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The concept of transport is fundamental and has great influence in a wide

range of fields across science. This dissertation provides three topics possessing

the character of transport phenomena from the perspective of partial differential

equations. The three parts include:

(1) Commutator method for averaging lemma: A new commutator method is in-

troduced to prove a new type of averaging lemmas, the regularizing effect for the

velocity average of solutions for kinetic equations. This novel approach shows

a new range of assumptions that are sufficient for the velocity average to be in

L2([0, T ], H
1/2
x ) and improves the regularity result for the measure-valued solu-

tions of scalar conservation laws in space one-dimensional case.

(2) Unmixing property of incompressible flows on 2d tori: The local Hamilto-

nian structure of a 2d torus is utilized to show that the unmixing property of

incompressible flows can be preserved under a sup-norm perturbation on stream

functions. With this perturbation result, a quantitative statement was provided



by considering vector fields in the form of a random Fourier series. This statement

offers an interesting observation for the unmixing property from the perspective of

Fourier analysis.

(3) Memory effect on animal migration: The goal of this work is to obtain a bet-

ter understanding of the memory effect on the animals’ migration patterns under

periodic environments. A memory model and a corresponding memory-driven dy-

namic were constructed. Through simulations, it is discovered that in order to

have periodic movement, the individual must be able to gather and carry sufficient

information from both short-term memory and long-term memory, and possess the

ability to discriminate which information is more important with appropriate time

scales. Furthermore, our mathematical model is general and can be used to test

the memory effect under different circumstances. Several interesting examples are

demonstrated.
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Chapter 1: Background and overview

1.1 Outline of dissertation

This dissertation contains three parts, each of which addresses a seemingly

different direction while they are all centered around a common topic of transport

phenomena. One of the classical fields that analyzes transport phenomena is the

kinetic theory. This thesis can be deemed as a modest approach to demonstrate

the wide influence and essence that kinetic theory could have.

The first part studies the averaging lemmas for kinetic transport equations.

The second part discusses the mixing property of incompressible flows on a 2-

dimensional torus. Both averaging effect and flow mixing are regarded as a disper-

sive property of transport operators. The averaging effect is a dispersion in phase

space. On the other hand, the flow mixing is a dispersive property in physical

space.

In addition to the kinetic models and mixing of flows, the transport equations

are found to be useful in biological modeling. The last part of this dissertation

illuminates such topic, where the narrative turns slightly into modeling rather than

classical style of analysis. This part of work is to render the application of transport

equations to biology by investigating memory effects on animal migrations. One
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source of the ideas for our model origins from the optimal control theory.

The dissertation is organized as the following: (1) Introduce the backgrounds

and characterize the author’s contributions in Chapter 1. (2) In Chapter 2, aver-

aging lemmas are described in details. (3) Discussion of flow mixing is in Chapter

3. (4) Modeling for memory effects on animal migrations is in Chapter 4.

1.2 Averaging effect in kinetic transport equations

1.2.1 Brief introduction to kinetic theory

The kinetic theory provides certain mathematical models to describe the

dynamics of a large collection of particles, represented by density functions in

phase space. The phase space includes both microscopic information (states) of

the particle, as well as the macroscopic variables, such as position. In between

microscopic and macroscopic models, the kinetic equations are sometimes called

mesoscopic models. Due to the long history of development and extensive literature

in kinetic theory, it is impossible to cover every aspect without losing focus. For

this short introduction, three essential types of classical kinetic equations and their

solutions shall be briefly discussed.

The simplest kinetic model is the free transport equation:

∂tf + v · ∇xf = 0, (1.1)

where x represents the position, v the velocity, and f is the density function of

particles. This equation describes that each particle in the system travels at a
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constant velocity v. The solution of (1.1) can be expressed by the characteristic

line x− vt:

f(t, x, v) = f0(x− vt),

where f0 is the density function at time zero.

When a force F is taken into consideration, the particles no longer travel in

a straight line, and hence f follows a different equation:

∂tf + v · ∇xf + divv(Ff) = 0, (1.2)

which is called the linear Vlasov equation. Two classical examples are the Vlasov-

Poisson and Vlasov-Maxwell system. The Vlasov-Maxwell system characterizes

charged particles in an electromagnetic field, and the Vlasov-Poisson system de-

scribes particles under the gravitational force. Both systems are modeled by (1.2),

where F is coupled with the Poisson equations for the Vlasov-Poisson system, and

with the Maxwell equations in the Vlasov-Maxwell system.

Both (1.1) and (1.2) do not consider the collisions between particles. The

presence of collision can be modeled by adding the Boltzmann’s quadratic collision

operator Q(f, f), and the density function f in this case satisfies the Boltzmann

equation:

∂tf + v · ∇xf + divv(Ff) = Q(f, f). (1.3)

Informally speaking, Q(f, f) = ∂f
∂t
|collision represents the ”rate of particle num-

ber change” within a volume element. For detailed discussion for the Boltzmann

collision operator, we refer to [103].
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The proof of existence of weak solutions for the Vlasov-Poisson system is

provided in [8], and the Vlasov-Maxwell system in [38]. A classical approach to

obtain the weak solution of a nonlinear system is to first consider a modified

problem, and then pass to the limit with a uniform a priori estimate. For instance,

the elliptic regularity of the Poisson equation could be utilized to derive a priori

estimate for the Vlasov-Poisson system. As for the Maxwell equation, one would

need to use another method called the velocity averaging. Roughly speaking, an

averaging lemma states that the macroscopic quantity, which is expressed as a

velocity average of f , is smoother than f itself. This gain of regularity provides

compactness for such averages and hence help obtain weak solutions.

The existence of global solutions for (1.3) has been proven in [39]. One of

the obstacles one encounters in the Boltzmann equation is the lack of a priori

estimate, and the condition on f is too weak to even apply averaging lemmas. To

overcome this issue, a renormalization formulation was introduced in [39]. After

renormalization, velocity averaging can be applied and an approximation argument

is then used to reach the desired compactness.

The Boltzmann equation can be regarded as a stepping stone between the

molecule dynamics to a continuum description. The idea that the Boltzmann

equation can be considered as a consequence of Newton’s laws was first proposed

in [58], and the derivation of the incompressible Navier-Stokes equations from the

Boltzmann equation has been proved in [54], where an averaging lemma in L1 was

shown and played a critical part in their main proof.
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We have presented several important works that utilize averaging lemmas to

prove the existence of solutions. For modern kinetic theory, averaging lemmas has

become an indispensable method for studying transport equations. This shall be

the focus for the rest of our discussion.

1.2.2 Averaging lemmas of kinetic transport equations

Consider the kinetic equations of the following form:

ε∂tf + a(v) · ∇xf = (−∆v)
α/2g, (1.4)

where ε > 0, α ≥ 0, a : Rn
v → Rn and g : Rt × Rn

v × Rn
x → R are given functions.

While one often considers a(v) = v for classical kinetic models, the needs for

nonlinear a(v) appear naturally from the kinetic formulation of scalar conservation

law, as well as the kinetic models for the relativistic and quantum settings [42,52].

Because the kinetic transport equations are of hyperbolic type, the solutions

in general cannot be more regular than its initial conditions. Even so, it has been

discovered that the velocity averages of the solution f of (1.4)

ρφ(t, x) :=

∫
f(t, x, v)φ(v) dv, φ ∈ L∞c (1.5)

gain regularities in space variable, where L∞c is the space containing all the bounded

and compactly supported functions. This type of results are called the averaging

lemmas.

Classical averaging lemmas consider the case when f and g in (1.4) are both
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in one same Lp space. The L2 setting was first considered and introduced inde-

pendently in [2] and [51].

The derivation for the L2 case usually involves the techniques in Fourier

analysis. Consider the Fourier transform of the transport operator in x:

Fx→ξ (a(v) · ∇x) =

(
a(v) · ξ

|ξ|

)
· |ξ|.

Informally speaking, the transport operator ”possesses” a regularity of order 1

inside any good region
{
v :
(
a(v) · ξ|ξ|

)
> α

}
for any fixed ξ and α > 0. The hope

to rigorously prove a gain of regularity is to somehow control the singular part{
v :
(
a(v) · ξ|ξ|

)
≤ α

}
, which leads to the need of conditions on a(v). In fact, if

there exists one direction σ ∈ Sd−1 such that a(v) · σ = 0 for all v, no additional

regularity can be gained from the velocity averaging. For example when g = 0,

consider f = φ(x · σ) for some smooth φ.

To exclude this type of counterexamples, a condition on the measure of the

singular part for all directions is needed. A classical assumption used by previous

literature is defined as follows: There exists a constant c0 such that

Ln ({v ∈ D : |a(v) · σ| ≤ α/2}) ≤ c0 α
ν , (1.6)

for all compact set D ⊂ Rn and σ ∈ Sm−1, where Ln is the Lebesgue measure

in Rn. (1.6) is called the non-degeneracy condition for time-independent kinetic

equations. The time-dependent case can be discussed similarly by considering the

variable (t, x) and the coefficient (1, a(v)). With change of variables, (1.6) can be
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rewritten as

Ln ({v ∈ D : |a(v) · σ − τ | ≤ α/2}) ≤ c0 α
ν , (1.7)

where τ ∈ R. With (1.6) or (1.7), the averaging lemma in L2 case can be concluded

by decomposition in Fourier space and careful estimations on the singular parts.

The general Lp results, 1 < p < ∞, are more delicate and one needs other

techniques from harmonic analysis and interpolation arguments to reach a Lp result

when p 6= 2 [18, 40]. The optimal Besov results has also been proved in [35] by

using wavelet decomposition.

One difficulty one could encounter when proving Lp results with interpola-

tions is that the limiting L1 case in general is not true. A counterexample has been

given in [51]. A classical way to bypass this issue is to replace the L1 space by a

Hardy space of product spaces [18,40].

Although the gain of regularity in L1 case does not hold, the compactness in

L1 can still be proved with an equi-integrability assumption just in v variable [56].

More recent developments study the averaging lemmas with f and g in dif-

ferent spaces. For instance, the case that f and g in the same Besov space in x but

admits different integrability in v was investigated in [105]. Later general mixed

norms assumptions were considered in [67,68]. Their work inspired [10] to consider

the case when f and g have less integrability in x than v.

In a joint work with P.-E. Jabin and E. Tadmor, we introduce a commutator

method to prove a new type of averaging lemmas when f and g are in general Lp

spaces. The goal of the next subsection is to briefly introduce this work.
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1.2.3 Commutator method for averaging lemmas

The goal of our work is to introduce a commutator method as a novel approach

to averaging lemmas for (1.4). Commutator methods have been used for example

in the studies for equations of Schrödinger type, where the commutator appear

naturally from the Hamilton vector field; See for instance [30,41,72,97].

One simple special case of our main result (Theorem 2) when a(v) = v and

α = 0 can be stated as follows: For any ε ≤ 1, if f ∈ L∞ ([0, T ], Lploc(Rn
x × Rn

v ))

solves

∂tf + v · ∇xf = g, (1.8)

for some g ∈ L1 ([0, T ], Lqloc(Rn
x × Rn

v )), where 1 < p, q < ∞ and 1
p

+ 1
q

= 1. Then

for all φ ∈ L∞c , ρφ ∈ L2

(
[0, T ], H

1
2(1+α)

loc

)
.

Roughly speaking, our proof involves extracting the dispersion of transport

operator by integrating along the characteristics in Fourier space. The dispersion is

then transformed into a gain of regularity through the commutator of the transport

operator and a deliberately selected multiplier operator. The basic structure of our

argument can be formulated in the following:

Denote the free transport operator v·∇x byB. Then for any time-independent

operator Q, one has

ε∂t

∫
f Qf dx dv =

∫
[B,Q] ff̄ dx dv +

∫
g Qf dx dv +

∫
f Qg dx dv, (1.9)

where f solves (1.8). After integrating (1.9) over t, a bound for the commutator

8



term reads

Re

∫ T

0

[B,Q] ff̄ dx dv dt ≤ sup
t=0,T

∣∣∣∣∫ f Qf dx dv

∣∣∣∣+

∣∣∣∣∫ g Qf dx dv dt

∣∣∣∣
+

∣∣∣∣∫ f Qg dx dv dt

∣∣∣∣ .
(1.10)

The idea is to find an operator Q which is bounded in some Lp spaces such that

the commutator [B,Q] is positive-definite and possesses extra regularity. If such

an operator Q is found, (1.10) implies the gain of regularity of f .

In our work, the selected Q is a multipler operator, which is inspired by the

multiplier method introduced in [76]. This multiplier method was used to prove

moment lemmas for kinetic equations [91] and the local smoothing properties for

dispersive equations through the Wigner transform [50].

The connection between moment lemmas and our result can be perceived

through the Fourier transform in (x, v). Let (ξ, ζ) be the frequency dual of (x, v).

Note that the Fourier transform of transport operator v · ∇x is again a transport

operator ξ · ∇ζ but in the frequency space. The moment lemma for ξ · ∇ζ in

frequency space then leads to a gain of regularity for v · ∇x in physical space.

When the special case above is extended to the general a(v) and α > 0,

difficult technical issues emerge for our argument. Our proof overcomes these

issues by using a change of variables and a regularization process, which has a

connection with the renormalization introduced in [37].

Our method not only provides a new type of regularity results, but also has

some nice features that could be beneficial for certain applications. One impor-

tant feature that distinguishes our results from others in the literature is that the
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integrability of f and g can be of assistance to each other. Due to this feature,

our method leads to exciting, novel results, especially when p ≥ 2 and 1
p

+ 1
q

= 1.

Moreover, this type of duality condition fits nicely with the kinetic formulation of

scalar conservation law. This will be an example of applications of our main result.

Another advantage of our result is the ε independence in (1.4). This could

have applications to the compactness of solutions for rescaled kinetic equations,

which frequently appear in the discussions of hydrodynamic limits. Moreover, un-

like the classical approach, our argument does not perform the Fourier transform in

the time variable, and hence possible extensions for time discretized kinetic equa-

tions or stochastic cases may be considered. For the existed works for averaging

lemmas of time discretized kinetic equations, see for example [19] and [79, 80] for

stochastic kinetic equations.

1.3 Mixing behaviors

1.3.1 Mixing from the analysis point of view

Mixing has attracted abundant research interests in various mathematical

fields, such as dynamical systems, probability, and PDEs. Here our focus is on the

mixing behavior of PDE solutions. The mixing in the ergodic sense is defined as

following:

Let (X,A, µ) be a normalized measure space, and S : X → X be a measure-

10



preserving transformation. Then St is mixing if

lim
t→∞

∫
X

ψ(St(x))φ(x) dµ =

∫
X

ψ(x) dµ

∫
X

φ(x) dµ, (1.11)

for any ψ, φ ∈ L2(X, dµ).

The transformation St of our interests solves a particular PDE. There is a

huge amount of work in this field, and we only point out some of them here for

this brief introduction. The equations considered are for instance the transport

equation of a divergence free vector field [5, 75], the transport equation with a

diffusion term [29], or the stochastic 2-dimensional Navier-Stokes equation [24].

Beside in fluid dynamics, mixing also plays an important role in kinetic models,

especially for plasma physics. One famous example is the phase mixing for the

linearized Vlasov equations, which is the cause of Landau damping. This is another

vital research area with a lot of existing works. We refer to for example [15], [86],

[104] and the references therein.

