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Since the experimental achievement of Bose-Einstein condensation (BEC) in

dilute gases, ultra-cold atom systems have proven to be an unparalleled test bed for

condensed matter phenomena. With this in mind, our laboratory set out to build

an apparatus for the study of the effects of disorder on condensed matter phase

transitions using a BEC loaded into one, two, and three-dimensional lattices. My

thesis is divided into two main sections. In the first section I describe in detail

the design and construction of our apparatus. Our system is designed to form

87Rb condensates of approximately 105 atoms. We have three possible experimental

science chambers.

1. One can perform 1D lattice experiments in the chamber where the con-

densate is formed. There is a mirror located in vacuum, which is suitable for this

purpose.

2. In a glass chamber one can do 1D, 2D, or 3D lattice experiments. Atoms

are loaded into a dipole trap (optical tweezer) prior to condensation and transported



approximately 20 cm to the glass cell where optical evaporation is performed to form

a BEC.

3. One can transfer, using the same techniques as (2), to a chamber with a

multi-channel plate detector for Rydberg atom experiments.

The experimental results described in my thesis pertain to situation (1). How-

ever, I describe some details of (2) in the construction section. The first experiment

presented in my thesis demonstrates the effect of disorder on the time-dependent dy-

namics of lattice systems. We observe that a small perturbation produces a dramatic

change in the adiabaticity criteria for loading a BEC into one-dimensional optical

lattice. I conclude with experiments that we expect to perform on this apparatus.
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Chapter 1

Introduction

1.1 Bose-Einstein Condensates

A comprehensive review of the history and theory of Bose-Einstein conden-

sation (BEC) is given in [48, 12]. BEC was predicted in 1925 by Albert Einstein

using the statistics of photons developed by Satyendra Bose and extending it to

atoms. In the decades to follow, London suggested the existence of BEC in super-

fluid helium (He) which has been observed in neutron scattering experiments (see

Refs. in [48, 12]). Additionally, superconductors are also a system exhibiting BEC

behavior [33]. However, BEC could not be well-studied in these systems. BEC was

first achieved experimentally at near zero temperature in dilute gases of alkali atoms

in 1995 [1, 14]. Because of the robust nature of cold-atom experiments, BEC has

proven to be an invaluable source of research connecting the atomic physics realm

to condensed matter, fluid dynamics, quantum information, and even cosmological

theories. Here, I briefly describe the essential background theory necessary to the

understanding of our experiment.

The phase transition to BEC from a thermal state is a result of the statistics

of bosons (integer spin particles). The most succinct description is “a macroscopic

occupation of the ground state.” For a system of non-interacting bosons, the occu-
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pation number of a state with energy εν is

n(εν) =
1

e(εν−µ)/kbT − 1
(1.1)

In Eq. 1.1 , T is temperature, kb is Boltzmann’s constant, and µ is the chemical

potential. Unlike fermions, bosons can occupy the same state and it was predicted

that for sufficiently low temperatures and high densities, a thermal ensemble will

begin to have a large number of atoms occupying the lowest energy level of the

system. One can calculate a critical temperature for this transition, T = Tc , by

calculating the number of atoms in excited states of a uniform gas confined to a

cube of volume, V , using

Nex =

∫ ∞

0

dεg(ε)n(εν) (1.2)

where g(ε) is the density of states. For the cube, the density of states is

g(ε) =
V M3/2

21/2π2h̄3 ε1/2 (1.3)

where M is mass and h̄ is Planck’s constant [48]. By substituting Eq. 1.1 and Eq.

1.3 into Eq. 1.2 and solving for Tc when µ = 0, one obtains

Tc ≈
3.31h̄2n2/3

M
(1.4)

Here, n is the density of particles per unit volume , N/V . The phase space density

(psd) is the number of particles in a volume whose length scale is the thermal

deBroglie wavelength, λdB = (2πh̄2/MkbT )1/2, and is the experimental parameter

we optimize. One derives that the phase space density (psd) condition for BEC

(uniform gas) is nλ3
dB ≥ 2.612.
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The critical parameters are slightly modified if we use a harmonic confining po-

tential, having trapping frequencies ωx, ωy, ωz, which is our experimental situation.

The density of states in this case is

g(ε) =
1

2h̄3ωxωyωz

ε2 (1.5)

Solving for Tc one finds that the critical temperature depends on the harmonic

trapping frequencies and the number of atoms, N.

Tc ≈
0.94h̄

kb
(ωxωyωz)

1/3N1/3 (1.6)

Typical transition temperatures are sub-µK (in our system down to around 100 nK)

for dilute gas systems. Densities for these cold atom systems are around 1013− 1015

cm−3. For more details see Refs. [48, 12].

Although dilute gas BECs were first thought to be an achievement in atomic

physics with little relevance to other fields, they have emerged as tools for the

study of a wide variety of interesting physical problems. For example, there is

phase coherence across the condensate, which allows for diagnostic techniques and

experiments in matter-wave interference, and continued research in developing an

atom laser, a coherent source of matter waves. Additionally, a BEC in a dilute gas

can be repeatably created using current technologies in under a minute which makes

studying them very robust.

It was realized very quickly that BECs as sources of coherent atoms, coupled

with periodic optical potentials (lattices), allows for the study of many condensed

matter problems. The first clear demonstration of a condensed matter, many-body

problem studied with BEC was the observation of the superfluid to Mott insulator
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transition [26]. Much of the current BEC research is aimed at the study of vari-

ous condensed matter phenomena, which are otherwise difficult to approach with

solid state experiments[45, 8]. However, they are also used for studying quantum

computing with neutral atoms [39] and look promising for the study of many-body

dynamics in non-equilibrium systems [64, 20, 23] .

1.2 Overview of Thesis

The work described in this thesis is divided into two main parts. The first

section is an overview of the construction of the BEC apparatus. I include the most

details on the parts that I was personally involved in building, characterizing, and

optimizing. In Chapter 3, I present an experiment studying the time-dependent

dynamics of loading a BEC into a pseudo-disordered potential. Chapter 4 gives an

overview of experiments that I have been involved in, but are in the early stages of

development. The Appendices are helpful references for the user of the apparatus.
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Chapter 2

Construction

In the beginning...There was an empty lab. The following is a description of what

happened next.

As described in Chapter 1, theoretically there are only a few requirements for

achieving a BEC in a harmonic trap: a bosonic sample with phase space density

approximately equal to 1. In practice, there are many technological considerations

that accompany this experiment. Here, I describe the main details of the design of

our experiment. In each section, I explain the relevance to condensate formation.

All of this work is performed under ultra-high vacuum (UHV) conditions, so creating

this environment is the experimentalist’s first task when embarking on BEC research.

Then I will describe the theory and implementation of each stage of BEC formation.

Appendix A gives a table with vendors and part numbers.

2.1 Vacuum System: UHV side

In order to create a suitable environment for the production of a BEC we

needed to design a system with pressures on the order of 10−11 torr. This stringent

requirement is a consequence of the time it takes to achieve BEC. In a magnetic

trap, forced radio-frequency (rf) evaporation typically takes 20-30 seconds, which

translates into needing a vacuum-limited lifetime at least comparable and preferably
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longer than this time. Background collisions severely limit the lifetime of trapped

atoms, thus the lower the pressure the better. A quick calculation, assuming no

other loss mechanisms, shows that the vacuum limited lifetime of a magnetic trap

is of order 200 s at 5 × 10−11 torr (lifetime∼ 10−8/Ptorr) [42]. The following is a

description of our vacuum system in its current form.

The system, although originally a single chamber, was modified to include

two chambers: the source side and the ultra-high vacuum (UHV)/science side. A

schematic depicting the setup of the UHV/science-side with photos is shown in Fig.

2.1.

UHV is maintained in the science side of the chamber by a combination of a

150 L/s Varian Starcell (diode) double-ended ion pump and a titanium sublimation

pump (Ti-sub), which is situated inside of the ion pump. We have two types of

pumps because the ion pump is efficient at lowering the pressure due to most gases

through ionization, whereas the Ti-sub pump releases titanium which is effective at

pumping molecules like H2 and H2O. The Starcell type pump is an option which

increases the efficiency of the pump for removing noble gases. The pressure is

monitored by a dual filament nude Bayard-type ion gauge (Granville-Phillips). It

should be noted that the ion pump is a poor pump for rubidium and will eventually

fail after years of use. Also, the ion gauge will pump rubidium but also act as a

diffusive source via outgassing, so it is not a very reliable measure of exact pressure.

The best test of vacuum quality is the lifetime of the atoms in the magnetic trap

measured after some evaporation.

The main chamber (where the condensate is formed) is a stainless steel Kim-
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UHV/science side 
of vacuum system

150 L/s ion pump

ion gauge

science/glass cell

gold mirror/wire traps

Attached to slower 
(to source side)

AlN
block

Figure 2.1: Layout of UHV side of the vacuum system with photos of
the custom design feedthrough. The wire traps are shown with a false
translucent gold mirror overlaid to clarify the physical location of the
actual gold mirror.
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ball Physics spherical octagon. The windows are anti-reflection coated (Spectrum

Thin Films) for either 780 nm or 1550 nm light depending on their intended purpose.

Most of the vacuum parts in both the source side and the science side are standard

issue, with the notable exception of two custom feedthroughs (Kurt Lesker, Inc.),

one in the main chamber and one in the source side. The special feedthrough in the

UHV side is a 6 inch con-flat flange that has both copper and water feedthroughs.

There are six-1/4 inch diameter copper feedthroughs for current to the wire traps

as well as a multi-pin connector, which was included originally for transmitting ra-

diofrequencies through an in-vacuum antenna. This antenna broadcasted to the

laser locking electronics, and so we opted for an external rf-coil instead. This un-

usual behavior was not understood and may not be present anymore because the

original Toptica DLX-110 laser has been refurbished (upgraded to a “rock-solid”

configuration), which dramatically increased its stability. In addition, we replaced

the homemade locking circuitry with a commercial lock box (Precision Photonics).

There is an input and return stainless steel water feedthrough, which is at-

tached to a steel can inside the vacuum. This is intended to help cool the copper

block on which the aluminum nitride (AlN) bed for the wire traps (described in

Section 2.4) is situated. Good thermal contact between each piece of the assembly

is crucial for the traps to be efficiently cooled. We have recently observed that when

the cooling and heating of the traps during the experimental duty cycle is extreme,

the thermal stress can weaken the mechanical connections and potentially lead to

damage (the gold mirror breaking). The structure with the traps extends vertically

through a 6 inch flange, 4-way cross into the spherical octagon chamber (photos
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shown in Fig. 2.1).

Achieving very low pressures requires care, and is made more difficult by intro-

ducing structures into the chamber. All parts of the attachments to the feedthrough,

with the exception of the gold-coated wafer and an AlN piece, were cleaned by hand

with vacuum grade acetone and Kimwipes R©, and using an ultrasonic bath, repeated

multiple times. The cleaning of the copper parts included an acid dip made of 3:1

mixture of water/12 M sulfuric acid. Acid type dips are suitable for cleaning OFHC

(oxygen-free high conductivity) copper, but caution should be taken for cleaning

other materials using this method due to the risk of etching. Vacuum equipment

ordered new was not cleaned, since typically these pieces are baked at the factory.

All gaskets were wiped with acetone. In an assembly such as ours, where many

materials are put under vacuum, gaskets and factory baked equipment are usually

not the limiting factors in achieving low pressures. All assembly screws are vented

to avoid trapped pockets of gases. Once the system was assembled (in its original

configuration without the slower/oven) we roughed out using an adsorption pump

until the ion pump could be turned on (typically around 10−5 torr). After the pres-

sure lowered to 10−8 torr , we wrapped the chamber in heater tape and aluminum

foil and baked at just under 150 ◦C for 1-2 weeks. The limiting factor on the baking

temperature is the anti-reflection (AR) coatings on the windows. We take special

care not to create any large temperature gradients in the baking process due to the

fragile ceramic feedthrough, the coated windows, and the glass science cell (because

of the seal, see below). Once we added the Zeeman slower, the baking procedure

became more complex. The stainless steel 14 inch long nipple (inside tube that the

9



slower coils are wound on) is wrapped in heater tape and terminates at the gate

valve/differential pumping region. Very recently, upon breaking vacuum it became

critical for maintaining low pressures to bake the gate valve area. The maximum

temperature for this is 150 ◦C when the valve is open and 120 ◦C when it is closed

(limitation is the O-ring).

The science chamber is a commercially available 4.5 × 2.2 × 1.2 cm3 quartz

cell. The cell is fused (by the glass blower at NIST, Gaithersburg) to a glass cup that

is sealed to a stainless steel 2.75 inch con-flat flange (Bomco). The glass to metal seal

on the flange is sensitive to both applied pressure changes and temperature gradients.

