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Climate has long been recognized as an important driver of phytoplankton 

dynamics. In Chesapeake Bay, climate variability is manifest as differences in timing 

and magnitude of freshwater flow. Interannual differences of freshwater flow 

influence phytoplankton through effects on light and nutrient distributions. 

Understanding how climate forces temporal and spatial patterns of phytoplankton 

biomass (Chla) and primary productivity (PP) is an important area of research as we 

attempt to predict effects of climate change and nutrient enrichment on estuarine 

ecosystems. This Dissertation describes climate forcing of Chla and PP using a 

synoptic climatology to quantify climate variability and ocean color remote sensing to 

assess phytoplankton variability. I developed a synoptic climatology using surface 

sea-level pressure data for the eastern United States to characterize regional climate 

because large-scale climate indices are not strongly expressed in this region. The long 

time series (1989-2004) of remotely sensed ocean color measurements provided high 



  

spatial and temporal resolution that allowed me to resolve interannual differences of 

Chla and PP. I show that the frequency-of-occurrence of synoptic-scale weather 

patterns during winter explained 54% of the variance in spring freshwater flow to 

Chesapeake Bay through interannual differences in precipitation and water storage in 

the basin as snow and ice. Winter weather patterns were also linked to interannual 

variability of several characteristics of the spring phytoplankton bloom (timing, 

position, magnitude) through their effects on precipitation and freshwater flow. 

Multiple linear regression models of winter weather pattern frequencies on regional 

Chla explained between 23-89% of the variance of the time series. Climate variability 

in winter-spring also influenced summer and annual integral production through 

nutrient loading associated with the spring freshet, explaining between 43-62% of the 

variance of integral production. Finally, I quantified the effects of Hurricane Isabel on 

Chesapeake Bay phytoplankton dynamics and showed that event-scale climate 

perturbations can have significant impacts on ecosystem dynamics as well as seasonal 

and regional carbon cycling. Together these analyses highlight the importance of 

climate forcing of Chla and PP in Chesapeake Bay and support predictive models that 

explain significant amounts of the variance of these important ecosystem properties. 
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Introduction 
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Climate has long been recognized as an important driver of phytoplankton 

dynamics on a variety of spatial and temporal scales (Cushing and Dickson, 1976). In 

the mid-Atlantic, climate is highly variable (Yarnal and Leather, 1988) and leads to 

commensurate variability at a number of trophic levels (Harding, 1994; Kimmel and 

Roman, 2004; North and Houde, 2003). Freshwater flow in rivers entering estuaries is 

an important expression of climate variability (Cayan and Peterson, 1993); 

influencing many aspects of ecosystem structure and function (Kimmerer, 2002). 

Malone et al. (1988) showed that flow from the Susquehanna River, the major source 

of freshwater to Chesapeake Bay, explained a significant amount of the variability of 

phytoplankton biomass (Chl a), and that nutrient loading associated with the spring 

freshet also affected the summer maximum of primary productivity (PP). Harding and 

Perry (1997) developed simple statistical models of regional Chl a from independent 

variables (freshwater flow, salinity, and temperature) to hind-cast Chl a conditions for 

earlier decades and separate variability associated with climate from a long-term 

trend linked to nutrient overenrichment. More recently, Harding et al. (2002) showed 

that interannual variability of annual integral production (AIP) was correlated with 

freshwater flow and nutrient loading in winter-spring. While these studies give 

evidence that freshwater flow plays an important role in Chesapeake Bay 

phytoplankton dynamics, I believe a more direct and comprehensive measure of 

climate variability may improve our ability to predict Chl a and PP. This Ph.D. 

Dissertation describes studies of climate forcing of Chl a and PP, using a synoptic 

climatology to quantify climate variability and drawing on extensive data from ocean 

color remote sensing to assess phytoplankton variability. This is an important area of 
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research as we attempt to predict effects of climate change and nutrient enrichment on 

estuarine and coastal ecosystems (Cloern, 2001).  

Climate, defined as the average weather a region experiences (Stenseth et al., 

2003), has both direct and indirect influences on phytoplankton dynamics through 

temperature, cloud cover, precipitation, and wind. For example, temperature directly 

affects rate processes i.e., growth, primary productivity (Lomas et al., 2002), but 

indirectly affects phytoplankton through grazer activity (Smayda et al., 2004). Cloud 

cover directly affects incoming solar radiation and thereby light availability to 

phytoplankton (Cushing and Dickson, 1976). Precipitation leads to freshwater flow 

with concomitant inputs of nutrients and sediment, affecting light and nutrient 

conditions (Cloern et al., 1983), while also influencing optimal salinity habitat for 

grazers (Kimmerer, 2002). Wind controls the average light phytoplankton experience 

via vertical mixing/stratification (Kirk, 1994) and inputs of nutrients from below the 

nutricline in stratified waters (Venrick et al., 1987). These properties of climate act in 

combination, possibly synergistically, to influence phytoplankton dynamics. 

In Chesapeake Bay, the annual cycle of phytoplankton has been related to 

interannual differences of freshwater flow (Malone, 1992), primarily through effects 

on light and nutrient distributions along the north-south axis of the Bay (Harding et 

al., 1986). The annual maximum of biomass as integrated, water-column Chl a is 

observed during the winter-spring diatom bloom. The timing, position, and magnitude 

of the bloom all vary as a function of flow during the preceding winter months 

(Harding, 1994). The summer maximum of PP does not co-occur with the biomass 

maximum, but is indirectly related to winter-spring flow and associated nutrient 
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loading through estuarine circulation and benthic-pelagic coupling (Kemp and 

Boynton, 1984). The observation that Chl a is maximal in spring while PP peaks in 

summer has been attributed to differential responses of the phytoplankton 

communities (Malone et al., 1988). Growth rates are temperature-limited in spring so 

that phytoplankton compensate for increased nutrient concentrations by increasing 

biomass in the absence of strong grazing (biomass compensation; Malone et al., 

1996). Conversely, during summer phytoplankton respond to inputs of regenerated 

nutrients through changes in growth rate at high summer temperatures (rate 

compensation; Malone et al., 1996). I observe this annual cycle as a Chl a maximum 

consisting of large diatoms in spring that dissipates by summer and is followed by a 

PP peak composed of flagellates and smaller diatoms in summer. 

I recognize the role of freshwater flow in determining spatial and temporal 

variability of phytoplankton in estuaries generally (San Francisco Bay-Cloern et al., 

1983; Neuse River estuary-Rudek et al., 1991; Gulf of Mexico-Justić et al., 2003), 

and Chesapeake Bay specifically (Malone et al., 1988; Harding, 1994). Climate 

principally underlies variability of freshwater flow, despite changes imposed by water 

regulation at dams for power or flood control and water withdrawals for agriculture or 

human consumption. Unlike flow that is simple to gauge, climate variability and 

effects on weather patterns cannot be described by a single weather element such as 

temperature or precipitation. Climate indices provide comprehensive measures of 

environmental influence that improve on individual weather measurements by 

consolidating multiple aspects of weather (wind, temperature, precipitation) into a 

simple diagnostic variable that describes coincident spatial and temporal responses of 
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those weather parameters (Stenseth et al., 2003). The importance of large-scale 

climate variability defined by indices such as El Niño/Southern Oscillation (ENSO), 

North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO) has gained 

attention in recent years (Stenseth et al., 2002). These large-scale indices have 

documented effects on marine ecosystems (phytoplankton and higher trophic levels) 

in many areas, including the equatorial Pacific (ENSO; Cane, 1983; Barber and 

Chavez, 1983; Chavez et al., 1999), the North Atlantic (NAO; Hurrell, 1995; Barton 

et al., 2003; Ottersen et al., 2001), and the North Pacific (PDO; Mantua et al., 1997; 

Royer et al., 2001). Remotely sensed data on ocean color and temperature have 

improved our understanding of how these ocean-atmosphere interactions drive 

phytoplankton dynamics (Behrenfeld et al., 2001). However, in some areas, such as 

the mid-Atlantic region of the Eastern United States, large-scale climate indices are 

not strongly expressed and sub-continental processes assume greater importance in 

forcing local meteorological conditions (Tootle, 2005). This is not to suggest that 

large-scale climate patterns do not influence the mid-Atlantic, but rather that these 

forcings are manifested through changes in regional scale weather. 

An alternative way to characterize climate variability at smaller spatial (1,000-

2,500 km) and temporal scales, while retaining the comprehensive information 

incorporated in climate indices, is to create a synoptic climatology based on regional 

atmospheric circulation. Synoptic climatology is a statistical approach to quantify and 

classify atmospheric circulation patterns and is used as a regional alternative to large-

scale climate indices (Yarnal, 1993). The input data are typically daily sea-level 

pressures, but a variety of other pressure surfaces have been reported in the literature 
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(Yarnal et al., 2001). This method condenses the large volume of data associated with 

atmospheric circulation into definable, commonly experienced weather patterns, and 

integrates the effects of individual meteorological parameters related to each of the 

patterns. 

The overall goal of this dissertation was to develop quantitative relationships 

between climate and phytoplankton dynamics in Chesapeake Bay. I developed a 

synoptic climatology using surface sea-level pressure data for the eastern United 

States to categorize and quantify regional climate variability. Data on phytoplankton 

Chl a and PP were obtained from remotely sensed ocean color measurements 

spanning nearly two decades of highly variable climate forcing. The long time series 

and high spatial and temporal resolution of the data allowed me to resolve interannual 

differences of Chl a and PP that were attributable to regional climate forcing. The 

four research chapters of this dissertation; (1) describe the synoptic climatology and 

reconcile winter weather patterns with precipitation and freshwater flow using a water 

balance model; (2) document climate forcing of the spring bloom in Chesapeake Bay 

by quantifying the effects of winter climate on seasonal and interannual variability of 

phytoplankton biomass; (3) relate climate variability in winter-spring to PP in 

summer using integral measures of production (summer, annual); (4) demonstrate 

how event-scale climate perturbations such as hurricanes significantly impact 

phytoplankton dynamics with consequences for the ecosystem. 

Chapter 2 describes the methods used to create a ‘synoptic climatology’ from 

surface sea-level pressure data for the eastern United States (Yarnal, 1993) and 

addresses the question, ‘what scales of climate variability drive interannual 
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differences in freshwater flow for the Susquehanna River’. I show that the magnitude 

of spring discharge is not related to large-scale indices of climate variability, such as 

ENSO or NAO, but rather is quantitatively related to the frequencies and types of 

‘synoptic-scale’ weather patterns affecting the region. Winter weather patterns 

explained 54% of the variance of spring freshwater flow for the study period (1950-

2002). The predictive power of this approach, i.e., winter weather explaining spring 

freshwater flow, is related to the fact that precipitation falling in the watershed in 

winter is largely stored in the basin as snow and ice and released in the spring when 

temperatures increase (Najjar, 1999). 

Chapter 3 applies the synoptic climatology to spring bloom dynamics. The 

working hypothesis was that regional-scale weather patterns would explain a 

significant amount of the interannual variability of the spring bloom. I used data on 

four measures of phytoplankton biomass: surface, photic-layer, water column, and 

total Chl a to show that the forcing was expressed in several relevant measures of 

spring bloom intensity. Phytoplankton data were obtained from remotely sensed 

ocean color measurements of the Chesapeake Bay Remote Sensing Program 

(CBRSP) spanning 16 yrs (1989-2004), combined with shipboard data for validation 

and to generate depth-integrated measures of biomass. Years with more frequent 

warm/wet weather patterns had spring blooms that: (1) reached peak biomass farther 

seaward in the estuary; (2) were greater in magnitude; (3) occurred later in the spring; 

(4) covered a larger area than years with a predominance of cool/dry weather patterns. 

I also used frequencies of winter weather patterns to forecast spring Chl a using 
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multiple linear regression models that explained 23 to 89% of the variance of regional 

Chl a in spring. 

Chapter 4 quantifies climate forcing of PP. I investigated the role of a number of 

climate time frames as drivers of variability in annual (AIP) and summer integral 

production (SIP). I used the synoptic scale weather pattern frequencies developed in 

Chapter 2 to describe climate variability and determine which climate time frame 

explained the highest amount of variance of PP in the same 16-yr span. To adequately 

quantify temporal (seasonal, interannual) and spatial variability in PP, I applied a 

depth-integrated model (DIM) that was calibrated and validated for Chesapeake Bay 

(Harding et al., 2002) to remotely sensed data to generate a time series of PP. I 

observed two-fold variability of AIP and SIP over the time series. Years dominated 

by warm/wet weather patterns in winter-spring showed higher AIP and SIP as well as 

elevated Chl a compared to the long-term average for spring and summer. Years 

dominated by cool/dry patterns showed the opposite responses, suggesting that 

climate conditions during winter-spring ’set up’ the Chl a signal for the balance of the 

annual cycle. Multiple linear regression models demonstrated that AIP and SIP were 

more tightly linked to winter-spring weather than to summer conditions, suggesting 

that interannual differences in the winter-spring loading of nutrients during the spring 

freshet plays a critical role in driving variability of AIP and SIP. 

Chapter 5 presents observations of phytoplankton responses to an event-scale 

climate perturbation associated with the passage of Hurricane Isabel in September 

2003. Ocean color measurements from CBRSP revealed an unusually strong bloom of 

diatoms covering ~3000 km2 of the mid- to lower Bay. This ‘fall bloom’ occurred in 
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an exceptionally ‘wet year’, obscuring the ecosystem response to the hurricane from 

that associated with high flow. I present evidence to support the hypothesis that wind 

mixing induced rapid de-stratification of the water column, injecting nitrogen (N) into 

the photic layer that supported the observed bloom at a time that N is typically 

limiting (Fisher et al., 1992). The bloom was ephemeral, lasting ~2-3 weeks, but its 

effects on regional and seasonal carbon cycling and ecosystem dynamics were 

significant. Particulate organic matter associated with collapse of the bloom may have 

remained unutilized in the surface sediments over winter due to low temperatures. 

This labile organic matter appeared to be the substrate for microbial degradation that 

resulted in an early onset of low dissolved oxygen throughout the Bay in spring 2004. 

The final chapter offers general conclusions for the Dissertation, identifies new 

research questions that have arisen from this work, and suggests improvements and 

future directions. I begin by explaining how this research expands our understanding 

of phytoplankton dynamics in the Bay. As with any dissertation, there are more 

questions than answers and I outline some of them here. I conclude by offering a 

number of suggestions for synthesis of our knowledge and additional applications of 

the approach I developed. 
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Abstract 

Seasonal and interannual variations of freshwater flow strongly influence 

estuarine processes, exemplified by plankton biomass and productivity. The main 

tributary feeding Chesapeake Bay, the Susquehanna River, has shown 3-fold 

variability of spring flow in the last 52 years. The magnitude of spring discharge from 

the Susquehanna River is associated with the frequency and type of weather patterns 

transiting the Eastern United States during winter and is related to the precipitation 

stored in the basin as snow and ice. Large-scale indices of climate variability, such as 

El Niño/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), 

have not proven to be strong predictors of freshwater flow in the mid-Atlantic. I 

developed a synoptic climatology as an alternative way to quantify and classify 

regional weather, focusing on the types and frequency-of-occurrence of patterns I 

identified for winter. This approach was used to predict freshwater flow in spring and 

explained 54% of the variance of spring discharge after extreme outliers were 

removed. Responses of Chesapeake Bay plankton to contrasting years of weather 

pattern frequencies and associated freshwater flow were examined to illustrate 

ecosystem response to climatic forcing. 
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Introduction 

Freshwater flow into an estuary affects important physical and chemical 

processes, including circulation, stratification, sedimentation, nutrient loading, light 

attenuation, and dissolved oxygen (Schubel and Pritchard, 1986). The distribution and 

abundance of many ecologically and economically important estuarine organisms, 

such as phytoplankton and zooplankton, are also strongly influenced by freshwater 

flow (Kimmerer, 2002). Phytoplankton and zooplankton are key components of 

estuarine systems that are being used as indicators of ecosystem status (Paerl et al., 

2003). To detect change in ecosystems using plankton as indicators, we must 

understand how the indicators respond to environmental variability, driven largely by 

changes in freshwater flow. Ecosystem responses to freshwater flow have been 

documented for estuaries and coastal systems including San Francisco Bay (Cloern et 

al., 1983; Kimmerer, 2004), the Gulf of Mexico (Riley, 1937; Justić et al., 2003), and 

the Hudson River estuary (Malone, 1977; Howarth et al., 2000). Freshwater flow into 

Chesapeake Bay has been related to dissolved oxygen (Boicourt, 1992; Hagy et al., 

2004), phytoplankton biomass (Malone et al., 1988; Harding and Perry, 1997), 

zooplankton abundance (Kimmel and Roman, 2004), and larval fish recruitment 

(Wood, 2000; North and Houde, 2003; Jung and Houde, 2003). 

During the last 52 years, the Susquehanna River as the major source of freshwater 

to Chesapeake Bay has experienced 3-fold variability of spring flow (range = 988 – 

3366 m3 s-1). Interannual differences in the types and frequencies of atmospheric 

circulation patterns that transit the Susquehanna River basin influence regional 

temperature and precipitation, and thereby strongly affect freshwater flow (Yarnal 

and Frakes, 1997). Najjar (1999) showed that much of the streamflow increase that 
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occurs during spring could be attributed to release of winter precipitation that is 

stored in the basin over winter as snow. A number of studies have addressed the 

relationship of atmospheric circulation to precipitation and freshwater flow (Peterson 

et al., 1989; Cayan and Peterson, 1989, 1993; McCabe and Ayers, 1989; Wilby, 

1993), and specifically for the Susquehanna River (Crane and Hewitson, 1998; 

Lakhtakia et al., 1998; Yu et al., 1999; Najjar, 1999). Despite the overriding influence 

of flow on ecosystem structure and function in this important estuary (Malone et al., 

1988; Kimmel and Roman, 2004), a predictive link between freshwater flow and 

variability in atmospheric circulation has not been developed. 

Large-scale indices of climate variability, such as El Niño/Southern Oscillation 

(ENSO) and the North Atlantic Oscillation (NAO), have strong effects on marine 

ecosystems, such as the equatorial Pacific (Cane, 1983; Barber and Chavez, 1983; 

Stenseth et al., 2002) and the North Atlantic (Hurrell, 1995; Ottersen et al., 2001; 

Stenseth et al., 2002), but their influence in the mid-Atlantic region is ambiguous 

(Read, 2002; Stenseth et al., 2003). This is not to suggest that large-scale climate 

indices do not influence the Mid-Atlantic, but rather that these forcings are manifest 

through changes in regional scale weather. An alternative way to characterize climate 

variability at smaller spatial (1,000-2,500 km) and temporal (interannual) scales is to 

create a synoptic climatology that is based on regional atmospheric circulation. 

Yarnal (1993) defines synoptic climatology as the relationship between atmospheric 

circulation and the surface environment. It is a statistical approach to classify and 

quantify predominant weather patterns in a region. This procedure condenses the 

large volume of data associated with atmospheric circulation into definable, 



 18 
 

commonly experienced weather patterns, and integrates the effects of the individual 

meteorological parameters related to each of the patterns.  

I developed a synoptic climatology for the Eastern United States in order to 

describe the climatic variability in the region. I postulated that defining and 

quantifying the climatic drivers of freshwater flow would support analyses of the 

causes and scales of variability in estuarine ecosystems. This paper: 1) describes and 

quantifies the predominant synoptic-scale weather patterns in the Eastern United 

States over the last 52 years; 2) identifies anomalies in the frequency-of-occurrence of 

these synoptic-scale weather patterns that underlie interannual differences in spring 

discharge; 3) predicts spring flow from synoptic-scale weather patterns in winter; 4) 

addresses how this predictive capability will improve our understanding of estuarine 

responses to climate variability, climate change, and anthropogenic perturbations, 

expressed in planktonic processes. 

Methods 

Data 

Twice daily (0 and 1200 h GMT), 5o latitude by 5o longitude gridded sea level 

pressure (SLP; mb) data were acquired from the National Center for Atmospheric 

Research (NCAR; http://dss.ucar.edu). These data were averaged to produce 19,358 

daily maps of SLP for the study period, 1 January 1950 through 31 December 2002. 

