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 A popular recreational species, bluefish (Pomatomus saltatrix) has been declining 

since the mid-1980s.   This thesis examines patterns of juvenile habitat use, growth rate, 

and cohort recruitment patterns in three Maryland systems:  the Chesapeake Bay, the 

Coastal Bays, and shallow coastal areas (<20 m): potential nursery habitats where little 

research has been conducted.  Notable differences in growth rate were observed among 

systems, with consistently higher rates in the Chesapeake compared to the Coastal Bays.  

Juvenile growth was also amongst the highest reported in the literature.  Likewise, 

relative cohort contribution varied between systems suggesting that late spawning groups 

may not consistently utilize the upper Chesapeake, and a spawning group intervening 

between the spring and summer cohorts may occasionally appear in the coastal region.  

Finally, otolith microchemical analysis indicated that juveniles may exclusively use 

coastal nurseries, adding to evidence that bluefish may not be estuarine dependent.
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EXECUTIVE SUMMARY 

 

 

 From 1981-1994 bluefish (Pomatomus saltatrix) was the most caught recreational 

U.S. East Coast species by weight, and remained amongst the top three from 1995 to 

1998.  The western Atlantic stock, however, has been declining since the mid 1980s, 

underscoring the need for improved management.  Juveniles are known to utilize 

estuarine and near shore habitats from Florida to Maine, but the majority of ecological 

research has focused on the New York and New Jersey region.  Though regularly 

observed in Maryland estuaries, there is little information on the life history patterns of 

juveniles within the region.  The broad goal of this study was to examine patterns of 

habitat use and cohort recruitment patterns within three potential Maryland nursery 

systems:  the Chesapeake Bay, Maryland Coastal Bays, and in Maryland’s shallow 

coastal areas.  

 In many estuarine, riverine, and coastal systems, dissolved strontium (Sr:Ca) 

tends to reflect water salinity, and ratios within the otolith may likewise reflect high and 

low salinities encountered by a fish.  The applicability of otolith Sr:Ca analysis in 

bluefish as an indicator of salinity occupancy was investigated through a laboratory 

experiment.  Otoliths of field captured juveniles from the Chesapeake Bay and near shore 

areas were also analyzed for evidence of differential habitat use patterns.  Results 

indicated that  Sr:Ca in the water was positively associated with  bluefish otolith Sr:Ca, 
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and that otolith Sr:Ca analysis may be useful to discern low salinity estuarine occupancy 

from coastal habitation.   Otolith strontium levels of probed points across the otolith 

microstructure were used to discern ontogenetic patterns of habitat use.  All transects 

through the earliest-formed region of the otolith, the primordium, exhibited very high 

Sr:Ca (mean=3.2 x 10-3) followed by a steep drop through subsequent points located 60-

80 µm towards the margin (ca. 10-15 days post hatch), possibly related to a metamorphic 

transition rather than to a habitat shift between salinity regions.  Transects of estuarine-

captured individuals decreased gradually following the steep Sr:Ca drop at the 

primordium, and terminated at the margin (time of capture)  near an estuarine Sr:Ca 

reference of 1.68 x 10-3.    Mean Sr:Ca was significantly different between estuarine 

juveniles and coastal juveniles at total lengths >90 mm, but not at smaller sizes.  Sr:Ca 

transects  of coastal-captured individuals remained relatively high as otolith transects 

approached the margin (ca. 2.15 x 10-3), indicating that they had not taken extended 

excursions into estuaries, and suggesting that the near shore zone may provide significant 

habitat throughout the juvenile period.    

 Growth rate has often been cited as an important factor in the survival of young 

fishes, and is useful in evaluating comparative habitat value between nurseries.  In this 

context, juvenile bluefish cohorts were identified through modal age-frequency analysis, 

and growth rates were examined between systems and cohorts.  In addition, the validity 

of otolith increment width as an indicator of somatic growth was evaluated through a 

laboratory experiment.  Within a given year, systems exhibited differing patterns of 

cohort recruitment.  During 1999, the spring and summer spawned cohorts were evenly 

represented in the Chesapeake and Coastal Bays, and in 2000 this was again the case in 
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the Coastal Bays.  However, during 2000 in Chesapeake Bay, and in 2001 in both 

estuarine systems, the spring cohort dominated.  An early summer hatch group was 

observed in the Coastal Bays during 2000 and the coastal Atlantic in 2001, suggesting the 

presence of an intervening hatch group that has not been observed in other studies (late 

May - early July).  Growth rates differed significantly between systems.  Rates were 

consistently higher in the Chesapeake Bay (2.03 – 2.49 mm day-1) when compared to the 

Coastal Bays (1.70 – 1.96 mm day-1), suggesting more favorable habitat conditions.  The 

coastal area may provide variable conditions, but in one year (2001) juveniles captured in 

ocean environments exhibited the highest rate reported in the literature (2.63 mm day-1).  

Somatic growth (total length and weight) was weakly associated with otolith increment 

width (r2 = 0.13 and 0.14, p = 0.016 and 0.013), but likely not sensitive enough to 

differentiate between the moderately differing growth rates reported in most studies.  

Based on the variable growth rates observed, my results suggest that even relatively 

proximate systems may provide varying habitat quality from year to year, and that the 

little studied coastal area may provide very favorable conditions in some years. 

 The relative recruitments of juvenile cohorts utilizing the Chesapeake Bay and 

Coastal Bays were examined from long-term (1967-2001) survey data collected by the 

Maryland Department of Natural Resources.   The spring cohort was typically several-

fold more abundant than the summer cohort during most years as reported in other 

regions of the Mid-Atlantic.  A switch in cohort relative abundance, however, was not 

observed during the 1990s as suggested in the literature.  Recruitment strength of spring 

and summer cohorts was not correlated within either the Chesapeake Bay or Coastal Bays 

systems.  Chesapeake Bay spring recruitment was correlated with recruitment in two 
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Atlantic coast regions examined by Munch (1997): the Chesapeake Bay to Cape Hatteras 

region, and the Cape Cod to Cape Hatteras (coast wide) region.  Coastal Bays appears to 

have been utilized by both cohorts, as indicated by a bimodal hatch date pattern.  A 

bimodal hatch date pattern was not observed in juveniles from the Chesapeake Bay, and 

during most years this system did not appear to have been utilized by juveniles spawned 

later than mid-July.   Chesapeake Bay recruitment was not correlated with the North 

Atlantic Oscillation atmospheric pattern 

 This study indicated that patterns of juvenile growth, habitat use and recruitment 

in Maryland nurseries differed from other regions that have been studied.  Indeed, 

patterns differed between the diverse nurseries examined, even within the geographically 

restricted study area of Maryland.  Given these results, habitat quality as evidenced by 

growth rate, habitat use, and recruitment may differ between nurseries, between cohorts, 

and between nursery systems within and across regions along the Atlantic coast.  In 

addition, during some years, the shallow coastal area may provide high quality nursery 

habitat for a species once assumed to be “estuarine dependent”.   Region-specific life 

history information on bluefish throughout its range, therefore, appears to be essential for 

a clearer understanding of its population dynamics, and for “essential fish habitat” 

delineations required by federal law. 
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CHAPTER 1 

 
 

EVALUATION OF DIFFERENTIAL HABITAT USE THROUGH MICROCHEMICAL 

ANALYSIS OF JUVENILE BLUEFISH OTOLITHS   
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Introduction  

Bluefish is a pelagic species distributed off eastern South America, north-western 

and south-eastern Africa, the Black Sea, the Mediterranean Sea, Australia, and the 

Atlantic and Gulf coasts of North America (Juanes et al. 1996).   On the east coast of the 

United States, spawning takes place during the spring and summer months along the edge 

of the continental shelf (Norcross et al. 1974), and juveniles move to Mid-Atlantic Bight 

inshore areas where they spend their first summer (Kendall and Walford 1979). In the 

fall, juveniles migrate south with the approaching winter.  

Although numerous studies have documented that juvenile bluefish utilize 

estuaries as nursery areas (Kendall and Walford 1979, Nyman and Conover 1988, 

Harding and Mann 2001), it is unclear if they are “estuarine dependent” because their 

utilization of coastal areas has not been extensively investigated (Fahay et al. 1999).  A 

case in point, Kendall and Walford (1979) theorized that juvenile bluefish were heavily 

dependent on estuaries, but noted in the same paper that some probably remain in coastal 

waters throughout the summer.   Young-of-the-year utilization of  North American 

coastal areas might be expected given evidence that juvenile bluefish in other continents 

utilize various nursery types. In South Africa, they are known to utilize the surf zone of 

exposed beaches, estuaries, and sandy inshore areas (Bennett 1989).  In Australia, they 

have been captured in estuaries (Morton et al. 1993), and near beaches and reefs (Young 

et al. 1999).    In this study, juvenile residency in either estuarine and ocean habitats is 

examined in Maryland waters using otolith microchemical analysis. 

In Maryland, juvenile bluefish have been documented in estuarine systems as well 

as in nearby coastal areas. In spring and summer surveys of the Chesapeake Bay 
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conducted by the Maryland Department of Natural Resources (MD DNR), juveniles have 

been captured consistently since 1961; 1966 the only year when bluefish were not present 

in samples (http://www.dnr.state.md.us/fisheries/juvindex/).  They also appear in separate 

MD DNR surveys of the Maryland Coastal Bays, a network of five lagoons embayed by 

Fenwick and Assateague barrier islands.  Although there has been no investigation to date 

of juvenile utilization of Maryland’s coastal ocean areas, they have been documented in 

the coastal ocean of New Jersey (Burlas et al. 2001; Able et al. 2003) to the north, and 

Virginia (Monteiro-Neto 1990) to the south.  In New Jersey surf zone regions, seine 

catches have exceeded those recorded elsewhere in North American estuaries (Burlas et 

al. 2001; Able et al, 2003,), indicating that oceanic environments might  provide nursery 

habitat for a large proportion of juvenile recruits.  

 Although juvenile bluefish are known to occur in several habitat types, it is not 

evident if they remain resident in any single region throughout the duration of their first 

summer.  The few of tag-recapture studies that have been conducted indicate that at least 

some juveniles remain near release sites (Morton et al. 1993; Young et al. 1999; Able et 

al. 2003) suggesting some degree of habitat fidelity.  However, short-term recapture rates 

in all studies were very low (e.g., < 1% recaptured within 14 days for the Morton et al. 

1999 study and 0.04%-3.4% recaptured within 30 days for the Able et al. 2003 study), 

suggesting there may be low site fidelity.  In addition, although tag-recapture studies 

provide information on endpoint habitation, they do not indicate residency during the 

interim.  Juvenile bluefish (<300 mm total length) are extremely mobile, capable of 

swimming at sustained speeds of 26 cm s-1 (Olla et al. 1985), and of traveling over 100 

km in a single month’s time (Young et al. 1999).  Excursions into or out of proximate 
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estuaries or coastal areas are probable.  Electronic tags, which might show patterns of 

residency within regions (e.g. Itoh et al. 2003) are prohibitively large for use on fish the 

size of juveniles (Paukert et al. 2001). 

Strontium:calcium ratios (Sr:Ca) in otoliths have been used to describe the 

movement of fishes within and across the changing salinity zones of riverine, estuarine 

and marine environments (Kimura et al. 2000, Secor and Rooker 2000, Howland et al. 

2001).  The technique is based on the generality that fresh and salt water respectively 

contain lower and higher concentrations of strontium (Thresher 1999, Kraus and Secor 

2004).   Trace elements in the water are taken up through the gills or through active 

drinking, and may enter the blood and endolymph fluid surrounding the otolith.  These 

elements, including strontium, are thereby available for incorporation into the calcium 

carbonate matrix of the otolith (Campana 1999).  High and low Sr:Ca  in otoliths, 

therefore, can reflect high and low salinities (respectively) experienced by the fish (Secor 

et al. 1995, Kraus and Secor 2004).   Given that otolith increments form periodically (i.e. 

daily, annually), Sr:Ca analyzed at points across a sectioned otolith along a line from the 

primordium to the margin (a “life history transect”) can represent the relative movement 

of a fish through salinity zones during  its life (Figure 1; Secor and Rooker 2000). 

In this study, we conducted a laboratory holding experiment to validate the 

relationship of otolith Sr:Ca and salinity for juvenile bluefish, and explored habitat use 

through Sr:Ca otolith analysis of individuals captured in the Chesapeake Bay and shallow 

Maryland coastal areas (<15 m).  We tested three hypotheses: (1) Otolith Sr:Ca is 

positively associated with salinity, (2) Ingress into low salinity areas of the Chesapeake 

Bay as well as long-term juvenile residency in differing salinity regimes are evident in  
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Figure 1.  SEM photograph of a life history transect on a juvenile bluefish otolith, with 

microprobe point marks numbered in order of analysis (from core to margin). 
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life-history transects, and (3) Juveniles captured in ocean environments exhibit a habitat 

use pattern discernible from those captured in the Chesapeake Bay, suggesting that these 

individuals did not use estuaries during their lives. 

 

Methods  

Salinity Holding Experiment 

To verify the relationship between salinity and otolith Sr:Ca, juvenile bluefish 

were reared at low (~  2) and intermediate (~ 11)  salinities, and Sr:Ca ratios were 

analyzed within the otolith margin corresponding to the experimental rearing period.   