(When it was first attached to the vacuum, the stress from screw tightening cracked

the seal.) Being meticulous paid off, as we had no real difficulty in getting down to

4 ×10−11. After the addition of the source side, the UHV routinely is at 7-8×10−11

torr. In later instances, we used a turbomolecular pump (Pfeiffer Vacuum)/roughing

pump combination for getting to pressures of 10−6 Torr, before turning on the ion

pump(s).

2.2 Experimental Sequence for Creating a BEC

A typical duty cycle for creating BECs in our experiment is:

• Atomic source

• Collect 109 atoms from beam in a MOT

• Optical molasses stage
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• Optically pump to trapped state

• Collect atoms in weak magnetic trap

• Compress magnetic trap

• RF evaporation to critical point

• Release atoms and take absorption image

These steps will be discussed in detail in the sections to follow.

2.3 A Source of 87Rb atoms

This section describes the source of atoms we use for forming a condensate.

We have had two sources in our experiment: Rb dispensers (getters) and a Zeeman

slower. I will first discuss the getters, as that was our original source for rubidium

atoms and give some reasoning for why we later implemented a slower.

2.3.1 Getters

The boson we choose to work with is the very popular, 87Rb. It is the less

abundant isotope of Rb (27 %). As compared with 85Rb, it has a positive s-wave

scattering length, which means that its interactions are repulsive at very low tem-

peratures. It has been shown that condensates with attractive interactions and

sufficiently large numbers are unstable and collapse [18]. Rb has a single valence

electron so it is easily laser-cooled. Rb is also a good choice because of the com-
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mercially available lasers with the required wavelengths. It is also inexpensive to

obtain, less than $100/gram.

We originally designed our system to have only a single vacuum chamber.

In this configuration, we used Rb alkali dispensers (SAES getters) as the atomic

source. Rb dispensers are essentially a tungsten envelope containing Rb bound

up in an inorganic compound. Rb is released diffusively from the envelope when

current flowing through the getters reaches a value corresponding to a threshold

temperature (at around 2.7 amps) required to free the Rb from the compound. The

dispensers have been shown to be effective in MOT loading and their turn-on/turn-

off properties have been studied [24, 51] . Our system was equipped with two sets

of three getters, one arranged in series and one in parallel.

In our set-up, using the dispensers proved troublesome to maintaining the

required vacuum pressure. When the getters release Rb into the vacuum, only a

fraction is captured by the MOT. The remaining Rb is pumped out by the walls,

the ion pump, and other surfaces inside the vacuum (i.e. gold mirror). There is

an inherent time constant (on the order of 10 s in our apparatus) associated with

this pumping. In addition, one must gently warm the getters just below threshold

current in order to maintain their cleanliness.

The release of Rb from the getters as a function of current is exponential. After

initially achieving BEC, during the optimization process, we accidentally released

too much Rb into the system which subsequently formed an alloy with the gold

mirror, requiring its replacement. In order to prevent destroying the mirror, we

built an electronic interlock system to shut-off current to the getters. We placed a
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resistor in series with the output of the power supply and measured the temperature

of the resistor with an AD590 (Analog Devices) sensor. An AD590 is a chip that has

an output of 1 µA/◦K. After a few experimental duty cycles, the resistor temperature

reaches a steady state value. If the temperature of the resistor exceeds this value, the

supply is shut-off. After achieving BEC, we spent approximately 6 months trying

to optimize the duty cycle for the getters and eventually concluded that this type

of source did not lead to stable operating conditions conducive to doing reliable

experiments. The use of the single-chamber getter-based system was based on [67].

We believe that our difficulties were probably due to differences in chamber/pump

geometries. At their best operation, we ran the getters in pulsed mode, with a

cooling/pumping stage prior to loading the magnetic trap, leading to a total MOT

loading phase of 20 s. During this process, we began to design a substitute source.

Currently there are getters in the vacuum, which serve as a tool to implement an

electric field. However, they are not connected to operate in dispensing mode.

2.3.2 Rubidium Oven

Rubidium is a solid at room temperature with a boiling point of 688 ◦C and

a melting point of 39.3 ◦C. Our atomic beam is designed to be a crude version of

the candlestick source [63]. After breaking an argon-packed Rb ampoule (Strem

Chemical) under vacuum by bending a bellows (Kurt Lesker Inc.), we heat it to

105 ◦C. The temperature is achieved by wrapping heater tape around the bellows

and the stainless steel “T” housing the collimator. The oven region is wrapped in
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sheet copper, insulating fiberglass material, and aluminum foil. The temperature is

measured by a thermocouple and maintained by a servo-controller (Omega).

The diffusive beam is approximately collimated by custom machined copper

apertures. In practice, this acts more as a nozzle, and un-collimated Rb mostly sticks

to a cold-plate. The atoms that do not enter the source chamber (spherical square,

Kimball Physics Inc.) are ideally recycled by a gold mesh via capillary action and

returned to the Rb reservoir. The cold plate is cooled far below the melting point

by an external TEC cooler clamped to a 3/4 inch copper feedthrough. The TEC is

maintaining a large temperature gradient and has one side water cooled for efficient

heat dissipation. When the water cooling stops the TEC cannot maintain constant

cooling of the copper block and the heat from the back of the TEC will heat the

copper cold plate. Since Rb tends to drastically shorten the lifetime of ion pumps,

this cold plate also serves as a preventative measure. Even with these measures, the

failure of the cold plate TEC cooler will lead to catastrophic poisoning of the source

side ion pump. As another measure, we heat the ion pump above the melting point

of Rb in attempt to prevent it from sticking to the walls. A Rb contaminated pump

exhibits high leakage current and eventually a high base pressure. (We keep a spare

30 L/s ion pump and when this damage occurs, we send the contaminated pump

for refurbishing). In short, it is critical to keep the Rb localized and away from the

ion pump or it will contaminate everything.

A schematic of the source side plus the Zeeman slower is shown in Fig. 2.2.

The pressure on the source side is maintained at two to three orders of magnitude

above the UHV side by a 30 L/s Varian-type pump (option diode or triode, Duniway

14



Stockroom). This is sufficient to maintain a 10−8 Torr vacuum. The pressure on this

side is naturally higher due to the rubidium (Rb) oven. Separating the two sides is

a differential pumping section which is simply an aluminum tube of 8 cm in length

and 3/8 inches diameter. The desired dimensions of the tube were determined by

calculating the conductance. (Conductance is the inverse resistance of flow from one

location to another.) Other than preserving vacuum with a cold plate, separating the

two chambers is a manual gate valve (Kurt Lesker, Inc.). Adjacent to the differential

pumping stage we use a rotating ball-valve, which opens every experimental duty

cycle to allow the atomic beam to pass into the slower and UHV chamber. This ball

valve serves to quickly reduce the conductance of Rb between the source and UHV

chambers. It is affixed to an aluminum rod which screws into a custom feedthrough

(Kurt Lesker Inc.) next to the 3/4 inch copper feedthrough. The ball valve is rotated

via a magnetic rotary feedthrough (magidrive, Kurt Lesker Inc.). Externally, the

rotary feedthrough is attached to a stepper motor which is given ± 5 V to “open”

and “close,” respectively.

2.3.3 Zeeman Slower

There are two main alternative sources to getters: a double-magneto-optical-

trap (double-MOT) system and a Zeeman slower. Our associations at the “birth-

place of the slower,” NIST, led us to choose the latter. This choice also proved

relatively convenient to implement. A brief description of the theory of a slower is

given here.
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A slower uses the combination of two techniques to create a low temperature,

low velocity atomic beam: laser-cooling and the Zeeman shift. For a detailed de-

scription of these ideas, see [42]. If an atom is traveling in a given direction and

absorbs a resonant photon from the direction opposite to its propagation it acquires

a momentum kick, −h̄k, where k is the wavevector of the photon. Upon relaxation,

the atom releases a photon, but as the spontaneous emission can statistically be

in any direction, the momentum transfer to the atoms from this process averages

to zero. The net momentum transfer is then −h̄k. Following many cycles of the

absorption-emission process, one can imagine that the atomic velocity decreases. If

one applies this technique to a beam of atoms, one can essentially stop the sample

motion in the direction of propagation. The maximum deceleration of an atomic

beam is amax = h̄kγ/2M , where M is the mass and γ is the natural linewidth of

the transition which is 6 MHz for the D2 line of Rb. In the case of 87Rb, amax is

0.113× 106 m/s2 (line data information from [62]).

Due to the distribution of the velocities of atoms in a collimated beam,

f(vz) =

(
v3

z

2(kbT/M)2

)
e

−v2
z

2(kbT/M) , (2.1)

compared with the narrow linewidth of the laser, only a fraction are in resonance

with the photons. Here, T is temperature and vz is the velocity along the atomic

beam direction. As the atoms are slowed, the Doppler shift, ωD= −k · vz, pushes

them out of resonance, which makes repeated absorption-emission cycles unlikely.

For 87Rb at 100 ◦C, vrms is approximately 360 m/s and ωD ≈ -480 MHz. Each

absorption-emission cycle slows the atom by h̄k/m = 0.6 cm/s, which is an ωD ≈ -
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7 kHz. After about 800 cycles, the atoms are shifted by a linewidth. Fortunately,

there are ways to compensate for the Doppler shift, such as continuously changing

the laser frequency in time or shifting the atoms into resonance using a magnetic

field. These methods allow a significant portion of the atomic beam to be cooled

and slowed. We choose the latter of these techniques because chirping the laser

frequency produces a pulsed source of slow, cool atoms and we desire a continuous

beam.

The hyperfine splitting due to the coupling of the nuclear angular momentum

(I = 3/2 for 87Rb) with the total angular momentum of the electron, J , has de-

generate sub-levels. These levels (mF ) are split in the presence of a magnetic field.

In a weak field, this phenomena is the Zeeman effect and the shift of the levels

is µBmF gF B, where µB is the Bohr magneton and gF is the g-factor. A Zeeman

slower uses the magnetic field dependence of the the levels to maintain resonance

between the slowing atoms and the laser beam. To keep a constant deceleration,

the parameters must satisfy the condition ωD + µB/h̄ = ∆, where ∆ = ωlaser − ω0

is the detuning of the laser from atomic resonance (ω0). Using the relationship

v2
f = v2

i − 2az, one finds that the optimal field profile for slowing an atomic beam

is B(z) = B0

√
1− z/z0, where z is along the axis of the atomic beam. Decreasing

the rms spread in velocity corresponds to lowering the temperature (i.e. deflection

or deceleration is not cooling). Note, that in the decelerating atom frame, Zeeman

slowing looks like typical laser cooling [42]. Although strictly speaking, temperature

is not a good description because the atomic beam is not exchanging heat with its

surroundings, and thus is not coming to thermal equilibrium.
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Our slower was originally configured to be a “reverse” or σ− slower meaning

that the atomic beam enters the slower at a point where the magnitude of the field

starts small and increases down the length. The advantage of a σ− slower over

a “traditional” σ+ slower is that the laser frequency is not resonant with the low

velocity atoms exiting the slower [5]. Many slowers have a σ− and σ+ portion, which

combines features from both types. Because table space was limited and this was

an add-on to the original design, we opted for the σ− slower. The optimum slower

laser detuning is set according to where the magnitude of the field is at a maximum.

In practice our reverse slowing technique did not work very well, so we adjusted

the currents to form a field profile optimum for a “σ+ − σ−” slower, which as a

zero-crossing in the field profile. The laser detuning, fixed by the value of the field

at the end of the slower, is aligned to pass through the MOT and focus on the oven

aperture. Because resonant light would push the MOT around as it was loaded, the

detuning of the slower frequency is chosen to be many linewidths off-resonant (∼110

MHz). The final coil in the solenoid provides compensation for the slower field so

that there is not a significant gradient at the MOT.

The solenoid consists of 7 individual solenoids to allow us to easily modify the

field profile by adjusting each of the coil currents. A linear supply is used to drive

the current in the coils. There is a circuit which divides the current and farms it out

to each individual coil (Fig. 2.3 ). The coils are wound with 14 AWG kapton-coated

flat, copper wire. Even though our slower is quite short, we still get a reasonable

flux of atoms. Due to our “mirror-MOT” plus Z-trap configuration (see MOT and

Z-trap sections) our capture volume is smaller than more traditional traps, thus we
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do not require large numbers of atoms. In practice we load 0.5-1 ×109 atoms into

our MOT in 5 seconds of slowing. This is compared with 3D MOTs which typically

capture > 1010 atoms.