Our focus for this second part of dissertation is on the passive scalar mixing

for the incompressible flows on the n-dimensional torus Tn = [−π, π]n. We refer

to for instance [5], [75] and [81] for existing works for passive scalar mixing. The

invariant measure µ in this case is the normalized Lebesgue measure on Tn, and

the measure-preserving transformation St is the solution of the transport equation

with divergence free vector fields:
∂tf + a(x) · ∇xf = 0,

f(x, t = 0) = f0,

(1.12)
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where ∇x · a(x) = 0 and f0 ∈ L2(Tn). Let

θ(x, t) := f(x, t)−
∫
Tn
f0(x, t) dx. (1.13)

Then the mixing (1.11) in our case becomes

lim
t→∞

∫
Tn
φ(x)θ(x, t) dx = 0, (1.14)

for all φ(x) ∈ L2(Tn) and f0 ∈ L2(Tn).

A lot of interests coming from analysis and applications prompt the search

of a way to quantify the degree of mixing. The negative Sobolev norm H−1/2 was

proposed in [84]. This is later proved in [75] that

‖θ‖H−s → 0 as t→ 0 (1.15)

is equivalent to (1.14) for all s > 0. Beside negative Sobolev norms, another mixing

scale was introduced in [23], related to rearrangements of sets. This mixing scale

brings the perspective of geometric measure theory to the mixing problems and

thus is frequently called the geometric mixing scale. The two mixing scales are not

equivalent, but still closely related [108].

Recent progress has been made in the study of the decay rate of these two mix

scales under energy constraints on the vector field. It has been shown that both

mixing scales can decay at most exponentially [31,64,95]. The mixing phenomenon

with an exponential decay rate is often referred to optimal mixing. An explicit

example was constructed and analyzed in both mixing scales [4, 5]. For further

discussions concerning the optimal mixing, see for instance [75, 81] for H−s norm,

and [31,74] for the geometric mixing scale.
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1.3.2 Hamiltonian structure for unmixing of flows

A divergence-free vector field a = (a1, a2) ∈ L2(T2) on a two-dimensional

torus is a local Hamiltonian system. Informally, this means that there exists a

function ψ ∈ H1(T2) such that the following Hamilton’s equations hold locally :

a = ∇⊥ψ := (∂2ψ,−∂1ψ). (1.16)

In our discussion, the (Hamiltonian) function ψ would be called a stream

function for a, which is commonly used in the analysis for incompressible flows.

Due to the Hamiltonian structure (1.16), ψ is constant on each character-

istic of the corresponding vector field a. As it is assumed here that ψ is time-

independent, this statement can be reworded as follows: the characteristics are

retained in the level sets of ψ. The physical interpretation of this statement in the

fluid mixing scenario is that quantities can never leave the level set that they orig-

inally start with. This phenomenon suggests the fluid interaction near the local

maximum and minimum of ψ is lacked and thus the system is unmixing.

In a joint work with P.-E. Jabin, it was shown that this phenomenon is pre-

served under a sup-norm perturbation on the stream functions. With this pertur-

bation result, a probabilistic setting is considered in order to give a quantitative

statement regarding how many vector fields are unmixing. We take a classical

approach and consider the vector field a in the form of a random Fourier series,

a = (a1, a2) = (γ1
0 , γ

2
0) +

∑
k∈Z2\{0}

k⊥
iγk

(1 + |k|)θ
eik·x, (1.17)

13



where for all k ∈ Z \ {0}, k⊥ · k = 0, and γ1
0 , γ

2
0 , {γk}k are random variables.

Deriving from the perturbation in L∞ norm, one can show that the prob-

ability of unmixing is positive under a proper condition on the distributions of

the Fourier coefficients. This condition is important to guarantee there is a non-

negligible contribution from different frequencies to our system. This effect makes

the positive probability of unmixing possible.

1.4 Modeling of transport phenomena

1.4.1 Dynamic modeling for complex systems

A dynamic mathematical model for a complex system normally consists of a

set of equations, describing the evolution or properties of each relevant component.

Frequently, the system of equations coupled with each other because of the inter-

action between components. The coupled equations can be seen as an accurate

and quantitative description for the dynamic behavior of a physical system.

Here we are in particular interested in the coupled systems with a trans-

port character, such as the models consisting of continuity equations or advection-

diffusion equations.

The classical advection-diffusion equation is written as follows:

∂tf + divx (v(t, x) f − σ(x, v, f)∇xf) = 0, (1.18)

where f is a density function, x the physical position, and v a velocity field. An

effect of diffusion is included in this equation with a strength σ(x, v, f).
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It is well known that (1.18) is inherently related to the stochastic differential

equation:

dX = v dt+ σ dW, (1.19)

where X represents the position, v the velocity, and W is the Brownian motion.

(1.19) can be regarded as the microscopic description of the advection-diffusion

equation.

The velocity field v is often determined by another equation coupled with

the transport equation describing the system. For instance, v solves the Poisson

equation for the model of chemotaxis in [25], or the eikonal equation in the Hughes

model for pedestrians [49,62].

The use of advection-diffusion equation can be seen in the models for swarm-

ing [101] and homing behavior of animals [85]. It has been demonstrated that ran-

dom search combined with a directed motion can provide a reasonable explanation

for some observed animal homing and migration phenomena [87]. The advection-

diffusion equation has been well-developed as one of the important mathematical

techniques for the research on animal movement.

In a joint work with W. F. Fagan and P.-E. Jabin, a dynamical model for the

movement of one individual is constructed using (1.19) coupled with the eikonal

equation. The goal of this model is to investigate the memory effects on animal

migrations. Before the overview of our work, a short discussion of the models for

spatial memory and animal movements shall be presented in the following section.
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1.4.2 Models for spatial memory in animal movements

Using statistical inference, several works have shown the important role of

spatial memory in animal migrations [1, 22, 45]. However, since the dynamic in-

teraction between memory and movement cannot be observed directly, it is often

challenging to utilize statistical inference to investigate the underlying memory

mechanism for animal migration. For a broader discussion concerning the spatial

memory and movement from the biological prospective, we refer to an excellent

review paper [43].

This short presentation is restricted to the models for animal movement with

explicit description for the mechanism between the spatial memory and movement.

One possible way to describe such mechanism consists of two steps. First, assign

a desirability value to geographical region based on the animal’s memory and per-

ception. Second, provide an interface that outputs the animal’s movement decision

based on this desirability landscape. Our novel approach consists in introducing,

for the first time, an interface that incorporates memory effect and is compatible

with (1.18) or (1.19).

For the first step, it is not uncommon for the models of animal movement to

consider multiple covariates when determining the desirability due to the system’s

high complexity. Frequently, each different source of information is simplified to

a certain function. To comprehend all relevant information, one could consider a

sum of these functions multiplying with weight functions. This type of combined
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model can be found in several literature and different forms of weight functions

are available; See for instance the step selection functions introduced in [48] and

the resources selection functions in [94].

In our interests of memory effect, the spatial memory and perception of the

animal are included in the combined model. This combined model can then be

considered as the desirability landscape of the environment.

Under the framework of advection-diffusion equation, the interface in the

second step can be clarified by specifying how the velocity field v in (1.18) or (1.19)

is determined based on the desirability landscape. Classically, the advection term

in a biological system is often caused by some attraction in the environment, such

as food or shelters. From this point of view, one simple model for the velocity v can

be the vector that starts from the present position and points to the best location

in the desirability landscape. However, this naive selection does not consider how

far the best location is and the resulting movement may not be reasonable.

One way to improve the above simple model is to use the eikonal equation,

which is written as follows:

|∇xψ| = Φ, (1.20)

where Φ is a smooth, positive function, often called the potential of the eikonal

equation. The eikonal equation can be traced back to Fermat’s principle in optics,

solving for the shortest time path of light in medium.

In our work, the velocity v is modeled by ∇xψ, which solves (1.20) with Φ

depending on the animal’s memory and perception. The solution of this eikonal
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equation can be regarded as a comprehensive movement decision based on memory,

perception, as well as the cost of traveling.

The use of eikonal equation is inspired by the Hughes model for pedestrians

[62]. In the Hughes model, the potential of eikonal equation depends on pedestrian

density. This is one way to model the phenomenon that the pedestrians normally

avoid crowded regions.

1.4.3 Application: Memory effect on migration under periodic en-

vironments

A brief overview for a joint work with W. F. Fagan and P.-E. Jabin shall be

given in this subsection. The goal of this work is to obtain a better understanding

of the effect that memory has on the animals’ migration patterns.

There exist works investigating the animal movement affected by memory

and changing landscapes [17, 44], but the underlying memory mechanism remain

unclear. This motivates us to construct a memory-driven dynamical model, which

describes an individual making travel decisions to optimize its fitness, based on its

perception and memory toward the environment.

The components of our model includes the position X(t), fitness P (t), and

environment E(t, x) of the individual. The value of E(t, x) indicates the condition

of environment at time t and location x. The larger the value is, the more resources

(or less predators) are available for the individual. Precisely, the dynamics is
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modeled by the following equation

dX = σdWt + (P − P (t))e−E(t,X(t))∇xψ(t,X(t))dt,

where σ > 0 is a small fixed parameter and Wt is a Brownian motion. P̄ > 0 is

the optimal fitness that an animal can have, and ψ solves the eikonal equation:

|∇xψ(t, x)| = exp(−H(t, x)), where H is a function depending on memory and

perception. H shall be defined after memory models are specified. Once the model

is complete, numerical experiments can be performed to visualize the memory

mechanism.

In general, seasonal changes are considered an important factor in animal

migration. It is therefore reasonable to include the periodicity in the environment

of experiment. Our models are tested under a simple time-periodic environment,

which is defined as follows:

Experiment setting: a simple periodic environment. It is assumed that

there are two potential habitats, modeled by two disjoint circular regions A and

B; See Figure 1.1. The location with positive value of E (good area) is alternating

between A and B with duration T = 1. E is assumed uniformly negative (poor

area) outside the single good region.

A B

Figure 1.1: Time-periodic Setting: The good region is alternating between A and

B with duration T = 1.
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In our interests of memory effect, it is also assumed that the two habitats

are far enough from each other so that the individual cannot see both A and B in

the same time. Mathematically, it is assumed that

d(A,B) > sup {|x− y| : x, y ∈ supp(K)} , (1.21)

where K is the perception kernel.

As biological memory is complicated and not fully understood, a practical

mathematical model for memory often needs to be simplified but still capture

some essential features. By observing the simulation results for different memory

models, the critical features of a memory system for periodic migration can be

discovered. In the spirit of finding an appropriate approximation of memory models

for periodic migration, our construction of memory model started simple, and the

model complexity was then increased and adjusted until the expected periodic

migration pattern was recovered in the simulations.

Two memory models I and II were constructed. The key assumption for our

memory models is that the memory fades and is updated over time. The decay

and update rates are assumed to be of the same order, which is called the time

scale. The memory model I has only one time scale. From the experiment results,

a memory system with only one time scale cannot produce a consistent periodic

migration. For this reason, the memory model II was introduced with two time

scales, which can be considered as the long-term and short-term memory. With

proper choices of the two time scales, the desired periodic migration pattern can
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be recovered. The example of simulations for each case shall be presented after

the memory models are specified:

Memory model I: Single memory channel and perception. The memory is

modeled by M(t, x), representing how the individual remember the environment

condition at time t and location x. To introduce the perception to our model, a

perceptual kernel K(x, y) = k(|x− y|) is defined, where k is a positive function on

R, decreasing to zero within a finite distance, and with maximum 1. The evolution

of M(t, x) follows the equation:

∂tM(t, x) = −d · sgn(M(t, x))
√
|M(t, x)|+ u ·K(X(t), x)(E(t, x)−M(t, x)),

with d > 0 denoted as the decay rate, and u > 0 as the update rate.

With the memory model I, H is defined by

H(t, x) = K(X(t), x) · E(t, x) + (1−K(X(t), x)) ·M(t, x). (1.22)

(1.22) indicates that the individual evaluates its environment by observation when

a location is within its perception range, but when a location is too far to be seen,

it evaluates it by its memory.

Memory model II: Long-term and short-term memory. Memory model II

contains the long-term memory M`(t, x) and short-term memory Ms(t, x). Both

M` and Ms satisfy the same assumptions in memory model I, but Ms(t, x) has

smaller decay and update rates. Here H is defined by:

H(t, x) = Ms +M`. (1.23)
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With (1.23), the individual decides a direction based more on its local environment

when it is in an extreme condition. Otherwise, it tends to favor more on the long-

term memory. The following experiment shows a successful result.

Experimental results. The dynamics generated with the memory model I is

presented by the left picture in Figure 1.2. The resulting trajectory shows that the

periodic migration breaks at a certain point. This is because the value of M was

updated negative in A and B and the individual would rather exploring the other

places that have not been visited before.

On the other hand, the memory model II successfully produced the desired

migration patterns; See the right picture in Figure 1.2. Observe that the individual

leaves an exhausted region after a bit of explorations because of Ms, and return to

A or B based on M`.
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Figure 1.2: The left picture is the numerical experiment result for Memory Model

I, and right picture for II. The blue dash line represents the trajectory and the red

dot is the location of the animal at the end of the experiment.
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Conclusion. Through simulations, it is discovered that in order to have periodic

movement, the individual must be able to gather and carry sufficient information

from both short-term memory and long-term memory, and possess the ability to

discriminate which information is more important with appropriate time scales. A

discussion regarding the time scales of long and short-term memory is also provided

in Section 4.4.2.

Our model is general and can be utilized to test the memory effect for differ-

ent circumstances. Some interesting examples are briefly summarized below, (for

precise experiment settings see Section 4.5.):

1. A periodic migration pattern of three habitats can also be recovered

if the time scales of memory are appropriate regarding the given time-periodic

environment.

2. The phenomena of memory disruption can be observed by testing our

model under an environment with changing habitats.

3. The phenomenon of a periodic migration route altered by newly discovered

habitats can be observed in an environment set up with two major habitats and

two nearby intermediate habitats.

4. The critical role of environmental persistence for periodic memory-based

migration can be indicated by simulations with random seasonal changes.
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Chapter 2: Commutator method for averaging lemmas

2.1 Introduction

2.1.1 Brief overview for averaging lemmas

Our goal of this paper is to introduce the commutator method for kinetic

transport equations:

ε∂tf + a(v) · ∇xf = (−∆v)
α/2g, (2.1)

where ε > 0, α ≥ 0, a : Rn
v → Rn and g : Rt × Rn

v × Rn
x → R are given func-

tions. ε is the macroscopic scale normally introduced when a hydrodynamics limit

is considered. The nonlinear coefficients a(v) in this setting appears in kinetic for-

mulation of scalar conservation law, and also in kinetic models under relativistic

and quantum setting [42], [52].

We shall utilize this method as a new approach to derive averaging lemmas,

which state that by taking average in microscopic v variable, the velocity average

of f

ρφ(t, x) :=

∫
f(t, x, v)φ(v) dv, φ ∈ L∞c ,

has better regularity than f and g in x variable, where L∞c is the space containing

all the bounded and compactly supported functions. There is a vast literature of

averaging lemmas, and here we only mention few of them that are relatively closer
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to our discussion. This type of results is famous for getting compactness for the

Vlasov-Maxwell system [38], renormalized solutions [39] and hydrodynamic limits

for the Boltzmann equation [53], and the convergence of the renormalized solutions

to the semiconductor Boltzmann-Poisson system [83]. It also contributes to the

regularizing effect of solutions wherever the kinetic formulations exist, such as the

isentropic gas dynamics [78], Ginzburg-Landau model [65], and scalar conservation

laws [77].