Juvenile bluefish were collected using 1.5 m X 30.5 m beach seine at the mouth of the 

Patuxent River (Chesapeake Bay salinity: ~ 11; ~ 21 °C)  during June 2000. They were 

immediately transferred to a flow-through holding tank, supplied with ambient Patuxent 

River water at the Chesapeake Biological Laboratory seawater facility.    After a 2-week 

acclimation period, two groups of ten individuals were randomly assigned to either low 

or intermediate salinity treatments, and transferred to separate 1000L flow-through tanks 

(temperature=20°C, salinity=11).   Salinity was gradually reduced in the low salinity 

treatment approximately 1-2 per day by diluting Patuxent River water with fresh (0) 

groundwater over a one-week period.  Ambient salinity conditions were not altered for 

the intermediate salinity treatment. Throughout the experimental holding period, the low 

treatment was maintained between 1.5 – 2 (mean=1.8), and the intermediate treatment 

between 10.5 - 12 (mean=11.8).  Temperature did not differ significantly between 

treatments throughout the experiment (mean=20.1 C, standard deviation=0.3 C, p=0.3).  
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Fish were fed live Menidia spp. and Brevoortia tyrannus ad libitum throughout the 

experimental and acclimation periods, and prey remains were removed daily.  

The original experimental design plan allocated for a 14-day duration experiment 

to ensure sufficient otolith growth for marginal microprobe Sr:Ca analysis.  However, on 

day 8, pumps delivering the estuarine water failed while freshwater continued to flow 

freely into the low salinity treatment. All but one fish died due to the abrupt salinity drop 

to 0. Moribund individuals were removed approximately 8 hours after the system failure 

and stored in 80% ETOH.  During the event, the intermediate salinity treatment 

experienced only a temporary interruption of water flow, but there was no abrupt salinity 

change and the treatment experienced no mortality.   At day 14, individuals from the 

intermediate treatment as well as the surviving individual from the low treatment were 

euthanized in MS-222.  Saggital otoliths were removed from all fish, cleaned in 

deionized water, dried, and stored in vials.   

Despite the truncated holding period of the low salinity treatment, we proceeded 

with microchemical analyses because a separate growth study in our laboratory indicated 

that sufficient otolith growth should have occurred by day 8 to permit otolith microprobe 

analysis.   Under one week of ad libitum feeding, marginal otolith growth for juvenile 

bluefish ranged between 20-27 µm (see Chapter 2).  Because this was substantially larger 

than the 7µm minimum resolution required for microprobe analysis, we assumed that 

otolith growth achieved during the 8-day period for the low salinity treatment would be 

adequate.  

Treatment means exhibited non-normality when examined with the Shapiro-Wilks 

W test.   Transformation did not correct departures from normality, and the non-
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parametric Wilcoxin Rank-Sum test was used to compare Sr:Ca between the two 

treatments.   

 

Field Collections and Life History Transect Analysis  

Otolith life history transects of field-caught juvenile bluefish were analyzed and 

compared to evaluate patterns of estuarine ingress, and residency in estuarine and coastal 

habitats.    Sampling sites at Tolchester (mean salinity=3.3; range=1.1-6.4) in the upper 

main stem of the Bay, at the Chesapeake Biological Laboratory at the mouth of the 

Patuxent River (mean salinity = 12.0; range = 8.9 - 13.9) (Figure 2), and in Maryland’s 

shallow ocean environment (mean salinity= 29.9; range = 29.5 - 30.3) were selected to 

represent differing salinity regimes during summer months.   Collections were conducted 

monthly at Tolchester and weekly at Solomons using a 1.5 m X 30.5 m beach seine 

during June-September of 2000 and 2001.  Ten samples from Tolchester and eleven 

samples from the Chesapeake Biological Laboratory were randomly selected from 

samples collected at each site in June and July.  Ocean collections were conducted using 

an 18 m2 mouth-opening mid-water trawl towed obliquely from surface to bottom for a 

total of 20 minutes.  A total of 12 stations were sampled during August and September of 

2000, and during June, August and September of 2001.  Seven samples were randomly 

selected for analysis.   Captured bluefish were euthanized in MS-222 and frozen or stored 

in 80% ETOH until otoliths were removed.  

Saggital otoliths were removed, cleaned in deionized water, dried, and stored in 

vials.    Otoliths were then embedded in Spurr’s epoxy (Spurr 1969), sectioned across the  

 12



 

Tolchester

CBL

 
 
 
 
 
 

Figure 2.  Map of Chesapeake Bay seine sites (Tolchester and Chesapeake Biological 

Laboratory) and near shore trawl sites. 
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transverse plane, and mounted on slides.  Sections were then ground to the core on 

progressively finer grades of wet sandpaper, and given final polish using felt cloth and a  

0.3 µm aluminum oxide slurry. Slides with sections were ultrasonically cleaned in 

deionized water and then carbon coated. Strontium:Calcium ratios were determined using 

a JOEL JXL-8900 wavelength dispersive electron microprobe (Voltage=25kV, 

Current=20 nA, spot size=7µm).    For the salinity holding experiment, five points along 

the otolith edge (area of experimental growth) were analyzed for Sr:Ca ratios.  Points 

were clustered on the dorsal side of the sulcal ridge.  For life history transect analysis, 

points were sampled along a line from the primordium or core region to the margin along 

the dorsal side of the sulcal ridge, each point spaced approximately 13 µm apart (Figure 

1).  

In scanning electron micrographs taken after life-history transect analysis, otolith 

daily increments were either not distinguishable past the initial 10-20 days or were 

obscured by microprobe point burn marks (see Figure 1), so ages could not be assigned to 

probe points.  Therefore, probe points were instead assigned to approximate fish length 

using the Biological Intercept Algorithm (Campana 1990).  In the following formula,  

 

La = Lc + (O – Oc)( L c– Li)( Oc– Oi)-1 

 

La is total length at age, and Lc and Oc are total length and otolith length at capture.  L i 

and Oi are total length otolith length at the “biological intercept”, where fish length and 

otolith length correspond proportionately (linearly).  Though there is evidence that the 

otolith- somatic size relationship in very young stages of bluefish may not be 
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proportionate (Hare and Cowen 1995), the relationship is linear for juveniles (Nyman and 

Conover 1988).  We used the otolith length and fish length at the late larval stage (post-

flexion) for L i and Oi in length estimates (Oi = 39 µm, Li = 4 mm, Hare and Cowen 

1995). 

 Patterns of habitat occupancy were examined between collection sites using 

repeated measures ANOVA on juveniles over 90 mm TL.  Life history transects were 

divided into five length classes corresponding to lengths at which bluefish have been 

observed to:  1. Inhabit to coastal areas prior to entry into estuarine habitats (4-39 mm) 

(Able et al. 2003); 2.  Enter estuarine areas (40-54 mm and 55-69 mm) (Cowen et al. 

1993, McBride and Conover 1991); and 3. Reside within estuarine areas (70-89 mm and 

>89 mm).  Mean Sr:Ca was calculated for each length class and these data were then 

fitted to several covariance structures to select the most suitable model.   The 

autoregressive order 1 (AR1) covariance structure was selected for two reasons.   It 

assigns higher correlation to nearby points and lower correlation between more distant 

points (Little et al. 1996), which is the expected pattern in habitat use studies (tomorrow’s 

location will show greater covariance than next week’s location; see also Kimura et al. 

2000).  Secondly, after modeling the data to several possible  covariance structures, the 

autoregressive order 1 covariance structure exhibited the best fit based upon Akaike’s 

Information Criteria (AIC) and Schwartz’s Bayesian Criteria (SBC) .  The interaction 

between site and length class tested for transect differences between collection sites.  

Tukey-Kramer pair-wise comparisons were also conducted between length classes to 

examine where habitat occupancy may have diverged between sites. 
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The otolith margin consists of the most recently formed increments, and 

corresponds to the time period closest to capture (last several days).  Microchemical 

analysis in this peripheral region is therefore expected to exhibit Sr:Ca ratios reflective of 

capture location.  We compared marginal points from the Tolchester (mean salinity = 

3.3), CBL (mean salinity =12.0), and coastal (mean salinity = 29.9) bluefish otoliths to 

investigate if there were detectable differences in marginal Sr:Ca between capture 

locations.  

Mean marginal Sr:Ca values were checked for adequate normality and variance 

homogeneity, and site values were compared with ANOVA.  If the overall ANOVA was 

significant (α=0.05), individual pair-wise mean comparisons were conducted using the 

Tukey-Kramer multiple mean comparison test (Day and Quinn 1989). 

 

Results  

Salinity Holding Experiment 

In the laboratory experiment, I observed an inverse relationship between otolith 

Sr:Ca and salinity,  contrary to what  was expected.  Sr:Ca ratios in the low salinity 

treatment were significantly higher than those associated with the intermediate salinity 

treatment (p=0.015) (low treatment = 1.7  10-3, intermediate treatment = 1.5  10-3) .  

These results stood in contrast to those observed in marginal (endpoint) transect analysis, 

where near shore ocean samples exhibited higher Sr:Ca than estuarine sites (see below), 

and contradicted the general expectation that occupancy in a low salinity environment is 

associated with lower otolith Sr:Ca ratios (Secor and Rooker, 1999; Thresher 1999).  

However, based on results of other experiments conducted at CBL, there may be reason 
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to suspect that the laboratory source of freshwater at CBL had a high Sr:Ca ratio, leading 

to this unexpected result (Kraus and Secor 2004, see Discussion).   

 

Life History Transect Analysis  

All otoliths with transect lines placed precisely through the primordium exhibited a 

pattern of high Sr:Ca values (mean = 3.2 X 10-3) at the core followed by a drop across 

subsequent  points (Figures 3a, 4a, 5a).  This was observed regardless of collection site, 

and represented the highest Sr:Ca levels observed in any individual otolith.  Sr:Ca  values 

dropped an average of 18% through the subsequent 3-4 points (60-80 µm) away from the 

primordium.  A subset of seven transects shifted during analysis due to instrument error, 

with initial probe points capturing the first 5-10 increments of the core region, but 

missing the primoridum.  Consequently, these samples did not exhibit the early dropping 

Sr:Ca pattern (Figures 3b, 4b, 5b). 

Because high strontium concentrations occurred in the fresh water used for our 

laboratory experiments (see Discussion), laboratory results could not be utilized to 

develop criteria to discern salinity regimes. As an alternative, means from the marginal 

point analysis were used to reference Sr:Ca differences between salinity regions.  A 

combined mean from Tolchester and CBL endpoints was utilized as an “estuarine” 

reference criterion (1.68  10-3, SD= 2.06  10-4; n=21) and the mean from the ocean sample 

was used as an “ocean” reference criterion (2.15  10-3, SD= 1.15  10-4; n=12).   

In general, CBL and Tolchester samples exhibited gradually decreasing Sr:Ca 

ratios to values consistently below the coastal criterion as points proceeded towards the  
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Figure 3.  Sr:Ca values across life history transects for juvenile bluefish captured at 

Tolchester.  X-axis values are total length values estimated using the Biological Intercept 

algorithm.  (a)  Overlay of transects that exhibited Sr:Ca cascade at initial points from 

core.:  (b)  Overlay of transects where instrument shifted, missing core and resulting in 

transects lacking a steeply dropping core pattern. 
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Figure 4.  Sr:Ca values across life history transects for juvenile bluefish captured at 

Tolchester.  X-axis values are total length values estimated using the Biological Intercept 

algorithm.  (a)  Overlay of transects that exhibited Sr:Ca cascade at initial points from 

core.:  (b)  Overlay of transects where instrument shifted, missing core and resulting in 

transects lacking a steeply dropping pattern. 
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Figure 5.  Sr:Ca values across life history transects for juvenile bluefish captured at near 

shore (coastal) sites.  X-axis values are total length values estimated using the Biological 

Intercept algorithm.  (a)  Overlay of transects that exhibited Sr:Ca cascade at initial points 

from core.  (b)  Overlay of transect where instrument shifted, missing core and resulting 

in transects lacking a steeply dropping pattern.
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margin, indicative of  gradual juvenile ingress from coastal to estuarine habitats (Figure 

6-7).   The majority of Chesapeake Bay-collected juveniles (15/21) also included a 

number of  points (7%-39%) that declined below the estuarine Sr:Ca criterion, and most  

transects terminated at or below the criterion.  In contrast, ocean samples remained 

consistently above or near the coastal ocean reference level (Figure 8).   

  Samples collected from CBL exhibited a single generalized pattern.  Following an 

initial steep decline, Sr:Ca values dropped gradually from the core region and terminal 

values were  near the estuarine reference level (Figure 7).  After individuals reached 

approximately 75 mm estimated total length, no points rose above the ocean reference 

level.  Likewise, a single general pattern was apparent for transects on juveniles collected 

from the near shore coastal region.  Sr:Ca declined from the core to approximately 60-70 

mm estimated total length.  Thereafter, values hovered near the ocean reference, with 

only a single point from a single individual dropping slightly below the estuarine 

reference (Figure 8).  All transects terminated above the estuarine reference. 

Juveniles collected in oligohaline waters at Tolchester showed a range of transect 

patterns (Figure 6).  Three juveniles exhibited transect patterns similar to those observed 

for  the CBL sample (Figure 6a).  In three other transects (Figure 6b), Sr:Ca dropped 

gradually as points proceeded away from the core, then dropped  below the estuarine 

reference at ~80-110 mm TL, and finally rose to terminate near the estuarine reference.  