2.4 Trapping atoms: Lasers and Magnetic Fields

Once there is a reliable source of atoms in a high vacuum environment, one

requires a method to capture them in free space. There are two main techniques

to do this: Magnetic fields and optical fields. The combination of near resonant

laser light and magnetic fields gives rise to the very popular magneto-optical-trap

or MOT. In this section I will discuss the MOT and the purely magnetic trap as

these are the methods used in the formation of the condensate. In a later section

about optical lattices, I will describe the features of optical traps.

2.4.1 Magneto-optical trap (MOT) and optical molasses

The MOT [50], one of the most powerful tools in experimental cold-atom

physics is a combination magnetic and optical fields to create a trap for neutral

atoms [42]. Our Zeeman slower used laser cooling in one direction. In principle,

one could cool in all three directions, potentially creating a ball of atoms instead

of a slow moving beam in primarily one direction. Suppose one has two counter-

propogating beams with oppositely circular polarized light relative to one another.

An atom moving from the center of the overlap region will preferentially undergo

multiple scattering events with the beam moving opposite to its direction of motion
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because the light will be Doppler shifted towards resonance. As with the case of the

Zeeman slower laser beam, the atom will be pushed. At some point it will see more

resonant photons from the other beam. This situation in three directions will create

a viscous damping of atoms at the overlap region, and is known as optical molasses.

This is not a trap, because an atom moving at non-zero velocity, but displaced from

the center of the overlap region, will not feel a force pushing it towards the middle.

A quadrupole configuration produces a field which increases in all directions

and has a zero at the center. The interaction of the atoms with the field, through the

Zeeman shift, provides a spatially dependent scattering rate resulting in the restoring

force necessary to create the trapping conditions. The combination of these two

techniques creates a harmonic trap (for small displacements) with damping, where

a large sample of atoms can be collected and continuously cooled. A schematic

representation of our MOT geometry and laser beams is shown in Fig. 2.5.

In the science side of the vacuum there are two wire traps: the U-trap and the

Z-trap. This type of design has become quite popular in the form of micro-fabricated

atom chips. We modeled our design after [67]. The U-trap is used in conjuction

with external coils to form a quadrupole field profile for the MOT. A schematic and

picture of this is shown in Fig. 2.4. If one examines a thin current-carrying wire,

the field decreases as 1/r. Adding a bias field, BBias, perpendicular to the wire will

cancel the field due to the wire, thus creating a field minimum at a specific distance

in one direction. Along the line parallel to the wire, the field is a minimum, but

bending the leads to form a ”U” adds a gradient in this direction as well, creating

a three-dimensional trap. In the case of the U-trap, the field lines are at an angle
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with respect to the idealized quadrupole and so to avoid this, the middle wire is

flattened into a plate [67].

We employ a mirror-MOT which is a modification of the traditional six-beam

MOT [52]. There is an in-vacuum gold-coated silicon wafer situated on top of the

wire-traps. Two beams enter the bottom window of the chamber and reflect from

this mirror at an angle. There are two additional beams counter-propagating, which

enter the chamber from side ports. The combination of these laser fields provides the

3D laser cooling in the MOT (Fig. 2.5) since the beams reflecting off of the mirror

overlap with the capture area prior to and after their reflections. The MOT beams

are detuned from resonance by approximately 20 MHz. This value was determined

empirically by optimizing atom number.

After up to 109 atoms are loaded into the MOT in 5-7 s, a second cooling stage

called optical molasses follows. The name molasses refers to the viscosity of the light

field (as described above and in Ref. [9]). The technique is simple: abruptly turn off

all magnetic fields. The atoms are very cold in the MOT and in zero-field, they will

take some time to move out of the region of interest. Additionally, we reduce the

radiation pressure pushing outwards (force due to re-scattering photons) on the atom

cloud by lowering the intensity of the light fields and detuning several linewidths

away from resonance. This stage cools the atoms to 30-40 µK. The process is

necessary for efficient transfer to the purely magnetic trap (Z-trap), whose depth is

∼mK. This step has been optimized to take a few ms. At times longer than a few

ms, atoms move away from the overlap region with the magnetic trap. Additionally,

the temperature at 10 ms is not measurably cooler than at 5 ms. We extract the
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temperature (in each direction, x and y) of the molasses by measuring the widths

of the atomic cloud (via absorption imaging, see Section 2.8), σx,y, after different

expansion times, t1 and t2, using

Ti =
(σ2

2,i − σ2
1,i)m

kB(t22 − t21)
(2.2)

Here, M is the mass of 87Rb and i is a direction, x or y. This equation assumes the

equipartition theorem in one-dimension, 1
2Mv2

i = 1
2kbTi [65].

2.4.2 Optical pumping

The atoms in the MOT are in a nearly equal distribution of |mf〉 states of the

|F = 2〉 ground state. There are 2F + 1 sub-levels of this state. Only the low-field

seeking states are capable of being confined by the magnetic trap. At low fields

the possible states are |F = 2, mF = 2〉, |F = 2, mF = 1〉, and |F = 1, mF = −1〉

of the 52S1/2 level. We choose the |F = 2, mF = 2〉 state and the atoms must be

transferred to this state. Presumably, doing this with 100% efficiency would yield

a factor of 5 increase in number of trapped atoms over not having this step. In

practice, we observe a factor of 3-4 in atom number and is probably limited due to

imperfect polarization. We optically pump using σ+ polarized light (defined along

the quantization axis of the magnetic trap, which is in the By direction) resonant

with the 52S1/2|F = 2〉 to 52P3/2|F ′ = 2〉 transition. According to the selection rules

for this transition, once the atoms are in the |F = 2, mf = 2〉 state the light cannot

transfer them to another sub-level. The power and width of the optical pumping

pulse must be optimized for best results. We find that the optimum time and
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power to maximize the factor of increase in number of atoms captured from optical

pumping, but minimize heating, is less than 500 µs and 0.5 mW, respectively (for a

∼1 cm size beam).

2.4.3 Magnetic confinement in a Ioffe-Pritchard type trap: Z-trap

At the minimum of a quadrupole field profile, there is a zero in the field and

atoms can be potentially lost from the trap by spin flipping (Majorana losses).

However, if the Larmor precession rate is much faster than relative changes in the

field during an atoms’ orbital motion, then this is not a problem. When a large

fraction of the atoms occupy low-lying levels (e.g. due to strong cooling), then the

condition for adiabatic following is not satisfied. Thus, this loss mechanism is a

concern in the evaporative cooling regime near the condensation transition [42].

To avoid Majorana losses, the atoms must be confined to a non-zero B-field.

There are three major methods to accomplish this: an optical plug at the zero,

a time-orbiting potential which moves the zero, or a Ioffe-Pritchard trap which is

designed to remove the zero with an offset bias field. In our experiment, a Z-shaped

wire provides the necessary fields to produce a the Ioffe trap (Fig. 2.4). Starting with

the central bar, the current flowing through it yields a field that falls off as 1/r. The

external Bx-field serves to cancel the field, creating a magnetic field minimum, which

is zero along the bar . However, the leads on each side (now bent into a Z-shape)

shift the minimum from zero, to prevent Majorana spin flips. This combination by

itself is enough to create a magnetic trap, however, we add a component, By in order
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to increase depth and field gradient. Our trap has a depth of around 1 mK and a

gradient (when compressed) of approximately 400 G/cm (for details about coils, see

Section 2.4.4) . The trap is anisotropic with a weak direction along the middle bar

of the wire. A diagnostic program calculating the parameters of the magnetic trap

was written by M. Beeler.

Physically, the Z-trap is situated on top of the U-trap, separated by a thin

layer of Kapton R© film (McMaster-Carr), and embedded into an aluminum nitride,

AlN, substrate (Stratamet). This substrate was chosen due to its high thermal

conductivity of 175 W/mK compared with ceramic (29.3 W/mK). It is a soapy

material so care must be taken to isolate it from water.

Following the optical pumping pulse, we simultaneously ramp on the three

required fields for the Ioffe-trap in 5-10 ms. The initial currents were chosen to match

the trap with the position of the molasses cloud. The initial trapping frequencies

are approximately ωho = 2π × 20 Hz. The trap is immediately compressed during

250 ms to frequencies ωx,y,z = 2π×(410, 120, 410) Hz. The frequencies are measured

by abruptly changing the magnetic field, which induces oscillations of the atomic

cloud in the trap. The frequencies are extracted by varying the hold time following

the perturbation of the system. This method works well for the compressed cloud

after some evaporation. However, it cannot be used for the initial trap because of

the large extent of the cloud compared with the image area. Therefore, we use a

magnetic field calculation to determine these values. They are not critical because

all experiments are performed in traps that have been compressed and characterized.

This compression step serves to dramatically increase the collision rate, nσv.

27



Here, n is the density, σ is the s-wave scattering cross-section, and v is the thermal

velocity. This collision rate determines the rethermalization time after each step in

evaporative cooling, thus it is necessary to start with a high density of atoms. In our

system, compression also moves the trap closer to the wires/mirror because higher

frequencies are attained by approximate cancellation of the field at the wire.

There is noise which couples to the magnetic trap and heats the atoms. This

heating is trap bias dependent which suggests that it is rf noise. We have not

discovered the source of this noise and avoid it by changing the trapping parameters

prior to or after achieving BEC, depending on the application. It appears that traps

with a bias above 6-7 MHz heat at a rate of 10-100 nK/s compared to rates of 1-2

µK/s in the lower bias/higher [trapping] frequency traps.

Additionally, for experiments where one decompresses the magnetic confine-

ment, the trapping frequencies pass through 60 Hz and harmonics. This will drive

oscillations which will add position noise on the sample. To minimize this effect, we

abruptly pass through these resonances in a time step chosen to be faster than the

response of the atoms.

2.4.4 Coils: Bias and trimming fields

All coils in our system are external to the vacuum and are for creating ef-

fectively uniform fields at the location of the atoms. There are three main coils,

Bx, By, Bz (see Fig. 2.5 for orientation). Both Bx and By are made of rectangular,

hollow copper tubing that are water cooled. The tube dimensions, including coating
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are 4.4 × 4.5 mm2. The coils for Bx are insulated with a fiber-glass type coating

(tan-colored) and are comprised of two coils, each 42 turns (6 rows of 7 turns),

situated around a 2 3/4 con-flat flange on each side of the vacuum chamber. The

By coils are kapton R© film coated (orange-colored), also water cooled with each coil

having 35 turns (5 rows of 7 turns) and oriented perpendicular in the plane with

respect to Bx. In the original configuration we used air-cooled coils for creating the

By field. After many duty cycles they would come to thermal equilibrium, however

this process took many hours. We attempted to add heat sinks to the coils, but this

did little to improve the time constant. For this reason, they were replaced with

water-cooled copper tubing. The Bz coil is situated around the bottom window of

the chamber (6 inch con-flat flange), and has 25 turns (1 row, 25 turns) of 20 AWG

kapton R© coated wire (magnet wire, air-cooled).

We have wound “trim” coils onto the chamber due to residual fields and for

finely tuning the fields at the location of the atoms during different stages, such as

optical molasses. These consist of a few turns (4-6) of 20 AWG magnet wire wound

around the conflat flanges in x, y, and slower− beam directions. The trim coils are

fixed to the chamber with epoxy.

2.4.5 Circuitry and power supplies

We use Sorensen DLM-600 power supplies to run up to 75 A of current through

our wire traps and water-cooled wires. There is an interlock which prevents the user

from running the supplies when there is no flow in the coils and/or chamber. The
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Figure 2.5: View from the bottom of the UHV chamber showing coil
orientation and input beams for MOT. There are four beams total, two
from the side and two from the bottom. The reflection off the gold mirror
gives the other two required beams for 3-D cooling in the MOT.
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water pressure directly from the laboratory source is too low to be useful so we

installed a booster pump (McMaster-Carr) to bring it up to 100 psi. The water is

conveyed to the necessary places in the experiment by hoses. A flowmeter on the

output of the booster pump outputs a voltage proportional to the water flow. This

voltage is compared to a set point and when there is no flow, the circuit sends a

voltage to the rear connector of the supply which disables the output. The Bz coil

is powered by a Sorenson XLT-60 supply.

Typical turn on and off times for the supplies driving the inductive load of

our coils is 5 ms and 10 ms , respectively. For our purposes the turn on time

is less important as we slowly ramp on the fields over the course of 25 ms. The

supply limited turn-off times are insufficient because we require abrupt shut-off of

our magnetic fields for sudden release without imparting velocity to the atomic

sample. For this reason, we use insulated gate bipolar transistors (IGBT) to switch

the current on and off. These transistors were chosen due to their high current

carrying capacity. With our relatively low currents compared with typical magnetic

trapping schemes which use a few hundred amperes, one could also implement a

high powered MOSFET. The IGBTs require a driver circuit to supply high current

to the gate to open the switch. The circuit diagram for these transistors is shown

in Fig. 2.6.