Gridded data have biases that must be acknowledged (Reid et al., 2001), but they 

provide the best source of data for these analyses (Yarnal, 1993). Daily and monthly 

data on temperature and precipitation for use in regression models and descriptions of 

synoptic-scale weather patterns were obtained from the National Climate Data Center 
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(NCDC; http://cdo.ncdc.noaa.gov). Divisional data from the eight climatic regions 

within the Susquehanna River basin (Pennsylvania divisions 4, 5, 6, 7, 8; Maryland 

division 6; New York divisions 1, 2; Fig. 2.1 inset) were weighted by area to produce 

a single estimate of temperature or precipitation for the basin. Climate division data 

were used because they provide comprehensive measures of temperature and 

precipitation from all stations in a division (Guttman and Quayle, 1996). Freshwater 

flow (m3 s-1) for the Susquehanna River was obtained from the United States 

Geological Survey gauging station at Harrisburg, Pennsylvania (USGS-01570500; 

100 km from mouth; http://waterdata.usgs.gov), and extrapolated to the entire 

watershed based on the relationship between flow at Harrisburg and the Conowingo 

Dam (USGS-01578310; 15 km from mouth; Harrisburg flow * 1.125 = Conowingo 

flow) to generate a continuous flow record for the entire period of analysis, as data for 

Conowingo only extended back to 1967. Data for the plankton analyses were 

obtained from the Chesapeake Bay Program monitoring cruises (CBP; 

http://www.chesapeakebay.net). Geographical regions for planktonic responses are 

defined as; upper > 38.8o N, middle 38.8o N - 37.8o N, lower < 37.8o N. 

Synoptic Climatology 

Surface SLP data were used to describe atmospheric circulation patterns 

following an eigenvector-based, map-pattern classification procedure outlined in 

Yarnal (1993) and Wood (2000) (Fig. 2.2). A 48-point (6x8) grid of SLP data 

covering the area 25o to 50o N latitude and 65o to 100o W longitude was identified as 

the region of interest (Fig. 2.1). Next, an S-mode eigenvector analysis (principal 

component analysis; PCA) was performed on a correlation matrix of SLP station data 
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against time (days) to reduce spatial variability in the data set from the original 48 

points to a smaller number of new, statistically independent (orthogonal) variables 

(PC scores) that explained 90% of the variance in the original data set. The number of 

variables to retain (7) was determined in two ways: 1) a ‘scree’ test in which a major 

break in the plot of eigennumber versus eigenvalue establishes the number of 

variables to retain and 2) the N-rule test (eigenvalues > 1) (Yarnal, 1993). 

Comparison of rotated and unrotated PC scores gave similar results and thereafter 

unrotated results were used for the analyses. The saved scores from the PCA were 

then submitted to a two-stage clustering procedure to identify similarly occurring 

modes of variance related to atmospheric circulation patterns. The first stage 

employed an agglomerative, hierarchical cluster analysis (average-linkage) to 

maximize the between-cluster variance which was used to determine the number of 

clusters (10) comprising a significant fraction of the total number of days (>2%), and 

to provide ‘seed’ values for a subsequent k-means clustering procedure. This second 

clustering procedure regrouped the retained PC scores into one of 10 dominant ‘seed’ 

clusters identified previously. Once all days were categorized into one of 10 clusters, 

the average SLP from each grid point within each cluster was determined, and 

average SLP maps were generated for visualization. These clusters represent the 

prevailing weather patterns experienced in the region. Monthly frequency-of-

occurrence for each weather pattern was then determined for use in regression 

models. 
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Data Analyses 

All analyses were performed using S-PLUS 6.2 (Insightful Corp.) statistical 

software. Pearson’s correlations were used to determine relationships between the 

frequency-of-occurrence of synoptic-scale weather patterns during winter (December-

January-February) and the winter NAO index defined as the normalized SLP 

difference between the Azores and Iceland (Hurrell, 1995), the winter ENSO index 

defined as sea-surface temperature anomaly in the Niño3.4 region (5o N-5o S, 170o-

120o W; Trenberth and Stepaniak, 2001), the winter Pacific Decadal Oscillation index 

(PDO) defined as the leading eigenvector of North Pacific sea-surface temperature 

(Mantua et al., 1997), and the winter Pacific/North America pattern (PNA) defined as 

the dominant rotated empirical orthogonal function of 500 hPa geopotential height 

anomalies for the Northern Hemisphere (Barnston and Livezey, 1987). Anomalies 

were calculated as the difference between monthly/seasonal conditions and the long-

term average for weather patterns (1950-2002), temperature (1950-2002), 

precipitation (1950-2002) and planktonic responses (1985-2002). Simple linear 

regression models were used to determine the strength of relationships between 

average spring freshwater flow (March-April-May) and the winter climate indices for 

NAO, ENSO, PDO, PNA, and basin-wide temperature and precipitation. Using the 

complete 52 year dataset, a multiple linear regression model was developed to predict 

spring Susquehanna River flow from winter cluster frequencies-of-occurrence with 

limited success. A robust least trimmed squares regression model (Rousseeuw, 1984) 

was used to determine outliers from the freshwater flow data set. These outliers were 

removed and a second regression model was developed from the modified dataset. 

The ten clusters used as explanatory variables were not statistically independent from 
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one another, violating an assumption of the regression model. However, this violation 

only affects the interpretation of the regression coefficients, not the r2, significance, or 

reliability of the predicted values and therefore, the model still provides valuable 

information (Shaw, 2003). No interpretation of the coefficients was attempted in 

these analyses. Differences in planktonic response during example years and the long-

term average were determined by t-test (Zar, 1984). 

Results 

Climate Indices and Weather Variables 

Climate indices for NAO, ENSO, PDO, and PNA during winter explained less 

than 8% of the variance of Susquehanna River flow during spring and were not 

significant at the 0.05 level (Table 2.1). Regressions of regional average temperature 

and precipitation, individually and multiple regressions of temperature and 

precipitation combined, explained a maximum of 16.7% of the variance in spring 

flow, with precipitation and combined precipitation and temperature producing 

significant models (Table 2.1). Pearson’s correlation coefficients between the 

frequency-of-occurrence of individual clusters and climate indices (NAO, ENSO, 

PDO, and PNA) revealed weak to moderate relationships for many of the variables, 

with strongest associations to the Niño3.4 index (Table 2.2). The correlations reached 

a maximum of 0.466 and were both positive and negative in sign.  

Synoptic Climatology 

I identified ten significant weather patterns (Fig. 2.3), each occurring 3.9 to 16.8% 

of the days in the study period during winter (Table 2.3). Several maps showed very 

recognizable weather patterns, including the Bermuda High in cluster 1 and the Nor-
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easter in cluster 4. The environmental conditions associated with each cluster are 

shown in Table 2.3, indicating whether the conditions are warm or cold, or wet or dry 

on days when the patterns occurred. For instance, when cluster 2 occurred during 

winter it was on average 3.0 oC colder and received 0.9 mm day-1 less precipitation 

than the long-term average for December, January, and February in the Susquehanna 

River basin. Alternatively when cluster 4 occurred, conditions tended to be 2.0 oC 

warmer and the basin received 2.7 mm day-1 more precipitation than average.  

Each daily observation was associated with a map pattern, supporting 

computation of the frequency-of-occurrence for each weather pattern for specific time 

periods. Several map patterns were identified, using the monthly frequency-of-

occurrence that had distinct seasonal signals (Table 2.3; Fig. 2.4). Weather patterns 

captured by clusters 1, 8, and 9 occurred commonly throughout the year, were 

predominant in summer, and comprised over 60% of June and July days, associated 

with positive temperature anomalies (Fig. 2.5). Clusters more common in winter, 

including 2, 7, and 10, had a summer minimum and a winter maximum of up to 50% 

of January days, associated with negative temperature anomalies and low 

precipitation (Figs. 2.5, 2.6). While cluster 4 did not occur commonly in any season, 

it may be disproportionately important due to potentially heavy precipitation that 

accompanies this pattern in winter and spring (Table 2.3; Figs. 2.4, 2.6).  

Deviations from the long-term frequency-of-occurrence during winter showed 

large changes for several clusters, including clusters 2, 7, and 10 (Fig. 2.7), while 

others, such as clusters 1, 8, and 9, showed little variation (Fig. 2.7), coinciding with 

winter and summer dominant clusters respectively. Trends in cluster frequency-of-
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occurrence during winter were tested with a Mann-Kendall trend test. There were no 

significant changes in cluster frequency-of-occurrence during winter (1950-2002), 

except for cluster 5 which had a small but significant positive increase. 

Weather Pattern-Flow Relationship 

The multiple linear regression model developed using the complete 52 year 

dataset produced a non-significant model (p = 0.32) with limited success in predicting 

spring freshwater flow (r2 = 0.22; RMSE = 520 m3 s-1) from winter weather patterns 

(Fig. 2.8). A robust least trimmed squares regression model identified six points as 

being more than 2.5 standard deviations from the regression line of winter cluster 

frequency-of-occurrence and spring flow (Fig. 2.9). These points were the first 

(1995), second (1981), and fifth (1969) driest and the first (1993), second (1994), and 

fourth (1972) wettest springs in the data set (1950-2002). After removal of these 

extreme points, the modified dataset (n = 46) produced a new, highly significant 

model (p < 0.001) with a substantial improvement in variance explained (r2 = 0.54) 

and reduction in error (RMSE = 329 m3 s-1) (Fig. 2.10). 

Planktonic Response 

Planktonic responses in Chesapeake Bay to strongly contrasting freshwater flow 

and associated weather patterns were exemplified by the conditions in 1985 and 1998 

(Fig. 2.11a-f). During winter of 1984-5, two of the patterns that occurred more 

frequently than average (clusters 2 and 10) were the driest (Table 2.3; Fig. 2.6), while 

the patterns that occurred less frequently than average (clusters 3 and 4) often 

produced high precipitation in winter (Table 2.3; Fig. 2.6); this led to spring flow 552 

m3 s-1 (28.9%) below average (Fig. 2.11a). Alternatively, the winter of 1997-8 saw 
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wet weather patterns (clusters 3, 4, and 8) occur 32 days more frequently than 

average, while drier patterns (clusters 2 and 10) occurred 23 days less frequently than 

average (Table 2.3); resulting in spring flow 559 m3 s-1 (29.0%) above average (Fig. 

2.11b). 

Observations of phytoplankton biomass in 1985 and 1998 showed conditions 

significantly different from average, particularly in the middle portion of Chesapeake 

Bay (Fig. 2.11c, d; Fig. 2.12). Long-term average biomass for the Bay, in spring, 

reaches a maximum in the mid-Bay (9.5 mg m-3) with slightly lower concentrations in 

the upper (7.7 mg m-3) and lower Bay (7.3 mg m-3; Fig. 2.12). During the low flow 

conditions of 1985, biomass was significantly (t-test; p<0.01) greater than average in 

both the upper (14.8 mg m-3) and mid-Bay (14.6 mg m-3), while the lower Bay 

showed a non-significant 1.9 mg m-3 decrease (Figs. 2.11c, 2.12). In 1998, high flow 

caused below average biomass in the upper Bay (6.0 mg m-3), along with significantly 

above average biomass in the mid-Bay (t-test; p<0.02; 13.8 mg m-3) and a modest 

increase of 1.0 mg m-3 in the lower Bay (Fig. 2.11d).  

Eurytemora affinis, a dominant calanoid copepod and major food source for larval 

fish, responded strongly to differences in spring flow (Figs. 2.11e, f). Average E. 

affinis abundance for spring is higher in the upper Bay (mean=18159 no. m-3) relative 

to the mid-Bay (mean=3684 no. m-3). Zooplankton abundance was significantly (t-

test; p<0.001) below the long-term average for both the upper and middle regions of 

the Bay in 1985 (Fig. 2.11e). In the high flow year of 1998, upper Bay E. affinis 

abundance was close to the long-term average (16005 no. m-3); while mid-Bay values 

were 10444 no. m-3 above average (Fig. 2.11f). Due to small sample size (n=3) and 
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high variance (s.d.=20582), the 1998 mid-Bay observations were not significantly 

different from the long-term average (t-test; p>0.20). 

Discussion  

Climate interacts with ecology through local weather patterns (Stenseth et al. 

2003). Freshwater flow acts as an integrator of climate variability by reducing the 

short-term noise associated with local temperature and precipitation (Cayan and 

Peterson, 1989). Hypothesized responses of estuarine ecosystems to climate change in 

the mid-Atlantic are strongly coupled to changes in freshwater flow (Najjar et al., 

2000; Neff et al., 2000; Gibson and Najjar, 2000). The primary goal of this paper was 

to describe a quantitative link between climate variability and estuarine plankton 

dynamics through freshwater flow. I have shown that large-scale climate indices are 

limited in predicting freshwater flow from the Susquehanna River. I developed an 

alternative methodology to classify and quantify regional climate variability with a 

synoptic climatology. This approach to quantifying climate variability provided us 

with a tool to predict spring freshwater flow with a reasonable degree of confidence. 

Finally I showed how these interannual variations in spring flow from the 

Susquehanna River influence plankton dynamics in Chesapeake Bay. 

Climate Indices 

Large-scale climate indices, such as NAO and ENSO, provide an integrated 

measure of climate variability over broad spatial and temporal scales (Stenseth et al. 

2002). They are correlated to a limited extent with local weather patterns in the 

Eastern United States (Table 2.2), but these indices do not support prediction of 

spring flow from the Susquehanna River (Table 2.1). Read (2002) identified ‘modest’ 
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correlations between NAO and flow for several smaller watersheds within the 

Susquehanna River basin during winter and spring, however, this analyses was 

limited to smaller watersheds with no anthropogenic impacts on flow (i.e. damns and 

urban development). In addition, Read (2002) looked at correlations between 

variables from the same season; I am interested in lagged flow in spring related to 

precipitation stored in the basin over winter as snow-pack. Indices of ENSO have 

been used to successfully predict lagged flow in rivers of the Western US with 

contrasting patterns in the Pacific Northwest and Southwestern US (Redmond and 

Koch, 1991). While the relationships are not as strong in the Mid-Atlantic, the 

positive correlation with ENSO (Table 2.1) may be related to increased storm 

frequency during El Niño years (Hirsch et al., 2001). Stenseth et al. (2003) suggested 

that the lack of strong correlations between local weather patterns and large-scale 

climate indices can be related to a number of factors; including: i) variation in local 

response depending upon geographic location, ii) variation in the intensity of the 

index with season, iii) change in the relationship between local weather and climate 

indices over time, iv) nonlinear response of local weather to indices, or v) simply that 

any given index may only explain a small fraction of the variance in a region’s 

weather. Therefore our results of no strong correlation between large-scale climate 

indices and Susquehanna River flow are not unexpected. 

Water Balance 

Another approach to predicting freshwater flow is to develop a water balance 

model that estimates flow from the difference between input and loss terms. 

Precipitation and temperature are two of the most important parameters for prediction 
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of freshwater flow from water balance models (Thornthwaite, 1948). Najjar (1999) 

developed a water balance model for the Susquehanna River basin using precipitation 

and temperature that successfully estimated monthly flow, however, the model used 

real-time precipitation and temperature to predict freshwater flow, providing limited 

forecasting ability. Our linear regression models using winter precipitation and 

temperature alone and combined to predict spring flow, while significant, did not 

explain a large portion of the variance in spring flow (Table 2.1). I believe this 

approach had limited success because, although important meteorological parameters, 

temperature and precipitation do not provide a comprehensive description of weather 

variability (Davis and Kalkstein, 1990). 

Synoptic Climatology 

To address the limitations of climate indices and water balance models in 

predicting freshwater flow from the Susquehanna River, I developed a synoptic 

climatology of the region using maps of SLP. I quantified 52 years of synoptic-scale 

weather patterns affecting the Eastern U.S. for the purpose of understanding how 

climate variation affects freshwater flow to Chesapeake Bay. These patterns agree 

well with literature descriptions of common weather patterns for the region in terms 

of map structure, seasonality in frequency-of-occurrence, and the weather conditions 

associated with each pattern (Hayden, 1981; Yarnal and Leathers, 1988; Davis et al., 

1993; Davis et al., 1997). High pressure patterns, such as clusters 1, 2, 7, and 9, and 

their average frequencies coincide well with seasonally distinct modes of the North 

Atlantic subtropical anticyclone described by Davis et al. (1997). Interannual 

variations in the frequency-of-occurrence of these ‘summer’ (warm and moist) or 
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‘winter’ (cold and dry) modes, during winter, have implications for spring freshwater 

flow through changes in storage within the watershed. Due to their tendency to 

produce high wind, waves, and precipitation, much research has focused on the 

frequency, track, generation location, and path of Atlantic Coast 'Nor-Easters' 

(Hayden, 1981; Davis et al., 1993; Zielinski, 2002). Cluster 4 (Fig. 2.3) represents the 

completion of a typical Nor-easter track. Passage of this cluster is often associated 

with heavy precipitation in the Susquehanna River watershed (Fig. 2.6). While 

relatively rare in frequency-of-occurrence these patterns are extremely important 

because of their potential to deposit significant amounts of snow over much of the 

watershed during winter. This snow often stays locked in the basin as ‘storage’ until 

the warmer spring temperatures release the water as part of the spring freshet (Najjar, 

1999).  

Weather Pattern-Flow Relationship 

I have successfully downscaled from the frequency-of-occurrence of synoptic-

scale weather patterns during the winter to spring Susquehanna River flow, 

explaining 54% of the variance in the modified dataset. Removal of six ‘outliers’ was 

necessary to obtain this result. The rationale for that decision is discussed below. 

First, the least trimmed squares regression identified these six points as being more 

than 2.5 standard deviations from the mean; these points were having a large 

influence on the regression results. Second these points were hydrologic extremes as 

the first, second, and fifth driest (lowest flow) and first, second and forth wettest 

(highest flow) springs. While the prediction of extremes is important, this model is 

better suited to forecast the more typical interannual variations in flow that still have 
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significant impacts on Chesapeake Bay plankton. Finally several of the wet extreme 

years (1993 and 1994) had exceptional events (blizzards) in March which were 

outside the time frame identified in these analyses for the climate forcing of 

freshwater flow. Similarly, during the dry years drought conditions prior to the winter 

time frame influenced the spring flow. Models developed with winter climate as the 

independent variables cannot be expected to predict flow that is dominated by events 

before or after that time frame. Because this model does not predict extremes well, 

inclusion of the outliers (using the entire dataset) resulted in a substantial decrease 

(r2= 0.22) in variance explained and a non-significant model (p = 0.32). 

There are several potential mechanistic explanations for why the winter weather 

patterns predict spring freshwater flow better than other variables. In large river 

basins, there is often a time lag between precipitation and basin flow, and that lag can 

often be as great 50% of the precipitation on monthly time scales (Gleick, 1987). 

Precipitation falling during the winter is often retained in the higher elevations of a 

basin as snow and is not released until spring temperatures melt it (Najjar, 1999). The 

amount of water stored in this reservoir depends not only on the amount of 

precipitation falling, but also on winter temperature (Cayan and Peterson, 1993). The 

synoptic-scale weather patterns used in these analyses take into account the 

cumulative effects of the weather associated with each pattern, including parameters 

such as wind speed and direction, cloud cover, and dew point all of which influence 

storage (Davis and Kalkstein, 1990). Finally, large-scale climate oscillations 

influence local environmental conditions through changes in local weather patterns 

(Stenseth et al., 2003). Therefore, use of the regional weather patterns, described by 
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the synoptic climatology, to predict a local environmental response eliminates one 

potential source of variability in the linkage. 

Potential reasons for the unexplained variance in our regression include; a lack of 

ability to address the magnitude of precipitation for certain weather patterns, 

disconnects between the artificial delineation of seasons used in the model, and large 

precipitation events in the spring that have immediate impacts on freshwater flow. 

For instance, small variations in the track of cluster 4 can produce large differences in 

the amount and type of precipitation the watershed experiences (Zielinski, 2002). As 

mentioned previously, the forecasting ability of this model is largely related to the 

storage of winter precipitation as snowpack (Najjar, 1999), therefore forecasting 

during other seasons is likely to be less successful. Due to the relationship between 

freshwater flow and Chesapeake Bay plankton dynamics, this model provides 

information that will be useful to managers of both water resources and estuarine 

ecosystems. This approach can be used to separate variability from trends in highly 

dynamic datasets by quantifying a climate signal that can be extracted. Future work 

will incorporate this technique and expand on the relationships between atmospheric 

circulation and Chesapeake Bay plankton discussed here. 

Planktonic Response 

Chesapeake Bay phytoplankton dynamics in spring are described well by the 

interplay of light and nutrients, driven by variations in freshwater flow (Fig. 2.12) 

(Malone et al., 1988; Harding, 1994). Lower than average flow in 1985 resulted in 

reduced input of nutrients and sediment to the Bay. Greater than average 

phytoplankton biomass was observed in the upper and mid-Bay during the spring due 
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to increased photic depth (126% of LTA) associated with below average river-born 

sediment delivery (Fisher et al., 1988). Negative phytoplankton anomalies were 

observed in the lower Bay because lower than average flow exacerbated nutrient 

limitations (55% of LTA; Fig. 2.11c). Alternatively, high nutrient and sediment 

loading associated with high flows in 1998 created shallower than average photic 

depth (87% of LTA) in the upper Bay and concomitant decreased phytoplankton 

biomass. The mid-Bay saw positive biomass anomalies related to increased nutrient 

loading (130% of LTA), while the lower Bay showed a slight biomass increase (Fig. 