Three transects resembled patterns observed in near shore transects (Figure 6c), and a 

single transect (Figure 6d) exhibited a dip that briefly dropped below the estuarine 

reference, but then rose to terminate just below the coastal reference.  
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Figure 6.  Sr:Ca life history transects for juveniles collected at Tolchester, grouped by 

similar transect pattern.  Overlay groupings were (a) Decreasing Sr:Ca values that  

terminate below the estuarine reference level, (b) Decreasing values that  exhibit a “dip” 

pattern, dropping below the estuarine reference before increasing to terminate near the 

estuarine reference, (c)  Transects that remain consistently high, resembling a near shore 

signature, (d)  Single transect that exhibits a dip pattern as in b, but terminates near the 

coastal reference level.
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Figure 7.  Overlay of all Chesapeake Biological Laboratory life-history Sr:Ca transects.   
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Figure 8.    Overlay of all near shore life-history Sr:Ca transects. 
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Repeated measures analysis of variance showed significant differences due to collection 

site and length class (Table 1).  Further, the interaction term was significant  (p=0.005) 

indicating that the transect pattern differed for at least one collection site in comparison to 

the others.  Sr:Ca values were not significantly different between any of the three 

collection sites for length classes 4-39 mm, 40-54 mm, 55-69 mm, and 70-89 mm (p = 

1.00 – 0.19) (Table 2).   In the >90 mm category, however, both estuarine sites had mean 

Sr:Ca values that were significantly lower than the near shore coastal samples (CBL: p = 

0.008, Tolchester:  p = 0.0004), but were not significantly different from each other (p = 

1.0) (Figure 9, Table 2).   

 Corresponding to results found in the repeated measures analysis, among region 

differences occurred in marginal (endpoint) Sr:Ca levels (Table 3).   Sr:Ca ratios from 

ocean-captured juveniles were significantly higher than those from individuals captured 

at the estuarine sites (p<0.0001 and p=0.0001).  The two Chesapeake Bay sites, however, 

were not discernible from each other (p = 0.71) . 

 

Discussion 

My results support Kendall and Walfords’ 1979 hypothesis that some subset of 

North American juveniles may remain in coastal waters the entire summer, and the 

population may not be obligatory estuarine users.  While the two Chesapeake Bay sites 

could not be statistically distinguished through repeated measures analysis of Sr:Ca 

transect or marginal point analyses, I could discern what appeared to be two gross 

patterns of  juvenile bluefish habitat use: 1) estuarine ingress from ocean waters followed 

by estuarine residency and 2) exclusive ocean residency.  
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Degrees of Freedom 
Source 

Numerator Denominator 
F p 

Collection Site 2 21 6.3 0.007 

Length Class 4 84 31.9 < 0.0001 

Collection Site *  
Length Class 8 84 3.0 0.005 

 
 

Table 1.  Test for effects for length class and collection site using repeated measures 

analysis of variance of Sr:Ca in otoliths of juvenile bluefish collected at Chesapeake Bay 

and near shore sites.  The autoregressive order 1 matrix was used to model covariance 

structure. 

 
 
 
 
 
 
 

 Length Class 

Comparison 4-39 
 mm 40-54 mm 50-69 mm 70-89 mm >90 mm 

CBL vs. Tolchester 1.0 1.0 1.0 0.9 1.0 

Near Shore vs. CBL 1.0 1.0 1.0 0.5 0.008** 

Near Shore vs. Tolchester 1.0 0.6 1.0 1.0 0.0004** 

 
 

Table 2.  Significance tests (reported as p values) for Tukey-Kramer multiple mean 

comparisons between mean Sr:Ca values by length stanza and collection site.  Asterisks 

denote that site comparison was significant. 
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Figure 9.  Mean Sr:Ca for length stanzas by capture location.  Significant differences 

were found only for the >90 mm stanza between near shore mean and estuarine site 

means. 
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Comparison Estimate Standard 
Error 

Degrees of 
Freedom t p 

CBL vs. Tolchester -0.00007 0.00008 25 -0.8 0.71 

Near shore vs. CBL -0.0005 0.00009 25 -5.8 <0.0001 

Near shore vs. 
Tolchester 0.0005 0.0005 25 5.0 0.0001 

 
 
 

Table 3.  Results of Tukey-Kramer adjusted comparisons of otolith Sr:Ca in marginal 

increments formed near  the time (and presumably location) of capture.   
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Differences between coastal and estuarine habitat use were apparent in qualitative 

observations of generalized transect patterns.  Most samples from the Chesapeake Bay 

were distinguished by a decreasing Sr:Ca transect profile at < 80 mm TL, with a large 

fraction of probe points below the 1.68 X 10-3 Sr:Ca estuarine reference at 60 – 110 mm 

TL, and terminal points  near or below the reference.  The near shore coastal group was 

distinguished by a continuously high profile with only a single transect point dropping 

below the 1.68 X 10-3 estuarine reference.  Outliers to these two general patterns were 

three juveniles captured at Tolchester with transect characteristics of bluefish captured in  

the near shore coastal zone.  These individuals might represent juveniles that rapidly 

switched between estuarine and coastal habitats, or perhaps did not approach the 

Tolchester site from the mouth of the Chesapeake.  The Chesapeake and Delaware Canal 

connects the upper Delaware Bay to the upper Chesapeake Bay (Elk River) via a 22.5 km 

waterway.  If juveniles transited first up the Delaware Bay, then passed through the canal 

prior to arriving at the Tolchester site, otolith Sr:Ca signatures may have differed from 

patterns observed in juveniles that arrived via the Chesapeake mouth.  Such juveniles 

could plausibly exhibit high otolith Sr:Ca signatures for an extended period prior to 

arrival at Tolchester, due to higher salinities that occur on the Delaware side of the canal 

(Kernehan et al. 1981). 

Consistent fine-scale patterns of estuarine ingress with size were not evident in 

transects of juveniles captured in the Chesapeake Bay.  Sr:Ca means were statistically 

distinct from near shore transects only at the >90 mm length stanza – much larger than 

the  50-60 mm TL juveniles that are commonly observed during early June in the 

Chesapeake Bay (see Chapter 2).   It is possible that the resolving power of our methods 
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were too coarse to capture an ingress event that may occur over a brief period of time.  A 

single microprobe point covers a number of daily increments, and the Sr:Ca value for any 

given point is in fact an average of several days.   In addition, length classes were fairly 

broad and a finer resolution here may have uncovered ingress patterns that occurred at 

smaller (or larger sizes).  Finally, there may be lags in the effect of changing salinity to 

when otolith Sr:Ca changes (Secor et al. 1995), which would tend to bias sizes at ingress 

towards larger lengths.  

The steeply dropping Sr:Ca pattern observed from the primordium to 

approximately 60-80 µm may be of ontogenetic origin.  A similar drop in Sr:Ca ratios has 

been  observed in several Anguillifomes species (Otake et al. 1994, Marui et al. 2001) 

and corresponds to metamorphosis between the leptocephalus and glass eel stages.   Hare 

and Cowen, in their 1994 examination of bluefish otolith microstructure, showed that 

during larval development flexion ends when otolith radii are between 50 and 100 µm, at 

approximately 10 days post-hatch.  This period is also marked by a change in the rate of 

increment formation in saggital and lapillar otoliths from 2:1 to 1:1.  Given an apparent 

interplay between the end of flexion and otolith formation rates, it is possible that the 

steep Sr:Ca drop stems from a physiological source (e.g., increased ability by gill 

chloride cells to discriminate against Sr), and the base of the cascade may also 

correspond to the end of flexion.  Further investigations are warranted to determine 

whether the early cascade is common in marine-spawning fish and to evaluate possible 

causes.  

The inverse trend between otolith Sr:Ca and salinity observed in my laboratory 

experiments, while unexpected, probably was consistent with ambient Sr:Ca levels in the 
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freshwater source, which were much higher than ambient Sr:Ca levels for the 

intermediate salinity treatment (Figure 10).    Other studies have documented that otolith 

Sr:Ca is linearly related to ambient Sr:Ca  (Thorrold et al. 1999; Bath et al. 2000).  A 

study conducted by Kraus and Secor (2004) at the same CBL rearing facility is 

particularly relevant.  They reared white perch, Morone americana,  in water obtained by 

mixing Patuxent river water with the groundwater, and observed  an inverse relationship 

between otolith Sr:Ca and salinity.  Through chemical analysis of the water, they 

determined that the groundwater feeding the Chesapeake Biological Laboratory’s 

freshwater system contained very low Ca concentrations and hence very high Sr:Ca 

ratios.  Thus, the low salinity treatment in their (and my) study in fact contained elevated 

Sr:Ca ratios leading to higher otolith Sr:Ca ratios (Figure 10).   This relationship between 

water Sr:Ca and otolith Sr:Ca confounds any relationship that might be expected between 

salinity and otolith Sr:Ca.   

Because of such findings, the near shore coastal transects with persistently high 

Sr:Ca should be interpreted with caution.  Some Atlantic Coast freshwater systems 

exhibit high Sr:Ca end members and in particular, freshwater in the Choptank River (and 

perhaps other DelMarVa estuaries) is known to be higher in Sr:Ca than the Chesapeake 

Bay mainstem (Kraus and Secor 2004).  Therefore, bluefish that use habitats in these 

estuaries might exhibit high levels of Sr:Ca throughout their life history transects.    The 

three anomalous Tolchester transects with near shore - like patterns are consistent with 

this interpretation.    

 In addition, other factors have been observed to affect otolith Sr:Ca levels.    
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Figure 10.    (a & b)  Otolith Sr:Ca and corresponding water Sr:Ca values in white perch 

(Morone americana) held experimentally at various salinity levels from Kraus and Secor 

2004.  (c) Otolith Sr:Ca values of juvenile bluefish held at 1.8 and 11.8 in (this paper). 
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Temperature has been found to exhibit a positive relationship with otolith Sr:Ca at 

temperatures over 10° C, although the effect of a one degree temperature change is very  

small  (0.1 X 10-3 change in Sr:Ca)(Campana 1999).  Stress, as evidenced by low 

condition factor, is also suspected to cause a rise in otolith Sr:Ca (Kalish 1992). 

Despite the cautions and possible confounding factors discussed, otolith 

microchemistry still may be a useful tool to discern coastal versus estuarine occupancy.   

At a minimum, my results suggest that the individuals captured along the Maryland coast  

likely did not partake in extended excursions into the Chesapeake Bay or other large 

estuaries.  Given the low recapture rates experienced by tag-recapture studies (Young et 

al. 1999; Able et al. 2003,) and the limitations of current electronic tagging technologies, 

otolith microchemistry methods may provide an important tool for identifying broad 

classes of habitat use by juvenile bluefish.  If these methods can be utilized in concert 

with wide-scale geographic analyses of water chemistry, they may provide an effective 

tool to further investigate if juvenile bluefish are capable of utilizing various habitats 

opportunistically, and to what degree they are indeed “estuarine dependent”. 
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CHAPTER 2 

 

COMPARATIVE GROWTH RATES AND COHORT REPRESENTATION IN THREE 

MARYLAND NURSERY SYSTEMS 1999-2001 
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Introduction 

 Bluefish (Pomatomus saltatrix) is a recreationally and commercially harvested 

species found in continental shelf waters, bays, and estuaries of the North American 

Atlantic seaboard from Florida to Nova Scotia. Landings and the abundance of juveniles 

have declined since the early/mid 1980s (Fahay et al. 1999, Munch and Conover 2001).  

Several hypotheses have been presented to explain declines in bluefish stocks including 

changes in oceanographic conditions and overfishing (MAFMC 1998).   Here, I consider 

the role of nursery habitat in sustaining bluefish population(s).  Such information is in 

keeping with U.S. priorities for evaluating the role of essential fish habitat in fisheries 

sustainability, but also bears on specific hypotheses about the importance of estuaries as 

nursery habitats for bluefish (Juanes et al. 1996, Fahay et al 1999).  

 Following an oceanic larval phase, juvenile bluefish arrive to mid- and south- 

Atlantic bight near shore coastal and estuarine nursery areas in two dominant pulses of 

similarly sized juveniles.  A spring-spawned cohort arrives in May though early June and 

a second, summer-spawned cohort arrives during July through September (Nyman & 

Conover 1988, Kendall and Waford 1979).  Two hypotheses have been advanced to 

explain the bimodal recruitment pattern: 1. Adults spawn during two distinct events 

during their spring migration from the Florida and Georgia overwintering areas to the 

north (Kendall and Walford 1979); 2. Spawning is a continuous protracted event that 

occurs throughout the seasonal migration, and the observed pulsed arrival of juveniles to 

nursery areas is the result of prevailing conditions, oceanographic transport and 

swimming capabilities of young juveniles (Hare and Cowen 1993).  The bimodal 

recruitment pattern has been observed in NY Bight and South Atlantic Bight estuaries 

 35



 

(Nyman and Conover 1988, McBride and Conover 1991, McBride et al.1993), but no 

studies are available for estuarine and nearshore coastal regions of Maryland.  Further, 

Hare and Cowen (1993) suggested that in systems between Cape Fear and Delaware Bay, 

an intervening cohort between the spring and summer cohorts might be observed. Here, I 

investigate this possibility by identifying specific cohorts in Maryland waters through 

analysis of hatch dates. 

 Literature on bluefish supports the view that estuaries function as the most 

important nursery habitat type, though investigators have not yet directly compared 

habitat values of partially mixed estuaries in comparison to lagoon or neritic habitats.  

Recent monitoring studies in NJ have observed high abundances of juvenile bluefish in 

surfzone habitats (Able et al. 2003), suggesting that shallow neritic habitats can support 

substantial recruitment by bluefish.   

 Metrics used to compare nursery function and habitat value include occurrence, 

abundance, growth, survival and production information (Beck et al. 2001).  Growth, in 

particular, has been commonly used to evaluate habitat value in a comparative 

framework, and growth rate is often cited as an important factor in the survival of 

juvenile fishes.  Faster growing individuals minimize predation mortality by passing 

through vulnerable size classes quickly (Houde 1987).   In addition, as a size-selective 

piscivorous species, rapidly growing juvenile bluefish can optimize capture of a wider 

range of preferred prey (Juanes and Conover 1994), allowing them to reach a larger 

maximum size by the fall.  As has been found for other species (Sogard 1997), 

individuals that are larger by the end of the first growing season may experience 

enhanced survival during the ensuing winter months (Juanes and Conover 1995). Given 
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the selective advantages of rapid growth, several studies have used juvenile growth rate 

as a comparative indicator of nursery area habitat quality (Sogard 1992, Burke 1993, 

Meng et al. 2001) 

 In this paper, I examine growth rate and relative cohort contribution of juvenile 

bluefish in three different nursery systems:  Chesapeake Bay, Maryland’s Coastal Bays, 

and Maryland’s nearshore (<20 m) areas, during three summer growing seasons.  I 

propose two hypotheses: 1. Growth rates will significantly differ between habitats, with 

Chesapeake Bay consistently exhibiting the highest rates, and 2. Hatch-date patterns will 

differ between systems, with the summer cohort dominating in the coastal system as 

suggested by Kendall and Walford’s seminal 1979 study.   

