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The systems of heavy quarks are particularly interesting because they lend

themselves to effective field theory techniques. Typically this involves considering

an expansion about the limit of infinitely heavy quarks. In this limit, the phe-

nomenology of heavy quark systems differs qualitatively from light quark systems;

this provides a window into the workings of QCD. However, in the real world, heavy

quarks have a finite mass. This dissertation will examine a number of heavy quark

systems and describe the associated phenomenology It will also probe the extent

to which realistic systems are well approximated by expansions about the heavy

quark limit. This will be done with direct comparison with experimental data and

models with a finite heavy quark. In the end, this study will show that, many of the

systems considered here, it is unlikely that realistic heavy quarks can be accurately

described by such expansions.
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Chapter 1

Introduction

1.1 Overview

Quantum Chromodynamics (or QCD) is believed to be the fundamental the-

ory describing hadronic physics. One key goal of nuclear and hadronic physics is to

use the fundamental principles of QCD to explain nuclear and hadronic phenom-

ena. However, QCD is a non-linear theory which makes the task of understanding

hadronic phenomena extremely difficult from first principles. To gain insights into

the complexity of QCD, one often must resort either to models which are intended

to capture specific aspects of QCD or derive effective theories in particular limits of

QCD and to develop expansions about them. In either method, it is always impor-

tant to relate the models and the effective theories back to QCD and experimental

physics.

One important subset of QCD physics is the examination of heavy quark sys-

tems. Hadronic systems which contain heavy quarks provide unique and interesting

phenomenology compared with their lighter counterparts. The heavy quark, in these

systems, provides an additional handle for understanding QCD because the heavy

quark has a typical energy scale which is different from the light quarks. The pres-

ence of two scales in heavy quark systems naturally leads to the construction of an

effective theory and a small parameter out of which a peturbative expansion can be
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made.

This dissertation will examine the phenomenology of a variety of different

heavy quark systems. The systems were chosen because of their connection to

hadronic states beyond the näıve quark model. In each of the systems considered,

the phenomenology of systems where the heavy quark mass is taken to be arbitrarily

large (this is known as the heavy quark limit) is examined. This limit may be well

justified for these systems since the heavy quark mass is much heavier than any

other energy scale in the problem. However, much of the work presented here will

investigate how close these systems are in practice to this extreme limit for realistic

systems. In other words, does one expect to be able to experimentally detect some

of the unique features of the heavy quark limit in these particular systems?

The systems that will be examined here include: the formation of heavy pen-

taquark states from heavy meson-nucleon interactions in a potential model, the

examination of heavy baryon states in the context of the Skyrme model, and the

use of an emergent symmetry of QCD to relate doubly heavy diquarks to heavy anti-

quarks. A final system considered is very different from the others as it pertains

to understanding the ratio of viscosity to entropy density as a universal property of

fluids. This is related to the other chapters as gas of heavy mesons (mesons con-

taining a single heavy quark) plays a central role. Furthermore, the theme of trying

to understand one’s expectations of QCD is again revisited for these fluid systems.

What makes QCD so difficult? QCD is constructed as a non-abelian gauge

theory based upon the group SU(3)C [1, 2, 3]. This group structure is due to the

belief that quarks have an intrinsic degree of freedom, called color, which comes in
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three types, red, blue, and green. In the theory, the interactions between quarks is

mediated by particles known as gluons which are represented by the gauge fields.

The gauge structure of the theory leads to a relatively simple Lagrangian,

LQCD =
∑

flavors

q̄(iD/−mf)q −
1

4
GA

µνG
µν
A , (1.1)

where q are the quark fields, Dµ is the covariant derivative, mf is the bare mass

of each flavor of quark, and GA
µν , the field strength of the gluon fields, is defined

as GA
µν ≡ ∂µA

A
ν + ∂νA

A
µ + ifABCAB

µA
C
ν with fABC as the SU(3) structure constant

and AA
µ as the gluon field. The covariant derivative is defined as Dµ = ∂µ + igtCAC

µ

where tC is a matrix of the fundamental representation of SU(3), and g is the QCD

bare strong coupling constant.

At first glance the structure of the QCD Lagrangian does not appear to be

very complicated. There are terms for the kinetic energy for both quarks and gluons

as well as interaction terms stemming from the covariant derivative. The difficul-

ties begin when one expands out the field strength term, −1
4
GA

µνG
µν
A , in terms of

the gluon fields. From this expansion, one discovers that there are three and four

gluon interaction terms. These additional three and four gluon interactions expand

the number of Feynman diagrams for a particular process. These added diagrams

inherently lead to complications. A critical one is that when one attempts to de-

termine the running of the strong coupling constant, these added interactions cause

the coupling to grow at low energies. This running is exactly opposite to that of

the couplings for the electro-magnetic and weak forces where at low energies their

couplings are weak. This phenomenon, where the strong coupling constant is small
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at high momenta, is called asymptotic freedom and was first derived in the context

of QCD in Refs. [1, 4, 5, 6]. At low momenta, one expects the opposite, i.e., large

couplings. The large couplings prevent a meaningful perturbative expansion in pow-

ers of the strong coupling constant for low energy hadronic physics. This lack of

a perturbative expansion greatly complicates hadronic calculation from the funda-

mental principles of QCD and necessitates the use of non-perturbative techniques

in dealing with QCD.

There are many non-perturbative techniques which have been useful in study-

ing QCD. The technique which when applicable captures QCD is lattice QCD. By

using different computation techniques, one can approximate QCD path integrals

numerically. In the future, this technique should allow physicists to numerically solve

QCD with increasing accuracy. Currently simplifying approximations are needed for

many observables due to computational power.

The most important non-perturbative technique for this dissertation is the use

of effective field theories. In general, effective field theory is a technique which is

useful when a theory has a clean separation of at least two scales. For the case of two

distinct scales, these two scales can be thought of as a high energy and a low energy

scale. Typically, the low energy scale would control the long-distance effects while

the high energy scale is needed to probe short-distance effects. In certain problems,

these two energy scales do not influence one another. In these cases, an effective

field theory is a very practical tool. Instead of describing the system in terms of

the original degrees of freedom, effective field theory is based on effective degrees of

freedom which incorporate the short-distance physics in a non-perturbative manner.
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For example, in chiral perturbation theory, the bare quark mass is assumed to be

small. This allows one to integrate out the short-distance effects of the light quarks

and the gluons and describe a theory of light mesons. Chiral perturbation theory

can investigate the meson interactions and hadronic effects without the complication

associated with forming the meson states which is included in the full theory of

QCD. Effective field theory techniques are especially important because they can

be applied to any system in which a separation of scale is seen.

Effective field theories are particularly powerful in the context of QCD because

they can convert a theory without a näıve perturbative expansion into one with a

well-defined expansion. However, the perturbative expansion produced by effective

theories is still susceptible to the standard problems of expansions. The expansion,

and thereby the effective theory, will break down when either the expansion param-

eter can no longer be treated as small or the coefficients of the expansion, which

are assume to be O(1), are unusually large. In this study, when it is shown that

the chosen effective theory is no longer applicable, it will be due to one of these two

problems.

Heavy quark physics lends itself very well to the effective field theory approach

to QCD because of the scale separation between the heavy quark mass, mQ, and the

hadronic scale, ΛH . In the next section, the heavy quark effective theory (HQET)

will be discussed. The section following that introduces the large Nc limit. This is

another technique (though not an effective theory) which can translate QCD into a

systematic expansion. Though it may not be immediately obvious at the outset, the

large Nc limit and the 1/Nc expansion play a critical role in this work. This chapter
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concludes with a historical introduction to exotic particles, or hadrons not derivable

from a näıve quark model. These sections are intended to provide the theoretical

backbone as well as the context for the other chapters.

The remaining chapters in this dissertation are structured as follows. Chapter

2 investigates the existence of heavy pentaquark states and attempts to construct

such states from the binding of a heavy meson and a nucleon through a one-pion

exchange potential. Chapter 3 extends this work in the context of a Skyrme type

model. The investigation there focuses on the binding of regular heavy baryons

with some insights into heavy pentaquark states. Lastly this chapter analyzes the

Isgur-Wise function using the framework of the Skyrme model.

Chapter 4 investigates an emergent symmetry of QCD, namely the doubly

heavy quark – anti-quark symmetry. This chapter compares the hadronic spectrum

expected from the heavy quark limit with that observed in nature, and examines

the possibility that this symmetry may be relevant in understanding the physical

spectrum. The last chapter of this dissertation, Chapter 5, is somewhat different

from the work in the other chapters. This chapter investigates the claim that a

universal bound on the ratio of shear viscosity to entropy density exists. A heavy

quark system, that of a heavy meson gas, plays a critical role in examining this

claim. A specific counterexample to the claim of a universal bound is examined.

The research presented here is based upon the work in Refs. [7, 8, 9, 10] and

borrows substantially from them.

6



1.2 Heavy Quark Effective Theory

The heavy quark limit and heavy quark effective theory (HQET) play impor-

tant roles in the work presented here. Therefore a thorough introduction of these

topics will be presented. The concept of a heavy quark limit was considered by

Isgur and Wise [11, 12], while the development of HQET had contributions from

Refs. [13, 14, 15] along with others.

When considering heavy quark physics, one immediately observes the natural

presence of two scales; the mass of the heavy quark mQ and the hadronic scale ΛH,

which is typically taken to be ΛQCD or a few times this. The heavy quark limit

considers the case when mQ � ΛH , or equivalently, mQ → ∞ while ΛH remains

finite. In this limit, one can formulate an effective field theory with the expansion

parameter ΛH

mQ
. This effective theory is Heavy Quark Effective Theory (HQET).

To formulate HQET consider the following. In the heavy quark limit, though

the mass of the quark is very large, the momentum of the particle may be finite.

Because of this, it is conventional to label the states not by their momentum, but

by their velocity. This transformation is simply achieved by having ~p = mQ~v.

Furthermore, the large quark mass suppresses the pair creation of heavy quarks.

To understand this suppression, remember that one can always describe the heavy

quark’s on shell momentum as ~p = mQ~v. If the particle is off shell, it can only be off

shell by an amount of order ΛH because this is the natural scale of the dynamics.

Therefore, the off shell energy is not sufficient to create a second heavy quark.

Using these ideas, HQET can be formulated as in Ref. [16]. To begin, consider
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the Fourier decomposition of a heavy quark field:

q = e−imQv·xh(Q)
v (x), (1.2)

where h
(Q)
v is the field which destroys the heavy quark with velocity v and heavy

quark flavor Q. Again note that the creation of a heavy anti-quark is not possible

with this field due to pair creation suppression. The heavy quark field, hv, also

satisfies the relation,

v/h(Q)
v = h(Q)

v . (1.3)

Inserting this field into the quark term in the QCD Lagrangian, Eq. (1.1), the HQET

Lagrangian to leading order becomes

LHQET
0 = h̄(Q)

v (iD/−mQ(1 − v/))h(Q)
v (1.4)

which can be reduced using Eq. (1.3) to

L0 = h̄(Q)
v iv ·Dh(Q)

v . (1.5)

Note a few observations about this Lagrangian. This Lagrangian does not depend

on the spin of the heavy quark; this in turn suggests that at leading order HQET

has an emergent SU(2) spin symmetry [11, 12]. This spin symmetry implies that

hadronic states which differ only in the heavy quark spin, such as the D and D∗ or

B and B∗ mesons, should be degenerate. As will be shown, this degeneracy will be

broken at next-to-leading order. The leading order Lagrangian also has a SU(Nf )

flavor symmetry where Nf is the number of heavy quark flavors. This is because

the derived Lagrangian is independent of heavy quark flavor, so each quark flavor
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which is massive enough to consider HQET will lead to this same leading order

Lagrangian.

The 1/mQ corrections to this leading order Lagrangian can be easily formu-

lated. There are two sources for 1/mQ corrections. The first comes from extending

the kinetic energy terms. This can be done by considering the first correction to the

hv field. That is, the Fourier decomposition of Eq. (1.2) can be written as

q = e−imQv·x[h(Q)
v + χ(Q)

v ] (1.6)

where the field χv is 1/mQ suppressed from hv and has the property that

v/χv = −χv. (1.7)

Furthermore, one can express χv in terms of hv by using Eq. (1.6) in the equation

of motion for the q field,

(iD/−mQ)q = 0. (1.8)

This leads to

χ(Q)
v =

1

2mQ

iD/ [h(Q)
v + χ(Q)

v ] → 1

2mQ

iD/h(Q)
v +O(1/mQ). (1.9)

Using this expression for the χ field and Eq. (1.6) in the original QCD Lagrangian

leads to the leading order heavy quark Lagrangian of Eq. (1.5) and the 1/mQ cor-

rection,

Lkin
1 = h̄(Q)

v

(iD)2

2mQ
h(Q)

v . (1.10)

The second 1/mQ correction to the heavy quark Lagrangian comes from considering

the color magnetic moment couplings. This is O(1/mQ) because the color magnetic
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moment is proportional to 1/mQ as with normal quarks. This leads to the term

Lcmm
1 = −α2(µ)h̄(Q)

v g
Gαβσ

αβ

4mQ
h(Q)

v , (1.11)

where g is the strong coupling constant, G is the color field strength, and α2(µ)

is the color magnetic coupling which can be renormalized. Examining the two

1/mQ corrections in Eqs. (1.10) and (1.11) reveals that neither term preserves the

flavor symmetry of the leading order Lagrangian (because both depend on flavor

dependent quark mass) while only Eq. (1.10) preserves the spin symmetry. In the

end, the HQET Lagrangian through O(1/mQ) reads:

LHQET = h̄(Q)
v iv ·Dh(Q)

v + h̄(Q)
v

(iD)2

2mQ
h(Q)

v − α2(µ)h̄(Q)
v g

Gαβσ
αβ

4mQ
h(Q)

v . (1.12)

Further corrections to this Lagrangian can be derived in a manner similar to that

described here.

In addition to expressing HQET at the level of heavy quarks, one can consider

the physics from the hadronic level [17]. Here instead of investigating the dynamics

of heavy quarks, the relevant degrees of freedom become heavy mesons. Since the

heavy and light quarks decouple within the heavy mesons in the heavy quark limit,

the structure of the effective theory of mesons should be similar to the structure of

the heavy quark theory. When coupling the heavy mesons to the light hadrons, it

is important that the light hadrons exhibit chiral symmetry. This is incorporated

in the standard way for chiral perturbation theory. Here the light mesons with two

light quark flavors are treated as the pseudo-Goldstone bosons creating by breaking

the SU(2)L × SU(2)R chiral symmetry into the SU(2)V vector subgroup. These
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pseudo-Goldstone fields can be expressed as

Σ = exp
(2iM

fπ

)

(1.13)

where M is the meson mass matrix, defined for two light flavors as,

M =









√

1
2
π0 π+

π− −
√

1
2
π0









, (1.14)

and fπ is the pion decay constant. In addition to the Σ field, it is also useful to

define

ξ =
√

Σ. (1.15)

It is equivalent to describe the mesons in terms of either the Σ or the ξ fields.

However, it may be more convenient to use one or the other for different systems.

In addition to the chiral symmetry of the light mesons, the effective theory

should exhibit the symmetries associated with the heavy quark limit, namely the

spin symmetry. As mentioned before, this symmetry creates a degeneracy between

the pseudoscalar D meson and the vector D∗. To incorporate this symmetry into

the effective Lagrangian, a new heavy meson field which combines these two spin

states into one field can be defined;

Ha =
(1 + v/)

2
[P ∗

aµγ
µ − Paγ5], (1.16)

where P ∗
aµ destroys the vector state, Pa destroys the pseudoscalar state, v is the

velocity of the heavy meson, and a is a flavor label of the light quark in the meson.

Just as with the heavy quark fields, the operators only destroy heavy particles, and

never create heavy anti-particles. The vector field is also subject to the constraint
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vµP
µ∗
a = 0. Furthermore, the field conjugate to H can also be introduced as,

H̄a = γ0H
†
aγ0 = [P ∗†

aµγ
µ + P †

aγ5]
(1 + v/)

2
. (1.17)

The effective Lagrangian which can be formed from these fields can be con-

structed by writing the most general Lagrangian coupling the two sets of fields.

L = − iTrH̄avµ∂
µHa +

i

2
TrH̄aHbv

µ[ξ†∂µξ + ξ∂µξ
†]ba

+
ig

2
TrH̄aHbγνγ5[ξ

†∂νξ − ξ∂νξ†]ba + · · · ,
(1.18)

where the ellipse denotes terms with more derivatives, terms which are 1/mQ sup-

pressed, or which explicitly break some of the symmetries. The trace in each of the

terms is over spin states. One can show that this Lagrangian explicitly respects both

the heavy quark symmetry as well as chiral symmetry. The first term in Eq. (1.18)

is the kinetic energy of the heavy meson fields and has a similar structure to the

kinetic term for heavy quarks. The second term couples the H field to the vector

current of light mesons, V µ = i
2
(ξ†∂µξ + ξ∂µξ†), while the last term couples the

H field to the axial current Aµ = i
2
(ξ†∂µξ − ξ∂µξ†). The coupling to the vector

current is fixed based upon the covariant derivative, while the axial coupling is not

theoretically fixed by other symmetries and is given by g in Eq. (1.18).

It can also be useful to express the same Lagrangian rather in terms of the Σ

fields. With the proper substitution the Lagrangian reads,

L = −iTrH̄avµ∂
µHa +

i

2
TrH̄aHbv

µ(Σ†∂µΣ)ba +
ig

2
TrH̄aHbγ

νγ5(Σ†∂νΣ)ba + · · · .

(1.19)

These Lagrangians can be used in the standard way to formulate an effective theory

of heavy mesons and light hadrons. As will be shown, depending on the assumptions
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going into the light quark ansatzes, the physical description of the effective theory

will differ.

1.3 Large Nc and the 1/Nc expansion

The large Nc limit and the 1/Nc expansion plays a critical role in some cal-

culations in this dissertation. A brief introduction of what is large Nc is therefore

useful.

Unlike in QED, the coupling constant for QCD is not small enough for a

perturbative expansion to be constructed in the hadronic energy regime. Therefore,

it has long been an outstanding problem to determine if QCD had another intrinsic

parameter for which a systematic expansion could be constructed. To this end,

’t Hooft noted [18, 19] that if one replaced the QCD SU(3)c gauge group with

SU(Nc)c then QCD could be written as an expansion in 1/Nc. This change in the

group structure is based on the replacement of the three colors associated with QCD

with Nc colors. By allowing the number of colors to become large, the proposed 1/Nc

expansion can become useful. Many key results of the large Nc limit which were

first described by ’t Hooft and Witten [18, 19, 20], are summarized in Table 1.1.

For an understanding of the work in this study, the Nc dependence of the strong

coupling constant, the baryon mass, and the three types of interactions listed in

Table 1.1 are important and thus will be discussed in some detail here.

Many of the features of large Nc are due to the scaling of the strong cou-

pling constant scales. To understand why g scales like 1/
√
Nc, consider the leading
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Quantity Large Nc scaling

Strong coupling constant 1√
Nc

Closed color loops Nc

Meson mass N0
c

Baryon mass Nc

Meson-meson interaction 1
Nc

Baryon-baryon interaction Nc

Baryon-meson interaction N0
c

Meson creation vertex
√
Nc

Vertex of k mesons N
−( k−2

2
)

c

Table 1.1: Large Nc scaling relations.

contribution to gluonic vacuum polarization.

This diagram has a single gluon loop with two copies of the coupling, g2. Inside

the loop, there is an unspecified color label; thus the diagram should be proportional

to Nc. However, it is quite unreasonable to believe that this diagram (and higher

loop diagrams as well) would be more dominant than the gluon propagator or that

it would be divergent in the large Nc limit. This divergence can be absorbed by

allowing the coupling constant to depend on Nc. Since the diagram is proportional

to g2Nc, by choosing g to scale like g ∼ g0/
√
Nc, the overall dependence of the

diagram to Nc becomes N0
c (for fixed values of the Nc independent parameter g0.).

This choice not only resolves the possible inconsistent divergences for the gluon

vacuum polarization, but it also creates a consistent power counting scheme to

evaluate the Nc dependence of other diagrams. This scheme gives rise to the 1/Nc

expansion.

To understand how the mass of the baryon depends on Nc, remember that
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a baryon is a composite object consisting of Nc quarks. Each of the Nc colors is

represented exactly once to ensure the color neutrality of the baryon. As Witten first

described [20], the baryon mass has three factors: the rest mass of the constituent

quarks, their kinetic energy, and the interaction potential;

Baryon Mass = Quark masses + Quark kinetic energy− Potential energy. (1.20)

The individual quark mass and kinetic energy should be independent of Nc. The

combination of the Nc constituent quarks in the baryon causes both of these terms

to scale like Nc. But what about the interaction potential? For a complete under-

standing, one must consider a many-body Hartree-Fock calculation, but the general

Nc dependence can be obtained from examining the most näıve two-body interaction

between quarks. This is dominated by the single gluon exchange which should be

proportional to g2, or scale like 1/Nc. Additionally, there is a combinatorics factor

because the gluon exchange can be between any two of the baryon’s Nc quarks.

This gives a factor of 1
2
Nc(Nc − 1), or N2

c for large Nc. Therefore, the interaction

potential of the baryon also scales like Nc. Combining the rest mass, kinetic energy,

and interaction potential dependence, one concludes that the baryon mass scales as

Nc.

From the Nc dependence of the strong coupling constant, it is straightforward

to formulate the Nc dependence on meson-meson interactions. Meson-meson inter-

actions are dominated by gluon exchange, with the leading order attributed to a

single gluon exchange. Such interactions are proportional to the coupling constant

squared, g2; thus, from before, the meson-meson interaction scales like 1/Nc. This
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implies that in the large Nc limit, mesons do not interact with one another.

The baryon-baryon interaction is a little more complicated than the meson-

meson interactions. The baryon interactions are dominated by the diagrams which

includes the exchange of a single quark with or without the accompaniment of a

gluon exchange. The baryon interaction through a quark exchange without a gluon

scales like Nc. One can choose to exchange any of the Nc quarks from one of the

baryons, but to ensure that the final baryon states are color neutral, there is only

one possible quark in the other baryon with exactly the same color as the initial

exchanged quark. Hence the overall dependence of Nc. When the quark exchange is

accompanied by a gluon exchange, the gluon can restore the color neutrality if the

exchanged quarks have different colors. Therefore, the interaction depends on the

combinatorics factor, N2
c , from choosing a single quark from each of the two baryons.

There is also a factor of 1/Nc from the coupling constants associated with the gluon

exchange. Therefore the overall dependence of the baryon-baryon interaction is Nc.

It may seem unusual that the interaction might diverge in the large Nc limit, but

remember that since the baryon mass also scales likeNc, the interaction is only O(1)

relative to this mass.

The final relevant interaction to consider is between baryons and mesons. This

will be mediated by either gluon exchange or by quark exchange (the combination

will be 1/Nc suppressed). The gluon exchange has the typical 1/Nc dependence

for the coupling constant. This gluon can be exchanged between only Nc unique

pairs of quarks, coming exclusively from the different quarks in the baryon. Thus,

the baryon-meson interaction depends as N0
c . The quark exchange has a similar

16



dependence because there is only one quark in the meson which could be exchanged

and only one quark in the baryon with the same color as the one from the meson.

Since the baryon-meson interaction scales like N0
c , the baryon is unaffected by the

interaction (since its mass is of O(Nc)) while the meson is strongly influenced.

This has been a sampling of some of the effects in hadronic physics at the

large Nc. A comprehensive review would require more space than is given here, but

such a review is not needed to make the work in this dissertation accessible. Over

the years the predictions of the large Nc limit have been examined with physical

systems with a variety of success. For some systems, the 1/Nc expansion is useful

as a qualitative or semi-qualitative tool in understanding aspects of QCD, while for

others it works poorly.

1.4 Exotic hadrons

When the näıve quark model was introduced, it was believed that all hadrons

came in one of two varieties; baryons constructed from three quarks, and mesons

constructed from a quark and an anti-quark. This distinction was not derivable from

the model, but rather imposed based upon the phenomenological evidence at the

time. However, since the inception of QCD, it has always been a goal to determine

whether this fundamental theory restricts the hadron spectrum to these states, or

if more exotic hadrons are allowable by QCD. Since, to date, a complete solution

to QCD has not been achieved, any insight, either theoretically or experimentally,

into the type of allowable hadronic states within the context of QCD or some limit
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of the theory is interesting.

The simplest forms of exotic particles can be classified as either tetraquarks

(mesons with two quark and two anti-quarks), pentaquarks (baryons with four

quarks and one anti-quark), or hybrids (hadrons constructed from quark and gluon

degrees of freedom). One could even envision hadrons composed of even more quarks

(say six or seven or 1 million), but tetraquarks, pentaquarks, and hybrids constitute

the simplest extension to the näıve baryon and meson states.

Throughout the years there have been thousands of theoretical papers devoted

to describing these exotic particles. With such a large number, it is not possible,

nor useful, to attempt to provide a synopsis of this extensive research here. Though

it is important to note that all exotic spectra are dependent on the model or the

considered limit of QCD.

Experimentally, to date there has not been a single confirmed observation of

a particle with unequivocal exotic quantum numbers. Many have claimed that the

light scalar meson, such as a0 or f0, or certain nucleon resonances might be exotic.

However, it is difficult to ascertain whether these states have an exotic quark content

because they have the same quantum numbers as other non-exotic hadrons. This

type of hidden exoticness is a key feature which has obscured light quark exotic

identification.