2.11d) (Harding et al., 1986). 

Zooplankton, exemplified by the copepod E. affinis respond strongly to variations 

in freshwater input through changes in preferred low salinity and low temperature 

habitat, and changes in the size of estuarine turbidity maximum (an area of plankton 

and fish aggregation located near the head of the estuary) (Kimmel and Roman, 

2004). During the spring of 1985 E. affinis abundance was well below average in the 

upper Bay due to above average salinities (131% of LTA), low turbidity and reduced 

size of the estuarine turbidity maximum despite preferred below average temperatures 

(Roman et al., 2001), while above average salinities (119% of LTA) also reduced 

biomass in the mid-Bay region (Fig. 2.11e). In 1998, estuarine conditions were 

favorable for E. affinis in the mid-Bay, where low salinities (61% of LTA) and high 

turbidity resulted in an expanded estuarine turbidity maximum in this region, while 

exceptionally high flows pushed favorable habitat conditions out of the upper Bay 

resulting in below average E. affinis concentrations (Fig. 2.11f). 
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Conclusions 

A large portion of the physical and biological variability in an estuary can be 

related to changes in freshwater flow (Schubel and Pritchard, 1986; Kimmerer, 2002). 

Impacts of climate change on estuarine ecosystems are expected to be driven largely 

by changes in freshwater flow (Najjar et al., 2000). Our ability to separate natural 

variability from anthropogenic trends in many key ecosystem indicators is strongly 

influenced by freshwater flow (Boicourt, 1992; Harding, 1994; Kimmel and Roman, 

2004; Jung and Houde, 2003). This paper has shown that the frequency-of-occurrence 

of winter weather patterns, described by a synoptic climatology, can be used to 

forecast spring freshwater flow with the caveat that extreme conditions may not be 

predicted well. Quantifying the link between regional climate and freshwater flow 

provides the information necessary to forecast ecosystem response to changing 

environmental conditions. 
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Table 2.1. Statistics from the linear regression of winter Niño3.4, NAO, PDO, PNA, 
Temperature, Precipitation, and combined Temperature+Precipitation variables 
against average spring flow from the Susquehanna River. 
 
 

Variable p-value r2 

Niño3.4 0.068 0.073 
NAO 0.621 0.006 
PDO 0.578 0.007 
PNA 0.625 0.005 
Temp 0.116 0.055 
Precip 0.028 0.104 

Temp+Precip 0.019 0.167 
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Table 2.2. Pearson’s correlation coefficients for comparisons of winter indices for 
NAO, ENSO, PDO, and PNA against winter frequency-of-occurrence for each 
cluster. * indicates significance at the p > 0.01 level. 

 

Cluster NAO ENSO PDO PNA 

1 -0.031 -0.235 -0.031 0.114 
2 0.158 -0.354* 0.135 0.109 
3 -0.289 0.297 -0.026 -0.117 
4 -0.429* 0.375 -0.034 0.072 
5 0.380* -0.337* -0.086 -0.209 
6 -0.125 0.456* 0.066 0.042 
7 -0.418* 0.397* -0.101 0.045 
8 -0.127 0.383* 0.145 0.036 
9 0.452* -0.311 -0.025 -0.075 
10 0.215 -0.294 -0.061 -0.041 

 

 



 

 

Table 2.3. Meteorological characteristics for clusters during winter. Standard deviations in parentheses. 
 

Cluster  
 
 

Days 
of 

Occurrence 

% 
 
 

Temperature
Anomaly 

(oC) 

Precipitation
Anomaly 

(mm day-1) 

Wind 
Direction 

 

Wind 
Speed 
(m s-1) 

Seasonality 
 
 

1a 353 7.4 3.2 (±4.6) 0.9 (±4.9) W 3.3 (±1.4) summer 
2b 802 16.8 -3.0 (±5.2) -0.9 (±3.2) NW 3.8 (±1.5) winter 
3 346 7.2 -0.6 (±4.3) 0.7 (±4.9) NW 3.2 (±1.8) spring/fall 
4c 245 5.1 2.0 (±4.6) 2.7 (±7.0) W 3.9 (±1.7) winter/spring
5 698 14.6 2.4 (±4.9) 0.1 (±4.2) W 2.9 (±1.2) summer 
6 344 7.2 -0.4 (±4.8) -0.4 (±3.9) E 2.2 (±1.5) fall 
7 681 14.2 -1.9 (±4.6) -0.1 (±4.1) W 4.9 (±1.7) winter 
8 188 3.9 2.9 (±4.7) 1.5 (±4.9) E 2.4 (±1.4) spr/sum/fall 
9 423 8.8 2.2 (±5.1) -0.1 (±3.9) S 2.3 (±1.1) winter/spring
10 692 14.5 -1.0 (±5.2) -0.9 (±2.9) S 2.3 (±1.1) winter 

a Bermuda High 
b Ohio Valley High 
c Nor’easter 
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Fig. 2.1. Map of synoptic climate region with inset of Suquehanna River Basin 
showing NOAA climate divisions. 
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Fig. 2.2. Flow chart of synoptic climatology methods, 
after Yarnal (1993). 

Select Sea Level Pressure (SLP) Data 
and Grid Area

Use Principal Components Analysis 
(PCA) to describe variability in SLP 

data using fewer variables (data 
reduction) 

Select number of Principal 
Components (PCs) that will be 

retained in the analysis

Use hierarchical cluster analysis to find 
similarities between the PCs and 

determine the number of clusters to be 
used in the classification of the SLP 

data 

Classify each day into one of the 
cluster types and take the average SLP 

at each grid point 

Produce SLP map for each cluster by 
contouring the average SLP 

Use k-means cluster analysis to classify 
the PCs based on the hierarchical 

cluster solution 
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Fig. 2.3. Average sea-level pressure maps for each cluster. Cluster number in 
upper left-hand corner. 
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Fig. 2.4. Monthly average frequency-of-occurrence by cluster. Cluster number in 
upper left-hand corner. 
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Fig. 2.5. Monthly temperature anomaly by cluster. Cluster number in upper left-
hand corner. 
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Fig. 2.6. Monthly precipitation anomaly by cluster. Cluster number in upper left-
hand corner. 
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Fig. 2.7. Time series of deviation (in days) from long-term average winter 
frequency-of-occurrence for each cluster. Cluster number in upper left-hand 
corner. 
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Fig. 2.8. Regression of observed average spring freshwater flow from the 
Susquehanna River on modeled flow predicted from winter cluster frequency-of-
occurrence using the complete (n = 52) dataset. 
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Fig. 2.9. Plot of residuals by year from multiple linear regression model shown in 
figure 8. 
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Fig. 2.10. Regression of observed average spring freshwater flow from the 
Susquehanna River on modeled flow, predicted from winter cluster frequency-of-
occurrence using the modified dataset (n = 46) with 6 outliers removed. 
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Fig. 2.11. Planktonic response in spring to years of contrasting winter weather 
patterns. a) weather pattern anomalies for winter 1984-5, b) weather pattern 
anomalies for winter 1997-8, c) phytoplankton biomass anomalies for spring 1985 
in three geographical regions d) phytoplankton biomass anomalies for spring 1998 
in three geographical regions, e) copepod abundance anomalies for spring 1985 in 
two geographical regions, f) copepod abundance anomalies for spring 1998 in two 
geographical regions. Error bars indicate standard error. 



 
Fig. 2.12. Maps of spring phytoplankton biomass (mg m-3) for long-term average condition, dry year of 1985, and 
wet year of 1998. Maps interpolated from Chesapeake Bay Program station data (n=49). Black bars demarcate 
upper, mid-, and lower Bay regions used in analyses. 



 

 

 

 

 

 

 

 

Chapter 3 

Climate Forcing of the Spring Bloom in Chesapeake Bay1 

 

 

 

 

 

 

 

 

 

 

1Miller, W.D., and L.W. Harding, Jr. Climate forcing of the spring bloom in 
Chesapeake Bay. Marine Ecology Progress Series, submitted. 
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Abstract 

Interannual variability of the spring phytoplankton bloom is strongly expressed in 

estuarine ecosystems such as Chesapeake Bay. Quantifying this variability is essential 

to resolve ecosystem responses to eutrophication from variability imposed by climate. 

I developed a ‘synoptic climatology’ from surface sea-level pressure (SLP) maps to 

categorize and quantify atmospheric circulation patterns and address climate forcing 

of phytoplankton dynamics in the Bay. The 10 patterns I identified had unique 

frequencies-of-occurrence and associated meteorological conditions (i.e., 

precipitation, temperature, wind speed and direction). Four measures of 

phytoplankton biomass, surface chlorophyll-a (B), euphotic layer chlorophyll-a (Beu), 

water column chlorophyll-a (Bwc), and total biomass (Btot), were obtained from 

remotely sensed ocean color data spanning 16 yr (1989-2004) combined with 

concurrent shipboard data. Years with more frequent warm/wet weather patterns had 

spring blooms that reached peak biomass farther seaward in the estuary, were greater 

in magnitude, occurred later in the spring, and covered a larger area than years with a 

predominance of cool/dry weather patterns. Winter weather pattern frequencies were 

used to forecast spring B, Beu, Bwc, and Btot, explaining between 23 and 89 % of the 

variance in the regional time series. Residuals from these models did not show time-

trends attributable either to accelerating eutrophication or to management actions 

decreasing nutrient loadings. These findings extend our understanding of climatic 

influences on phytoplankton dynamics in the Bay by quantifying the effects of 

synoptic climate variability on spring bloom intensity, supporting forecasts of 

seasonal phytoplankton biomass based on sub-continental scale weather patterns in 

this mid-Atlantic estuary.
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Introduction 

Climate variability strongly influences marine ecosystems (McGowan et al., 

1998; Stenseth et al., 2002), exemplified by basin-scale biological responses to El 

Niño-Southern Oscillation (ENSO; Chavez et al., 1999), and the North Atlantic 

Oscillation (NAO; Ottersen et al., 2001). Indices of ENSO and NAO capture the 

holistic nature of climate better than individual weather measurements (Ottersen et 

al., 2004). Global data from remotely sensed ocean color and temperature 

observations, coupled to climate indices, have contributed to our understanding of 

ocean-atmosphere interactions that drive phytoplankton dynamics (Behrenfeld et al., 

2001). In some areas, however, large-scale climate indices are not strongly expressed 

and sub-continental processes assume greater importance in forcing local 

meteorological conditions (Stenseth et al., 2003). An alternative approach that derives 

a holistic measure of climate variability, while retaining local relevance, is to 

construct a regional ‘synoptic climatology’ (cf. Yarnal, 1993). In this paper, I present 

data and analyses to document regional climate effects on spring bloom intensity in 

Chesapeake Bay. This work draws on 16 yr of ocean color observations from aircraft, 

coincident data from shipboard measurements, and a synoptic climatology that 

captures seasonal to interannual variability of weather patterns linked to precipitation 

and freshwater flow. 

Interannual variability of phytoplankton biomass and primary productivity is 

strongly expressed in temperate estuaries and multiple causes including freshwater 

flow, nutrient loading, and turbidity underlie that variability (Boynton et al., 1982). 

To this end, the proximal effects of freshwater flow on phytoplankton dynamics have 
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been documented for a number of estuarine systems, including the Hudson River 

(Malone, 1977), San Francisco Bay (Cloern et al., 1983), the Neuse River (Mallin et 

al., 1993), and the Loire River estuary (Relexans et al., 1988). These studies have 

shown that the magnitude of phytoplankton biomass often co-varies with flow and 

attendant properties, but the relationships are generally dependent on characteristics 

unique to individual systems (e.g. circulation, residence time, morphometry, tides, 

nutrient and sediment loading). While I recognize the important role that flow plays 

in determining spatial and temporal dynamics of phytoplankton in estuaries, indices 

of regional climate may provide more comprehensive measures of environmental 

influences. A missing element of our understanding is a quantitative description of 

the role of regional climate in forcing variability of phytoplankton biomass, such as 

has emerged for some parts of the global ocean using ENSO and NAO indices. This 

is an important area of research as we attempt to predict effects of climate change and 

nutrient enrichment on estuarine and coastal ecosystems (Cloern, 2001). 

Freshwater flow into Chesapeake Bay is maximal in winter-spring, as it is in 

many temperate estuaries; dominated by the freshet of the Susquehanna River that 

largely determines gradients of light and nutrient limitation along the north-south axis 

of the Bay (Harding et al., 1986). The position, magnitude, timing, and extent of the 

winter-spring diatom bloom are determined in large part by winter-spring flow 

(Malone, 1992, Harding, 1994), and variability of flow during this period has recently 

been linked to synoptic-scale climate for winter (Miller et al., 2006). There is an 

abundant literature that supports the interaction of atmospheric circulation, 

precipitation, and freshwater flow (Cayan and Peterson, 1989; McCabe and Ayers, 



 58 
 

1989), including findings for the Susquehanna River (Crane and Hewitson, 1998; 

Najjar, 1999). I suggest that a major source of interannual variability of spring bloom 

intensity, expressed by several measures of phytoplankton biomass, can be traced to 

differences in the frequency and types of winter weather patterns prevailing in the 

Bay’s watershed in a given year. 

The work described here relates winter climate variability at the synoptic scale 

(Yarnal, 1993) to spring phytoplankton dynamics in Chesapeake Bay through links to 

freshwater flow and other environmental parameters influenced by climate (Miller et 

al., 2006). Climate indices influence ecology through local weather patterns. 

Therefore a synoptic climatology that captures regional weather variability should 

outperform large-scale indices in explaining ecosystem variability by removing a 

degree of complexity between climate and ecology (Stenseth et al., 2003). I tested the 

hypothesis that interannual differences in the frequencies of winter weather types 

identified using a synoptic climatology represent the predominant source of 

variability for spring phytoplankton biomass in Chesapeake Bay. To address this 

hypothesis I: (1) classified and quantified variability of atmospheric circulation 

patterns in the region using a synoptic climatology; (2) quantified the position, 

magnitude, timing, and extent of the spring bloom using a 16 y time-series of surface 

chlorophyll-a (B), euphotic layer chlorophyll-a (Beu), water column chlorophyll-a 

(Bwc), and total biomass (Btot) from aircraft remote sensing; (3) developed multiple 

regression models using the frequencies of predominant weather patterns as 

independent variables and four biomass measures as dependent variables; (4) 
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examined residuals of spring phytoplankton biomass after removal of the climate 

signal to resolve trends. 

Methods 

Synoptic climatology 

Regional scale climate variability was quantified using an eigenvector-based, 

map-pattern, synoptic climatology classification as described in Yarnal (1993) and 

Miller et al. (2006). I obtained 5o x 5o latitude - longitude gridded, sea-level pressure 

(SLP) data from the National Center for Atmospheric Research (NCAR; 

http://dss.ucar.edu) to create a 48-point (6 x 8) grid of SLP data covering the area 25o 

to 50o N latitude and 65o to 100o W longitude. Principal component analysis (PCA) 

was performed on a correlation matrix of daily SLP against time (days) to reduce 

spatial variability in the SLP data from the original 48 points to a smaller number (7) 

of new variables that explained the majority of the variability (90%) in the original 

data. Those seven variables were submitted to a two-stage clustering procedure to 

group the data into similarly occurring modes of variance that related to similar 

atmospheric circulation patterns. The first stage of the clustering procedure (average 

linkage) was used to determine the number of clusters (10) that made up a significant 

fraction (>2%) of the total number of days, and to determine ‘seed’ values for the 

subsequent k-means clustering procedure. The second clustering technique (k-means) 

regrouped the data into one of 10 dominant seed clusters I determined were important 

using the average linkage clustering technique. Average SLP maps for each of the 10 

clusters were then produced by taking the mean value for each grid point within the 
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daily maps. The seasonal frequencies-of-occurrence of each weather pattern for every 

year were then computed for use in multiple regression models. 

Remotely sensed data 

B (mg chla m-3) was determined for the surface layer using aircraft ocean color 

measurements from light aircraft (Harding et al., 1994; 1995). Flights were conducted 

~20-30 times per year (Mar - Oct) on a set of tracks covering the main stem Bay (Fig. 

3.1). Geo-referenced data were collected from an altitude of 150 m at a ground speed 

of approximately 50 m s-1 using multispectral radiometers. NASA’s Ocean Data 

Acquisition System (ODAS) consisting of three nadir-viewing radiometers (460, 490, 

and 520 nm) with 15 nm bandwidths and 2o field-of-view was used from 1989-95. 

Successive versions of the commercial Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) Aircraft Simulator (SAS II, III - Satlantic, Inc. Halifax, NS, Canada) with 

10 nm bandwidths, 3.5o field-of-view, and seven and 13 wavelengths, respectively 

(SAS II 412, 443, 490, 510, 555, 670, and 683 nm; SAS III 380, 400, 412, 443, 470, 

490, 510, 555, 670, 685, 700, 780, and 865 nm) were used from 1995-2004. 

B was computed using a spectral curvature algorithm (Campbell and Esaias, 

1983) applied to water-leaving radiances at 460, 490, and 520 nm for ODAS, and 

443, 490, and 555 nm for SAS II and III. Radiometric calibrations were made at 

NASA for ODAS and at Satlantic, Inc. for SAS II and III. Retrievals of B relied on 

local algorithms developed from matchups with concurrent in-situ measurements 

from monitoring cruises of EPA Chesapeake Bay Program (CBP; 

http://www.chesapeakebay.net/) and our own cruises. I defined a match as ±12 h on 

the same day, ±0.01o latitude, and ±0.005o longitude (Harding et al., 1994; 1995; 
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Weiss et al., 1997). The working equation retrieved log10 B with an RMS error of 

0.21 (log units). Flight data were interpolated onto a 1 km2 grid for visualization and 

further analyses using a two-dimensional, inverse-distance-squared, octant search 

(Harding et al., 1994; 1995). 

Integrated biomass (Beu, Bwc and Btot) 

Beu (mg chla m-2) was computed for each grid cell as the product of B and 

euphotic-layer depth (Zp), estimated as the 1% isolume from Secchi depth for the 

closest CBP cruise station (<2 weeks). Bwc (mg chla m-2) was calculated from log-log 

regressions of bathymetrically-weighted integrals of chla from vertical profiles, 

<Bwc>, on B developed with CBP data (cf. Harding et al., 1994). Analysis of variance 

showed statistically significant differences in the slopes of regression equations for 

different years; accordingly I used equations developed for each year to generate 

<Bwc> from remotely sensed B. Back-transformed <Bwc> data were combined with 

depth (H) for each grid cell from a digital bathymetry to give Bwc. All three biomass 

measures were log-normally distributed and were log10 transformed for all analyses 

and back-transformed for graphical display. Total biomass, Btot (metric tons chla), 

was calculated as the sum of all Bwc measurements for the entire Bay. Data from 

depths greater than the median Bay depth (7.7 m) were used to calculate means for 

regional regression models. 

Data were analyzed for six regions of the main stem Bay defined by latitude 

(Harding, 1994; Fig. 3.1). Regional means for spring (Apr-May) were computed for 

B, Beu, Bwc, and Btot from flights spanning 1989-2004. Data from 5 to 15 flights were 

used for each spring, depending on weather and aircraft availability. Shipboard data 
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were substituted for aircraft data for spring 1996 due to instrument malfunctions. No 

statistically significant (τ > 0.05, Mann-Kendall Trend Test) trends were observed in 

any of the regional time series. 

Ancillary data 

Temperature and precipitation data were obtained from the National Climate Data 

Center (NCDC; http://cdo.ncdc.noaa.gov). Divisional data from the eight climatic 

regions within the Susquehanna River basin (Pennsylvania divisions 4, 5, 6, 7, 8; 

Maryland division 6; New York divisions 1, 2) were weighted by area to produce a 

single estimate of temperature or precipitation. Climate division data were used to 

provide comprehensive measures of temperature and precipitation from all stations in 

a division (Guttman and Quayle, 1996). Freshwater flow (m3 s-1) for the Susquehanna 

River was obtained from the United States Geological Survey gauging station at the 

Conowingo Dam (USGS-01578310; http://waterdata.usgs.gov/ nwis). Winter (Dec.-

Feb.) climate indices for ENSO and NAO were obtained from the National Weather 

Service, Climate Prediction Center (http://www.cpc.ncep.noaa.gov). Data on water 

column properties that influence phytoplankton dynamics (Zp, and dissolved 

inorganic nitrogen; DIN) were obtained from CBP water quality monitoring cruises. 