 To evaluate growth rates, I used size-at-age relationships but also evaluated the 

utility of using recent otolith growth as an indicator of somatic growth through a 

laboratory experiment.  Daily otolith increment deposition has been validated for bluefish 

(Nyman and Conover 1987).  Numerous studies have used the width of the most recently 

formed daily increments as an indicator of recent somatic growth (e.g., Burke et al. 1993, 

Zenitani 1999, Paperno et al. 2000).  However, it has been shown in some species that 

recent growth may not be directly related to somatic growth and may be influenced by 

other environmental or biological factors (Mosegaard et al. 1988, Secor and Dean 1989; 

Wright et. al 1990, Bradford and Geen 1992).  Therefore, if otolith growth is to be used 

to ascertain somatic growth, validation experiments should be conducted on a species by 

species basis (Secor et al. 1989).  To that end, we induced variable growth rates in 

laboratory-reared juvenile bluefish to relate recent otolith growth to known  somatic 
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growth rates.  If the relationship is direct, recent otolith growth could then be used as an 

indication of habitat quality for juvenile bluefish utilizing different nursery systems. 

 

Methods  

Description of Nursery Systems 

 The Chesapeake Bay is a large, physically heterogeneous, partially mixed estuary. 

The longitudinally oriented main stem is characterized by a salinity gradient that ranges 

from 0 at the head of the bay near the Susquehana River, to over 20  at the mouth near 

Cape Charles, VA (Schubel and Pritchard 1987).  This gradient may shift depending on 

amount of precipitation and resultant runoff.  The Bay is approximately 320 km long 

(north to south) and its surface area is approximately 11,000 km2, with 20 major 

tributaries.  Mean depth of the Chesapeake Bay is 6.4 m; however, areas within the 

longitudinally oriented channel may be up to 50 m deep.  It is also a moderate “salt 

wedge” estuary, with heavier, saltier water flowing upstream from the ocean in bottom 

waters, overlain by fresher water flowing seaward closer to the surface (Murdy et al. 

1997).  

 Maryland's portion of the DelMarVa system of coastal Bays are composed of five 

major lagoon-type bays situated on the western side of Fenwick and Assateague barrier 

islands.  Assawoman Bay and Isle of Wight Bay are situated behind Fenwick Island, 

north of the Ocean City Inlet.  Sinepuxent, Newport and Chincoteague Bays are located 

behind Assateague Island, south of the inlet.  In comparison to the Chesapake Bay, the 

MD Coastal Bays are relatively small and shallow: approximately 282 km2 in area, with a 

mean depth of 1.2 meters.  Due to the small watershed area and low tributary flows, there 
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is little freshwater input into the Coastal Bays (Bohlen and Boynton 1998).  Currents tend 

to be dominated by the tides and winds (Pellenbarg and Biggs 1970).  Thus, the salinity 

of the Coastal Bays tends to reflect that of the ocean, ranging between 26 and 31 in the 

main portions of the bays (Bohlen and Boynton 1998). 

 Maryland's surf zone and near shore areas are located on the Atlantic side of 

Fenwick and Assateague Islands. A sand bar runs parallel to surf zone beaches, creating a 

beach profile which drops into a trough a few meters from waterline, and rises onto a 

submerged bar roughly 4.5 to 7 meters offshore.  Rooted vegetation is absent in the surf 

zone, although unrooted vegetation does wash ashore following storm events. Wind, and 

wind-driven waves generally approach the barrier islands from the east or southeast 

(Pellenbarg and Biggs 1970).  During the spring, summer and fall months, swell height is 

typically under 1.3 meters.  Several remnants of jetties are located at intervals on 

Fenwick Island north of the inlet, and are partially to mostly buried by sand.   Two 

significant jetties were extant in the study area, located on either side of the Ocean City 

Inlet at the terminus of the two barrier islands. 

   

Field Sampling 

 Juvenile bluefish from littoral zone habitats (<2 m) were sampled at six sites on 

the Potomac River and three sites in the upper mainstem of the Chesapeake Bay, each 

sampled  monthly May – September 1999- 2001 using a 1.5 m X 30.5 m beach seine 

(Figure 11).  A tenth site on the Patuxent River at the Chesapeake Biological Laboratory 

in Solomons, MD was sampled weekly May through September.  The seine was extended 

perpendicularly from the shore to a depth of approximately 1.6 m, and then dragged in a  

 39



 

Fi
gu

re
 1

1.
  S

am
pl

in
g 

si
te

s f
or

  M
ar

yl
an

d 
bl

ue
fis

h 
nu

rs
er

y 
sy

st
em

s, 
19

99
-2

00
1.

 

 

 

 40



 

quarter circle sweep to shore.  If depths greater than 1.6 m were encountered, the seine 

was deployed along the depth contour parallel to the shore.  Collected bluefish were 

measured (total length, TL), enumerated, and preserved in 95% ethanol (ETOH) in the 

field, or held on ice.  Upon return to the laboratory, ETOH preserved fish were placed in 

fresh ETOH, and iced samples were frozen.  Otoliths were removed within 5 days of 

capture.    

 Chesapeake littoral zone bluefish were also obtained from the Maryland 

Department of Natural Resource's (MD DNR) Striped Bass Juvenile Index survey, 

conducted monthly from July through September at thirty-four sites distributed 

throughout the Maryland portion of the Chesapeake and its tributaries (Figure 11; 

http://www.dnr.state.md.us/fisheries/juvindex/#Indices). Gear type and gear deployment 

were similar between CBL collections and the DNR Striped Bass Juvenile Index.   Seven 

of these sites were revisited by our staff as noted above, and were therefore sampled 

twice a month during July, August and September 1999-2001.   

Bluefish juveniles occurring in deeper Chesapeake Bay habitats (3-30 meters) 

were sampled by the NSF Trophic Interactions in Estuarine Systems (TIES) surveys 

conducted by the Horn Point and Chesapeake Biological Laboratories of the University 

of Maryland Center for Environmental Science (Figure 11; 

http://www.chesapeake.org/ties/ties.html).  Collections were conducted throughout the 

mainstem of the Chesapeake Bay seasonally during spring (April-May), summer (June-

July) and fall (October) of 1995 and 2000 using an 18 m2 mouth opening mid-water trawl 

that was towed at depth intervals from surface to bottom for a total duration of 20 

minutes.  For this study, I used only bluefish captured during 1999 and 2000.  Littoral 
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zone habitats throughout the five main Coastal Bays (Chincoteague, St. Martins, 

Sinepuxent, Isle of Wight, Assawoman) were sampled monthly for bluefish juveniles at 

eighteen stations from June-September during the summers of 1999-2001.  During July 

and August, I conducted collections with a 1.5 m X 30.5 m beach seine.  Similar 

collections during June and September were conducted by the MD DNR Coastal Bays 

Finfish Investigation Project, using a 1.8 m X 30.5 m tarred bag seine. Additional 

bluefish were obtained from MD DNR’s Coastal Bays trawl collections, conducted once 

a month from April through October, 1999-2001 in areas where depths were greater 

than1 m.  The trawl was a 4.9 m semi-balloon otter trawl, and was towed for 6 minutes at 

20 sites distributed throughout the bays (Figure 11).   

 Coastal samples were taken at sites in both the surf zone (<2m) and the shallow 

near shore areas outside the surf zone (5-20m depth) on the Atlantic side of Maryland’s 

barrier islands.  Surf zone sites were sampled using a 1.8 m X 30.5 m tarred bag seine 

deployed parallel to the shoreline, and hauled perpendicularly onto the beach.  Nine 

stations were sampled monthly, June-September during 2000 and 2001. Three sites were 

located on Fenwick Island in Ocean City on beaches adjacent to 80th street, 41st street, 

and at the jetty on the immediate north side of Ocean City inlet.  Six evenly distributed 

sites were sampled in the National Park Service's portion of Assateague Island (Figure 

11).  In adjacent coastal areas, four sites were trawled along each of 3 depth strata 

(roughly <7 m, 7-12 m, and 13-20m).  Trawls were conducted using a 18 m2 mouth 

opening mid-water trawl, deployed in a similar manner to mid-water trawl deployments 

in the Chesapeake Bay (see above).  A total of twelve trawl deployments were completed 
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each month during August and September in 2000 and during June, August and 

September in 2001. 

 

Recent Growth Experiment 

 Juvenile bluefish were collected by seine at the Chesapeake Biological Laboratory 

near the mouth of the Patuxent River (Chesapeake Bay) in June 2001 and immediately 

transferred to flow-through tanks in the laboratory, which received ambient brackish 

water (salinity: 10-12).  Following a 2-week acclimation period, fish were immersed in a 

solution of alizarin complexone (20 mg L-1) for 10 hr, which deposited a fluorescent daily 

ring on the otolith that demarcated the initiation of the experimental period.   Juveniles 

were then randomly separated into 3 groups of 13 individuals, and assigned one of three 

feeding levels:  ad libitum (full ration), 70% full ration, and 40% full ration.  Initial 

weights and total lengths were not significantly different between treatment groups 

(ANOVA, p=0.34 and p=0.38 respectively).  Live Atlantic silversides, Menidia menidia, 

were provided as food.  Full ration was estimated prior to the experiment by dividing 

total weight of Menidia menidia consumed by total weight of bluefish given access to the 

prey over a 24-hour period.  The resulting maximum consumption rate estimate, 23% 

body weight per day at 26 °C, was within the range reported by Buckel et al. (1995) for 

similar-sized bluefish held at 27 °C.  Following the otolith marking procedure, each fish 

was also given a distinctive combination of clips on the first dorsal fin (spines), second 

dorsal fin, or anal fin.  Wet weight and total length were measured, and fish were placed 

into one of three 1000L flow through tanks, each tank corresponding to a different ration 

level.  There was no mortality during the marking and clipping procedure, and fish in all 
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tanks (treatments) appeared to feed immediately upon introduction of live Menidia 

menidia prey.  The experiment was terminated after 7 d and fish were euthanized in MS-

222, wet weighed, and measured (TL).  Upon inspection at the termination of the 

experiment, one individual from the full ration treatment was missing and was assumed 

to have slipped into the drain pipe and perished. 

  

Analytical Methods 

Saggital otoliths from field-collected and experimental fish were removed, 

cleaned in deionized water, dried and stored in vials.  Otoliths were then embedded in 

Spurr’s epoxy (Spurr 1969), sectioned across the transverse plane, and mounted on slides 

(Secor et al. 1992).  Sections were then ground to the core (earliest formed increment) on 

progressively finer grades of wet sandpaper, and given final polish using felt cloth and a 

0.3 µm aluminum oxide slurry. 

 For the recent growth experiment, all alizarin-marked otoliths were viewed under 

ultraviolet light with an epi-fluorescent compound microscope at 100X.  Measurements 

were made from the fluorescent mark to the otolith margin from images captured using a 

frame grabber and Optimas imaging software (Figure 12).  Total otolith growth for the 7 

day experiment was estimated as the mean of three replicate measurements taken in the  

region immediately adjacent to the dorsal side of the otolith’s sulcal ridge. Mean daily 

otolith growth was estimated as experimental otolith growth divided by 7.  Instantaneous  
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Figure 12.  Alizarin complexone marked otolith from the juvenile bluefish growth 

experiment, viewed under a microscope at 600X and ultraviolet light. The fluorescing  

alizarin complexone line demarcates  the beginning of the 7 day growth experiment.  

Sagittal otolith was sectioned in transverse plane. 
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growth rate (Busacker et al.1990) for length and weight was calculated for each fish as: 

G = [Ln (Wf)– Ln (Wi)]

                (t2 - t2) 

where Wf  was  total length (mm) or weight (g) at the end of the experiment and Wi  was 

the corresponding measure at the beginning of the experiment.   Somatic growth and 

daily otolith growth was compared across treatments using linear regression to evaluate 

the significance and strength of the positive relationship between the two variables.   

 Otolith daily ageing was conducted on field-captured bluefish to determine 

length-at-age for population growth rate estimates, and to determine hatch date for cohort 

assignment.  The entire sample was stratified by month and system, and the right or left 

otolith from a random sample of fish was selected. Because outer increments on  

otoliths from individuals >200 mm TL were very difficult to discern, we selected only 

fish ≤ 205 mm (preserved length).  Following otolith preparation as described above, 

increment counts were made under a compound microscope (transmitted light) at 60X or 

100X.    Age was calculated as the mean of blind triplicate counts, where the reader was 

not provided ancillary information about the sample.  For any given otolith, counts were 

accepted if the range of all counts fell within 10% of the mean.  If not, a fourth count was 

taken and the outlier count was not used.  If the fourth count did not result in an 

acceptable range, the otolith was excluded from analysis (Nyman and Conover 1988). 

 Hatch-date was calculated as date of capture minus mean daily age.   Hatch-date 

frequencies were decomposed into cohort modes using the NORMSEP procedure 

(Abramson 1971) included in the FiSAT II software package.  NORMSEP uses an 

iterative maximum likelihood estimation procedure to estimate means, standard 
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deviations, and separation indices of modes based upon initial mean estimates provided 

by the user.  Mode statistics were evaluated to identify  seasonal bluefish cohorts.  