Other popular candidates of experimentally observed states which may be a

four quark state are seen in the unexplained excitation of J/Ψ. There have been

a number of J/Ψ excitations which have not corresponded to a typical excitation

suggested by previous models. The most studied one is the X(3872). This state
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has been seen to decay into J/Ψ and either π+π− [21, 22, 23, 24] or π+π−π0 [25,

26] as well as decay into D0D∗0 [27]. Since its mass does not fall nicely into the

expected charmonium levels, and because it is close to the DD∗ threshold, there has

been much speculation whether this is a threshold effect, an unusual charmonium

state, a D meson molecule, or a tetraquark state. However, the X(3872), like its

lighter cousins, has hidden exotic quantum numbers requiring further evidence to

distinguish between the different scenarios.

The only identified particle which is suggestive of a tetraquark state and nearly

has exotic quantum numbers is the recently observed Z(4430)+. This state has been

identified by Belle [28] to decay into Ψ′, an excited charmonium state, and a single

pion, π+, which happens to be charged. If one believes that the cc̄ of the Ψ′ is also

present in the Z(4430)+, then the decay into a single charged pion would imply

that this is indeed at least a four-quark state. Further confirmation needs to be

established before any definitive identification of Z(4430)+’s quark content is made.

Should the identity of this state be confirmed, it would be a major discovery as it

would constitute the first unequivocal observation of a four-quark meson.

The experimental history of pentaquark states is even a more convoluted story.

Ten groups performing a variety of experiments [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

have reported the appearance of the pentaquark state now called Θ+, a resonance

with baryon number +1, strangeness +1, and a mass in the vicinity of 1540 MeV.

However, these experiments were all performed with relatively limited statistics and

significant cuts, raising the possibility that the reported resonance is due to nothing

more than statistical fluctuations. One ground for skepticism arises from a series
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of experiments that did not find a Θ+ resonance [39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50]. Of course, it is unclear whether some of the experiments with negative

results should be sensitive to such an observation, since there is no reliable theoretical

framework for predicting the Θ+ production rate. The Θ+ width generates another

source of doubt: Γ(Θ+) must be exceedingly narrow (in the range of 1–2 MeV or

smaller), or it would have been detected long ago [51, 52, 53, 54, 55, 56], and to

many it strains credulity that such a narrow state exists in this kinematic range.

One common thread in these early reports of detection (or non-detection) of

the Θ+ is the fact that the analysis came from experiments designed for other pur-

poses and the appearance of the signal only after the imposition of various cuts.

Given the limited size of the data sets, all of the studies yielded spectra with very

limited statistics, creating the possibility of narrow peaks due to statistical fluctua-

tions. The need for high-statistics experiments became very clear. Special-purpose

experiments designed to look for pentaquarks with high statistics have been per-

formed at Jefferson Lab; the CLAS Collaboration has analyzed the high-statistics

data from photons on both a proton target [57] and a deuterium target [58], and

finds no evidence for a Θ+ peak. While these experiments alone do not rule out the

Θ+, they show that at least two of the previous claims of evidence for the state,

the SAPHIR γp result [37] and the CLAS γd result [38], were indeed statistical

fluctuations. Though this is countered by the persistent identification of the Θ+ by

the LEPS collaboration of SPring8 [59].

Because of the lack of detection of the Θ+ by the higher statistical experiments,

much of the field has come to believe that there are no reliable signals indicating
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the existence of a pentaquark. Further higher statistical experiments are needed to

resolve the outstanding questions. However, the lack of confirmation of the Θ+ does

not imply that pentaquark states are not possible within the context of QCD, only

that a light pentaquark state is unlikely to be found at 1540 MeV.

Experimental confirmation of a hadron state with exotic quantum numbers

remains an elusive goal. Such observation would provide a fascinating new handle

to approach hadron physics. Without such experimental evidence, physicist are left

with speculation when it comes to these exotic states. In this vein, this dissertation

examines the implications of exotic hadrons with the context of different models.

The knowledge that exotic hadrons exist or don’t exist can be a useful tool in

constraining hadronic models.

21



Chapter 2

On the existence of heavy pentaquarks in the large Nc and heavy

quark limits

2.1 Introduction

The first heavy quark system which will be investigated pertains to heavy

pentaquarks. These particle states can be considered exotic from the context of

the näıve quark model. As discussed in the introduction, an understanding of any

quark model exotic state provides insight into the structure of QCD. In this chapter,

it will be demonstrated that a heavy pentaquark state must exist in the combined

heavy quark and large Nc limits. Furthermore, models which were designed to

represent aspects of the physics in the extreme limits will be utilized with physically

relevant parameters. These models are important because if it could be shown

that phenomenological significant models would lead to heavy pentaquarks in a

robust manner, one could assert that heavy pentaquarks would be expected to exist

in physical systems. Unfortunately, as will be demonstrated in this chapter, the

formation of a heavy pentaquark away from the extreme heavy quark and large Nc

limits is highly model dependent. Thus the existence of strongly interacting, stable,

heavy pentaquarks remains an open question.

The experimental landscape of the possible observation of light pentaquark
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states was discussed in the previous chapter. To highlight, a possible pentaquark res-

onance, called Θ+, with the quantum numbers of baryon number +1 and strangeness

+1 was identified in ten experiments [29, 30, 31, 32, 33, 34, 35, 36, 38, 37] with a

mass near 1540 MeV. This state was not observed in other experiments [39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50]. The identifications which were made relied on the

examination of low statistical experimental data. It is known that this type of iden-

tification method is susceptible to the possible enlargement of random fluctuations,

particularly if no protocol for selecting cuts is made prior to the attempts to find

a peak in the data. Furthermore, higher statistical experiments were subsequently

performed [57, 58] without identifying the desired resonance.

The theoretical landscape for pentaquarks has been just as murky. A paper

by Diakonov, Petrov, and Polyakov [60] was seminal in focusing attention on the

pentaquark in that it predicted a narrow state at almost exactly the mass where the

Θ+ was later reported. However, that paper is based upon an approximation later

shown to be inconsistent with the large Nc assumptions implicit in the model [61, 62,

63, 64, 65, 66, 67, 68, 69]. After the experimental claims of pentaquarks appeared,

a vast literature of models for the Θ+ followed. In all of these models, the existence

of the Θ+ depends upon ad hoc assumptions; thus they cannot be used reliably to

predict the existence of the state, and accordingly are not reviewed here. Ultimately

one may hope for lattice QCD eventually to resolve the theoretical question of

whether the state exists. However, current lattice simulations for both heavy and

light pentaquarks [70, 71, 72, 73, 74, 75, 76, 77, 78, 79], while improving, remain

inconclusive.
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Given this morass, it is sensible to ask whether one can find a regime in which

the question of the pentaquark’s existence is more tractable. It has been noted

previously in the context of various models [80, 81] that heavy pentaquarks, states

in which the s̄ quark in Θ+ is replaced by a c̄ or a b̄ quark, are more likely to be

bound than the s̄ type. The principal purpose of the analysis in this chapter is

to explore the possible existence of heavy pentaquarks. This chapter shows in a

particular limit of QCD, the combined large Nc and heavy quark limits, that heavy

pentaquarks must exist, and that they are stable under strong interactions. The

critical question of whether 1/Nc and 1/mQ corrections are sufficiently small for

this qualitative result to survive in the physical world is then explored. There are

no known analytic methods starting directly from QCD to answer this last question;

thus, this question must be investigated in the context of models.

Models which treat the heavy pentaquark as a bound state of a heavy meson

and a nucleon interacting via pion exchange are employed. Although similar models

have been considered previously [82], the present work expands on them and is done

in the context of the combined heavy quark and large Nc limits. Such models have

two principal virtues: First, as is shown below, the combined large Nc and mQ limit

mandates the existence of bound pentaquarks. Indeed, this demonstration is based

on the fact that QCD in the combined limit can be reduced to a model of this form.

Second, the long-distance behavior of the model is well known empirically (up to

experimental uncertainties in the pion-heavy meson coupling constant). If the long-

distance attraction due to pion exchange were sufficient to bind the pentaquark for

any reasonable choice of short-distance dynamics (as happens in the combined limit)
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then one would have a robust prediction that heavy pentaquarks exist (although

their detailed properties would still depend on uncontrolled short distance physics).

Unfortunately, it is found that this is not the case.

Before proceeding it is useful to clarify a semantic point. This discussion relies

heavily on the large Nc limit of QCD; as Nc becomes large, the minimum number

of quarks in a baryon containing a heavy antiquark is not 5, but rather Nc +2.

Nonetheless, such states are still denoted as “pentaquarks,” to make the obvious

connection to the Nc =3 world.

This chapter is organized as follows. In Sect. 2.2, a brief background on heavy

pentaquarks is provided. Section 2.3 presents a rigorous argument for the existence

of heavy pentaquarks in the combined large Nc and large mQ limits. Then Sect. 2.4

explores the question of whether this qualitative result survives in the real world of

Nc = 3 and finite mQ by studying simple models based on a pion exchange between

nucleons and heavy mesons. Finally, Sect. 2.5 presents a brief discussion of the

implications of this chapter and concludes.

2.2 Heavy Pentaquarks: Background

The experimental situation involving reports of heavy pentaquarks remains

obscure. The H1 Collaboration at HERA has reported [83] a narrow resonance Θc

appearing in D∗−p [(c̄d)(uud)] and D∗+p̄ [(cd̄)(ūūd̄)] states produced in inelastic ep

collisions, with a mass of 3099±3±5 MeV and a width of 12±3 MeV. It should

be noted that the Θc, even if it withstands further experimental scrutiny, is not the
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type of heavy pentaquark discussed in this chapter, since it is a resonance unstable

against strong decay. Moreover, subsequent evidence argues against its existence:

The FOCUS Collaboration [84], using a method similar to that of H1 but with

greater statistics, finds no evidence for Θc. The experimental situation for heavy

pentaquarks remains in a state as unsatisfactory as with their lighter cousins.

On the theoretical side, much of the heavy pentaquark research to date has

been performed in the context of different variants of the quark model [80, 85,

86, 87, 88, 89, 90]. The purpose here is not to review this work in any detail,

but to stress one of its key points: Heavy pentaquarks occur far more naturally

than light pentaquarks in such models, simply because a heavy quark is drawn

more closely than a lighter quark to the bottom of any potential well. At the

time much of the theoretical analysis was performed, many researchers assumed

that light pentaquarks were experimentally firmly established, and so such models

seemed to make rather robust predictions of stable pentaquarks. Now that the

existence of the light pentaquarks has become more questionable, the reliability of

heavy pentaquark predictions can also be questioned. Nevertheless, the tendency of

heavy pentaquarks to bind more tightly than light ones remains generically true, a

simple fact that continues to play a crucial role in the analysis presented here.

Stewart, Wessling, and Wise [80] also raise a critical issue in the context of a

diquark type model, namely, whether heavy pentaquarks could prove stable against

strong decays. They argue that negative-parity heavy pentaquarks should have the

lowest energy (in contrast to the positive-parity Θ+ of the Jaffe-Wilczek model [91,

92]) since this involves s-wave interactions between the diquarks. They suggest that
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the additional attraction in such negative-parity states might be sufficient to render

the states stable against strong decays. This chapter will argue that pentaquarks

do in fact exist, at least in an artificial world in which the combined large Nc and

large mQ limits of QCD are well satisfied.

Since the large Nc limit plays a critical role in the argument, it is useful to

remark upon previous work on heavy pentaquarks as Nc →∞. References [85, 86,

93, 94] impose large Nc counting rules in the context of a quark picture as a way

to implement large Nc QCD. Such a picture suggests a Hamiltonian and asymp-

totically stable eigenstates. However, generic excited baryons at large Nc are broad

resonances with O(N0
c ) widths and require an approach respecting their nature as

poles occurring at complex values in scattering amplitudes. Such a “scattering pic-

ture” has been developed previously [95, 96, 97, 98, 99, 100, 101]. While obtainable

through a generalization of the large Nc treatment for the stable ground-state band

of baryons [102], the scattering approach naturally allows a proper treatment of res-

onant behavior such as large configuration mixing between resonances of identical

quantum numbers [103]. Even for pentaquarks of O(N0
c ) widths, the scattering ap-

proach predicts multiplets degenerate in both mass and width [104, 105]. But this

technology, while generally true, is not required in the current work; as is now shown,

the heavy pentaquarks discussed in this paper are stable against strong decay, at

least in the combined formal limit Nc→∞, mQ→∞.
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2.3 The Existence of Heavy Pentaquarks

It will now be shown that heavy pentaquarks exist in the combined large Nc

and largemQ limits, and indeed they are stable against strong decay. An appropriate

parameter to describe the limiting procedure must first be chosen. Here, the natural

choice is the λ expansion, where

λ ∼ 1/Nc , ΛH/mQ , (2.1)

ΛH is the hadronic scale, and mQ is the mass of the heavy quark. It should be noted

that the natural expansion turns out to be in powers of λ1/2 [106, 107], instead of

λ1 for a pure 1/Nc expansion.

Consider the states in the QCD Hilbert space that have energy less than

MN +MH +mπ (MH is the mass of the lightest hadron containing heavy antiquark

Q), and have baryon number +1 and heavy quark Q number −1. These conditions

exactly describe potentially narrow heavy pentaquarks ΘQ (assuming no symmetry

forbids the one-pion decay). Now consider further states with energy less than

MN+MH ; any pentaquark state appearing here must be a bound state as no hadronic

decay can occur. However, scattering states which have the appropriate quantum

numbers and which have low enough energies clearly occur between the nucleon and

the heavy meson. Therefore states that can be labeled ΘQ exist.

The key point is that in the regime under consideration an effective potential

for the nucleon and the heavy meson can be described. First note that momenta

in the scattering states scale as λ0. Since the N,H reduced mass µ scales as λ−1,

the kinetic energy scales as λ1, which is much smaller than mπ =O(λ0). One may
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therefore construct an effective theory in which all scatterings with > 2 final-state

hadrons are integrated out.

However, these states naively appear nonlocal, which would prevent the con-

struction of a local potential. The range of the nonlocality scales as the inverse of

momenta p associated with the smallest kinetic energy T which one integrates out.

In this case, T ∼mπ. Therefore, the range scales like 1/p = (2µmπ)−1/2 ∼λ1/2 → 0

as λ→0: The nonlocality disappears.

Next, one must ensure that the potential that binds the pentaquark does not

vanish in the combined limit. From Witten’s original Nc counting [20], one finds

that indeed V (~r) ∼ λ0, preventing its disappearance relative to the kinetic energy.

Noting that the heavy quark coupling scales as gs ∼N
−1/2
c , the nucleon coupling is

of order gA/fπ ∼N
1/2
c , and the pion propagator is of order mπ ∼N0

c , one combines

these ingredients to find the desired λ0 scaling for the potential.

The existence of stable heavy pentaquarks can now be easily proven. Hav-

ing established the locality and scaling of the potential between heavy hadrons, a

quantum field theory problem has been reduced to one of nonrelativistic quantum

mechanics. It is well understood in this context that a potential with an attractive

region has an infinite number of bound states as µ→∞ (see Appendix A for details).

In the present case, µ∼ λ−1 →∞ while V (~r)∼λ0. Thus, proving the existence of

heavy pentaquarks in the combined limit requires only that V (~r) is attractive in at

least some region. Fortunately, the form of V (~r) at large distances is known: It is

given by a one-pion exchange potential (OPEP), because π is the lightest hadron

that can be exchanged between H and N . It is moreover known that, regardless of
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the relative signs of the coupling constants, attractive channels appear in the OPEP.

Thus, V (~r) necessarily has attractive regions, serving to bind the heavy pentaquark.

2.4 Bound States and the One-Pion Exchange Potential

Now that stable heavy pentaquarks have been shown to exist in the combined

large Nc, large mQ limit, the critical question becomes whether they also occur in

our Nc =3, finite mQ world. Currently, this question cannot be answered in a model-

independent way without solving QCD. To get insight one can resort to models for

enlightenment.

Effective potential models based upon one-pion exchange at long distance will

be focused on here. As discussed in Sect. 2.3, such models are clearly useful not only

because they represent physically correct phenomenology, but also guarantee stable

pentaquarks in the combined limit. But it is also noted that the argument does

not depend upon the particular short-distance behavior of the effective potential. If

the real world is sufficiently close to the combined-limit world for the argument to

remain valid, all models of this sort must yield (multiple) stable pentaquarks. Note

that the masses of the various pentaquark states can depend sensitively upon the

details of the short-distance interaction, but their existence cannot. The question

then becomes whether models of this type predict bound pentaquarks in a robust

way, independent of the details of the short-distance physics. If so, one has a strong

reason to believe that the states are, in fact, bound in nature.

A “realistic” potential that has the correct long-distance behavior (OPEP)
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and an ad hoc short-distance part constrained only by the natural scales of strong

interaction physics is constructed. This potential acts between a nucleon and a heavy

meson (D or B). The nucleon-pion interaction is well understood; its interaction

Lagrangian reads

LNNπ = − gA

fπ

√
2
N̄τ aγνγ5N ∂νπa , (2.2)

where the axial coupling constant gA ' 1.27, and the pion decay constant fπ '

131 MeV.

The heavy meson-pion interaction can be derived from the HQET effective

Lagrangian, Eq. (1.18) in Sect. 1.2. The interaction is based upon the coupling of

the heavy meson fields to an axial current. The axial current in Eq. (1.18) can be

re-expressed by expanding the field ξ in powers of M , the meson matrix, and noting

that M can be written as

M =

√

1

2
τ aπa. (2.3)

Combining this with the expansion of the ξ, the interaction term of the Lagrangian

can be written in a form similar to the nucleon interaction,

Lint = − gH

fπ

√
2
TrH̄Hγµγ5τ

a ∂µπa . (2.4)

Recall, that the field H in the Lagrangian is a composite field of both the pseu-

doscalar and vector mesons. Of course, the pseudoscalar and vector mesons are not

degenerate in the real world due to 1/mQ corrections. This mass difference must be

included in realistic models.

Both the nucleon and heavy meson interactions with the pion can be expressed
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in terms of the spin and isospin of the particles:

LNNπ =
2
√

2gA

fπ
(~SN · ~∂πa)Ia

N , (2.5)

Lint =
2
√

2gH

fπ
(~Sl · ~∂πa)Ia

H , (2.6)

where ~SN and ~IN are the spin and isospin of the nucleon, ~Sl is the spin of the

light quark in H, and ~IH is the isospin of the H field. These constructions can

be simultaneously justified because the heavy meson rest frame can be chosen as

the relevant dynamical frame, while the nucleons can be treated non-relativistically.

Combining Eqs. (2.5) and (2.6), treating the nucleon and heavy meson in the static

limit (i.e., ignoring recoil, which is suppressed in the combined limit) and Fourier

transforming yields the OPEP in position space:

Vπ(~r) = ~IN · ~IH [2S12VT (r) + 4~SN · ~SlVc(r)]

= (I2 − I2
N − I2

H)[S12VT (r) + (K2 − S2
N − S2

l )Vc(r)] , (2.7)

where the central part of the potential (r measured in units of 1/mπ) is

Vc(r) =
gAgH

2πf2
π

e−r

3r
, (2.8)

and the tensor part is

VT (r) =
gAgH

2πf2
π

e−r

6r

(

3

r2
+

3

r
+ 1

)

. (2.9)

I is the total isospin of the combined system, while ~K≡ ~SN + ~Sl, and

S12 ≡ 4 [3 (~SN · r̂)(~Sl · r̂) − ~SN · ~Sl] . (2.10)

It remains unknown whether gA and gH are of the same sign or of different signs, so

the potential could have an additional overall negative sign.
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Clearly, the OPEP dominates the interaction at large r since the π is the light-

est hadron. At shorter ranges, the OPEP is no longer dominant and the effective

potential is qualitatively different. The value of r at which the OPEP ceases to

dominate the effective potential is presumably of order 1/ΛQCD∼1 fm, the charac-

teristic range in strong interactions. Therefore, for distances less than some cutoff

value r0 ∼ 1 fm, a purely phenomenological potential is used. Note that such a

short-range potential is not simply added to the OPEP at short distances, but one

entirely replaces the OPEP by this new potential: The 1/r3 behavior of the tensor

part of the OPEP at short ranges is unphysical and would completely dominate the

potential if not removed. The short-distance potentials used are taken to be either

(central) constants or quadratic functions, and their strengths are allowed to vary.

If the logic of the underlying argument based upon the combined limit also holds

for realistic mQ values and Nc =3, then the precise details of the potentials should

be irrelevant to whether the pentaquark states bind.

The OPEP of Eq. (2.7) is used in a nonrelativistic Schrödinger equation and

solved for bound states. Since the tensor term in the potential allows mixing between

L states, L is not a good quantum number. However, S12 commutes with the parity

operator, making P a good quantum number. Therefore, states labeled by J , S

(total spin ~S ≡ ~SQ + ~K), and P are used as eigenstates. Treating states mixed

under L requires a coupled-channel calculation; the coupled equations are obtained

by including all possible states labeled by L and K that are consistent with a given

set of J , S, and P .

Lastly, since this potential is intended to be “realistic”, in principle B-B∗ and
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D-D∗ mass differences can affect the results. Of course, these differences are 1/mQ

effects and vanish in the heavy quark limit. Since the principal reason for the model

calculation is to test qualitatively whether the physical world lives in the regime

of validity of the combined 1/Nc and 1/mQ expansion, it makes sense to include

this difference. However, in practice the effect of this mass difference is entirely

repulsive, making the states less likely to bind. Thus, if the states do not bind in

the equal-mass case, they do not bind at all. Accordingly, equal masses are used and

the effect of the mass splitting is only investigated in cases where binding occurs.

One attempts to make this model as realistic as possible, given the rather

simple forms assumed for the short-distance potential. To this end, the heavy-meson

coupling constant gH is chosen to be≈±0.59 (extracted from D∗→Dπ decay [108])

and the values for other observables [109] are collected in Appendix B, Table B.1.

As an initial guess, the parameters of the short-range potential were constrained

such that this potential combined with a OPEP between nucleons gives the correct

2.2 MeV deuteron binding energy. This choice is not necessary, but it has the virtue

of ensuring that the potential parameters are not completely unreasonable from the

point of view of hadronic physics. The potentials are summarized in Table B.2.

Ultimately, many of the parameters may be varied in order to probe the robustness

of the qualitative results.

The coupled differential equations are then solved using standard numerical

methods. Bound-state solutions are sought for all J= 1
2

and J= 3
2

states using both

a constant and a quadratic form for the short-distance potential, for I=0 and I=1,

and with either sign of gH relative to gA. Initially (as discussed above), it is assumed
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that the pseudoscalar and vector mesons masses are degenerate. A complete set of

tables of bound states appears in Tables B.3 and B.4. Here some key features of

these results will be discussed.

For constant and quadratic potentials constrained by matching to the deuteron

energy, bound states of the pentaquark are uncommon. No channel supports a bound

state with a D meson. The B meson is able to bind weakly in the channels with neg-

ative parity, but only with I=0. Binding in these states is relatively weak, around

1.3 MeV for the constant potential and around 3.9 MeV for the quadratic potential,

and binding energies are consistently the same between these channels (Table B.3,

Cols. A and B). It should be noted that both Ref. [80] and our calculations have

the negative parity states being more stable. The greater binding for the quadratic

(versus the constant) potential is natural since it is significantly deeper.

The case in which the short-distance potential is simply set to zero is also

analyzed. For this case, the OPEP does not bind a pentaquark for any channel.

In order for this potential to bind without the aid of short-distance potential, gH

would need to be raised to unreasonably high levels, near 1 (approximately double

the extracted value), and in some cases larger than 2. When realistic mass differ-

ences between the vector and pseudoscalar mesons are introduced, binding becomes

weaker. This mass splitting eliminates binding for all channels with either type of

potential considered.

The heavy-meson coupling constant gH used in this analysis is motivated by

the results of a recent experiment by the CLEO Collaboration that measured [108]

the width of the D∗± → D0π± decay. The value of gH is extracted from the width
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and found to be ±0.59±0.07. The analogous decay process is energetically forbidden

in the B sector, preventing a direct extraction; therefore, heavy quark symmetry

is exploited and the same value of gH is used for the B sector. Note, however, the

uncertainty in the bottom sector is due to possible 1/mQ corrections. Accordingly, a

range of heavy-meson couplings is also investigated and the same qualitative results

are found.

These results depend upon the strength of the short-distance potential. Clearly,

as these potentials become more strongly attractive, the states are more likely to

bind. As the potential needed to bind deuterium may by anomalously small, a

deeper constant potential was also considered. Table B.3, Col. C and Table B.4,

Col. A show the results when the constant potential is decreased from the depth

needed to bind deuterium, −62.79 MeV, to about 4 times as deep, −276 MeV. The

deeper well produces both more bound states and causes previously unbound states

to bind (in particular, the D meson can form a bound state in the deeper potential).

The choice of OPEP cutoff at r=1 fm is arbitrary. One does not expect the

OPEP to be valid for r < 1 fm, but the effective cutoff might occur at somewhat

larger r. Table B.3, Col. D and Table B.4, Col. B present the binding of states

with a cutoff of 1.5 fm (the potential depth is −62.79 MeV). The negative-parity

states remain the only bound ones, but the binding is now stronger, and the D

meson binds. These fluctuations in strength of binding indicate the importance of

the short-distance physics to the heavy pentaquark formation.
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2.5 Discussion

Despite the general argument of Sect. 2.3 that by using the large Nc and large

mQ combined limit the long-range OPEP is sufficient to bind pentaquarks, it is

observed in a class of models that if a heavy pentaquark binds at all due to one-pion

exchange, it does so weakly in a few channels and depends in a nontrivial way upon

the details of the short-range interaction. The main implication is obvious: In the

real world, 1/Nc and 1/mQ corrections can be substantial. Indeed, they are large

enough to render unreliable qualitative predictions about heavy pentaquarks based

upon the combined limit.