Because of the inductive load the abrupt shut-off can cause large voltage tran-

sients which potentially affect other electronics in the experiment and specifically

will damage the IGBT and IGBT driver circuitry. As a precaution we have varistors

(see Fig. 2.6) across the load and protection diodes across the collector-emitter of
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each transistor. Both of these elements are crucial. We also have an optoisolator

preceding the driver to prevent large voltages making their way to the computer

control boards. Optoisolators create an electrical break. We monitor the current in

each of the magnetic trapping coils (Bx, By, Z-trap) using transducers (Danfysik).

The devices have a 100 kHz bandwidth and so are not suitable for examining short

transients. Measured with these monitors, the coils turn off times are 100 µs or less,

depending on individual inductances. We have put capacitors in parallel with the

varistors in attempt to reduce ringing when the current is shut-off.

We use Kepco power supplies to run a maximum of 10 amps through each set

of trim coils. The value of the current was determined experimentally by measuring

the atom temperature of the optical molasses stage.

2.4.6 Lasers

We use semiconductor diode lasers for all applications related to forming a

BEC. Other lasers used in this experiment are a Ti-Sapphire laser (Tekhnoscan

Laser System) which outputs 1 W of tunable 800 nm light when pumped by a 10

W 532 nm laser (Coherent Verdi). This laser is used to form the optical lattices.

We also have a single frequency 15 W 1563.8 nm fiber laser (IPG photonics) for the

dipole trap.

Our MOT, optical pumping, Zeeman slower, and probe beams are derived

from a 750 mW diode laser (DLX-110 Toptica Photonics). For these applications

we require a narrow laser lock so we use phase-modulation on a saturated absorption
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spectroscopy set-up which is similar to Pound-Drever-Hall lock [7]. The signal does

not come from a cavity reflection, but from an absorption cell. In short, a pick-

off beam is shifted to the |F = 2〉 to |F = 3〉 resonance using a double-pass 80

MHz acousto-optical modulator (AOM) (Isomet, Intraaction) set-up. A double-pass

scheme is generally preferable to decrease beam steering when the driving frequency

of the AOM is scanned. The output of the double-pass is split by a beam splitter and

one arm is modulated at 14 MHz by an electro-optic modulator (EOM) (New Focus).

This EOM puts sidebands on the laser that are 180◦ out-of-phase with each other.

The modulated beam is sent through a Rb cell and when scanned through resonance,

excites atoms. The unmodulated beam counter-propogates and burns a hole in the

Doppler-broadened absorption signal of the probe beam detected with a photodiode.

Without the EOM in place, this is saturated absorption spectroscopy. With the

additional phase modulation, the individual sidebands individually interfere with

the non-modulated pump beam to give a non-zero intensity modulation at the beat

frequency which increases or decreases away from the zero depending on the relative

phase. This signal has a zero-crossing which can be used for feedback to the laser.

We also use single and double-pass schemes to generate the desired frequencies

for the MOT, optical pumping, Zeeman slower, and probe beams. The magnitude

of the shift is dependent on the required atomic transition (Fig. 2.7). A diagram of

the optical table, separated into three parts, is shown in Fig. 2.8 (repumper laser),

Fig. 2.9 (trap laser, MOT light, optical pumping), and Fig. 2.10 (slower, probe,

and slower repumper).

The repumper beam, which is tuned 6.8 GHz away from the trapping light
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to the 52S1/2|F = 1〉 to 52P3/2|F = 2〉 atomic transition, does not have strict

requirements and so we use a dichroic atomic vapor laser locking (DAVLL) solu-

tion [10]. If a resonant laser beam is traveling through a sample of identical atoms,

one can in principle observe the linewidth of the transition because of the absorption

of photons. Since the atoms are moving with a distribution of velocities given by

their temperature, the distributed Doppler shift will broaden this absorption profile.

Other mechanisms can cause broadening; for a complete description of spectroscopy

techniques see Ref. [15]. This broadened feature can be positively or negatively

offset in frequency by magnetic fields if the incoming light is σ+ or σ− polarized,

respectively. There is magnetic stripping cut into squares on each side of the cell to

provide the field. The output of the cell is split into two according to polarization

and subtracted (Nirvana detector, New Focus). The subtracted signal provides an

error signal for feedback to the laser. This scheme has the advantage of having a

large capture range, and not requiring modulation. We temperature stabilize the

cell and magnets because long term drift due to ambient fluctuations leads to drift

in the lock. A diagram of the set-up is shown in Fig. 2.8. The repumper beam is

coupled into the custom 4×4 fiber splitter (Canadian Inst.) and exits along only

two of the four outputs. It enters the chamber along the same path as the two MOT

beams entering through the bottom window (See Fig. 2.5).

There is a pick-off beam in the repumper configuration for saturated absorption

spectroscopy. This serves as a reference for the user, but is not used for locking the

laser.
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Figure 2.8: Diagram of layout on optical table for the repumper lock
and necessary beams.
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2.5 Radio-frequency (rf) evaporation

The final stage of BEC formation is rf evaporation. As indicated in Fig. 2.12,

a PulseBlaster card is encoded with a set of rf frequency steps. This sequence is pro-

grammed onto a frequency synthesizer (PTS-Ebay), then amplified (Mini-Circuits)

and sent through an antenna (few loops of magnetic wire) situated externally on the

bottom window of the main UHV-chamber. The antenna is elliptically shaped so

as not to block the incoming MOT laser beams entering though the same window.

The antenna is terminated into a 50 Ω attenuator.

The goal with rf evaporation is to remove the most energetic atoms that reside

in the higher magnetic field regions of the trap. After the remaining atoms rether-

malize through collisions, the cloud is colder. The rf field creates level crossings as a

route for hot atoms to escape via spin flipping. As the rf is swept to lower frequen-

cies, it accesses atoms further in from the edges of the trap. Because the rf field

creates a dominant loss mechanism, when its frequency is below the depth of the

trap determined by the B-field it defines the actual trap depth. During optimiza-

tion of evaporation, one maximizes the increase in phase-space density (psd) over

a given frequency ramp, which is given by nλ3
dB, with the deBroglie wavelength,

λdB =
√

2πh̄2/MkbT . n is the density, N/V . In a harmonic trap that does not

change volume during the evaporation process, the change in phase space density

(psd) is proportional to N/T 3. The efficiency of the process can be monitored using

the parameter [36]

γevap =
ln(psdfinal/psdinit)

ln(Nfinal/Ninit)
. (2.3)
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The preferred optimization of the rf frequency ramp is as follows. Starting with

a magnetically trapped sample that has been compressed to increase the density of

atoms and thus the collision rate, one uses the rf knife to determine the “top” of

the trap in frequency. Starting at that frequency, in our case 40 MHz, we pick a

ramp step size and time, during which a measurable fraction of the atoms are lost,

e.g. 40-30 MHz in 5 seconds. After this step, there is a hold time of 1 second at the

final frequency, and then the atoms are released. The efficiency coefficient can be

calculated or one can monitor optical depth (see Section 2.8). In this experiment,

we find the atom cloud is not extremely sensitive to initial slopes of rf cuts. As

the atoms cool, they become more sensitive to the ramp steps. As we add steps

to the total ramp, previous steps are re-optimized. As a rule of thumb, the optical

depth of the cloud should go up. Our magnetic trap lifetime was so short when

the getters were used that the evaporation took 12 s and the BEC was small and

short-lived. Currently, the lifetime is >50 s and we find that optimum evaporation

times are 20-25 seconds depending on trapping frequencies. Weaker traps require

longer evaporation times because of the slower rethermalization rate. A typical rf

evaporation ramp (for a very tight trap and a decompressed trap) is shown in Fig.

2.11 with images of the cloud starting at 1 µK. The signature of BEC formation is

the clear bimodal structure shown in the images (taken after expansion).
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Figure 2.11: Fig. depicts (a.) typical evaporation sequence and (b.)
absorption images of BEC formation. The red curve in (a.) is a ramp
for a decompressed trap and the blue curve is the ramp in a compressed
trap. The (b.) images and (c.) cross-sections were taken after the cloud
was released from the magnetic trap and allowed to expand for 17 ms.
The cross-sections in (c.) depict the clear bimodal distribution emerging
as the condensate is formed. This corresponds to a high-density core
shown in the absorption images in (b.).
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2.6 Moving atoms: optical tweezer

After some evaporation, but prior to condensation, atoms can be moved to

the glass science cell using an optical tweezer. The advantage of this design is the

optical access to the atomic sample. Additionally, the proximity to the atoms allows

for high resolution imaging (large numerical aperture, (N.A.)). Although I initially

was involved in the design and use of this part of the apparatus, the experiments

in this thesis do not use the tweezers. Thus, I will only introduce the technique

here. The current lens design for our tweezer was determined and implemented by

M. Beeler.

Alternative to a magnetic trap, a dipole trap provides all optical confinement

for a neutral atom sample. An excellent review of this technique is Ref. [28]. Neutral

atoms do not have permanent dipoles, but acquire an induced dipole moment from

interaction with an oscillating electric field. This gives rise to an intensity-dependent

force attracting atoms to the minimum or maximum of the potential depending on

the sign of the detuning from resonance, ∆, the power, P , and the minimum waist,

w0. For alkali atoms, this potential, due to a focused Gaussian laser beam, is

approximated as

U(r, z) ≈ πc2

2

(
2Γ2

∆2,F ω0,2
+

Γ1

∆1,F ω0,1

)
2P

πw2(z)
e
−2 r2

w2(z) (2.4)

Here, w(z) = w0

√
1 + (z/zR)2. zR is the Raleigh range, πw2

0/λ. ∆n,F is the detuning

of the laser from a ground state level, F , (in our case, 2) to either the 52P3/2

(n=2) or 52P1/2 (n=1) excited state. ω0,n are the resonant frequencies of these

same transitions. In this equation the counter-rotating term is neglected and I
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assume linear polarization. For far-off resonant traps, the counter-rotating term

contributes and is included in the calculation of trapping parameters. The scattering

rate depends on detuning as 1/∆2 so the laser frequency must be tuned many

linewidths away from resonance to attain long trapping times and low heating rates.

Using ωi =
√

ks.c/m and (∂2U(0)/∂i2) = ks.c (with i denoting direction x, y, or z

and s.c referring to the spring constant), the trapping frequencies are calculated.

In our experiment in excess 106 atoms can be loaded from the magnetic trap

into a beam of ∼1567 nm light focused to a minimum waist of 40 µm. The laser is a

15 W Erbium-doped single frequency, single polarization, fiber laser (IPG Photon-

ics). The magnetic trapping stage is necessary because 1567 nm is resonant with a

transition from the 52P3/2 state which prevents loading atoms from the MOT into

the dipole trap. The small detuning from this transition gives rise to a large excited

state light shift (hundreds of MHz using our powers). The level shifts closer to the

ground state which makes the MOT cooling light look blue-detuned and therefore

the atoms heat instead of cool.

The initial alignment of the dipole trap with the magnetic trap was difficult

because of the small overlap region. A tracer beam could not be used for alignment

because over the long pathlength 1550 nm mirrors transmit for 780 nm light (due to

the anti-reflection coatings). Instead, we created a MOT cloud that was low density

and spread over a large region. Due to the excited state light shift, the dipole beam

slightly deformed this cloud. The Pixelfly camera (see Section 2.8), running in ”live

feed” mode can detect this deformation. From there we could load first cold atoms

from a molasses and then walk the beam to the magnetic trap location near the
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mirror surface.

The atoms, once transferred, are moved 25 cm to the glass cell by translating

the waist slowly enough that the atoms follow (1.5 s, in our experiment). The focus

lens is translated on an ultra-smooth air-bearing stage (Aerotech). This design was

modeled after the MIT Ketterle group who first pioneered moving BECs. With our

low density BECs, evaporation in a 1D dipole trap is too inefficient compared with

the vacuum limited lifetime (15 seconds in the dipole trap) to be successful. Thus,

when the atoms arrive in the cell, a secondary dipole trap intersects the cloud at a

shallow angle to increase longitudinal confinement. We did not appreciate the low

density problem in the initial design stages, and the experiment underwent many

improvements before BEC was achieved in the science cell. For a more in-depth

description of dipole trapping and its use in our current set-up, see the thesis of M.

Beeler, in addition to the Refs. given here.