Classical averaging lemmas were first introduced independently in [2] and [51]

under L2 setting. The derivation in [51] involves decomposition in Fourier space

according to the order of a(v) · ξ, and controlling the singular part |a(v) · ξ| < c

with the non-degeneracy condition. Combining with interpolation arguments, it

was later extended to general Lp, 1 < p < ∞ by [18] and [40]. It was followed

by the optimal Besov results proved in [35] by using wavelet decomposition. The

regularity for the Lp case is further improved in the one-dimensional case, pre-

cisely from 1
p

to 1 − 1
p

when p > 2 by [11], with dispersive property and dyadic

decomposition.

Averaging lemmas under different conditions on f and g were further dis-

cussed. For instance, in [105] the author considered f and g in the same Besov

space in x but can have different integrability in v. The results for general mixed

norms assumptions were obtained in [67] [68]. Their work inspired [10] to consider

the case when f and g have less integrability in x than v. Except for the explo-

rations in the direction of general conditions, averaging results for a larger class
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of operators in the form of a(v) · ∇x − ∇⊥x · b(v)∇x were acquired by [99]. They

presented several applications for their results and especially, they improved the

regularity of solutions for scalar conservation laws.

The limiting L1 case for classical averaging lemmas in general is not true,

and a counterexample was given in [51]. However, L1 compactness can be proved

with equi-integrability in only v variable [56], and was extended to more general

transport equations in [9] and [59].

2.1.2 Commutator method with multiplier technique

In this work we use commutator method with multipliers to transform the

dispersion of transport operator in Fourier space into gain of regularity in x vari-

able. Let us introduce the commutator method in a general setting, and narrow

down to our case shortly. Assume

ε∂tf +Bf = g,

where B is a skew-adjoint operator, ε ≤ 1 and g are given. For a time-independent

operator Q, we consider

ε∂t

∫
f Qf dx dv =

∫
[B,Q] ff̄ dx dv +

∫
g Qf dx dv +

∫
f Qg dx dv

And by fundamental theorem of calculus we have

Re

∫ T

0

[B,Q] ff̄ dx dv dt ≤ sup
t=0,T

∣∣∣∣∫ f Qf dx dv

∣∣∣∣+

∣∣∣∣∫ g Qf dx dv dt

∣∣∣∣
+

∣∣∣∣∫ f Qg dx dv dt

∣∣∣∣ .
(2.2)
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The idea is to find Q, bounded in some Lp spaces, such that the commutator of B

and Q, [B,Q], is positive-definite and gain extra derivatives. Hence by applying

these conditions on (2.2) we get a desired bound on f .

This method was used for example by taking B to be of Schrödinger type,

where the commutator appear naturally from the Hamilton vector field. Roughly

speaking it involves constructing a proper symbol, which corresponds to Q, such

that the Poisson bracket implies a spacetime bound on f by G̊arding’s inequality.

See for example [30], [41], [72] and [97].

In this paper we fix B to be the kinetic transport operator,

ε∂tf + a(v) · ∇xf = g, (2.3)

and Q is a bounded multiplier operator. That is, we consider

Fξ,ζ(Qf) := m(ξ, ζ)Fξ,ζ(f),

where m is bounded. So there is a tempered distribution K(x, v) such that Qf =

K ?x,v f with Fξ,ζ(K) = m. In this case the commutator becomes∫
[a(v) · ∇x, K?x,v]ff̄ dx dv

=

∫
(a(v)− a(w)) · ∇xK(x− y, v − w)f(y, w) dy dwf(x, v) dx dv.

When a(v) = v, it is simply the quadratic form with the multiplier ξ · ∇ζm. We

shall take an advantage of this simple formula and show that the velocity average

of f would gain regularity 1/2 in x when a(v) = v, and g is not singular.

27



The multiplier we select for this purpose is

m0(ξ, ζ) =
ξ

|ξ|
· ζ

(1 + |ζ|2)1/2
,

and the corresponding kernel

K0 = R · ∇vG
n
1 ,

where R is the Riesz potential and Gn
1 is the Bessel potential of order 1 in dimension

n. With this choice by Plancherel identity,∫
[v · ∇x, K0?x,v]ff̄ dx dv dt =

∫
ξ · ∇ζm0|f̂ |2 dξ dζ dt

=

∫ ∫  1

(1 + |ζ|2)1/2
−

∣∣∣ ξ|ξ| · ζ∣∣∣2
(1 + |ζ|2)3/2

 |ξ‖f̂ |2 dζ dξ dt
≥
∫ ∫

|ξ|
(1 + |ζ|2)3/2

|f̂ |2 dζ dξ dt = ‖f‖2
L2([0,T ],H1/2(Rnx ,H−3/2(Rnv )).

From classical Fourier theory (see for example [98]), K0 is bounded on Lp

spaces for all 1 < p <∞. With this the right hand side of (2.2) is bounded as long

as f is in L∞ ([0, T ], L2(Rn
x × Rn

v )) and the dual space of g. For convenience, let

us denote the conjugate index of p by p′, that is, 1
p

+ 1
p′

= 1. From the discussion

above, we have shown:

Theorem 1. Let ε ≤ 1. If f ∈ L∞ ([0, T ], (L2 ∩ Lp)(Rn
x × Rn

v )) solves (2.3) with

a(v) = v for some g ∈ L1
(
[0, T ], Lp

′
(Rn

x × Rn
v )
)
, where 1 < p < ∞, then for all

φ ∈ H3/2(Rn
v ), ρφ ∈ L2

(
[0, T ], H1/2(Rn

x)
)
, and

‖f‖2

L2
tH

1/2
x H

−3/2
v
≤ C

(
‖f‖2

L∞t L
p
x,v

+ ‖g‖2

L1
tL

p′
x,v

)
,

where C is independent of ε.
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Remark 1. By Wigner transform, this result with p = 2 connects to the local

smoothing effect for Schrödinger equation.

Remark 2. The exchange of regularity between x and v variables is visible through

the calculation of commutator, which shares its similarity with the hypoellipticity

phenomenon. Very roughly speaking, it is a phenomenon that the degenerate di-

rections can be recovered by commutators, which was developed systematically by

Hörmander [61] for Fokker-Planck type of operators. For the hypoellipticity of

kinetic transport equations we refer to [21].

The difference here is that we added a homogeneous zero multiplier m0 as a

buffer, which takes on the impact from the transport operator. So the request for

extra regularity in v goes to the test function φ, unlike the results in [21], which

asked for extra regularity in v for f .

Notice here the requirement of test functions can be adapted to the L∞c , same

as classical averaging results. This is because the product fφ with φ ∈ L∞c (Rn
v )

still satisfies the kinetic transport equation, and the same procedure would give

fφ ∈ L2
(

[0, T ], H1/2(Rn
x, H

−3/2
v (Rn

v ))
)
. Now because of the compact support of

the integration, we can take a smooth function identically one inside the integral

domain. Our main results will require the test functions to be in L∞c , and this

argument can be found later in the proof of Theorem 2 in Section 2.4.

Our setting is reminiscent of the multiplier method in [50]. It was used to

prove moment and trace lemmas for kinetic equations. For them, the dispersive
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nature of solutions was acquired by integrating along characteristics in physical

space, while here we utilize the technique in frequency domain and so it results in

gain of regularity.

For the rest of this paper we are going to extend this method to the gen-

eral transport equation (2.1) with the variable coefficient a(v) and a singular

source term (−∆v)
α/2g, which introduce difficult technical issues. The commu-

tator method pairing with m0 will be the main mechanism for our proofs. The

advantage of this approach is that the integrability of f and g can be of assistance

to each other. This is the feature that distinguishes our results from others in

the literature, and provides averaging results for a new type of mixed integrability

assumptions, which fits nicely for the conditions that the kinetic formulation of

scalar conservation law naturally attain.

This paper is organized as follows. We shall present our main theorems in

Section 2.2, and an example of application to scalar conservation laws in Section

2.3. Finally proofs of theorems are in Section 2.4.

2.2 Main results

2.2.1 Our main velocity averaging result

We present averaging lemmas for (2.1) derived by the commutator method.

To have dispersion in Fourier space for the kinetic transport operator a(v) · ∇x,

one need conditions on the variable coefficients a(v). Indeed, there is no gain of
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regularity if a is only constant for example.

In this section, we assume a(v) ∈ Lip(Rn) with conditions:

a(v) one-to-one, and Ja−1 ∈ Lγ, (2.4)

where Ja−1 = det(Da−1). The assumptions quantify the nonlinearity of a(v) with

index γ, and allow us to control the integrability of functions after the change of

variables v 7→ w = a(v).

Our proof involves regularization of equation (2.1) through various embed-

dings. The interaction between embedding and the singular term (−∆v)
α/2g will

affect the resulting gain of regularity, and this introduce several exponents and

indices in the formulas which we collect below,

d1 = max

{
n

(
1

p2

+
1

q2

− `
)
, 0

}
, d2 = max

{
n

(
2

p2

− `
)
, 0

}
, ` =

γ − 2

γ − 1
,

(2.5)

d3 = max

{
n

(
1

p1

+
1

q1

− 1

)
, 0

}
, d4 = max

{
n

(
2

p1

− 1

)
, 0

}
. (2.6)

Our result is as follows,

Theorem 2. Given α ≥ 0, T > 0 and 0 < ε ≤ 1. Let a ∈ Lip(Rn) satisfy

(2.4) with γ ≥ 2. Let f ∈ L∞([0, T ], Lp1(Rn
x, L

p2(Rn
v ))) solve (2.1) for some

g ∈ L1([0, T ], Lq1(Rn
x, L

q2(Rn
v ))), with p1, p2, q1, q2 ∈ [1,∞]. Then for any ball

BR(x0) ⊂ Rn
x and φ ∈ C∞c (Rn

v ), one has that ρφ(t, x) ∈ L2([0, T ], Hs(BR(x0))) for

all s < S, with

‖ρφ‖2
L2([0,T ],Hs

x(BR(x0))) ≤ C
(
‖f‖2

L∞([0,T ],Lp1 (Rnx ,Lp2 (Rnv ))) + ‖g‖2
L1([0,T ],Lq1 (Rnx ,Lq2 (Rnv )))

)
,
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where S = 1
2
{(1− d2)θ − d4} with θ =

[
min

{
1−(d3−d4)

α+1+(d1−d2)
, 1
}]

, where di are de-

fined in (2.5) and (2.6) for i = 1, 2, 3, 4 and C only depends on R, p1, q1 and

Lip(a).

Remark 3. The restriction γ ≥ 2 can be relaxed, but with a different formula for

S = 1
2

{[
1− n

(
2
p2

+ 2
γ
− 1
)]
θ̃ − d4

}
when 1 ≤ γ < 2, where θ̃ = min

{
1−(d3−d4)

α+1+n
(

1
q2
− 1
p2

) , 1
}

.

Remark 4. If f ∈ L∞([0, T ], B0
p1,2

(Rn
x, L

p2(Rn
v ))) and g ∈ L1([0, T ], B0

q1,2
(Rn

x, L
q2(Rn

v ))),

the end point s = S can be included when p1, p2, q1, q2 ∈ (1,∞).

Remark 5. Because of the quadratic form in our method, our result always bounds

the velocity average in L2, and the bound has the same weight on the norms of f

and g, independent of p1, p2, q1, q2.

When a(v) = v, one has that γ =∞. In this case, we have a simpler formula

for Theorem 2 when f and g are in the dual space of each other:

Corollary 1. Given α ≥ 0, T > 0 and 0 < ε ≤ 1. If f belongs to the space

L∞ ([0, T ], Lp1(Rn
x, L

p2(Rn
v ))) and solves (2.1) with a(v) = v for some

g ∈ L1
(
[0, T ], Lp

′
1(Rn

x, L
p′2(Rn

v ))
)
, where p1, p2 ∈ [2,∞]. Then for any φ ∈ C∞c (Rn

v ),

ρφ ∈ L2 ([0, T ], Hs(Rn
x)) for all s < 1

2(α+1)
.

Here we conclude with some relations between our result and previous liter-

ature.

• First of all, let us point out that our velocity averaging result is independent

of small ε. This could have applications to the compactness of solutions
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for rescaled kinetic equations, which frequently appear in the discussions of

hydrodynamic limits. For more in this direction we refer to for example [57]

and [93].

Moreover, since our argument doesn’t perform a Fourier transform in time

variable, this method has possible extensions for time discretized kinetic

equations or stochastic cases.

As there is already a huge literature on averaging lemmas, and under some

situations the results were proven optimal, we would like to give the readers an

idea on when our method becomes effective, and what are the potential advantages

our result could provide.

For the rest of this subsection, we will compare the regularity in x of our

result, with the theorems in [11], [40] and [105]. Because our resulting space has

a different integrability from previous results except for the L2 case, our method

may render a more appropriate tool under certain circumstances. We will also

point out the regions where one theorem can imply the other, through embedding

or interpolation. The interpolation is applied between the resulting space of ρφ

and the assumption space of f , because ρφ has the same integrability in x as f .

Notice some theorems we quote here apply to more general conditions in the

original statements, but for simplicity we shall only state the parts that concern

our discussion, and restrict to the special case a(v) = v. We also assume for

convenience that f and g are compactly supported in x and v, and φ ∈ C∞c for
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this entire discussion.

Let us begin with the classical averaging result in [40], where the different

integrabilities for f and g and α > 0 are available.

Theorem 3. [40] If f ∈ Lp(Rt ×Rn
x ×Rn

v ) and g ∈ Lq(Rt ×Rn
x ×Rn

v ), satisfying

(2.1) with a(v) = v, then ρφ ∈ Bs
r,∞(Rt × Rn

x) where s = 1
p̄

(
α + 1

p̄
+ 1

q

)−1

, p̄ =

max {p, p′}, q = min {q, q′}, and 1
r

= s
q

+ 1−s
p

. Moreover, if p = q ∈ (1,∞),

ρφ ∈ Bs
r,t(Rt × Rn

x) where t = max {p, 2} .

Under the assumption of Theorem 3, we start our discussions for the cases

when p = q.

• When p = q = 2, both Theorem 2 and 3 reach the same regularity H
1

2(1+α) .

• When p = q ∈ (1, 2), the result by Theorem 3 implies Theorem 2:

Indeed, Theorem 3 reaches B
1

p′(1+α)
p,2 , while Theorem 2 gives Hs for all s <

S = 1
2(1+α)

[
1− n(2 + α)

(
2
p
− 1
)]
. By embedding theorem for Besov spaces,

B
1

p′(1+α)
p,2 ⊂ H s̃ with s̃ = 1

p′(1+α)
+ n

(
1
2
− 1

p

)
, which is larger or equal to S for

all n ≥ 1 and p < 2.

• When p = q ∈ (2,∞), the result by Theorem 2 has more differentiability but

less integrability than Theorem 3. And when n = 1 and α = 0, Theorem 2

implies Theorem 3:

Theorem 3 reaches B
1

p(1+α)
p,p , while Theorem 2 have H

1
2(1+α) . Our result has

more differentiability but less integrability as p > 2. By embedding H
1

2(1+α) ⊂
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B s̃
p,2, where s̃ = 1

2(1+α)
+ n

(
1
p
− 1

2

)
. And s̃ < 1

p(1+α)
except when n = 1 and

α = 0, where the equality holds.