Given this somewhat unhappy result, the most important question is whether

or not heavy pentaquarks do in fact bind to form stable states under strong interac-

tions, and if so, whether only very weakly-bound states occur, such as the ones seen

here. Both of these questions remain open. The short-distance part of the effective

potential is simply not known sufficiently enough to provide a definitive answer.

An optimistic view is that the short-distance interaction between the heavy meson

and the nucleon is likely to be more attractive than that between nucleons, which

has a strong repulsive core. This argument is particularly plausible if one views at

least part of the repulsive core between nucleons to arise due to the Pauli principle

between overlapping nucleon wave functions; this effect is greatly reduced in the

interaction between a nucleon and a heavy meson. If it is true that the short-range

effective potential between the heavy meson and the nucleon is significantly more

attractive than the analogous nucleon-nucleon case, then it is quite likely that heavy
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pentaquarks form stable, tightly-bound states.

Finally, the question of why the qualitative prediction of the combined large

Nc and large mQ limits is insufficient is addressed. At first sight this may seem

surprising since both the 1/Nc and 1/mQ expansions have proven to be predictive

in many situations. One must remember, however, that the quality of a systematic

expansion depends on coefficients as well as the expansion parameter, and the size

of these coefficients depends on the observable being studied. If some observable

has “unnaturally” large coefficients, then the expansion can easily fail unless the

expansion parameter is extremely small. This view is echoed in Ref. [110]. The

relevant question is whether one ought to expect “unnaturally” large corrections to

the leading behavior.

In retrospect, it is perhaps not so surprising that combined expansion is in-

sufficient here. One can make an analogous argument, based entirely upon 1/Nc

counting, that both the deuteron and the 1S0 two-nucleon channel ought to be

deeply bound and have a large number of bound states: Both the effective interac-

tion between nucleons and the masses of the two nucleons grow as N1
c . However,

as has been stressed elsewhere [111], this argument fails for smaller values of Nc.

Similarly, numerous doubly-heavy strongly-bound tetraquarks ought to exist in the

heavy quark limit: The effective interaction between heavy mesons is independent of

the heavy quark mass and scales as 1/(NcmQ). However, as discussed in Ref. [112]

and based upon models similar to those studied here, it is questionable whether

they are bound for physical mQ. Evidently, the coefficients describing interactions

between hadrons can in some qualitative way be sufficient to weaken significantly re-

38



sults one would naively expect directly from the 1/Nc or 1/mQ expansions, yielding

very large corrections to the leading-order results for real-world parameters. Why

this is so is one of QCD’s more intriguing mysteries.

In conclusion, this chapter has shown that heavy pentaquarks must exist in

combined large Nc and large mQ limits. A one-pion exchange potential between

a nucleon and a heavy meson was constructed, and the coupled non-relativistic

Schrödinger equations were solved, obtaining bound states. Some weakly-bound

states do exist in some models, but their existence depends sensitively on unknown

short-distance physics. The lack of binding emphasizes that the real world is too

far from the idealized world of large Nc and large mQ to render the expansions

robust for these observables. In order to deduce whether or not heavy pentaquarks

exist requires a more complete understanding of the short-distance physics than is

presently known.

To address some of the limitations associated with the short-distance physics,

another model, namely the Skyrme model, which has a set prescription on how one

should handle the short-distance physics, will be examined in the next chapter.

39



Chapter 3

Heavy baryons in the Skyrme model

3.1 Introduction

In the previous chapter, heavy pentaquarks were considered in the context of

one-particle phenomenological models. In this chapter, a different phenomenolog-

ical model, namely the Skyrme model of chiral solitons in large Nc, will be used

to describe nucleon states. In addition to heavy pentaquarks, this model can be

extended to study all forms of heavy baryons, both exotic and ordinary. Though

this model does provide some insights into the heavy pentaquark states previously

considered, this chapter will focus on the properties of the regular heavy baryons.

It has been known for a number of years that heavy baryons can be modeled

in the heavy quark and large Nc limits from the binding of heavy mesons with

light chiral solitons [113, 114, 115, 116, 117]. In these limits, both the heavy meson

and the chiral soliton have large masses, and it is legitimate to describe the system

in terms of a collective degree of freedom between the heavy meson and baryon.

The large masses drive the particles to the bottom of an effective potential. In

most cases considered, this minimum occurs at the origin of the relative coordinate,

causing both particles to be situated on top of one another. Previous attempts

at describing heavy baryon physics within this model assumed that particles would

experience small harmonic perturbations in the potential away from their minimum.
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The previous works showed that the channels which constituted physical heavy

baryons had attractive potentials while those channels which did not correspond

to physical particles had repulsive potentials [113, 114, 115]. Since the physical

world does not correspond to the extreme heavy quark and large Nc limits which

guided the previous work, it is interesting to ask the extent to which realistic masses

drive the particles to the bottom of the potential (as expected in the combined

limit) when the harmonic approximation to the effective potential is replaced by the

leading order potential to all distances. In this chapter, a class of corrections to this

picture is examined. Similar issues have arisen for nucleon-nucleon forces in large

Nc [118, 119]. The assumption that the heavy quark mass and Nc are large enough

to enable us to describe the dynamics in terms of a collective degree of freedom

which is describable as a non-relativistic effective potential is continued. However,

it is not automatically assumed that the masses are so large as to drive the particles

into the vicinity of the the minimum of the potential. Instead, the consequences of

considering the complete potential with realistic particle masses on heavy baryon

physics will be examined. As this chapter will show, the physics is qualitatively

quite different from what one would expect if the world were close to the idealized

limit.

Baryons described as solitons in a chiral Lagrangian were first considered by

Skyrme [120]. These chiral solitons have the correct quantum numbers as baryons

in the large Nc limit [121] when the Wess-Zumino term is included [122]. While

the extensive early calculations [123] focused on SU(2) solitons, the theory was

also extended to include baryons with strange quarks. This was done by either
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considering the strange quark as light, and extending the SU(2) chiral fields to

SU(3) [124, 125], or by considering the strange quarks as heavy, compared to the

lighter quarks, and strange baryons as bound states of the SU(2) soltion and K-

mesons [126, 127].

To extend the theory to include even heavier quarks, such as charm and bot-

tom, the former approach of extending the soliton group structure is not reasonable

since the mass of the heavy quarks is vastly different from the lighter three quarks.

Therefore, the appropriate manner is the latter, put forth in the strange case by

Callan and Klebanov, where the heavy baryon states are considered bound states

of light quark chiral solitons and heavy mesons. For simplification, this chapter will

focus its attention on models made from SU(2) chiral solitons, as was done in pre-

vious work [113, 114, 115]. Furthermore, the theory must also exhibit heavy quark

symmetry [17, 128, 129]. Thereby, the heavy meson is treated by chiral heavy quark

effective theory (HQET). Chiral HQET treats the heavy mesons as the dynamical

degrees of freedom and provides a systematic expansion, in powers of the hadronic

scale, Λ, over the heavy quark mass, mQ, to examine the Lagrangian and subsequent

interactions, as discussed in Sect. 1.2.

This method can also be used to bind heavy anti-mesons with chiral solitons to

form pentaquark states. Such calculations have been performed previously for the

case of strange quarks [63]. That work showed that the light pentaquark channel was

not sufficiently attractive to yield bound light pentaquark states or prominent reso-

nances. The previous chapter argued on general model-independent grounds that in

the extreme heavy quark and large Nc limits, bound heavy pentaquark states must
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exist, primarily because the heavy particles fall to the bottom of the potential well.

However, it was shown that unlike in the extreme heavy quark and large Nc lim-

its in which the long-range one-pion-exchange potential automatically binds heavy

pentaquarks regardless of the details of the short distance interactions, for physical

masses the existence of bound pentaquarks was highly sensitive to the details of

the short distance interaction. The Skyrme type chiral soliton models provide one

framework for treating the short-distance physics, and thus it is interesting to deter-

mine if such theories could support heavy pentaquark binding. More significantly,

the experience with the exotic channels suggests the possibility that the behavior in

the non-exotic channels may also be substantially different from the limit on which

the standard Skyrme analysis is based.

The interest in determining the heavy baryon energy spectrum and wave func-

tion within a chiral soliton model has also led to studies of the Isgur-Wise function

for transitions between heavy baryons. Formally, the Isgur-Wise function describes

the non-perturbative physics associated with the form factor of the semileptonic

weak decay of Λb → Λce
−ν̄e [11, 12]. Traditionally it is expressed as a function of

the transfer velocity rather than the momentum transfer. If the dynamics of the

heavy baryons are known exactly, this function can be calculated for all velocities.

The Isgur-Wise function has been calculated previously when the effective potential

was approximated as harmonic both in the context of the Skyrme model [115] and

in a model-independent context [116, 117]. This chapter considers the longer range

effects of the interaction between the heavy and light degrees of freedom and leads

to a non-universal form of the Isgur-Wise function dependent on the details of the
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interaction.

This study is by no means the first study to consider applying the Skyrme

model to attempt to explain either heavy baryons or exotic particles. In addition

to Refs. [113, 114, 115], heavy baryons spectroscopy within the Skyrme model has

been previously considered by the work of Oh and his collaborators [130, 131, 132,

133, 134, 135, 136].

The overall goal of this chapter is to explore the properties of heavy baryons

in the Skyrme model in which the collective degree of freedom between the heavy

meson and the remainder of the system is beyond the harmonic region of the ideal

heavy quark and large Nc limits. In the next section, the complete effective potential

is derived, and it is shown that when the full potential is considered, for realistic

parameters, the heavy baryon wave function extends well beyond the region where

the harmonic approximation is applicable. This will be followed by a demonstra-

tion that the simplest type of interactions do not create bound states with realistic

binding energies for the heavy baryons–indeed, they give the same mass for ordi-

nary heavy baryons and pentaquarks. This motivates the inclusion of additional

terms in the potential which allow for the correct binding energies and distinguish

between heavy baryon and heavy pentaquark states. The consequences of these new

potentials will be considered. Lastly, the influences upon the Isgur-Wise function

by these newly calculated wave functions for the heavy baryons will be examined.
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3.2 Derivation of the effective potential

The framework of this section is based on the standard treatment of heavy

baryons in the Skyrmion in terms of a collective degree of freedom between the

heavy meson and the remainder of the system [113, 114, 115]. To begin the analysis

of heavy baryons, the effective potential for this degree of freedom needs to be

determined. The relevant Lagrangian for this purpose can be divided into the soliton

sector and the HQET sector,

L = LSkyrme + LHQET. (3.1)

The soliton portion determines the dynamics of the ordinary baryons. For concrete-

ness only the simplest such model will be considered: the one originally proposed

by Skyrme:

LSkyrme =
1

16
f2

π Tr[∂µΣ
†∂µΣ] +

1

32e2
Tr[(∂µΣ)Σ†, (∂νΣ)Σ†]2 +

1

8
m2

πf
2
π (Tr[Σ] − 2),

(3.2)

where fπ is the pion decay constant, e is the Skyrme parameter, mπ is the pion

mass, and Σ is the chiral soliton field [120]. The last term provides the pion with a

mass and fixes it to its physical value. As will be demonstrated below, this simplest

model is not adequate phenomenologically. However, the analysis will begin with

this model, and more sophisticated models will subsequently be considered.

Conventionally, the chiral soliton is treated classically as a first approximation

and the ansatz taken for the form of the chiral field is,

Σ0(~x) = Exp[i~τ · x̂ F (r)], (3.3)
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where F (r) is the profile function determined by minimization of the soliton mass.

Since this solution breaks both rotational and isorational invariance, any rotation

within the isospin space will lead to a degenerate classical solution. That is,

Σ(~x) = AΣ0(~x)A
−1 (3.4)

where A is an SU(2) matrix of the form A = a0 + i~τ ·~a where different values of a0

and ~a (constrained by a2
0 + ~a · ~a = 1) lead to a degenerate solution. This classical

degeneracy is lifted when a0 and ~a are promoted to quantum collective variables

leading to baryons with the physical quantum numbers [123].

However, there is a subtlety concerning the use of the quantization scheme of

Ref. [123] for the regime considered here. There are two types of collective motion—

the rotational/isorotational degrees of freedom of Ref. [123] and the collective vi-

bration of the heavy meson off of the light baryon. Provided that the natural time

scales for these types of motion are very different, they decouple. Formally, in the

large Nc and heavy quark limits, when the collective vibrational degree of freedom

resides near the bottom of the potential well and vibrates harmonically, its natu-

ral time scale goes as λ−1/2 [106, 107] while the time scale of the [123] collective

coordinate is λ−1, where λ is an overall counting parameter for the combined limit:

1

Nc

∼ ΛH

mQ

∼ λ (3.5)

and ΛH is the characteristic hadron mass scale. Formally, in the ideal limit, λ→ 0

and the two scales decouple. However, in the present study where effects beyond

the λ→ 0 limit are explicitly examined, the situation is more problematic.
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As a practical matter, in order to proceed, it will be assumed that the motions

do decouple. This can be justified in part on empirical grounds. The splitting

between the Σc and the Λc in the extreme limit would be ascribed to a rotation

excitation and hence of order λ. The splitting between the first negative parity

Λc (the Λc(2593)) and the Λc is vibrational (in the ideal limit) and hence is of

order λ1/2 which is parimetrically higher than the rotational excitation. In practice

MΣc −MΛc ≈ 170 MeV while MΛc(2593) −MΛc ≈ 320 MeV. Thus, the ordering is

what one expects. However, it is by no means obvious that one can legitimately

take 320 MeV to be considered to be qualitatively large compared to 170 MeV.

There is another reason why it is reasonable to treat the motions as though

they decouple for certain qualitative purposes. If the goal is to assess whether the

standard Skyrmion treatment for charmed and bottom baryons (which implicitly

works in the neighborhood of the combined limit) is self consistent, two issues arise.

The first is whether the rotational and vibrational motion decouple. The second is

whether the collective vibrational wave function is well localized near the bottom of

the effective potential well. This chapter is investigating the second question. As

a logical matter, if one finds that the collective wave function does not remain well

localized under the assumption that rotational and vibrational motion decouple, then

there are important corrections to the standard treatment regardless of whether the

assumption of decoupling is justified. Therefore, by showing that the collective wave

function is not localized as in the ideal limits, the assumptions that the standard

quantization method is applicable will be justified a posteriori.

Having argued that the standard quantization of the collective coordinates is
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applicable for the purposes here, one can focus on the heavy meson sector of the

Lagrangian. This Lagrangian is the HQET heavy meson chiral Lagrangian in the

Σ basis, Eq. (1.19), that was discussed in Sect. 1.2. The interaction term in this

Lagrangian is

Lint
HQET =

ig

2
TrH̄aHbγ

µγ5(Σ†∂µΣ)ba + . . . , (3.6)

where the ellipsis denotes terms which are suppressed by inverse powers of the heavy

quark mass, 1/mH . It should be noted that in this basis, the heavy fields have an

unusual transformation under parity [113]. The field Ha transforms under parity as

Ha(x
0, ~x) → γ0Hb(x

0,−~x)γ0Σ†
ba(x

0,−~x). (3.7)

This transformation has the interesting property that when the soliton and the

heavy meson are located at the same point, Σ† = −1 in the transformation, while

when they are separate, Σ† = 1. Thus, the heavy mesons act as though they have

negative parity at long distances (as they must) but effectively as positive parity

particles at short distances (when the anti-quark parity is also included).

Previously, the idealized λ → 0 limit was uniform; i.e., the ordering of the

large Nc and heavy quark limits was irrelevant [106, 107]. It is hoped that in the

current problem the ratio of the heavy quark mass to the ordinary baryon mass is

equally irrelevant provided they are both large. If so, it is legitimate to calculate

the effective potential assuming the heavy quark mass is infinite (but the nucleon

mass is not). That calculation will be done here and subsequently verified that the

result did not depend on this procedure. This will be demonstrated by showing that

the same effective potential arises if the nucleon mass is taken to be infinite and the
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heavy quark mass finite.

Since the complete spatially extended potential as a function of the relative

separation distance between the particles is being considered, instead of the standard

soliton ansatz, the following ansatz will be considered,

Σ(~x− ~x0(t)) = A(t)Σ0(~x− ~x0(t))A
−1(t),

Σ0(~x− ~x0(t)) = Exp[i~τ · ~x− ~x0

|~x− ~x0|
F (|~x− ~x0|)]

(3.8)

where ~x is the position of the heavy meson, ~x0 is the position of the soliton, and

the soltion coordinate and the collective coordinates are time dependent while the

heavy meson coordinate is not. This will fix the heavy meson to a specific location,

which can be chosen to be the origin, and allows one to work in the rest frame of

the heavy meson. Therefore the four-velocity of the heavy meson is vµ = (1,~0).

Even with this different choice for the soliton ansatz, the only term that pro-

duces an interaction between the heavy meson and the chiral soliton is

HI = − ig
2

∫

d3~x TrH̄aHbγ
jγ5(Σ†∂jΣ)ba. (3.9)

The summation is only over the spatial coordinates in the interaction as the spin

trace with the temporal coordinate is zero. When the appropriate soliton ansatz is

inserted into the interaction followed by some manipulation, the interaction term is

written as

HI =
g

2

∫

d3~x TrH̄aHbγ
jγ5 ×

(

A

{

yj

|~y| ŷ · ~τ
(

F ′ − sin(2F )

2|~y|
)

+
τ j

2|~y| sin(2F ) + εjmkykτm sin2(F )

|~y|2
}

A−1
)

ba
,

(3.10)
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where ~y = ~x − ~x0 is the separation distance between the soliton and the heavy

meson. This can then be further simplified by factoring out τ from each term.

HI =
g

2

∫

d3~x TrH̄aHbγ
jγ5(Aτ iA−1)ba ×

(

yjyi

|~y|
(

F ′ − sin(2F )

2|~y|
)

+
sin(2F )

2|~y| δij + εjikyk sin2(F )

|~y|2
)

=
g

4

∫

d3~x TrH̄aHbγ
jγ5 (τm)ba Tr(Aτ iA−1τm) ×

(

yjyi

|~y|2
(

F ′ − sin(2F )

2|~y|
)

+
sin(2F )

2|~y| δij + εjikyk sin2(F )

|~y|2
)

.

(3.11)

By noting that the isospin operator of the heavy meson on the H field is,

Im
HHa = −Hb

(τm)ba

2
, (3.12)

and the spin operator of the light degrees of freedom of the heavy meson on the H

field is,

Sj
lHHb = −Hb

σj

2
, (3.13)

along with the fact that Hbγ
jγ5 = −Hbσ

j in the rest frame of the H field, the

interaction Hamiltonian can be written as

HI = −gIm
HS

j
lH Tr(Aτ iA−1τm)

∫

d3~x TrH̄aHa ×
(

yjyi

|~y|2
(

F ′ − sin(2F )

2|~y|
)

+
sin(2F )

2|~y| δij + εjikyk sin2(F )

|~y|2
)

.

(3.14)

These simplifications are similar to those performed in Ref. [114], whereas here the

effective potential to all distances is considered. The integral can now be performed

by explicitly fixing the heavy meson to be located at the origin. This is equivalent

to equating TrH̄aHa with −δ(~x). Upon replacing the soliton position label, ~x0, with

50



the more standard ~r, the effective potential reads:

HI = V (~r) = gIm
HS

j
lH Tr(Aτ iA−1τm) ×

(

rjri

r2

(

F ′ − sin(2F )

2r

)

+
sin(2F )

2r
δij − εjikrk sin2(F )

r2

)

.

(3.15)

The effective potential just derived in Eq. (3.15) has three major aspects which

are interconnected with each other. First, the potential is dependent on the spin and

isospin of the light quarks in the heavy meson. Secondly, the term, Tr(Aτ iA−1τm), is

related to the spin and isospin of the chiral soliton and is dependent on the collective

coordinate quantization as well as the states being considered. The last part of the

potential is the spatially dependent term. This term is a function of the separation

distance, ~r, as well as the profile function, F (r). The profile function can be derived

numerically from the chiral soliton sector of the Lagrangian. Traditionally, it is

achieved by minimizing the mass of the soliton either in the presence of a pion mass

[137] or without a pion mass [123], subject to the constraints that F (0) = −π and

F (∞) = 0. Furthermore, if the profile function is expanded in powers of r and only

terms of order r2 are kept in the effective potential of Eq. (3.15), one can easily

show that our potential reduces to the one considered by Jenkins, Manohar, and

Wise [115]. Therefore in the limit that the heavy meson and chiral soliton are close

together, the effective potential is the same as previously considered.

The portion of the potential that is dependent on the chiral soliton, viz.

Tr(Aτ iA−1τm) is dependent on the spin and isospin of the soliton, yet neither spin

nor isospin are guaranteed to be valid quantum numbers of the operator. That

is, in some cases the chiral soliton term allows mixing between nucleon and delta

states within the heavy baryon system. To simplify this issue, the iso-scalar heavy
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baryons, as in the ΛH, will only be considered. This simplifies the problem because

in order to create an iso-scalar from a heavy meson and a soliton, the soliton must

have isospin-1
2
. Additionally, large Nc forces chiral solitons to exhibit the property

that they have the same spin and isospin. Therefore, the only soliton that can bind

with a heavy meson to form an iso-scalar heavy baryon has spin-1
2

and isospin-1
2
,

or a nucleon. When the chiral soliton is confined to the nucleon sector, it can be

shown that Tr(Aτ iA−1τm) is equivalent to −8Im
N S

i
N/3, where Im

N and Si
N are the

isospin and spin of the nucleon, respectively. Making this replacement in the effec-

tive potential and summing over repeated indices leads to a potential operator that

reads:

V (~r) = −8g

3
( ~IH · ~IN)

(

( ~SlH · r̂)( ~SN · r̂)(F ′ − sin(2F )

2r
)+

( ~SlH · ~SN)
sin(2F )

2r
− ( ~SlH × ~SN ) · r̂ sin2(F )

r

)

.

(3.16)

Having derived a potential operator, the problem reduces to finding the eigen-

values and eigenstates of this operator. In order to determine the eigenstates of

this potential operator, let us consider states labelled by the total isospin, I , the

total spin, s, and the spin of the light degrees of freedom, sl. These states can be

written as |I, s, sl〉. For a total isospin-0, three states can be constructed; |0, 1
2
, 0〉,

|0, 1
2
, 1〉, and |0, 3

2
, 1〉. From the potential, it is clear that total isospin is a good

quantum number for the states, however, the spin of the light degrees of freedom is

not obviously a good choice here as the cross product term changes the spin state.

Therefore, instead of the simple state |I, s, sl〉, the appropriate wave function which
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should be considered has the form:

ΨΛ0 = [1 +D(r)~r · ( ~SlH × ~SN )]|0, 1
2
, 0〉φ(~r) (3.17)

for the |0, 1
2
, 0〉 state, and

ΨΛ1 = [1 +D′(r)~r · ( ~SlH × ~SN ) + E ′(r)( ~SlH · ~r)( ~SN · ~r)]|0, 1
2
, 1〉φ(~r) (3.18)

for the |0, 1
2
, 1〉 and |0, 3

2
, 1〉 states. There is a degeneracy for the light quark spin-1

states because of the degeneracy between the pseudo-scalar and vector heavy mesons

in the heavy quark limit. It can be shown that the wave function for the light quark

spin-0 state is in fact the eigenfunction of the potential operator when

D(r) =
−2(cos(F ) + 1)

r sin(F )
(3.19)

with an eigenvalue of

VΛ0(r) = −g
2
F ′(r) + g

sin(F )

r
. (3.20)

The effective potential for the isospin-0 light quark spin-1 channel can be obtained

in a similar manner. Here, the form given above is the eigenfunction when

D′(r) =
−4(1 + cos(F ))

r sin(F )
and E ′(r) = − 4

r2
(3.21)

with the eigenvalue

VΛ1(r) = −g
2
F ′(r) − g

sin(F )

r
. (3.22)

The previous discussion was based on taking the heavy meson mass to be

arbitrarily large so that collective dynamics involved the soliton moving. It has been

argued that the resulting dynamics ought to be independent of this assumption. To
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demonstrate this, the effective potential with the soliton’s position held fixed can

be calculated with the methods described above with a few caveats. First, since the

heavy meson is now moving, the kinetic energy term of the heavy meson needs to

be explicitly considered. From HQET [138] the additional term in the Lagrangian

for the heavy meson fields is

Lkinetic = TrH̄a
(D2

⊥)ba

2MH
Hb, (3.23)

where Dµ
⊥ is the covariant derivative perpendicular to the velocity and is defined as

(Dµ
⊥)ba = (Dµ)ba − vµ(v ·D)ba. The velocity of the heavy meson is given by v, and

Dµ is the covariant derivative defined by (Dµ)ba = ∂µδba − 1
2
(Σ†∂µΣ)ba. The Roman

indices are the light quark flavor indices, as before. This term is the heavy meson

analog to the kinetic 1/mQ correction in the heavy quark Lagrangian Eq. (1.10).

Second, even though the heavy meson is allowed to move, it is still desirable to be

close to the heavy quark limit, therefore, the heavy meson’s velocity will be small;

vµ = (1,~ε).

The effective potential can still be derived from the interaction term as written

in Eq. (3.9) except the integral is now over x0—the soliton’s position rather than

the heavy meson’s position. The use of only the spatial directions in this equation

is still justified since corrections to this are of order ε, which will remain small. The

calculation proceeds as previously illustrated until Eq. (3.14). The substitution of

the spin of the light quark in the heavy meson from the previous formula is still

possible with corrections of O(ε). At this point, the integral can be performed

analogously as before, but by fixing the soliton’s position to be x0 = 0. However,
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unlike before, the term TrH̄H in the expression of the effective potential remains.

