traditional matched filtering methods, and

the results as a function of two different sampling ratios will be provided.

To test the application of sparse recovery algorithms to the shadowing problem,

a sparse vector was simulated with two non-zero elements placed at indexes such that

they would be spaced far enough apart to be outside of the traditional ambiguity

function. One non-zero element was given a magnitude 10 times greater than the

other, and a Nyquist sampled system was investigated. By initially using the Nyquist

sampling rate, a direct comparison to the traditional matched filter detection process

can be made and the advantages of using the sparse constraint in detection can

be shown. The sensing matrix was generated using the resolution enhancement

discussed previously and the columns were stored at a resolution 8× FN . Both the

OMP and Convex Optimization algorithms were tested and the results, shown in

figure 6.8, provide the sparse estimate of the different algorithms, the matched filter

output, and the actual sparse input vector. Figure 6.9 shows the results when using

a rate 90% lower than the waveform Nyquist rate.

Figures 6.8 and 6.9, show that both the OMP and convex optimization al-

gorithms perform better than the matched filter in terms of recovering both the

strong and weakly reflecting targets. Theses results also show that the sparse re-

covery techniques are not susceptible to the same shadowing effects as the matched

filter method, and can be used to recover weak returns in the presence of larger

signals.
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Figure 6.8: Results from Nyquist rate simulations of the shadowing ef-
fect. Shows that sparse recovery methods are not effected by side-bands
and shadowing like the matched filtering methods.
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Figure 6.9: Results from Sub-Nyquist rate simulations of the shadowing
effect. Shows that sparse recovery methods are not effected by side-bands
like the matched filtering methods are.

80



6.3 Summary

The difficulties in detecting two closely spaced reflecting objects and weakly

reflecting objects located in close proximity was explored in the section. It was

shown that when using traditional matched filter detection schemes it is impossible

to detect objects located within the ambiguity function. Additionally, it was shown

that the side-bands of the ambiguity function can shadow weak returns. Through

simulations, evidence was provided that by using the sub-Nyquist sensing methods

and increasing the time resolution of the stored sensing matrix, it was possible to

increase the achievable time resolution of the recovered sparse target vector. This

results implies that the L1 minimization methods are not affected by the ambiguity

function typically encountered when using wide-band modulation.

These shown results imply that sub-Nyquist sensing and sparse recovery when

applied to hybrid lidar-radar ranging systems, can improve upon the resolution of

current methods while still sampling at rates much lower than the Nyquist rate. This

result is important for the cases when the environment is highly scattering, causing

multiple target features to be illuminated which leads to multiple reflections being

observed by the receiver.
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Chapter 7: Application to Underwater Lidar

In the previous sections, simulations were conducted to study the application

of sub-Nyquist sensing and sparse recovery algorithms to the hybrid lidar-radar

system. The sensing matrix was derived from the hybrid lidar-radar measurement

methods, and the coherence of the sensing matrix was measured. Initially, bounds on

the recoverable sparsity were determined through Monte-Carlo simulations, and the

susceptibility to noise was investigated through similar simulations. A preliminary

bench top experiment was conducted showing that the sub-Nyquist sensing and

sparse recovery algorithms can be applied when using actual sampling hardware,

and the experimental results were comparable to those produced by simulations.

Throughout this section, the application of sub-Nyquist sensing and sparse recovery

algorithms to the specific underwater ranging application will be explored, and the

effect of the degraded visual environment will be studied.

7.1 Verification of the Sparse Approximation

The major underlying assumption in the discussed sub-Nyquist sensing is the

notion of sparsity. This is the constraint that must be true for the different recovery

algorithms to be successful. For the application to underwater lidar, the sparsity
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stems from the highly directive nature of laser propagation. As discussed previously

in chapter 1, the underwater optical channel causes scattering and spreading of the

system’s point spread function, which leads to a broadening of the optical impulse

response and the addition of a backscatter clutter component. These effects can

degrade the inherent sparsity of the sensing system. In this section, the effect that

the underwater channel has on the sparse approximation will be studied using an

optical impulse response model.