Because of the quadratic form in our method, one sees the more favorable

type of conditions for our method is when p ≥ 2 and 1
p

+ 1
q

= 1. We therefore

compare Theorem 2 and 3 under this assumption:

• Under the assumption of Theorem 3 with 1
p

+ 1
q

= 1 and p ∈ (2,∞), the result

by Theorem 2 has more differentiability but less integrability in x. Moreover,

Theorem 2 implies Theorem 3 when α = 0 by interpolation, or when 0 ≤ α <

1
n

and 2 < p < 2n
n(1+α)−1

by embedding:

Under these conditions, Theorem 2 results in H
1

2(1+α) (Rn
x), while Theorem

3 reaches B
1

p(1+α)
r,∞ (Rn

x), where 1
r

= 1
p(1+α)

(
1− 2

p

)
+ 1

p
. By the interpolation

between H
1

2(1+α) and Lp, we have W
1

p(1+α)2
,r ⊂ B

1
p(1+α)2

r,r . This shows when

α = 0, Theorem 2 implies Theorem 3.

In the other hand, by embeddingH
1

2(1+α) ⊂ B s̃
r,2, where s̃ = 1

2(1+α)
+n
(

1
r
− 1

2

)
.

Even with the dimension dependence, there are regions that embedding gives

a better regularity than interpolation. For example when n = 1, s̃ ≥ 1
p(1+α)2

when p ≤ 2 + 2
α

. We compare s̃ with the regularity obtained by Theorem 3.

In general for each fixed n, s̃ ≥ 1
p(1+α)

when p ≤ 2n
n(1+α)−1

, which is compatible

with p > 2 only when α < 1
n
. Hence Theorem 2 implies Theorem 3 when

0 ≤ α < 1
n

and 2 < p < 2n
n(1+α)−1

.

We now compare our result with [11] and [105], where mixed norm conditions
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in general dimensions were considered for the stationary transport equation

v · ∇xf = g. (2.7)

We shall take ε = 0, in order to compare our theorem with results for (2.7).

Theorem 4. [105] For 1 < p < n
n−1

, if f ∈ B0
p,q(Rn

x, L
p2(Rn

v )) and g ∈ B0
p,q(Rn

x, L
q2(Rn

v ))

satisfy (2.7), then ρφ ∈ BS
P,q(Rn

x), where S = −n + 1 + 1
p′2

[
1 + 1

q2
− 1

p2

]−1

and

P =
[

1
p
− n−1

n

]−1

.

Theorem 5. [11] When 4
3
≤ p ≤ 2, if f, g ∈ Lp(Rn

x, L
2(Rn

v )) satisfy (2.7), then

ρφ ∈ W s,p(Rn) for all s < S, where S = 1
2

when n = 1, 2, and S = 1
2

(
3− 4

p

)
+

n
4(n−1)

(
4
p
− 2
)

when n ≥ 3.

For the comparison with Theorem 4, we take q = 2 for an easier discussion

with our Hs result. And since Theorem 4 allows general integrabilities in v, let us

consider p2 = q′2 ≥ 2, which is the most favorable condition for our method.

• Under the assumption of Theorem 4 with n = 1, q = 2 and p2 = q′2 ≥ 2.

Both Theorem 2 and 4 reach the same regularity when p = 2. And Theorem

4 implies Theorem 2 when p 6= 2:

Here Theorem 4 reaches B
1/2
p,2 , while Theorem 2 has H1/p′ when p ≤ 2 and

H1/2 when p > 2, as mentioned in Remark 4. When p = 2, the two results

are exactly the same. When p < 2, the spaces B
1/2
p,2 and H1/p′ have the same

scaling, and B
1/2
p,2 ⊂ H1/p′ by embedding. At last for p > 2, H1/2 ⊂ B

1/2
p,2 .
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Notice for n ≥ 2, Theorem 4 no longer applies to p > 2, same as Theorem

5. The restriction p < 2 is not the best situation for our method, but the

comparison is still interesting under these mixed norm conditions.

• Under the assumption of Theorem 4 with n ≥ 2 (which forces 1 < p < 2),

q = 2 and p2 = q′2 ≥ 2, our result implies Theorem 4:

In this case Theorem 4 gets B
3/2−n
P,2 with P =

[
1
p
− n−1

n

]−1

, and our method

reaches H
1
2 [1− 2n

p
+n] as mentioned in Remark 4. Our result has more differ-

entiability but less integrability. Moreover, by the embedding H
1
2 [1− 2n

p
+n] ⊂

B s̃
P,2, where s̃ = 1

2

[
1− 2n

p
+ n
]

+ n
(

1
P
− 1

2

)
= 3

2
− n.

• Under the assumption of Theorem 5, the result by Theorem 2 has more inte-

grability but less differentiability than Theorem 5. Furthermore, Theorem 5

implies Theorem 2 when n = 1 and 2, but the implication does not hold for

n ≥ 3:

Under this assumption, we again have Hs with s < 1
2

[
1− 2n

p
+ n
]
. For both

n = 1 and 2, W
1/2,p
x ⊂ H

1
2 [1− 2n

p
+n]

x by Sobolev embedding. As for n ≥ 3,

W s,p
x ⊂ H s̃

x where s = 1
2

(
3− 4

p

)
+ n

4(n−1)

(
4
p
− 2
)

and s̃ = 1
2

(
3− 4

p

)
+

n
4(n−1)

(
4
p
− 2
)

+ n
(

1
2
− 1

p

)
. Notice s̃ < 1

2

[
1− 2n

p
+ n
]

for all p < 2 and

n ≥ 3, so Theorem 5 cannot imply Theorem 2 in this case.
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2.2.2 On the non-degeneracy conditions

The assumption (2.4) we imposed for Theorem 2 is different from the classical

conditions on a(v) in the previous literature, called the non-degeneracy condition:

Definition 1. a ∈ Lip(Rn,Rm) satisfies the non-degeneracy condition of

order ν ∈ (0, 1], if there exists c0 > 0 such that for all compact set D ⊂ Rn,

Ln({v ∈ D : |a(v) · σ − τ | ≤ α/2}) ≤ c0α
ν , (2.8)

for all σ ∈ Sm−1 and τ ∈ R, where Ln is the Lebesgue measure in Rn.

Our assumption (2.4) is stronger than (2.8) with ν = 1 − 1
γ
. Indeed, when

n = m, the assumption Ja−1 ∈ Lγv implies (2.8) with ν = 1 − 1
γ
, but the other

direction holds only when n = ν = 1. When n > 1, (2.8) only gives restrictions

on the pre-images of bands. And when ν < 1, one can construct a Lipschitz

function aν on R satisfying (2.8), and a sequence of measurable sets Oi such that

|a−1
ν (Oi)|
|Oi|ν →∞ as i→∞, which shows Ja−1 6∈ Lγ. An example of construction can

be found in Appendix A.

The dimension of interests is n ≤ m for applications, especially when n = 1

for scalar conservation laws. In an attempt to weaken the assumption to non-

degeneracy condition with general n ≤ m cases, we do a different change of vari-

ables v 7→ λ = a(v) · ξ|ξ| , where ξ is the frequency variable of x, and our method

can recover the traditional result in L2 for ν = 1.
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Theorem 6. Given n ≤ m, α ≥ 0, T > 0 and 0 < ε ≤ 1. Assume a ∈ Lip(Rn,Rm)

satisfies the non-degeneracy condition (2.8) with ν = 1. Let f ∈ L∞([0, T ], L2(Rm
x ×

Rn
v )) solve (2.1) for some g ∈ L1([0, T ], L2(Rm

x × Rn
v )), then for any φ ∈ C∞c , one

has ρφ(t, x) ∈ L2
(

[0, T ], H
1

2(α+1) (BR(x0))
)
, and

‖ρφ‖2

L2

(
[0,T ],H

1
2(α+1) (Rmx )

) ≤ C
(
‖f‖2

L∞([0,T ],L2(Rmx ×Rnv )) + ‖g‖2
L1([0,T ],L2(Rmx ×Rnv ))

)
,

where C only depends on c0 and Lip(a).

This L2 theorem recovers the same regularity H
1

2(α+1) in x as in [38] and [40].

Even though this regularity result is not new, we provide a different approach for

proving this theorem. As we mentioned in the discussion after Corollary 1, some

interesting features which are also inherited by Theorem 3 include:

• Potential applications to hydrodynamic limits as our results are independent

of ε.

• The absence of Fourier transform in time variable which enables potential

extensions of our method for time-discretized or stochastic kinetic equations.

Remark 6. We were unable to obtain a Lp statement as we did in Theorem 2.

This is because the natural multiplier for the alternate proof here is not a Calderon-

Zygmund operator, and we lose bounds in general Lp spaces. In fact, when a(v) =

v, the corresponding multiplier would be in the form of S
(
ξ
|ξ| · ζ

)
, where ζ is the

frequency variable of v. If S is smooth, the inverse Fourier transform of this type

of ”directed multiplier” in two-dimension is in the form of x·v
|x|3 S̃

(
x⊥·v
|x|

)
, which is

not bounded on Lpx,v.
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Remark 7. We use the non-degeneracy condition as a constraint on the measures

of pre-images of intervals. We extend this condition from intervals to general

measurable sets, so that this is equivalent to a constraint on the determinant of

Jacobian matrices and a proof similar to the one of Theorem 2 follows. But when

ν < 1, the extension from intervals to measurable sets fails (see the counterexample

in the Appendix) and hence the strategy is not applicable directly here.

2.3 An example of future perspective: Regularizing effects for measure-

valued solutions to scalar conservation law

Among several potential applications of the new method for averaging lem-

mas presented here, this section focuses on the regularity of so-called measure-

valued solutions of conservation laws and in particular scalar conservation laws.

Scalar conservation laws can be viewed as a simplified model of hyperbolic

systems which still captures some of the basic singular structure. They read
∂tu+

∑n
i=1 ∂xiAi(u) = 0,

u(t = 0, x) = u0(x),

(2.9)

where u(t, x) : R+ × Rn → R is the scalar unknown and A : R → Rn is a given

flux.

The concept of measure-valued solutions to hyperbolic systems such as (2.9)

had already been introduced in [36]. It has recently seen a significant revival

of interest as measure-valued solutions offer a more statistical description of the
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dynamics, see in particular [46,47].

It is convenient to define measure-valued solution through the kinetic formu-

lation of (2.9), which also allows for a straightforward application of our results. A

scalar function u(t, x) ∈ L∞(R+, L
1(Rn) corresponds to a measure-valued solution

if there exists f(t, x, v) ∈ L∞(R+ × Rn × R) with the constraint

u(t, x) =

∫
R
f(t, x, v) dv, −1 ≤ f ≤ 1, (2.10)

and if f solves the kinetic equation

∂tf + a(v) · ∇xf = ∂vm, (2.11)

for a(v) = A′(v) and any finite Radon measure m. If u is obtained as a weak-limit

of a sequence un then f includes some information on the oscillations of un since

it can directly be obtained from the Young measure µ of the sequence

f(t, x, v) =

∫ v

0

µ(t, x, dz).

The system (2.10)-(2.11) is hence immediately connected to the notion of kinetic

formulation for scalar conservation laws introduced in the seminal article [77] and

extended to isentropic gas dynamics in [78]. If u is an entropy solution to (2.9),

then one may define

f(t, x, v) =



1 if 0 ≤ v ≤ u(t, x),

− 1 if u(t, x) ≤ v < 0,

0 otherwise,

(2.12)
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and f solves the kinetic equation (2.11) with the additional constraint that m ≥ 0

which corresponds to the entropy inequality.

We refer for example to [92] for a thorough discussion of kinetic formulations

and their usefulness, such as recovering the uniqueness of the entropy solution first

obtained in [71].

The use of kinetic formulations has proved effective in particular in obtaining

regularizing effects for scalar conservation laws. In one dimension and for strictly

convex flux, Oleinik [88] proved early that entropy solutions are regularized in BV .

In more than one dimension and for more complex flux that are still non-linear in

the sense of (2.8) with ν = 1, a first regularizing effect had been obtained in [77]

yielding u ∈ W s,p for all s < 1/3 and some p > 1.

Such regularizing effects actually do not use the sign of m and for this reason

hold for any weak solution to (2.9) with bounded entropy production. Among

that wider class a counterexample constructed in [34] proves that solutions cannot

in general be expected to have more than 1/3 derivative. The optimal space

(B∞1/3,3)x,loc was eventually derived in [55]. Whether a higher regularity actually

holds for entropy solutions (instead of only bounded entropy production) remains

a major open problem though.

It had been observed in [66] that the regularizing effect for the kinetic for-

mulation relies in part in the regularity of the function f defined by (2.12): For

example such an f belongs to L∞(R+ × Rn, BV (R)). Unfortunately such addi-

tional regularity is lost for measure-valued solutions since we only have f ∈ L1∩L∞
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by (2.10).

A priori, one may hence only apply the standard averaging result from [40]

directly on (2.11). Assuming non-degeneracy of the flux, i.e. (2.8) with ν = 1, we

may apply Theorem 3 for any α > 1, g ∈ L1 and f ∈ L2 (the optimal space for this

theorem). One then deduces that if u corresponds to a measure-valued solution

with f compactly supported in v then u ∈ Bs
5/3,2 for any s < 1/5.

However we are then making no use of the additional integrability of f .

Instead one may also apply our new result Theorem 2 to (2.11) with

Corollary 2. Let f satisfy (2.10) and solve (2.11) for some finite Radon mea-

sure m and some a : Rn → Rn with (2.4) for γ = ∞. Assume moreover that

f ∈ L∞([0, T ], L1(Rn × Rn)) and is compactly supported in velocity. Then

u ∈ L2([0, T ], Hs(Rn)) for any s < 1/4.

In dimension 1, Corollary 2 directly applies to measure-valued solutions and

improve the regularity from almost B
1/5
5/3,2 in x to almost H1/4. In higher dimen-

sions, as we observed, we cannot directly replace (2.4) with (2.8). Therefore a

better understanding of the regularity of measure-valued solutions is directly con-

nected to further investigations of what should replace (2.4) if a : Rm → Rn with

m < n.
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2.4 Proofs

2.4.1 Proof of Theorem 2

2.4.1.1 Main proof

The proof contains mainly three steps as follows.

Step 1: Preparations: localization, regularization and change of variables.

As the result is local, we assume f is compactly supported in x for con-

venience. Fix a compactly supported function φ(v) ∈ Wα,∞
v . Without loss of

generality, assume supp(φ) ⊆ B(0, 1). Consider fφ, which satisfies

ε∂t(fφ) + a(v) · ∇x(fφ) = (−∆v)
α/2gφ.

We denote the Fourier transform of f in x by f̃ . Fix a smooth function Φ(v) with

supp(Φ) ⊆ B(0, 1). Consider Fs1 = (f̃φ)?vΦ|ξ|−s1 , where Φ|ξ|−s1 (v) = |ξ|ns1Φ(v|ξ|s1)

with s1 ≥ 0 to be decided later. Notice

supp(Fs1) ⊆ supp(φ) + supp(Φ|ξ|−s1 ) ⊆ B(0, 1 + |ξ|−s1) ⊂ B(0, 2)

is of compact support for all |ξ| ≥ 1. And it satisfies

ε∂tFs1 + ia(v) · ξFs1 = ((−∆v)
α/2g̃φ) ?v Φ|ξ|−s1 + Com1, (2.13)

where Fs1 = (f̃φ) ?v Φ|ξ|−s1 and the commutator term

Com1(v) = i

∫
(a(v)− a(w)) · ξf̃(w)φ(w)Φ|ξ|−s1 (v − w) dw.
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Note the usage of localization in v will be more clear in the last step of our

proof.