This term is dependent on the heavy meson wave function. However, the heavy

meson wave function can be expressed as an exponential, i.e., H ∼ Exp[if(x)], where

f(x) is some unknown function of the heavy meson’s position. With the appropriate

normalization, one can thereby set TrH̄H = −1. Thus the same effective potential

as in Eq. (3.15) has been (practically) derived. The careful observer will notice that

the potential derived with the soliton held fixed is identical with Eq. (3.15) except

for the sign of the last term. Nevertheless it will be shown that this potential will

lead to the same physical system.

The eigenfunctions and eigenvalues of the new potential operator can be con-

structed just as before. However, when the effective potential having held the soliton

fixed is used instead, D(r) and D′(r) in Eqs. (3.19) and (3.21) have the opposite

sign. This sign difference compensates exactly the sign difference between the po-

tentials discussed above. Thereby both methods lead to the same physical effective

potentials in Eqs. (3.20) and (3.22). Since both methods lead to the same physical

effective potentials, the commutativity of the large Nc and heavy quark limits in

this problem has been demonstrated.

To complete the discussion of these wave functions, one needs to establish

the correspondence between the |I, s, sl〉 states and the physical ΛH states. From

the states’ quantum numbers it is clear that the light quark spin-0 state, |0, 1
2
, 0〉,

corresponds to the ground state of ΛH, while the light quark spin-1 states are spin

excitations of this ground state which have yet to be observed. The observed excited

states to Λc, Λ+
c (2593) and Λ+

c (2625), would constitute radial excitations of the
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light quark spin-0 state. However, even with these apparently clear assignments,

the parity of the heavy baryon states is not immediately clear in this language.

The wave functions for both the light quark spin-0 and spin-1 states written above

do not appear to have definite parity. Thus when the orbital momentum between

the heavy meson and the soliton is considered in the l = 0 state, the ground state

wave function contains parts which are characteristic of both s- and p-wave states.

The states achieve definite parity when one recalls that the heavy meson state

itself is negative under parity when near the soliton and positive when far apart,

as pointed out in Eq. (3.7) and the sentences following that equation. The wave

functions in Eqs. (3.17) and (3.18) show that when the heavy meson and soliton

are close together, the state has a positive parity (positive from the s-wave, positive

from the heavy meson) while when they are far apart, the state still has positive

parity (negative from the p-wave, negative from the heavy meson). Thereby, the

ground states, and thus subsequent excitation, have the same parity as their physical

particle states, which completes the assignment between wave functions and physical

states. In this system, there is a subtlety associated with orbital momentum states

since the orbital momentum is not a good quantum number. However, the “orbital

momentum”, l, used in the Schrödinger equation is a good quantum number, and

will henceforth be used to label these states. This label can be thought of as the

orbital momentum state when the heavy meson and soliton are close together. In

previous studies, since they were only concerned with small motion of the potential

away from the heavy meson and soliton sitting at the same place, these long distance

effects on the parity of the states did not matter. Thus, in their work the states
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could be clearly labelled by the orbital momentum between the heavy meson and

the soliton.

The effective potential of a heavy meson and a nucleon in terms of the profile

function, F (r), for the isospin-0 light quark spin-0 and spin-1 channels has been

derived. Note that these potentials are completely radial. These potentials include

short- and long-distance behavior for the binding which inherently has not been con-

sidered before. It should be noted that when both of these potentials are examined

at short distances, they reduce to the potentials and values at the origin that have

been previously identified [113, 114, 115].

3.3 Determination of bound states

At this point, the constructed effective potentials can be used in a Schrödinger

equation, and the bound states can be calculated. At the time of the previous

studies the heavy meson-soliton coupling, g, was undetermined. In recent years this

has been measured to be ≈ 0.59 from the decays of D∗ meson into D mesons and

pion emissions [108]. It can be assumed that this coupling is the same for B mesons

(as it should be in the heavy quark limit) since an experimental determination via

pion emission is not energetically possible. The physical mass of the spin-0 heavy

meson was used (1864 MeV for D meson and 5279 MeV for B meson [109]), while

the mass of the soliton was calculated from the profile function.

The short- and long-distance structure of the profile function, F (r), was ob-

tained by examining the differential equation that minimized the mass of the chiral
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soliton. From there, the profile function was constructed by parameterizing the

functional form consistent with the short- and long-distance behavior with two pa-

rameters. These two parameters where determined by an iterative method that

minimized the mass of the soliton while keeping the nucleon-pion coupling, gA, and

the pion decay constant, fπ, constant. This procedure constructed the Skyrmion

profile function plotted in Fig. 3.1 and fixed the Skyrme parameter, e = 4.10, and

the soliton mass, M = 949 MeV.
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Figure 3.1: Calculated Skyrmion profile function, F (r).

The Schödinger equation with the appropriate effective potential for this sys-

tem was solved to test for the existence of bound states. Figure 3.2 shows the

potential for the light quark spin-0 state with the harmonic oscillator approxima-

tion overlaid. When the equation was solved, the binding energy for the charm

case was found to be 155 MeV while for the bottom case, the binding energy was

found to be 177 MeV. In both cases a weakly bound radial excited state was also

observed; 6.18 MeV for charm and 19.32 MeV for bottom. The observed ground

states are more tightly bound than the ground state in the harmonic oscillator ap-

proximation. Therefore the inclusion of the entire potential increases the binding
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Figure 3.2: Light quark spin-0 state effective potential (solid curve) with harmonic
approximation (dashed curve) as a function of separation distance.

energy and favors a stronger bound state. Furthermore, the wave function of the

nucleon in the ground state is much broader with the extended potential compared

with the wave function of the harmonic oscillator (see Fig. 3.3). This increase in the

wave function breadth indicates that the nucleon is influenced by the long-distance

part of the potential.
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(a) Charm Wave Function
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(b) Bottom Wave Function

Figure 3.3: (a) Calculated normalized wave function for the ground state Λc from the
complete potential (solid curve) and the harmonic approximation (dashed curve).
(b) Calculated normalized wave function for the ground state Λb from the complete
potential (solid curve) and the harmonic approximation (dashed curve).

It is clear that for this particular model, both the shape of the wave function

and the binding energy are vastly different when the entire effective potential is
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considered as compared to when the potential is assumed to be harmonic with the

collective degree of freedom tightly localized. Large amplitude motion clearly occurs

and the standard analysis appears to be invalid for this system.

For this system, orbital excited states can also be seen. Both the charm and

bottom cases have an l = 1 excited state; the binding energy is 42.0 MeV (charm)

and 68.0 MeV (bottom). Neither system appears to have a bound l = 2 state.

For the case when the light quark system carries spin-1, no bound states were

found. The potential in this channel has a strong repulsive core with a very shallow

attractive region which appears to be too weak to support bound states.

The previous calculations were performed using the assumption (valid in the

heavy quark limit) that vector and pseudoscalar heavy mesons are degenerate. This

is obviously not true in the physical case; that is, the D and the D∗ or the B and the

B∗ have different masses. The calculation can be extended to include the physical

mass splittings between the heavy meson states. When these splittings are included,

there are still bound ΛH states, however, the binding is weaker. The binding energy

of the ground state is reduced by 88.7 MeV for charm and 35.9 MeV for bottom.

To reiterate, these results clearly illustrate that the effective potential is not

strong enough to localize the collective variable in the harmonic region for these

models. The underlying assumption that the system is sufficiently close to the

large Nc and heavy quark limits to use the harmonic approximation is not justified.

Clearly it is important to see whether the breakdown of the combined heavy quark

and large Nc limit is generic for realistic nucleon and heavy quark masses. This is

particularly true since the model considered has serious phenomenological flaws, as
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will be discussed below. The key question is whether the standard treatment works

for “realistic” models.

3.4 Towards the effective potential in realistic models

The model considered in the previous section is unsatisfactory in terms of

phenomenology. In the first place the mass of the heavy baryons is well off from

the empirical ones. The relevant issue is not how large the fractional error is for

the mass since a large fraction of the mass is simply from the heavy quark itself.

The relevant issue is the fractional error in the binding energy—i.e., the difference

between the mass of a nucleon plus a heavy meson from the mass of the heavy

baryon. The experimental and model-calculated binding energies for both charm

and bottom baryons are summarized in Table 3.1. Note the large difference between

the experimental and calculated binding energies.

Method Λc Λb

Experiment 520 MeV 590 MeV

Full Potential (no mass splitting) 155 MeV 177 MeV

Full Potential (mass splitting) 67.3 MeV 141.1 MeV

Table 3.1: Table summarizing the binding energies for the Λc and Λb baryons.

Moreover, the model considered above has the feature that the interaction is

identical under the exchange of a heavy meson to a heavy anti-meson. That is, our

extended potential will give the same bound states for ordinary heavy baryons as

for heavy pentaquark states. Clearly this is unphysical. While heavy pentaquark

states are known to exist in the extreme heavy quark and large Nc limits as shown
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in the previous chapter, there exists no symmetry of QCD in that limit which

implies a degeneracy between pentaquarks and ordinary heavy baryons. Moreover,

strong-interaction-stable heavy pentaquarks have not been detected despite intensive

searches, suggesting that for realistic masses they do not exist.

If one wishes to make a more realistic model it is necessary to include additional

interaction terms between the heavy meson and the soliton which split the ordinary

heavy baryon from the pentaquark. Such an interaction should be strong enough

to give heavy baryons with approximately the correct mass. Heretofore, only an

interaction term between the pion fields and the heavy quark which was lowest order

in the chiral expansion has been included. However, in the soliton there is no chiral

power counting and thus no necessity to restrict the interaction to this term. The

spirit of model building in Skyrme type models is to include a small number of terms

to make the problem tractable. Although there is no systematic power counting,

the hope is that one can get qualitatively sensible results by choosing coefficients

for these which compromise between the various observables. The simplest model

realistic enough to get the binding of the heavy baryons correct while pushing up

the mass of the heavy pentaquarks above threshold will require one new interaction

term.

The simplest term one can consider, which distinguishes between interactions

between heavy mesons and anti-mesons, is coupling the light quark baryon current

to the heavy quark vector current. Note that if a heavy anti-meson binds with a

nucleon, the heavy quark current will switch sign compared with the heavy meson

case while the baryon current (associated with the nucleon) will not. Therefore the
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term

Lbaryon = g′TrH̄aHaγµB
µ (3.24)

can be added to the Lagrangian, with the baryon current, Bµ, given by the standard

form,

Bµ =
εµναβ

24π2
Tr[(Σ†∂νΣ)(Σ†∂αΣ)(Σ†∂βΣ)], (3.25)

where the notation ε0123 = −ε0123 = 1 was used. By inserting the functional form for

the solitons into this term, and working in the rest frame of the heavy (anti)meson,

the interacting potential can be derived as :

Vbaryon(~r) = g′B0(r) =
g′

2π2

sin2(F )

r2
F ′(r). (3.26)

The coupling constant, g′, and its relative sign are unknown, but the sign will be

chosen such that this potential is attractive for heavy meson-nucleon interactions

while repulsive for heavy anti-meson-nucleon interactions. In the spirit of this class

of model, the coupling g′ will be tuned in order to get a reasonable mass for the

heavy baryon (either Λb or Λc). Of course, this procedure is quite ad hoc, but Skyrme

type models always require some ad hoc procedure. One useful check on whether

the model obtained is sensible is whether the the coupling obtained has a natural

size, i.e., whether it is of O(1).

When the Schödinger equation with the combined potential was used to calcu-

late bound states, the coupling constants needed to have bound states with physical

binding energies were determined to be -3.27 for Λc and -3.34 for Λb. These are

natural in size. Furthermore, the two coupling constants obtained via fitting for

the two types of heavy baryons are quite close to one another; they differ by only
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2% suggesting that the procedure is robust for physical values. For simplicity, the

heavy meson mass splittings were not included in this calculation.

Because of the lack of the heavy meson mass splitting, one would expect that

the first excited state to be a superposition of the two physically observed excited

states, Λ+
c (2593) and Λ+

c (2625). It is not unbelievable to surmise that this combined

state would weight the two states by the relative spins of the states. This would lead

to a mass of the combined state of 2614 MeV or an excitation energy of 328 MeV

above the ground state. With the coupling constants considered here, the excitation

energy from the combined potential was found to be 324 MeV and 316 MeV for the

charm and bottom cases, respectively. This is in surprisingly good agreement with

the expected excitation from the physically seen states.

With the inclusion of the baryon current term to the potential, the light quark

spin-1 state becomes bound for the coupling constants considered here. The binding

energies are weak–125 MeV for charm and 173 MeV for bottom–compared with their

spin-0 counterparts, 521.6 MeV and 593.4 MeV for the Λc and Λb, respectively. This

binding is driven solely by the size of the baryon current coupling. The presence of a

bound state in the spin-1 channel does not invalidate nor should it limit this method.

It is not unreasonable to believe that the strength of the additional potentials needed

to be included to drive the binding energy down to physical values might also bind

light quark spin-1 states. Therefore the lack of any observation of these states could

be associated with the difficulty in detection and not in the lack of the presence of

these states.

A harmonic approximation can also be made for the combined potential with
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the provided coupling constants. The energy levels for the approximation are again

different from that of the combined potential and the ground state is bound weaker.

An examination of the shape of the wave function for the combined potential com-

pared with the harmonic wave functions shows again that the wave functions for

the combined potential are broader than the harmonic wave functions and extend

beyond the harmonic region. One is again not driven to the effective potential min-

imum by the realistic masses suggesting that the physical states are not close to the

extreme large Nc and heavy quark limits. These observations confirm the results

from the previous section that the long-distance potential greatly influences heavy

baryon formation.

Unlike with the original potential, the new combined potential is sensitive

to the difference between regular heavy baryons and heavy pentaquarks. One can

examine whether a bound pentaquark state is possible within the combined potential

by flipping the sign of the coupling constant of the baryon current term. When this

is performed, a very weakly bound pentaquark state can be found with a binding

energy of 33.4 MeV for a charm type pentaquark, and 42.9 MeV for a bottom type

pentaquark. These are rather small binding energies compared with the binding

energies of the regular heavy baryons, and are small compared to the deeply bound

pentaquark states suggested by the large Nc and heavy quark limits of the previous

chapter. Furthermore, the potential for the heavy pentaquark is repulsive at short

distance creating the attractive region and localization of the wave function away

from the origin. Therefore, even in the ground state, the pentaquark formed here has

a fixed separation between the heavy anti-meson and the nucleon. However, due to
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the strong repulsion at short distance this is a very delicate state. If one turns off the

potential which is identical for the heavy baryon and heavy pentaquark states, and

tune the baryon current coupling such that heavy baryons are still bound with the

appropriate binding energy, the heavy pentaquark effective potential is completely

repulsive and thereby no heavy pentaquark state is bound. The coupling constants

needed to achieve this condition were -5.52 for the charm case and -5.49 for the

bottom case. These couplings are again neither unreasonably large nor small. This

indicates that this model is capable of binding a heavy pentaquark state, but with

minor changes, it is just as reasonable not to support a bound heavy pentaquark

state. The relative ease for the state to become unbound furthers the point in

Chapter 2 that heavy pentaquark binding with physically reasonable parameters is

subject to the dynamical details of the model.

The inclusion of an additional interaction term based upon the coupling of

the heavy quark current to the baryon current was motivated by the need to break

the degeneracy between heavy baryon and heavy pentaquark states associated with

the leading order HQET. This interaction was derived for all separation distances.

The coupling of the interaction was determined by having the ground state binding

energy correspond to the physical value. With this potential in place, the sim-

ple model considered here gives phenomenologically reasonable results concerning

ordinary heavy baryons while simultaneously being reasonably consistent and in-

consistent with a bound heavy pentaquark state.
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3.5 Calculation of the Isgur-Wise Function

The Isgur-Wise function is a universal function in the heavy quark limit that

describes the semileptonic decay of all heavy hadrons in an SU(2NH) multiplet

(where NH is the number of heavy flavors) [11, 12]. Heavy hadrons of the Λ type

will be considered in this section. Thus the process in question is Λb → Λce
−ν̄e.

Previous work has shown that the Isgur-Wise function is completely determined

in the combined large Nc and heavy quark limit [115]. In this limit the effective

potential is purely harmonic in nature, and the Isgur-Wise function depends on

only one parameter, the harmonic “spring constant” [116, 117]. Therefore it has

been pointed out that if the excitation energy of heavy baryons were measured, the

spring constant would be fixed and thus the Isgur-Wise function would be completely

determined up to higher-order corrections.

Unfortunately, it has been shown thus far that for realistic parameters, the

system does not remain in the harmonic region and the expansion appears to break

down. Of course, from the wave functions which have already been calculated, the

Isgur-Wise function can also be calculated, and again one would expect distinct

results from the harmonic oscillator case.

The most interesting aspect of the Isgur-Wise function near the combined

limit is related to the fact that this entire universal function is dependent on one

measurable parameter. It is important to test the reliability of this result when one

deviates from the ideal limit, viz., for the real world. Ideally one could test this

by using the empirical value of the excitation energy of the first excited state plus
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the assumption that one is near the combined large Nc and heavy quark limits to

compute the Isgur-Wise function; this ought then to be compared with the exper-

imental Isgur-Wise function for an empirical test. However, the Isgur-Wise form

factors have not been measured.

In the absence of such data, one can still get some idea of how robust the

prediction is by using “realistic” models. Since these models indicate that that

system is quite anharmonic, one does not expect a close agreement of the Isgur-

Wise function with the harmonic approximation based on the energy of the first

excited state. Instead of considering the entire Isgur-Wise function, the curvature

at zero recoil, ρ, of the Isgur-Wise function will be focused upon. This is chosen

as ρ is proportional to the mean radius squared in the heavy quark limit, and

thereby provides a single number with which to compare and does so in a physically

transparent way.

The Isgur-Wise function in momentum space from [115] is

η0 =

∫

d3~p φ∗
c(~p +mN~v

′)φb(~p). (3.27)

In the case of harmonic wave functions this reduces to

ηHO(z) =
2
√

2µ
3/8
b µ

3/8
c

(
√
µb +

√
µc)3/2

exp
(−z2

2
√
κ

)

, where z ≡ mN |~v|
(
√
µb +

√
µc)1/2

, (3.28)

mN is the mass of the nucleon, κ is the harmonic coupling, ~v is the transfer velocity,

and µc and µb are the reduced mass of the heavy meson-nucleon system for either

charm or bottom, respectively. One can also express the Isgur-Wise function in

terms of position space wave function as

η0 =

∫

d3~x ψ∗
c (~x)ψb(~x) e

imN~v·~x. (3.29)
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These expressions for the Isgur-Wise function lead to the following leading order

expressions for the curvature at zero recoil,

ρHO ≡ ∂2ηHO

∂z2
(z = 0) = − 2

√
2µ

3/8
b µ

3/8
c√

κ (
√
µb +

√
µc)3/2

(3.30)

for the harmonic case, and

ρ ≡ ∂2η

∂z2
(z = 0) = −(

√
µb +

√
µc)

∫

d3~x ψ∗
c (~x)ψb(~x)~x

2 cos2(θ) (3.31)

for the spatial wave function case.

The curvature at zero recoil, ρ, will be calculated in three different manners.

First, ρ can be calculated by approximating the potential by a harmonic oscillator

to generate a harmonic coupling, κ. Equation (3.30) can then be used for this value

of κ, along with physical values of the mass variables, to calculate ρ. Second, the

wave functions of the ground state of the complete potential can be used directly in

Eq. (3.31) to calculate ρ. Of course, this is the proper way to calculate ρ and the

Isgur-Wise function since the complete potential is being considered. One would

expect a vast difference between the first two methods since differences in the wave

function between the harmonic wave functions and the complete potential wave

functions have been consistently observed. Lastly, even though one knows that the

energy levels calculated by using the entire effective potential are not harmonic in

nature, one could use the excitation energy of the first excited state to calculate κ

as though it were derived from a harmonic oscillator, and then use this value of κ to

calculate ρ using Eq. (3.30). That is, instead of deriving the harmonic coupling from

an approximation to the actual potential, a new harmonic potential is constructed

from the excitation energy of the complete potential. This new harmonic potential
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is unrelated to the original harmonic potential and to the complete potential, except

that the energy gap between the ground state and the first excited state of this new

potential and the complete potential are identical. Of course, the third method has

no underlying theoretical basis unless the system is harmonic (in which case it will

agree with the first two). It is useful to consider it, however, because it simulates

theoretically the empirical procedure outlined above.

When the curvature of the Isgur-Wise function at zero recoil, ρ, was calculated

in these manners, using physical mass of the nucleon and the heavy baryons, the fol-

lowing results were obtained. The normalized wave functions are shown in Fig. 3.4,

remembering that ρ is proportional to the expectation value of r2. Method 1
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(a) Charm Wave Functions
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(b) Bottom Wave Function

Figure 3.4: (a) Calculated normalized wave functions for the ground state Λc from
the complete potential (solid curve), the harmonic approximation (smaller dashed
curve), and the harmonic approximation from the excitation energy (larger dashed
curve). (b) Calculated normalized wave functions for the ground state Λb form
the complete potential (solid curve), the harmonic approximation (smaller dashed
curve), and the harmonic approximation from the excitation energy (larger dashed
curve).

yielded −53.8× 10−6MeV−3/2 when g′ was chosen to have the appropriate coupling

constant for the bottom sector. Method 2 yields −121×10−6MeV−3/2. Note that by

using the complete wave functions, the curvature is a factor of 2 larger than the case
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of using harmonic oscillator wave functions. Lastly, Method 3, using the excitation

energy from the full potential and assuming it came from a harmonic oscillator po-

tential, yields −111 × 10−6MeV−3/2 with the bottom case coupling constant. This

result is different from Method 1 as one might have expected, but is quite simi-

lar to Method 2 (which gives the “correct” result). This is quite surprising since

Method 3 can only be justified via the harmonic approximation which appears to be

badly violated (as seen from the result of Method 1). Given the fact that Method

3 simulates the natural way to test the harmonic approximation empirically, it is

important to test whether the success of Method 3 in getting close to the correct

result is a mere numerical accident for this model or whether it is a robust feature.

As will be demonstrated, it is quite robust.
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Figure 3.5: Variety of effective potentials: (a) solid curve; (b) long dashed curve;
(c) short dashed curve; (d) dotted curve; (e) dot-dashed curved.

In order to test the extent to whether Method 3 generically reproduces the

correct result of Method 2, one needs to consider a wide variety of models and com-

pare the results. Since the effective potential only depends on the Skyrme profile

function, a variety of profile functions (which we constructed on an ad hoc basis

entirely for the purpose of testing the validity of Method 3) have been considered.
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The curvature at zero recoil of the Isgur-Wise function was calculated for these ef-

fective potentials using the three methods detailed above. The effective potentials

that were considered are shown in Fig. 3.5 while the results of the calculations of

ρ are presented in Table 3.2. One can clearly see that with all effective potentials

considered, the curvature at zero recoil calculated with harmonic wave functions is

different from the calculations performed with the other two methods. However,

for all the potentials considered, the latter two methods provide similar results. Al-

though not depicted in Table 3.2, when an effective potential with a global minimum

away from the origin is considered, Methods 2 and 3 give different results. This can

be attributed to the wave function calculated with the complete effective potential

being peaked away from the origin, where Method 3 assumes that the wave function

is still peaked at the origin.

Potential Method 1 Method 2 Method 3

a (Original) -53.8 -121 -111
b -83.3 -175 -171
c -109 -216 -215
d -101 -142 -139
e -132 -225 -231

Table 3.2: The curvature at zero recoil, ρ, of the Isgur-Wise function calculated in
three different manners in units of 10−6MeV−3/2. The first line is the original profile
function. All calculations were performed with the coupling constant, g′, chosen to
bind Λb with the appropriate binding energy.

The fact that Method 3 works so well, even when the system is quite anhar-

monic, appears to have some important consequences. In the first place, it means

the prediction of ρ from the excited state energy (using the harmonic approximation)

may be expected to hold reasonably well and, hence, one has some real predictive
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power even if the system is rather anharmonic. The converse of this appears to be

that the degree to which ρ is accurately predicted via Method 3 is a poor test of the

degree to which the system is harmonic.

In fact, the situation is a bit more subtle than this. Qualitatively it is clear

what is happening: the anharmonic nature of the potential lowers the excitation

energy compared to that of a harmonic potential with the same curvature at the

minimum. Fitting this excitation with a harmonic oscillator means that the fitted

oscillator will have a smaller curvature (i.e., spring constant) than the actual spring

constant at the minimum. This has the effect of spreading out the wave function

compared to the harmonic approximation based on the true curvature which in turn

means a larger value of ρ; this acts to simulate the true wave function which is also

wider than the näıve harmonic result. Thus, generically, the sign of the effect of

anharmonicity on the excitation energy and ρ helps explain the viability of Method

3. The degree to which the method works quantitatively may still seem remarkable,

however. The quantitative success is at least partially understandable analytically.