Statistical analyses 

Multiple linear regression models were developed to investigate the relationship 

between regional phytoplankton biomass in spring and the frequency-of-occurrence 

of winter weather patterns described by the synoptic climatology. To clarify, the 

regional measures of phytoplankton biomass during spring were the dependent 

variables and the weather pattern frequencies were the independent variables and 
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each year was an observation (n = 16). Selection of independent variables for 

inclusion in each model was determined by the combination of weather patterns that 

explained the maximum amount of variance in the dataset while producing a 

significant model (p <0.05). Explained variance was measured as the adjusted r2 to 

account for the increased variance explained with increasing numbers of explanatory 

(independent) variables. Multi-colinearity of the independent variables was checked 

with the variance inflation factor (VIF) diagnostic in SAS (Cody and Smith, 2005); 

no variable in the models had a VIF >5 (values greater than 10 indicate serious 

problems with multi-colinearity). Testing for trends in the residuals of the multiple 

linear regression models were analyzed with the Mann-Kendall trend test. All 

statistics were performed in SAS version 9.1 (SAS Institute, Cary, NC). 

Results 

Synoptic climatology 

I identified 10 predominant winter weather patterns using a synoptic climatology 

for the eastern United States (Fig. 3.2). The resulting maps describe average SLP 

patterns for all days categorized into a given cluster, showing distinct structures of 

high and low pressure systems. Each weather pattern corresponded to a unique 

combination of meteorological conditions, i.e. air temperature, precipitation, wind 

speed, and direction (Table 3.1). Patterns 2, 7 and 10 were common in winter, 

produced below-average temperature (-2.3 oC) and precipitation (-0.7 mm d-1), and 

accounted for 45% of winter days during the study period. Patterns 1, 3, 4 and 8 were 

warmer (2.0 oC) and wetter (1.3 mm d-1) than average and occurred only 21% of days, 

but accounted for 32% of total winter precipitation (Table 3.1).  
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Interannual variability in the frequencies of the 10 predominant winter weather 

patterns was high (Fig. 3.3). Long-term average (LTA; 1989-2004) frequencies varied 

among clusters from a low of 2.8 days for weather pattern 8, to 16 days for weather 

pattern 5 (Fig. 3.3). None of the time-series for weather patterns showed statistically 

significant trends in frequency-of-occurrence (τ > 0.05, Mann-Kendall Trend Test). 

Cool/dry weather patterns (2, 7 and 10) varied in concert with one another and in 

opposition to the warm/wet weather patterns (1, 3, 4 and 8). 

Differences in the frequencies-of-occurrence of warm/wet and cool/dry weather 

patterns were associated with variability in precipitation and freshwater flow. I 

compared years with the largest positive and negative differences in warm/wet versus 

cool/dry weather pattern frequencies to illustrate this point. Warm/wet years (1990, 

1996, 1998, and 2003) averaged 13 days more than the LTA for weather patterns 1, 3, 

4 and 8 and nine days less than the LTA for patterns 2, 7 and 10 (Fig. 3.4a). Winter-

spring (January-April) flow from the Susquehanna River averaged 2060 m3 s-1, 18% 

higher than the LTA for these years. In contrast, cool/dry years (1989, 1991, 1997, 

and 2001) had eight days less than the LTA for patterns 1, 3, 4 and 8, and seven days 

above the LTA for patterns 2, 7 and 10 (Fig. 3.4b). Winter-spring flow in cool/dry 

years averaged 1393 m3 s-1, 20% lower than the LTA. 

Contrasting weather patterns were associated with distinct distributions of light 

and nutrients (Zp, DIN) that influence the spring bloom of phytoplankton in the Bay. 

The LTA for Zp ranged from 2.5 to 5.4 m from region 6 to region 1, with the deepest 

Zp in region 2. Zp in cool/dry years ranged from 2.8 to 6.2 m, contrasted with 

warm/wet years with Zp from 1.9 to 4.4 m. Average Zp was 1.4 m deeper in cool/dry 
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than warm/wet years (Fig. 3.5a). Surface-layer DIN was highest in regions 5 and 6 

closest to the Susquehanna River, and decreased rapidly toward the Bay mouth (Fig. 

3.5b). The LTA for DIN in these regions was 60.1 µmoles N L-1. DIN in warm/wet 

years averaged 71.9 µmoles N L-1 compared to 55.4 µmoles N L-1 in cool/dry years. 

Spring phytoplankton dynamics 

Climate affected the position of the spring phytoplankton maximum using three 

biomass measures (Fig. 3.6). During warm/wet years, maxima of B, Beu, and Bwc 

were seaward of those for cool/dry years. B peaked at 13.1 mg chla m-3 in region 3 

for warm/wet years, contrasted with 8.2 mg chla m-3 in region 5 in cool/dry years 

(Fig. 3.6a). The Beu peak occurred in region 2 for both climate modes, but the 

magnitude of the peak was greater during warm/wet years than cool/dry years (47.7 

vs. 36.8 mg chla m-2; Fig. 3.6b). A distinct Bwc peak occurred in region 3 during 

warm/wet years, while a broad plateau was observed in regions 3-5 for cool/dry years 

(Fig. 3.6c). Differences between warm/wet and cool/dry years were greatest in 

seaward regions (1-3). 

Differences in B, Beu, and Bwc between cool/dry and warm/wet years expressed as 

deviations from the LTA displayed consistent responses to climate forcing (Fig. 3.7). 

The largest positive anomalies in these biomass measures occurred in regions 1-3 

during warm/wet years (Figs. 3.7a, c, e). These regions averaged 49, 22, and 57% 

above the LTA for B, Beu, and Bwc, respectively. Beu in region 6 had a negative 

anomaly in warm/wet years. The largest negative anomalies occurred in regions 1-3 

during cool/dry years. Positive anomalies during warm/wet years were greater than 

negative anomalies during cool/dry years for each region and biomass measure. 
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Climate also affected the timing of the spring phytoplankton maximum, expressed 

as total biomass (Btot). Maximum Btot ~717 metric tons occurred in late May during 

warm/wet years and was significantly greater (p<0.01) than the LTA of 455 metric 

tons. Btot had a broad maximum of 383-445 metric tons in April-May in cool/dry 

years and was less than (p>0.05) than the LTA (Fig. 3.8). Spring bloom intensity 

using this integrated measure of biomass averaged 276 metric tons greater in 

warm/wet than in cool/dry years. 

The spatial extent of high biomass in the Bay also differed in warm/wet and 

cool/dry climate regimes (Fig. 3.9). The spatially-averaged, spring mean B was 8.0 

mg chla m-3 and the area with >8 mg chla m-3 averaged ~3800 km2 (Fig. 3.9b). 

During warm/wet years the 8 mg chla m-3 isopleth extended to the Bay’s mouth and 

expanded the area with B >8 mg chla m-3 to 6836 km2 (Fig. 3.9a). Conversely, during 

cool/dry years the area of B >8 mg chla m-3 was reduced to 1872 km2 (Fig. 3.9c).  

Regression models 

Multiple linear regression models using weather pattern frequencies for winter 

explained 23 to 89% of the variances of B, Beu, and Bwc for spring (Table 3.2). These 

models differed in the weather patterns used to develop the models, the significance 

of those models, and the amount of variance explained. Model performance measured 

as adjusted r2 was superior in the upper Bay, close to the source of freshwater. For B, 

weather patterns 3, 6 and 10 were common predictors in equations that explained an 

average 56% of the variance (Fig. 3.10a). Models of Beu explained an average 59% of 

the variance for all regions and had low error (RMSE = 6.2 mg chla m-2) (Table 3.2; 

Fig. 3.10b). Models of Beu had weather patterns 3, 5, 6, 7 and 9 as common 
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independent variables. Bwc models explained an average of 45% of the variance, with 

better results in the upper Bay (regions 5 and 6). Weather patterns 1, 2, 3 and 9 were 

important predictors for Bwc (Table 3.2; Fig. 3.10c). Weather patterns 1 and 9 

explained 35% of the variance in Btot summed for all regions of the Bay (Table 3.2). 

Overall, weather patterns 3, 6, 7 and 9 were the most common independent variables 

in the 19 models I developed. Winter weather patterns were superior to winter-spring 

flow, NAO indices, and ENSO indices as predictors of B, Beu, and Bwc for spring 

(Table 3.3), with the exception of Bwc for region 2 where a linear regression on 

freshwater flow explained 36% of the variance (p <0.01). 

Time series of observed and predicted B, Beu, and Bwc for regional models show 

good agreement of model outputs and data (Fig. 3.11). Interannual variability of these 

biomass measures was strongly expressed, and was captured very effectively by the 

models. I detected no systematic under- or overprediction in the models. Positive 

anomalies of warm/wet weather patterns (Fig. 3.4a) in 1990, 1996, 1998 and 2003 

coincided with peaks of B, Beu, and Bwc in most regions. Residuals were generally 

small and not associated with peaks or troughs in the time series for these biomass 

measures. I used the models to remove the climate signal and analyze trends of B, 

Beu, and Bwc in the 16-y data set. Residuals showed no significant trends in any of 

these biomass measures (τ > 0.05; Mann-Kendall Trend Test). 

Discussion 

Synoptic climatology provides a regional alternative to large-scale climate indices 

as a means to characterize climate variability in the Chesapeake Bay watershed 

(Stenseth et al., 2003) where NAO and ENSO have limited skill in describing weather 
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(Table 3.3; Miller et al., 2006). The weather patterns identified in these analyses (Fig. 

3.2) agree well with literature descriptions of common weather patterns for the area in 

terms of map structure, seasonality in frequency-of-occurrence, and conditions 

associated with each pattern (Fig. 3.3, Table 3.1; Hayden, 1981; Davis et al., 1993; 

1997). Of particular importance to this work were four infrequently occurring patterns 

(1, 3, 4 and 8; <21% of winter days) that were responsible for 32% of the 

precipitation in the region (Table 3.1). Weather patterns 3 and 4 represent 

manifestations of Atlantic Coast 'Nor-Easters' (Hayden, 1981; Davis et al., 1993; 

Zielinski, 2002). While relatively rare in frequency-of-occurrence these patterns have 

disproportionate importance because of their potential to deposit significant amounts 

of snow over much of the watershed. This snow often stays locked in the basin as 

‘storage’ until warmer spring temperatures release the water as part of the spring 

freshet (Miller et al., 2006; Najjar, 1999).  

The patterns identified with this approach integrate a number of environmental 

parameters that influence phytoplankton dynamics, including temperature, 

precipitation, wind, and irradiance (Table 3.1; Davis and Kalkstein, 1990), and 

provide a holistic measure of climate variability (Stenseth et al., 2003). Freshwater 

input to the Bay has recently been related to variability of these weather pattern 

frequencies (Miller et al., 2006). There was coherence in the variability of several of 

the weather patterns described by the synoptic climatology. The frequencies of 

warm/wet weather patterns (1, 3, 4 and 8) tended to vary in opposition to cool/dry 

patterns (2, 7 and 10; Fig. 3.4). Kimmel et al. (2006) showed how these same patterns 
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affect zooplankton abundance, while Austin (2002) described decadal cycles of 

similar cool/dry and warm/wet weather patterns that affect major fisheries in the Bay. 

Climate forcing and associated variability of freshwater flow have been shown to 

influence phytoplankton dynamics in estuaries. Cloern et al. (2005) demonstrated that 

a combination of weak coastal upwelling and sustained high pressure over San 

Francisco Bay produced conditions that led to an exceptional dinoflagellate bloom in 

September of 2004. Smayda et al. (2004) suggested the inverse correlation between 

mean annual chlorophyll and NAO in Narragansett Bay was related to changes in 

temperature-dependent grazing. Freshwater flow affects light availability and density 

stratification in Delaware Bay (Pennock, 1985), nitrogen loading to the Neuse River 

estuary (Rudek et al., 1991), and flushing rate of the Hudson River (Howarth et al., 

2000), thereby regulating phytoplankton dynamics in these ecosystems. 

The position, magnitude, timing, and extent of the spring bloom in Chesapeake 

Bay were highly responsive to climate forcing (Figs. 3.6-3.9). I observed: (1) a 

seaward displacement of the spring bloom in years with greater-than-average 

frequencies of warm/wet weather patterns (Fig. 3.6); (2) higher B, Beu, and Bwc in 

warm/wet years than in cool/dry years, particularly in regions 1-3 (Fig. 3.7); (3) a Btot 

maximum later in spring and significantly higher during warm/wet years than in 

cool/dry years (Fig. 3.8); (4) an expanded area with greater-than-average B during 

warm/wet years (Fig. 3.9). The responsiveness of the spring bloom to climate is 

consistent with changes in light and nutrient limitation along the north-south axis of 

the Bay described in a conceptual view (Harding et al., 2002). In sum, warm/wet 

years are characterized by reduced light penetration in the upper Bay, and increased 
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nutrient transit to the mid- and lower Bay, while the opposite conditions prevail in 

cool/dry years (Fig. 3.5; Harding et al., 1986; Harding, 1994). 

Models based on winter weather explained a significant fraction of the variance of 

B, Beu, and Bwc for spring, supporting our hypothesis that climate forcing underlies 

interannual variability of the spring bloom (Figs. 3.10-11). The lagged response 

whereby winter weather patterns exert a subsequent influence on spring 

phytoplankton dynamics reflects the role of regional climate variability in controlling 

freshwater flow and nutrient loading (Miller et al., 2006). Application of a synoptic 

climatology based on a quantitative classification of observed weather patterns to 

derive predictive models of the spring bloom proved superior to large-scale climate 

indices such as NAO and ENSO (Table 3.3), and improves upon previous models 

based on flow forcing alone (Malone et al., 1988; Harding and Perry, 1997) by 

capturing the ‘holistic’ nature of climate variability (Stenseth et al., 2003). The 

specific weather patterns identified as significant in multiple linear regression models 

varied because each region and its biomass estimate were uniquely forced by climate. 

I found biomass measures for the lower Bay were most sensitive to climate 

differences (regions 1-3; Figs. 3.6-3.7), while models for the upper Bay explained 

more of the variance (regions 4-6; Table 3.2). This is consistent with the exacerbation 

of light-limitation in the upper Bay in high flow that accompanies warm/wet weather 

patterns, and fertilization of the lower Bay wherein nutrient limitation is alleviated 

(Harding and Perry, 1997; Adolf et al., 2006). 

The main contributions of this work were to quantify the direct link between 

regional climate forcing and spring phytoplankton dynamics in the Bay, and to 
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forecast spring biomass from winter weather. Models I present explained a large 

fraction of the variance of spring biomass, however, 11 to 77% remains unexplained. 

The synoptic climatology used here accurately quantifies the types and frequencies of 

weather that transit the region, but it is not capable of quantifying the intensity of the 

weather patterns, and this limitation is a probable source of unexplained variance in 

the relationships I derived. Other sources of unexplained variance include: (1) climate 

variability not captured by the synoptic climatology; (2) grazing or trophic 

interactions not influenced by climate variability; (3) changes in nutrient and 

sediment loading unrelated to climate, i.e. anthropogenic impacts. 

Quantifying the influence of climate variability on phytoplankton biomass with 

regional models allows an examination of residuals for other sources of variability, 

such as eutrophication. However, no statistically significant trends in the residuals 

were observed from any of the regional regression models of biomass measures. This 

suggests most of the increase in phytoplankton biomass I can attribute to increased 

nutrient loading (Harding, 1994) occurred prior to the period of this study (1989), and 

supports the conclusions of Harding and Perry (1997). Kemp et al. (2005) related this 

lack of trend in biomass during the last 20 years to similar patterns in nutrient 

loading. Additionally, these results indicate there has been no reversal in conditions 

due to management actions. Models of phytoplankton biomass that can account for 

climate variability may become increasingly valuable if predicted climate change 

scenarios for the mid-Atlantic are realized (Najjar et al., 2000). 

I addressed the hypothesis that differences in regional climate represent the 

predominant source of interannual variability of spring phytoplankton biomass in 
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Chesapeake Bay. To that end, I have: (1) described a procedure and results for 

classifying and quantifying daily surface SLP to characterize regional climate; (2) 

quantified the position, magnitude, timing, and extent of the spring bloom for 

contrasting climate conditions using B, Beu, Bwc, and Btot determined from a time-

series of remotely sensed chla and products derived from it; and (3) developed 

multiple linear regression models using the previously described winter weather 

patterns to describe four measures of phytoplankton biomass for spring. These models 

explained between 23 and 89% of the variability in the regional estimates of 

phytoplankton biomass. No trends were found in the residual variability of the 

phytoplankton estimates after the climate signal was removed. 

 

Acknowledgements. The authors wish to thank J. E. Adolf, D. G. Kimmel, M. E. 

Mallonee, R. J. Wood, and all the pilots and crew of aircraft used in the Chesapeake 

Bay Remote Sensing Program. Support from NASA, NOAA, EPA and Maryland Sea 

Grant is gratefully acknowledged. WDM was supported by NASA Headquarters 

under an Earth System Science Fellowship. Contribution no. 3946 of Horn Point 

Laboratory, University of Maryland Center for Environmental Science. 



 73 
 

References 

Adolf, J.E., C.L. Yeager, W.D. Miller, M.E. Mallonee, and L.W. Harding Jr. 2006. 
Environmental forcing of phytoplankton floral composition, biomass, and primary 
productivity in Chesapeake Bay, USA. Estuar. Coast. Shelf Sci., 67, 108-122. 

 
Austin, H.M. 2002. Decadal oscillations and regime shifts, a characterization of the 

Chesapeake Bay marine climate. Am. Fish. Soc. Symp., 32, 155-170. 
 
Behrenfeld, M.J., J.T. Randerson, C.R. McClain, G.C. Feldman, S.O. Los, C.J. 

Tucker, P.G. Falkowski, C.B. Field, R. Frouin, W.E. Esaias, D.D. Kolber, and 
N.H. Pollack. 2001. Biospheric primary production during an ENSO transition. 
Science 291, 2594-2597. 

 
Boynton, W.R., W.M. Kemp, and C.W. Keefe. 1982. A comparative analysis of 

nutrients and other factors influencing estuarine phytoplankton production, p. 69-
90. In V.S. Kennedy [ed.]. Estuarine comparisons. Academic Press.  

 
Campbell, J.W., and W.E. Esaias. 1983. Basis for spectral curvature algorithms in 

remote sensing of chlorophyll. Appl. Opt., 22, 1084-1093. 
 
Cayan, D.R., and D.H. Peterson. 1989. The influence of North Pacific atmospheric 

circulation on riverflow in the West, p. 375-397. In D.H. Peterson [ed.]. Aspects 
of climate variability in the Pacific and the Western Americas. American 
Geophysics Union. 

 
Chavez, F.P., P.G. Strutton, G.E. Friederich, R.A. Feely, G.C. Feldman, D.G. Foley, 

and M.J. McPhaden. 1999. Biological and chemical response of the Equatorial 
Pacific Ocean to the 1997-1998 El Niño. Science 286, 2126-2131. 

 
Cloern, J.E., A.E. Alpine, B.E. Cole, R.L. Wong, J.F. Arthur, and M.D. Ball. 1983. 

River discharge controls phytoplankton dynamics in the northern San Francisco 
Bay estuary. Est. Coast. Shelf Sci., 21, 711-725. 

 
Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication 

problem. Mar. Ecol. Prog. Ser., 210, 223-253. 
 
Cloern, J.E., T.S. Schraga, C.B. Lopez, N. Knowles, R. Grover Labiosa, and R. 

Dugdale. 2005. Climate anomalies generate an exceptional dinoflagellate bloom 
in San Francisco Bay. Geophys. Res. Lett., 32, L14608, 
doi:10.1029/2005GL023321. 

 
Cody R.P., and J.K. Smith. 2005. Applied Statistics and the SAS programming 

language. 5th ed. Pearson/Prentice Hall. 
 



 74 
 

Crane, R.G., and B.C. Hewitson. 1998. Doubled CO2 precipitation changes for the 
Susquehanna basin: downscaling from the genesis general circulation model. Int. 
J. Climatol., 18, 65-76. 

 
Davis, R.E., B.P. Hayden, D.A. Gay, W.L. Phillips, and G.V. Jones. 1997. The North 

Atlantic subtropical anticyclone. J. Clim., 10, 728-744. 
 
Davis, R.E., R. Dolan, and G. Demme. 1993. Synoptic climatology of Atlantic coast 

north-easters. Int. J. Climatol., 13, 171-189. 
 