7.1.1 Modeling the Underwater Hybrid Lidar-Radar System

To model the underwater impulse response, the complex mathematical ra-

diative transfer equations must be solved given a number of different system vari-

ables [10]. These equations are solved with inputs such as system geometry, receiver

characteristics, and the absorption and scattering properties of the underwater chan-

nel. While solving the radiative transfer equations is a complex problem, analytical

techniques to approximate the solution have been developed, and tools have been

created to model the underwater impulse response [87]. These tools are part of the

iterative work by Zege et al. [88–90] where different approximations are made to

estimate the effect that backscatter and forward scatter has on the optical impulse

response. The output of the model is the number of photons incident on the receiver

as a function of time given a delta function-like pulse of photons that have propa-

gated to and from a given target of interest. Figure 7.1 shows the model outputs

for both clean (c532 = 0.1m−1) and turbid environments (c532 = 2.0m−1). For the
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Figure 7.1: Example of the underwater channel impulse response model
output for clean and turbid water.

clean environment, the delta like impulse response shows the inherent sparsity of

the underwater lidar system. The modeled turbid water optical impulse response

details how the effects of scattering in the backward and forward directions can af-

fect the sparse approximation. However, as mentioned in chapter 1, the use of high

frequency modulation and AC coupling, the effects of scatter is suppressed and the

sparse approximation can be used.

Given the optical impulse response generated by the model, the transmission

of wide-band waveforms can be simulated by convolving the output of the model

with a given waveform of interest. For these simulations, FMCW waveforms in-

troduced in the previous chapters are targeted. These waveforms can be generated

with a given duration Tc and bandwidth ∆F . The optical to electrical conversion

process can be simulated given the optical receiver characteristics [91], and the shot

noise introduced by this process can be generated using the known photon counts

and Poisson statistics. The DC component of the modeled analog waveform can be
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Figure 7.2: Example of the underwater channel impulse response model
output for clean and turbid water.

removed to simulate an AC coupled receiver. Figure 7.2 shows the modeled AC cou-

pled return signal prior to digitization for both clean and turbid environments. The

increased noise due to both the backscatter response and the decreased amplitude

of the target return signal is the most notable difference between the modeled clean

and turbid water scenarios. Sub-Nyquist sensing can be simulated by re-sampling

the received waveform at a given rate, and the sparse recovery OMP algorithm high-

lighted in Chapter 4 can be tested as a function of the underwater optical properties.

The functional block diagram for the simulation steps can be seen in figure 7.3

7.1.2 Simulation Results

The goal of these simulations is to study the relationship between the un-

derwater channel characteristics, the optical detector, and the sub-Nyquist sensing

framework. To accomplish this goal, the impulse response for the underwater chan-
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Figure 7.3: Block diagram for modeling the underwater hybrid lidar-
radar sub-Nyquist sensing system.

nel can be modeled given a diffuse flat gray target situated a nominal distance away

from the transmitter/receiver platform. In these simulations, transmitted beam

and receiver field of view are centered on the target, and different water clarities are

simulated by varying the beam attenuation coefficient, c532[m−1].

A FMCW waveform with a variable duration Tc and constant bandwidth ∆f

is then convolved with the modeled impulse response, and the optical detector as

well as the inherent noise of the optical detection process is simulated. The simu-

lated analog signal is then sampled at a given rate FD to produce a total number of

M = FD×Tc measurements. The OMP recovery algorithm is implemented using an

assumed sparsity of one, and the dictionary is generated from the known transmitted

chirp waveform and the given sampling rate FD. Given typical Nyquist sampling

rules, the simulated return signal should be sampled at a rate FNyq = 2 × ∆f ,

and would require N = Tc × FNyq samples. The Sub-Nyquist system is simulated

using the given waveform duration and number of measurements leading to a down-
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sampling parameter of δ = M/N . For comparison, the matched filter detection

process was also simulated to provide a baseline of performance that could be ex-

pected as a function of water conditions.

To quantify performance, the average error between the range measured from

the OMP algorithms output, and the actual target range is calculated over multiple

trials and plotted as a function of attenuation lengths C532×Z where Z is the range

to the target. The number of measurements and chirp duration was varied, and

the results of these simulations are shown in figure 7.4 for all the simulated water

conditions, waveform durations, and various levels of down-sampling.