By change of variables v 7→ v′ = a(v), (2.13) can be rewritten as

ε∂th+ iv′ · ξh = k1 + k2 (2.14)

in the sense of distribution, where h, k1 and k2 are defined as follows:

∫
h(v′)ψ(v′) dv′ =

∫
Fs1(v)ψ(a(v)) dv.

∫
k1(v′)ψ(v′) dv′ =

∫ [
((−∆v)

α/2g̃φ) ?v Φ|ξ|−s1
]

(v)ψ(a(v)) dv,

and ∫
k2(v′)ψ(v′) dv′ =

∫
Com1(v)ψ(a(v)) dv.

Step 2: Commutator method with m0 on h. Consider a smooth radial bump

function χ(ξ) with support on 1
2
< |ξ| < 2, such that

∑
k∈Z χ(2−kξ) ≡ 1, for all

ξ 6= 0. For each k ∈ N, we apply commutator method with m0 on h(v′)χ
(
2−kξ

)
and get ∫

|Fζ′(h)|2(ζ ′)
2k

(1 + |ζ ′|2)3/2
dζ ′ dt χ(2−kξ)dξ

.
∫
ξ · ∇ζ′m0(ξ, ζ ′)|Fζ′(h)|2 χ(2−kξ)dξ dζ ′ dt

=

∫
h̄(v′)(

1

i

ξ

|ξ|
· ∇v′G

n
1 ?v′ h) dv′χ(2−kξ) dξ|t=Tt=0

+Re

∫
h̄(v′)

ξ

|ξ|
· ∇v′G

n
1 ?v′

[
(k1 + k2)

]
dv′χ(2−kξ) dξ dt

:= Ak

(2.15)

We estimate Ak and get
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Lemma 1. Denote F−1
x (χ(2−kξ)f̃φ) by fk and F−1

x (χ(2−kξ)g̃φ) by gk. Let p1, p2, q1, q2 ∈

(1,∞]. Then for each fixed k ∈ N ,

|Ak| . 2kd4+ks1d2‖fk‖2
L
p1
x L

p2
v
|t=Tt=0

+ 2kd3+ks1d1+kαs1

∫
‖fk‖Lp1x L

p2
v
‖gk‖Lq1x Lq2v dt

+ 2kd4+ks1d2+k(1−s1)

∫
‖fk‖2

L
p1
x L

p2
v
dt.

(2.16)

where d1 = max
{
n
(

1
p2

+ 1
q2
− `
)
, 0
}

, d2 = max
{
n
(

2
p2
− `
)
, 0
}

, with ` = γ−2
γ−1

,

and d3 = max
{
n
(

1
p1

+ 1
q1
− 1
)
, 0
}

, d4 = max
{
n
(

2
p1
− 1
)
, 0
}

.

To minimize the order of ξ of the sum in (2.16), we choose

s1 = min

{
1− (d3 − d4)

α + 1 + (d1 − d2)
, 1

}
,

and so the highest order is 1− S, where S = s1(1− d2)− d4.

Divide the whole inequality (2.15) with 2k(1−S+δ) for any small δ > 0, then

we attain∫
|Fζ′(h)|2 |ξ|(S−δ)

(1 + |ζ ′|2)3/2
dζ ′ dt χ(2−kξ)dξ

. 2−kδ
[
‖fk‖2

L
p1
x L

p2
v
|t=Tt=0 +

∫
‖fk‖Lp1x L

p2
v
‖gk‖Lq1x Lq2v dt+

∫
‖fk‖2

L
p1
x L

p2
v
dt

]
,

(2.17)

for all k ∈ N.

The same inequality can be obtained even if any of p1, p2, q1, q2 is equal to 1,

because the additional logarithm appears from the weak boundedness of Calderon-

Zygmund operator would not affect the argument.

Sum over k ∈ N for (2.17), we get∫
χ0(ξ)|ξ|sh̄(v)Gn

3 (v − w)h(w) dw dv dt dξ

. ‖f‖2
L∞([0,T ],L

p1
x L

p2
v ) + ‖g‖2

L1([0,T ],L
q1
x L

q2
v ),
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with s < S = (1− d2) min
{

1−(d3−d4)
α+1+(d1−d2)

, 1
}
− d4, and χ0(ξ) :=

∑
k∈N χ(2−kξ).

The last step is to translate the quadratic form of h back to a norm of velocity

average of f.

Step 3: Derive result back to f.

With the change of variables again we have∫ ∫ ∣∣∣∣∫ Fs1(v)ψ(a(v)) dv

∣∣∣∣2 |ξ|s dξ dt
=

∫ ∫ ∣∣∣∣∫ h(v′)ψ(v′) dv′
∣∣∣∣2 |ξ|s dξ dt <∞,

for all ψ ∈ H3/2. By the assumptions that φ and Φ are compactly supported in v,

one can show

Lemma 2. There exists ψ ∈ H3/2 such that

∫ T

0

∫
|ξ|≥1

∣∣∣∣∫ f̃φ dv

∣∣∣∣2 |ξ|s dξ dt . ∫ ∫ ∣∣∣∣∫ Fs1(v)ψ(a(v)) dv

∣∣∣∣2 |ξ|s dξ dt <∞
for all s < S.

This concludes our proof.

Remark 8. Note that m(ξ, ζ) to be homogeneous zero in ζ is essential for the

commutator to be positive-definite after interacting with the transport operator. In

fact, if consider m(ξ, ζ) = ξ
|ξ| ·

ζ
(1+|ζ|2)β/2

with β > 1,

ξ · ∇ζm =
|ξ|
[
(1 + |ζ|2)− β| ξ|ξ| · ζ|

2
]

(1 + |ζ|2)β/2+1
.

When ζ is parallel to ξ and |ζ| is large, it is negative and the argument doesn’t

work.
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The regularization recollects the regularization process in [37]. Here the con-

volution with Φ|ξ|−s1 , along with the multiplier m0, show explicitly the interaction

between the regularity in x and v.

2.4.1.2 Proof of Lemma 1

Before estimating Ak, let us first show the relation of functions connected

through change of variables.

Proposition 1. Let a ∈ Lip(Rn). If Ja−1 ∈ Lγ, the change of variables is bounded

from Lp to L(p′γ′)′. Precisely, if
∫
`(v′)ψ(v′) dv′ =

∫
L(v)ψ(a(v)) dv, then

‖`‖
L
(p′γ′)′
v′

. ‖L‖Lpv .

Proof. By Hölder’s inequality,∫
|ψ(a(v))|p′ dv =

∫
|ψ(v′)|p′Ja−1(v′) dv′ ≤ ‖Ja−1‖Lγ

(∫
|ψ(v′)|p′γ′ dv′

)1/γ′

.

So

‖`‖
L
(p′γ′)′
v′

= sup
‖ψ‖

L
p′γ′
v′

=1

∣∣∣∣∫ `ψ

∣∣∣∣ = sup
‖ψ‖

L
p′γ′
v′

=1

∣∣∣∣∫ L(v)ψ(a(v))

∣∣∣∣
≤ sup
‖ψ‖

L
p′γ′
v′

=1

‖L‖Lpv‖ψ(a(v))‖
Lp
′
v
. ‖L‖Lpv .

Remark 9. If a is one-to-one and a ∈ Lip(Rn,Rm), where n < m, the area

formula gives ∫
|ψ(a(v))|p′ dv =

∫
|ψ(v′)|p′|Ja−1(v′)| dHn(v′),
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with |Ja−1| = (det(Da−1)(Da−1)T )1/2, and Hn is a Hausdorff measure of dimen-

sion n. This relation would put ` in Hausdorff measurable spaces, which are not

compatible with our arguments with Fourier analysis in the whole space.

We now use Proposition 1 to estimate Ak term by term when di > 0 for all

i = 1, 2, 3, 4. The other cases follow similar calculations.

• For the first term: By the Cauchy-Schwarz inequality, and that R · ∇vG
n
1 is

Calderon-Zygmund operator:∫ ∫
h̄

(
ξ

|ξ|
· ∇v′G

n
1 ?v′ h

)
dv′ χ(2−kξ)dξ|t=Tt=0

≤ ‖F−1
x (hχ(2−kξ))‖2

L2
xv′
|t=Tt=0 ,

(2.18)

Denote F−1
x (χ) by S. By Proposition 1, for each fixed t,

‖F−1
x (hχ(2−kξ))‖L2

xv′
. ‖S2−k ?x fk ?v Φ2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

. 2
kn

(
1
p1
− 1

2

)
+ks1

(
1
p2
− γ−2

2γ−2

)
‖fk‖Lp1x L

p2
v
.

Plug this back into (2.18) and we have∫ ∫
h̄

(
ξ

|ξ|
· ∇v′G

n
1 ?v′ h

)
dv′ χ(2−kξ)dξ|t=Tt=0

. 2
kn

(
2
p1
−1

)
+ks1

(
2
p2
− γ−2
γ−1

)
‖fk‖2

L
p1
x L

p2
v
|t=Tt=0 .

• For the second term:∫
h̄

(
ξ

|ξ|
· ∇v′G

n
1 ?v′ k

1

)
dv′ χ(2−kξ)dξ dt

.
∫
‖S2−k ?x fk ?v Φ2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

‖2kαs1S2−k ?x gk ?v ((−∆v)
βΦ)2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

dt,
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which is of the order of

2
kn

(
1
p1

+ 1
q1
−1

)
+ks1n

(
1
p2

+ 1
q2
− γ−2
γ−1

)
+kαs1

∫
‖fk‖Lp1x L

p2
v
‖gk‖Lq1x Lq2v dt.

• For the last term:

∫
h̄

(
ξ

|ξ|
· ∇v′G

n
1 ?v′ k

2

)
dv′ χ(2−kξ)dξ dt

.
∫
‖S2−k ?x fk ?v Φ2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

‖S2−k ?x Com
1 ?v Φ2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

dt.

Because Φ is compactly supported, Φ2−ks1 (v − w) forces |v − w| . 2−ks1 .

Moreover since a is Lipschitz, |a(v)− a(w)| . 2−ks1 .

‖S2−k ?x Com
1 ?v Φ2−ks1‖

L2
xL

2(γ−1)
(γ−2)
v

=

∥∥∥∥∥
∫

2k(a(v)− a(w)) · (f ?x (∇xS)2−k)(w)φ(w)

Φ2−ks1 (v − w) dw

∥∥∥∥∥
L2
xL

2(γ−1)
(γ−2)
v

. 2k−ks1‖f ?x (∇xS)2−k | ?v Φ2−ks1‖
L2
xL

2(γ−1)
(γ−2)
v

. 2
kns1

(
1
p2
− (γ−2)

2(γ−1)

)
+kn

(
1
p1
− 1

2

)
+k(1−s1)‖f‖Lp1x L

p2
v
.

Hence

∫
h̄

(
ξ

|ξ|
· ∇v′G

n
1 ?v′ k

3

)
dv′ χ(2−kξ)dξ dt

. 2
kn

(
2
p1
−1

)
+ks1n

(
2
p2
− γ−2
γ−1

)
+k(1−s1)

∫
‖f‖2

L
p1
x L

p2
v
dt.
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Combining all estimates,

|Ak| . 2
kn

(
2
p1
−1

)
+ks1n

(
2
p2
− γ−2
γ−1

)
‖fk‖2

L
p1
x L

p2
v
|t=Tt=0

+ 2
kn

(
1
p1

+ 1
q1
−1

)
+ks1n

(
1
p2

+ 1
q2
− γ−2
γ−1

)
+kαs1

∫
‖fk‖Lp1x L

p2
v
‖gk‖Lq1x Lq2v dt

+ 2
kn

(
2
p1
−1

)
+ks1n

(
2
p2
− γ−2
γ−1

)
+k(1−s1)

∫
‖fk‖2

L
p1
x L

p2
v
dt.

2.4.1.3 Proof of Lemma 2

Choose two smooth functions ψ1 and ψ2 such that ψ1(a(v)) ≡ 1 on v ∈

B(0, 1), and ψ2(v) ≡ 1 on v ∈ B(0, 2). We put ψ1 in the place of ψ and plug in ψ2

as an auxiliary function at no cost since it’s 1 on the support of φ. Then

∞ >

∫ ∫
|ξ|≥1

∣∣∣∣∫ Fs1(v)ψ2(v) dv

∣∣∣∣2 |ξ|s dξ dt
=

∫ ∫
|ξ|≥1

∣∣∣∣∫ Fζ(f̃φ)(ζ)Fζ(Φ)(ζ|ξ|−s1)Fζ(ψ2)(ζ) dζ

∣∣∣∣2 |ξ|s dξ dt
=

∫ ∫
|ξ|≥1

∣∣∣∣∫ (f̃φ)(Φ|ξ|−s1 ?v ψ2) dv

∣∣∣∣2 |ξ|s dξ dt.
Because ψ2 ≡ 1 on B(0, 2) and |v − w| ≤ |v| + |w| ≤ 1 + |ξ|−s1 ≤ 2 when

|ξ| ≥ 1,

(Φ|ξ|−s1 ?v ψ2)(v) =

∫
|ξ|ns1Φ(w|ξ|s1)ψ2(v − w) dw

=

∫
|ξ|ns1Φ(w|ξ|s1) dw = ‖Φ‖L1

v
for all |v| ≤ 1.

So finally we reach∫ T

0

∫
|ξ|≥1

∣∣∣∣∫ f̃φ dv

∣∣∣∣2 |ξ|s dξ dt <∞
for all s < S.
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2.4.2 Proof of Theorem 6

This proof is essentially the same as Theorem 2, but with a different change

of variable. After Step 1, instead of v 7→ v′ = a(v) , we make v 7→ λ = a(v) · ξ|ξ| for

each fixed ξ. For convenience, let us denote ε = |ξ|−s1 . So parallel to (2.14), we

have

∂thε + iλ|ξ|hε = k1
ε + k2

ε (2.19)

in the sense of distribution, where hε, k
1
ε , k

2
ε , k

3
ε are defined as following:

∫
Fε(v)ψ

(
a(v) · ξ

|ξ|

)
dv =

∫
hξε(λ)ψ(λ) dλ.

∫
k1
ε (λ)ψ(λ) dλ =

∫ [
((−∆v)

α/2g̃φ) ?v Φε

]
(v)ψ

(
a(v) · ξ

|ξ|

)
dv,

and ∫
k2
ε (λ)ψ(λ) dλ =

∫
Com1(v)ψ

(
a(v) · ξ

|ξ|

)
dv.

The subscript ε is to emphasize the dependence on ξ.

Thanks to the non-degeneracy condition with ν = 1, this change of variables

preserves Lp norm:

Proposition 2. Let a be Lipschitz and satisfy (2.8) with ν = 1. Let ψ : R → R.

Then for all σ ∈ Sm, 1 ≤ p ≤ ∞,

‖ψ(a(v) · σ)‖Lpv ≤ c0‖ψ‖Lpλ .

And hence if
∫
L(v)ψ (a(v) · σ) dv =

∫
`σ(λ)ψ(λ) dλ, then

‖`σ‖Lpλ . ‖L‖Lpv .
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Consider ∫
¯
hξε(λ)

1

i
(∂λG

1
1)(λ− α)hξε(α) dα dλ.

Then similar estimations and procedures lead to

∫
|ξ|1/(α+1) ¯

hξε(λ)G1
3(λ− α)hξε(α) dα dλ dt dξ <∞.

One can conclude the result from here by following Step 3 in the proof of Theorem

2.

Notice here everything is in one dimension for each fixed ξ. And because of

the L2 setting, it is valid to do calculation in the level of (v, ξ).