Davis, R.E., and L.S. Kalkstein. 1990. Development of an automated spatial synoptic 

climatological classification. Int. J. Climatol., 10, 769-794. 
 
Guttman, N.B., and R.G. Quayle. 1996. A historical perspective of U.S. climate 

divisions. Bull. Am. Meteorol. Soc., 77, 293-303.  
 
Harding, Jr., L.W. 1994. Long-term trends in the distribution of phytoplankton in 

Chesapeake Bay: roles of light, nutrients, and streamflow. Mar. Ecol. Prog. Ser., 
104, 267-291. 

 
Harding, Jr., L.W., B.W. Meeson, and T.R. Fisher. 1986. Phytoplankton in two East 

coast estuaries: photosynthesis-light curves and patterns of carbon assimilation. 
Est. Coast. Shelf Sci., 23, 773–806. 

 
Harding, Jr., L.W., and E.S. Perry. 1997. Long-term increases of phytoplankton 

biomass in Chesapeake Bay, 1950-1994. Mar. Ecol. Prog. Ser., 157, 39-52. 
 
Harding, L.W., E.C. Itsweire, and W.E. Esaias. 1994. Estimates of phytoplankton 

biomass in the Chesapeake Bay from aircraft remote sensing of chlorophyll 
concentrations, 1989-92. Remote Sen. Environ., 49, 41-56. 

 
Harding, L.W., E.C. Itsweire, and W.E. Esaias. 1995. Algorithm development for 

recovering chlorophyll concentrations in the Chesapeake Bay using aircraft 
remote sensing, 1989-91. Photogramm. Eng. Remote Sens., 61, 177-185. 

 
Harding, Jr., L.W., M.E. Mallonee, and E.S. Perry. 2002. Toward a predictive 

understanding of primary productivity in a temperate, partially stratified estuary. 
Est. Coast. Shelf Sci., 55, 437-463. 

 
Hayden, B.P. 1981. Secular variation in Atlantic coast extratropical cyclones. Mon. 

Weather Rev., 109, 159-167. 
 
Howarth, R.W., D.P. Swaney, T.J. Butler, and R. Marino. 2000. Climatic control on 

eutrophication of the Hudson River estuary. Ecosystems 3, 210-215. 
 



 75 
 

Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. 
Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. 
Kimmel, W.D. Miller, R.E.I. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 
2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. 
Mar. Ecol. Prog. Ser., 303, 1-29. 

 
Kimmel, D.G., W.D. Miller, and M.R. Roman. 2006. Regional scale climate forcing 

of mesozooplankton dynamics in Chesapeake Bay. Estuaries (in press). 
 
Mallin, M.A., H. W. Paerl, J. Rudek, and P.W. Bates. 1993. Regulation of estuarine 

primary production by watershed rainfall and river flow. Mar. Ecol. Prog. Ser., 
93, 199-203. 

 
Malone, T.C. 1977. Environmental regulation of phytoplankton productivity in the 

Lower Hudson estuary. Est. Coast. Mar. Sci., 5, 157-171. 
 
Malone, T.C., L.H. Crocker, S.E. Pike, and B.W. Wendler. 1988. Influences of river 

flow on the dynamics of phytoplankton production in a partially stratified estuary. 
Mar. Ecol. Prog. Ser., 48, 235–249. 

 
Malone, T.C. 1992. Effects of water column processes on dissolved oxygen, 

nutrients, phytoplankton and zooplankton, p. 61-112. In D.E. Smith, M. Leffler, 
and G. Mackiernan [eds.]. Oxygen Dynamics in the Chesapeake Bay: A Synthesis 
of Recent Research. Maryland Sea Grant Program. 

 
McCabe, G.J., and M.A. Ayers. 1989. Hydrologic effects of climate change in the 

Delaware River basin. Water Resour. Bull., 25, 1231-1242. 
 
McGowan, J.A., D.R. Cayan, and L.M. Dorman. 1998. Climate-ocean variability and 

ecosystem response in the Northeast Pacific. Science 281, 210-217. 
 
Miller, W.D., D.G. Kimmel, and L.W. Harding Jr. 2006. Predicting spring discharge 

of the Susquehanna River from a synoptic climatology for the eastern United 
States. Water Resour. Res., 42, W05414, [doi:10.1029/2005WR004270]. 

 
Najjar, R.G. 1999. The water balance of the Susquehanna River Basin and its 

response to climate change. J. Hydrol., 219, 7-19. 
 
Najjar, R.G., H.A. Walker, P.J. Anderson, E.J. Barron, R.J. Bord, J.R. Gibson, V.S. 

Kennedy, C.G. Knight, J.P. Megonigal, R.E. O’Connor, C.D. Polsky, N.P. Psuty, 
B.A. Richards, L.G. Sorenson, E.M. Steele, and R.S. Swanson. 2000. The 
potential impacts of climate change on the mid-Atlantic coastal region. Clim. 
Res., 14, 219-233. 

 
Ottersen G., N.C. Stenseth, and J.W. Hurrell. 2004. Climate flucuations and marine 

systems: a general introduction to the ecological effects, p. 3-14. In N.C. Stenseth, 



 76 
 

G. Ottersen, J.W. Hurrell, and A. Belgrano [eds]. Marine ecosystems and climate 
variation: the North Atlantic a comparative perspective. Oxford University Press. 

 
Ottersen, G., B. Planque, A. Belgrano, E. Post, P.C. Reid, and N.C. Stenseth. 2001. 

Ecological effects of the North Atlantic Oscillation. Oecologia 128, 1-14. 
 
Pennock, J.R. 1985. Chlorophyll distributions in the Delaware Estuary: regulation by 

light limitation. Est. Coast. Shelf Sci., 21, 711-725. 
 
Relexans, J.C., M. Meybeck, G. Billen, M. Brugeaille, H. Etcheber, and M. Somville. 

1988. Algal and microbial processes involved in particulate organic matter 
dynamics in the Loire Estuary. Est. Coast. Shelf Sci., 27, 625-644. 

 
Rudek J., H.W. Paerl, M.A. Mallin, and P.W. Bates. 1991. Seasonal and hydrological 

control of phytoplankton nutrient limitation in the lower Neuse River Estuary, 
North Carolina. Mar. Ecol. Prog. Ser., 75, 133-142. 

 
Smayda, T.J., D.G. Borkman, G. Beaugrand, and A. Belgrano. 2004. Responses of 

marine phytoplankton populations to fluctuations in marine climate, p. 49-58. In 
N.C. Stenseth, G. Ottersen, J.W. Hurrell, and A. Belgrano [eds]. Marine 
ecosystems and climate variation: the North Atlantic a comparative perspective. 
Oxford University Press. 

 
Stenseth, N.C., A. Mysterud, G. Ottersen, J.W. Hurrell, K.S. Chan, and M. Lima. 

2002. Ecological effects of climate fluctuation. Science 297, 1292-1296. 
 
Stenseth, N.C., G. Ottersen, J.W. Hurrell, A. Mysterud, M. Lima, K.S. Chan, N.G. 

Yoccoz, and B. Adlandsvik. 2003. Studying climate effects on ecology through 
the use of climate indices: the North Atlantic Oscillation, El Niño Southern 
Oscillation and beyond. Proc. R. Soc. Lond., B 270, 2087-2096. 

 
Weiss, G.M., L.W. Harding, E.C. Itsweire, J.W. Campbell. 1997. Characterizing 

lateral variability of phytoplankton chlorophyll in Chesapeake Bay with aircraft 
ocean color data. Mar. Ecol. Prog. Ser., 149, 183-199. 

 
Yarnal, B. 1993. Synoptic Climatology in Environmental Analysis, Belhaven Press. 
 
Zielinski, G.A. 2002. A classification scheme for winter storms in the eastern and 

central United States with emphasis on “Nor’easters”. Bull. Am. Meteorol. Soc., 
83, 37-51. 

 
 
 



 
 
Table 3.1. Meteorological characteristics for weather patterns during winter 1989-2004. Wind 
speed and direction based on data from Baltimore-Washington International airport. 
 

Weather 
Pattern % 

Temperature 
Anomaly(±SE) 

(oC) 

Precipitation 
Anomaly(±SE) 

(mm) 

Wind  
Direction 

Wind 
Speed 
(m s-1) 

Conditions 

1a 6.8 3.4 (±0.46) 1.0 (±0.52) W 3.0 warm/wet 

2b 17.0 -3.4 (±0.32) -0.9 (±0.20) NW 3.7 cool/dry 

3c 6.1 -0.3 (±0.48) 0.7 (±0.54) N 3.4 seasonal/wet 

4c 4.5 2.3 (±0.51) 2.5 (±0.83) W 3.9 warm/wet 

5 17.4 2.5 (±0.33) 0.4 (±0.30) W 2.7 warm/wet 

6 7.7 -0.1 (±0.46) 0.0 (±0.43) NE 2.3 seasonal 

7 13.0 -2.1 (±0.36) -0.3 (±0.23) W 4.7 cool/dry 

8 3.3 3.2 (±0.72) 1.5 (±0.83) NE 2.5 warm/wet 

9 9.2 2.1 (±0.43) -0.5 (±0.27) S 2.0 warm/dry 

10 15.0 -1.3 (±0.35) -0.7 (±0.21) S 2.0 cool/dry 
a Bermuda High 
b Ohio Valley High 
c Nor’easter 
 



 78 
 

 

 
 
 
 
Table 3.2. Results from multiple linear regression models of winter weather pattern 
frequencies on measurements of regional spring phytoplankton standing stock. Units 
for RMSE are mg chla m-3 for B, mg chla m-2 for Beu and Bwc, and metric tons chla 
for Btot. 
 

Variable Region Adjusted r2 p-value Weather patterns RMSE 

B 1 0.41 0.050 1,2,3,7,10 1.7 
 2 0.41 0.043 5,6,9,10 2.1 
 3 0.58 0.013 1,6,8,9,10 1.8 
 4 0.58 0.035 2,3,4,5,6,9 1.6 
 5 0.66 0.005 3,4,6,7,10 0.9 
 6 0.74 0.007 1,2,3,4,5,7,8 0.9 

Beu 1 0.36 0.082 1,2,3,5,7,10 8.5 
 2 0.72 0.008 3,4,5,6,7,9,10 5.8 
 3 0.78 0.003 2,3,6,7,8,9,10 4.6 
 4 0.54 0.020 3,5,6,8,9 7.5 
 5 0.70 0.006 1,2,5,7,8,9 4.7 
 6 0.41 0.026 6,7,9 5.9 

Bwc 1 0.23 0.049 1,9 21.8 
 2 0.25 0.057 1,9 39.7 
 3 0.44 0.031 1,2,3,4 35.9 
 4 0.25 0.040 3,6,10 33.6 
 5 0.65 0.011 2,3,6,7,8,10 15.5 
 6 0.89 0.002 1,2,4,5,7,8,9 6.5 

Btot  0.35 0.025 1,9 146 
 

 



 79 
 

 
 
 
 
 
Table 3.3. Linear regression results of ENSO and NAO winter climate indices and 
winter-spring (Jan.-Apr.) freshwater flow from the Susquehanna River on regional 
spring phytoplankton biomass measures, ns indicates the model was not statistically 
significant (p> 0.05). 
 

ENSO NAO Winter-Spring 
Flow  Variable  Region 

r2 p-value r2 p-value r2 p-value 
B 1 0.002 ns 0.062 ns 0.091 ns 
  2 0.022 ns 0.067 ns 0.082 ns 
  3 0.002 ns 0.066 ns 0.139 ns 
  4 0.004 ns 0.053 ns 0.006 ns 
  5 0.004 ns 0.009 ns 0.022 ns 
  6 0.009 ns 0.012 ns 0.001 ns 

Beu 1 0.005 ns 0.035 ns 0.007 ns 
  2 0.011 ns 0.001 ns 0.034 ns 
  3 0.002 ns 0.035 ns 0.009 ns 
  4 0.058 ns 0.260 ns 0.420 0.01 
  5 0.022 ns 0.016 ns 0.492 0.01 
  6 0.010 ns 0.037 ns 0.469 0.01 

Bwc 1 0.016 ns 0.130 ns 0.217 0.04 
  2 0.009 ns 0.150 ns 0.359 0.01 
  3 0.012 ns 0.138 ns 0.305 0.02 
  4 0.004 ns 0.008 ns 0.010 ns 
  5 0.011 ns 0.013 ns 0.027 ns 
  6 0.031 ns 0.075 ns 0.004 ns 

Btot   0.001 ns 0.177 ns 0.260 0.04 
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 Fig. 3.1. Map of Chesapeake Bay showing flight lines from CBRSP, regions noted 
with heavy black lines and large numbers, and CBP stations as open circles. 
Regions are delineated as 1, 36.95-37.40oN; 2, 37.41-37.80oN; 3, 37.81-38.40oN; 
4, 38.41-38.80oN; 5, 38.81-39.10oN; 6, 39.11-39.66oN. 
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Fig. 3.2. Average sea-level pressure maps for each cluster. Weather pattern 
number in upper left-hand corner. H and L indicate centers of high and low 
pressure regions, respectively. Black lines delineate regions of constant pressure 
(mb). 
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Fig. 3.3. Time series (1989-2004) of winter (December-February) frequency-of-
occurrence for each cluster. Weather pattern number in upper left-hand corner. 
Horizontal dashed lines indicate the LTA for each weather pattern. 
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 Fig. 3.4. a) Winter weather pattern deviations from LTA frequency-of-occurrence 
for contrasting climate extremes for years dominated by a) warm/wet weather 
patterns and b) cool/dry weather patterns. 
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 Fig. 3.5. Regional water column properties for warm/wet (black bars), LTA (open 
bars), and cool/dry years (gray bars) for a) Zp and b) surface DIN. Error bars 
indicate standard error. Regions progress from freshwater (6) to saltwater (1). 
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 Fig. 3.6. Regional mean a) B, b) Beu, and c) Bwc for warm/wet (black circles), LTA 
(open diamonds), and cool/dry (gray squares) years. Error bars indicate standard 
error. Regions progress from freshwater (6) to saltwater (1). 
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 Fig. 3.7. Percent difference from LTA for 6 regions during warm/wet years a) B, 
c) Beu, and e) Bwc and cool/dry years b) B, d) Beu, and f) Bwc. Regions progress 
from freshwater (6) to saltwater (1). 
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 Fig. 3.8. Timing of maximum Btot for warm/wet (black circles), LTA (open 
diamonds), and cool/dry (gray squares) years average over two week intervals. 
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Fig. 3.9. Spatially explicit maps of B for a) warm/wet, b) LTA, and c) cool/dry 
years  
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Fig. 3.10. Comparison of predicted versus observed results from regional multiple 
linear regression models predicting spring a) B, b) Beu, c) Bwc. 



 90 
 

 
 

 

Fig. 3.11. Time series of regional predicted (open circles) and observed (black 
circles) results from multiple linear regression models and residuals for B, Beu, 
Bwc. Horizontal dashed lines indicate the LTA for each region. Black bars indicate 
residuals. Region shown in upper right hand corner. 



 
 

 

 

 

 

 

 

Chapter 4 

Climate Forcing of Primary Productivity in Chesapeake Bay 1 

 

 

 

 

 

 

 

 

 

 

1Miller, W.D., L.W. Harding Jr., M.E. Mallonee, J.E. Adolf , and D.G. Kimmel. 
Climate Forcing of Primary Productivity in Chesapeake Bay. Estuarine Coastal and 
Shelf Science. To be submitted. 
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Abstract 

I report that climate forcing drives high seasonal and interannual variability of 

primary productivity (PP) in Chesapeake Bay. Climate was quantified using a 

'synoptic climatology' developed using frequencies of predominant weather patterns 

classified from daily sea-level pressure (SLP) data for the eastern United States. PP 

was derived using a depth-integrated model (DIM) applied to 16 yrs (1989-2004) of 

ocean color data from aircraft remote sensing. These data provided high spatial and 

temporal resolution needed to accurately compute annual and summer integral 

production (AIP and SIP). I found AIP and SIP were correlated, SIP was responsible 

for ~62% of AIP, and each integral varied approximately two-fold for a wide range of 

climate conditions. AIP and SIP showed strongly contrasting responses to warm/wet 

and cool/dry weather patterns that occurred during winter-spring. Trend analysis 

showed a small but significant decrease of AIP and SIP caused by decreasing photic 

depth, Zp. I removed the Zp trend prior to developing multiple linear regression 

models of the integrals on frequencies of winter-spring (Jan-Apr) weather patterns 

that explained 42-63% of the variance. These findings indicate climate early in the 

year sets up PP in summer, leading to predictable AIP and SIP. I suggest interannual 

variability of precipitation and freshwater flow as expressions of climate controls 

nutrient loading in spring, leading to variability of spring bloom intensity. AIP and 

SIP are strongly coupled to biomass generated in the spring bloom that supplies the 

substrate for nutrient regeneration to support summer PP. The direct link of climate to 

AIP and SIP gives a predictive capability with implications for forecasting key 

aspects of planktonic and fish dynamics in the ecosystem.  
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Introduction 

Climate has been identified as a major source of variability for primary 

productivity (PP) in a variety of aquatic ecosystems, including lakes (Goldman et al., 

1989), estuaries (Smayda et al., 2004), coastal waters (Lindahl et al., 1998), and the 

global ocean (Behrenfeld et al., 2001). High and variable PP in estuaries has been 

attributed to nutrient loading from watersheds associated with interannual differences 

in precipitation and freshwater flow (Boynton et al., 1982). Freshwater flow responds 

to climate variability and explains a significant amount of the variability of PP in a 

variety of estuaries, including the Hudson River outflow (Howarth et al., 2000), upper 

San Francisco Bay (Jassby et al., 2002), Neuse River (Rudek et al., 1991), and 

Mississippi River plume/Gulf of Mexico (Justić et al., 1997). Comprehensive 

measures of climate variability contain additional information that may improve these 

relationships, leading to a fuller understanding of the role of climate in driving 

interannual variability of PP. 

I know that large-scale climate indices, such as the North Atlantic Oscillation 

(NAO) and El Niño-Southern Oscillation (ENSO) capture climate and weather 

variability in many parts of the world (Stenseth et al., 2002). These indices integrate 

the effects of multiple weather variables and provide ‘holistic’ measures of climate 

variability (Stenseth et al., 2003), but they are not applicable to all regions. For 

example, NAO does not explain variability of environmental conditions in the mid-

Atlantic (Tootle et al., 2005), whereas a ‘synoptic scale’ (1,000-2,500 km) 

climatology has produced significant results (Miller et al., 2006; Kimmel et al., 

2006). On a regional scale, synoptic climatology can be used to classify and quantify 

atmospheric circulation patterns and relate the frequencies-of-occurrence of those 
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patterns to environmental conditions (Yarnal, 1993). Miller and Harding (submitted) 

showed coherence of spring bloom intensity and the frequencies of ‘warm/wet’ and 

‘cool/dry’ weather patterns transiting the Chesapeake Bay watershed during winter. 

Years dominated by warm/wet patterns had above average biomass, with maximum 

chlorophyll-a (Chl a) shifted down-estuary, and a spring bloom occurring in late 

spring. Cool/dry years showed the opposite responses, with lower Chl a located up-

estuary. 

While I have quantified climate forcing of the spring bloom, effects on another 

important element of the annual phytoplankton cycle in Chesapeake Bay, primary 

productivity (PP), have not been analyzed. The annual cycle is dominated by a 

winter-spring Chl a peak composed of large diatoms that occurs ~3 months prior to a 

summer PP maximum composed of small diatoms, cyanobacteria, and flagellates 

(Malone, 1992). The asynchrony of Chl a and PP maxima is related to the timing of 

high nutrient loading in the spring freshet, estuarine circulation, and 

regeneration/retention of nutrients within the Bay (Malone et al., 1988). During 

spring, Chl a increases in the presence of saturating nutrient concentrations as 

temperature limits both phytoplankton growth rates and zooplankton grazing 

pressure. In contrast, high phytoplankton growth rates in summer occur in the absence 

of high Chl a at lower nutrient concentration and higher grazing pressure (Malone et 

al., 1996). The accepted paradigm is that nutrients sequestered in phytoplankton 

biomass during spring are retained in the system via estuarine circulation and 

microbial remineralization and support high PP I observe during summer (Kemp and 

Boynton, 1984). Transient interruptions of the pycnocline during summer permit 
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regenerated nutrients to be re-introduced into the photic zone to support high summer 

PP as nutrient inputs associated with freshwater flow are low (Malone, 1992). Large 

interannual differences in the magnitude of Chl a and PP peaks have been attributed 

to climate variability through its effects on freshwater flow and attendant nutrient 

loading during spring, and wind mixing of the water column during summer (Malone 

et al., 1988).  