When processed using Nyquist sampling and a matched filter detector (black

dashed line in figure 7.4) the error is minimal until approximately 9.5 attenuation

lengths. The matched filter data in figure 7.4 also shows that increasing the duration

does not improve the detection as a function of attenuation length. At the point

where the error begins to increase (C532 × Z = 9.5), the residual noise from the

backscatter signal is much larger than the target return, and the detected range

error is systematically biased. These results are similar to those found in previously

conducted studies [78, 92, 93] that investigated the application of different methods

to suppress the adverse effects of scattering.

It is also clear from figure 7.4 that the effects of scattering play a role in

the sparse recovery of a target’s range. For the case when δ ≈ 1, there is no

down-sampling, and the OMP algorithm is being used on the full Nyquist rate

waveform. Due to the nature of the OMP algorithm as discussed in Chapter 4,

one would expect the outcome to be similar to the matched filter result. This is
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Figure 7.4: Simulation results for the modeled sub-Nyquist underwater
hybrid lidar-radar system. The range error was calculated for various
test parameters and plotted as a function of attenuation length.
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because both methods are based on finding the positions of maximum correlation.

This expectation is substantiated in the modeled results and the OMP algorithm

performs similarly to the matched filter. When the down-sampling parameter is set

to δ ≈ 0.50, similar performance to the matched filter is also observed, especially

as the waveform duration is increased. Both the δ ≈ 1 and δ ≈ 0.50 cases display

an increase in range error at 9.5 attenuation lengths that is similar to the matched

filter results. This implies that at this point, for the given simulated system, the

effects of scatter have become so severe that the target can no longer be recovered.

For higher levels of down-sampling, it is shown that measurement noise is

affecting the performance more severely than the effects of the channel. This is evi-

dent given that the recovered range error can be reduced by increasing the waveform

duration. This result can also be substantiated from the simulation and experimen-

tal observations in chapter 5 where it was shown that in the presence of noise,

sub-Nyquist sensing and sparse recovery through the OMP algorithm have simi-

lar performance to the matched filter as long as the down-sampling parameter and

waveform duration lead to a sufficient number of measurements. To highlight the

results from these simulations, the highest level of scattering and noise that led to

minimal range error can be tracked and presented as a function of the waveform

duration and down-sampling parameter. These results are presented in table 7.1

Table 7.1 shows that as N increases, it is possible to recover targets in envi-

ronments with high levels of scattering and resulting receiver noise. Once the effects

of scattering become too severe, all detection methods fail to recover the target

irrespective of the waveform duration and down-sampling parameter. This result
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Table 7.1: Summary of modeling results detailing the max number of attenuation
lengths caused by scattering that results in successful detection of the underwater
target in the modeled environment. Results presented for both the matched filter
and the OMP algorithms at different levels of down-sampling δ = m/N

Duration
Max Detectable C532 × Z [A.L]

N Matched Filter δ ≈ 1 δ ≈ 0.50 δ ≈ 0.25 δ ≈ 0.13 δ ≈ 0.06

223 9.5 8.5 8.0 7.5 6.0 2.5
421 9.5 9.0 8.5 7.5 7.0 5.5
853 9.5 9.5 9.0 8.0 7.5 6.5
1709 9.5 9.5 9.5 8.5 8.0 7.0

provides the initial verification that the sparse approximation is valid, and that sub-

Nyquist sensing and sparse recovery can be applied to the hybrid lidar-radar system

as long as the amount scattering has not reduced the signal amplitude below a cer-

tain SNR level. Through this modeling effort it has also been shown that the sparse

recovery techniques can approach the performance of the matched filter detector as

long as the waveform duration is long enough to produce the necessary number of

measurements in the presence of noise.

7.2 Experimental Verification

The previous sections detailed simulations that were conducted, and how the

underwater channel was modeled. This modeling and simulation effort was used to

determine if the sparse approximation is valid for underwater lidar systems, and to

measure the performance limits for sparse recovery. In this section, the implementa-

tion of the sub-Nyquist sensing and sparse recovery methods will be detailed, and an

experiment that was designed to test the methods will be discussed. This experiment
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was designed to investigate the real world implementation of sub-Nyquist sensing

and sparse recovery, and to test the performance of the methods in environments

with different levels of scattering. First, the experimental setup and equipment

will then be described and the measured values will be detailed. Processing and

performance metrics will be highlighted, and the results will be discussed.