The last thing to check is Proposition 2.

Proof of Proposition 2. When p = ∞, the result is straightforward. For

1 ≤ p <∞. (2.8) implies for any interval I, we have

m({v ∈ B(0, 1) : a(v) · σ ∈ I}) ≤ c0m(I).

By a standard approximation from intervals to general measurable sets, one

has for any measurable set A,

m({v ∈ B(0, 1) : a(v) · σ ∈ A}) ≤ c0m(A).

From this we see the relation between the distribution functions of ψ(a(v) ·σ)

and ψ:

dψ(a(v)·σ)(s) = m({v ∈ B : a(v) · σ ∈ {λ : |ψ(λ)| > s}})

≤ c0m({λ : |ψ(λ)| > s}) = c0dψ(s).
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Therefore

‖ψ(a(v) · σ)‖Lpv = p1/p

(∫ ∞
0

[
dψ(a(v)·σ)(s)

1/ps
]p ds

s

)1/p

≤ p1/p

(∫ ∞
0

[
c

1/p
0 dψ(s)1/ps

]p ds
s

)1/p

= c0‖ψ‖Lpλ .
(2.20)

And by duality,

‖`σ‖Lpλ = sup
‖ψ‖

L
p′
λ

=1

∣∣∣∣∫ `σψ

∣∣∣∣ = sup
‖ψ‖

L
p′
λ

=1

∣∣∣∣∫ L(v)ψ (a(v) · σ)

∣∣∣∣
≤ sup
‖ψ‖

L
p′
λ

=1

‖L‖Lpv ||ψ (a(v) · σ)||
Lp
′
v

≤ c0 sup
‖ψ‖

L
p′
λ

=1

‖L‖Lpv‖ψ‖Lp′λ = c0‖L‖Lpv ,

where the first inequality is due to the Hölder’s inequality, and second by (2.20).

This concludes our proof for Proposition 2 and hence Theorem 6.
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Chapter 3: Unmixing property on a 2-dimensional torus

3.1 Introduction

Fluid mixing not only provides rich mathematical problems, especially in

the dynamical systems and partial differential equations, but also is an important

topic with the applications in many fields, such as chemistry, engineering, and

atmospheric and oceanic science.

There is abundant literature in fluid mechanics studying mixing phenomena.

A fluid system is often described by partial differential equations solved by trac-

ers, under the assumption that the interaction between the tracers and the flow is

negligible. For instance, the transport equation of a divergence free vector field is

used to describe the passive scalar mixing [5,75]. The study in relaxation enhanc-

ing considered the transport equation with a diffusion term [29]. Mixing for the

stochastic 2-dimensional Navier-Stokes equation is also discussed in [24].

We consider the passive scalar mixing behavior of the incompressible flow

f on the n-dimensional torus Tn = [−π, π]n, described by the divergence free

transport equation, 
∂tf + a · ∇f = 0,

f(x, 0) = f0,

(3.1)

where ∇ · a = 0 and f0 ∈ L2(Tn).
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The well-posedness of the Cauchy problem (3.1) has been carefully studied

and many sufficient conditions have been discovered. After the classical Cauchy-

Lipschitz theory, the condition on a was extended to W 1,1
loc,x by [37] and later further

to BV class by [6]. For the 2-dimensional case an even weaker condition is required,

owing to the natural Hamiltonian structure. The Sobolev or BV class condition

can be replaced by various assumptions on the direction of a [20, 60] or the weak

Sard condition introduced in [3].

Assume the Cauchy problem (3.1) corresponding to a vector field a has a

unique solution f for all f0 ∈ L2(T2), then we say a is mixing if

lim
t→∞

∫
Tn

Φ(x) θ(x, t) dx = 0 (3.2)

for all f0 and Φ ∈ L2(T2) with θ(x, t) := f(x, t)−
∫
Tn f0(x, t) dx.

Besides the above definition for mixing, other definitions were proposed in the

quest of a proper norm for quantifying the mixing phenomenon. For example, [84]

proposed H−1/2 as a mix norm, which was later extended to H−s for all s > 0

and was proved to be equivalent to (3.2) in [75]. That is, it was shown that for all

s > 0,

‖θ‖H−s → 0 as t→ 0, (3.3)

is equivalent to (3.2) for all s > 0. Another example of mixing scales can be found

in [23], related to set rearrangements. This mixing scale is not equivalent to H−s,

yet still closely related; see for instance [4, 108].

This work focuses on the unmixing property of the incompressible flows on a
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2-dimensional torus. We take the advantage of the Hamiltonian structure and show

a perturbation result of unmixing. The key observation is that the quantities near

the local maximums or minimums of the Hamiltonian (stream) function cannot

escape and therefore the corresponding vector field is not mixing. We shall show

that this phenomenon (hence the unmixing property) is preserved under a small

perturbation of the sup-norm.

This chapter is organized as follows: main results are placed in Section 3.2 by

first giving a perturbation result for unmixing property in a deterministic setting in

Section 3.2.1; a simple consequence of the main theorem in a probabilistic setting

shall be presented in Section 3.2.2. This probabilistic result offers an interesting

observation for the unmixing property from the perspective of Fourier analysis.

3.2 Main results

3.2.1 Deterministic result

Definition 2. We say ψ ∈ H1(T2) is a stream function of the vector field

a = (a1, a2) ∈ L2(T2) on an open set O, if on O

a = ∇⊥ψ := (∂2ψ,−∂1ψ) (3.4)

in the sense of distribution.

Because of the Hamilton equations, the stream function has the following

important property:
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Proposition 3. Let ψ be the stream function corresponding to a on O. If φ ∈ C1

and (supp φ)∩Oc is measure zero for almost all t ∈ [0, T ], then
∫
T2 φ(ψ(x))f(t, x) dx

stays constant for all t ∈ [0, T ], where f solves (3.1).

This proposition shows that ψ is constant on each characteristic of the cor-

responding vector field a.

Proof of Proposition 3. By (3.4), we have

∂t

∫
T2

φ(ψ(x))f(t, x) dx = −
∫
T2

φ(ψ(x))divx(af) dx

=

∫
T2

φ′(ψ(x))∇xψ · af dx = 0 (3.5)

As it is assumed in our case that ψ is time-independent, this statement can

be reworded as that the characteristics are retained in level sets of ψ. We will use

this proposition to show that a vector field is unmixing if the corresponding ψ has

a local maximum or minimum. Furthermore, this phenomenon can be preserved

under a sup-norm perturbation:

Theorem 7. Let a0 be a vector field on T2 and ψ0 be a continuous stream function

of a0 on some open subset O ⊂ T2 with a local maximum or minimum inside O.

Then there exists ε > 0 such that the following statement holds:

If ‖ψ − ψ0‖L∞(T2) < ε and the Cauchy problem (3.1) corresponding to

a := ∇⊥ψ is well-posed, then a is unmixing.

(3.6)

Proof of Theorem 7. Without loss of generality, we assume ψ0 has a local
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maximum M at the origin in O. Let ψ be a stream function with

||ψ − ψ0||∞ < ε :=
αM

4
(3.7)

and (3.1) corresponding to a := ∇⊥ψ is well-posed. We shall show that a is

unmixing, by constructing an initial condition f0 such that (3.2) fails when Φ =

ψ ∈ L2(T2).

Denote Un = {ψ0 > M(1− nα)}, for all n = 1, 2, ..., 6, where α > 0 is fixed

such that U6 ⊂ O. Let Ṽ = {M(1− 4α) ≥ ψ0 > h} ⊂ U5 \ U4, where h is chosen

so that |Ṽ | = |U1|. We define

f0 := f+
0 − f−0 = XU1 −XṼ .

Note that
∫
T2 f0 dx = 0. Denote f+ the solution of (3.1) with the initial condition

f+
0 , and f− with f−0 .

Let φ(x) be a C1 function such that φ(x) = 0 if x > M(1− 3
2
α), and φ(x) > 0

if x ≤M(1− 3
2
α). Then by Proposition 3,∫

φ(ψ)f+(t, x) dx ≡
∫
φ(ψ)f+

0 = 0

for all t, which implies that supp f+ ⊂ U2 for all t ∈ [0,∞). With the same

argument, one has supp f− ⊂ U6 \ U3 for all t.

Because of (3.7), ψ > M(1− 7
4
α) on U2 and ψ < M(1− 11

4
α) on U6 \U3. We

therefore derive ∫
T2

ψf =

∫
T2

ψ(f+ − f−) > Mα|U1| > 0

for all t and the proof is concluded.

59



3.2.2 Simple consequence in a probabilistic setting

With above result for unmixing, we would like use it to give a quantitative

statement about how many vector fields are unmixing. One way to do so is by

introducing a probability into the problem. We take a classical approach, and

consider the vector field a to be a random Fourier series. The study of random

Fourier series can be traced at least back to 1930s; see for example [89]. We refer

to [70] for more references.

We consider the vector fields in the following form:

a = (a1, a2) = (γ1
0 , γ

2
0) +

∑
k∈Z2\{0}

k⊥
iγk

(1 + |k|)θ
eik·x, (3.8)

where for all k ∈ Z \ {0}, k⊥ · k = 0. As we concern only real vector fields, the

condition γ̄k = γ−k will always be assumed in this discussion and we shall assume

γ1
0 , γ

2
0 , {γk}k∈H are independent random variables, where H :=

{(x, y) ∈ Z2 \ {0} : y > 0 or x > 0 when y = 0} .
(3.9)

Combining Theorem 7 and some additional conditions on the distributions

of the Fourier coefficients, we show that the probability of unmixing is positive:

Corollary 3. Let θ > 3, and γ1
0 , γ2

0 , {γk}k∈H be a sequence of independent and

identically distributed random variables with zero expectation, where

H :=
{

(x, y) ∈ Z2 : y > 0 or x > 0 when y = 0
}
.

If there exists a number ε0 > 0 such that

E(χγk∈(α,β)) > 0 for all −ε0 < α < β < ε0, (3.10)
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then there exists a set S of unmixing vector fields such that P (S) > 0.

Notice the conditions of independence, zero mean, and decay rate θ of Fourier

coefficients guarantee that a in the form of (3.8) is H1 and hence (3.1) is well-posed

by the DiPerna-Lions theory almost surely.

The assumption (3.10) on the other hand guarantees the contribution from

different frequencies, which is crucial for this result. In fact, if γk ≡ 0 for all

k ∈ Z2\{0}, then with probability one the flow on two-dimensional torus is ergodic,

which is the weakest notion of mixing in the ergodic sense. (3.10) excludes this

special case, and ensures the infinite Fourier series
∑

k∈Z2\{0} k
⊥ iγk

(1+|k|)θ e
ik·x has a

non-negligible influence on our system. This effect therefore makes the positive

probability of unmixing possible.

Proof of Corollary 3. We first check that a ∈ H1 almost surely:

E(||a||2H1) . E

(∫ ∑
i,j

γki γ̄kj
(1 + |ki|)(θ−2)(1 + |kj|)θ−2

ei(ki−kj)·x

)

.
∑
i,j

E
(

γki γ̄kj
(1 + |ki|)(θ−2)(1 + |kj|)θ−2

)
.

By the assumption that E(γk) = 0 and γk, γ` are independent when k 6= ±`, only

those terms with duplicated index would survive. Therefore,

E(||a||2H1) .
∑
i

E
(

|γki |2

(1 + |ki|)2(θ−2)

)
<∞.

Therefore, a ∈ H1 almost surely.
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We now write down an explicit set of unmixing vector fields. Consider

a0 =
1

B2θ−1

 − sin y

sinx

 =
∑
|k|=1

 k2

−k1

 iB−1

(1 + |k|)θ
eik·x,

where B is chosen so that 1
B
< ε0. We choose a stream function to be

ψ0(x, y) =
1

B2θ−1
(cosx+ cos y).

Fix the open set O = [−π/2, π/2]2. By Theorem 7, there exists ε > 0 such

that (3.6) holds. Define a set of vector fields:

SL :=

{
a in the form of (3.8) : π(|γ1

0 |+ |γ2
0 |) +

∑
|k|=1

|γk − 1
B
|

2θ

+
∑

1<|k|≤L

|γk|
(1 + |k|)θ

< ε/2 and
∑
|k|>L

|γk|
(1 + |k|)θ

< ε/2

 , (3.11)

where L ∈ N will be chosen later. We claim that every a ∈ SL is unmixing.

In fact, for all a ∈ S, we can define a corresponding stream function ψ : T2 →

R by:

ψ(x, y) = Φ(x, y) +
∑

k∈Z2\{0}

γk
(1 + |k|)θ

eik·x, (3.12)

where

Φ(x, y) =


γ1

0y − γ2
0x, for (x, y) ∈ O

Φ̃(x, y), for (x, y) ∈ Oc

where Φ̃ is defined smoothly such that Φ is continuous and its absolute value

decreases to 0 when x and y go to ±π.

By the definitions of ψ0, ψ and SL,

|ψ − ψ0| ≤ π(|γ1
0 |+ |γ2

0 |) +
∑
|k|=1

|γk − 1
B
|

2θ
+

∑
k∈Z2\{0},|k|6=1

|γk|
(1 + |k|)θ

< ε.
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So a is unmixing by Theorem 7.

The last thing is to show P (SL) > 0 for some large enough L ∈ N.

P (SL) = P

π(|γ1
0 |+ |γ2

0 |) +
∑
|k|=1

|γk − 1
B
|

2θ
+

∑
1<|k|≤L

|γk|
(1 + |k|)θ

< ε/2


· P

∑
|k|>L

|γk|
(1 + |k|)θ

< ε/2

 := Q1 ·Q2, (3.13)

for any integer L > 1.

Q1 is always positive thanks to (3.10). For Q2, notice that

E

∑
|k|>L

|γk|
(1 + |k|)θ

 .
∑
|k|>L

1

(1 + |k|)θ

.
∫ ∞
L

1

(1 + r)θ
rdr . L2−θ.

Hence by choosing L large enough, we can make E
(∑

|k|>L
|γk|

(1+|k|)θ

)
< ε/2, which

implies thatQ2 > 0. (Otherwise P
(∑

|k|>L
|γk|

(1+|k|)θ ≥ ε/2
)

= 1 and E
(∑

|k|>L
|γk|

(1+|k|)θ

)
≥

ε/2, which is a contradiction.) Therefore, P (SL) = Q1 ·Q2 > 0 for a large enough

L and the proof is concluded.
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Chapter 4: Modeling: Memory effects on animal migrations

4.1 Introduction

The interaction between dynamic landscapes and animal movements has been

an important research topic in biology, particularly with regard to the process of

migration. For instance, insufficient spatiotemporal change in the distribution of

resources may ’short-circuit’ migration in some seasons [14]. In other cases, the age

structure of an animal population can create new migratory patterns in response

to environmental changes [100]. From theoretical work, we know that gathering of

nonlocal information is beneficial for resource uptake in dynamic landscapes [44].

Among the long list of factors that one could consider as a variable in this rich

topic, the effects of spatial memory on animal movements in dynamic landscapes

has attracted considerable recent attention. Many works have demonstrated the

essential role of memory in animal migration patterns [1,22,45]. A variety of models

have been proposed to explore this memory effect, some of which have been quite

complex [16,94]. Memory and environmental persistence are both clearly connected

with migratory movement [17]. However, even with abundant existing results, the

underlying memory mechanism and its relation with animal movement remain

unclear.