Harding et al. (2002) addressed variability of PP in Chesapeake Bay using a large 

(n=575) dataset of PP measurements spanning a broad range of environmental 

conditions (1982-2000), and developed depth-integrated models (DIM) of PP. These 

data were also used to calculate annual integral production (AIP), but sampling was 

too infrequent for accurate retrievals in many years, limiting the resolution of 

interannual variability of this important parameter. The models used relatively simple 

input variables (Chl a, sea-surface temperature (SST), photic depth (Zp), daylength 

(Dirr), and incident irradiance (Eo) to estimate PP. These input terms make the models 

amenable to use of remotely sensed data collected at high spatial and temporal 

resolution to support improved estimates of AIP. 

In this paper, I build on earlier work that addressed regional climate forcing of 

precipitation and freshwater flow (Miller et al., 2006), and spring bloom intensity in 

Chesapeake Bay (Miller and Harding, submitted) using PP models for the Bay 

(Harding et al., 2002) applied to a 16 yr time series of remotely sensed Chl a and 

SST. I addressed the hypothesis that regional climate forcing drives interannual 

variability of AIP in Chesapeake Bay. To achieve this goal I: (1) quantified the spatial 

and temporal variability of PP with locally calibrated and validated models of PP 
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using remotely sensed data combined with land and shipboard measurements to 

determine AIP; (2) described consistent responses of Chl a and PP in summer to 

contrasting warm/wet and cool/dry climate regimes, quantified with a synoptic 

climatology; (3) assessed the predictive skill of multiple linear regression models 

used to quantify the variance of PP explained by frequencies of weather patterns 

occurring during winter-spring. By addressing these goals I show that regional-scale 

climate variability is an important driver of PP dynamics in Chesapeake Bay. 

Methods 

Model application 

Gross PP was estimated using the Chesapeake Bay Productivity Model (CBPM-2) 

(Harding et al., 2002). This DIM (eq. 1) is a modification of the Vertically 

Generalized Productivity Model (VGPM; Behrenfeld and Falkowski, 1997) that was 

log-transformed to allow incorporation of locally calibrated coefficients for each 

independent variable. It contains a model of the ‘phytoplankton physiology’ term, 

PB
opt, that shares independent variables with the core model and makes it useful for 

remotely sensed data. CBPM-2 was calibrated with data collected over 17 yrs (1982-

1998), and produced estimates of PP with a root mean square error (RMSE) of 

49.7%. Validation with data from 1999-2000 not used in model calibration produced 

estimates with RMSE of 47.6%. The independent variables include: surface Chl a 

(mg m-3), incident irradiance, Eo (E m-2 d-1), used as tEo = (Eo/(Eo + 4.1)) to describe 

the saturating effect of incident irradiance (Behrenfeld and Falkowski, 1997), photic 

depth, Zp (m) estimated as the 1 % isolume, daylength, Dirr (h), sea-surface 

temperature, SST (oC). 
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log PPgross = 0.1619 + 0.7721*log Chl a + 2.0344*log tEo + 

0.8115*log Zp + 0.0342*log Dirr + 1.2817*log SST    (1) 

Data sources for independent variables were: (1) Chl a and SST from aircraft 

remote sensing; (2) Zp from bi-weekly to monthly monitoring cruises of EPA 

Chesapeake Bay Program (CBP; http://www.chesapeakebay.net/); (3) Eo from a 

LiCor model 192 2π sensor at Smithsonian Environmental Research Lab (SERC, 

Edgewater, MD); (4) Dirr calculated from latitude and day-of-year. All data were 

mapped onto a common 1 km2 grid, producing approximately 7000 grid cells for each 

flight/cruise. Data from 18-37 flights and cruises per year were combined to produce 

annual coverage of the Bay. The number of flights for each year varied depending on 

weather and aircraft availability. Shipboard data were substituted for aircraft data for 

1996 due to instrument malfunctions. Data were analyzed for three regions of the 

mainstem Bay defined by latitude and average salinity location (Harding et al., 1997; 

Fig. 4.1). Summer was defined as June through September for determination of SIP. 

Remotely sensed data 

Chl a (mg m-3) was determined using ocean color measurements from light 

aircraft as part of the Chesapeake Bay Remote Sensing Program (CBRSP; 

http://www.cbrsp.org; Harding et al., 1994, 1995). Geo-referenced data were 

collected from an altitude of 150 m and a ground speed of approximately 50 m s-1 

using nadir-viewing multispectral radiometers (ODAS, SAS II, and SAS III; Harding 

et al., 2001). Chl a was computed using a spectral curvature algorithm (Campbell and 

Esaias, 1983) applied to water-leaving radiances in the blue-green region of the 

visible spectrum. Radiometric calibrations were made annually for all instruments. 
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Retrievals of Chl a relied on regional algorithms calibrated with matches to in-situ 

measurements from CBP and our own cruises. I defined a match as ±12 h on the same 

day, ±0.01o latitude, and ±0.005o longitude (Harding et al., 1994; 1995). The working 

equation retrieved log10 Chl a with an RMSE of 0.21 (log units). Flight data were 

interpolated onto a 1 km2 grid for visualization and further analyses using a two-

dimensional, inverse-distance-squared, octant search (Harding et al., 1994; 1995). 

SST was determined with an infrared (IR) temperature sensor (Heimann Instruments 

Inc.).  

Synoptic climatology 

Methods to quantify regional scale climate variability using a synoptic 

climatology followed Yarnal (1993), Miller et al. (2006), and Kimmel et al. (2006). 

Briefly, I used gridded, daily surface sea-level pressure (SLP) data from the National 

Center for Atmospheric Research (NCAR; http://dss.ucar.edu) to create a 48-point (6 

x 8) grid of SLP data covering the eastern Untied States (25o-50o N x 65o-100o W). 

Principal component analysis (PCA) was used as a data-reduction step to decrease the 

number of variables submitted to two-stages of clustering (average linkage and k-

means). The cluster analyses grouped the data into similarly occurring modes of 

variance that related to similar atmospheric circulation patterns. Average SLP maps 

for each of the ten dominant clusters were then determined by taking the mean value 

for each grid point within the daily maps. The seasonal frequencies-of-occurrence of 

each weather pattern were then computed for every year and used in multiple linear 

regression models. Temperature and precipitation data were obtained from the 

National Climate Data Center (NCDC; http://cdo.ncdc.noaa.gov). 
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Statistical analyses 

I used multiple linear regression models to quantify relationships of AIP and SIP 

to frequencies-of-occurrence of weather patterns for a range of time windows. 

Regional and whole Bay measures of AIP and SIP were the dependent variables, 

weather pattern frequencies for various time periods were the independent variables, 

and each year was an observation (n = 16). Selection of independent variables for 

inclusion in each model was determined by the combination of weather patterns that 

explained the maximum amount of variance in the dataset while producing a 

significant (p < 0.05) model. Explained variance was measured as the adjusted r2 to 

account for the increased variance explained with increasing numbers of explanatory 

(independent) variables. Multi-collinearity of the independent variables was checked 

with the variance inflation factor (VIF) diagnostic in SAS (Cody and Smith, 2005); 

no variable in the models had a VIF >5 (values greater than 10 indicate serious 

problems with multi-collinearity). Mann-Kendall trend tests were used to investigate 

the relationships between dependent variables and time. All statistics were performed 

in SAS version 9.1 (SAS Institute, Cary, NC). 

Results 

Interannual variability of PP 

Time series of monthly, average PP for the 16 yr study showed high interannual 

variability, dominated by summer (June-September) (Fig. 4.2). Annual averages 

showed highest values in the meso- and polyhaline regions at 840 and 828 mg C m-2 

d-1, respectively, and the oligohaline was significantly lower (698 mg C m-2 d-1). 

Summer maxima showed 2- to 3-fold differences among years and averaged 1653 mg 
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C m-2 d-1 for the oligohaline, 1957 mg C m-2 d-1 for the mesohaline, and 1860 mg C 

m-2 d-1 polyhaline regions. Secondary PP peaks were observed for a number of years 

in spring.  

AIP and SIP showed two-fold variability with the greatest range in the polyhaline 

(range = 226 g C m-2 yr-1) and lowest in the oligohaline (range = 96 g C m-2 yr-1) (Fig. 

4.3). Average Bay-wide AIP for the 16-yr time series was 301 g C m-2 yr-1. AIP was 

highest in the mesohaline (306 g C m-2 yr-1) and lowest (256 g C m-2 yr-1) in the 

oligohaline. Bay-wide SIP averaged 189 g C m-2 summer-1, whereas regional values 

ranged from a low of 164 g C m-2 summer-1 in the oligohaline to 193 g C m-2 summer-

1 in the mesohaline. For the whole Bay, the polyhaline was responsible for 52.6% of 

AIP, the mesohaline 42.5%, and the oligohaline only 4.8%. There were differences in 

production between regions, but the proportion of Bay-wide production associated 

with each region was primarily a function of the area encompassed. SIP constituted a 

large and consistent fraction of AIP, ranging from 55 to 79% with an average of 62%. 

Simple linear regression of AIP on SIP for all regions produced a highly significant 

relationship (p <0.001) that explained 92% of the variance of AIP (Fig. 4.4). When 

examined regionally, summer production only explains 75% of the variance of AIP in 

the oligohaline, while 94-95% of the variance of AIP is explained by SIP for the 

meso- and polyhaline, respectively. 

Trends of AIP and SIP 

Mann-Kendall trend tests of monthly average PP showed negative trends for most 

months, with significant slopes (p <0.05) in summer (Fig. 4.5). The magnitudes of the 

trends were greatest in the meso- and polyhaline Bay (Fig. 4.5). As AIP and SIP are 
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tightly coupled (Fig. 4.4), and the observed monthly trends were most significant in 

summer (Fig. 4.5), further analyses focused on SIP. I found decreasing trends of SIP 

were significant (p <0.05) for all regions except the oligohaline (p >0.10) with slopes 

ranging from -2 to -6 g C m-2 summer-1 (Fig. 4.6). The trend explained 26 to 30% of 

the variance in the SIP dataset. Residuals from trend lines were used in further 

analyses of climate forcing on SIP as they showed no trends. Similar patterns were 

observed for AIP with the time trend explaining 19 to 34% of the variance in the time 

series and slopes ranging from -3.6 to -9.0 g C m-2 yr-1. 

The five input terms to the PP model were analyzed for trends to determine the 

source of the observed PP trend. No statistically significant relationships were found 

for Dirr, Eo, SST, or Chl a, whereas Zp showed significant (p <0.05) decreasing trends 

for all regions, explaining 31% of the variance in the time series (Fig. 4.7). Zp 

decreases ranged from 4 cm summer-1 in the polyhaline to 8 cm summer-1 in the 

oligohaline. No trends were observed in any of the bio-optical properties that could 

explain the observed declines of Zp (i.e., Chl a, total suspended sediments, TSS, or 

chromophoric dissolved organic matter (CDOM). While no sufficiently resolved 

CDOM dataset was available, CDOM is known to vary with salinity and no 

significant trends of salinity were observed. 

Winter-spring weather pattern characteristics 

The frequencies-of-occurrence of regional weather patterns (Fig. 4.8) over 17 

separate time periods, from winter through summer, were examined to determine 

their influence on SIP residuals (Zp trend removed). The frequencies of winter-spring 

(January-April) patterns explained the largest amount of variance and produced 
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significant models. Comparisons using other combinations of months, including 

summer, did not produce significant models. Frequencies-of-occurrence of the ten 

weather patterns during winter-spring showed considerable variability over the 16-yr 

time series, but I observed no significant trends in any of the frequencies (Fig. 4.9). 

Weather pattern frequencies over the four-month period averaged 8.9 (pattern 4) to 

15.9 days (pattern 5) and varied between 1 and 30 days. A more comprehensive 

description of the weather patterns and their characteristics can be found in Miller et 

al. (2006). 

Weather patterns were stratified by similar temperature and precipitation 

anomalies (i.e., warm/wet vs. cool/dry). Warm/wet weather patterns (1, 3, 4 and 8; 

Table 4.1) had temperatures and precipitation that averaged 2.7o C and 1.0 mm d-1 

above the long-term averages (LTAs) for this time period (1989-2004). Cool/dry 

weather patterns (2, 7, and 10; Table 4.1) had temperatures 4.3o C and precipitation 

0.8 mm d-1 below the LTA. Years with above-average frequencies of warm/wet 

weather patterns (1991, 1996, 1998, and 2003) had higher precipitation (2.94 vs. 2.20 

mm d-1) and slightly higher temperatures (1.44 vs. 1.39o C) than years dominated by 

cool/dry weather patterns (1989, 1997, 2001, and 2002) (Fig. 4.10). I also observed 

considerable differences of freshwater flow (3819 vs. 1882 m3 s-1) and nitrogen 

loading (67.5 vs. 29.9 x106 kg N) into Chesapeake Bay in years with warm/wet or 

cool/dry winter-springs. 

Phytoplankton dynamics during contrasting years 

Phytoplankton responses during summers following either warm/wet or cool/dry 

winter-springs were consistent for all regions of the Bay as measured by Chl a and 
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SIP anomalies (Fig. 4.11). SIP and Chl a were 9 and 17% above average, 

respectively, during warm/wet years and 10 and 12% below average during cool/dry 

years. AIP and photic-layer Chl a also showed positive anomalies (7 and 11% 

respectively) for warm/wet years and negative anomalies (6 and 8%) in cool/dry 

years. I did not observe consistent patterns in summer conditions for any variables 

known to influence phytoplankton dynamics, including dissolved inorganic nitrogen 

(DIN), Zp, SST, or Eo (data not shown). The consistent response between Chl a and 

SIP was expected because Chl a is a term in the productivity model used to calculate 

SIP, and 47 to 74% of the variance of SIP is explained by Chl a alone. 

The progression of Chl a expressed as the moving average from winter through 

summer showed consistent deviations from the LTA for warm/wet and cool/dry years 

(Fig. 4.12). These deviations were most pronounced for the meso- and polyhaline 

regions of the Bay. During warm/wet years, Chl a averaged ~1.3 mg m-3 (16%) above 

the LTA in winter-spring and remained above average for the balance of spring and 

summer. Conversely, during cool/dry winter-springs, Chl a averaged ~1.0 mg m-3 

(11%) below the LTA and remained below-average through summer. Similar patterns 

were detected for photic-layer Chl a, but not for DIN, Zp, SST, or Eo. Differences 

were less pronounced in the oligohaline region where Chl a was below the LTA for 

warm/wet years in winter-spring but gradually increased through summer. 

SIP predictions from weather pattern variability 

I developed multiple linear regressions of SIP on frequencies-of-occurrence of 

weather patterns as AIP and SIP were strongly correlated. Regressions of SIP on 

frequencies-of-occurrence for winter-spring produced significant models (p <0.05) 
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for all regions, explaining 42 to 63% of the remaining variance of SIP after the Zp 

trend was removed (Table 4.2; Fig. 4.13). Time series showed good agreement for all 

years, including the observed 1994 peak in production. Model predictions were 

weakest for 2003 in all regions. Exclusion of data from this year resulted in models 

that explained 10 to 35% more of the variance. Weather patterns 2, 4, 5, and 10 were 

the most common independent variables in the multiple linear regression models 

(Table 4.2). Scatter plots of SIP predicted from weather patterns versus observed SIP 

residuals showed the skill of model predictions was strong for the entire range of 

observed values (Fig. 4.13). Models using summer Chl a or AIP as the dependent 

variable were significant and explained comparable amounts of the variance (Table 

4.2). However, models based on frequencies of spring or summer weather patterns as 

the independent variables were not consistently significant and explained less of the 

variance. With ~30% of the variance in SIP explained by the Zp trend and 42 to 63% 

of the remaining variance explained by winter-spring climate, only ~20 to 30% 

remains unexplained and showed no trends or relationships to summer environmental 

conditions.  

Discussion 

PP dynamics 

PP time series determined from recently developed models applied to remotely 

sensed ocean color data were in good agreement with earlier reports (Fig. 4.2; 

Harding et al., 1986; Marshall and Nesius, 1996). The estimates provided sufficient 

spatial and temporal resolution to resolve interannual differences of AIP and SIP to 

quantify climate forcing (Harding et al., 2002). Interannual variability of AIP was 
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about a factor of two (Fig. 4.3), a range not uncommon for estuaries dominated by 

hydrologic forcing (Jassby et al., 2002). Estimates of AIP from the time series I 

developed were lower than shipboard values (Harding et al., 2002), probably due to 

differences in samples sizes, station coverage, and temporal resolution underlying the 

integrals. The regional distribution of production in the Bay provides insight into why 

Bay-wide PP is so responsive to climate forcing. The polyhaline is responsible for 

over half (52.4%) of whole Bay AIP and is also the region of the Bay most sensitive 

to climate forcing (Harding and Perry, 1997; Miller and Harding, submitted).  

Estimating AIP from SIP has ramifications for fisheries production models and 

other ecosystem-scale analyses by reducing the information that is required to 

accurately determine AIP. The shape of the annual PP cycle is very consistent (Fig. 

4.2), dominated by a summer maximum that contributes significantly to the annual 

integral. Malone (1992) determined that summer production (June-August) 

contributed an average of 45% to annual production for 1984-1988, similar to our 

estimate (~62%) when September production is included in the calculation. The 

strong (r2 = 0.92) and significant (p <0.001) relationship between these two 

parameters (Fig. 4.4) suggests that interannual variations of PP that are relevant to 

AIP occur during the summer. This allows us to focus our resources more narrowly 

on factors that influence summer PP. 

Trends of SIP 

The decreasing trend in SIP was related to Zp. The negative trend of ~ 2 to 6 g C 

m-2 summer-1 was not expected but explained ~30% of the variance of SIP (Fig. 4.6). 

Rates of decline were greatest in the meso- to polyhaline regions where most 
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production occurred. The cause of the decreasing trend of Zp (Fig. 4.7) is unclear 

because the three properties that control light attenuation (Chl a, TSS, and CDOM) 

showed no significant trends. However, Fisher et al. (2006) showed similar decreases 

of Zp over the same time period at stations in the Choptank and Patuxent Rivers, sub-

estuaries of Chesapeake Bay, related to changes in Chl a and TSS. 

Phytoplankton responses to weather pattern variability 

Previous studies have related regional climate variability, quantified using a 

synoptic climatology (Fig. 4.8), to a variety of ecosystem responses in Chesapeake 

Bay including: the spring freshet from the Susquehanna River (Miller et al., 2006); 

zooplankton abundance in the oligo- and mesohaline Bay (Kimmel et al., 2006); and 

timing, position, and magnitude of the spring bloom (Miller and Harding, submitted). 

Here, I described climate forcing of PP quantified by the frequencies of winter-spring 

weather patterns (Fig. 4.9). Chl a and SIP showed consistent responses for contrasting 

years of warm/wet or cool/dry winter-spring weather in all regions of the Bay (Fig. 

4.11). Summer water column conditions (i.e., DIN, Zp, SST) did not show similar 

responses, suggesting that the winter-spring climate was not influencing summer 

phytoplankton dynamics through changes in summer environmental conditions. 

However, the progression of Chl a from winter to summer in the meso- and 

polyhaline Bay (Fig. 4.12) suggested Chl a may integrate climate forcing and link 

winter-spring weather to SIP. During years with warm/wet winter-springs, above-

average Chl a was observed in winter-spring, and during years with cool/dry winter-

springs below average Chl a was observed, findings consistent with Miller and 

Harding (submitted). As the year progressed, Chl a associated with prevailing climate 
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conditions maintained its position relative to the LTA (Fig. 4.12), whereas other 

environmental variables that force phytoplankton dynamics did not show similar 

patterns. These observations are consistent with the paradigm of ‘biomass 

compensation’ (Malone, 1992), representing a mechanism to retain winter-spring 

nutrient inputs, support the summer PP maximum, and explain the observed 

variability of SIP in contrasting climate conditions. 

Predicting SIP from winter-spring weather patterns 

Multiple linear regression models of SIP on winter-spring climate explained ~42 

to 63% of the residual variance of regional SIP after the Zp trend was removed (Fig. 