7.2.1 Experimental Design, Equipment, and Details

The goal of these experiments is to test the application of sub-Nyquist sensing

and sparse recovery as applied to hybrid lidar-radar systems. As discussed in chapter

1, the targeted system is an active ranging system that utilizes a modulated laser

transmitter and an optical receiver co-located on the same platform. The transmitter

and receiver were separated by 30cm, and the optical receiver had a field of view

of 4.8 degrees. These settings were used to obtain a transmitter receiver overlap

that covered the entire range of target positions. After the PMT, a bias T was used

to AC couple the electrical signal, and a analog filter low pass filter was used to

reduce noise prior to digitization. After this analog signal conditioning, a digitizer

was used to sample the received electrical signal. The system was placed near a

window of a circular test tank, and the transmitted beam/receiver field of view were

directed at a flat gray target suspended in the tank and attached to a translation

stage above the tank. The translation stage has a total variable range of 2.5 meters

and was placed approximately 3.88 meters away from the transmitter and receiver

platform. The turbidity of the underwater channel was adjusted using a known
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scattering agent (Equate antacid), and the scattering coefficient was measured using

a transmissometer. At each water clarity, the target was swept through the entire

translation stage range, and the received signal was digitized at multiple sampling

rates.

The FMCW source used to modulate the transmitter is an Analog Devices

AD9914 direct digital synthesizer (DDS) board [94]. This board was used to produce

a FMCW signal with a bandwidth of 1 GHz and a duration of Tc ≈ 2µs. The

laser transmitter is a custom 532nm CW laser source manufactured by AdvR, Inc.

The laser consists of an infrared laser diode at 1064nm which is modulated by a

Mach-Zehnder modulator, amplified via fiber amplification stages, and frequency

doubled by a second harmonic generating crystal to 532nm. The optical receiver is

comprised of collection optics, and a 1Ghz bandwidth 5-stage Photo-Multiplier Tube

(PMT) from Photonis [95]. A converging f/2 lens and variable aperture was used to

control the receiver field of view, and a 532nm interference filter was used to reduce

the collection of ambient light. A 12 bit, 2 channel digitizer with a 2 GHz analog

bandwidth from SP-Devices [96] was used to directly sample the RF waveform. The

digitizer has the option for variable sampling rates, and various clocks were used

to generate measurements at rates both over and under the Nyquist sampling rate.

The experimental block diagram can be seen in figure 7.5.

After digitization, the sampled waveforms were stored and the detection al-

gorithms were applied. To test performance, the matched filter detector was im-

plemented on the Nyquist sampled data and used as a baseline comparison for the

results generated using the OMP algorithm. In this experiment, it was a assumed
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Figure 7.5: Block diagram of experimental setup

that there was only a single reflecting object so the OMP algorithm was implemented

with a sparse estimate of Kest = 1. After the sparse estimate was determined, its

index was used to calculate the range given the sample rate of the stored sensing

matrix. For each water clarity and stage position, the measured range was reported

and compared to the known stage position. For these experiments, the level of un-

der sampling is defined as δ = FS

FN
, where FN is the transmitted waveform Nyquist

Rate, and FS is the system sampling rate. For δ ≥ 1, this represents signals that

have been sampled at or above the Nyquist rate, and for δ < 1 the signals have

been sampled at sub-Nyquist rates. Figure 7.6 shows the digitizer output at various

sample rates. As the sample rate is reduced, the effects of aliasing are evident in

the sub-Nyquist sampled waveforms.
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Figure 7.6: Example digitizer output waveforms at various sampling rates.
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7.2.2 Clean Water Baseline Measurements

Initial testing of the sub-Nyquist sensing and sparse recovery occurred in clean

water environments, C532 = 0.14m−1. In order to implement the OMP algorithm for

sparse recovery, the chirp dictionary and sampling matrix must be generated. This

was accomplished initially as described in chapter 3 by using the known parameters

of the transmitted FMCW signal and the known sampling rate of the digitizer.

Results from this initial testing can be seen in figure 7.7 were the measured range

is plotted as a function of the actual target range for the matched filter detector as

well as the OMP algorithm at various levels of down-sampling.