It is straightforward to calculate the leading order effect of the anharmonicity on

both the excitation energy of the lowest excited state [117]. As it happens, the shift

in the excitation energy exactly compensates the shift in ρ to leading order in the

anharmonicity, and the according inaccuracies due to using Method 3 only appear

at next-to-next-to leading order. Thus, the system can be rather anharmonic and

Method 3 can remain reasonably accurate. It is nevertheless remarkable how well

Method 3 appears to work since the wave functions appear to be qualitatively quite

different from the harmonic ones of Method 1.
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In conclusion, an effective potential for the binding of the heavy (anti-)meson

and nucleon to form regular and exotic heavy baryons for variations of the Skyrme

model have been constructed. It has been demonstrated that this effective poten-

tial gives excitation energies and collective wave functions which are qualitatively

different from those obtained with a harmonic oscillator approximation to the po-

tential: the wave functions with realistic particle masses are not concentrated near

the potential minimum, as expected from the large Nc and heavy quark limits. This

indicates that the masses are not heavy enough to have heavy baryons exhibit the

properties of these limits. Calculations with the full effective potential showed that

heavy pentaquark states are possible in this class of model but the existence of

bound pentaquarks depends sensitively on the details of the model studies. This

result is consistent with the observations of Chapt. 2. It was also shown that de-

spite strong anharmonicities the description of the Isgur-Wise function derived from

the harmonic approximation works remarkably well provided that the effective har-

monic coupling derived from the first excitation energy is used. The next chapter

will move away from potential models. It will focus on an emergent symmetry of

QCD associated with heavy quark physics.
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Chapter 4

Doubly heavy hadrons and the domain of validity of doubly heavy

diquark–anti-quark symmetry

4.1 Introduction

This chapter concerns an emergent symmetry of QCD which is relevant for

heavy quarks. It has been known for some time that in the limit of arbitrarily large

heavy quark masses that QCD has a symmetry which relates hadrons with two

heavy quarks (anti-quarks) to analogous states with one heavy anti-quark (quark)

[139]. This symmetry will be referred to as the doubly heavy diquark–antiquark

(DHDA) symmetry. Presumably when the masses are finite, but very large, a rem-

nant of this DHDA symmetry will survive in the form of an approximate symmetry.

A key issue is how large must the masses be before such an approximate DHDA

symmetry is manifest in a useful way. The issue is particularly relevant for charm

quarks—both because the charm quark is the lightest of the heavy quarks and hence

the approximation is most likely to fail and because doubly bottomed hadrons (or

hadrons with a charm and a bottom) are more difficult to create and detect than

doubly charmed ones.

The issue remained of only marginal importance in the absence of observed

doubly heavy hadrons. However, in the past several years, the SELEX Collabora-
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tion has reported the first sighting of doubly charmed baryons [140, 141, 142, 143].

Four states, Ξ+
cc(3443), Ξ++

cc (3460), Ξ+
cc(3520), and Ξ++

cc (3541) (which have been in-

terpreted as two pairs of iso-doublets) are reported, as shown in Fig. 4.1. It should

be noted that all four states were identified through their weak decay products.

This is surprising as one would ordinarily expect the excited states to decay electro-

magnetically much more rapidly and thus wash out a signal for weak decays [144].

This issue creates a problem for any interpretation of the data. Additionally, most

recently, BaBar has reported that they have not observed any evidence of doubly

charmed baryons in e+e− annihilations [145]. Thus one might question the exis-

tence of these states. However, despite these issues it is useful to ask whether the

properties of these states could be understood at least qualitatively in terms of the

DHDA symmetry assuming that the states are, in fact, real. Recently Refs. [146]

and [147] argued that the splitting between the lower doublet and the upper doublet

Ξ states can be understood semi-quantitatively (at the 30% level) in terms of an

approximate DHDA symmetry.

Figure 4.1: Spectrum of Ξcc that have been observed by the SELEX Collaboration.
[140, 141, 142, 143]
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This chapter critically examines the extent to which an approximate DHDA

symmetry could be present for charm quarks. This is of importance both for the

doubly charmed states found by SELEX and also for the existence of putative dou-

bly charmed tetraquarks which are known to exist in the heavy quark limit [112]

and in potential models [148]. Strong evidence is found to suggest that the charm

quark mass is not heavy enough for the symmetry to emerge automatically of color

Coulombic interactions. The key issue is the degree to which scales that separate

in the heavy quark limit (and whose separations are critical to the derivation of the

DHDA symmetry) in fact separate for doubly charmed systems. As will be detailed

below, such a scale separation probably does not hold. Despite this, the analysis

in this chapter will show that the presence of certain non-perturbative interactions

could result in an approximate DHDA symmetry in the charm sector.

To begin the discussion, consider why one expects the DHDA symmetry. Phys-

ically, it arises from a diquark pair forming a tightly bound, nearly point-like, static

object. The attraction between the two heavy quarks in the diquark comes from a

color Coulombic interaction that is attractive in the color 3̄ channel. If the mass of

the quarks is large enough, the heavy quarks move slowly and act like non-relativistic

particles in a Coulombic potential. As the size of a Coulombic bound state is in-

versely proportional to its mass (for fixed coupling), in the large mass limit the

diquark becomes a heavy, small object with color 3̄. To a good approximation it

becomes a static point-like 3̄ color source; in this sense it acts in essentially the

same way as a heavy anti-quark. This symmetry was first discussed by Savage and

Wise [139] in the context of relating the properties of doubly heavy baryons, QQq,
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to those of heavy mesons, Q̄q.

To the extent that one can treat the heavy diquark as formed, one can simply

use standard HQET to describe the properties of the doubly heavy baryons. Since

the diquark in the doubly heavy baryon essentially acts as an antiquark, one can

directly relate the properties of this system to heavy mesons. Using the HQET

effective Lagrangian from Eq. (1.4) and extended to include the diquark fields as in

Ref. [139], a relationship valid at large mQ for the mass difference of spin excited

states between the doubly heavy baryons and heavy mesons was derived 1:

mΣ∗ −mΣ =
3

4
(mP∗ −mP ), (4.1)

where Σ and Σ∗ are the doubly heavy anti-baryons with S = 1
2

and S = 3
2
, respec-

tively, and P and P ∗ are the heavy mesons with S = 0 and S = 1, respectively. A

discussion of the derivation of Eq. (4.1) is given in Appendix C.1. From the perspec-

tive of HQET, this relationship should hold to O(Λ2
H/mQ) where ΛH is a typical

hadronic energy and is proportional to, but not necessarily identical to ΛQCD. At

the time of the Savage and Wise paper, this relationship was a prediction of the

theory: doubly heavy baryons had not been discovered. The SELEX data allows

one to explore this relation with–even if dubious–real world data.

Before proceeding further, one should note that this analysis is based on the

assumption that a spatially small and tightly bound diquark configuration exists

and remains unexcited in the dynamics. The key question to address is the extent

1Equation (4.1) is different from that in Refs. [139] by a factor of 1

2
. This error was observed

and corrected by Ref. [146] and [149].
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to which this assumption is true.

To examine the issue of diquark excitations, a systematic treatment for the

dynamics of two heavy quarks is needed. At a formal level the non-relativistic

expansion of the heavy quark degrees of freedom with QCD (NRQCD) is the natural

language to explore this issue. NRQCD was first developed by Bodwin, Braaten,

and Lepage [150], where it was modeled after a similar treatment in the context

of QED [151]. As discussed in Sect. 1.2, HQET describes the dynamics of a single

heavy quark. It has two energy scales, mQ and ΛH , and creates an expansion

in ΛH/mQ. On the other hand, NRQCD attempts to describe multi-heavy quark

systems. This added dynamics requires the introduction of two new scales: the

characteristic momentum, mv, and energy scale, mv2, where v is the characteristic

velocity of the two heavy quarks relative to each other. For relevant systems, this

velocity is typically related to the strong coupling constant as v ∼ αs(mv). NRQCD

relies on the hierarchy, m � mv � mv2. This creates four characteristic regimes

of (energy, momentum) transfer; namely (m, m), (mv, mv), (mv2, mv), and (mv2,

mv2) which are conventionally referred to as hard, soft, potential, and ultrasoft,

respectively. Traditional NRQCD has been further simplified into two different

effective theories, pNRQCD and vNRQCD. The pNRQCD approach to diquarks

integrates out the soft momentum gluons to form heavy diquarks states with definite

color, and uses these diquark states as the degrees of freedom [152, 153, 154]. On

the other hand, the vNRQCD approach keeps the heavy quarks as explicit degrees

of freedom while matching the effective theory at the hard scale [155]. In all forms

of NRQCD, the separation of scales creates an expansion of powers of v.
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On physical grounds, one expects that NRQCD at leading order for systems

with two heavy quarks (or anti-quarks) ought to reduce to the HQET description

of the dual problem—i.e., the problem related by the DHDA symmetry. Recently,

Ref. [146] derived the presence of DHDA symmetry in the context of pNRQCD while

Ref. [147] confirmed this for vNRQCD by showing the equivalence between vNRQCD

and pNRQCD. It should be noted that this derivation represents a qualitatively new

domain for NRQCD. Traditionally, NRQCD is applied to systems with one heavy

quark and one heavy anti-quark with no valance light quark degrees of freedom.

The fact that the technique may be extended to problems with two heavy quarks

plus additional light quark degrees of freedom is non-trivial. One central point,

that should be stressed, is that the derivation is quite general and applies equally

well to the problem of heavy tetraquarks as well as doubly heavy baryons. The

key advantage to the NRQCD formalism is that corrections due to dynamical heavy

quarks can be systematically incorporated by working at higher order.

While it is known that the DHDA symmetry must emerge in the heavy quark

limit, it is not immediately clear how large the corrections to the symmetry results

should be for the realistic case in which heavy quarks have large but finite mass.

Clearly the fundamental issue is the interplay between the binding of two quarks into

an approximately point-like object and the extent to which the diquark is point-like

from the perspective of the light quarks and glue; thus both the details of the physics

of the interactions between the two heavy quarks as well as between the heavy and

light quarks are essential. Previous works in this area [146, 147] have concentrated

their efforts on perturbative expansions of the interactions between the two heavy
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quarks in the framework of NRQCD and have not dealt with heavy/light interac-

tions. Since the interactions between the heavy and light quarks are intrinsically

non-perturbative, it cannot be estimated directly via the techniques of NRQCD. The

full expansion should be a combination of HQET and NRQCD which incorporates

the mixing of perturbative and non-perturbative scales. The issue of how to attack

the question of the scale of these corrections for charmed or bottom quarks is the

motivation for this chapter. This is done in the context of the SELEX data with

tools motivated by NRQCD. Even though the new combined expansion is not fully

formulated in this chapter, strong arguments suggesting the need for such a theory

when dealing with doubly heavy mesons are provided. This chapter explores this

issue both in terms of systematic treatment of the problem based on power counting

in effective field theories and in terms of more heuristic phenomenological reasoning.

This chapter is divided into two major sections. In the first, the consequences

for the spectrum in the large quark mass limit are developed. In the second section,

a finite quark mass is considered. This section will argue that the SELEX data

are not consistent with the large mass limit; there is a need for a new expansion

to describe this system; and an apparent DHDA symmetry beyond that which is

justified by NRQCD can be seen by the SELEX data.

4.2 Consequences of DHDA symmetry in the large mass limit

Before addressing the key question of whether the charm quarks are too light

for the DHDA symmetry to be manifest, it is useful to consider just what implica-
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tions the DHDA symmetry have on the spectrum when the symmetry is manifest—

namely, when the quarks are sufficiently heavy. The extreme heavy quark limit,

where all relevant scales cleanly separate, is considered. It is unlikely that this

extreme limit can be anything but a gross caricature of the physical world. Never-

theless, an understanding of the physics in this extreme regime is useful in under-

standing the applicable expansions. There has been extensive work using a variety

of models in detailing the hadronic spectrum including Refs. [156] and [157] among

others. The focus here will be considering the spectrum in the context of a possible

DHDA symmetry. A regime with more modest masses intended to describe the

physical world will be considered in the next section.

The first consequence to consider is qualitative—namely, the existence of ex-

otic states. The DHDA symmetry in HQET was first used to relate doubly heavy

baryons to heavy mesons [139]. However, the symmetry is independent of the light

quarks in the problem. Formally, in NRQCD, the light quarks are governed by

non-perturbative dynamics, and are thereby considered irrelevant when focusing on

the heavy quarks in the large mass limit. As the DHDA symmetry applies in the

heavy quark limit independent of the number and state of spectator light quarks,

it is sufficient to consider an ordinary heavy baryon, Qqq. From DHDA symmetry,

this state is directly related to a doubly heavy tetraquark state, Q̄Q̄qq. Thus in

the heavy quark limit, when the DHDA symmetry is exact, the existence of heavy

baryons implies the existence of doubly heavy tetraquarks.

The fact that doubly heavy tetraquarks must exist in the heavy quark limit has

been shown previously. This was done both based on the simple argument discussed
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here and in the context of an illustrative model based on pion exchange [112, 148].

It should be noted that while being in the regime of validity of DHDA requires

the existence of doubly heavy tetraquarks, the converse is not true: doubly heavy

tetraquarks could be formed via other mechanisms. Nevertheless, the general result

is significant in that the tetraquark has manifestly exotic quantum numbers in the

sense that it cannot be made in a simple quark model from a quark–anti-quark pair.

As discussed in Chapt. 1, the observation of exotic hadrons has been a longstanding

goal of hadronic physics. The prediction of the existence of an exotic particle directly

from QCD–albeit in a peculiar limit of the theory–is of theoretical importance in that

it demonstrates by direct construction that QCD can be compatible with exotics.

As shown in Chapt. 2 other exotic particles, viz. heavy pentaquark, have already

been shown to exist in the heavy quark limit combined with the large Nc limit.

Now the focus will be on more quantitative issues associated with the excita-

tion spectrum. As noted in the introduction, the formal treatment of this problem

incorporates NRQCD (for the interactions between the heavy quarks) and HQET

(for the interactions of a single heavy quark). The DHDA symmetry requires each

of these effective theories to be in its domain of validity. In the heavy quark limit

where both expansions will work, one has

mQ � mQv � mQv
2 � ΛH � Λ2

H

mQ
(4.2)

where ΛH is a typical hadronic scale proportional to ΛQCD and v, the relative velocity

of the heavy quark, is typically of order αs and hence depends logarithmically on

the quark mass. It should be noted that the NRQCD formalism is still valid for
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mQv
2 ∼ ΛH as indicated by Ref. [146]. However, none of the analysis in this work

depends on mQv
2 being larger than ΛH , and hence is consistent with the domain of

validity on NRQCD. The formalism of NRQCD and its associated power counting

rules remains valid for two heavy quarks in the color 3̄ in the presence of additional

light quark degrees of freedom and not just for heavy quark–anti-quark systems in

the color singlet in heavy mass limit. This was shown in Ref. [146] and verified in

Ref. [147].

It is important to note that these effective theories have different types of ex-

citations with qualitatively different scales. Doubly heavy hadrons (in the formal

limit of very large quark mass) have three characteristic types of excitation:

a. Excitations of order Λ2
H/mQ which correspond to the interaction of the spin

of the diquark with the remaining degrees of freedom in the problem.

b. Excitations of order ΛH which correspond to the excitations of the light degrees
of freedom.

c. Excitations of order mQv
2 which correspond to the internal excitation of the

diquark.

The first two types of excitations can be understood in terms of HQET while the

third requires NRQCD. (Non-perturbative physics also strongly influences the sec-

ond type of excitation.) The essential point is that as mQ → ∞ these three scales

separate cleanly. Since these excitations all occur at disparate scales, they do not

influence each other.

DHDA symmetry imposes many relations on the various types of excitations

of various doubly heavy hadrons and their associated singly heavy ones. To enu-

merate these, it is useful to have a naming convention for the various doubly heavy
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hadrons. The ground state of a doubly heavy baryon with two Q quarks will be

generically called ΞQQ while the ground state of the tetraquark are named TQQ.

Through the DHDA symmetry, these states are analogous to heavy (anti-) mesons

(i.e. the D̄ and B̄ mesons) and heavy baryons (i.e. Λ and Σ), respectively. The

following convention will be used to indicate various types of hadron excitations:

∗ indicates an excitation of type (a);

′

indicates an excitation of type (b);

] indicates an excitation of type (c).

In addition, the DHDA equivalence between associating baryons and mesons will be

indicated.

Let us consider the phenomenological consequences of these types of excita-

tions. In HQET, the SU(2) heavy spin symmetry causes states which are only

different by a spin flip to have the same mass. Excitations of type (a) are the type

which will break this symmetry creating a mass difference between these states.

As this is the leading term to create the mass splitting, HQET dictates that this

splitting is O(Λ2
H/MQ) with corrections of O(Λ3

H/M
2
Q). Additionally, there are cor-

rections to this hyperfine splitting due to pNRQCD. These corrections are related

to the soft gluons that have been integrated out to construct the diquark potential.

The leading corrections contribute at two loops, as shown in Ref. [146], and are thus

relative O(α2
s). This implies a correction to the mass splitting of O(Λ2

Hα
2
s/MQ),

which is formally larger than the O(Λ3/M2
Q) corrections of HQET in the infinite

mass limit. Because ΛH

MQ
is the smallest scale, these excitations should be the lowest
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excitations above the ground state.

Excitations of type (b) are the other excitations associated with the light

degrees of freedom. These include orbital excitations between heavy and light com-

ponents, as well as excitations within the light quark degrees of freedom. Due to

the light quark mass, these excitations are in the non-perturbative regime of QCD,

and can only be characterized by some general hadronic scale, ΛH. Perturbative

corrections to this are, in turn, meaningless. Traditional NRQCD has not been ap-

plied to systems with valance light quark degrees of freedom, and thus to date has

ignored these excitations. Some form of light quark excitations may be able to be

incorporated into NRQCD, but since they occur at a scale of ΛH, they would be

highly suppressed. HQET, on the other hand, combines these into the definitions of

heavy fields from the outset, and thereby neglects them for the rest of the problem.

These excitations should be qualitatively the second smallest scale.

Excitations of type (c) are internal diquark excitations. These excitations

correspond to the excited levels of the color Coulombic potential that binds the

diquark. In the extreme heavy quark limit, the binding potential is V (r) = −2
3

αs

r
,

where the factor of 2
3

comes from color considerations. This leads to energy levels

and energy differences of:

En = −1

9

α2
sMQ

n2
; ∆E =

1

12
MQα

2
s =

1

12
MQv

2. (4.3)

The last step is justified since at the heavy quark scale, αs(MQv) ∼ v. This verifies

that type (c) excitations are O(MQv
2). This type of excitation should be present in

both the doubly heavy baryon and tetraquark sectors as the light quark interactions
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are suppressed since they are O(ΛH ). The corrections to these relations can be found

by considering the corrections to the color Coulombic potential. In the context of

NRQCD, it has been shown by Ref. [158] that these corrections are O(MQv
4) at the

heavy quark scale. This leads to mass relations such as:

m
Ξ]

cc
−mΞcc = m

T Λ]
cc

−mT Λ
cc

= m
T ]

cc
−mTcc =

1

12
MQv

2 +O(MQv
4). (4.4)

Since diquark excitations are O(MQv
2), these are the largest excitations discussed

here.

In addition to these excitations, DHDA symmetry will relate heavy mesons

(Q̄q states) to doubly heavy baryons (QQq states) and relate heavy baryons (Qqq

states) to doubly heavy tetraquarks (Q̄Q̄qq states) which otherwise have the same

quantum numbers. Therefore the following relations can be made:

D ⇔ Ξcc;

D∗ ⇔ Ξ∗
cc;

Λ ⇔ T Λ
cc;

Σ,Σ∗ ⇔ Tcc, T
∗
cc, T

∗∗
cc

(4.5)

where D and D∗ are standard spin-0 and spin-1 D-mesons; Ξcc and Ξ∗
cc are spin-1

2

and spin-3
2

doubly heavy baryons; Λ is isospin-0 spin-1
2

heavy baryon; Σ and Σ∗

are isospin-1 spin-1
2

and spin-3
2

heavy baryons; T Λ
cc is an isospin-0 spin-0 doubly

heavy tetraquark; Tcc, T
∗
cc, T

∗∗
cc are isospin-1 spin-0, spin-1, and spin-2 doubly heavy

tetraquarks.

The DHDA symmetry can then be used to relate the mass splittings [139].

Equation (4.1) identifies the corrections to the mass splitting, but not to the DHDA
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symmetry itself. DHDA symmetry relies on the interactions between the heavy di-

quark and the light quark(s). These types of interactions, which are intrinsically

non-perturbative, are not well understood in either NRQCD or HQET, as argued

above. Therefore, to understand the corrections to the symmetry, a new power

counting scheme that combines the scales of NRQCD and HQET and is consistent

with the other scales in the problem is necessary to account for these interactions

systematically. At this time, such a fully systematic expansion has not been for-

mulated. Yet one can attempt to get a reasonable estimation of the corrections by

considering the effects of the diquark structure compared with a point-like diquark

on the DHDA symmetry. This consideration is exactly the form factor of the di-

quark relative to the scale of the light quark wave function. The form factor can

be calculated by taking the Fourier transform of the square of the diquark wave

function. In the limit of infinite heavy quarks, the diquark is in a Coulombic wave

function so the calculation is straightforward. Assuming that the momentum trans-

ferred is O(ΛH), the form factor can be expanded to give the leading correction to

DHDA symmetry as follows:

F (q) ∝ 1

(1 +
a2
0

4
q2)2

∼ 1 − 1

2
a2

0q
2 ∼ 1 − 1

2

Λ2
H

M2
Q(2

3
αs)2

, (4.6)

where a0 is the corresponding “Bohr radius” of the Coulombic bound state of the

diquark. Thus the corrections due to DHDA are O(Λ2
H/(M

2
Qα

2
s)). However, these

corrections are formally smaller than the type (a) mass splitting correction of O(α2
s).

Equation (4.1) can be translated into the previous notation, and extend the relations
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to include the tetraquark splittings to have:

mΞ∗

cc
−mΞcc =

3

4
(mD∗ −mD) +O(Λ2

Hα
2
s/MQ)

mT ∗∗

cc
−mT ∗

cc
=

2

3
(mΣ∗

c
−mΣc) +O(Λ2

Hα
2
s/MQ)

mT ∗

cc
−mTcc =

1

3
(mΣ∗

c
−mΣc) +O(Λ2

Hα
2
s/MQ)

mTcc −mT Λ
cc

= (mΣc −mΛc) +O(Λ2
Hα

2
s/MQ).

(4.7)

A detail derivation of these relations can be found in Appendix C.2.

To summarize, the doubly heavy baryons and tetraquarks will have three types

of excitations which are distinct in the heavy quark limit. From these the hadronic

spectrum for these particles can be constructed based upon these excitations and

their relative size to one another. Additionally, these spectra are related to the

hadronic spectra of heavy mesons and heavy baryons via the DHDA symmetry.

These spectra are presented in Figs. 4.2 and 4.3.

4.3 DHDA symmetry and the physical world

The previous section concentrated on the limit of arbitrarily large quark mass

to determine what one might expect from the structure of the spectrum if the

symmetry were fully justified. The usefulness of DHDA symmetry has been demon-

strated in relating the spectra of doubly heavy baryons to heavy mesons and doubly

heavy tetraquarks to heavy baryons in this limit. One can try to use this tool to

interpret the corresponding spectra with a finite massive heavy quark. As the heavy

quark mass is decreased from infinity, one expects that the correction terms outlined

above to increase until at a certain low enough quark mass they become as domi-
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Figure 4.2: Hadronic spectrum for doubly heavy baryons related to heavy mesons.

nant as the leading order, resulting in a breakdown of the expansion. The claimed

discovery of doubly charmed baryons by the SELEX collaboration provides the first

experimental data to confront the heavy hadronic spectrum described above. An

understanding of the SELEX data can provide an insight into whether DHDA sym-

metry persists in the real world.

A priori the SELEX data, along with real world parameters, might suggest one

of three possible scenarios into the validity of DHDA symmetry for doubly charmed

states. First, upon examining the data, one could find that the data support a

claim that the charm mass is heavy enough to be considered near the ideal large

mass limit discussed in the previous section. If this were the case, the spectrum can
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Figure 4.3: Hadronic spectrum for doubly heavy tetraquarks related to heavy
baryons.

be easily interpreted in terms of an approximate DHDA symmetry. Secondly, the

opposite could be true; namely that the SELEX data would be inconsistent with an

approximate DHDA symmetry. This would indicate that the charm quark mass is

simply too light for the symmetry to be manifest. The last possibility is perhaps

the most intriguing: that data could suggest that charm quark mass is not heavy

enough for the preceding argument to hold in full, but that data might still be

consistent with some aspects of an approximate DHDA symmetry. This last option

is not unreasonable as the DHDA symmetry relies on the heavy diquark to be viewed

as point-like with respect to the light degrees of freedom. The infinite mass limit
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ensures the validity of this assumption, but a small-sized diquark might be achieved

even with a relatively modest heavy quark mass. For this possibility to be realized,

dynamics beyond the simple Coulombic interaction must play a central role. To

determine which of these possibilities is most consistent with the SELEX data, the

size of each of the previously-mentioned excitations, as well as their corrections, will

be examined and compared with experimentally determined parameters from the

SELEX data.

Before doing this, one should note a general word of caution. The fact that

the excited doubly charmed states were seen only via their weak decays presents a

challenge to any simple interpretation of the data. The problem is that the electro-

magnetic lifetime of the excited states as estimated by any simple model should

be short enough to wash out any detection of excited states via their weak decay

[144]. Any simple interpretation of the SELEX results cannot simultaneously explain

the type of excitation that is observed as well as the lack of an electromagnetic

decay channel. Therefore the focus here will be placing limitations on the type of

excitation.