Generally, modal means must be separated by > 2  standard deviations  to be considered 

distinct (Gulland and Rosenberg 1992).   

 Size-at-age relationships were used to model growth rate differences between 

cohorts, as defined by modal analysis, and between systems and years.  In some 

instances, total length was affected by ethanol (ETOH) preservation, and a conversion 

formula was used to correct preserved lengths.  In the laboratory, total length was 

measured both before and following preservation for a sub-sample of field-collected  

bluefish, and the relationship was fit with  a least squares linear regression (r2 =0.99) 

(Figure 13).  The resulting conversion formula between preserved and fresh total lengths 

was:  

Fresh length (mm) = (ETOH  Length) * (1.06) – 2.7 

  

 Growth rates were estimated from linear regressions of length-at-age (Ricker 

1975). Analysis of covariance was conducted  to evaluate year and system differences in 

size, adjusted for the covariate age.   Slopes were compared in pair-wise comparisons.  

Elevations (intercepts) of regressions not significantly different in slope were compared  

using a Tukey-Kramer comparison test on covariate adjusted means (Day and Quinn 

1989). Regressions from the 2001 Chesapeake Bay and 2001 Coastal Bays summer 

cohorts were excluded from comparisons due to small sample sizes (N=2 and N=1 

respectively). 

 47



 

y = 1.06x - 2.7
r2 = 0.99
N= 95

0

50

100

150

200

250

300

0 50 100 150 200 250 300

EtOH Total Length (mm)

Li
ve

 T
ot

al
 L

en
gt

h 
(m

m
)

 

 

Figure 13.  Least squares linear regression of live (fresh) total length on ethanol 

preserved total lengths for juvenile bluefish. 
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 Hatch-date distributions were examined between years and systems through 

contingency table analysis.  Hypotheses were constructed to test 1) if the relative 

frequency of cohorts was similar for all systems within a given year, and 2) if the relative 

frequency of cohorts was the same within a system across years.  Since most contingency 

tables contained more than 20% of cells with expected frequencies <5, Fisher Exact Test 

was used to evaluate hypotheses.   Juveniles were assigned into cohort categories 

depending on hatch-date.  Cohort categories were defined based on hatch frequencies 

observed in other studies (Nyman and Conover 1988, McBride and Conover 1991, 

McBride et al. 1993), and based on the modal analysis results of our data.  Hatch dates 

from 1-March through 21-May were categorized as spring-spawned (“spring”), from 12-

June through 31-August were considered summer-spawned (“summer”), and those with 

hatch dates from 22-May through 11-June were considered to have been spawned in the 

interim (“intermediate”).     

 

Results  

Recent Growth Experiment  

 Somatic growth responded more strongly to ration treatments than did otolith 

growth.  All treatment levels exhibited significantly different growth rates in weight 

(p<0.0001;  p=0.03; Figure 14).  Growth rate in length was significantly higher for the 

full ration treatment compared to the other two treatments (p=0.014 and 0.035).  In 

contrast, otolith growth was distinct only between the 100% and 40% treatments  
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Figure 14.  Daily otolith growth, and daily somatic growth rates of juvenile bluefish 

provided 40%, 70%, and 100% rations.   For each graph, treatments with different letter 

labels had significantly different mean values (Tukey Multiple mean comparison test; α = 

0.05).  Bars denote one standard error. 
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otolith growth (40% ration, 17.5% C.V.; 70% ration, 15.6% C.V.; 100% ration, 12.3% 

C.V.) than for either weight (40% ration 44.2% C.V.; 70% ration, 54.5 % C.V.; 100% 

ration,14.9% C.V.) or length (40% ration, 56.9 % C.V.; 70% ration, 91.6%C.V.; 100% 

ration, 22.7% C.V.) specific growth rates. 

 Although the regression between otolith growth and somatic growth was 

significant and positive (p=0.016 and 0.013), less than 15% of the variation in somatic 

growth was explained  (TL: r2 = 0.13; Weight: r2 = 0.14).  The weak relationship is 

reflected in the extremely wide 95% prediction intervals (Figure 15).  Thus over the 

range of observed growth rates (0 – 3.0 mm/day), recent otolith growth could not be used 

to confidently predict among recent somatic growth that varied as much as 3-fold among 

juvenile bluefish.  

 

Cohort Representation 

 Hatch-date modes indicative of the spring and summer cohorts similar to those 

observed in other studies were also observed in my study during a number of years and 

systems, but in some instances modes were observed that intervened between spring and 

summer cohorts, with tails spreading into both the spring and summer date ranges (Figure 

16). Typical pulsed hatch date patterns were observed in the Chesapeake Bay during all 

years, in the Coastal Bays during 1999 and 2000, and in the coastal Atlantic area in 2000, 

with hatch-date means in late March to mid April for the “spring” cohort (March-May), 

and in mid/late June for the “summer” (June-August) cohort (Figure 16).  During 2001,

 51



 

Daily Otolith Growth (µm)

y = 2.35x – 1.31
rr2 2 = 0.14= 0.14
p = 0.01

y = 0.053x – 0.52
r2 = 0.0.13
p = 0.02

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

0.06

0.04

0.02

0.00

-0.02

-0.04

In
st

an
ta

ne
ou

s 
G

ro
w

th
 R

at
e 

(g
)

In
st

an
ta

ne
ou

s 
G

ro
w

th
 R

at
e 

(T
L,

 m
m

)

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.5 2.0 2.5 3.0 3.5 4.0 4.5

 

Figure 15.  Least squares linear regressions of somatic daily specific growth rates versus  

daily otolith growth rate for experimentally reared juvenile bluefish.  Upper and lower 

95% prediction intervals are shown.  
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the Coastal Bay sample appeared to depart slightly from this pattern with a later spring 

mean (early May), but the mode fell within the confines of the March-May-spawned 

spring cohort.  A single individual with a July hatch date may have represented the 

summer cohort (Figure 16).   Two system-year combinations exhibited anomalous 

distributions, which I defined as an “intermediate” cohort: the Coastal Bays in 2000, and 

the coastal Atlantic in 2001.  The 2000 Coastal Bays, though appearing bimodal, lacked a 

distinct gap between cohorts.   The 2001 coastal Atlantic hatch-date distribution ranged 

from late April through early July, spanning across what is typically considered the 

spawning dates of both spring and summer cohorts (Figure 16).    

 In most years, the relative frequencies of spring, summer and intermediate cohorts 

were different between systems.  Fisher’s exact test was marginally significant in 1999 

when the coastal Atlantic system was not sampled (p=0.05) (Table 4), and highly 

significant in 2000 and 2001 when all systems were compared (p<0.001)(Table 5, Table 

6). When the frequencies were tabulated for  2000 and 2001 without the coastal Atlantic 

system,  the 2000 comparison of relative proportions of cohorts did not show significant 

differences between the Chesapeake and Coastal Bays (p=0.1).  Regardless of system 

examined, the relative frequencies of cohorts across years within a single system differed 

significantly (p<0.0001 –  p=0.003) (Table 7, Table 8, Table 9).  Spring and summer 

cohorts where similarly represented in 1999 in Coastal Bays and Chesapeake Bay 

samples, and in the 2000 Coastal Bay sample.  The spring cohort dominated in two of the 

three years sampled in the Chesapeake Bay (2000, 2001), and in one of three years in the 

Coastal Bays (2001).  The coastal near shore sample had hatch dates skewed towards the 

early summer months in both years sampled (2000, 2001).
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Year 1999 

Cohort Chesapeake Bay MD Coastal Bays 

Spring 
20 

26.3% 
52.6% 

18 
23.7% 
47.4% 

Intermediate 
0 

0% 
0% 

6 
7.9% 
100% 

Summer 
17 

22.4% 
53.1% 

15 
19.7 

46.9% 

 

Table 4.  Contingency table testing the null hypothesis that the frequency of cohorts 

is independent of system during 1999 (Fischer’s Exact test:  p=0.05).  Cohorts were 

categorized as “spring” (1-March - 21-May), “intermediate” (22-May -11-June), and 

summer (12-June - 31-August).Values in each cell are frequency (top), percent of 

total (middle), percent for row (bottom).  
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Year 2000 

Cohort Chesapeake Bay MD Coastal Bays Coastal Near Shore 

Spring 
31 

31.0% 
56.4% 

21 
21.0% 
38.2% 

3 
3.0% 
5.4% 

Intermediate 2 
2.0%18.2% 

3 
3.0% 

27.3% 

6 
6.0% 

54.6% 

Summer 
3 

3.0% 
8.8% 

9 
9.0% 

26.5% 

22 
22.0% 
64.7% 

 

Table 5.  Contingency table testing the null hypothesis that the frequency of cohorts 

is independent of system during 2000 (Fischer’s Exact test p<<0.001).  Cohorts were 

categorized as “spring” (1-March - 21-May), “intermediate” (22-May -11-June), and 

summer (12-June - 31-August).  Values in each cell are frequency (top), percent of 

total (middle), percent for row (bottom).   
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Year 2001 

Cohort Chesapeake Bay MD Coastal Bays Coastal Near Shore

Spring 
38 

31.9% 
45.8% 

24 
20.2% 
28.9% 

21 
17.7% 
25.3% 

Intermediate 
2 

1.7% 
9.1% 

8 
6.7% 

36.4% 

12 
10.1% 
54.6% 

Summer 
1 

0.8% 
7.1% 

1 
0.8% 
7.1% 

12 
10.1% 
85.7% 

 

Table 6.  Contingency table testing the null hypothesis that the frequency of cohorts 

is independent of system during 2001 (Fisher’s Exact test p<<0.001).  Cohorts were 

categorized as “spring” (1-March - 21-May), “intermediate” (22-May -11-June), and 

summer (12-June - 31-August).  Values in each cell are frequency (top), percent of 

total (middle), percent for row (bottom).   
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Chesapeake Bay 

Cohort 1999 2000 2001 

Spring 
20 

17.5% 
22.5% 

31 
27.2% 
34.8% 

38 
33.3% 
42.7% 

Intermediate 
0 

0% 
0% 

2 
1.8% 

50.0% 

2 
1.8% 

50.0% 

Summer 
17 

14.9% 
81.0% 

3 
2.6% 

14.3% 

1 
0.9% 
4.8% 

 

Table 7.  Contingency table testing the null hypothesis that the frequency of cohorts 

within the Cheseapeake Bay is independent of year (Fisher’s Exact test:  p<<0.001).  

Cohorts were categorized as “spring” (1-March - 21-May), “intermediate” (22-May -

11-June), and summer (12-June - 31-August).  Values in each cell are frequency 

(top), percent of total (middle), percent for row (bottom).  
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 Coastal Bays 

Cohort 1999 2000 2001 

Spring
18 

17.1% 
28.6% 

21 
20.0% 
33.3% 

24 
22.9% 
38.1% 

Intermediate
6 

5.7% 
35.3% 

3 
2.9% 
17.7% 

8 
7.6% 
47.1% 

Summer
15 

14.3% 
60.0% 

9 
8.6% 
36.0% 

1 
1.0% 
4.0% 

 

Table 8.  Contingency table testing the null hypothesis that the frequency of cohorts 

within the MD Coastal Bays is independent of year (Fisher’s Exact test:  p=0.003).  

Cohorts were categorized as “spring” (1-March - 21-May), “intermediate” (22-May -

11-June), and summer (12-June - 31-August).  Values in each cell are frequency 

(top), percent of total (middle), percent for row (bottom).   
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Coastal Near Shore 

Cohort 2000 2001 

Spring
3 

4.0% 
12.5% 

21 
27.6% 
87.5% 

Intermediate
6 

7.9% 
33.3% 

12 
15.8% 
66.7% 

Summer
22 

29.0% 
64.7% 

12 
15.8% 
35.3% 

 

Table 9.  Contingency table testing the null hypothesis that the frequency of cohorts 

within the coastal near shore region is independent of year (Fisher’s Exact test:  

p<<0.001).  Cohorts were categorized as “spring” (1-March - 21-May), 

“intermediate” (22-May -11-June), and summer (12-June - 31-August).  Values in 

each cell are frequency (top), percent of total (middle), percent for row (bottom).   
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Growth Rate Comparisons 

 Growth rates ranged from 1.45 mm d-1 (coastal Atlantic “intermediate” cohort 

2000) to 2.63 mm d-1 (near shore summer cohort 2000; Figure 17).  Sizes ranged from 44 

mm to 214 mm, and ages from 41 to132 days.  All system and cohort-specific length on 

age regressions were significant (p<0.0001 to p=0.004) with the exception of the 2000 

Chesapeake summer cohort (p=0.1), which had very low representation in our sample 

(n=5).  Growth rates for the 2001 Chesapeake Bay and Coastal Bays summer cohorts 

were not examined due to their low representation in our sample.  Growth rates compared 

between systems did not exhibit statistically consistent patterns among years.  Growth 

rates were consistently higher in the Chesapeake Bay (2.03-2.49 mm d-1) in comparison 

to the Coastal Bays (1.70-1.96 mm d-1), but differences were not statistically significant 

in any year (Figure 17).  In 2000, the near shore area exhibited the highest mean growth 

rate (2.63 mm d-1) of all three systems (ANCOVA; p<0.003), and in 2001 the anomalous 

“intermediate” cohort exhibited the slowest growth  (1.45 mm d-1)  of all systems, 

although the difference was only significant when compared to the Chesapeake Bay 

(spring cohort, p= 0.005). 

 Spring and summer cohorts compared within a single system and year grew at 

similar rates.  Across systems, the summer cohort was consistently larger at age, and 

significantly so for both the Chesapeake (p=0.01) and Coastal Bays (p<0.0001) in 1999 

(Figure 17).  When compared across years, growth rates in the Chesapeake Bay and 

Coastal Bays were statistically parallel (equivalent slopes) for all cohorts with the 

summer cohort larger at age than the spring cohort.  Since individuals observed in the 
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 coastal near shore system in 2000 and 2001 were assigned to different cohorts, 

comparisons were not made between cohorts for that system.    