These initial results show significant error between the target’s actual range

and the detected range when using sparse recovery methods at sub-Nyquist sampling

rates. This error can be attributed to dictionary mismatch that arises from the

non-ideal signal generation and detection process. The OMP algorithm relies on a

dictionary generated from an ideal linearly frequency modulated signal. In practice,

the output of the DDS board is not an ideal chirp. For example, the analog waveform

is generated from a stepped frequency ramp vs the assumed continuous linear ramp,

and the output power is not constant across all bands. An additional cause of

dictionary mismatch is that the measured signal has been affected by the frequency

response of the PMT, as well as the analog components in the receiver chain. These

facts are highlighted in figure 7.8 where the magnitude spectrum for the waveform

used to generate the sensing matrix is compared to the magnitude spectrum of

the signal digitized from the PMT. Here it can be seen that there is a substantial
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Figure 7.7: Initial experimental results of the sub-Nyquist sensing and
sparse recovery of a target range situated in underwater environments.
Errors in detection due to dictionary mismatch.
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Figure 7.8: Magnitude Spectrum of the waveform used to generate the
sensing matrix compared to the magnitude spectrum of the PMT signal.

discrepancy between the two waveforms.

To alleviate the adverse effects of dictionary mismatch, the signal from the

laser transmitter was redirected into the PMT receiver and a reference copy was

sampled and stored at FS ≈ 2× FNyq. This new reference waveform was then used

as the basis function to generate the column wise time shifts for the chirp dictionary,

and the sensing matrix was created given the chosen sampling rate of the digitizer.

Figure 7.9 presents the detected target range as a function of the stage position using

the new sensing matrix for all the various down-sampling parameters used. These

results confirm that the previous errors were in fact due to dictionary mismatch, and

that by using a stored reference copy to generate the sensing matrix, the adverse

effects of dictionary mismatch can be alleviated. Here it can also be seen that the

measured range using sub-Nyquist sensing and sparse recovery is effectively equal

to the matched filter detector and is not adversely affected by the lower sampling
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rates.

7.2.3 Experimental Results for Turbid Environments

In the previous section, it was shown that sub-Nyquist sensing and sparse

recovery algorithms can be used to measure the range to an underwater target. This

was demonstrated using the described hybrid lidar-radar system, uniform sampling

at sub-Nyquist rates, and the OMP algorithm to recover sparse vectors. While

initial dictionary miss-match caused failed detection even in high SNR and clean

water environments, this effect was mitigated by using a stored reference copy of

the known transmitted waveform. In this section, the effect of turbid underwater

environments will be explored.

The turbidity of the underwater environment was increased incrementally until

errors in detection were observed. Figure 7.10, shows the measured range results as

a function of actual target range and down-sampling parameter for the case when

the measured extinction coefficient was equal to C532 = 1.30m−1. At this given

environmental condition, the reduced performance at lower sampling rates is caused

by the limited SNR at further stand-off ranges. For example, the reliability of the

range measurements begins to be limited at approximately 7.4 attenuation lengths

for the lowest sampling rate. When the sampling rate is higher and δ ≈ 0.25,

it is still possible to recover the target range out to approximately 8 attenuation

lengths. Therefore, the sparse approximation is still valid and detection is possible

with enough measurements.
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Figure 7.9: Initial experimental results of the sub-Nyquist sensing and
sparse recovery using a sensing matrix that is derived from a Nyquist
sampled version of the PMT reference signal. Effects of dictionary mis-
match have been suppressed

99



4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5
M

ea
su

re
d 

R
an

ge
 [

m
]

  2.00

OMP
MF

4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5

M
ea

su
re

d 
R

an
ge

 [
m

]

  0.99

4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5

M
ea

su
re

d 
R

an
ge

 [
m

]

  0.50

4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5

M
ea

su
re

d 
R

an
ge

 [
m

]

  0.25

4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5

M
ea

su
re

d 
R

an
ge

 [
m

]

  0.12

4 4.5 5 5.5 6 6.5
Stage Position [m]

4

4.5

5

5.5

6

6.5

M
ea

su
re

d 
R

an
ge

 [
m

]

  0.06

C
532

 = 1.30 m
-1

Figure 7.10: Experimental ranging results for C532 = 1.30m−1. Detec-
tion error is evident when sampling at rates less than Nyquist.
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Figure 7.11: Experimental ranging results for C532 = 2.10m−1. While
the correct range measurements are reported for closer in targets, all
detection methods display range errors at further target positions.
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Table 7.2: Experimental results showing max recoverable attenuation lengths for
the matched filter detector, and the OMP algorithm given various system sampling
rates