The excited state seen by SELEX shown in Fig. 4.1 could be interpreted as

either a type (a) spin excitation or a type (c) diquark excitation. Type (b) light

quark excitations are ruled out as they occur on the scale of hadronic physics which is

much larger than the reported excitation. Either interpretation, as will be discussed,

explains aspects of the data, but neither provides a complete explanation.
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4.3.1 Scenario I: Spin excitation

Consider the case where the excited states are type (a) spin excitations. From

the discussion of the infinite mass case, one would expect that even for a finite quark

mass, these excitations would be the lowest lying occurring at O(Λ2
H/MQ). Accord-

ing to the SELEX data, the excitation energy is 78 MeV. With this identification,

the DHDA mass splitting relations, Eqs. (4.1) and (4.7), are satisfied with only a

30% deficiency as has been pointed out elsewhere [146, 147]. This size of error is

also consistent with the equations’ corrections of O(Λ2
Hα

2
s/MQ). This appears to

correspond to a success of DHDA symmetry.

At this point, Refs. [146] and [147] have only verified that Eq. (4.1) is approxi-

mately satisfied. This could be satisfied because DHDA symmetry is the underlying

phenomenon or because of a numerical accident. In order to determine between

these two scenarios, one needs to consider the other aspects of the spectrum and

DHDA symmetry. That is, are type (c) excitations larger than type (a) excitations

as expected when a finite quark mass is considered, and is the spatial extent of the

diquark small enough to consider it point-like?

The former condition will be tackled first. Assuming, first, that the system

really is in the extreme heavy quark limit, the diquark excitation energy can be

calculated from Eq. (4.3) using the color coloumbic potential. From Eq. (4.3), one

can calculate the expected excitation energy of the diquark for a charm quark mass

of 1.15 GeV and a velocity of .53. This gives an excitation energy of 26.9 MeV! This

is clearly not larger than the assumed 78 MeV spin excitation. This is a sign that
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the scale separation arising from the color Coulombic interactions, expected for an

infinite quark mass, is not present for the charm quark.

Furthermore, the assumptions that lead to the DHDA symmetry need to be

examined. The key issue in determining whether DHDA symmetry could hold is the

size of the diquark with regards to the light valance quark(s). This can be formally

addressed by looking at the size of the diquark to determine if it is nearly point-like.

The size of the diquark can be characterized by the RMS radius of the state. Again,

assuming the extreme heavy quark limit, the RMS radius can be calculated from the

Coulombic wave function; this yields a size of the ground state diquark to be 1.64

fm. Clearly this is not point-like on the scale of hadronic physics. The large size of

the ground state of the diquark also indicates that the excited state would be even

larger. This invalidates the previous diquark excitation energy calculation, while

emphasizing the absurdity of assuming that the diquark is bound deeply by the

color Coulombic interaction. Moreover, this further indicates that the diquark must

be under the influence of interactions in addition to the color Coulombic potential.

However, perhaps for the DHDA symmetry, the actual physical size of the diquark

is not what is important but rather if the light quarks observe it as approximately

point-like on hadronic scales. This distinction can be seen by examining the form

factor corrections that were considered in the previous section. To expect the DHDA

symmetry, these form factor corrections would need to be small compared with 1.

For the values for the charm quark, the correction can be calculated from Eq. (4.6)

to be 3.02
Λ2

H

GeV2 , which for a typical hadronic scale of ΛH ∼ 1 GeV is not much

smaller than 1 for momenta of typical hadronic scales. (For smaller values of ΛH
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this relation becomes borderline, at best.) Thus both indicators show that the real

world charm quark is not heavy enough to justify the point-like nature of the doubly

heavy diquark which is necessary for the DHDA symmetry.

It should be noted that the bottom quark has a mass large enough to begin

to approach the regime where the heavy mass limit scaling could hold. The type

(c) excitation is 32.8 MeV, with the type (a) excitation being 34.3 MeV calculated

from the B-meson mass splitting. Additionally, the characteristic size is 0.79 fm,

and the correction to the DHDA symmetry is .69
Λ2

H

GeV2 . All of these numbers show

that for the bottom quark the scale hierarchy is as expected and corrections could

be relatively small, even if the scale separation is not complete. However, presently

doubly bottom baryons have not been observed experimentally.

It has been shown that a naive approach to DHDA symmetry results in the

conclusion that the charm quark is by no means heavy enough to believe that this

symmetry is manifest in the real world–at least if it is to arise due to color Coulom-

bic interactions. In other words, the relatively small charm quark mass causes the

corrections to the heavy massive limit to become large enough to question the expan-

sion for the excited states. However, this does not completely rule out the possibility

that DHDA could hold approximately and that these excitations are of type (a).

The color Coulombic interactions are not the only interactions the charm quarks

could experience as part of a diquark or a doubly heavy baryon. Since the charm

quarks are not heavy enough to fall into the color Coulombic region, it is reasonable

to surmise that these other non-perturbative interactions could conspire in such a

manner that would facilitate an approximate DHDA symmetry. However, these ad-
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ditional non-perturbative interactions are not systematically included in NRQCD.

Therefore, in order to describe this system, a new expansion that combines the

perturbative and non-perturbative scales of NRQCD and HQET in a systematic

manner is needed. At present, such an expansion has not yet been formulated. Nev-

ertheless, by examining the properties of the interactions needed to maintain DHDA

symmetry, a general picture of the new theory could be made.

Before proceeding with a discussion of the conditions that DHDA symmetry

imposes on additional non-perturbative interactions, an additional comment on the

color Coulombic potential is needed. First, when working in the large mass limit,

the regime of mQv
2 � ΛH was implied. However, with a finite massive quark

this condition could be weakened to include mQv
2 ∼ ΛH. Under this condition,

the type (b) and type (c) excitations may mix since they are at the same energy

scale. Nevertheless, the key issue here is whether type (a) and type (c) excitations

separate. The possible inclusion of type (b) excitations with type (c) does not

effect whether they are separated from type (a), and hence do not effect the results

discussed here. Secondly, the color Coulombic potential is only the leading-order

term in NRQCD; sub-leading terms might need to be included when a finite massive

quark is considered. However, since a need for a new expansion which includes the

mixture of perturbative and non-perturbative effects has been seen, it is not clear

whether the sub-leading terms suggested by NRQCD are the only sub-leading terms

in the combined expansion. In both of these cases though, additional interactions

beyond the simple color Coulombic potential are included. It is not impossible that

these, just like the ones hypothetically postulated above, could conspire so that the
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DHDA symmetry would be manifest in an approximate manner in the real world.

Again, a description of the conditions to obtain an approximate DHDA symmetry

will provide insight into these additional interactions whether they are NRQCD

based or well beyond the scope of NRQCD and HQET.

There are two key places where the analysis based on the color Coulombic

potential fails to give rise to the DHDA symmetry with real world parameters. The

assessment of these failures will provide conditions on the additional interactions to

re-establish DHDA symmetry. The first is the characteristic size of the diquark. It

has already been shown that for the Coulombic potential, the size of the diquark is

large enough not to be considered even remotely point-like from the point of view

of hadronic dynamics. Secondly, the hierarchy of scales used to derive the result

breaks down badly. Additional dynamics beyond the color Coulombic potential

would need to create a diquark with a size much smaller than the characteristic

hadronic size and to re-establish the spin excitations as the lowest-lying excitations

as one originally assumed.

An examination of the restrictions placed on the characteristic size of the

diquark reveals the following. The characteristic size of the diquark, which will be

denoted as L, must be smaller than the size in a Coulombic potential, denoted as

Lc, and it must be small enough to allow the DHDA corrections to be small. The

correction term of Eq. (4.6) can be rewritten in terms of this characteristic size as

1
6
L2Λ2

H. Thus for the correction to be small, L �
√

6/ΛH ≡ LDHDA. Lc must be

larger than LDHDA since Lc already violates DHDA symmetry and thus cannot be

smaller than LDHDA. Therefore, in order for the diquark to be considered nearly
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point-like, both

L� Lc and L� LDHDA (4.8)

must be simultaneously satisfied. In order to ensure this, in terms of size, LDHDA

could be much smaller than Lc, or LDHDA could be of comparable size to Lc. Con-

sider the former possibility. LDHDA � Lc is equivalent to
√

6
ΛH

� 3
2mQαs

. This implies

that mQαs � .6ΛH . This relationship is never satisfied since αs ∼ 1/ ln(mQ) and

mQ � ΛH. Thus for DHDA symmetry to occur the latter condition must hold. It

gives: LDHDA ∼ Lc implying mQαs ∼ .6ΛH . As αs at the charmed quark mass scale

is around .6, this relation can only be satisfied if mQ ∼ ΛH . It should be noted

however, that an interaction providing a characteristic size of the diquark which is

consistent with Eq. (4.8) is possible. For the purposes of the discussion here, one

needed to show that at least one kinematic region was possible, and the region where

mQ ∼ ΛH satisfies these conditions even though it should not be unique.

A couple of comments should be made about this condition. The first is that

it naively appears not to occur even for the charm quark case. If one takes ΛH to be

of the scale of ΛQCD it seems to be much smaller than mc. However, one should note

that the ∼ indicates “of the same scale as” under the assumption that the coefficients

which arise in the expansion are “natural,” i.e., of order unity. If the dynamics

are such that some of the coefficients multiplying ΛH are anomalously large, the

condition mQ ∼ ΛH could hold effectively. The second key point is simply that if

this does occur the system is clearly beyond the perturbative regime. It should also

be noted that this should not be seen as a generic condition invalidating NRQCD.
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Rather, it implies the expansion has broken down for this particular system. There is

non-trivial evidence that this is in fact the case; namely if one assumes the expansion

is working, one gets inconsistent results as already seen here. The central question

addressed here is not whether the expansion has broken down, but rather whether

one can still have a small diquark even if the expansion has broken down. If it

indeed is the case that the condition mQ ∼ ΛH is effectively met, then there is a

possible characteristic size of the charmed diquark for which DHDA symmetry could

be valid. This region is simply a size that is much smaller than the length associated

with the Coulombic potential and smaller than the typical hadronic size.

Thus far a possible kinematic region for which approximate DHDA symmetry

may be possible has been identified. However, to test whether this can occur in

practice, one needs to see whether plausible dynamics can drive the system into such

a regime. To this end, a “reasonable” dynamical model for the interaction between

the heavy quarks is considered. This model is not intended to be an accurate

description of hadronic physics. The goal is simply to see whether a simple model

with natural scales can put the system in the regime where DHDA symmetry emerges

at least approximately. The existence of a model which does this shows that an

approximate DHDA symmetry could be present in charm physics despite the fact

that the charm quark mass is not heavy enough to be considered in the extreme

limit.

To illustrate the kind of model which brings us into this regime, a linear

confining potential with a string tension of 1GeV
fm

is considered. The value of the

string tension is not experimentally determined, but here it is chosen to achieve
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the desired results of a small diquark size with large diquark excitation. Such a

potential with the same string tension can be used to get a reasonable description of

the J/Ψ [159]. One might not believe that such a model is applicable at all distances

to which it will be attempted to be applied. Indeed, one may reasonably question

whether any two-body potential description is sensible. Nevertheless the scales of

the model are at least instructive. Any confining potential that can be introduced

will cause the characteristic size of the diquark to be reduced; thus the conditions

on the diquark size may be satisfied. Specifically, the characteristic length is 0.5 fm

when the linear confining potential above is used to bind charmed quarks. This is

substantially smaller than the Coulombic wave function and might be small enough

so that approximate DHDA might emerge. Moreover, the small size of the bound

state helps to justify the two-body potential description a posteriori; the effects

of the light quark between the heavy ones should be suppressed due to the small

size. Unfortunately, this calculation is not part of a systematic calculation, and it

is not immediately clear how to reliably estimate the size of the correction to the

leading-order DHDA estimate for the splitting.

Calculations of the energy spectrum of Coulombic plus linear confining po-

tentials in this channel reveals that the radial excitation energy is 630 MeV–far

above the 100 MeV energy associated with expected spin excitations. Thus this

linear confining potential satisfies both of the conditions needed to believe that an

approximate DHDA symmetry could be realized for charmed quarks.

A region has therefore been found where an approximate DHDA symmetry

could be realized approximately and the lowest-lying excitations are type (a) spin
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excitations. The color Coulombic interactions cannot be the only relevant interac-

tions the heavy quarks experience (as is assumed in the heavy quark mass limit). Of

course the question of whether the dynamics as such is realized in nature remains

an open question. It would be very fortuitous if this model of non-peturbative

interactions mimics the actual non-peturbative dynamics.

Even though a consistent argument for the observed excited states to be spin

excitation has been presented, there remains a phenomenological issue with the par-

ity of the excited state. Type (a) excitations do not change the parity of the excited

state relative to the ground state. Ground state baryons have positive parity, thus

the spin excited state should also have positive parity. Experimentally, the parity of

the excited states has not been determined. The SELEX collaboration have argued

that the orbital angular momentum of the ground state is consistent with L = 0

(positive parity), while the excited state is consistent with L > 0 (either positive or

negative parity). Furthermore, SELEX observed an orbital excited state Ξcc(3780)

which has negative parity and decays via pion emission to Ξcc(3520) suggesting that

this state could have negative parity. If this parity assignment holds, the interpreta-

tion that the excited states were spin excitations made here and in Refs. [146, 147],

would be ruled out.

4.3.2 Scenario II: Diquark Excitation

Now let us consider the case where the excitation is interpreted as a type

(c) diquark excitation. Type (c) excitations could result in a parity flip from the
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ground state. This would resolve the parity problem found with the spin excitation

interpretation. As will be discussed below, if this scenario is correct one is almost

certainly outside the regime of validity of DHDA as well as outside the regime of

validity of NRQCD. Moreover, it is likely to be very difficult to make such a scenario

work phenomenologically.

In order for diquark excitations to be smaller than the spin excitations, there

must be a breakdown of the heavy quark mass limit; the system must reside in a

non-perturbative regime. Thus if the DHDA symmetry is present, it is not due to

NRQCD, HQET, or the heavy quark limit. Therefore, as with the previous case,

the diquark can be under the influence of non-perturbative interactions beyond

the color Coulombic interactions. It was shown that if these additional confining

interactions maintained an approximate DHDA symmetry, the diquark excitations

were much larger than the observed 78 MeV excitation. Again one can illustrate

this with a linearly rising potential between the heavy quarks. In order for the

diquark excitations to be comparable to the observed splitting, the linear confining

interactions must have a string constant of ∼ 50MeV
fm

, which is very small compared to

the natural scales in the problem. The small size of the linear confining interactions

results in the diquark having a larger size, and makes the assumptions that it is

point-like even less believable. For the string constant of 50 MeV
fm

considered here,

the ground state of the diquark has an RMS radius of 1.2 fm, and the first excited

state has an RMS radius of 5.8 fm. These numbers are extremely large compared

to typical hadronic sizes.

The preceding model calculation suggests that if the excitation were the ex-
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citation of the diquark, the DHDA symmetry cannot be valid even approximately.

It also raises a fundamental issue of self-consistency. A large spatially extended

diquark allows the light quark to come between the two heavy quarks allowing for

three-body interactions to play a significant dynamical role. To the extent that this

occurs, it is meaningless as a phenomenological matter to separate the diquark ex-

citation from excitations of the entire system. Thus, excitations of type (b) and (c)

would strongly mix and the entire structure of scale separation would break down.

It should be noted that this analysis was based on a very simple and not

terribly plausible model. However, it does incorporate the natural scales of the

problem and shows that the excited state wave functions are much too large to

be taken seriously. It is also clear that it would be very hard to construct any

potential model which restricts the diquark size to be much less than a fermi while

having an excitation energy of 78 MeV. To illustrate this point, one can consider

a harmonic confining potential instead of the linear potential. One would expect

that this potential would confine the excited state and reduce its size more than the

linear potential. Calculating the size of the diquark under these conditions for an

excitation energy of 78 MeV results in a ground state RMS radius of 1.3 fm and an

excited state RMS radius of 2.5 fm. Even though the diquark size is smaller, it is

still very large in terms of hadronic physics. Furthermore, if one were able to drive

the size of the excited state to a reasonable hadronic size, say, 1 fm, the ground

state would be even smaller. Such a small ground state size is then consistent with

spin excitations discussed previously. It therefore seems difficult for this scenario to

be correct.
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Together these two scenarios make it very difficult to understand the data in

a simple way. If the parity of the states is correctly interpreted by SELEX, there

does not appear to be any simple phenomenologically reasonable interaction yielding

either small diquark excitations or DHDA symmetry. However, if one sets the parity

designation aside, Scenario I (the assignment of type (a) spin excitations) seems to

be the more plausible interpretation.

4.4 Conclusion

This chapter has explored the implications of the DHDA symmetry both in

the extreme heavy quark limit as well as with physical quark masses. It has shown

that the DHDA symmetry suggests that doubly heavy tetraquark states should

be stable to strong decays in the heavy quark limit. Though there may be some

inconsistencies associated with the SELEX experiment, the DHDA symmetry and

the heavy quark limit were used in an attempt to explain the data. It was shown

that it is unlikely the charm quark is heavy enough for one to expect to observe

the DHDA symmetry because of the heavy quark limit. Models including non-

perturbative physics were considered which could lead to an approximate DHDA

symmetry away from the heavy quark limit. Therefore, the work in this chapter

suggests that despite DHDA being first formulated using HQET, and then later

verified to be derivable from NRQCD, a new systematic expansion–which may be

a hybrid of HQET and NRQCD–is needed for a complete understanding of the

applicability of DHDA symmetry to physical systems.
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Chapter 5

The status of the conjectured viscosity/entropy density bound

5.1 Introduction

In the previous chapters, various systems of heavy quarks have been consid-

ered. This chapter will also prominently feature a system of heavy quarks. However,

the outlook will be rather different. Here, heavy quarks will play a role in investiga-

tions of a fundamental question: are there intrinsic limits on viscosity and entropy

density for all fluids? As will be seen here, a gas of mesons containing heavy quarks

in a peculiar limit of QCD plays a key role in this analysis. This chapter, however,

will discuss the broader question of whether a fundamental bound on the ratio of

viscosity to entropy density, η/s, exists.

Kovtun, Son, and Starinets (KSS) have proposed a conjecture that there is a

universal bound for the ratio of shear viscosity, η, to entropy density, s, [160]:

η

s
≥ ~

kB

1

4π
, (5.1)

where ~ and kB are Plank’s constant and Boltzmann’s constant, respectively. (For

the remainder of this chapter units with ~ = 1 and kB = 1 will be used.) KSS

found that Eq. (5.1) is saturated by certain strongly coupled field theories which

have a super-gravity dual [160], and conjectured that η/s has a universal lower

limit. Physically interesting and accessible fluids, such as water, liquid nitrogen,
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and helium-4 satisfy the bound [161]. The bound appears to be well justified for

the class of field theories originally considered by KSS [160], but it is not obvious

from first principles that it should apply more universally (hence its status as a

conjecture).

The original form of the KSS conjecture states that the bound should be

universal and apply to all fluids, including non-relativistic fluids [160]. However,

a non-relativistic system can be constructed which can violate the bound via the

Gibbs mixing entropy associated with the system’s many species [162]. To avoid

the many species problem, KSS has subsequently suggested two other domains of

validity for their bound. They stipulate that either the bound is valid for “all

systems which can be obtained from a sensible relativistic quantum field theory by

turning on temperatures and chemical potentials” [163] or for a “single component

nonrelativistic gas of particles with either spin zero or spin 1/2” [161]. It is in the

context of the former where a gas of heavy mesons plays a critical role.

If the bound could be shown to be correct in any of its proposed forms, or

indeed in some readily specifiable alternative form, it would represent a truly major

advance in our understanding of quantum many-body physics. Indeed, even as a

conjecture it has been invoked in discussing systems as diverse as ultra-cold gases of

trapped atoms [164] and the quark-gluon plasma (QGP) [165, 166, 167, 168]. Since

KSS first conjectured their bound, the ratio of shear viscosity to entropy density has

been investigated in a variety of systems [164, 169, 170, 171, 172, 173, 174, 162, 175].

The smallest reported measurement of η/s has been associated with the QGP at

RHIC [165, 166, 167, 168]. (A more recent analysis of the data from RHIC may
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actually be consistent with a violation of the proposed bound [176].) Since the η/s

bound may (or may not) have a rather extensive scope, it is important to understand

in which types of systems one should expect the bound to hold.

At the beginning, it is useful to briefly review the argument of KSS that led to

their proposed bound. The argument makes use of the AdS/CFT duality from string

theory [177, 178, 179, 180]. It is argued that in higher dimensional gravity theories,

black branes (higher-dimensional analogs of black holes) have finite temperature

field theory duals (specifically, N = 4 supersymmetric Yang-Mills theories at large

Nc and infinite ’t Hooft coupling g2Nc) that possess hydrodynamic properties such as

viscosity. These hydrodynamic properties can be related to gravitational properties

of the black branes, and the correspondence can be used to compute transport

properties [160]. Using these methods the ratio η/s can be computed. A number

of theories in this class have been studied in the large Nc limit at infinite ‘t Hooft

coupling. All of them have saturated the inequality of Eq. (5.1) [160]. A general

argument has been given that all theories in this class at large Nc and infinite ‘t

Hooft coupling must saturate the bound [161]. Moreover, one generally expects that

as one weakens the coupling of an interacting system, the viscosity should increase.

One might, therefore, expect that as the ‘t Hooft coupling is decreased from infinity,

the ratio η/s should increase. This has been seen in an explicit calculation for the

first correction due to finite ‘t Hooft coupling for one particular theory [181]. Thus,

it seems quite plausible that η/s is bounded as in Eq. (5.1), at least for those large

Nc field theories which have super-gravity holographic duals.

However, the AdS/CFT correspondence is not directly relevant to any physical
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systems. Hence it is rather a large leap to believe that the bound conjectured in

this unphysical theory would apply beyond it. The interesting question therefore is

whether the bound holds for some general class of theories beyond AdS/CFT, and

if so for which class of theories. Note that apart from the field-theoretic calculations

based on AdS/CFT, there is no reliable method to calculate η/s for any strongly

coupled quantum fluid, yet it is this class of fluids for which one expects the smallest

values of η/s. The optimistic view is that there could exist a very general property

of some large class of quantum fluids; namely the η/s bound, which was unnoticed

prior to the AdS/CFT calculations in large measure because there was no tractable

way to compute the entropy and viscosity properties for strongly coupled theories.

One way to probe whether there is a bound which applies to the class of theories

that describe the real world is to ask whether there are any known fluids which

violate the putative bound. In Ref. [161], KSS examined a number of real life fluids,

including liquid helium, liquid nitrogen, and water, under a variety of conditions and

found no examples where the bound was violated. Typically, the ratio η/s for these

fluids was found to be orders of magnitude larger than the bound. This empirical

data appears to be one of the strongest pieces of evidence for the existence of a

bound.

If the bound is as universal and fundamental to physics as claimed, one would

hope to be able to derive it using a more physically relevant theory, such as quantum

mechanics. Though some have tried to use heuristic arguments based in quantum

mechanics to justify the bound [161, 182], a rigorous proof from quantum mechanics

has not been achieved. Moreover, it has been shown by Ref. [162] that it is possible to
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construct a system in the context of quantum mechanics which actually violates the

bound. A detailed description can be found in Appendix D. In this counterexample,

the KSS bound is evaded by considering a non-relativistic gas of many species of

particles. The many different species causes the entropy to increase because of

the Gibbs mixing entropy, while keeping the viscosity unaffected. Therefore, for a

sufficiently large number of species, the ratio η/s can be made sufficiently small to

violate the KSS bound.

This particular non-relativistic gas can be considered as a counterexample to

the general claim made by KSS. It seems that one cannot justify their bound from

quantum mechanics alone. However, KSS has suggested two other key domains of

validity for their bound. First, KSS claimed that one needed a “sensible,” or UV

complete, quantum field theory for the bound to be applicable [163]. This variation

was an attempt to overcome the Gibbs mixing entropy problem. The manner in

which sensible quantum field theories restrict the number of species is a subtle issue

which is discussed in Appendix E. Additionally, KSS claimed that the bound should

hold only for a “single component nonrelativistic gas of particles with either spin

zero or spin 1/2” [161]. By restricting the number of allowable species, this variant of

the conjecture clearly attempts to avoid the problem with the Gibbs mixing entropy

that allowed the construction of the other counterexamples.

This chapter will address these two variants of the KSS conjecture by exam-

ining counterexamples to each of the claims. In Sect. 5.2, the need for a sensible

quantum field theory will be investigated in the context of a peculiar heavy me-

son gas. It will be shown that despite the arguments of Appendix E, this system

109



can violate the bound because of the Gibbs mixing entropy associated with a large

number of heavy meson species. Section 5.3 will then present a counterexample to

the claim that the bound should hold for a single species fluid. Again the system

considered is rather peculiar.

5.2 Heavy meson gas

This section will investigate a gas comprised of heavy mesons which was first

considered by Ref. [162]. It will be shown that for a particular choice of parame-

ters, the KSS bound on viscosity and entropy density can be violated. Since the

constituents of the gas are mesons, this system would constitute a counterexample

for the claim that the bound should hold for “sensible,” or UV complete, quantum

field theories.