64



The goal of this work is to obtain a better understanding of the effects of

memory on animal migration patterns. For this purpose, we propose a memory-

driven movement model, consisting of a stochastic transport equation, evolution

equations for the memory and fitness, and an eikonal equation with a potential

depending on the animal’s perception and memory. Our model explicitly describes

a wide range of different memory mechanisms, and the corresponding migration

patterns can be directly observed by numerical simulations.

Migration patterns have long been known to follow seasonal changes in the

environment and it is natural to expect that such periodic changes in the environ-

ment are the main factor contributing to such migrations [14,43]. We thus test our

model under a simple, idealized time-periodic environment to investigate memory

effects on the migration patterns.

The use of the eikonal equation was inspired by the Hughes model for pedes-

trians [62, 63]. There are many works in the Hughes model from both analyti-

cal [7,49] and numerical aspects [27,102]. The Hughes model contains a conserva-

tion law for pedestrian flow, and an eikonal equation with a potential depending

on the density of pedestrians. In our case, the potential of the eikonal equation

depends on the animal’s memory and perception. The article [106] combined both

the conservation law of pedestrians and an eikonal equation with memory to discuss

the memory effect for pedestrian flows.

One advantage of using the eikonal equation is that it provides a natural

interpretation for an animal’s decision-making process under the context of op-
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timal control theory. This view of optimal individual-level movement strategies

complements mathematical theory on optimal population-level movement that has

sought to identify the best movement strategies for different resource landscapes

in an evolutionary context using invasibility criteria (e.g., [26,73]). As an optimal

control problem at the individual level, an animal’s migratory journey consists of

a series of movements in which the animal relocates to the region with the best

resources by choosing an optimal path that minimizes a certain cost function. The

cost function therefore offers an easy way of introducing environmentally based

preferences in the individual’s movement. A similar concept of utilizing a cost

function for memory-based movements can also be seen in [69]. Another advan-

tage of the eikonal equation is that efficient algorithms are available; see for exam-

ple [28,96,107]. These algorithms help accelerate our computations and make our

numerical simulations much less expensive.

This paper is organized as follows. Our model is introduced in Section 2. Its

application to the migration behaviors under periodic environments is in Section

3. A discussion for model components and time scales of memory can be found

in Section 4. Some examples of simulations under more complicated environments

are presented in Section 5. Finally, the conclusion is in Section 6.
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4.2 Mathematical model

4.2.1 Overview of the model

For this section we shall construct a model for an individual’s movement,

which depends on its health status, the local environment conditions, and its mem-

ory for the global environment. The dynamics follow the following assumptions:

• The animal tries to move to, or stay in, the places with the most resources

that it remembers.

• An animal’s desire to move depends on its fitness and the condition of the

animal’s current location. We assume one would be less likely to move if it

is in good health, or its surrounding is full of resources.

• The movement has a small stochastic effect for the explorations for the local

environment.

The dynamics are recorded by the individual’s position X(t) for time t ∈ R+.

The first two important factors that affect our dynamics are the individual’s fitness

and the environment condition. We consider the fitness P (t), and the environment

E(t, x) on R+ × Rn. The value of E(t, x) indicates the condition of environment

at time t and location x. The larger the value is, the more resources (or fewer

predators) are available for the individual. P is therefore evolving according to the
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condition of local environment,

dP

dt
= E(t,X(t))(P − P (t)),

where P > 0 is the optimal fitness status an animal can have. Our description for

P and E are simplified. As our main interest for this model is the effect of memory

on movement, we only keep those parts necessary to our focus.

We model the dynamics with the above hypotheses by the following stochastic

differential equation:

dX = σdWt + χ(P (t), E(t, x))v dt,

where σ > 0, Wt is the Brownian motion, and χ(P,E) := (P − P )e−E is called

the desire function, which modifies the magnitude of velocity. Consistent with our

second assumption of the dynamics, the value of χ is close to 0 when P is close to

P , or when E is large.

The velocity v would be chosen according to the information in memory and

perception. We shall introduce our model for memory and perception in Section

2.2, and clarify the choice of velocity in Section 2.3.

4.2.2 Mechanism of memory

While a memory mechanism could be quite complicated (e.g. [16]), here we

extract only some basic features that we consider important for our purpose. The

assumptions are as follows.

• A memory system consists of multiple channels of memory.
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• Each channel of memory fades over time with a rate depending on the in-

tensity of the memory. The stronger the memory intensity is, the slower it

would be forgotten. The weaker, the faster.

• Each channel is updated independently over time with new information gath-

ered by the individual within its perception range.

We assume all memory channels operate on the same principle but with

different decay and update rates. We first clarify the evolution of each channel,

and finish this subsection with a description of a whole memory system.

4.2.2.1 Evolution of one memory channel.

One memory channel is modeled by a memory function M(t, x) on R+×Rn.

The value reflects how the individual remembers the situation of environment at

time t and point x.

The evolution of memory contains two terms, one is losing information, an-

other is gaining. Each channel is characterized by two positive indices, the decay

rate d and update rate u. We assume the two rates are in the same order, otherwise

the channel would fail to capture information correctly over time.

What the second assumption above suggests is a nonlinear term for the fading

memory. For the desired behavior we choose the function −sgn(M)
√
|M |. (In fact

every function in the form −sgn(M)|M |s, 0 < s < 1 will do.) −sgn(M) guarantees

positive memory decays and negative memory increases.
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Comparing to the linear function M , which has its slope identically 1, the

function
√
|M | possesses the characteristic that when |M | is large, its slope is

smaller than 1, while when |M | is small, it is larger than 1. This matches our

description that when the intensity of memory |M | is large, the change of the

forgetting rate is slower than when the strength is small. Moreover, another feature

of using −sgn(M)
√
|M |, is any memory with finite intensity shall return to zero

within finite time.

The memory update is assumed to depend on the individual’s perception of

the actual environment. To introduce this factor, we define a perceptual kernel

K(x, y) = k(|x− y|), where k is a positive function on R, decreases to zero within

a finite distance, and with maximum 1. The magnitude of K(x, y) represents the

percentage of information for E(x, t) that an animal can gather when standing at

location y.

Combining the above discussion, the evolution of M is governed by the fol-

lowing equation:

∂tM(t, x) = τ−1
[
−d · sgn(M)

√
|M |+ u ·K(X(t), x)(E(t, x)−M(t, x))

]
, (4.1)

where τ is the time scale of this channel. The introduction of τ is for convenience

for later discussion when multiple channels are present.

The perception can also be included in our definition as one memory chan-

nel, simply by taking its time scale close to zero. Indeed, when τ tends to zero,

the memory is forgotten and updated almost immediately. In this case, the corre-
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sponding memory function works just like visual perception, which receives instant

information for nearby landscapes, but with almost no persistence. As a result,

this channel attains almost the same value as the environment function within its

perceptual range.

4.2.2.2 Description of a memory system

We call a collection of independent memory channels a memory system. As-

sume we have m channels, Mi(t, x) where i = 1, ...,m. Each channel is tagged with

a decay rate di, an update rate ui, a time scale τi and a perceptual kernel Ki. And

each Mi is governed by the following evolution equation:

∂tMi(t, x) = τ−1
i

[
−di · sgn(Mi)

√
|Mi|+ ui ·Ki(X(t), x)(E(t, x)−Mi(t, x))

]
,

(4.2)

for i = 1, 2, ...,m.

4.2.3 Choice of velocity and optimal control

An animals’ decision-making is modeled in the context of optimal control

theory, with a cost function depending on the memory and perception of its envi-

ronment. Precisely, we consider the Hamilton-Jacobian-Bellman equation:

∂tψ =
|∇xψ|2

2λ
− exp(−H(t, x)), (4.3)

where λ > 0 is a fixed parameter, and H(t, x) =
∑m

i=1wi(t,X(t), x)Mi(t, x), with

weight functions wi with (
∑m

i=1 wi)(t, y, x) ≡ 1, for all t, x, y. The value of H(t, x)
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represents how an individual evaluates the location x at time t, using the informa-

tion it gathered and stored in its memory system. The protocol for environment

assessment is encoded in the weight functions.

A classical argument in optimal control theory [13] shows that the solution ψ

in (4.3) is the value realizing the minimum over of every route x(s), starting from

x at time s = t to s = T by the value function:

ψ(t, x) = inf
x(s),x(t)=x

C({x(s), T}), (4.4)

where

C({x(s), T}) =

∫ T

t

[
exp(−H(s,x(s))) +

λ

2
|x′(s)|2

]
ds,

with a fixed time horizon T > 0. The cost functional consists of the evaluation of

environment and the kinetic energy, which penalizes high speed. For completeness,

the derivation from (4.4) to (4.3) assuming ψ ∈ C1 can be found in Appendix B.

As our setting does not carry a specific finite time horizon, we take time

horizon T to infinity. This leads us from (4.3) to the eikonal equation:

|∇xψ|2

2λ
= exp(−H(t, x)). (4.5)

We assume that the individual would choose to move along the path that

minimizes the cost function. The velocity of our choice is therefore the gradient of

ψ:

v = −λ−1∇xψ,

where ψ solves (4.5)
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4.3 Migration behaviors under periodic environments

We shall now simulate our general model under a simple periodic environment

with two types of evaluation functionsH. Our goal is to see which settings allow the

animal to successfully follow resources and generate a periodic migration pattern.

4.3.1 Simple time-periodic environment

We assume there are two potential habitats, modeled by two disjoint circular

regions A and B, see Figure 1. The location with positive value of E (good resources

area) is alternating between A and B with a fixed duration T . E is assumed

uniformly negative (poor resources area) outside the single good region. For our

interest in memory effect, we also assume A and B are far enough from each other

so that the animals cannot see both of them in the same time. That is, we assume

d(A,B) > sup {|x− y| : x, y ∈ supp(K)} , (4.6)

where K is the perceptual kernel.

A B

Figure 4.1: Time-periodic Setting: The location of the good resources alternates

between A and B with duration T .
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4.3.2 Two simple memory models

4.3.2.1 Memory model I: One single memory channel.

We first consider a memory system with only one memory channel M, with

H in the following form:

H = KE +M, (4.7)

where K is a perceptual kernel. This form means when a place x is close to where

the individual stands, the evaluation mainly depends on what it sees. For distant

places, it depends mainly on memory.

To encourage the first migration from A to B, we initiated the memory func-

tion M with positive values in both A and B, and zero otherwise. We also set the

decay rate d small and update rate u large. While memory model I appears rea-

sonable, it cannot produce a periodic migration pattern under the simple periodic

environment as one expected, see Figure 4.2.

After the individual’s first return for A, the value of M was updated negative

in both A and B. The individual thus explores the other places that haven’t been

visited before, instead of returning to A or B.
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Figure 4.2: Trajectory for Memory Model I. The blue dashed line represents the

trajectory and the red dot is the location of the individual at the end of the

experiment. In this case, the individual was not able to repeat the migratory

process because its memory structure was mismatched to the dynamics of the

resource landscape.

4.3.2.2 Memory model II: Long and short-term memory.

Because memory model I is too simple to produce a periodic movement in

a periodic environment, we increase the complexity and introduce the concept of

short-term memory.

Memory model II contains two memory channels, including the long-term

memory M`(t, x) and short-term memory Ms(t, x). We assume Ms has larger

decay and update rates than M`, so that it takes longer time to update and forget

for information in M`, while Ms responds to changes quickly, and fades easily.

75



In this model, we define H as:

H(t, x) = Ms +M`. (4.8)

With (4.8), the individual makes a decision depending more on its local environ-

ment when it is in an extreme condition. Otherwise, it tends to rely more on the

long-term memory. The following experiment shows a successful result.

Under the same simple periodic environment, memory model II successfully

produced the desired migration patterns, see Figure 4.3. Observe that the individ-

ual will leave an exhausted region after a bit of explorations because of Ms, and

return to A or B according to M`.

0 0.2 0.4 0.6 0.8 1
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0.9

y

A B

Figure 4.3: Trajectory for Memory Model II. In this case, a periodic migration

pattern is successfully produced.
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4.4 Discussion

4.4.1 Remarks on model components

Our main model components include the position, memory, and fitness. The

eikonal equation is also important as a policy that utilizes the information in mem-

ory to make travel decisions. To investigate memory effects on animal migrations,

the position and memory are indispensable in our model.

The fitness P has two roles in this work. It not only provides an universal

measurement for different experiments, but also becomes an index to indicate when

an animal would have the desire to move. Recall that we assume an animal would

not want to move when the value of P is large.

Note that one could easily increase the complexity of memory and fitness

models, by adding more assumptions or even introducing more functions to de-

scribe them. Here we intended to keep our model as simple as possible, and only

considered essential features.

The eikonal equation, on the other hand, can be replaced by any other rea-

sonable policy. Even though it is not the only option, the existence of efficient

algorithms for the eikonal equation accelerates the numerical simulations. This

advantage makes the eikonal equation a practical choice for us here.

77



4.4.2 Comparison between memory model I and II: Time scales of

memory channels

Both Memory Model I and II have two memory channels, but with different

time scales. In fact, the perception in Memory Model I can be seen as a channel

with its scale close to zero. This observation combining with the experimental

outcomes in Section 3.2, shows that the time scales play a decisive role on whether

periodic dynamics can be produced. We shall demonstrate the relation between

time scales and dynamic patterns with simulation results.

Consider 0 < τ2 < τ1, where τ1 is the time scale for the long-term memory,

and τ2 for the short-term. We again perform experiments with the same environ-

ment introduced in Section 3.1, and initiate M` with positive value in both A and

B. Figure 4.4 shows the simulation results for time scales in different orders.
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Figure 4.4: This graph shows the outcomes for several combinations of time scales.

The different symbols correspond to different qualitative outcomes, whereas the

color bar on the right hand side indicates the time step at which the periodic

dynamic breaks.

We see from Figure 4.4 that there are roughly three different issues that could

prevent us from having periodic dynamics:

1. The individual does not return to habitats if τ1 is not large

enough.

The larger τ1 is, the more enduring the long-term memory would be. With

a rather small τ1, the individual would lose a positive long-term memory

of both habitats A and B relatively quickly. Hence the individual ends up

wandering around, instead of returning to A or B directly. See Figure 4.5 as

an example.
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Figure 4.5: Trajectory when τ1 ∼ τ2 ∼ 0.1. In this case the animal does not return

to A directly after visiting B.

2. The individual does not leave an exhausted habitat, if τ2 is not

small enough.

The smaller τ2 is, the faster the short-term memory is updated. If the short-

term memory is not updated fast enough, the individual cannot respond

to the environmental change rapidly. Therefore, in this case the individual

never leaves its current habitat; see for example Figure 4.6.
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Figure 4.6: Trajectory when τ1 ∼ τ2 ∼ 10. The individual never leaves A because

of the large τ2.

3. The individual could have an early return and never reach the

other habitat, when τ2 is too small while τ1 is large.

We mentioned in the second case that τ2 needs to be small enough for the fast

update of short-term memory, but there is also a lower bound for τ2. The

purpose of this lower bound is to make sure that the short-term memory

has a high enough strength, so that the individual remembers the previous

habitat is exhausted at least until it moves past the middle point of A and

B. Otherwise, an early return could happen and the migration would not be

successful.

See Figure 4.7 as an example. The individual starts to leave A when the

resources in A become exhausted, but the individual forgets that A lacks of

resources before it moves past the middle point of its journey. Because the
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individual has a positive long-term memory of both habitats and it is closer

to A, the individual chooses to return before reaching B.
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Figure 4.7: Trajectory when τ1 ∼ 100, τ2 ∼ 0.01. Because of the small τ2 the

information of Ms has been lost before the individual moves past the middle point

of A and B. Hence the return to A happens early and the individual never reaches

B.