 

Discussion  

 This study illustrates that geographically proximate nursery habitats (estuary, 

lagoon, nearshore neritic) can differ substantially in habitat value, and that juvenile 

recruitment patterns may shift from year to year and from system to system.  

Simultaneous examination of diverse Maryland nursery systems through several years 

suggested that while juvenile bluefish cohort abundances may  result from  pulsed spring 

and summer spawning as hypothesized by others (Collins and Stender 1987, Kendall and 

Walford 1979), in some instances juveniles could not be placed into either of the 

traditionally defined spring or summer cohorts.  Like the varying contributions of 

juvenile cohorts, growth rates varied significantly among systems, but in a manner that 

varied year to year.    

 Hatch-date analyses suggested that the segregation of spring, summer and 

intermediate cohorts may shift dynamically between years and systems within our study 

region.  In this study, a pulsed recruitment pattern was observed in every system during at 

least one year.  However, the coastal near shore and Coastal Bays nurseries exhibited 

arguably semi-continuous hatch-date frequency distributions during 2001 and 2000, 

respectively.  During 2001 in the coastal near shore area, I also observed an intervening 

cohort not clearly classified as “spring” or “summer”. Such an intervening cohort would 

lend support to the “continuous-spawning” hypothesis by Hare and Cowen (1993).   
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Studies on recruitment dynamics of bluefish in estuaries of the northern Mid-Atlantic 

Bight (Nyman and Conover 1988, McBride and Conover 1991) and the South Atlantic 

Bight (McBride et al 1993) have observed peak hatch dates in April and late June/early 

July for the spring and summer cohort respectively.   However, high numbers of eggs 

and/or larvae have been observed in shelf waters immediately north of Cape Hatteras 

during May and June (Norcross et al. 1974, Smith et al. 1994, Hare and Cowen 1996).   

Maryland’s coast at the southern end of the Mid-Atlantic Bight may be more accessible 

for young spawned during the intervening month of June, whereas  the arrival of 

juveniles from southern Mid-Atlantic Bight spawning areas to New Jersey and New York 

coastlines may be less likely.   

 Prior to entry into nursery areas, growth rates are likely higher for the summer 

cohort than for the spring cohort, resulting in summer cohort members that are generally 

larger at age (Figure 17).  McBride and Conover (1993) concluded that faster larval or 

early juvenile oceanic growth rates resulted in the differential size pattern between spring 

and summer spawned juveniles utilizing New York estuaries.  They attributed the slower 

growth of the spring cohort to lower temperatures encountered as they were advected 

northward from the South Atlantic Bight during March and April.  The summer cohort 

would be expected to experience higher temperatures during their larval and early 

juvenile periods in Mid-Atlantic and New York Bight continental waters during July and 

August.   

  The consistent, albeit non-significant, higher growth rates observed in the 

Chesapeake Bay compared to the Coastal Bays suggested that growth conditions may be 

better for juvenile bluefish in the Chesapeake Bay.  Higher temperatures have been 
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shown to induce elevated growth rates in juvenile bluefish up to 30°C in the laboratory 

(Buckel et al. 1995).  Still, mean temperatures were quite similar in the two systems, with 

slightly higher temperatures in the Coastal Bays during 2000.  Mean temperatures as 

measured at sampling sites from April through September in the Chesapeake Bay were 

24.4 °C in 1999, 24.0°C in 2000, and 25.9°C in 2001.  In the Coastal Bays, they were 

23.3°C in 1999, 25.3°C in 2000 and 25.3°C in 2001.  Juvenile bluefish growth may also 

be affected by the quality of prey consumed.  Teleost prey affords faster growth than an 

invertebrate-dominated diet (Juanes and Conover 1994a) possibly due to higher foraging 

costs.  In addition, juvenile bluefish are more successful at capturing smaller individuals 

(Juanes and Conover 1994b).  If fish prey of a preferred size is less available in the 

Coastal Bays, juveniles may resort to foraging on invertebrates as they do in other 

systems (Juanes et al. 2001), and may grow at slightly lower rates than in the Chesapeake 

Bay.  Diets are being characterized from samples collected in the three nursery systems in 

a separate study and will be used to evaluate this possible explanation for growth rate 

differences (Secor et al., unpubl. data). 

 Compared to other regions along the Atlantic coast, field growth rates observed in 

the Chesapeake Bay and coastal shore areas are the highest reported in the literature.   

(Table 10).  Long-term mean temperatures recorded by NOAA buoys during the spring, 

summer and early fall are warmer in the Chesapeake and shallow coastal region off 

Maryland, in comparison to the more northerly locations from which most growth rates 

have been reported (Figure 18).  I suspect that warmer temperatures and an abundance of 

major prey (Clupeids, Engraulids, and Atherinids) (Juanes et al. 1994, Juanes and 

Conover 1995, Harding and Mann 2001) combine to facilitate very rapid growth.  
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Study Region Estimation Method Growth Rate  
(mm d-1) 

Nyman and Conover 1988 NY Length – capture 
date regression 1.3 

McBride and Conover 1991 NY & NJ Length - age 
regression 0.6 - 1.5 

McBride et al. 1993 NC – FL Length - age 
regression 1.2 - 1.9 

Juanes and Conover 1994 Great South Bay, 
NY 

Length – capture 
 date regression 1.4 

Creaser and Perkins 1994 ME Length – age 
regression 0.7 - 1.3 

McBride et al. 1995 Narragansett 
Bay, RI 

Length – capture 
date regression 0.9 – 2.1 

Able et al. 2003 NJ Tag and recapture 0.1 - 2.2 

This Study MD Length – age 
regression 1.5 – 2.6 

 

Table 10.  Field growth rates (mm d-1) reported in the literature for juvenile bluefish from 

various areas in the Mid-Atlantic region. 
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Figure 18.  Long term mean temperatures as measured from NOAA buoys 

(http://www.ndbc.noaa.gov/) located in near shore coastal areas on the Mid-Atlantic 

Coast.  Buoy station number and years included in mean calculation indicated in 

parentheses. 
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 The laboratory growth experiment indicated that recent somatic growth is only 

coarsely represented in otolith growth.  Because otolith growth did not tend to be as 

responsive to feeding levels (growth conditions) as somatic growth, otolith increment  

growth would be expected to index only the most divergent somatic growth rates when 

approximately 2.5-fold differences in somatic growth rate were observed.  Published 

growth rates for field-captured bluefish juveniles (0.7 - 2.06 mm d-1, Creaser and Perkins 

1994, McBride et al. 1995) span the range within which we found detectable differences 

in weekly otolith growth.   Still, most past studies that have compared growth rates 

between groups of juvenile bluefish (i.e. years, cohorts, nursery areas), including the 

present study, span a narrower range (Nyman and Conover 1988, McBride and Conover 

1991, McBride et al. 1993).  These smaller somatic growth differences would not be 

detectable based upon otolith growth indices. 

 Otolith growth was significantly, albeit weakly correlated with somatic growth.  

Significant regressions indicate proportional otolith and somatic growth, but otolith 

growth explained <15% of the variance in somatic growth.  Past studies of other species 

have found similarly weak relationships between otolith and somatic growth suggesting 

other influencing effects.  In particular, studies have found a lagged response of otolith 

growth to somatic growth rates (Secor et al. 1989, Molony and Choat 1990, Paperno et al. 

1997).  After growth was altered by ration treatments, weakfish (Cynoscion regalis) 

growth exhibited a much tighter relationship to otolith growth during the second week 

(r2=0.73) when compared to the first (r2=0.42) (Paperno et al. 1997).  Similarly, glass fish 

(Ambassis vachelli) otolith growth showed a detectable response after approximately 2 

weeks following ration reduction (Molony and Choat 1990).  On the other hand, Secor et 
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al. (1989) observed very complex non-linear relationships between otolith and somatic 

growth in spot (Leiostomus xanthurus), dependent upon past feeding history. During the 

2-week acclimation period before our experiment, all bluefish were fed Menidia menidia 

ad libitum.  The low coefficient of determination levels found during the 1-wk 

experimental period might have been an artifact of the favorable growth conditions 

provided during the acclimation period.   If so, our results suggest that recent otolith 

growth in juvenile bluefish may not track abrupt and sequential changes in feeding 

regimes that juveniles may encounter in the field.  The utility of recent otolith growth as a 

measure of recent growth rate in the field is therefore probably not accurate on the scale 

of days or weeks (Secor et al. 1989; Bradford and Geen 1992).  

In conclusion, growth rate and cohort contribution patterns differed among years 

and among nursery systems even within a relatively restricted geographic region.  In 

some years, the Maryland coastal near shore areas may provide nursery habitat for an 

intervening early summer hatch group that has not been observed in past studies in the 

northern Mid-Atlantic or the South-Atlantic Bights.  Overall, growth rates were slightly 

higher in the Chesapeake Bay than in the Coastal Bays, suggesting more favorable habitat 

and feeding conditions.  The coastal near shore area may provide a nursery area with 

variable growth conditions from year to year, but in one year (2000) supported a growth 

rate exceeding that reported for any North American system  in the literature .  Finally, 

individual estimates of recent growth rate may not be adequately estimable through 

recent otolith growth, particularly over short time scales (days to weeks).   
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Chapter 3 

 
 

HISTORICAL RECRUITMENT PATTERNS OF JUVENILE BLUEFISH TO THE 

MARYLAND PORTION OF THE CHESAPEAKE BAY AND MARYLAND 

COASTAL BAYS
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Introduction 

 Juvenile bluefish, Pomatomas satatrix are generally known to recruit to estuaries 

and near shore coastal environments throughout the Mid- and South Atlantic Bights of 

North America during the summer months in a bi-modal pattern (Kendall and Walford 

1979).  Groups of spring-spawned juveniles typically arrive inshore by late spring/early 

summer (May-July), and a second mode of summer-spawned juveniles arrives during late 

summer/early fall (August-September).  During the ensuing summer months, juveniles 

reside in estuaries and sheltered near-shore areas where they remain until the fall when 

they migrate to coastal over-wintering regions in the South Atlantic Bight (Wilk 1977).     

 Published studies have examined the relative strengths of the spring and summer 

cohorts to elucidate spawning and survival patterns, and to evaluate whether relative 

cohort strength may influence the population dynamics of bluefish (Munch and Conover 

2000, Conover et al. 2003).  Most research has focused on juveniles or adults collected in 

areas from New Jersey northward and have found that the spring cohort is generally more 

abundant than the summer cohort (i.e. Nyman and Conover 1988, Creaser and Perkins 

1994, McBride et al. 1995).  Fewer studies have examined relative cohort strengths south 

of New Jersey, and those that have, have found conflicting cohort dominance patterns.  

McBride et al. (1993) observed that the spring cohort was slightly more numerous in a 

combined 1979-1990 sample of 43 aged juveniles captured in North and South Carolina. 

Lassiter (1962)  back-calculated  length at age 1 for older adults captured in North 

Carolina during 1960 and 1961 and suggested similar recruitment rates to the adult 

population by  spring and summer juvenile cohorts produced during the late 1950s 

(Lassiter, 1962).  Munch and Conover’s (2000) synoptic study of the U.S. Atlantic Coast 
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included juveniles collected during the fall from near shore areas south of New Jersey 

during 1973-1995 and reported that the spring cohort dominated in all years but 1992.  

However, in the region just south of Chesapeake Bay mouth, a non-significant correlation 

between the state (estuarine) and federal coastal indices, and an unusually low 

representation of the summer cohort led Munch and Conover to believe that the early fall 

sampling by the federal monitoring program may have preceded juvenile emigration from 

the estuaries, leading to an under-representation of summer cohort abundance.  To my 

knowledge, the relative abundance of bluefish cohorts has not yet been compared in 

Maryland estuarine and coastal nursery areas.  

 Oceanographic processes likely play a strong role in juvenile bluefish recruitment 

patterns to nursery areas of the Mid-Atlantic coast, as bluefish spawning occurs near the 

edge of the continental shelf.  During the spring, peak abundances of larvae are observed 

in the South Atlantic Bight south off Cape Hatteras near the Gulf Stream, and during the 

summer, peak concentrations are observed north of Cape Hatteras over the middle 

continental shelf (Kendall and Walford 1979, Hare and Cowen 1993).   Larvae and young 

juveniles make their way from offshore spawning areas towards near shore and estuarine 

nursery areas of the Atlantic Coast, and recruitment to nursery areas is likely influenced 

by oceanographic factors including wind stress, buoyancy-driven currents, and the flow 

of the Gulf Stream (Epifanio and Garvine 2001).   Such transport mechanisms, rather 

than the timing of adult spawning, have been suggested to be responsible for the pulsed 

appearance of spring- and summer- spawned groups to coastal areas (Hare and Cowen 

1993).  For example, Munch and Conover (2000) found that wind stress directed to the 

southwest was positively related to spring cohort abundance along the coast.   Given 
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oceanic regime differences between the Mid- and South- Atlantic Bight, and given 

Maryland’s location just north of the Cape Hatteras transition area, the relative 

abundance of spring and summer juveniles in Maryland may differ from those observed 

in the northern areas of New York and New Jersey. 

 The Maryland Department of Natural Resources (DNR) has conducted long-term 

fish surveys in two major estuaries of the state: the Maryland Coastal Bays and the 

Chesapeake Bay.  The Maryland Coastal Bays are a connected network of 5 coastal 

lagoons accessible to the Atlantic via two narrow inlets located 56 kilometers apart.  The 

Department of Natural Resources has conducted trawl and beach seine fin-fish 

monitoring in the Coastal Bays since 1972 with the aim of characterizing the relative 

abundance of juveniles and adults, and to delineate nursery habitats (Casey et al. 1999).   