Matched Filter
OMP

δ ≈ 2.00 δ ≈ 0.99 δ ≈ 0.50 δ ≈ 0.25 δ ≈ 0.12 δ ≈ 0.06

11 11 11 10.7 10.7 9.8 9.6

To further test the system performance limits, the extinction coefficient was

increased until the matched filter detector also began to produce errant range mea-

surements. This occurred when C532 = 2.10m−1, and the results can be seen in figure

7.11. These experimental results show that when using a matched filter detector, it

is possible to accurately measure the range to a target up to approximately 11 atten-

uation lengths (or 5.24m for c=2.1/m). When the signal is sampled at Nyquist, the

OMP detection methods perform the same as the matched filter, but they degrade

in performance as the sampling rate is reduced. These results prove that detec-

tion is still possible even in highly scattering environments. For example, when the

sample rate is approximately 6% of the Nyquist rate, it is possible to accurately

detect a target’s range out to ≈ 9.6 attenuation lengths. The experimental results

are summarized in table 7.2 were the max number of attenuation lengths that still

resulted in a target recovery is presented as a function of the detection method and

system sampling rate δ = FS/FN . This was measured by finding the first stage

position where the error between the target’s range and the measured range was

greater than 10cm. This target position was then used to calculate the max number

of recoverable attenuation lengths.
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Chapter 8: Conclusion

This research effort met the objective of providing evidence that sub-Nyquist

rate digitizers and sparse recovery algorithms can be applied to ranging applications

utilizing wide-band hybrid lidar radar technologies. Furthermore, it was discussed

that the results from this work can be extended to other types of wide-band ac-

tive ranging methods. This concept was substantiated using both simulated and

experimental tests to measure the performance of sub-Nyquist sensing as a function

of various system and environmental parameters. The system parameters include

waveform characteristics such as modulation type and duration, digitizer sampling

rates, sparse recovery algorithm choice, and sensing matrix resolution. Environ-

mental parameters include the number of reflecting objects, SNR, and underwater

channel characteristics. When applicable, the traditional matched filter method was

used as a baseline to determine what advantages the sub-Nyquist sensing and sparse

recovery method have over conventional processing techniques.

8.1 Summary

In chapter 3, it was shown that sensing matrices derived from wide-band wave-

forms and uniform sub-Nyquist samplers satisfies the Mutual coherence condition,
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and theoretical predictions on the recoverable support were provided. It was also

shown that by choosing system parameters such that the number of measurements

M , and number of Nyquist samples N are relatively prime, the coherence is strictly

less than one for the linear FMCW basis waveform. Results from testing vari-

ous sparse recovery algorithms were presented in chapter 4. It was shown that

both convex optimization and greedy algorithms are capable of exactly recover-

ing sparse vectors from measurements made given sensing frameworks derived from

wide-band FMCW waveforms. The trade-off between computation time and de-

tection performance was presented, and it was shown that the recoverable sup-

port was much greater than that predicted by the coherence bound. Empirically

it was found that when using the OMP algorithm to recover measurements made

using the sub-Nyquist sensing framework and wideband linear FMCW waveforms,

the relationship between the number of measurements and recoverable support was

M ≈ O(
√

5
3

√
Nk)

In chapter 5, it was shown that the sub-Nyquist sensing system and OMP

recovery algorithm could still recover sparse vectors even in the presence of noise.

When compared to the matched filter detection, it was shown that the sparse re-

covery techniques had the same noise performance as long as the downsampling

ratio, δ = m/N , was greater than 0.6. It was also shown that given a fixed system

sampling rate, the noise performance of the sub-Nqyuist sensing system could be

improved by increasing the duration of the waveform. In chapter 5 the initial exper-

imental evidence was also provided showing that these methods can be applied to

real hardware under low SNR conditions. The experimental results agreed closely
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with the previous simulations, confirming the extended simulation results. Chapter

6 presented results from additional simulations in order to provide insight into the

resolution of the sub-Nyquist sensing system and the sparse recovery algorithms.

It was shown that by increasing the column wise resolution of the sensing matrix,

it was possible to increase the resolution of the sparse estimate. This resolution

enhancement technique was applied to two common resolution/detection problems:

two closely spaced targets, and one highly reflective target next to a weaker target.