Consider a gas comprised of heavy mesons. Each meson consists of a heavy

quark and a light anti-quark. For the discussion that follows, it is sufficient to

assume that the gas is comprised solely of pseudoscalar heavy mesons without the

need to include the vector meson states; this assumption will be justified below. The

heavy meson gas of interest is rather peculiar as it consists of many different species

of heavy mesons. The many species can be produced by fixing the number of light

quark flavors to some small value with one being adequate, and choosing a large

number of heavy quark flavors, Nf . Furthermore, in a particular kinematic regime,

viz. that of a dilute, low temperature gas, the viscosity of this fluid is calculable,
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ala Maxwell [183] as

η = C

√
mT

σ
, (5.2)

where σ is the cross section,
√
mT is the thermal momentum, and C is a proportion-

ally constant of O(1). In this regime, the entropy can be approximated by that of

an ideal gas with a contribution from the Gibbs mixing entropy. The Gibbs mixing

entropy is associated with the many species in the gas and is equal to n log(Nf )

where n is the density of the gas; thus with a sufficiently large number of species,

this will dominate the entropy of the gas. Combining these, the ratio η/s can be

expressed as

η

s
∼

√
mT

nσ logNf
. (5.3)

To proceed, a parameterization for the quantities in Eq. (5.3) needs to be

constructed. First, if one wishes to push the extent to which Eq. (5.1) is a lower

bound for this fluid, a large number of species is desired. Since the Gibbs mixing

entropy depends on the logarithm of the number of species, the number of species

should grow exponentially, say as eξ4

where ξ is a scaling parameter, to have a

meaningful contribution. However, if Nf becomes large, there is a chance that QCD

will break down because it would no longer be asymptotically free. This problem

can be overcome if Nc, the number of colors, increases at the same rate as Nf ; hence

Nc ∼ eξ4

. Therefore this heavy meson gas becomes even more peculiar because it

requires the large Nc limit.

Second, the scaling of the cross section is important. As mentioned in Sect. 1.3,

the meson-meson interactions are suppressed in the large Nc limit, which would
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suggest a small cross section. However, that discussion was relevant only for light

mesons. The cross section is actually dependent on the quantity mV , the mass

of the meson and the interparticle potential, not simply the potential. From the

arguments of Sect. 1.3, the potential, V , still scales like 1/Nc, but now the mass can

be made large (since the gas is of heavy mesons) so that the cross section becomes

independent of the parameter ξ.

Lastly, the kinematic regime of a dilute, low temperature gas which allows

a calculable viscosity needs to be maintained. This is ensured as long as n− 1
3 �

(mT )−
1
2 . This can be maintained by choosing n and

√
mT to depend on ξ as 1/ξ4

and 1/ξ, respectively. To summarize, the parameters of the heavy meson gas must

depend on the parameter ξ as follows:

Nc = eξ4

Nf = eξ4

mh = mh0 e
ξ4

ml ∼ ml0

ΛQCD = ΛQCD0 n = n0ξ
−4 T = T0

e−ξ4

ξ2
, (5.4)

where ml is the light quark mass, and mh0, ml0, n0, and T0 are quantities which are

independent of ξ. With these relations, the ratio η/s scales with ξ as 1/ξ. Therefore

with an arbitrarily large value of ξ, η/s can be made arbitrarily small.

It was assumed that the heavy meson gas is dominantly composed from spin-0

pesudoscalar mesons, as opposed to spin-1 vector mesons for an arbitrarily large ξ.

Because of the scaling relations chosen in Eq. (5.4), the heavy meson gas is clearly

in the heavy quark limit. In this limit, the pseudoscalar, H, and vector, H∗, heavy

mesons are nearly degenerate. Therefore, one may naively expect both spin states

to be present in the heavy meson gas. However, as has been discussed on several
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occasions here, the two spin states have a typical mass splitting on the order of

Λ2
QCD

mh
. From the parameter scaling relations in Eq. (5.4), it is not hard to see that

this mass splitting scales like ∼ e−ξ4

Λ2
QCD/mh0. One would expect a heavy meson

gas to contain both the pseudoscalar and the vector form of the heavy mesons,

with their populations determined by a Boltzmann distribution. Hence consider the

ratio of the populations of the vector mesons to the pseudoscalar mesons. From the

Boltzmann distribution, this ratio is given by

Nvec

Npseudo
∼ e−βMH∗

e−βMH
= e−β(MH∗−MH), (5.5)

where β is the inverse temperature. Using Eq. (5.4), one sees that

Nvec

Npseudo
∼ e

−ξ2
Λ2

QCD
mh0 , (5.6)

which for large values of ξ reduces this ratio to zero. Therefore, at large ξ the gas

is predominantly composed of pseudoscalar heavy mesons, and one is well justified

in neglecting the heavy vector mesons.

One final observation about the heavy meson gas. The heavy meson gas con-

sidered here is metastable. The details of which are not important, but it is suf-

ficient to note that the heavy meson gas could decay either by clumping together

into tetraquark, hexaquark, or larger states or by rearranging into a baryon of only

heavy quarks and a light anti-baryon. It can be shown that this decay occurs over

long time scales with large ξ. Thus this peculiar heavy meson gas is metastable.

Therefore, the counterexample is only for metastable fluids. Hence, for the KSS

conjecture to be valid, it may only apply to stable UV complete theories.
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5.3 Single species gas

KSS postulated that perhaps their universal bound on viscosity and entropy

density should only be applicable to fluids comprised of a single species. This is an

obvious attempt to elude the counterexamples which use many species and the Gibbs

mixing entropy to evade the KSS bound. However, as will be shown here, a single

species system can be constructed which can violate the bound. The system is very

peculiar because it involves the construction of a two-body potential which contains

many resonant states. The inclusion of these resonant states acts equivalently to the

many species of the other counterexamples to drive up the entropy in the presence

of more resonances.

Note at the outset that the evidence in support of this variant of the conjec-

ture is quite limited. The AdS/CFT duality arguments do not apply. Since these

calculations were done in the large Nc limit, it is hard to understand how they could

justify a bound that fails for a large number of species and only works when the

number of species is small enough. Moreover, much of the empirical evidence in

favor of a KSS bound does not apply to variants of this sort. The term “single-

species” in this context refers to systems whose constituents are either elementary

or are in their ground state and do not access higher excited states. As a result,

liquid water is not covered in this variant of the conjecture: water molecules in a

liquid state can access rotational modes, making water a multi-species fluid from

this perspective. This limits the applicability of this variant of the bound mostly

to mono-atomic fluids, such as liquid helium. Since the vast majority of real world
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fluids are not in this class, the fact that no known violation of the bound exists for

real fluids provides only modest support for the bound.

The structure of this section is as follows. An example of a stable quantum-

mechanical system composed of only one kind of spin-0 particle that can violate

the KSS bound will be presented. To demonstrate that this system violates the

bound, the system will first be defined in Sect. 5.3.1 by choosing a particular two-

body interaction potential. The properties of the fluid in a non-relativistic regime

are determined by the interaction potential along with the temperature and the

density. The basic idea is to construct a two-body interaction of finite range which

has an extremely large number of two-body resonant states right above threshold.

Sect. 5.3.2 will show that the entropy for such a system has a lower bound, while

Sect. 5.3.3 indicates that by a judicious choice of parameters, the entropy can be

made arbitrarily large, even though there is only a single species of particles making

up the fluid. Finally, in Sect. 5.3.4, it will be argued that the shear viscosity of

such a system is not expected to become uncontrollably large as the parameters are

adjusted to make the entropy grow arbitrarily. Thus it appears that the ratio of η/s

can be made arbitrarily small within this class of theory.

5.3.1 Constructing the System

In this section, a single-species fluid composed of identical, stable, spin-0 par-

ticles will be defined. These identical spin-0 particles are considered to be the fun-

damental particles of the fluid. A finite-range two-body interaction that supports
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no bound states (two-body or many-body) while supporting an arbitrary number

of arbitrarily low-lying resonant states in the scattering amplitude will be chosen.

The resonant states may be long-lived (depending on the choice of parameters of the

potential), but it is important that they are indeed resonant states, and not bound

states, so that there is no question that the fluid is of a single species.

Before discussing a detailed form of interaction which can generate this situa-

tion, it is important to note at the outset the interaction will require an exceptional

degree of fine-tuning. The principal reason for this is that one requires that the

range of the interaction remains fixed as resonances are added. This requirement

will be imposed because one wishes to keep the density of the fluid fixed as res-

onances are added in order to avoid having many particles simultaneously within

the range of interaction. This creates a strong constraint as an exponentially large

number of nearly degenerate s-wave resonances near threshold for a system of fixed

spatial extent is required. A useful way to envision making a system of finite size

with multiple nearly degenerate two-body resonances is to start by constructing a

system with numerous nearly degenerate two-body s-wave bound states and then

add a repulsive potential to push them into the continuum.

However, it is not trivial to create a large number of nearly degenerate bound

states with the same quantum numbers due to level repulsion. One way to proceed

is by using a central potential which has numerous nested spherical-shell-shaped

wells; the number of wells will be denoted as N . Clearly, if the spatial size of the

interaction is kept fixed as one goes to a regime of large N (as is needed to achieve

many bound states), the width of each well in the radial coordinate, r, must be
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very small. To understand the tuning of parameters that is required, it is easiest

to start by considering a system with a single well at a fixed position—with the

position corresponding to the positions of one of the nested wells. The parameters

are picked such that the single-well system has a single two-particle bound state.

This can be achieved by tuning either the width or the depth of the well, or both.

Arbitrarily narrow wells can always be constructed to have a single bound state

with fixed binding energy by making the well deep enough. In taking the width in

the radial direction to be small (as one is forced to), in essence one is fine-tuning the

depth of the potential, V0, so that the binding energy is a very small fraction of V0.

For a generic well, it is not possible to do this for more than one bound state level.

The bound state wave functions will be localized in the radial coordinate around

the well. Note that there is a considerable level of parameter-tuning necessary to

achieve this.

Now suppose one considers a system with all N of the wells present simulta-

neously. The parameters would need to be further tuned so that the bound states

in each of the N wells are nearly degenerate. To the extent that bound state wave

functions for the single well case were well localized—i.e., have a spreading in r

which is much less than spacing between levels — the full system will have N nearly

degenerate bound states, each with an energy near that of the single well case.

However, if that condition is not met, there will be significant level repulsion and

the condition of near degeneracy will be destroyed. The characteristic spread of

the wave functions is (mB)−1/2 where m is the particle mass, and B is the binding

energy. Accordingly, to include a large number of wells within a fixed radius while
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keeping the levels nearly degenerate requires that the binding energy be tuned to

be large.

There is a final level of tuning required. It has been shown that considerable

tuning is required to get N nearly degenerate deeply bound states in a system with

N nested wells with fixed range. However, a system with N resonances is desired.

One can do this by adding a finite-range repulsive step function potential which will

push the bound states just above threshold yielding resonances. As noted above,

the bound states need to be very deeply bound. Accordingly, to get resonances just

above threshold, one must tune the strength of the repulsive interaction to very

high accuracy to cancel out the binding, leaving behind barely unbound resonances.

However, in principle there is nothing to prevent one from arranging a system with

all of this fine-tuning done as accurately as one wishes, yielding as many resonances

as one wants as close to threshold as desired.

An example of a two-body central potential that has the desired properties is

V (r) = −b
N

∑

k=1

δ(r − kL

N
) + V0θ(r − (L+

L

N
)), (5.7)

where r is the distance between fundamental particles, L is the range of the potential,

b is the strength of each of the N delta functions, and the delta functions are

raised on a potential step of height V0. The additional factor of L/N in the step

potential is intended to extend the range of the potential just beyond the last delta

function. This ensures that the potential is identical in the neighborhood of each

delta function. The δ functions in the potentials should be thought of as very deep,

narrow potential wells—where the details of how this is done becomes irrelevant
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provided the width is much smaller than all other scales in the problem. One can

imagine tuning the parameters in the interaction of Eq. (5.7) (that is, choosing b

and V0) so that any “would-be” bound states become barely unbound, turning into

low-energy, long-lived resonances. Appendix F provides some numerical evidence

that it is possible to tune the parameters of the two-body interaction of Eq. (5.7)

to create an arbitrary number of nearly degenerate low-energy resonances.

Qualitatively, one expects that the many different resonant states will behave

as if they were the different species in a multi-species fluid. However, since these

states are resonant states and not bound states, they eventually decay back into

the fundamental particles, meaning this really is an interacting single-species gas

rather than a multi-species gas. Furthermore, since the fundamental particles are

absolutely stable, this system describes a stable fluid.

For the system to be of a single species, it is critical that the system does not

have any three- or higher-body bound states. Given the singular nature of delta

functions, one might worry that the Hamiltonian for three-body or higher-body

Hilbert spaces might be unbounded from below, yielding arbitrarily deeply bound

states. By regulating the delta functions and treating them as finite width wells,

it should become readily apparent that this will not occur in the zero width limit

with fixed resonance positions. Yet, it is not immediately apparent whether or not

the system, as given, supports three- or higher-body bound states. To ensure that

such states are excluded from this system, a three-body repulsive potential is also
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imposed. The chosen three-body interaction V3(~r1, ~r2, ~r3) is

V3(~r1, ~r2, ~r3) = V3Θ(R − max[l1, l2, l3]),

l1 = |~r1 − RCM |,

l2 = |~r2 − RCM |,

l3 = |~r3 − RCM |,

RCM =
m1~r1 +m2~r2 +m3 ~r3
m1 +m2 +m3

,

(5.8)

where V3, the strength of the three-body interaction, is a constant set to be larger

than any other energy scale in the problem, ~r1, ~r2, and ~r3 are the position vectors

of the three interacting particles, R is the range of the three-body interaction, RCM

is the location of the center of mass, and l1, l2, and l3 are the distances from

the center of mass to the location of each particle. The range of the three-body

interaction range R is chosen to be larger than the range of the two-body interaction

L. This interaction forces the interaction between the fundamental particles and any

resonant state to be that of hard sphere scattering. Once a two-particle resonance is

formed, the three-body potential above prevents the resonance from being disturbed

by interactions with other particles and prevents the formation of three-particle

resonant states.

5.3.2 Constructing a bound on the entropy

The calculation of the entropy of a strongly coupled many-body system can be

quite difficult. Instead a variational argument will be used. This argument will show

that entropy of the entire system for a gas of many particles interacting through
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Eq. (5.7) can bounded from below. In the next section, a variational ansatz will

be chosen for which the bound is calculable and show that the lower bound of the

entropy can be made arbitrarily large.

Since the fluid under consideration has a finite temperature, one can work in

the canonical ensemble. Recall that in this ensemble, with natural units (kB = 1),

the entropy is given by

S =
E

T
+ log(Z), (5.9)

where E is the energy of the system, T is the temperature, and Z is the partition

function. By increasing the step height in Eq. (5.7), the system can be tuned

to have only resonant scattering states, and no two-body bound states. Similarly

by choosing the strength of the repulsive three-body potential in Eq. (5.8) large

enough, one can ensure that there are no three- or higher-body bound states. This

means that all of the possible configurations of the fluid must have positive energy.

Therefore, the entropy is bounded by

S ≥ log(Z). (5.10)

So by calculating the partition function, a bound on the entropy can be made.

However, just as with the entropy, the partition function is difficult to calculate

directly, but the partition function is also bounded from below.

Recall that in the canonical ensemble the partition function is given by

Z = Tr (exp[−βĤ]), (5.11)

where Ĥ is the Hamiltonian operator for the system and β is the inverse temperature.

In order to compute the partition function, one typically needs to use a complete
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basis for the Hilbert space of the system. Since the Hamiltonian is Hermitian, the

operator exp[−βĤ] is positive semi-definite. This implies that the partial trace

over any arbitrary subspace of the Hilbert space will be smaller than the complete

partition function. The partition function over this subspace will be termed Zsub.

Choosing such a subspace amounts to choosing a variational ansatz for the class

of configurations of the fluid: a calculation of the partition function within the

variational ansatz is equivalent to the partition function of some subspace of the

complete Hilbert space. Furthermore, the relation of the partition functions holds

for the logarithm of the partition function as well,

log(Z) ≥ log(Zsub). (5.12)

Combining Eqs. (5.10) and (5.12) yields

S ≥ log(Zsub). (5.13)

This shows that the entropy of the entire system is bounded from below by log(Zsub).

By working with a variational ansatz for which the partition function Zsub is calcu-

lable, one can compute a lower bound on the entropy of the fluid.

5.3.3 Calculating the partition function

In this section, a variational ansatz for the system for which the calculation of

the lower bound for the entropy is tractable is chosen. The particular configuration

of the system that will be considered is picked entirely for computational ease and is

a highly unlikely one. This merely ensures that the true entropy may be well above

this computed lower bound.
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Consider dividing the volume occupied by the fluid into cells. For the varia-

tional ansatz, one can choose each cell to have exactly two particles. The total wave

function for this ansatz can be constructed out of the wave function for each cell as:

Ψtotal(~r1, ~r2, . . .) = Ŝ
∏

cells i

Ψi(r2i−1, r2i) (5.14)

where Ψtotal, the wave function of the entire fluid, is a function of the position of

every fundamental particle in the fluid, Ŝ is an operator which symmetrizes the wave

function under the exchange of any two particles to impose the exchange symmetry

of bosons, and Ψi is the (two-particle) wave function of each individual cell, and

they are summed over all of the cells. An illustration of the cell decomposition

of the fliud is given in Fig. 5.1. To make the computation of the entropy easier,

the configurations are further restricted so that wave function for each cell has the

relative coordinate and center of mass coordinate completely uncorrelated. With

this choice, the wave function for a cell can be written as

Ψcell(~r, ~R) = Ψrel(~r)ΨCM(~R), (5.15)

where ~r is the relative coordinate, ~R is the center of mass coordinate, Ψrel is the

wave function associated with the relative coordinate, and ΨCM is the wave function

associated with the center of mass. This ansatz is subject to one further condition:

namely, the following (Dirichlet) boundary conditions:

Ψrel(~r)|r≥rmax
= 0,

ΨCM(~R)
∣

∣

∣

R≥Rmax

= 0,

(5.16)

where rmax and Rmax are the maximum relative coordinate and center of mass coordi-

nate, respectively, that is allowed by a given cell. The maximum relative coordinate

123



is chosen to be beyond the range of the two-body interaction, thereby rmax > L.

These boundary conditions ensure for this particular ansatz the fundamental parti-

cles only interact within a given cell, and that each cell is isolated from all other cells.

This isolation implies that the two-body interaction plus the boundary conditions

give the dominant contribution to the partition function within the subspace that

is considered. A pictorial view of the constraints of the boundary conditions can be

seen in Fig. 5.2. This highly restrictive ansatz is certainly an unlikely configuration

of the fluid, but it is a valid variational ansatz; such configurations are present in

the complete Hilbert space.

Figure 5.1: As a variational ansatz, one pictures the fluid’s volume to be divided
into cells with exactly two particles in each cell.

Having chosen an ansatz for the wave function of the fluid, the corresponding

partition function can be computed. The arguments of the preceding subsection
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Figure 5.2: A close-up view of one particular cell with the drawn circle representing
the constraints on the particles’ wave function imposed by the boundary conditions.

showed that since the fluid considered has only positive energy states, the entropy

of the entire system will be larger than the logarithm of the partition function calcu-

lated in this ansatz. Each cell has been isolated by imposing boundary conditions,

and it is sufficient to calculate the partition function of only one cell to exhibit the

bound. Since each cell is identical, the total entropy within the ansatz is the entropy

of one cell times the number of cells. Accordingly the entropy density of the fluid is

bounded by:

s ≥ n

2
Scell (5.17)

where n is the total density (implying that n/2 is the density of cells, and the factor

of 1
2

is due to our choice of two particles per cell).

In order to show that the entropy density of the fluid is arbitrarily large,

one only has to show that the logarithm of the partition function log(Zsub) for

one particular cell in the fluid can be made arbitrarily large. To calculate the

partition function, the energies of the states within each cell are needed. Since
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the two-body interaction has a finite range, the relative coordinate wave function

within the cell has two different forms: one within the range of the interaction,

Ψin, and one beyond the range of the interaction, Ψout. The inner wave function

can be calculated numerically from a non-relativistic Schrödinger equation and the

potential in Eq. (5.7). The outer wave function is that of a free state restricted by

the boundary conditions, and can be written as

Ψout(r) = A sin(k(rmax − r)), (5.18)

where A is a normalization factor, k is the momentum of the state such that

k =
√

2µE with µ as the reduced mass, and E is the energy of the state. The

momentum, and thereby the energy, of the quantum states within the cell can be

calculated by matching the logarithmic derivative at the boundary between the two

wave functions. The matching leads to the equation

Ψ′
in(r)

Ψin(r)

∣

∣

∣

∣

r=L

= −k cot(k(rmax − r))|r=L . (5.19)

The solutions of these equations give the energies of the states within each cell.

Relating this condition to the two-body s-wave scattering phase shifts yields the

condition:

krmax = −δ(k) + nπ, (5.20)

where n is an arbitrary integer. Since the phase shifts pass rapidly through π at

each resonance, it should be apparent that there is one low-lying energy state within

this ansatz for every resonance.

The parameters of the two-body interaction can be tuned in such a manner

that all of the resonant states have nearly degenerate, arbitrarily low energies. If the
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resonance energies are fine-tuned to be very small compared to the temperature of

the system, their contribution to the partition function is only slightly suppressed by

a Boltzmann factor and each resonance contributes nearly unity to the Zsub. From

the resonant contributions it is easy to see that

log(Zsub) > log(N) − EH/T (5.21)

where EH is the energy of the highest-lying resonance. The logarithm of the par-

tition function of the restricted system thus scales as log(N). The illustration that

this scaling can be realized is provided by the results of numerical calculations in

Appendix F.

The bound established in the preceding subsection shows that the system’s

entropy density, s, is larger than log(Zsub). By increasing the number of resonant

states while keeping EH fixed, the lower bound on the entropy also increases. Since

the number of resonant states in the two-body interaction can become arbitrarily

large, so can the lower bound on the entropy density.

5.3.4 Viscosity and Stability

To complete the argument that the single-species fluid considered here can

violate the single species variant of the KSS conjecture, one needs to argue that the

shear viscosity η does not grow with the number of two-body resonant states, N (or,

more precisely, grows slower than logarithmically). Furthermore, it is important to

show the resulting fluid is stable in order to rule out variants of the conjecture for

both stable and metastable fluids.
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The shear viscosity is difficult to calculate for virtually any strongly-interacting

system. For fluids which the Boltzmann equation is applicable, there are simplifying

arguments that allow one to calculate the shear viscosity [183]. However, due to the

presence of long-lived resonant states, the fluid described here does not satisfy the

assumptions of the Boltzmann equation. Therefore, an analytical calculation of the

shear viscosity is not known.

Heuristically, the resonant states in the system described in this section can

be thought of approximately as bound states. It has been shown in the context of

the models of Ref. [162], which are outlined in Appendix D, that the shear viscosity

of a system of bound states need not scale uncontrollably with additional compo-

nents to the fluid. Therefore, it is difficult to believe that the shear viscosity for

the approximate bound states would scale vastly differently than that of a dilute

many-component fluid. The actual difference between the shear viscosity of the

two systems should depend on how well the bound state approximation is valid,

which depends on the resonant state lifetimes. The resonant states of the fluid have

been constructed to have very long lifetimes. As a result, for the purposes of un-

derstanding the shear viscosity, the approximation that the resonant states can be

considered bound states should be quite accurate. Therefore the shear viscosity of a

fluid of long-lived resonant states should scale similarly to the viscosity of a fluid of

bound states. Moreover, the shear viscosity of a fluid typically diverges only when

it approaches either a non-interacting ideal gas, or behaves like the cold limit of a

fluid without a defined melting temperature, such as glass. It is hard to see how a

strongly interacting system, such as the one described in this paper, with a large
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number of long-lived resonant states should approach either one of these limits with

the addition of resonant states. Therefore, the shear viscosity should remain finite

as the entropy is made arbitrarily large, violating the η/s bound. While this is not

a mathematically rigorous argument, it is very hard to see how it can fail.

In discussing shear viscosity, the system was approximated as though it con-

tained bound states. However, at a fundamental level there are no bound states,

and the fluid is still composed of only one species. If one wanted to compute η/s

for this system numerically, for instance, the relevant degrees of freedom to simulate

would be those of the fundamental particles together with their interactions, and

not of the resonances. Since these fundamental particles are absolutely stable, by

construction, the fluid is stable.

5.4 Conclusion

The preceding arguments show that the entropy, and therefore the entropy den-

sity increases with the number of resonant states. It has been argued that although

the calculation of the shear viscosity for the fluid described is not tractable, there

are strong heuristic reasons to believe that it will not diverge when one chooses pa-

rameters to force the entropy to diverge. To the extent one accepts these arguments,

one must conclude that the ratio η/s can be made arbitrarily small by increasing

the number of resonant states, violating the conjectured bound on η/s.

The number of resonant states needed to actually violate the bound could

be extremely large, but the two-body interaction that has been discussed here can
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be tuned in such a manner as to produce an arbitrary number of resonant states.

That is, there does not appear to be a limit inherent in the structure of quantum

mechanics on the number of resonant states that can be constructed within a finite

ranged potential.

It is noted that if a conjecture is false for stable fluids in some class of theories,

it must be false for metastable fluids as well. As a result, the single species fluid

that has been described in this chapter actually provides a counterexample to all

theories of fluids of a single species, both for stable and metastable fluids.