4.13). Combined, these two sources of variability explain 60 to 71% of the variance 

of SIP. Several processes take place during the time lag between winter-spring and 

the summer PP maximum that explain high interannual variability of AIP and SIP 

documented in this paper and elsewhere (Harding et al., 2002). Synoptic-scale 

weather patterns influence freshwater flow to the estuary through interannual 

differences in winter precipitation stored in the watershed over winter as snow and ice 

(Miller et al., 2006; Najjar, 1999). Flow in winter-spring delivers over 50% of the 

annual nitrogen (N) load to the estuary (Malone, 1992). Phytoplankton compensate 

for temperature-limited uptake of nutrients during spring by increasing biomass that 

sequesters the nutrients in particulate organic matter (Malone et al., 1996). As the 

spring bloom subsides, particulate organic matter sinks below the seasonal pycnocline 

and is transported up-estuary via two-layer circulation. The nutrients contained in the 

organic matter are recycled by an active microbial community as temperatures 

increase during summer (Kemp and Boynton, 1992). Summer PP is then fueled by 
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introduction of these regenerated nutrients from below the pycnocline (Malone et al., 

1988). Interannual variability of the frequencies of winter-spring weather patterns 

controls the timing, magnitude, and position of the spring bloom (Miller and Harding, 

submitted), and therefore the amount of N sequestered in particulate organic matter 

available to support summer PP. These results suggest winter-spring climate forcing 

of nutrient loading in the spring freshet drives seasonal and interannual variability of 

PP in Chesapeake Bay, explicitly linking regional scale weather patterns as the root 

cause of the observed interannual variability. 

No other time window of weather pattern frequencies showed strong or consistent 

effects on AIP or SIP. Water-column stability during summer has been identified as a 

variable responsible for interannual differences of SIP (Malone, 1992). Differences in 

intensity of stratification provided a proxy for the magnitude/frequency of vertical 

flux of regenerated N from below the pycnocline to support PP. Climate variability 

could influence the vertical density gradient through the frequencies of storm passage 

and wind events. However, weather patterns for spring and summer intervals did not 

show consistently strong or significant relationships to summer production. A variety 

of reasons may explain this lack of connection: (1) the synoptic climatology may not 

have been the proper tool to quantify summer weather conditions; (2) the time and 

space scales used here may have been too coarse to resolve phytoplankton responses 

to event-scale climatic perturbations; or (3) this process may be less important 

relative to large interannual differences in nutrient loading. 

PP is a highly dynamic property of estuarine ecosystems in part due to the forcing 

of environmental variables controlled by climate. In Chesapeake Bay, climate 
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influences PP through changes in regional light and nutrient dynamics on several 

spatial and temporal scales. In addition to PP, floral composition and Chl a also 

respond to environmental forcing in a consistent manner and interactions of these 

properties should be considered. Adolf et al. (2006) showed that floral composition 

responded in predictable ways to differences in freshwater flow, and that these 

responses might influence biomass-specific photosynthetic rates and therefore PP 

dynamics. Quantifying these environmentally forced changes in community 

composition with a synoptic climatology should improve our conceptual 

understanding of climate forcing of phytoplankton dynamics in Chesapeake Bay. In 

order to predict and manage ecosystem response to both anthropogenic impacts and 

potential climate change it is critical to understand how the several expressions of 

phytoplankton dynamics respond to climate variability. 

Conclusions 

I have shown that regional-scale climate variability quantified using a synoptic 

climatology explained much of the two-fold interannual variability of AIP and SIP. 

The frequencies of winter-spring weather patterns expressed as differences of 

precipitation, freshwater flow, and nutrient loading, underlie the magnitude of the 

summer PP maximum that leads to this variability. Other representations of climate 

that capture variability in summer may explain additional variance of AIP and SIP. 

Sustained, high resolution datasets such as the ones used in these analyses (CBRSP, 

CBP, NCAR, and NCDC) are critical to identify the patterns and relationships I 

observed. Integrating this work with other recent studies (Adolf et al., 2006; Miller 

and Harding, submitted) will help us better understand how floral composition, 
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biomass and productivity of phytoplankton respond predictably to climate variability, 

influencing ecosystem dynamics on a variety of time and space scales. 

 

Acknowledgements I wish to thank Ming Li, Tom Malone, and all the pilots and 

crew of aircraft used in the Chesapeake Bay Remote Sensing Program. Support from 

NASA, NOAA, EPA and Maryland Sea Grant is gratefully acknowledged. WDM was 

supported by NASA Headquarters under an Earth System Science Fellowship. 

Contribution no. 3974 of Horn Point Laboratory, University of Maryland Center for 

Environmental Science. 



 111 
 

References 

Adolf, J.E., C.L. Yeager, W.D. Miller, M.E. Mallonee, and L.W. Harding Jr. 2006. 
Environmental forcing of phytoplankton floral composition, biomass, and primary 
productivity in Chesapeake Bay, USA. Estuar. Coast. Shelf Sci., 67, 108-122. 

 
Behrenfeld, M.J., J.T. Randerson, C.R. McClain, G.C. Feldman, S.O. Los, C.J. 

Tucker, P.G. Falkowski, C.B. Field, R. Frouin, W.E. Esaias, D.D. Kolber, and 
N.H. Pollack. 2001. Biospheric primary production during an ENSO transition. 
Science 291, 2594-2597. 

 
Behrenfeld, M.J., and P.G. Falkowski. 1997. Photosynthetic rates derived from 

satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1-20. 
 
Boynton, W.R., W.M. Kemp, and C.W. Keefe. 1982. A comparative analysis of 

nutrients and other factors influencing estuarine phytoplankton production, p. 69-
90. In V.S. Kennedy [ed.]. Estuarine comparisons. Academic Press.  

 
Campbell, J.W., and W.E. Esaias. 1983. Basis for spectral curvature algorithms in 

remote sensing of chlorophyll. Appl. Opt., 22, 1084-1093. 
 
Cody R.P., and J.K. Smith. 2005. Applied Statistics and the SAS programming 

language. 5th ed. Pearson/Prentice Hall. 
 
Fisher, T.R., J.D. Hagy, III, W.R. Boynton, and M.R. Williams. 2006. Cultural 

eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. 
Limnol. Oceanogr., 51, 435-447. 

 
Goldman, C.R., A.D. Jassby, and T. Powell. 1989. Interannual fluctuations in primary 

production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr., 
34, 310-323. 

 
Harding, Jr., L.W., B.W. Meeson, and T.R. Fisher. 1986. Phytoplankton in two East 

coast estuaries: photosynthesis-light curves and patterns of carbon assimilation. 
Est. Coast. Shelf Sci., 23, 773–806. 

 
Harding, L.W., E.C. Itsweire, and W.E. Esaias. 1994. Estimates of phytoplankton 

biomass in the Chesapeake Bay from aircraft remote sensing of chlorophyll 
concentrations, 1989-92. Remote Sen. Environ., 49, 41-56. 

 
Harding, L.W., E.C. Itsweire, and W.E. Esaias. 1995. Algorithm development for 

recovering chlorophyll concentrations in the Chesapeake Bay using aircraft 
remote sensing, 1989-91. Photogramm. Eng. Remote Sens., 61, 177-185. 

 
Harding, Jr., L.W., and E.S. Perry. 1997. Long-term increases of phytoplankton 

biomass in Chesapeake Bay, 1950-1994. Mar. Ecol. Prog. Ser., 157, 39-52. 



 112 
 

 
Harding, Jr., L.W., W.D. Miller, R.N. Swift, and C.N. Wright. 2001. Aircraft remote 

sensing, p. 113-122. In J.H. Steele, S.A. Thorpe, K.K. Turekian [eds.]. 
Encyclopedia of Ocean Sciences. Academic Press. 

 
Harding, Jr., L.W., M.E. Mallonee, and E.S. Perry. 2002. Toward a predictive 

understanding of primary productivity in a temperate, partially stratified estuary. 
Est. Coast. Shelf Sci., 55, 437-463. 

 
Howarth, R.W., D.P. Swaney, T.J. Butler, and R. Marino. 2000. Climatic control on 

eutrophication of the Hudson River estuary. Ecosystems 3, 210-215. 
 
Jassby, A.D., J.E. Cloern, and B.E. Cole. 2002. Annual primary production: patterns 

and mechanisms of change in a nutrient-rich tidal ecosystem. Limnol. Oceanogr., 
47, 698-712. 

 
Justić, D., N.N. Rabalais, and R.E. Turner. 1997. Impacts of climate change on net 

productivity of coastal waters: Implications for carbon budget and hypoxia. Clim. 
Res., 8, 225-237.  

 
Kemp, W.M., and W.R. Boynton. 1984. Spatial and temporal coupling of nutrient 

inputs to estuarine production: the role of particulate transport and decomposition. 
Bull. Mar. Sci., 3, 242–247. 

 
Kemp, W.M., and W.R. Boynton. 1992. Benthic-pelagic interactions: Nutrient and 

oxygen dynamics, p. 149-221. In D.E. Smith, M. Leffler, and G. Mackiernan 
[eds.]. Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Recent 
Research. Maryland Sea Grant Program. 

 
Kimmel, D.G., W.D. Miller, and M.R. Roman. 2006. Regional scale climate forcing 

of mesozooplankton dynamics in Chesapeake Bay. Estuaries (in press). 
 
Lindahl, O., A. Belgrano, L. Davidsson, and B. Hernroth. 1998. Primary production, 

climatic oscillations, and physico-chemical processes: the Gullmar Fjord time-
series data set (1985-1996). ICES J. Mar. Sci., 55, 723-729. 

 
Malone, T.C., L.H. Crocker, S.E. Pike, and B.W. Wendler. 1988. Influences of river 

flow on the dynamics of phytoplankton production in a partially stratified estuary. 
Mar. Ecol. Prog. Ser., 48, 235–249. 

 
Malone, T.C. 1992. Effects of water column processes on dissolved oxygen, 

nutrients, phytoplankton and zooplankton, p. 61-112. In D.E. Smith, M. Leffler, 
and G. Mackiernan [eds.]. Oxygen Dynamics in the Chesapeake Bay: A Synthesis 
of Recent Research. Maryland Sea Grant Program. 

 



 113 
 

Malone, T.C., D.J. Conley, T.R. Fisher, P.M. Glibert, L.W. Harding, Jr., and K.G. 
Sellner. 1996. Scales of nutrient-limited phytoplankton productivity in 
Chesapeake Bay. Estuaries 19, 371-385. 

 
Marshall, H.G., and K.K. Nesius. 1996. Phytoplankton composition in relation to 

primary production in Chesapeake Bay. Mar. Bio., 125, 611-617. 
 
Miller, W.D., and L.W. Harding, Jr. 2006. Climate forcing of the spring bloom in 

Chesapeake Bay. Mar. Ecol. Prog. Ser., (submitted). 
 
Miller, W.D., D.G. Kimmel, and L.W. Harding, Jr. 2006. Predicting spring discharge 

of the Susquehanna River from a synoptic climatology for the eastern United 
States. Water Resour. Res., 42, W05414, [doi:10.1029/2005WR004270]. 

 
Najjar, R.G. 1999. The water balance of the Susquehanna River Basin and its 

response to climate change. J. Hydrol., 219, 7-19. 
 
Rudek J., H.W. Paerl, M.A. Mallin, and P.W. Bates. 1991. Seasonal and hydrological 

control of phytoplankton nutrient limitation in the lower Neuse River Estuary, 
North Carolina. Mar. Ecol. Prog. Ser., 75, 133-142. 

 
Smayda, T.J., D.G. Borkman, G. Beaugrand, and A. Belgrano. 2004. Responses of 

marine phytoplankton populations to fluctuations in marine climate, p. 49-58. In 
N.C. Stenseth, G. Ottersen, J.W. Hurrell, and A. Belgrano [eds]. Marine 
ecosystems and climate variation: the North Atlantic a comparative perspective. 
Oxford University Press. 

 
Stenseth, N.C., A. Mysterud, G. Ottersen, J.W. Hurrell, K.S. Chan, and M. Lima. 

2002. Ecological effects of climate fluctuation. Science 297, 1292-1296. 
 
Stenseth, N.C., G. Ottersen, J.W. Hurrell, A. Mysterud, M. Lima, K.S. Chan, N.G. 

Yoccoz, and B. Adlandsvik. 2003. Studying climate effects on ecology through 
the use of climate indices: the North Atlantic Oscillation, El Niño Southern 
Oscillation and beyond. Proc. R. Soc. Lond., B 270, 2087-2096. 

 
Tootle, G.A., T.C. Piechota, and A. Singh. 2005. Couple oceanic-atmospheric 

variability and U.S. streamflow. Water Resour. Res. 41, W12408, 
doi:10.1029/2005WR004381. 

 
Yarnal, B. 1993. Synoptic Climatology in Environmental Analysis, Belhaven Press. 
 
 



 
 

Table 4.1. Meteorological characteristics for weather patterns during winter-spring 1989-2004. 
Wind speed and direction based on data from Baltimore-Washington International airport. 
 

Weather 
Pattern % 

Temperature 
Anomaly(±SE) 

(oC) 

Precipitation 
Anomaly(±SE) 

(mm) 

Wind  
Direction 

Wind 
Speed 
(m s-1) 

Conditions 

1a 9.1 3.8 (±0.25) 1.1 (±0.20) SW 3.2 warm/wet 

2b 10.8 -6.2 (±0.21) -1.1 (±0.12) NW 4.0 cool/dry 

3c 10.6 -0.1 (±0.24) 0.7 (±0.20) N 3.5 seasonal/wet 

4c 8.7 2.2 (±0.22) 1.9 (±0.26) NW 3.8 warm/wet 

5 12.4 0.9 (±0.22) 0.1 (±0.14) W 2.8 warm/seasonal 

6 8.6 -0.4 (±0.27) -0.7 (±0.16) NE 2.6 cool/dry 

7 10.5 -4.5 (±0.21) -0.2 (±0.16) W 4.8 cool/dry 

8 8.4 4.8 (±0.26) 0.2 (±0.18) SE 2.7 warm/wet 

9 9.9 3.7 (±0.25) -0.3 (±0.15) S 2.3 warm/dry 

10 11.1 -2.2 (±0.26) -1.1 (±0.10) S 2.4 cool/dry 
a Bermuda High 
b Ohio Valley High 
c Nor’easter 
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Table 4.2. Results from multiple linear regression models of winter-spring weather 
pattern frequencies on measurements of regional SIP and summer Chl a. Units for 
RMSE are g C m-2 summer-1 for SIP, mg chla m-3 for Chl a, and g C m-2 yr-1 for AIP. 
 

Variable Region Adjusted r2 p-value Weather patterns RMSE 

SIP Whole Bay 0.42 0.037 4,5,9,10 44.3 
 Oligohaline 0.63 0.025 2,4,5,6,7 17.0 
 Mesohaline 0.54 0.012 4,5,9,10 31.4 
 Polyhaline 0.60 0.008 2,4,5,6,7 18.1 

Chl a Whole Bay 0.51 0.026 1,2,4,8,10 1.4 
 Oligohaline 0.63 0.004 1,2,3,10 1.6 
 Mesohaline 0.60 0.011 1,2,4,8,10 1.3 
 Polyhaline 0.46 0.041 1,2,4,8,10 1.8 

AIP Whole Bay 0.56 0.009 4,5,9,10 30.2 
 Oligohaline 0.64 0.012 1,2,3,4,5,10 25.7 
 Mesohaline 0.54 0.012 4,5,9,10 25.3 
 Polyhaline 0.52 0.037 1,2,3,4,5,10 25.8 
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Fig. 4.1. Map of Chesapeake Bay showing regions used in analyses. Regions are 
delineated as polyhaline, 36.95o-37.80oN; mesohaline, 37.81o-38.80oN; 
oligohaline, 38.81o-39.66oN. 
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 Fig. 4.2 (a-d). Time series (1989-2004) of monthly PP estimated from CBPM for 3 

regions and whole Bay. Dashed lines indicate 5 and 95% confidence intervals. 
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 Fig. 4.3 (a-d). Time series (1989-2004) of AIP and SIP for 3 regions and whole 

Bay. Pie chart shows the fraction of total production accounted for by each region. 
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Fig. 4.4. Linear regression of AIP on SIP. 
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 Fig. 4.5 (a-d). Results of monthly Mann-Kendall trend test for 3 regions and whole 
Bay. Bars indicate the direction and magnitude of relationship between monthly 
PP estimate and year. Shading of the bars indicates the significance of the 
relationship. 
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 Fig. 4.6 (a-d). Time series (1989-2004) of SIP for 3 regions and whole Bay 

showing linear downward trend line. Grey bars represent residuals from that 
regression line. 
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Fig. 4.7 (a-d). Time series (1989-2004) of summer Zp for 3 regions and whole Bay 
showing linear downward trend line.  
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Fig. 4.8. Average sea-level pressure maps for 10 dominant weather patterns. 
Weather pattern number in upper left-hand corner. H and L indicate centers of 
high and low pressure regions, respectively. Black lines delineate regions of 
constant pressure (mb). 



 124 
 

 

 
 

 Fig. 4.9. Time series (1989-2004) of winter-spring (January-April) weather pattern 
frequencies-of-occurrence. Weather pattern number in upper left-hand corner. 
Horizontal dashed lines indicate the LTA for each weather pattern. 
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Fig. 4.10 (a-b). Winter-spring weather pattern deviations from LTA frequency-of-
occurrence for contrasting climate extremes for years dominated by a) warm/wet 
weather patterns and b) cool/dry weather patterns. Error bars indicate (±1 SD). 
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Fig. 4.11 (a-b). Phytoplankton response in summer of a) SIP and b) Chl a for 
contrasting warm/wet (black bars) and cool/dry (open bars) winter-springs. Error 
bars indicate (±1 SD). 
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Fig. 4.12 (a-d). Moving average of Chl a for 3 regions and whole Bay showing Chl 
a during warm/wet years (black circles), LTA (grey circles), and cool/dry years 
(open circles). Error bars indicate (±1 SD). 
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Fig. 4.13 (a-d). Time series of regional predicted (open circles) and observed 
(black circles) results from multiple linear regression models of winter-spring 
weather pattern frequencies on residual SIP for 3 regions and whole Bay. Graphs 
on the right side show scatter plots of observed versus predicted against the 1:1 
line. 



 

 

 

 

 

 

 

Chapter 5 

Hurricane Isabel generated an unusual fall bloom 

in Chesapeake Bay1 

 

 

 

 

 

 

 

 

 

 

1Miller, W.D., L.W. Harding Jr., and J.E. Adolf . Hurricane Isabel generated an 
unusual fall bloom in Chesapeake Bay. Geophysical Research Letters 33, L06612, 
[dio:10.1029/2005GL025658]. 
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Abstract 

Ocean color measurements from aircraft revealed an unusually strong fall bloom 

of phytoplankton in Chesapeake Bay after passage of Hurricane Isabel in September 

2003. Flights conducted before (11 September) and after (24 September) Isabel 

showed a two-fold increase of chlorophyll-a (Chl a) covering ~3000 km2 of the mid- 

to lower Bay, with an abrupt return to long-term average (LTA) Chl a by early 

October. Wind mixing induced rapid de-stratification of the water column, injecting 

nitrogen (N) into the euphotic layer that supported a fall bloom of diatoms. Here I 

quantify a significant perturbation of the annual phytoplankton cycle in Chesapeake 

Bay, driven by Hurricane Isabel. 
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Introduction 

Hurricane Isabel passed west of Chesapeake Bay on 18 September 2003, 

producing sustained southeasterly winds at 30 m s-1, but relatively low precipitation 

of < 5 cm. The storm disrupted vertical density stratification and thoroughly mixed 

the water column. Stratification was re-established 2-3 days after storm passage due 

to the strong horizontal salinity gradient from the head to the mouth of the estuary (Li 

et al., 2006). 

Mid-Atlantic hurricanes typically produce high precipitation, freshwater flow, and 

nutrient loading, supporting increased phytoplankton biomass and shifts of floral 

composition over weeks to months (Paerl et al., 2001). Tropical Storm Agnes in June 

1972 led to unprecedented freshwater flow and a protracted increase of phytoplankton 

biomass in Chesapeake Bay associated with a massive nutrient pulse (Zubkoff and 

Warinner, 1977). Phytoplankton responses to Isabel were distinct, occurring within 

days of storm passage by a mechanism described for the coastal ocean wherein 

hurricane energy erodes the pycnocline and injects nutrients to the surface mixed 

layer (Davis and Yan, 2004). 

I draw on aircraft and shipboard observations before and after the storm to 

describe phytoplankton responses to Hurricane Isabel. The storm occurred during a 

‘wet’ hydrologic year with higher-than-average phytoplankton biomass, making it 

essential to separate storm effects from prevailing climatic conditions of 2003 (Cloern 

et al., 2005). Multiple effects of Hurricane Isabel on Chesapeake Bay have been 

reported (Roman et al., 2005), including a brief description of phytoplankton 

responses. Here I expand on that treatment to show how biomass as chlorophyll (Chl 
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a), floral composition, and primary productivity (PP) were affected over a large area 

of the main stem Bay. 