In the Maryland portion of the Chesapeake Bay, the DNR has conducted a juvenile index 

survey for striped bass since 1954 that has also been used to calculate relative abundances 

of other species, including juvenile bluefish 

(http://www.dnr.state.md.us/fisheries/juvindex/#Indices).  In this paper, I use portions of 

these long-term data sets to compare the relative abundance of the spring and summer 

cohorts of juvenile bluefish within each estuary through time.  I also compared the two 

systems to examine if similar patterns of abundance are apparent in these geographically 

proximate, but physically separated systems.  I hypothesized that the spring and summer 

cohorts will be more evenly represented in comparison to the spring-cohort domination in 

northern areas.  I also suspected that the Chesapeake Bay and Coastal Bays might exhibit 

similar cohort representation, given the proximate location of their bay mouths. 
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Methods 

Surveys and Data Selection 

 The DNR striped bass juvenile index survey has been conducted since 1954 at 

sites distributed throughout the Maryland portion of the Chesapeake Bay.  Only data 

collected after a 1966 method standardization was used, when site locations and sampling 

frequency were standardized.  Collections were conducted during July, August, and 

September at 22 permanent sites (Figure 19) using a consistent sampling protocol.  A 

30.5 m x 1.24 m beach seine (without bag) was extended perpendicular from shore and 

swept in the direction of the current in a quarter circle towards the beach.  If water depth 

exceeded the height of the seine, the offshore end was set along the 1.6 m depth contour.  

Two replicate seine hauls were conducted at each site, with approximately 30 minutes 

elapsing between hauls.  A total of 44 hauls was therefore conducted during each month.  

The DNR Coastal Bays finfish survey has been conducted since 1972 using both 

seine and otter trawl gears. Seining technique was similar to that used in the Chesapeake 

Bay survey, using a 30.5 m x 1.8 m tarred bag seine. Trawl sampling was conducted 

using a 4.9 m semi-balloon otter trawl, towed for six minutes at stations in water at least 

1 meter deep.  Seine surveys were standardized after 1989.  Prior to standardization, the 

number of seine hauls completed per year ranged from 1-35 and the number of trawls 

ranged from 3-103. During some years sampling was not conducted throughout the 

summer.  Therefore, this analysis was restricted to the1990-2000 seine samples, when 19 

permanent seine sites (Figure 19) were sampled twice a year during the summer (June or 

July) and early fall (September).  Trawl sampling was also standardized in 1990, and 20 

sites have been sampled monthly from April through October.  For both gear types, 
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Figure 19.  Maryland Department of Natural Resources sampling sites in the Maryland 

portion of the Coastal Bays (upper right), and Chesapeake Bay (lower left).  In Coastal 

Bays, triangle denotes sites sampled with 4.9m otter trawl, and circles denote sites 

sampled with 30.5 X 1.8 m tarred seine with a bag.  In Chesapeake Bay, circles denote 

sites sampled with a 30.5 X 1.24 beach seine without a bag. 
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sampling was not replicated at sites during each survey as it was in the Chesapeake Bay.    

 Due to sampling and data limitations, only a subset of the Chesapeake Bay data 

set was used.  In the Chesapeake Bay since 1966 total length measurements were 

recorded only for a varying proportion of all captured bluefish.   Because length data  

was essential to assign cohort membership, years where less than 50% of the total sample 

was measured were excluded from analysis.  This criterion led to the exclusion of data 

from three years: 1973, 1976 and 1982.  For remaining years, the numbers of spring and 

summer spawned bluefish were calculated based on the measured sub-sample using an 

age-length key (see below).  The proportion of each cohort was then extrapolated to the 

remaining unmeasured fish, resulting in an estimate of the total number of each cohort 

captured each year. In Coastal Bay samples after 1990, all juvenile bluefish captured 

were measured for total length.    

 Catch per unit effort (CPUE) estimates for cohorts were restricted to the months 

following their respective appearance in estuaries (McBride and Conover 1991, McBride 

et al. 1995).  CPUE was calculated as the mean number of fish per haul, and only fish 

smaller than 300 mm were considered young-of-the-year.    For the Chesapeake Bay 

survey, spring cohort CPUE was based upon July catches, and summer cohort CPUE was 

based upon pooled August and September catches (Table 11). For the Coastal Bays 

surveys, spring-cohort seine CPUE was based upon catches during June or July, and 

spring-cohort trawl CPUE was based on pooled catches from June and July.  Summer-

cohort CPUE in the Coastal Bays was based on September catches for seine sampling, 

and on pooled August and September catches for trawl samples.  
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Spring Cohort CPUE Summer Cohort CPUE System and/or 
Gear 

Timing No. 
Hauls 

Timing No. 
Hauls 

Chesapeake Bay 
Seine July 44 August and September 88 

Coastal Bays 
Seine 

June (1993-2000) or 
July (1990-1992) 19 September 19 

Coastal Bays 
Trawl June and July 40 August and September 40 

 

 

Table 11.    Sampling timing and total number of hauls used to calculate juvenile bluefish 

cohort CPUE values for the Chesapeake Bay and Coastal Bays.   Sampling was 

conducted by the Maryland Department of Natural Resources. 
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Age-Length Key  

 Juveniles captured during May, June or July in Chesapeake Bay and Coastal Bay 

samples were assumed to be members of the spring cohort (McBride et al 1995, McBride 

et al. 1993, Nyman and Conover 1988).   During August and September, it was  

necessary to establish a demographic criterion for separating spring and summer cohorts.  

Juvenile bluefish catches in the Chesapeake Bay and Maryland Coastal Bays were much 

lower than those reported from New Jersey and New York estuaries (Nyman and 

Conover 1988, McBride and Conover 1991, Juanes and Conover 1995), precluding the 

use of length-frequency analysis to distinguish cohorts.  In addition, error may be 

introduced when attempting to assign cohort membership based on length alone.     

Nyman and Conover (1988) observed a bimodal length frequency pattern in juvenile 

bluefish samples collected on July 30 in the Hudson River; however, a sub-sample aged 

from both modes was spawned only during the spring season.  In samples I collected 

during September of 2000 and 2001 from Maryland’s shallow coastal areas (Chapter 2), 

bimodal length frequencies were observed.  Otolith aging, however, suggested that at 

least some of the individuals in the larger length mode were in fact spawned during the 

summer months (Figure 20). An age-length-key was therefore constructed to separate 

members of each cohort for individuals collected after 1 August. 

 A separate age-length key was constructed for each system using 1999-2001 age 

and length data (see Chapter 2 for ageing methods and sample details).   Seine and trawl 

samples were collected during those years from both systems, and a randomly selected 

sub-sample of juvenile bluefish was aged using otoliths.  Within a system, slopes of age 

(in days) on length regressions were compared between years and no significant year  
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Figure 20.  Length frequencies for bluefish collected during September 2000 and 2001 

from inshore coastal areas off Maryland.  Dark and light grey bars denote a sub-sample 

which was aged directly (otoliths), and for which cohort membership was determined.  

White bars denote length frequencies for all captured. 
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effect was found (ANCOVA p=0.36, p=0.67 Chesapeake Bay and Coastal Bays 

respectively).  Therefore, data from years were combined to create a regression-based 

age-length-key for each system.  Both regression slopes were significant (Chesapeake: p 

< 0.0001, r2 = 0.79; Coastal Bays: p < 0.0001, r2 = 0.72) (Figure 21), and were used to 

estimate age from length of juveniles in the historical data sets.   Hatch date was 

estimated by subtracting daily age from date of capture.  First increment formation was 

assumed to occur at hatch (Hare and Cowen 1994). Juveniles with estimated hatch dates 

from 1 March-31 May were categorized as members of the spring cohort, and those with 

hatch dates from 1 June-31 August were considered to be members of the summer cohort 

(McBride and Conover 1991).   

 A small number of individuals in the historical data set were larger than any in the 

sample used to construct the key.  However all were captured in September, and were 

over 230 mm in the Chesapeake Bay and over 220 mm in the Coastal Bays.  This was 

much larger than maximum lengths observed in September for summer spawned 

juveniles aged in this study (Chapter 2, Chesapeake Bay: 176 mm, Coastal Bays: 171 

mm), and in other studies (125 mm McBride and Conover 1991, 140 mm Nyman and 

Conover 1988).  These individuals were, therefore, assumed to belong to the spring 

cohort. 

 

Data Analysis 

 The age-length-keys were also used to estimate hatch dates for the construction of 

age-frequency histograms.  Ages were estimated for all directly measured individuals,  
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Figure 21.  Age on length regressions for the Chesapeake Bay (top) and Maryland 

Coastal Bays (bottom) used to estimate age for juvenile bluefish in historical data sets.  

Regressions were based on otolith aged juveniles collected during 1999-2000 in the same 

systems (see Chapter 2). 

 82



 

and were binned into weekly (7 day) intervals.  Data was pooled in each system for all 

years where length data was available, and was also broken into 5-year intervals. 

Histograms were then constructed from the pooled data, and visually inspected for the bi-

modal hatch date patterns indicative of pulsed spring and summer spawning.    

 Correlation analysis was used to examine if cohorts and systems exhibited similar 

patterns of abundance across years within and between systems.  Within each system, 

correlations were examined between spring- and summer-cohort CPUE’s for seine-

captured juveniles.    Within the Coastal Bays, trawl and seine spring-cohort CPUE’s 

were also compared to investigate if the different gears exhibited similar patterns of 

abundance.   The trawl summer-cohort CPUE values were not used for comparison 

because non-zero values were observed in only 4 of 11 years.  Since several cohort-

system combinations exhibited non-normality even after attempting several 

transformations, the non-parametric Spearman rank correlation test was used to evaluate 

the significance of the relationships. 

 Chesapeake Bay CPUE data was also compared with ln(CPUE) data from a Mid- 

and northern South Atlantic Bight-wide coastal study of juvenile bluefish recruitment 

from 1973-1995 (Munch 1997).  The study utilized data from the National Marine 

Fisheries Service (NMFS) groundfish survey.  Also, only data from the fall sampling 

period (September-October) was used in an attempt to capture the fall emigration of 

juvenile from coastal areas.  Spearman rank correlation was used to test the relationship 

between the Chesapeake Bay estuarine data and the Munch (1997) ln(CPUE) coastal data 

for the regions defined in Munch (1997) and Munch and Conover (2000): Cape Hatteras 

to the Chesapeake Bay (including the mouth), Chesapeake Bay to Delaware Bay, north of 
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Delaware Bay to Cape Cod, and the aggregated coast-wide region from Cape Hatteras to 

Cape Cod.   

 The relationship between juvenile bluefish recruitment in Chesapeake Bay with 

the North Atlantic Oscillation Index (NAO) was also investigated through correlation 

analysis.  The large-scale atmospheric pattern over the North Atlantic is known to affect 

wind, air temperature and precipitation amongst other atmospheric variables in North 

America (Hurrell et al. 2003).  Through these variables, NAO also indirectly influences 

circulation and physical characteristics of the Atlantic marine environment (Visbeck et al. 

2003), and has been shown to affect abundances of marine organisms, including several 

fish species (Drinkwater et al 2003).   Oceanographic and wind variables have been 

correlated with recruitment of juvenile bluefish including Gulf Stream warm core ring 

streamers, shelf warming rate (Hare and Cowen 1996), and northeast wind stress (Munch 

and Conover 2000).  Juvenile bluefish, Chesapeake Bay CPUE was therefore compared 

to an NAO index based upon the sea level pressure difference between Lisbon (Portugal) 

and Stykkisholmur (Iceland) during December-March (Hurrell 1995, 

http://tao.atmos.washington.edu/data_sets/nao/), to investigate if any correlation exists 

between the climatic pattern and recruitment.  

 Differences in spring-cohort mean total length were compared between systems 

and between gears in the Coastal Bays during years when July samples were available for 

both systems and gear types.  Data from years were pooled because, for any single year, 

catches were typically very low (<6) for at least one of the systems compared. Only 

seine-captured bluefish were used for the comparison of mean size between systems.  

Comparisons were conducted for pooled data from 1981, 1988, 1990, 1991 and 1992.  
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After normality was confirmed with the Shapiro-Wilks W test, mean sizes were then 

compared using the two-sample t-test.   

 

Results 

 Cumulative frequency histograms of estimated hatch dates are clearly bimodal for 

the Coastal Bays (1990s) (Figure 22, Figure 23), and generally unimodal for the 

Chesapeake Bay (Figure 24, Figure 25).  Histograms for the Chesapeake Bay separated 

into 5-year intervals appear similar (unimodal) in shape, with the arguable exception of 

the 1970s.  The 1970-1974 and 1975-1979 periods in the Chesapeake Bay have some 

evidence of bimodal distributions, albeit without clear nadirs between modes (Figure 25).  

Juveniles spawned after June are largely absent in the late 60s (1965-1969), and the 

1990s.  During the remaining intervals (1962-1964, 1980-1984, 1985-1989), hatch dates 

extend from mid-March through late June or early July, peaking in late April/early May.  

In contrast, both intervals examined in the Coastal Bays (1990-1994 and 1995-1999) are 

bimodal, with mean hatch dates in mid-April and mid/late June (Figure 23). 

 In both systems, the spring cohort was nearly always present in higher or nearly 

equivalent abundance when compared to the summer cohort.  Neither system showed 

discernable trends in their time series with respect to the relative contribution of cohorts.  