2.7 Optical lattices

The dipole trap section lays the theoretical foundation for the understanding

of optical lattices. Lattices are a type of dipole trap using a standing wave, instead

of a traveling wave [28]. The physics is the same; only the equations for the potential

are slightly modified. The potential is

U(r, z) ≈ U
4P

πw2(z)
e
−2 r2

w2(z) (1 + cos 2kz) (2.5)

Here, U is the pre-factor which is dependent on detuning and atomic parameters

[28]. The trapping frequency in the direction of propagation is approximately given
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by ωz = (2U(0, 0)k2/m)1/2 and is typically in the tens of kHz range. The atoms are

attracted to the peaks or valleys of the standing wave depending on the sign of the

detuning. The distance between each well of the standing wave is λ/(2 sin θ), where

θ is the angle at which the two beams forming the standing wave intersect. This

means that the condensate or thermal cloud is divided into pieces by the lattice. In

a 1D lattice, this gives an array of 2D clouds of atoms shaped like pancakes (in deep

lattices). All of the experiments described here use a 1D lattice. Experimentally,

the lattice beams are not approximately collimated, but instead, are focused, which

gives rise to additional dipole confinement. In principle one can design any arbitrary

lattice topology to suit the user’s needs. In the science cell, the optical access allows

for such versatility. In order to add together optical lattices for this purpose, one

just detunes the relative lattice beam frequencies by multiple MHz using an AOM.

The high frequency interference term between two lattices is time-averaged to zero

from the viewpoint of the atom sample.

All lattices in this experiment are derived from a tunable Ti-Sapphire laser

peaked at 800 nm (Tekhnoscan). After frequency shifting with double-pass AOM

set-ups, the individual beams pass through polarization maintaining fiber to clean

up the spatial mode. Following the output couplers, the beams are directed into

the chamber through the bottom window, where they are reflected off of the gold

mirror. The lattices used are described in more detail in Chapter 3.
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2.8 Imaging atomic clouds and time-of-flight

No matter the experimental sequence, we detect atomic samples using a tech-

nique called absorption imaging. If resonant light illuminates a sample of atoms,

the amount of light remaining after absorption of photons in the cloud will depend

on the density of the sample via

I(x, y) = I0(x, y) exp

[
− σabs

∫
n(x, y, z)dz

]
(2.6)

Here, σabs is the absorption cross-section. The important quantity is the optical

depth, O.D. (Eq. 2.7), which is extracted from this equation by taking two images:

one with atoms and one without.

O.D. = − ln

(
I(x, y)

I0(x, y)

)
= σabs

∫
n(x, y, z)dz = ñ(x, y)σl (2.7)

We integrate over the z-direction (direction of imaging) to get a 2D density profile,

ñ(x, y). The imaging system currently in use was designed by M. Beeler. It has a

magnification of ≈1. We acquire images of the sample in both the main chamber

and the science cell. There is a 12-bit PixelFly QE (Cooke Corp.) camera for the

main chamber (where the MOT/magnetic trap is formed) and a 10-bit Flea2 (Point

Grey) for the glass cell (where atoms are moved to using the dipole trap), although

in the future, the camera with higher dynamic range will be used in the chamber

where most experiments take place. In the main chamber, the numerical aperture

is limited by the radius of the vacuum chamber (9 cm). The imaging in the cell is

limited by lens size, since we can get as close as 1 cm from the sample.

Absorption imaging does not work well when the sample is very optically
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thick, as is the situation for a very cold cloud of atoms. The cloud will act like a

lens and one will observe diffraction rings, distorting the image. For this reason,

the atoms are first released from the trap and allowed to expand while falling (time-

of-flight, TOF) prior to imaging. The resulting spatial distribution of the atoms

is related to the momentum distribution. For a thermal cloud in a harmonic trap,

regardless of the trapping frequencies, the cloud will be spherical after long TOF. In

the long expansion time limit the initial cloud size is neglected and the temperature

(measured along each direction of the cloud) is given by [38]

Ti =
M

kB

[
σi

tTOF

]2

. (2.8)

Here, i denotes a direction and tTOF is the expansion time. Typical expansion times

range from 2 ms (for very hot or anisotropic clouds) to 25 ms (for BECs and atoms

loaded into lattices).

For diagnostic purposes, there are additional cameras, which give a continuous

live video feed to television monitors of the fluorescing atoms at the oven aperture

and in the MOT region.

2.9 Computer Control and Data Acquisition

Shown in Fig. 2.12 is the flow diagram for computer control of the experi-

ment. We use a PCI board called a PulseBlaster (SpinCore) to send digital signals

to all equipment requiring a simple on/off during an experimental sequence. The

PulseBlaster also triggers analog control boards to send specific voltages to types of

equipment whose outputs are multi-valued during a sequence. Both the analog and

48



digital boards are programmed using code written in LabView and inherited from

NIST (written by J.V. Porto and I.B. Spielman and modified for our experiment

by M. Beeler). A secondary PulseBlaster card is used for the evaporation sequence

described above in Section 2.5.

The camera takes an image with and without a cloud and the two are divided

in a program in LabView and analyzed in IGOR (Wavemetrics). Most of the data

acquisition software was also adapted from NIST by M. Beeler. For analyzing the

multipeak results for the experiment described in Chapter 2, there are additional

add-on procedure files, separate from the main analysis code.
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Figure 2.12: Flow diagram for the computer control and data acquisition
of the experiment.
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Chapter 3

Adiabaticity and Localization in Incommensurate lattices

3.1 Introduction and Motivation

Disorder plays an important role in many condensed matter systems,[22, 1]

with deep connections to quantum chaos [27], but can be difficult to systemati-

cally study due to the challenge of creating reproducible and quantifiable disorder.

Adding disorder to a lattice of bosons may give rise to a glassy phase (Bose glass)

predicted between the insulating and superfluid phases. [22]. It is also responsible

for exponentially localizing the wavefunction in a non-interacting system, so-called

Anderson localization [1].

The control available in ultra-cold atom systems [8] has historically made them

an attractive platform to study disorder [6, 53, 66, 61]. To date much of the work

adding disorder to ultra-cold atom systems has explored time-independent prop-

erties, but the long timescales associated with cold atoms allows investigation of

dynamical properties, as well (see [31, 58, 40, 6] and ref. therein). In these systems,

atoms, which are ∼ 105× more massive than electrons, have µs compared to ps

dynamical time-scales. In this work we examine the ability of a quasi-disordered

system to adiabatically follow changes in the Hamiltonian. The presence of disorder

produces a complicated eigenvalue spectrum, which greatly affects the adiabaticity

criteria. The physics of localization phenomena also has a significant impact on
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time-dependent processes, such as adiabaticity. Small perturbations to the Hamil-

tonian can cause large changes to the ground state wavefunction over large length

scales, making it difficult for the system to adiabatically follow changes. One recent

theoretical study shows that adiabaticity in gapless systems is non-trivial, particu-

larly in lower dimensions[49]. Here we show that even in a system where there is a

well-defined separation between the ground and excited bands, such as is the case

in our experiment, adiabaticity is complicated by the presence of disorder [21]. The

following sections are an expanded description of the results which appeared in Ref.

[21].

3.2 Disorder

From the condensed matter point-of-view there are different types of disorder,

a few being dislocations, impurities, and random modulation of the energies, each

producing different physical effects. In this work, we focus on random modulation

of the periodic potential. Experimentally, the technique used to generate a random

potential is to focus an optical speckle pattern onto the sample. In practice, produc-

ing a grain size small compared to the underlying lattice constant is difficult [41, 43],

but can be accomplished by designing a chamber where a lens can be placed only

1-2 cm away from the sample (high numerical aperture) [66].

An alternative to approximating randomness is using incommensurate or two-

color lattices [54, 13, 57, 55]. In an infinite, non-interacting system, the Aubry-André
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Hamiltonian [3] describes the system:

H = J
∑

m

(|wm〉〈wm+1| + |wm+1〉〈wm|) + ∆
∑

m

cos(2πβm + φ)|wm〉〈wm|, (3.1)

where J is the nearest neighbor tunneling and ∆ is the amplitude of the disorder

for an incommensurate lattice with the ratio of k-vectors, β = k2/k1. The localized

Wannier states at site m are |wm〉. This model predicts a crossover from a delo-

calized to an exponentially localized state for the ratio ∆/J ≥ 2 if the lattices are

maximally incommensurate ([53, 27, 3] and Refs. therein). Presumably, deviations

from the ideal incommensurate ratio, increases in interactions, and finite-size effects

will change the predictions of this model [54, 57].

In this work, we study adiabaticity in a quasi-disordered system by adding one

or two weak incommensurate lattices to a one-dimensional optical lattice loaded

with a BEC. Localization occurs in both disordered and strictly incommensurate

potentials [54, 57, 13, 61, 55], and it is assumed that differences tend to disappear

in finite-sized systems such as ours. We observe a complex momentum distribution

of the atoms due to the presence of weak perturbing lattices following a ramped

loading process that would be nearly adiabatic for a single lattice. We gain insight

into the distributions from single-particle band structure and observe that the effects

of the perturbations disappear as interactions increase, as they suppress the long

wavelength density modulation of the wavefunction.
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3.3 Band Structure for Single Lattices

An excellent place to begin a description of atoms loaded into a lattice is

single particle band structure [2]. The wavefunction of a particle in a given well of

a periodic potential is related to the wavefunction in a neighboring well by Bloch’s

theorem,

ψ(r) = exp (−iqr)ψ(r + R), (3.2)

Here, R is a translation in the lattice and q is the quasimomentum. Quasimomentum

is the phase of the wavefunction across adjoining sites in the lattice (it is equivalent

to the term crystal momentum found in most solid state physics texts [2]). Because

of the periodicity, the wavefunction and the potential can be rewritten as

ψ(r) = exp [−iqr]
∑

m

cn
m exp [−imGr] (3.3)

V (r) =
∑

m

Vm exp[imGr], (3.4)

where G is the reciprocal lattice vector defined as 2π/R. The index m refers to the

components of the momentum, n is the band index and Vm are the Fourier compo-

nents of the potential. Using these substitutions, Schrödinger’s equation becomes,

[
h̄2

2M
(q −mG)2 + V0

]
cq−mG + VGcq−(m+1)G + V−Gcq−(m−1)G = Ecq−mG. (3.5)

From 3.5 the energy bands are calculated. The energy as a function of quasimo-

mentum, q, is shown in Fig. 3.1 (presented in the reduced zone scheme) for the free

particle case (top) and a lattice of depth 5 Erec (bottom), where Erec = h̄2k2/2M .

As shown in the free particle case (Fig. 3.1(a)), the ground and first excited

state are separated by 4Erec. Stationary, non-interacting atoms have no means by
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Figure 3.1: Energy bands as a function of quasimomentum for a free
particle (top) and a single lattice potential (bottom). The bands are
depicted in the reduced zone scheme. As the lattice is applied to the
particle, the energy bands separate and the degeneracy at the edge of
the Brillouin zone is lifted.
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which to change q during the process of turning on or changing the amplitude of

the periodic potential (when there are no other forces present). In our system,

atom-atom interactions can change q, but the time scales are on the order of tens

of milliseconds (see Section 3.4). This means that the relevant time scale for adia-

batically loading atoms into the lowest energy band of the lattice is related to the

separation between the ground and excited band.

The generalized time-dependent equation for calculating an excited state con-

tribution is

ȧn,q(t) =
a1,q

(En,q − E1,q)

〈
n, q|∂H

∂t
|1, q

〉
ei

R t
0

En,q−E1,q
h̄ dt (3.6)

In order to remain adiabatic, the excited state population, |an,q(t)|2, must stay ) 1,

where n is the band index other than n = 1 and q is the quasimomentum. One can

calculate a corresponding time scale using Eq. 3.6 which, for loading a 87Rb BEC

into a single lattice at k1 ≈ 2π/λ, is satisfied for times much greater than 5 µs [59,

34, 47]. As the lattice depth increases, the bands continue to separate. Adiabaticity

is most difficult for q near the band edge, where the initial energy gap vanishes.