4.5 Examples of further experiments

Beyond the simple time-periodic environment introduced in Section 3.1, sev-

eral different environments could also be tested for further experiments. We give

examples in the following:

• Three Habitats. We could test our model under a time-periodic environ-

ment with three habitats A, B and C. For one example of results, see Figure

4.8.

• Changing habitats. In this example we again have two habitats A and
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Figure 4.8: Here we have periodic dynamics, but the migration dynamics and

environmental change do not have the same period. This can be observed from

the movie: https://umd.box.com/s/01nvkkmfbn76y4fnn8kw0unwueac7ncs

B, but with A shrinking and B growing. At the end of experiments, A

disappears entirely. See Figure 4.9.
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Changing Habitats: trajectory at time step: 798
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Figure 4.9: This is a result with an relatively small τ1. The trajec-

tory shows that the individual does not return to the area of A af-

ter the disappearance of that habitat. The movie can be found in:

https://umd.box.com/s/ejkucrm3ghnxr2loazu65k5lcma99bsk
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• Intermediate Habitats/Dangerous Locations. Here we add two bad

areas in the middle of A and B, and two intermediate habitats above the

bad regions.
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Intermediate Habitats: trajectory at time step: 493
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Figure 4.10: We see from the trajectory that the individual always avoids

the bad areas, and sometimes chooses to reside in the intermediate habi-

tats over A and B. Those intermediate habitats are good enough to re-

tain the migrants. This type of phenomena has been observed in nature,

see for example the article [100]. The movie of simulation can be found in:

https://umd.box.com/s/z47d0nqw30t3m2azvb6ey7h8pmd8sg9m

• Two Habitats with Random Seasonal Changes. In this example we

again assume the good habitat alternates between A and B. But different

from before, each duration that resources stay in A or B is a random variable.

The random variable is positive and uniformly distributed with the mean T

and variance σ2.

We say the individual succeeds one journey, if it reaches one habitat from
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the other before the destination becomes exhausted. If the location of good

resources changes n times across an experiment, it is considered there are

totally n possible journeys.

In our experiments the time scales of long and short-term memory are fixed,

and T is chosen such that the individual can succeed all possible journeys

when the environment is time-periodic with T as the fixed duration for both

habitats.

Recall from Section 4.2, we showed there is only a small region of appropriate

time scales that the individual can successfully produce periodic dynamics

under a time-periodic environment. When the duration of resources changes,

the appropriate time scales change accordingly. The appropriate time scales

should be smaller for a shorter duration, while larger when the duration is

longer.

Now the duration of resources staying in one habitat is random each time,

the appropriate time scales for each possible journey can be different. Ev-

ery time our prior fixed time scales locate outside of the appropriate region

corresponding to a certain duration in the experiment, the corresponding

possible journey fails. For instance, if one of the duration of resources is

really short, the individual could miss the corresponding possible journey

because the fixed τ2 is not small enough to respond to the fast environmental

change, (which is the second case discussed in Section 4.2).
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Therefore, the larger the variance in environmental duration is, the more

likely that migratory journeys will fail. To visualize this tendency, we ran a

series of experiments. All experiments have a total of 10 possible journeys and

the time scales are fixed (τ1 ∼ 10, τ2 ∼ 0.1). T is set at 60 time steps, such

that all 10 possible journeys are successful when there is no variance. A small

(σ2 ∼ 10), moderate (σ2 ∼ 100) and large variance (σ2 ∼ 1000) case are then

considered. We run 10 trials for each case. There are on average 9.5 successful

journeys for the small variance case, 7.7 for moderate variance, and only 3.3

for large variance; see Figure 4.11. Roughly speaking, it becomes harder

for the individual to follow the resources when the variance in the resource

duration is increased. From this point of view, environmental persistence

is very important for a memory-based migration to have a periodic pattern.
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Figure 4.11: This chart indicates how many journeys on average the individual

succeeds for the entire experiment time. A tendency is shown from this chart that

the larger the variance in environmental duration is, the less successful journeys

the individual has.
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4.6 Conclusion

In this paper we develop a model for memory-based migrations of one indi-

vidual over a broad range of memory mechanisms. Through numerical simulations

under a simple time-periodic environment, periodic migration patterns are suc-

cessfully recovered. Furthermore, we discover that in order to produce a periodic

movement, the individual must be able to gather and carry enough information

from both short and long-term memory, and capable of discriminating which in-

formation is more important with appropriate time scales.

While periodic movements can be recovered, the memory systems in our

model do not include any intrinsic, a priori periodicity. The resulting periodic

migration patterns are developed by the individual as its adaptation to periodic

environmental changes.

Here we have considered the dynamics of one individual. For future research,

it would be interesting to extend this memory-based model to a model for several

individuals. Information sharing behaviors have been observed in many different

species and shown beneficial for foraging efficiency [82]. In this future extension,

the communications between individuals will be introduced, so that the interplay

between information exchanges, individual memory, and group dynamics can be

discussed.
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Appendix A: Example for the non-degeneracy condition

We say a(v) ∈ Lip(R) satisfies (2.8) with ν ∈ (0, 1] on intervals if

| {v : a(v) ∈ I} | ≤ C|I|ν , for all intervals I, (A.1)

And a(v) satisfies the non-degeneracy condition on open sets with ν ∈ (0, 1]:

| {v : a(v) ∈ O} | ≤ C|O|ν , for all open set O. (A.2)

Here we give an example to show (A.1) cannot imply (A.2) with the same ν

when ν = 1/2. In fact the construction can be adapted to produce examples for

all ν < 1. Notice (A.1) and (A.2) are equivalent when ν = 1.

Define a :
[
0,
∑∞

i=0
1
3i

]
→
[
0,
∑∞

i=0
1

32i

]
⊂ R as follows:

on [0, 1] = D1, a(v) = a1(v) = 1− (1− v)2,

on

[
1, 1 +

1

3

]
= D2, a(v) = a2(v) = 1 +

1

32
a1((v − 1)3)

...

The general formula is

a(v) = an(v) =
n−2∑
i=0

1

32i
+

1

32(n−1)
a1

((
v −

n−2∑
i=0

1

3i

)
3n−1

)
on

[
n−2∑
i=0

1

3i
,

n−1∑
i=0

1

3i

]
= Dn.

We shall prove that a satisfies condition (A.1) with ν = 1/2, but it fails (A.2)

with the same ν.
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Figure A.1: graph of a(v)

Proposition 4. There exists C > 0 such that for any interval I,

|a−1(I)| = |{v : a(v) ∈ I}| ≤ C|I|1/2. (A.3)

Proof. Consider an interval I =
[∑n−1

i=0
1

32i
− p2,

∑n−1
i=0

1
32i
− p1

]
= [c, d] inside some

a(Dn), where 0 ≤ p1 < p2 ≤ 1
3n−1 . So |I| = p2 − p1. Denote the pre-image of c and

d by v2 and v1 respectively. Then we have for each k = 1, 2,

an(vk) =
n−2∑
i=0

1

32i
+

1

32(n−1)
a1

(
(vk −

n−2∑
i=0

1

3i
)3n−1

)
=

n−1∑
i=0

1

32i
− pk.

So

a−1
n

(
n−1∑
i=0

1

32i
− p1

)
= vk =

n−1∑
i=0

1

3i
−√pk.

We therefore have

|a−1(I)| = √p2 −
√
p1 ≤

√
p2 − p1 = |I|1/2.

If I = [c, d] ⊂ a(∪m2
i=m1

Di), separate I into three sub-intervals: I = I1 ∪ I2 ∪ I3,
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where I1 =
[
c,
∑m1−1

i=0
1

32i

]
, I2 =

[∑m1−1
i=0

1
32i
,
∑m2−2

i=0
1

32i

]
and I3 =

[∑m2−2
i=0

1
32i
, d
]
.

The above case applies to I1 and I3, so |a−1(I1)| ≤ |I1|1/2 and |a−1(I3)| ≤ |I3|1/2.

For I2, we have

|I2| =
m2−2∑
m1

1

32i
=

9

8

1

32m1

[
1−

(
1

9

)m2−m1−1
]
.

And

|a−1(I2)|2 =

(
m2−2∑
m1

1

3i

)2

=
9

4

1

32m1

[
1−

(
1

3

)m2−m1−1
]2

≤ 9

4

1

32m1

[
1− 2

(
1

9

)m2−m1−1

+

(
1

9

)m2−m1−1
]

= 2|I2|.

So

|a−1(I2)| ≤ 21/2|I2|1/2.

Notice that this inequality is still true when m2 goes to infinity, so there are

no issues near the right end point.

Combining the three inequalities we get

|a−1(I)| =
3∑
i=1

|a−1(Ii)| ≤ 21/2

3∑
i=1

|Ii|1/2 ≤ 61/2

(
3∑
i=1

|Ii|

)1/2

= 61/2|I|1/2.

Proposition 5. There exists a sequence of set Om such that

|a−1(Om)|
|Om|1/2

→∞ as m→∞.

90



Proof. Let

Om = ∪mn=1In,

where In =
[∑n−1

i=0
1

32i
− 1

32(m−1) ,
∑n−1

i=0
1

32i

]
for all 1 ≤ n ≤ m.

So

|In| =
1

32(m−1)
for all 1 ≤ n ≤ m,

and

|a−1(In)| = |In|1/2 =
1

3m−1
for all 1 ≤ n ≤ m.

Therefore,

|a−1(Om)|
|Om|1/2

=
m

3m−1(
m

32(m−1)

)1/2
=
√
m→∞ as m→∞.
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Appendix B: Derivation of Hamilton-Jacobi-Bellman equation

Proposition 6. Let

ψ(t, x) = inf
x(s),x(t)=x

C({x(s), T}),

where

C({x(s), T}) =

∫ T

t

[
exp(−H(s,x(s))) +

λ

2
|x′(s)|2

]
ds.

Assume the value function ψ is C1 in (x, t), then ψ solves

∂tψ = sup
p

{
−p · ∇xψ − exp(−H)− λ

2
|p|2
}
.

Moreover, the optimal trajectory is the one starting with velocity −λ−1∇xψ, in

which case gives the Hamilton-Jacobian-Bellman equation:

∂tψ =
|∇xψ|2

2λ
− exp(−H(t, x)).

Proof. For a h > 0, for any vector p, we consider the line segment `(s) = x+p(s−t)

from s = t to s = t+ h. Connecting ` and any path x(s) from the point x+ ph at

time s = t+ h to s = T , we get a path x̃ starting from x at time s = t and end at

time s = T. By the definition of ψ,

ψ(t, x) ≤ inf
p,x̃
C(x̃) =

∫ t+h

t

[
exp(−H(s, `(s))) +

λ

2
|p|2
]
ds+ ψ(t+ h, x+ ph)

So

ψ(t+ h, x+ ph)− ψ(t, x)

h
≥ −1

h

∫ t+h

t

[
exp(−H(s, `(s))) +

λ

2
|p|2
]
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Taking h→ 0, we derive

∂tψ ≥ −p · ∇xψ − exp(−H(t, x))− λ

2
|p|2.

This inequality holds for every p, hence

inf
p

{
∂tψ + p · ∇xψ + exp(−H(t, x)) +

λ

2
|p|2
}
≥ 0.

In fact the equality holds as zero is realized when p is chosen as the velocity

of the optimal trajectory at s = t. Let xop be the optimal trajectory from s = t to

t+ h, then

ψ(t, x) =

∫ t+h

t

[
exp(−H(s,xop(s))) +

λ

2
|x′op|2

]
ds+ ψ(t+ h,xop(t+ h)).

So

ψ(t+ h,xop(t+ h))− ψ(t, x)

h
= −1

h

∫ t+h

t

[
exp(−H(s,xop(s))) +

λ

2
|x′op|2

]
ds

Taking h→ 0,

∂tψ(t, x) = −x′op · ∇xψ − exp(−H(t, x))− λ

2
|x′op|2,

for some vector x′op.

We rewrite

inf
p

{
∂tψ + p · ∇xψ + exp(−H(t, x)) +

λ

2
|p|2
}

= 0

to

∂tψ = sup
p

{
−p · ∇xψ − exp(−H(t, x))− λ

2
|p|2
}
.

93



Notice inside the parentheses is a quadratic form in p,

∂tψ = sup
p

{
−p · ∇xψ − exp(−H(t, x))− λ

2
|p|2
}

= sup
p

{
−λ

2

(
p+
∇xψ

λ

)2

+
|∇xψ|2

2λ
− exp(−H(t, x))

}

=
|∇xψ|2

2λ
− exp(−H(t, x)),

which is realized when p = −λ−1∇xψ.
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Appendix C: Implementation for our model

Consider Ω = [0, 1]× [0, 1] and the final time T > 0. We discretize [0, T ]×Ω

uniformly for Nt ×N2 increments.

1. Update fitness P with implicit scheme if E is positive, explicit if negative:

P (tk+1) =


P (tk)+E(tk,X(tk),Y (tk))P∆t

1+E(tk,X(tk),Y (tk))∆t

P (tk) + E(tk, X(tk), Y (tk))(P − P (tk))∆t.

Stop if P (tk) ≤ P .

2. Update memory M`, Ms:

M`(tk+1, xi, yj) = M`(tk, xi, yj)+

∆t τ

{
−d
√
|M`(tk, xi, yj)||M`(tk, xi, yj)|+ Perception

}
, (C.1)

where Perception = uK(X(tk), Y (tk), xi, yj)[E(tk, xi, yj)−M`(tk, xi, yj)].

If M` changes sign, put it zero. Same formula for Ms.

3. Update evaluation H:

H[tk+1, xi, yj] =
|Ms[tk, xi, yj]|

(1 + |Ms[tk, xi, yj]|)
Ms[tk, xi, yj]+

1

(1 + |Ms[tk, xi, yj]|)
M`[tk, xi, yj]. (C.2)
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4. Solve eikonal equation |∇xψ
b| =

√
2λexp(−H) with boundaries

{x : H(x) = b} for infΩ(H) ≤ b ≤ supΩ(H). Then take ψ = ψb0 ,

where b0 = min
{
b : ψb(X, Y ) + exp(−b)

}
.

5. Update Position (X, Y ):

∆X =



[ψ(tk, xi+1, yj)− ψ(tk, xi−1, yj)] /(2∆x) if 1
N
< X < 1− 1

N

−ψ(tk, x1, yj)/(2∆x) if 0 ≤ X ≤ 1
N

ψ(tk, xN−1, yj)/(2∆x) if 1
N
≤ X ≤ 1.

Similar for ∆Y. Let (rx, ry) be a random variable with standard normal dis-

tribution in 2 dimension.
X(tk+1) = X(tk)− χ(P, (E(t,X(tk), Y (tk))))∆X∆t+ σrx

√
∆t

Y (tk+1) = Y (tk)− χ(P, (E(t,X(tk), Y (tk))))∆Y∆t+ σry
√

∆t.

Repeat the procedure until t = T.

We make two remarks about the implementation. First, as sgn(M)
√
|M | is

not smooth and the finite difference method is unstable near zero, whenever M

changes sign, we put it as zero for the new step.

Second, to contain the experiment inside a bounded domain Ω for all time,

we solve the eikonal equation for multiple level sets inside Ω, instead of ∂Ω, and

choose the path with the smallest cost. Otherwise the dynamics will eventually

escape as the cost of moving around forever will eventually become larger than one

fixed exit cost.
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