Effects of Hurricane Isabel were unique for the Bay: i) fall blooms of the areal 

extent and magnitude that occurred after the storm have not been documented 

previously; ii) wind-mixing supported the bloom rather than precipitation, flow, and 

nutrient loading more typical of mid-Atlantic hurricanes; iii) tropical systems in this 

region have been infrequent historically, but show a recent increase of activity with 

likely ecosystem consequences (Webster et al., 2005). 

Methods 

Phytoplankton biomass as Chl a was obtained from ocean color measurements 

with a multi-spectral radiometer (SAS III, Satlantic, Inc. Halifax, NS, Canada). SAS 

III was deployed on light aircraft at low altitude (~150 m) and speed (~50 m s-1), 

following a defined set of flight lines traversing ~750 km (Chesapeake Bay Remote 

Sensing Program; http://www.cbrsp.org). I used a spectral curvature algorithm 

(Campbell and Esaias, 1983) to convert water-leaving radiances in the blue-green 

region of the spectrum (Lw443, Lw490, and Lw555) to Chl a. Comparisons of 

remotely sensed and shipboard data document the accuracy of Chl a retrievals for 

Case 2 waters of the Bay that contain significant chromophoric dissolved organic 

matter (CDOM) and suspended particulate material (Harding et al., 1994; 1995). Data 

were interpolated to a 1-km2 grid using a 2D, inverse-distance-squared, octant search 

on log10 Chl a to achieve normality. LTA Chl a for September was derived using data 

from 35 flights (n = 245,000 observations). Statistical analyses used SAS version 9.1 

(Cary, NC); outputs were mapped in Surfer version 8.0 (Golden, CO). 
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Shipboard data for biological and hydrographic properties were obtained from 

EPA’s Chesapeake Bay Program (CBP) monitoring cruises 

(http://www.chesapeakebay.net), mainly for eight stations in the central channel of 

the mid-Bay (39.0o to 37.9o N) visited 2-3 days before (15-16 September) and a week 

after (23-24 September) Isabel’s passage (Fig. 5.1a). Storm conditions prevented 

sampling from 37.2o - 37.9o N latitude in the weeks surrounding Isabel. Water column 

structure was described by vertical density difference, ∆σt (kg m-3), computed as 

bottom density minus surface density. The lower pycnocline depth from CBP was 

used to define the surface mixed layer. Simple, linear regressions of bathymetrically-

weighted values of water-column Chl a on log10 surface Chl a were applied to 

remotely-sensed Chl a to quantify water-column Chl a for each 1-km2 grid cell 

(Harding et al., 1994). These outputs were summed to estimate total Chl a. PP was 

determined from a depth-integrated model applied to remotely sensed Chl a and 

ancillary data from the closest monitoring cruise (cf. Harding et al., 2002). Floral 

composition for the bloom region (38.4o – 37.2o N) was quantified from HPLC 

pigment reconstructions for major phytoplankton taxa as fractions of Chla (Adolf et 

al., 2006). Sampling for pigments was conducted 25 days prior to the storm and 15 

days after the storm. 

Results 

The LTA for Chl a in September shows a north to south decrease along the main 

axis of Chesapeake Bay (Fig. 5.1a). The Bay-wide mean Chl a one week prior to 

Hurricane Isabel was 8.7 mg Chl a m-3 with slightly elevated Chl a in the upper Bay 

(Fig. 5.1b). Six days after Isabel (13 d after the last flight), Chl a in the region 
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between the Patuxent (38.4o N) and York (37.2o N) river mouths increased to 200% 

of the LTA for a 900 km2 area, and averaged 178% of the LTA for the entire 3232 

km2 bloom region (Fig. 5.1c). The mean Chl a increase between pre- and post-Isabel 

flights was ~ 4.7 mg m-3 (Table 5.1). Average Chl a in the bloom region was 13.7 mg 

m-3, the third highest of 35 flights conducted since 1990. Aircraft (2 October; Fig. 

5.1d) and shipboard (2-4 October; not shown) Chl a documented a rapid decrease to 

average fall concentrations two weeks after Isabel (range 4.7-11.8 mg Chl a m-3; 

mean 7.7 mg Chl a m-3). PP was not exceptional for fall in the mid- to lower Bay 

prior to Isabel, but PP increased by 29% 13 days after the storm (Table 5.1). 

Floral composition of the bloom region for fall is typically dominated by diatoms 

(56%) and cryptophytes (30%), with cyanobacteria (6%) and dinoflagellates (4%) 

making minor contributions (Fig. 5.2a). Three weeks prior to Isabel, a mixed 

community was observed including above-average dinoflagellates (39%) and 

cyanobacteria (23%; Fig. 5.2b). After Isabel, floral composition more closely 

resembled the LTA as diatoms were most prevalent (55%), followed by 

dinoflagellates (17%), cryptophytes (15%), and cyanobacteria (9%; Fig. 5.2c). 

Multiple lines of evidence suggest the lower Bay was de-stratified by the passage 

of Isabel, mixing nutrients into the euphotic layer to support the rapid increase of Chl 

a I observed. Above-average concentrations of dissolved inorganic nitrogen (DIN = 

NO2
- + NO3

- + NH4
+) were evident in both surface (Fig. 5.3a) and bottom (Fig. 5.3b) 

layers of the northern half of the Bay (>38.5o N) in September 2003. However, 

surface DIN in the bloom region (hatched areas Figs. 5.3a, 5.3b) prior to the storm 

was near the LTA, whereas bottom layer DIN was higher-than-average. After Isabel, 
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surface DIN increased and bottom DIN decreased to average values. The vertical 

density gradient, ∆σt, decreased appreciably following the hurricane, consistent with 

vertical mixing that would disperse high DIN from bottom waters throughout the 

water column (Fig. 5.3c; Table 5.1). Additional evidence includes significant 

increases of both the average depth of the pycnocline and surface salinity in the mid-

Bay after the hurricane (Table 5.1), and a 15% increase in the proportion of NH4
+ in 

DIN to 55% in the surface mixed layer. 

Discussion 

Physical forcing by Hurricane Isabel generated a rapid and extensive fall bloom in 

mid- to lower Chesapeake Bay, consisting of increased Chl a, a shift of floral 

composition toward diatoms, and increased PP commensurate with increased biomass 

(Figs. 5.1, 5.2; Table 5.1). Nutrients mixed into the surface layer by Isabel supported 

the bloom at a time N is often limiting seaward of the Patuxent River mouth (Fisher et 

al., 1992). Ample DIN was present in the upper Bay to support phytoplankton, but 

light-limitation precluded an increase of biomass in that region. The transition from 

light- to N-limitation along the Bay’s axis in summer/fall is largely controlled by the 

magnitude of freshwater flow from the Susquehanna River (Harding, 1994). 

Hydrologic conditions (i.e., high precipitation and freshwater flow) in the months 

preceding Isabel delivered suspended material and CDOM into the upper Bay, 

producing a shallow euphotic layer that defined the northern limit of the bloom. 

Floral composition prior to Isabel (Fig. 5.2b) consisted of a mixed community of 

several major taxa commonly observed in late summer for stratified waters of the 

mid- to lower Bay (Adolf et al., 2006). The 34% increase of diatoms after the storm 
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(Fig. 5.2c) coincided with an interruption of stratification and a pulse of nutrients to 

the euphotic layer. This change in community composition has implications for 

trophic transfer and organic matter cycling (Malone, 1992), manifested as an early 

onset of hypoxia in deep waters of the main stem Bay in 2004. Increased PP 

following Isabel (Table 5.1) is consistent with the findings of Yeager et al. (2005) 

who described elevated PP in the lower Bay in response to a wind event that 

delivered NH4
+ to the surface layer. 

Nutrient remineralization in the bottom layer and subsequent reintroduction to the 

surface layer support the annual PP maximum in summer, when freshwater flow is 

generally low (Malone, 1992). Data suggest an analogous process supported high Chl 

a and PP in the fall bloom after Isabel. Prior to the hurricane, bottom-layer DIN in the 

bloom region was higher than the LTA due to record flow that fertilized the mid- to 

lower Bay (Acker et al., 2005). Surface-layer DIN increased after Isabel, indicating 

nutrients at above-average concentrations in bottom waters were mixed into the 

surface layer (Fig. 5.3a, 5.3b). Increased surface salinities were consistent with 

mixing of high-salinity bottom water into the surface layer and an intrusion of ocean 

water from storm surge. I reason that the proportion of NH4
+ in surface layer DIN 

points to bottom water as the predominant N source. DIN in runoff is mostly NO3
- 

(Yeager et al., 2005), and delivery of DIN from a pulse of freshwater to the bloom 

area would have a time lag of weeks to months. The decrease of ∆σt after the storm 

(Table 5.1) is also consistent with mixing associated with Isabel’s passage. 

Water column stratification was strong (∆σt = 7.7 kg m-3) before Isabel because of 

high freshwater flow in spring and summer 2003 (Fig. 5.3c). Sustained, strong winds 
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from the south eroded stratification of the mid- to lower Bay. Shipboard observations 

conducted six days after the storm showed partial re-stratification in the bloom 

region, but hindcast simulations by Li et al. (2006) showed the water column was 

completely mixed by Isabel. Model outputs were also consistent with rapid 

restratification shortly after the hurricane due to large horizontal salinity gradients (Li 

et al., 2006). Vertical mixing was essential to provide DIN to the surface mixed layer 

and support the bloom I observed, and re-stratification was also critical to retain 

phytoplankton in well-illuminated surface waters. The rapid formation and cessation 

of the post-Isabel bloom, together with nutrient and water column properties, suggest 

a phytoplankton response that was fueled by, and quickly assimilated nutrients mixed 

into the euphotic layer. 

The increase of Chl a was reconciled with DIN input by mixing to test the validity 

of our hypothesized mechanism for the bloom. I estimated an increase of 61.9 tons 

Chl a in the bloom area (3232 km2) that would require 192 mg N m-2 assuming N:Chl 

a (w/w) = 10 (Malone, 1992). Based on pre-storm DIN profiles for the northern half 

of the bloom region (<37.9oN), complete mixing of the water column would inject 

387 mg N m-2 into a euphotic layer averaging 3.8 m. These calculations show that 

vertical mixing could provide sufficient N to support the observed Chl a increase, 

with new biomass accounting for about half the DIN input. Probable fates of DIN not 

drawn down by phytoplankton growth include export to the coastal ocean, uptake by 

bacteria, remaining DIN in the surface layer, and the fraction assimilated into 

zooplankton by herbivory. 
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The use of ocean color remote sensing to detect a significant perturbation of 

phytoplankton dynamics by passage of Hurricane Isabel draws on the unique 

capabilities of aircraft to give high-resolution, quasi-synoptic coverage of estuarine 

and coastal waters. The broader importance of our findings is a clear demonstration of 

how rapid response capabilities allow us to observe ecosystem-scale effects of 

climate forcing, using sustained, long-term observations of key ecosystem variables 

to provide the context needed to resolve these effects. 

Conclusions 

Hurricane Isabel evoked a rapid increase of phytoplankton biomass as Chl a 

covering ~3000 km2 in the mid- to lower Chesapeake Bay. Wind mixing of bottom-

water nutrients into the euphotic layer during a time of year that phytoplankton are N-

limited supported this unusually strong fall bloom dominated by diatoms. This event 

constituted a rare perturbation of the annual phytoplankton cycle I observed as abrupt 

responses of Chl a, floral composition, and PP. Expectations of more frequent and 

intense hurricanes in the near future accentuate the need to understand biological 

responses to climatic perturbations such as those described here. 
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Variable Before After Difference 
PP (mg C m2 d-1) a 914 1179 265* 
Chla (mg m-3) a 8.7 13.4 4.7* 
Total Biomass (tons) a 179 241 62* 
Salinity b 10.3 12.0 1.7* 
Pycnocline (m) b 13.9 26.2 12.2* 
∆ σt (kg m-3) b 7.7 3.3 -4.3* 
a from aircraft remote sensing in bloom region  
b from CBP pre- and post Isabel monitoring 
* significant at p < 0.001 (paired Student’s t-test) 

 
 

 

Table 5.1. Phytoplankton and hydrographic data 
before and after Hurricane Isabel. 
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Fig. 5.1. Phytoplankton biomass as Chla: a) LTA for September 1989-04; b) pre-
Isabel, 11 September; c) post-Isabel, 24 September and d) two weeks post-Isabel, 2 
October. Diamonds in first panel show CBP stations used in analyses. 
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Fig. 5.2. Floral composition in bloom region as percent of Chla: a) LTA for fall 
(1995-2000); b) pre-Isabel (24 August); c) post-Isabel (3 October). 
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 Fig. 5.3. a) DIN in the surface layer, and b) bottom layer; c) ∆ σt from CBP 
cruises. Hatched area indicates bloom region. 



 

 

 

 

 

 

 

 

 

Chapter 6 

Conclusions 
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Several conclusions can be drawn from this Dissertation. First, climate is a strong 

regulator of ecosystem dynamics in Chesapeake Bay and regional-scale climate 

defined by a synoptic climatology successfully quantifies that variability. Second, 

characteristics of the spring phytoplankton bloom (timing, position, magnitude) can 

be predicted from winter weather conditions through their influence on precipitation 

and freshwater flow. Third, variability of summer and annual integral production can 

be explained by climate during the preceding winter-spring. These analyses of climate 

forcing of Chl a and PP support predictive models that explain significant amounts of 

the variance of these important ecosystem properties. Lastly, event-scale climate 

perturbations, such as hurricanes, can also have significant impacts on Chesapeake 

Bay phytoplankton dynamics with ramifications for seasonal and regional carbon 

cycling. 

An essential component of this research was the availability of highly resolved 

Chl a and PP data. The time series of ocean color data collected from aircraft as part 

of the Chesapeake Bay Remote Sensing Program (CBRSP) is unique in its length of 

operation (1989-present), number of flights (>350 and counting), and spatial coverage 

(~7000 km2) (Harding et al., 2001). As retrievals from satellite remote sensing mature 

for the coastal zone through improved atmospheric correction and algorithms, a 

transition to space-based remote sensing should: (1) increase the frequency of repeat 

coverage (>80 scenes yr-1); (2) expand the spatial scales over which measurements 

are made; (3) reduce the logistical and financial difficulties associated with 

maintaining an aircraft remote sensing program. Activities are currently underway to 

correct/reprocess SeaWiFS and MODIS data to achieve these goals and provide a 



 147 
 

satellite-based time series back to August 1997. These time series offer the potential 

to explore climate forcing of the coastal ocean (Acker et al., 2005). 

The use of synoptic climatology to describe climate variability and its impacts on 

ecosystems has increased in the last decade (Yarnal et al., 2001). By definition, 

synoptic climatology is the relationship between atmospheric circulation and the 

surface environment that includes a wide variety of physical, chemical, and biological 

variables (Yarnal, 1993). Outside of Chesapeake Bay, most applications have related 

atmospheric circulation to freshwater flow (Cayan and Peterson, 1993; Wilby, 1993) 

and other physical parameters, like air mass trajectories (Greene et al., 1999). Few 

have examined biological responses to atmospheric forcing. In Chesapeake Bay, this 

approach has been used to explain recruitment success of estuarine fishes that exhibit 

distinct spawning strategies (Wood, 2000), and to predict abundances and 

distributions of two ecologically important calanoid copepod species (Kimmel et al., 

2006). The development and application of a synoptic climatology for the 

Chesapeake Bay region described in this Dissertation, including a reconciliation of 

weather patterns with precipitation and flow, and a detailed analysis of climate 

forcing of phytoplankton, significantly extends this approach. This is an area ripe for 

more interdisciplinary research to connect climate and biology. 

I believe the regional synoptic climatology may prove useful to describe 

ecosystem responses in neighboring estuaries of the Mid-Atlantic, including 

Delaware Bay, Neuse River/Pamlico Sound, and the Hudson River. These estuaries 

are all similarly influenced by freshwater flow (Pennock, 1985; Rudek et al., 1991; 

Malone, 1977), and experience weather from the same general domain (25-50oN x 
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65-100oW) as the synoptic climatology developed in this Dissertation. Chapter 2 

describes the methodology to develop a synoptic climatology centered on any area 

where data are available, making the approach adaptable and relevant. Surface sea-

level pressure data are readily available for most of the northern hemisphere since 

1950, so the limiting factor will often be time series for the surface environment, i.e., 

data for variables potentially subject to climate forcing. These types of comparisons 

should give us insight to the generality or specificity of regional-scale climate forcing 

of estuarine ecosystem dynamics. 

I have documented climate forcing as a dominant source of seasonal and 

interannual variability of Chl a and PP in Chesapeake Bay. The relationships I report 

can be exploited to hindcast Chl a and PP for time periods for which I have less 

highly resolved data in a manner analogous to that described by Harding and Perry 

(1997), wherein present day salinity, temperature, and freshwater flow were used to 

model Chl a. These models were then applied to historical salinity, temperature, and 

freshwater flow data for periods when Chl a was infrequently collected to assess 

trends. Available data for those time periods were then compared to model results and 

discrepancies ascribed to the effects of nutrient overenrichment. Data used to 

determine atmospheric circulation from the synoptic climatology, i.e., surface sea-

level pressures, are available from 1950 and possibly earlier for the region, making it 

feasible to hindcast Chl a and PP for periods when actual data were sparse. The 

resulting data could then be used to address questions of changing ecosystem 

responses to climate forcing and potentially to provide input data for fisheries 

production models. 
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The general appreciation of climate influences on estuarine, coastal, and oceanic 

ecosystems is documented by an increase in publications on the topic, most 

frequently in the context of climate change (Harley et al., 2006). While the physical 

changes associated with climate change are still highly uncertain for most regions 

(Najjar et al., 2000), it is prudent to understand the potential direction and magnitude 

of ecosystem responses to such perturbations. Using long-term observations for 

contrasting climatic extremes is an established way to quantify the potential 

ecosystem responses to hypothesized climate change (Cloern, 1991). The research I 

describe in this Dissertation provides a way to explore potential ecosystem responses. 

Chapters 3 and 4 highlighted the importance of winter-spring climate on seasonal to 

interannual variability of Chl a and PP. This is also the time frame expected to show 

the greatest response to climate change (Neff et al., 2000). Most climate change 

scenarios predict warmer and wetter conditions during the winter-spring (Najjar, 

1999). These changes will translate to increased frequencies of warm/wet weather 

patterns (patterns 1, 3, 4, and 8). Warmer and wetter conditions during winter-spring 

generate increased spring Chl a covering a larger area, located farther down-estuary, 

and occurring later in the spring. These climate conditions would also likely result in 

high annual and summer integral production (AIP, SIP) in the absence of a declining 

trend in photic depth. As general circulation model (GCM) results converge on a 

single expected outcome, our ability to predict the phytoplankton response will also 

improve. 

In addition to potential climate change, quantifying the effects of eutrophication 

will become increasingly difficult in highly dynamic estuarine environments that are 
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increasingly influenced by event-scale climate perturbations such as hurricanes (Paerl 

et al., 2001; 2006), that may be increasing in frequency in the Atlantic in coming 

decades (Webster et al., 2005). These perturbations can have lasting effects through 

changes in water residence time, inputs of organic matter from the watershed, and 

changes in distribution of ecologically important species (Paerl et al., 2001; Roman et 

al., 2005). Adequate characterization of how climate forces phytoplankton dynamics 

(event, seasonal, interannual) will be required if they are to be used as indicators of 

ecosystem status (Paerl et al., 2003). 

Research on climate forcing of phytoplankton dynamics in Chesapeake Bay has 

been dominated by descriptions of Chl a and to a lesser degree PP (Malone et al., 

1988; Jordan et al., 1991; Harding, 1994; Malone, 1992; Harding and Perry, 1997; 

Boynton and Kemp, 2000; Harding et al., 2002), while studies of climate forcing of 

floral composition (Marshall and Nesius, 1996; Adolf et al., 2006) and cell size 

structure are relatively sparse. Assimilating information on floral composition and 

size structure into our analyses of phytoplankton responses to climate forcing should 

improve our ability to accurately forecast effects of natural and anthropogenic 

perturbations (Cloern, 2001). In addition to climate forcing of phytoplankton 

dynamics that was the focus of my work, there is a large and growing literature on 

climate forcing of other trophic levels in Chesapeake Bay, including zooplankton 

(Kimmel and Roman, 2004; Kimmel et al., 2006), gelatinous zooplankton (Purcell 

and Decker, 2005), and fish (Wood, 2000; North and Houde, 2003). Our 

understanding of ecosystem responses to climate variability and change will assuredly 

benefit from a synthesis of these findings. 
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