For our experiments, the initial momentum range is ±0.15 k1. Additionally, the

single particle band picture begins to break down as the BEC becomes strongly

interacting. The oft-cited adiabaticity expression [16, 59],

∣∣∣∣〈n, q|∂H

∂t
|1, q〉

∣∣∣∣ <<
∆E2(q, t)

h̄
(3.7)

makes the approximation that the Hamiltonian and eigenstates are slowly varying

and that the changes in energies are small. As we will see, these assumptions are

not valid in the incommensurate lattice case.
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3.4 Experimental details and results

As described in Chapter 2, we collect 109 atoms in our MOT. An optical mo-

lasses stage follows by abruptly turning off all magnetic fields and carefully zeroing

the field at the atoms using the trim coils. During this phase, we reduce the in-

tensity and detune the MOT beams a few linewidths further from resonance (to

reduce the radiation pressure) using acousto-optic modulators (AOMs). This stage

serves to cool the atoms to ∼ 40µK. Because the atoms are so cold and do not

move very much during this ∼5 ms stage, no additional forces are required to keep

them in place. At this point the atoms are in an equal distribution of mF levels,

and we need them in a low-field seeking state, so we optically pump the atoms into

the |F = 2, mF = 2〉 state. We do this with a 100 µs pulse of circularly polarized

light tuned to the |F = 2〉 to |F ′ = 2〉 transition. The polarization is given with

respect to a quantization axis defined by a small field turned on in the By direction

during the pulse. The magnetic trap is slowly ramped on and then immediately

compressed to ωx ≈ ωz ≈ 2π×410 Hz and ωy ≈ 2π×120 Hz to increase the density,

and therefore the collision rate. We evaporatively cool the atoms until we obtain a

condensate with less than 50 % thermal component (100 nK). To reduce the effects

of interactions, which are density and scattering length dependent (Section 3.6), the

trap is subsequently weakened giving final frequencies ωx ≈ 2π×40 Hz, ωy ≈ 2π× 20

Hz, and ωz ≈ 2π×30 Hz.
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3.4.1 Optical Lattices

We load the BEC into a 1D optical potential (recall Section 2.7, Optical Lat-

tices), created by the addition of a primary and perturbing lattice(s). The lattices

are created by reflection off an in-vacuum gold mirror (used for the mirror-MOT)

situated approximately 2 mm from the magnetic trap center. As shown in Fig. 3.2,

each beam is reflected at a different angle (θ1 = 180◦, θ2 = 143◦, and θ3 = 155◦,

defined as the angle between incoming and reflected beam) to yield a 1D pseudo-

disordered potential [29]. The effective wavevector of each lattice is keff = 2π/(2l)

where the periodicity of the lattice, l = λ/(2 sin (θ)). Because the gold mirror sur-

face that defines the standing waves nodes is the same for all three lattices, they

are phase-locked together, which gives a very stable potential. To prevent interfer-

ence between the lattices, we detune the beams ∼160 MHz from each other with

AOMs, so that the coupling terms between the beams oscillate rapidly compared to

the atomic motion, and are time-averaged to zero (from the reference frame of the

atoms). The 1/e2 waists for the primary perturbing beams are approximately 400

µm and 3500 µm, respectively. Fig. 3.2 depicts the lattice configuration.

The total potential is

Vtot =
M

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) + V1 sin2(k1z) + V2 sin2(k2z) + V3 sin2(k3z), (3.8)

where M is the atomic mass, k1 = 2π/λ, and λ = 796.6 nm. The ratios k2/k1 =

0.806 ± 0.002 and k3/k1 = 0.919 ± 0.004 are extracted from absorption images of

atomic diffraction. The distance between momentum orders in each image, ∆x, is

extracted from an image. Using ∆x = vt and p = Mv = 2nh̄k, where v is velocity,
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t is expansion time, we calculate the k of the standing wave. The error bars reflect

statistical uncertainty and include the error in position measurement. For the bulk

of the experiments described here, the lattice depths are V1 = 4.6 ± 0.3 Erec and

V2,3/V1 = 0.059 ± 0.003, where Erec = h̄2k2
1/2M .

3.4.2 Lattice calibration

Although the potential is defined by clear parameters such as power, waist,

and detuning, there is significant error in the power and waist measurements using

standard equipment. The power can be measured with both a power meter having

a silicon detector, which is sensitive at 800 nm. We measure the waist with a meter

having a rotating silicon detector (Thorlabs) and also using a razor method. In the

razor method, a blade is placed at the waist and its position is scanned horizontally

through the beam in position steps much smaller than the beam diameter. The

transmitted power is plotted as a function of position and fit to an error function

curve. The waist is extracted from this curve fit. The errors arise from power

measurement, position measurement with a micrometer, and placement of the razor

blade.

The detuning is well known because we measure the wavelength on a waveme-

ter that is accurate to ± 30 MHz. For this reason, the individual lattice depths are

calibrated using two alternative methods. In the first method, the laser is tuned

close to resonance and a short pulse of light is imparted onto the sample. The

effect of the pulse is to write a periodic phase on the wavefuction. The length of
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Figure 3.2: Beams propagating in the +z-direction are reflected off of an
in-vacuum gold mirror forming a standing wave (in the gravity direction).
They are reflected at different angles to give a 1D incommensurate lattice
potential to mimic disorder. The depiction of the cloud in the lattice is
not to scale. The approximate number of lattice sites occupied is ∼70.
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the pulse, τ , is chosen to fall in the phase grating limit, where the atomic spatial

wavefunction does not evolve in the wells of the standing wave. The condition for

this is that τ << 2π/ωlatt. For a lattice with an estimated frequency of 20 kHz, τ

must be much less than 50 µs. The resulting matter-wave diffraction pattern has

momentum peaks spaced at pn = 2nh̄k , with n being an integer. The sample is cold

enough (sub-1 µK) or condensed so that the expansion of the cloud in position is

less than the expected spacing between momentum orders. The populations in the

peaks are Pn = J2
n(ε/2), where Jn(z) are Bessel functions of the first kind [46]. The

argument of the Bessel function is related to the amplitude of the standing wave

by ε = τU(0)/h̄. U(0) is the depth of the standing wave potential [28]. For good

signal to noise, we choose a pulse which results in momentum components having

equal amplitudes. The error from intensity fluctuations and power measurements

does not contribute in this calibration measurement.

In the second calibration method, the atoms are loaded into a far-detuned

lattice, and abruptly released. A gaussian fit is applied to each of the peaks in the

resulting interference pattern. The relative populations in the ±1 order momentum

peaks (with respect to the 0th order peak), P±1, are extracted and the depth of the

lattice is determined from [11],

s =
16

[ln(P±1)]2
P 1/4
±1 (3.9)

We load the atoms into the combined lattices by ramping up the intensities, keeping

a fixed ratio between V2,3 and V1. A ramp time of 1 ms is chosen for most experiments

and is sufficiently long (compared to 5µs) to ensure loading a magnetically trapped
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BEC into the lowest band of a single lattice (when no other lattices are present).

To assess our ability to adiabatically load a lattice, we perform two types of ex-

periments. In all experiments, we take an absorption image of the cloud after 22 ms

of expansion during time-of-flight. Following the ramped loading and a variable

hold time (typically 1 ms), we turn off both the lattice and the magnetic trapping

potentials. The image yields the momentum distribution of the atoms trapped in

the lattice (interactions during time-of-flight are negligible).

3.4.3 Sudden release of atoms from a lattice and incommensurate

potential

With a sudden release, the Bloch states are projected onto the free particle

plane wave states with momentum, p = h̄q ± 2nh̄k. For comparison, we present

absorption images after the sudden turn-off, with and without the perturbative

lattice(s) in Fig. 3.3. The existence of the weak perturbing lattice (Fig. 3.3(c-e))

markedly modifies the momentum distribution with the appearance of new peaks,

even though the perturbing lattice is so weak that by itself it does not produce

any diffraction with amplitude above our noise floor (Fig. 3.3(b)). In a system

with perfect resolution, the momentum peaks would be observable. There is an

enhancement of the peaks at ±2h̄k2 making them discernible above the image noise,

as well as new features at ±2h̄|k1 − k2|.
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Figure 3.3: (I) Absorption images of a BEC loaded into different lattices
for µBEC ≈ 100 Hz after 20 ms TOF: (a)V1 ≈ 4.6 Erec and (b) V2 ≈ 0.3
Erec;(c) V1 + V2; (d) V1 + V2 + V3, with V2 ≈ V3 ≈ 0.15 Erec; (e)V1 = 7.5
Erec and V2 = 0.5 Erec lattice. We turn on lattices using a 1 ms linear
ramp followed by a 1 ms hold and abrupt turn-off. (II) Using the data
from the absorption images ((I)-(a,c-e)) we extract the relative popu-
lation amplitudes (green bars) and overlay them with a band structure
calculation (no interactions) of the ground state momentum distribution
(black lines).
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3.4.4 Adiabatic turn-off

In the second method, after the loading and holding process, we slowly ramp

down the lattice in 1-10 ms and then abruptly release from the magnetic trap (¡100

µs). If the process is fully adiabatic, the cloud should return to the momentum

distribution of the original BEC. In Fig. 3.4, we present absorption images showing

the results of testing for adiabaticity with a ramp-up/hold/ramp-down sequence.

From Fig. 3.4a, one can see that the small perturbation prevents adiabaticity on

millisecond time scales. After ramping down, there are momentum peaks separated

by the difference in wavevectors, k1 − k2. One has to use perturbations less than

∼0.1 Erec to prevent excitations during the experimental sequence (Fig. 3.4(c-d)).

It should be noted that as the perturbation has an increasing effect on the

energy bands, it also becomes difficult to adiabatically turn-off the lattice.

3.5 Modeling results

We use single particle band structure and the 1D Gross-Pitaevskii equation to

model our system.

3.5.1 Band structure to approximate incommensurate lattices

In order to understand why such a small perturbation has dramatic effects on

the momentum structure and excited fraction we use single-particle band structure.

Even if the perturbing lattice is strictly incommensurate with the primary lattice

with k2/k1 = α equaling an irrational number, we can approximate α as a ratio of
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μBEC≈100 Hz; V1+V2;
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Figure 3.4: Results of adiabaticity check. (a)-(c) Absorption images
following ramping off primary plus one perturbing lattice of differing
strength. (d) Image of no lattices. These images illustrate the difficulty
of adiabatic loading of a condensate into a pseudo-disordered lattice.
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two large integers, f/g. In a finite system such as ours where the BEC occupies

≈ 70 sites of the primary lattice and does not extend over many periods of the beat

frequency lattice (created by the combination of the lattice potentials) we expect

this approach to yield reasonable predictions [17]. This modification gives rise to

additional off-diagonal elements in the single period matrix (Eq. 3.5), which is then

re-diagonallized to calculate the eigenvectors and eigenenergies.

Assuming no excitations to higher bands, we predict the momentum distri-

bution for each lattice configuration using this modified band structure calculation

with f/g = 9/11 and f ′/g = 10/11, approximations to the experimental ratios. The

integers in these ratios are not large (larger integers yield a more irrational num-

ber), but are chosen to give practical computation times. We increased the values

to confirm that our calculations captured the features of the system. We present the

results of this calculation overlaid with population amplitudes (green bars) extracted

from fits of our data in Fig. 3.3. In the case of three lattices, experimental resolu-

tion limits our ability to resolve the structure, and this is represented by wider bars.

The combination of the lattices creates a complex momentum structure, and the

band structure calculation is in good qualitative agreement with our measurements.

However, since the band-structure calculation assumes no excitations and a 1 ms

ramp causes depletion of the ground band, the predicted populations do not quan-

titatively agree with the data for multiple lattices. This mismatch increases as the

depths of both the primary and perturbing lattice(s) are increased. For deep lattices

(Fig. 3.3(i)), depending on the choice of f/g , band structure predicts peaks spaced

at k1/g, closer than the beat frequency, yet the envelope does not change. We find
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these disappear much more rapidly than the beat frequency peaks as interactions

increase (see Section 3.6.1 below).

We also examine the changing wavefunction and the corresponding band-

structure in Fig. 3.5. Using the k−vector of the primary lattice to determine the

size of the first Brillouin zone, we plot the first two bands for the case of one and two

lattices. The dominant effect of the perturbing lattice is to open small gaps in the

ground band, as well as to slightly flatten the band between the new gaps. Starting

at q = 0 and traveling along the band, the first gap corresponds to quasimomentum

of (k1− k2). If instead one chooses the first Brillouin zone to span ±(k1− k2) which

is now much smaller, there exists a new band that is much lower in energy than the

first excited band in the single lattice case, which determines a new energy scale

relevant to adiabaticity. This new energy scale is also responsible for localizing the

wavefunction at the spatial period corresponding to the beat frequency (Fig. 3.5(c)

compared to Fig. 3.5(b)). The increased flatness of a band corresponds to a decrease

in the tunneling rate because the energy states in the neighboring wells are no longer

degenerate.

According to the new energy diagram, in order to satisfy the adiabaticity

condition (Eq. 3.6, 3.7) for two lattices with our parameters (V2 ≈ 0.059 V1, k1/k2 ≈

0.8), the loading ramp must be much longer than 4 ms (a thousand times longer

than for a single lattice). This is shown in Fig. 3.6(b), where we calculate the

depletion of population in the ground band for different ramp rates as a function

of primary lattice depth for the case of three lattices. From Eq. 3.5, modified for

perturbing lattices when present, the coefficients, cn,q, can be calculated for any

67



depth potential. If the change in the potential as a function of time is known, then

the overlap of the eigenvectors can be used to calculate population as a function of

ramp time. Starting with the free particle solution, the instantaneous eigenfunctions

for a step in depth (time) are calculated and the overlap with the previous step is

calculated. The result of this calculation is shown in Fig. 3.6(b). The inset of

Fig. 3.6(b) depicts an expanded view of ramp times yielding less than 5 percent

excitation.