In the Chesapeake Bay, this was the case for all years examined (Figure 26).   During 15 

of the 23 years examined, the spring cohort in the Chesapeake Bay was typically several-

fold more frequent in collections than the summer cohort.  During blocks of years when 

the spring cohort appeared in relatively low abundance (1967-1970, 1991-1996), the 

CPUE’s of the two cohorts was nearly equivalent.   The spring-cohort abundance in the 
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Figure 22.  Estimated juvenile bluefish hatch-date frequencies for the Maryland Coastal 

Bays historical data, pooled from 1990 through 1999. 
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Figure 23.  Estimated juvenile bluefish hatch-date frequencies for the Maryland Coastal 

Bays historical data, pooled in 5-year intervals (1990-1994 upper panel, 1995-1999 lower 

panel).   
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Figure 24. Estimated juvenile bluefish hatch-date frequencies for the Chesapeake Bay 

historical data.  Data is pooled from 1966-2002. 
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Figure 25.  Estimated juvenile bluefish hatch-date frequencies for Chesapeake Bay 

historical data, pooled in 5-year intervals.  

 89



 

0

1

2

3

4

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

Chesapeake Bay

Year

C
P

U
E

Spring 
Summer

 

 

Figure 26.  Time series of spring- (filled circles) and summer- (open circles) juvenile 

bluefish cohort CPUE values from 1967-2001 for the Chesapeake Bay.   Data was 

excluded for years when less than 50% of all captured juveniles were measured.  This 

was the case for 1973, 1976 and 1982. 
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Chesapeake Bay was also more variable, with the summer cohort exhibiting consistently 

low CPUE values (spring cohort coefficient of variation (c.v.) = 120%, summer cohort 

c.v. =  98%). In the Coastal Bay seine samples, the spring cohort dominated in all but 

three years (Figure 27).  During 1990, 1991 and 1997, the summer cohort appeared 

slightly more numerous in both trawl and seine samples, a pattern not observed in the 

Chesapeake Bay.   Trawl gear also appeared to be much less effective at capturing YOY 

bluefish in the Coastal Bays, and catch mean in every year for both cohorts was less than 

1 per haul.  In several years, trawl sampling failed to capture any members of the summer 

cohort.  Still, trawl samples also showed a pattern of higher spring-cohort CPUE during 

most years.  

 Correlations between cohort CPUEs by gear or system were not significant.  The 

relationship between the spring- and summer-cohort CPUE was not significant for seine- 

collected juveniles in either system (Figure 28).  Non-significant results were also 

observed between trawl and seine gears compared within the Coastal Bays for the spring 

cohort, and for seine-collected spring juveniles compared between the two systems 

(Figure 29). 

 The Chesapeake Bay spring cohort was significantly correlated with the Munch 

(1997) ln(CPUE) spring cohort data from the same region (Cape Hatteras to Chesapeake 

Bay), and with the coast-wide (Cape Hatteras to Cape Cod)  region (Table 12).  It was 

also marginally correlated with the ln(CPUE) Chesapeake to Delaware Bay region spring 

cohort data (p=0.09). Chesapeake Bay summer cohort CPUE was not significantly 

correlated to any region’s summer cohort ln(CPUE) in the Munch and Conover study 

(Table 12).   No relationship was observed between the NAO index and either the spring 
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Figure 27.    Time series of spring- (filled circles) and summer- (open circles) juvenile 

bluefish cohort CPUE values from 1990-2000 for the Maryland Coastal Bays.   Seine 

collections are included in the top panel and trawl collections are included in the bottom 

panel. 
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Figure 28.  Spring- versus summer-cohort CPUE correlations (Spearman Rank 

correlation) for seine-collected juvenile bluefish captured in the Chesapeake Bay (1967-

2001) and Maryland Coastal Bays (1990-2000). 
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Figure 29.  Spearman Rank correlation comparisons of bluefish cohort CPUE between 

seine and trawl gear in the Coastal Bays (top panel), and between the Chesapeake Bay 

and Coastal Bays (bottom panel).  Comparison between systems was restricted to the 

spring-cohort collected by seine. 
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 SOC CD SNE CW 

Chesapeake Bay 
(spring) 

0.75
0.0002**

19

0.41
0.09

19

0.33
0.17

19

0.64 
0.003** 

19 

Chesapeake Bay 
(summer) 

0.25
0.58

7

0.13
0.62

17

-0.20
0.40

19

0.05 
0.83 

19 
 

 

Table 12.  Results of Spearman Rank correlations between juvenile bluefish Chesapeake 

Bay CPUE’s (this study) and ln(CPUE) values from Munch (1997).  Chesapeake Bay 

was compared with ln (CPUE) by regions defined as follows (Munch and Conover 2000, 

Munch 1997):  SNE=Southern New England, CD=Chesapeake Bay to Delaware Bay 

(including Delaware Bay mouth), SOC=South of Chesapeake Bay (from northern tip of 

Chesapeake Bay mouth to Cape Hatteras), and CW = Cape Hatteras to Cape Cod.   Range 

of years is 1973-1995.  Each cell contains the following values:  r (top), p (middle), N 

(bottom).  Asterisks denote significance at the α=0.05 level.  
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or summer cohort in the Chesapeake Bay (spring: r  = -0.13, p = 0.5, summer: r  = -0.06, p 

= 0.76). 

Mean size of juvenile bluefish between gear types was not significantly different 

in the Coastal Bays (p = 0.1) or between systems during July (p = 0.61).  Mean size of 

trawl-captured individuals from the Coastal Bays appeared to be somewhat larger than 

those captured by seine (trawl=151.3 mm, seine=121.1 mm).  However standard 

deviations were large (trawl=28.9, seine = 51.5) and there was no statistical difference in 

mean size at the α=0.05 level. 

 

Discussion 

 As has been observed in other coastal areas along the Atlantic seaboard (Chiarella 

and Conover 1990, McBride et al.1993, Munch and Conover 2000), the spring cohort 

appears to dominate juvenile bluefish recruitment in major Maryland estuaries during 

most years.  This was particularly evident in the Chesapeake Bay, where the summer 

cohort showed consistently low CPUE and where the spring cohort contributed the 

majority of total bluefish captured.  Abundances of both cohorts appeared low and largely 

equivalent during the 1990s, and I did not observe a consistent switch in numeric 

dominance from the spring to the summer cohort as observed by Conover et al. (2003) 

during that decade.    

 Uncorrelated spring- and summer-cohort abundances indicate that either (1) 

dynamic factors govern recruitment of these groups to the Chesapeake Bay, or (2) 

perhaps entirely different sets of factors regulate the abundance of each cohort.   

Hydrographic transport mechanisms have been evaluated as factors that might strongly 
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influence larval and young juvenile transport into estuarine nurseries, and such 

temporally changing factors could differentially influence recruitment of cohorts hatched 

at different times.  For example, Munch and Conover (2000) found strong correlations 

between winds directed towards the south-west and spring cohort CPUE, but the 

relationship was not significant for the summer cohort.   Gulf Stream warm-core ring 

streamer activity has been found to be positively related to spring cohort recruitment 

(Hare and Cowen 1996), and has been modeled as a plausible mechanism for southern-

spawned spring-cohort larvae entrained in the Gulf Stream to cross the slope sea (Hare et 

al. 2002).   Clearly, wind stress and streamer activity would differ in duration, direction, 

frequency, and magnitude during the June-August period north of Cape Hatteras as 

summer spawning occurs (Hare and Cowen 1993, Kendall and Walford 1979), and could 

result in summer-cohort recruitment that appears decoupled from spring-cohort 

abundance. 

 Additional physical mechanisms may influence juvenile recruitment to the 

Atlantic Coast.  Buoyancy driven flow, for example, is a primary transport agent for 

organisms along the shelf of the Mid- and South Atlantic Bights (Epifanio and Garvine 

2000), and is a factor not considered in previous studies that have examined the 

relationship between juvenile bluefish recruitment and hydrographic mechanisms.  The 

spatial scope of these flows can be extensive, particularly from major estuaries such as 

the Delaware and Chesapeake Bay systems.  Evidence of the Chesapeake Bay outflow, 

for example, has been detected 100 km distant from the Bay’s mouth (Rennie et al. 

1999).  Modeling of blue crab larvae has indicated that the Delaware Bay outflow has the 

potential to both advect larvae to the south, or under the proper conditions, sweep them 
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northward back to Delaware waters (Garvine et al. 1997).   The Chesapeake Bay outflow 

has been observed to have similar physical features to the Delaware outflow (Marmorino 

et al. 2000), and its behavior coupled with wind events is thought to influence the 

recruitment of shelf-spawned larvae to the Chesapeake Bay (Reiss and McConaugha 

1999).   

Alternatively, it is possible that that shorter-term, localized (near shore) 

mechanisms, such as outflow events, also play a role in regulating recruitment to nursery 

areas, in addition to the large-scale, far field oceanographic patterns investigated in 

previous studies (Hare and Cowen 1993, Hare and Cowen 1996, Hare et al. 2001).   Such 

phenomena could result in differential recruitment patterns between physically proximate 

systems, as we observed with the spring cohort in the Chesapeake and Coastal Bay 

systems.  This hypothesis would support Munch and Conover’s (2000) findings that 

patterns of juvenile abundance tended to be correlated between adjacent regions on the 

Atlantic Coast, but were not correlated between more distant areas.   It would also 

support my finding that the Chesapeake Bay CPUE data were significantly correlated 

only with their data from adjacent regions and coast-wide data.  The Coastal Bays receive 

very little freshwater input (Bohlen and Boynton 1998) and currents tend to be controlled 

by winds and tides (Pellenbarg and Biggs 1970), rather than buoyancy driven currents.  

Given the additional differences of bathymetry and area, the hydrographic conditions at 

Ocean City Inlet are likely different from those at the Chesapeake Bay mouth.  As such, 

although studies restricted to individual systems may not yield accurate estimates of 

coast-wide year-class-strength, if they are coupled with localized oceanographic 
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observations, they may provide insight into regional transport mechanisms that regulate 

juvenile entry to estuarine habitats. 

Interestingly, historical hatch-date frequency patterns in the Chesapeake Bay 

during a number of 5-year intervals from the 1960s through the 1990s did not show signs 

of bimodal recruitment, but were rather unimodally distributed from mid-March to early 

July, or were truncated to include only early-spawned juveniles.   Possibly, this result 

could be an artifact of the hatch-date estimation procedure I employed.  Error could have 

been introduced if historical estuarine juvenile growth rates or pre-estuarine larval growth 

rates were significantly different from those of the 1999-2001 data used to construct the 

regression age-length-key.  Since the bimodal hatch dates for the Coastal Bays during the 

90s appear to be shifted to periods slightly earlier than expected for the summer cohort, a 

similar effect may have occurred in the Chesapeake Bay.  

Aging error could have also produced unimodal hatch-date frequencies from 

frequencies that were actually bimodal, if ages for younger fish were over estimated.  

This would have occurred if sub-daily otolith increments were erroneously included in 

daily age estimates.  However, this seems unlikely given that daily otolith increments of 

juvenile bluefish are most distinct and most clearly separated at the youngest ages (closer 

to the primordium).   The bimodal pattern clearly observed in the Coastal Bays during the 

1990s, also indicates that the methods employed were capable of producing a histogram 

indicating the presence of two cohorts.  Thus, historical data suggests that Chesapeake 

Bay recruitment in the past may not have consistently exhibited the pulsed pattern 

observed elsewhere. 
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Another explanation for the unimodial hatch date distribution may be that only 

spring- and early summer-spawned juveniles utilize the Chesapeake.  During the 90s, 

most juveniles captured in the Chesapeake were spawned mid-June or earlier, whereas 

Coastal Bays samples included those with July birthdates.   In 2000 and 2001, I observed 

similar results with directly aged samples.   Few juveniles with later hatch dates were 

observed in the Chesapeake, although they were observed in the Coastal Bays, and/or 

inshore coastal collections during the same year (Chapter 2).  Possibly, later spawned 

juveniles may avoid migrating up the 120 km or longer distance to reach Maryland 

portions of the bay.  Under September and October photoperiod conditions, juvenile 

bluefish have been shown to exhibit increasing proclivity for cooler water temperatures 

(Olla et al 1985), a response that may lead to their annual southern migration in the fall.   

Juveniles hatched after mid-July, arriving at inshore areas during late August, early 

September, and possibly October (Able et al. 2003), may avoid migrating through the 

lower Chesapeake Bay into upper Bay regions where water temperatures are warmer than 

those of the coast. They may instead remain in cooler lower bay and/or coastal waters as 

daylight hours become shorter, in preparation for the fall southern migration.   

The relatively low numbers captured by trawl in the Coastal bays suggest either 

that the trawl capture efficiency is low, or juvenile abundance outside of littoral habitats 

in these shallow bays is low.  Different gear types have been shown to reveal variable 

capture efficiency and differing patterns of abundance for other species (Michaletz 1994, 

Van Den Avyle et al. 1995).    Buckel and Conover (1997) observed juvenile bluefish 

preference for shore habitats over deeper ones during daylight hours in the Hudson River 

estuary.  Because all sampling was performed during the day, my results could also 
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reflect this diel habitat preference rather than relative efficiency between seine and trawl 

gear types.    

The slightly larger individuals captured in deeper areas by trawl in the Coastal 

Bays, though not significant, are similar to results of other studies suggesting that 

bluefish may partition habitat based on size.  In coastal habitats, larger individuals tended 

to be captured in deeper areas (Munch 1997, Able et al. 2003).   

This study provided insight into the historical recruitment patterns of juvenile 

bluefish to two major Maryland estuaries, a region where information on this life stage is 

lacking.   It also revealed that even physically proximate nurseries may exhibit differing 

patterns of abundance through time, and that patterns in this region may differ from those 

observed elsewhere.  Considering the widespread habitat use of this coastally harvested 

species and the remaining questions on which nursery regions primarily influence 

recruitment, further recruitment studies in all geographic areas of its range are necessary 

to understand population dynamics for sustainable management of the species.
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