Lastly in chapter 7, simulation and experimental results were provided showing

that the range to a target can be measured in various water conditions while using

sample rates approximately 15 times lower than the Nyquist rate. Initially the

underwater channel was modeled for various levels of scattering to determine when

the sparse approximation would no longer be valid. The optical detection process

and digitizers with various sample rates were simulated, and the OMP algorithm

was applied. Through these modeling and simulation efforts, it was shown that as

the waveform duration increased, the sparse recovery detection performance would

approach that of the Nyquist sampled matched filter. This result provided initial

evidence that the sparse approximation maintained validity up to approximately

9.5 attenuation lengths, and that these methods could be applied to the underwater

channel. Results from experimental tank tests were also presented in chapter 7 and

it was shown that after addressing dictionary mismatch, sub-Nyquist sensing and

sparse recovery could be applied to the hybrid lidar-radar based ranging system.

Sampling rates approximately 16 time lower than the Nyquist rate were successfully

used and were capable of detecting targets at 9.6 attenuation lengths.
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8.2 Future Research Directions

Throughout this research effort, the only constraint imposed on the L1 min-

imization problem was that the solution should be sparse and the error between

the measurements and the projected sparse estimate should be minimized. In fu-

ture work, it would be advantageous to investigate different constraints on the L1

minimization problem. One powerful constraint that could be studied is the non-

negativity constraint on the sparse solution [97, 98]. L1 minimization with non-

negativity constraints is shown in equation (8.1).

min
s
||s||1 subject to: ||Θs− y|| ≤ ε and |s| ≥ 0 (8.1)

This constraint is inherently applicable to the hybrid lidar-radar sensing frame-

work where the recovered sparse vector represents the optical impulse response given

a certain propagation distance and the reflective nature of the target. Targets of

interest are relatively flat diffuse reflectors which implies that a negative reflection

coefficients would not be encountered in practice. Future work will look to investi-

gate how adding the non-negativity constraint would effect the recovery performance

of the L1 minimization methods in terms of max support recovery and noise suscep-

tibility. Within the field of compressive sensing, this constraint has proven useful in

various applications [99, 100] and fast algorithms have been developed to solve the

L1 minimization problem [101]. However, it remains to be seen how it would effect

the sparse recovery of wide-band signals given uniform sub-Nyquist sampling.

Another future area for research would be altering the sensing framework
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slightly. Currently, the described sensing framework works by sampling the return

waveform at a given rate. Once all the samples have been collected it attempts to

recover the sparse vector using some L1 minimization algorithm. This implies that

sparse estimates and thus range measurements are generated an approximate rate

of 1
Tc

. Often multiple periods are measured before updating the range estimate, and

averaging is used to improve SNR and detection performance. In the altered sens-

ing framework, one could imagine taking the individually measured return signals

of length M = Tc × Fs, and creating a M × L matrix of measurements Y , where

L is the number of full waveforms that have been sampled. In this framework, the

sensing matrix is the same but the sparse vector is now a matrix where the columns

represent the number of waveform records. This framework is known as a Multiple

Measurement Vector model and can be solved using various algorithms which can

exploit the joint sparsity or inter-correlations of the MMV’s [102–105]. In the con-

text of the hybrid lidar-radar ranging system, the correlation between the columns

of the measurement matrix would be dependent on target movement speed, and the

sparse approximation would be the location of the various targets at the given time

the waveform records were taken. Under this framework, the effect MMV’s have on

recovery performance, and SNR remains to be studied.
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[56] LászlóJ Naszódi. On digital filtration in correlation time-of-flight spectrome-
try. Nuclear Instruments and Methods, 161(1):137–140, 1979.

[57] Hongjian Sun, Arumugam Nallanathan, Cheng-Xiang Wang, and Yunfei Chen.
Wideband spectrum sensing for cognitive radio networks: a survey. IEEE
Wireless Communications, 20(2):74–81, 2013.

[58] PP Vaidyanathan and Piya Pal. Theory of sparse coprime sensing in multiple
dimensions. IEEE Transactions on Signal Processing, 59(8):3592–3608, 2011.

[59] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on optimization, 2(4):575–601, 1992.

[60] Arkadi Nemirovski. Interior point polynomial time methods in convex pro-
gramming. Lecture Notes, 2004.
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