Fig. 3.6(c) shows the depletion of the ground state as a function of lattice depth

for a ramp time of approximately 2.5 ms for the case of one, two and three lattices.

Since it is often the case experimentally that we start with a BEC with non-zero

q (due to residual motion in the magnetic trap), we also show curves for loading a

BEC with q = 0.1 k1 into a potential comprised of two and three lattices. This value

of q was chosen to lie within the new, smaller first Brillouin zone and to fall within

our experimental shot-to-shot fluctuations in q. These curves show that the effect of

additional perturbing lattices is the dominant effect on adiabaticity criteria. For q

= 0.1 k1, the adiabaticity time scale approaches 10 ms. We experimentally observe

that by ramping up the potential and then ramping down with additional lattices,

longer ramp times (5 ms compared to 250 µs) are qualitatively better (less excita-

tions), but due to interactions, we are never able to be fully adiabatic. Although

excitation to higher bands may also produce new momentum peaks, for the data

presented in Fig. 3.3(c), we predict that between 1 and 5 percent of the population

is excited depending on initial quasimomentum. Thus most of the observed changes

in the momentum distribution can be ascribed to modification of the ground band
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wavefunction, in this case localization.

The effects seen here are a result of the incommensurability of the lattices.

For experiments using commensurate lattices [47] where two lattices had a carefully

chosen ratio of 3:1, the criteria for adiabaticity with respect to the band structure is

not significantly altered. In this case the higher order momentum peaks due to the

perturbing lattice overlap the beat frequency peaks, which results in the wavefunc-

tion having modulation only at that spatial frequency. This difference can be seen

by calculating the ground state wavefunction for the two cases. For approximately

incommensurate lattices, the perturbation has a strong effect, with small spatial fre-

quencies appearing (Fig. 3.5(c)). In order to further quantify this dramatic change,

we plot the population of the p = 0 peak, p0, as a function of lattice depth for a

single lattice, and for a primary lattice with a perturbative lattice (with V2 = 0.059

V1, Fig. 3.6(a)). The black points are experimental measurements of the peak am-

plitude, which show a dramatic reduction of p0 when the perturbing lattice is added.

We show two band structure calculations for f/g=4/5 (dashed) and 9/11 (solid),

both falling within the error bars of our experimental ratios. The significant differ-

ence between these cases is due to population growth in sub-beat frequency spaced

momentum peaks predicted for the ratio 9/11. The error bars represent statistical

uncertainties in populations and lattice depths (due to fluctuations in lattice beam

intensity). We expect that because the turn-on of two lattices is not fully adiabatic

there will be additional depletion of the central peak due to excitations into higher

bands, as observed.
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Figure 3.5: (a) Calculated first two bands for a single lattice and for
two incommensurate lattices. Note the gaps which form in the ground
band. (b-c) Plot of an example wavefunction multiplied by a Gaussian
envelope (b) without and (c) with a perturbing lattice
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Figure 3.6: (a) the probability amplitude, p0, as a function of lattice
depth for p = 0 peak for the case of a single lattice (V1) and a combined
potential (V2 ≈ 0.06V1). The changes in slope correspond to the depths
at which the atoms become localized at different spatial frequencies. (b)
Calculation of ground band population for differing ramp times for case
of three lattices ((i) 25 µs, (ii) 250 µs, (iii) 2.5 ms). The total pertur-
bation is V2 + V3 ≈ 0.06V1; (iv) Result of loading a single lattice with a
ramp time of 2.5 ms. Inset in (b) is a zoomed-in view for comparison of
(iii) and (iv). (c) Calculated ground state population for loading a (i)
single lattice, (ii) two lattices, (iii) two lattices starting with q = 0.1 and
three lattices starting with (iv) q = 0 and (v) q = 0.1 for a fixed ramp
time of 2.5 ms.
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3.6 Localization

There are many types of phenomena classified as localization. In the context

of the experiments described here, the term localization refers to decreasing the

spatial extent of the wavefunction. In the limit of a non-interacting, infinite system

in the presence of a disordered potential, Anderson predicted [1] that the wavefunc-

tion would become exponentially localized through destructive interference of wave

reflections. In 1D systems, the wavefunction is always localized for a finite amount

of disorder, whereas in higher dimensions a transition from extended to localized

states is predicted. In practice cold atom experiments are finite systems and without

a Feshbach resonance to tune the scattering length, a, to zero (see for example [53]

and Refs. therein), these systems also have non-negligible interactions.

In this experiment the disorder is formed by an incommensurate lattice and

localization associated with this Hamiltonian is predicted using the Aubry-Andre

model [56, 53, 55]. Compared with Anderson-type localization, this model predicts a

transition from delocalized to localization even in 1D systems. In both the Anderson

and Aubry-André model interactions still compete and are predicted to destroy the

localization effects (recall Section 3.2).

In our weakly interacting system, we see the production of low spatial fre-

quency, long-wavelength components in the wavefunction with the application of

weak incommensurate lattices. This yields insight into the connection between dis-

order, localization, and incommensurate systems. In the canonical view of local-

ization, destructive interference due to reflections over long distances leads to the
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localization of the wavefunction[1, 56]. Here we see that a single incommensurate

perturber yields a complex long wavelength structure. If we add a second perturber,

getting closer to true disorder, we see even more momentum components and calcu-

lations show the amplitude of the wavefunction is suppressed. Experimentally, due

to finite resolution, this appears as a broadening of the distribution (Fig. 3.3(d)).

Comparing three lattices to two, we observe a larger spread in the central feature,

as well as a corresponding decrease in optical depth. This indicates that there are

unresolved peaks beneath the overall envelope. In Ref.[54] it was suggested that an

indication of localization is the appearance of additional momentum peaks in the

matter-wave interference pattern. If something competes with these long range in-

terferences, such as atom-atom interactions, we can expect localization phenomena

to be drastically modified [40]. Indeed, until recently [53, 6] Anderson localization

had not been seen in cold atom systems due to the effect of atom-atom interactions.

3.6.1 Adding interactions: 1D Gross-Pitaevski equation

To study the effects of interactions in our system, we perform experiments in

three different magnetic traps of differing frequencies with chemical potentials of

µBEC/h≈(2500, 400, 100) Hz. µBEC is calculated from

µBEC =
1

2h̄ωho

(
15(1− T/Tc)3Na

aho

)2/5

(3.10)

Here, ωho is the geometric mean of the harmonic oscillator frequencies, 2π(fxfyfz)1/3,

aho is the harmonic oscillator length equal to
√

h̄/(Mωho). We observe (Fig. 3.7)
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that as the overall confinement is increased, both the structure in the interference

pattern such as the k1 − k2 momentum peaks disappears and the overall size of the

cloud, after TOF, increases.

We compare the results of the non-interacting band-structure model to simu-

lations of our system using the Gross-Pitaevskii equation (GPE),

− h̄2

2M
∇2ψ(r) + V (r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r). (3.11)

This is Schrödinger’s equation with a non-linear term with the coefficient, g =

4πh̄2a/M . Here, a is the s-wave scattering length. This equation assumes that the

mean field approximation is valid where the wavefunction is a product of single par-

ticle indistinguishable wavefunctions. It is most accurate when the system modeled

has only small deviations from BEC. In our system, this assumption may not be

true because of the localizing effects at weak interactions; however, the results of

the calculation match well with our observations. For more details on the GPE and

approximations for condensates, see Ref. [48, 12].

We reduce the 3D equation to 1D and solve using the split-operator method in

combination with imaginary time evolution [4]. Although our system is not 1D, but

an array of 2D pancakes, this reduction method captures the main features of our

results. The simulations using the GPE predict that in the moderately tight trap

(µBEC/h = 400 Hz), the k1 − k2 (beat frequency) peaks slightly persist, however

they disappear in the tightest trap. Fig. 3.7 shows absorption images with results

of GP simulation in three different traps. In our system, we cannot decouple the

size of the sample from interactions (since we increase interactions by compressing
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the trap which decreases the size), which both contribute to the amount of spatial

localization. This can be done if one utilizes a Feshbach resonance, as in [53], to

vary the strength of the scattering length, a.

We calculate the effect of arbitrarily increasing the interactions in our weakest

trap (where the structure is most apparent) and see that the sub-beat frequency

peaks vanish rapidly, followed by the k1− k2 peaks. This can be understood in that

interactions drive transitions between states of different quasimomentum, washing

out the discrete low momentum features, and destroying the long range spatial

periodicity of the wavefunction. The GP simulation also includes the harmonic

potential that is neglected in the band structure calculations. Simulations with our

experimental parameters show that in the limit that interactions do not dominate

(lattice depths < 7 Erec), the harmonic trap increases the effects the secondary lattice

has on the adiabaticity condition. For additional results of GPE calculations, see

thesis of M. Beeler.

3.7 Conclusions

In conclusion, we have presented data indicating that small perturbations to

a one-dimensional lattice system in the form of quasi-disorder, while leading to

localization of the wavefunction, also drastically change the dynamics of the system.

We present a theoretical treatment which suggests that although we are only slightly

modifying the energy of the system, the large alterations of the wavefunction demand

time scales for adiabaticity that are orders of magnitude longer than for loading a
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single lattice. Because of the sensitivity of the adiabaticity criteria in the presence

of perturbations, one should be careful when studying disordered lattice systems to

identify and characterize any forms of disorder present in the potential, intentional or

otherwise. This work shows that disorder can have a strong influence on dynamics,

and that the long timescales of cold-atom optical lattice systems makes them ideal

for further explorations.

3.8 Comments and Future directions

3.8.1 Incommensurate lattices as a model for disorder and finite-size

effects

In our type of system, two important questions are (1) how well does the

system approximates true disorder and (2) how much does the finite-size of the

system matter. These are subtle questions, which remain open for further study.

Incommensurate lattices are defined as having a ratio of k-vectors that is an

irrational number. Two lattices that have a ratio that approaches the golden mean

are said to be maximally incommensurate (see [53, 55] and Refs. therein). In a

finite-size system, the effects of deviating away from the incommensurate lattice’s

ratio are not known. Intuitively, it seems that if the atomic cloud only extends over

a small length of the lattice, the potential it feels is pseudorandom and only in the

limit of infinitely long condensates do differences appear. This would be interesting

to be able to study, if one could arbitrarily control the k-vector ratio over a variety

of irrational numbers and characterize the irrationality of the ratio with respect to
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the golden-mean.

An experiment such as this would also be able to investigate how closely a

finite-sized incommensurate system mimics random disorder, i.e. a potential formed

from speckle. We expect that adding an infinite number of incommensurate per-

turbers would perfectly mimic true disorder. Experimentally, this is not feasible,

but in a finite size system, we expect that many fewer perturbers would be necessary

to accomplish this. Although in [66], they are in the strongly interacting regime, it

is clear when comparing momentum distributions from their experiment and oth-

ers using speckle with our results [21] and those found in Ref. [53] that there is

a fundamental difference between the two types of randomness. It would be very

interesting to investigate the length scales over which this is experimentally valid.

3.8.2 Excited state populations

Using the adiabaticity condition, one can predict the growth of population

into higher bands of the lattice. This calculation is shown in Fig. 3.8. From the

calculation, it is predicted that the population of excited bands grows and different

bands dominate for different depths.

We previously attempted to characterize the excitations (with stronger per-

turbations) by letting the excited fraction relax into the thermal component. After

loading the BEC into the lattice(s) and holding for 1 ms, we ramp off the intensity

of the lattice(s) in 1-20 ms. The sample is held in the magnetic trap for a varying

amount of time. During this hold, we assume that the excited fraction (due to non-
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lattices. The strength of the perturbation is 6 percent of the depth of the
primary lattice. After the strength of the primary lattice reaches a crit-
ical value, population growth accelerates in the band which corresponds
to the 1st excited state of the approximate k1 − k2 lattice.
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adiabatic loading) will relax into the thermal component in the magnetic trap. We

do observe qualitatively that for very short loading times (compared to the band

separation) a large thermal fraction emerges. However, this was difficult to quantify

because the lattice turn-off induced breathing modes which did not damp on exper-

imental time-scales. Additionally, if the turn-off of the lattices induces additional

excitations, the two effects cannot be decoupled.

3.8.3 Band-mapping

Currently, we are working on a third, more comprehensive, experimental test

for adiabaticity. We will use a well-known technique called band-mapping in an

attempt to quantify excited state populations. After loading the atoms using the

same sequence as above, the lattice is turned off fast compared to many body in-

teractions, but slow compared to single particle excitations. The populations from

each band are mapped onto the Brillouin zones (ground band populations in first

Brillouin zone, first excited band populations map to second Brillouin zone, etc).

This is a tricky experiment, because as we have shown, the perturbing lattice dras-

tically modifies the energetics of the system. We anticipate that this technique will

break down as the band gaps close. We will start with a primary lattice and slowly

increase the perturbation to characterize this behavior.
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Chapter 4

Final remarks

The study of BECs in disordered potentials is a rich field of study and there

are several experiments for which this apparatus is well-suited. I have described the

first results from this apparatus and this section will briefly describe a few future

experiments that I have had a role in planning.

4.1 Non-equilibrium dynamics and the effect of lattices on the for-

mation of BECs

Classical and quantum systems typically achieve equilibrium through exchange

of energy with the surroundings. For example, in a system of a dilute, thermal gas

of neutral atoms confined to a harmonic trap undergoing cooling to Bose-Einstein

condensation (BEC), these exchanges are in the form of collisions with atoms that

can subsequently leave the gas. In a crystal, there are exchanges of energy through

phonons and the atoms are “pinned” to sites through chemical interactions. The

BEC-optical lattice is the atom-optic version of the solid-state crystal, but there

are no phonons and typically no evaporation so the system is isolated from the

environment. In an interacting system, particle-particle interactions play a role in

distributing energy among particles, even if the system is isolated from a reservoir.

Previous theoretical models of non-equilibrium dynamics have focused on de-
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veloping a quantum picture of the Kibble-Zurek mechanism (KZM) [37, 68]. The

standard picture of this mechanism is that far away from a phase transition, the

system dynamics are adiabatic because the relaxation time, τ , is short, but as one

approaches a critical point, τ diverges. If one quenches the system, defined as cross-

ing the transition in a time, tQ, faster than τ , the system is driven out of equilibrium.

Thus, after the transition is passed, the order parameter will develop domains of

differing phase giving rise to topological defects such as vortices. Because this criti-

cal slowing down of the relaxation is inherent in the phase transition, the formation

of defects is inevitable; however, their persistence and density is dependent on the

speed of the quenching. This mechanism was initially developed in a classical system

with applications to defect formation in the early universe [37]. It has been shown

that features of the KZM can be mapped onto systems exhibiting quantum phase

transitions (QPT) such as the MI-SF transition [30, 20].

Quenching across a phase boundary has been used recently to observe vor-

tices during the BEC transition in an ultra-cold atom system [64]. We have begun

studying the dynamics of the condensate transition in the presence of a perturbing

potential. We evaporate to just above Tc and subsequently turn on a 1D lattice po-

tential created in the manner described in Chapter 3. We continue the evaporation

process and observe the establishment of phase coherence between lattice sites. The

lattice potential is expected to slow down the re-thermalization process by affecting

the collision rate. Indeed, we have observed that evaporation in the presence of a

weak lattice (≈ 5 Erec) dramatically slows the equilibration process. The goal is

to measure this re-thermalization process and the dynamics that lead to relaxation
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when the system is quenched into a regime that would be condensed. This class of

experiments investigating the KZM are interesting in terms of the defects and give

insight into resulting effects of a quench. The initial and final states of the system

are near-equilibrium, but the system is driven out of equilibrium near the phase

boundary.

Our system design, with the mirror defining the nodes of the lattice potential

being ∼2 mm from the atomic sample, is ideal for the long time-scales for this study.

Recent observations suggest that the time for relaxation is on the order of seconds,

which translates into needing low loss and small heating rates. The versatility of our

system provides a platform for extending this study of non-equilibrium phenomena

in a single period lattice to the effects of disorder. Because we can load the atoms into

an incommensurate lattice and plan on implementing a speckle potential we can span

the range from quasi-periodic disorder to true disorder. As previous experiments

have shown, the signatures of disordered phases such as glasses can be difficult

to interpret. A potential method for further identifying a glassy phase may be

the observation of diverging equilibration time-scales through these non-equilibrium

experiments.

4.2 Bloch Oscillations

As described in Section 3.2, when a BEC is trapped in an optical lattice,

energy bands arise due to the periodicity in the system. In a perfect lattice without

defects, the application of a constant force, such as that due to gravity, causes the
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atoms to oscillate in position and momentum, undergoing Bloch oscillations. The

period of oscillation is TB = 2πh̄/Fd. Here, F is force and d is the lattice constant.

In our system, the lattice(s) are oriented in the direction of gravity, so we utilize

this as our force. Adding a perturbation to the lattice in the form of disorder, or

pseudodisorder (incommensurate lattice) will damp these oscillations. The disorder

breaks the symmetry and the energy levels become unequally spaced. This induces

dephasing of the matter-wave, thus damping the oscillations [60]. In solids, disorder

completely destroys Bloch oscillations which results in a finite resistance.

If instead, one makes the force time-dependent with an oscillatory frequency of

1/TB, one can observe coherent delocalization of the condensate [32]. In the presence

of both the disorder and the time-dependent force, there is a competition between

these two localizing effects [31]. We are studying this in our BEC-1D lattice system.

Thus far, we have observed that minimal disorder will lead to strong damping of

the Bloch oscillations.

4.3 Delta-kicked harmonic oscillator

Previous to experiments with disorder, we unsuccessfully tried to observe res-

onant features in a quantum δ-kicked harmonic oscillator. We hope to revisit this

project because we have made improvements to increase the stability of the system,

which may allow us to observe resonances.

The goal of this experiment was to study the delta-kicked harmonic oscilla-

tor in the context of a quantum mechanical system. Classically there are systems
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exhibiting chaotic phenomena, such as the δ-kicked rotor. In order to better under-

stand the meaning of quantum chaos, one can choose the quantum analog of these

classical systems and observe their behavior. The delta-kicked rotor has been studied

in the context of cold atoms previously [44]. If one calculates the effect of adding in

a harmonic term, as exists for a magnetic trap, then under certain conditions there

are resonances (where the energy increases dramatically). The Hamiltonian for this

system, ignoring interactions due to a possible condensate fraction, is

H =
p2

2m
+

Mω2
zz

2

2
+ V0τp cos2(klattz)

∞∑

n=0

δ(t− nTK) (4.1)

Here, V0 is the strength of the pulsed standing wave having k-vector, k, and pulse

width, τp. n is the number of times the sample is kicked in a harmonic potential

with a trapping frequency, ωz.

The δ-kicked harmonic oscillator is also interesting because applications to

electronic transport and it exhibits a “crystalline” phase space [35]. The effects of

non-linearity on this system due to the presence of a condensate has been investi-

gated theoretically [25] and to our knowledge, only one experiment has attempted

to study this system [19]. We performed calculations on our system to determine

the parameters for the resonances. We designed an experiment loading a cold cloud

(∼ 0.5− 1µK) into an approximately cylindrically symmetric harmonic trap formed

by magnetic fields (see Chapter 2). We chose a non-condensed cloud because the

non-linear term does not contribute. We applied short kicks in the form of standing

waves to the atoms and monitored the energy as a function of kick number and kick

strength. These kicks were in the regime of a phase grating (Section 3.3.2).
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While the δ-kicked rotor is a relatively simple experiment, the δ-kicked har-

monic oscillator, although seemingly a small extension, is much more sensitive to

experimental details. It requires exquisite stability in the harmonic trapping fre-

quencies. If these frequencies are changing during the kicking sequence, the res-

onances are predicted to broaden, or even disappear. Instabilities due to current

variations in the power supplies can cause large fluctuations in the magnetic fields.

Analysis showed that variations in the relative positions of the trap center and

standing wave washed out the resonances. We were not able to remove all the noise

from the system and thus did not observe resonances.
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Appendix A

Inventory

The following is a list of the major components of our apparatus.

A.1 Vacuum

Part Number Part Description

Vendor

MCF600-SO200800-A Spherical Octagon vacuum chamber

Kimball Physics

9191145 Varian starcell diode ion pump

Varian Inc.

9290191 Mini-vac ion pump controller and cable

Varian Inc

274042 Dual filament nude bayard type ion gauge

Granville-Phillips

350501-A-T1 Ion gauge controller-350 and cable

Granville-Phillips

Custom Custom feed-throughs

Kurt Lesker Inc.

SG0150MCCF Manual gate valve

Kurt Lesker Inc.

B1381S Glass to metal seal 2.75 inch con-flat flange

Bomco

Rb/NF/6.4/17/FT (website) Rb-Alkali metal dispensers

SAES getters

37-3736 Argon packed Rb glass ampoule, 1g
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Strem Chemical

MCF450-SS20400-A Spherical Square vacuum chamber

Kimball Physics Inc.

VA-30-DD-M, V-410-MS Varian-type 30 L/s ion pump and cable

Duniway stockroom

IPC-0062 Ion pump controller, diode or triode

Duniway stockroom

for custom flange rotary feedthrough piece (source)

Kurt Lesker

custom AlN mount for wire traps

Stratamet, Inc.

custom 780 nm and 1550 nm coatings on windows

Spectrum ThinFilms

A.2 Lasers, Fibers, AOMs, EOMs, Optoisolators

Part Number Part Description

Vendor

DLX-110 780 nm, 750 mW tapered amplifier diode laser

Toptica Photonics Inc.

—- laser controller

Toptica Photonics Inc.

ELR-15K-LP-SF 1550 nm, 15 W fiber laser

IPG Photonics

TEC A00-Littrow TEC series 780 nm, 100 mW diode laser

Sacherlaser

—- laser controller

Sacherlaser

TIS-SF-07 ring laser 800 nm tunable Ti-Sapphire Laser

Tekhnoscan

Verdi-10W 532 nm , 10 W Verdi, controller, cooler
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Coherent

—- custom 4× 4 fiber splitter

Canadian Instrumentation

2007 Nirvana detector

New Focus

1206C-2-840B 80 MHz AOM, coating-780

Isomet

DE-802MN Deflection driver, 80 MHz

IntraAction

360-40, 302RM EOM, EOM driver, for dipole trap

ConOptics

4002-Visible EOM, laser lock

New Focus

A.3 Power Supplies

Part Number Part Description

Vendor

DLM-600 Sorensen 8V-75A power supply

Elgar Electronics

XLT-60 Sorensen 4V-15A power supply

Elgar Electronics

ATE 15-3 Kepco 1/4 rack supply

Test Equity

ATE 3-10 Kepco 1/2 rack supply

Test Equity

HP 6269B HP linear supply DC 0-40 V, 0-50 A

Ebay

A.4 Miscellaneous parts and notable electronic bits

Part Number Part Description
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Vendor

LS6T2 mechanical shutter

Uniblitz

TIA 1000-1-R8 35 dB gain RF power amplifier

MiniCircuits

PTS 160 Frequency synthesizer

Ebay

ABL-200-40-10-LT40AS-NC air-bearing stage

Aerotech

LB1005 Lock box

Precision Photonics

09F2013, 09F2384, 09F2213 Varistor, littlefuse

Newark

96B6121 IGBT (GA200SA60U)

originally international rectifier,

but has been sold; check Newark

MJ4502G Darlington high current MOSFET, OnSemi

Newark
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stein, and L. Santos. Dynamics of Bloch oscillations in disordered lattice po-
tentials. Phys. Rev. A, 77:023610, 2008.

[61] T. Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J . Arlt, K. Sacha, J. Za-
krzewski, and M. Lewenstein. Route towards Anderson-like localization of Bose-
Einstein condensates in disorder optical lattices. Phys. Rev. Lett., 95:170411,
2005.

[62] Daniel A. Steck. Rubidium 87 line data. available online at
http://steck.us/alkalidata, (revision 2.0.1, 2 May 2008).

[63] M.R. Walkiewicz, P.J. Fox, and R.E. Scholten. Candlestick rubidium beam
source. Rev. Sci. Instrum., 71:3342, 2000.

[64] C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, and B.P.
Anderson. Spontaneous vortices in the formation of Bose-Einstein condensates.
Nature, 455:948, 2008.

[65] David S. Weiss, Erling Riis, Yaakov Shevy, P. Jeffrey Ungar, and Steven Chu.
Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B,
6(11):2072, November 1989.

[66] M. White, M. Pasienski, D. McKay, S. Zhou, D. Ceperley, and B. Demarco.
Strongly interacting bosons in a disordered optical lattice. e-print cond-
mat/0807.0446, 2008.

[67] S. Wildermuth, P. Krüger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Fol-
man, and J. Schmiedmayer. Optimized magneto-optical trap for experiments
with ultracold atoms near surfaces. Phys. Rev. A, 69:030901, 2004.

95



[68] W.H. Zurek. Cosmological experiments in superfluid helium? Nature (London),
317:505, 1985.

96