Combining the arguments here and those of Ref. [162], it appears that one

need not expect the KSS bound to hold for a vast class of fluids. It may be true

empirically that most fluids do respect the bound, but that appears to be a matter

of coincidence rather than being driven there by some fundamental principle of

the universe. By the current arguments and those of Ref. [162], the bound cannot

be derived from quantum mechanics (either for a single species or many species)

for both stable and metastable fluids. The heavy meson gas described here and

in Ref. [162] indicates that the bound can be violated for a metastable fluid of

QCD. Should the KSS bound actually be universal, it presumably comes from some

physical descriptions beyond quantum field theory (e.g., string theory, super gravity,

or the like).
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Appendix A

Bound States of heavy pentaquarks in quantum mechanics

Consider a smoothly varying potential V (r) that vanishes as r→∞. If V (r)

is nonsingular and has an attractive region, it must possess a minimum at some

r0. In the neighborhood of r0 the potential is approximately harmonic [i.e., V (r) '

k
2
(r − r0)

2]. Therefore, if the wave function is for some reason localized near the

minimum, then the system can be approximated as a harmonic oscillator. For

large reduced mass µ the kinetic energy operator is small, and minimizing the wave

function’s curvature forces its localization near r = r0, as desired. The harmonic

oscillator potential has an infinite number of bound states, separated by multiples

of ω =
√

k/µ. Furthermore, for large values of µ, the harmonic oscillator wave

function, given by

Ψn(ξ) =
1

(2nn!)1/2

(µω

π

)1/4

Hn(ξ)e−ξ2/2, ξ =
√
µω(r − r0) (A.1)

where Hn are the Hermite polynomials, is self-consistently localized about the min-

imum. Thus one sees that multiple bound states must exist for sufficiently large µ.

If the potential is singular (but not more singular than 1/r2, so that a ground state

exists), the large size of µ localizes the wave function deep in the potential near the

singularity, again allowing plenty of room for bound states.
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Appendix B

Details of numerical results for heavy pentaquark models

This appendix focuses on the numerical results associated with binding of a

heavy pentaquark in a modified one-pion exchange potential. Table B.1 lists the

parameters used in the calculation. Table B.2 summarizes the potentials that were

used. Table B.3 presents the energies of bound states for a B meson binding with a

nucleon, while Table B.4 presents the same for a D meson.

Quantity Name Quantity Value

gA 1.27
fπ 131 MeV
gH ± 0.59
mπ 138 MeV
mN 938.92 MeV
mB 5279 MeV
mD 1867 MeV
∆B 46 MeV
∆D 141 MeV

Table B.1: Constants used in bound-state calculations for heavy pentaquarks.
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Vπ(~x) =

{

(I2 − I2
N − I2

H)[S12VT (r) + (K2 − S2
N − S2

H)Vc(r)] r > r0
V1(r) or V2(r) r < r0

Vc(r) =
gAgH

2πf2
π

e−mπr

3r
m2

π

VT (r) =
gAgH

2πf2
π

e−mπr

6r

(

3

m2
πr

2
+

3

mπr
+ 1

)

m2
π

V1(r) = V0 (V0 = −62.79 MeV or − 276 MeV)

V2(r) = −252.659
MeV

fm2 r2 + 541.321
MeV

fm
r − 309.822MeV

(B.1)

Table B.2: Potentials used in heavy pentaquark calculations. The labels are: total
isospin I , nucleon isospin IN , heavy meson isospin IH, tensor force S12, tensor
potential VT (r), nucleon spin SN , light quark in heavy meson spin Sl, sum of nucleon
spin and light quark spin K, central potential Vc(r). Numerical values are such that
potentials are measured in MeV, distances in MeV−1, unless noted otherwise. Both
V1(r) and V2(r) are central potentials. The parameters in V2(r) were fixed by making
the potential differentiable at r0 and bind deuterium with the appropriate energy.

Channel I A B C D
J S P + − + − + − + −
1
2

1
2

− 0 1.30 1.35 3.89 1.92, 3.62 139.38, 142.14 – 14.49, 16.01 15.46, 16.15

1 – – 0.35 0.27 – 139.38, 140.76 15.32, 15.60 15.04, 15.46

1
2

1
2

+ 0 – – – – 14.9, 32.39 4, 19.32, 46.5 – –

1 – – – – 12.72, 18.22, 26.91 9.45 – –

1
2

3
2

− 0 1.30 1.31 3.89 3.67 140.76 140.76 15.87 15.32

1 – – – 0.26 140.76 140.76 15.04 15.32

1
2

3
2

+ 0 – – – – 32.15 3.35, 45.95 – –

1 – – – – 12.12, 27.19 8.36, 22.08 – –

3
2

1
2

− 0 1.42 1.31 3.89 3.67 140.76 140.76 15.87 15.32

1 – – – 0.26 140.76 140.76 15.04 15.32

3
2

1
2

+ 0 – – – – 15.32, 18.49, 32.43 4.65 – –

1 – – – – 12.80 17.25, 17.66, 22.91 – –

3
2

3
2

− 0 1.42 1.25 3.89 3.67 140.76 140.76 15.87 15.32

1 – – – 0.20 140.76 140.76 15.04 15.32

3
2

3
2

+ 0 – – – – 18.22, 32.29 – – –

1 – – – – 4.18, 23.18 – – –

Table B.3: B meson bound-state energies for each channel, where + and − refer
to relative sign of gA and gH . All energies in MeV. Column A: constant potential,
V0 = −62.79 MeV and r0 = 1 fm; B: quadratic potential; C: constant potential,
V0 = −276 MeV and r0 = 1 fm; D: constant potential, V0 = −62.79 MeV and
r0 = 1.5 fm.
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Channel I A B
J S P + − + −
1
2

1
2

− 0 113.99, 110.4 – 7.36, 9.00 8.45, 9.27
1 – 114.82, 115.78 8.40, 8.79 8.16, 8.63

1
2

1
2

+ 0 2.91 16 – –
1 – – – –

1
2

3
2

− 0 117.3 116.2 9.00 8.45
1 115.23 115.23 8.45 8.45

1
2

3
2

+ 0 2.10 15.87 – –
1 – – – –

3
2

1
2

− 0 117.3 116.20 9.00 8.45
1 115.37 115.78 8.45 8.45

3
2

1
2

+ 0 2.91 – – –
1 – – – –

3
2

3
2

− 0 117.3 116.20 9.00 8.45
1 115.09 115.09 8.45 8.45

3
2

3
2

+ 0 2.53 – – –
1 – – – –

Table B.4: D meson bound-state energies for each channel, where + and − refer to
the relative sign of gA and gH . All energies in MeV. Column A: constant potential,
V0 = −276 MeV and r0 = 1 fm; B: constant potential, V0 = −62.79 MeV and
r0 = 1.5 fm.
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Appendix C

Description of calculation leading to mass splitting relations

In Chapt. 4, formulae for relating the spin state mass splittings between various

hadrons, Eqs. (4.1) and (4.7), were presented without derivation. This appendix

will detail the calculations leading to these equations. The calculations leading to

Eq. (4.1) were first presented by Savage and Wise in their investigation relating

heavy mesons and doubly heavy baryons [139]. The techniques of their calculation

will then be extended to examine the similar relationships between the heavy baryon

and the doubly heavy tetraquark states found in Eq. (4.7).

C.1 Heavy meson – doubly heavy baryon relations

Section 1.2 presented some general aspects of HQET. There it was pointed out

that the effective Lagrangian for HQET to O(1/mQ) was,

Lquark = Q̄i iv ·DQi −
α2(µ)g(µ)

mQ

∑

i,j

Q̄i
σij · B

2
Qj, (C.1)

where the label Qi with an explicit spin index has replaced hv, the kinetic term has

been omitted, and the color magnetic moment term has been expressed in terms of

the color magnetic field. As mentioned before, this is the Lagrangian for a single

heavy quark. A doubly heavy diquark in a vector state can easily be included into
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this theory by adding the following terms to the Lagrangian1 :

Ldiqaurk = V̄i iv ·DVi −
α2(µ)g(µ)

mQ

i

2

∑

i,j,k

εijkV
†

i BjVk, (C.2)

where Vi is the vector diquark field. One should observe initially that the leading

order terms between the quark and the diquark sector have the same structure. By

incorporating the two quark spin states and the three vector spin states into one

multiplet, the leading order Lagrangian exhibits a SU(5) symmetry. This symmetry

is referred to by Savage and Wise as a superflavor symmetry [139], and it is exactly

the DHDA symmetry discussed in Chapt. 4. If one extends the DHDA, or super-

flavor, symmetry to the O(1/mQ) corrections terms in HQET, the color magnetic

moment coupling constants α2(µ) is required to be the same for both the quark and

the diquark sectors. (The coupling constant g(µ) is obviously the same for both

sectors as this is the universal strong coupling constant.) Therefore, the similar

portions of the quark and diquark color magnetic moment terms can be factored

out so that those terms can be rewritten as

LQ = −α2(µ)

mQ
g(µ)

∑

i,j

Q̄i
σij · B

2
Qj = −α2(µ)g(µ)

mQ
OQ, (C.3)

LV = −α2(µ)g(µ)

mQ

i

2

∑

i,j,k

εijkV
†
i BjVk = −α2(µ)g(µ)

mQ
OV . (C.4)

The dissimilar parts of these terms, OQ and OV , are the color magnetic moment

operators for the quark and the vector diquark sectors, respectively.

The final piece needed to derive Eq. (4.1) is the superflavor generator. With the

heavy quark and the doubly heavy diquark vector within the same group element,

1when a factor of 1/2 is corrected for in Ref. [139]
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one can define a generator of this superflavor as

S(a) =

∫

d3x{V (a)
+ Q

(a)†
1 + V

(a)
− Q

(a)†
2 }, (C.5)

where Q†
1,2 creates a heavy quark, V+,− destroys a heavy diquark, and (a) is a label

for the flavor of the heavy quark. Overall this generator will convert a + state

diquark into a quark oriented up or convert a − state diquark into a down state

quark. Since the work here will focus on only one heavy quark flavor the label, (a),

will be subsequently dropped.

Equation (4.1) is an expression that relates heavy mesons and doubly heavy

baryons. The only mechanism to find relations between these two sectors is through

the superflavor generator. Furthermore, it is important to have a complete set of

relations without the duplication of equations. Therefore the superflavor generator

will be applied to the states |+ ↑〉 and |+ ↓〉,2 where the first label refers to the

vector orientation and the second the light quark orientation, yielding

S|+ ↑〉 = S|Ξ∗
cc, 3/2〉 = | ↑↑〉 = |D∗, 3/2〉

S|+ ↓〉 = S{|Ξ∗
cc, 1/2〉 +

√
2|Ξcc, 1/2〉} = | ↓↑〉 =

√

3

2
{|D∗, 0〉 + |D〉}.

(C.6)

In addition, being labelled by the spin orientation, the hadronic states above are

also labelled by the hadron name and the hadron’s overall spin orientation, such as

|Ξ∗
cc, 3/2〉 refers to the doubly heavy baryon Ξ∗

cc with it’s spin in the +3/2 state. In

further calculations, this hadronic spin orientation is not relevant so this label will

be suppressed.

Having established relations between the meson and baryon states, it is nec-

2Applying it to the states |− ↑〉 and |− ↓〉 would only lead to redundant relations.
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essary to determine how the color magnetic moments between the quark and the

vector sectors are related. To begin this, it is noted that the color magnetic moment

operators, OQ and OV , can be divided between the contribution from the three

component of the color magnetic field and the remaining contributions. Therefore,

OQ = OQ;3 + OQ;⊥ and

OV = OV ;3 + OV ;⊥,

(C.7)

where

OQ;3 =
∑

i,j

Q†
i

σ3
ijB3

2
Qj, (C.8)

OQ;⊥ =
∑

i,j

Q†
i

1

2
(σ1

ijB1 + σ2
ijB2)Qj, (C.9)

OV ;3 =
i

2

∑

i,j

εij3V
†
i B3Vj, and (C.10)

OV ;⊥ =
i

2

∑

i,j

(εij1V
†

i B1Vj + εij2V
†
i B2Vj). (C.11)

From these relations, one can show the following double commutation relation holds,

[S†, [S,OQ;3]] = −S†OQ;3S = −OV ;3. (C.12)

This equation provides the necessary relationship between the color magnetic mo-

ment for the quarks and the vector diquark.

By using both Eqs. (C.6) and (C.12), one can calculate the expectation value of

the color magnetic moment for the meson states on the right-hand side of Eq. (C.6)

and relate them to the baryon states’ expectation value. For the D∗ case this leads
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to

〈D∗|OQ|D∗〉 = 〈Ξ∗
cc|S†OQS|Ξ∗

cc〉

= 〈Ξ∗
cc|S†(OQ;3 + OQ;⊥)S|Ξ∗

cc〉 = 〈Ξ∗
cc|S†OQ;3S|Ξ∗

cc〉

= 〈Ξ∗
cc|OV ;3|Ξ∗

cc〉 = 〈Ξ∗
cc|(OV ;3 + OV ;⊥)|Ξ∗

cc〉

= 〈Ξ∗
cc|OV |Ξ∗

cc〉.

(C.13)

The second equals sign in lines two and three are justified because in each case

both the bra and ket were states with the same quark (or diquark) orientation and

the ⊥ operators change this orientation; hence their contribution is zero. A similar

expression can be derived from the second expression in Eq. (C.6).

3

2
(〈D∗|OQ|D∗〉 + 〈D|OQ|D〉) = 〈Ξ∗

cc|S†OQS|Ξ∗
cc〉 + 2〈Ξcc|S†OQS|Ξcc〉

= 〈Ξ∗
cc|OV |Ξ∗

cc〉 + 2〈Ξcc|OQ|Ξcc〉.
(C.14)

Equations (C.13) and (C.14) can be solved for the Ξ∗
cc and the Ξcc matrix

elements in terms of the D∗ and the D matrix elements. Since the mass difference

between the spin states is due solely from the color magnetic moment at leading

non-vanishing order, the mass difference can be expressed in terms of the difference

between the color magnetic moments just derived. This leads naturally to the

expected Savage and Wise relation of Eq. (4.1),

mΞ∗
cc
−mΞcc = 〈Σ∗|OV |Σ∗〉 − 〈Σ|OV |Σ〉

=
3

4
(〈D∗|OQ|D∗〉 − 〈D|OQ|D〉)

=
3

4
(mD∗ −mD).

(C.15)

139



C.2 Mass splittings of tetraquark states

The method to derive the relations of the mass splittings between spin states

of the doubly heavy tetraquark and the spin states of heavy baryons is the same as

the previous section. For these systems though there are more states. Remember

there are three heavy baryon states: Λ, Σ, and Σ∗. The Λ has the light quark pair

in a singlet state, so overall it has a spin of 1/2. The Σ and Σ∗ have the light quark

pair in a triplet state; hence Σ has a spin of 1/2, and Σ∗ has a spin of 3/2.

There are now four tetraquark states labelled as T Λ, T , T ∗, and T ∗∗. The T Λ

state is the tetraquark analog of the Λ with the light quark pair in a singlet state,

hence the overall spin is 1. The other three tetraquarks have a triplet light quark

component resulting in an overall spin of 0, 1, and 2 for states T , T ∗, and T ∗∗,

respectively.

As was done before, the derivation of the mass splitting relations begins with

applying the superflavor generator to the collection of states with the heavy diquark

pair oriented in the +1 direction and the light quark pair oriented in each of its

possible orientations. Therefore when the light quarks are in a singlet state, there

is only one possible light quark orientation leading to the equation,

S| + 0〉 = S|T Λ〉 = | ↑ 0〉 = |Λ〉. (C.16)

There are three possible orientations for a light quark pair triplet state. By applying
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the superflavor operator to them leads to

S| + +〉 = S|T ∗∗〉 = | ↑ +〉 = |Σ∗〉, (C.17)

S| + 0〉 =
1√
2
S(|T ∗∗〉 + |T ∗〉) = | ↑ 0〉 =

√

2

3
|Σ∗〉 +

√

1

3
|Σ〉, (C.18)

S|+ −〉 = S(
1√
6
|T ∗∗〉 +

1√
2
|T ∗〉 +

1√
3
|T 〉) = | ↑ −〉 =

1

3
|Σ∗〉 − 2

3
|Σ〉. (C.19)

The difference in the mass between the different states stems form the color

magnetic moment operator. Similar to above, the expectation value of the color

magnetic moment for the heavy baryon states from the right-hand side of Eqs. (C.16)

and (C.17) will be calculated. The relations of Eqs. (C.7) and (C.12) still hold.

Therefore, for the Λ state one gets

〈Λ|OQ|Λ〉 = 〈T Λ|S†OQS|T Λ〉 = 〈T Λ|OV |T Λ〉, (C.20)

while the Σ states result in

〈Σ∗|OQ|Σ∗〉 = 〈T ∗∗|S†OQS|T ∗∗〉

= 〈T ∗∗|OV |T ∗∗〉,
(C.21)

2

3
〈Σ∗|OQ|Σ∗〉 +

1

3
〈Σ|OQ|Σ〉 =

1

2
〈T ∗∗|S†OQS|T ∗∗〉 +

1

2
〈T ∗|S†OQS|T ∗〉

=
1

2
〈T ∗∗|OV |T ∗∗〉 +

1

2
〈T ∗|OV |T ∗〉,

(C.22)

1

3
〈Σ∗|OQ|Σ∗〉 +

2

3
〈Σ|OQ|Σ〉 =

1

6
〈T ∗∗|S†OQS|T ∗∗〉 +

1

2
〈T ∗|S†OQS|T ∗〉 +

1

3
〈T |S†OQS|T 〉

=
1

6
〈T ∗∗|OV |T ∗∗〉 +

1

2
〈T ∗|OV |T ∗〉 +

1

3
〈T |OV |T 〉.

(C.23)

One can solve these equations for the tetraquark matrix elements in terms of baryon

matrix elements. As before, the mass difference between spin states is the same as
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the difference between these matrix elements. The final step to derive the relations

in Eq. (4.7) is simply to calculate the difference between the matrix elements of two

different tetraquark states. This leads to

mT ∗∗ −mT ∗ = 〈T ∗∗|OV |T ∗∗〉 − 〈T ∗|OV |T ∗〉

=
2

3
(〈Σ∗|OQ|Σ∗〉 − 〈Σ|OQ|Σ〉)

=
2

3
(mΣ∗ −mΣ),

(C.24)

mT ∗ −mT = 〈T ∗|OV |T ∗〉 − 〈T |OV |T 〉

=
1

3
(〈Σ∗|OQ|Σ∗〉 − 〈Σ|OQ|Σ〉)

=
1

3
(mΣ∗ −mΣ),

(C.25)

mT −mT Λ = 〈T |OV |T 〉 − 〈T Λ|OV |T Λ〉

= 〈Σ|OQ|Σ〉 − 〈Λ|OQ|Λ〉

= mΣ −mΛ.

(C.26)

These equations are identical to Eq. (4.7) when one remembers that the notation

used there represents the mass of each state.
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Appendix D

Non-relativistic gas

Reference [162] considers a non-relativistic quantum many-body system with

a large number of species for which the computation of the ratio η/s is analytically

tractable up to corrections which can be made arbitrarily small. By imposing a

particular set of scaling relations on the parameters of the system, it is possible to

demonstrate that η/s can violate the KSS bound in the limit of a large number of

species. This argument is reviewed here.

Consider a gas composed of a number (Ns) of distinct species of spin-0 bosons

of degenerate mass, m, which can interact via a two-body potential. The two-body

potential is identical for all species, but is limited to a finite range, R. The gas is in

thermal equilibrium at a temperature T , and has the same density for each species,

na = n/Ns, where n is the overall density of the system. The system is in a low

temperature and low density regime such that

R−2, a−2 � mT � n2/3, (D.1)

where a is the scattering length, and mT is the thermal momentum squared. This

regime can be maintained by using the following scaling of the density and temper-

ature:

n =
n0

ξ4
T =

T0

ξ2
, (D.2)

where n0 and T0 are independent of the dimensionless scaling parameter ξ. With a
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sufficiently large value for ξ, Eq. (D.1) can be easily satisfied.

In this density and temperature regime, the entropy for the system is simply

that of a classical ideal gas, with small corrections. The key point is that the

temperature is high enough relative to n
2/3
0 /m for the classical expression to hold,

while the density is low enough to neglect the interactions. The entropy density can

then be written in terms of the scaling in Eq. (D.2) as

s ' n0

(

log
((mT0)

3/2

n0

)

+
5

2
+ log(ξ) + log(Ns)

)

, (D.3)

where the term log(Ns) is associated with the Gibbs mixing entropy of the Ns

different species.

Furthermore, in this density and temperature regime, the thermal wavelength

is much shorter than the inter-particle spacing, meaning that the many-body dynam-

ics are essentially classical. Moreover, the low density implies that the many-body

dynamics are dominated by binary collisions, implying that the system is in the

regime of validity for the Boltzmann equation [183]. The low temperature further

implies that the two-body collisions are dominated by s-wave scattering, with a cross

section essentially unchanged from its zero momentum value. That is, two-body

scattering in this system can be approximated as isotropic and energy independent,

which is formally the same as classical hard sphere scattering.

The shear viscosity is analytically calculable in such a system [183], and it

is given by η = Chs

√
mT/d2, where d is the diameter of the hard spheres, and

Chs ≈ .179 is a coefficient that is numerically calculable 1. Identifying the scattering

1The coefficient, Chs, can be calculated in the Chapman Enskog expansion as outlined in
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length a as the effective hard sphere diameter, we can now calculate the ratio η/s:

η

s
' Chsξ

3
√
mT0

a2n0

(

log
(

(mT0)3/2

n0

)

+ 5
2

+ log(ξ) + log(Ns)
) . (D.4)

Corrections to Eq. (D.4) are suppressed by powers of 1/ξ and should become irrel-

evant for sufficiently large ξ.

The derivation of Eq. (D.4) required the system to be in a low density and low

temperature regime such that a classical approximation for both the shear viscosity

and the entropy density can be made. This limit does not place any constraints on

the number of species of particles in the fluid. Accordingly, one can demand that

the number of species scale exponentially with the scaling parameter:

Ns = exp(ξ4) (D.5)

As the temperature and density decrease, the number of species increases simulta-

neously. When Eqs. (D.4) and (D.5) are combined, the large ξ scaling of the ratio

is

η

s
' 1

ξ

Chs

√
mT0

a2n0
(D.6)

up to power law corrections in 1/ξ. Clearly, in this combined limit, the ratio η/s

can violate the conjectured bound simply by making ξ sufficiently large. This vi-

olation stems completely from the large Gibbs mixing entropy associated with the

exponentially large number of species.

Having argued that the non-relativistic gas described above can violate a ver-

sion of the KSS bound, it is important to understand whether this fluid is stable or

Ref. [183] and is 5/(16
√

π) to leading order.
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metastable. The argument in the preceding section does not depend on the inter-

particle potential and thus will continue to hold for any choice of the interparticle

potential. If we choose the interparticle potential to be purely repulsive, the particles

making up the fluid cannot lower their energies by forming bound states. Therefore,

with this choice, the system that has been described above is a stable fluid with an

arbitrarily small value of the ratio η/s. This is sufficient to demonstrate that this

system is a counterexample to both stable and metastable non-relativistic fluids.

what happens when the inter-particle interaction is attractive? One might

worry that with such a potential, the fluid could lower its energy by forming bound

states, or by “clumping” together; that is, by forming macroscropic regions of higher

density where the attraction is enhanced and the free energy is lowered. If either

situation is possible, the fluid would then be either unstable or metastable. In order

to distinguish between these two cases, one needs to compare τmet, the characteristic

time for the phase to change macroscopically, with τfl, the characteristic time scale

of the fluid. It can be shown that in the scaling regime of Eq. (D.2), τmeta/τfl diverges

as ξ5 or faster, ensuring that when ξ is large the system is metastable.

The type of metastability with the decay mechanism which yields the fastest

possible decay parametrically is for systems which can form two-body bound states.

As is well known, in a non-relativistic gas three-body collisions are necessary to allow

the formation of two-body bound states due to energy and momentum conservation.

Therefore, the decay time τmet scales with the time between three-body collisions in

the system. The characteristic time scale of the fluid τfl scales with the time scale

for two-body collisions. Therefore the ratio τmeta/τfl has roughly the same scaling
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as τ3/τ2, where τ3 and τ2 are the three-body and two-body collision time scales,

respectively.

The time between two-body collisions is essentially just the mean free time of

particles in the fluid. The mean free time τmf is related to the mean free path lmf by

τmf = lmf/v, (D.7)

where v is the rms velocity of particles in the fluid. In dilute classical gases, the

mean free path l can be related to the density and the interaction cross section,

nlmf σ ∼ 1. (D.8)

The rms velocity v can be related to the thermal momentum associated with the

fluid: mv ∼
√
mT , where m is the mass of the particle, and T is the temperature

of the fluid. Combining these equations and the scaling relations of Eq. (D.2), we

see that the mean free time scales like

τmf =
1

nσ

√

m

T
∼ ξ5 1

n0R2

√

m

T0
, (D.9)

where we have used the relation σ ∼ R2, with R being the characteristic range of

the interaction.

In addition to τmf, we must examine the characteristic time that two particles

spend interacting during a collision, τint. Equation (D.2) implies that scattering is at

low momentum. As a result, τint does not scale with ξ since it is essentially a function

of the details of the two-body potential and does not depend on v. The fraction of

the time between two-body collisions during which the particles are interacting is

f ∼ τint/τ2 ∼ ξ−5.
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To form a two-body bound state, a three-body collision is necessary. That is,

while two particles are in the process of interacting, a third particle must collide

with them. In terms of the quantities defined previously, the time scale for such

events is simply τ3 = τ2/f . As a result, one sees that τmeta/τfl ∼ τ3/τ2 ∼ ξ5, as

claimed above. Other mechanisms take longer parametrically: if the most rapid

decay involves the formation of an N -body state, an analogous calculation yields

τmeta/τfl ∼ ξ5(N−1).

To summarize, the arguments in this Appendix show that the variants of the

KSS bound associated with quantum mechanics can be violated by a fluid with a

large number of species. Depending on the choice of an interaction potential, the

fluid that has been described can be either stable or metastable. While the example

used to demonstrate the violation of the bound is highly artificial and unlikely to

be realizable even approximately in a real world setting, as a mathematical matter

it is a legitimate counterexample. The implication is that the most well-supported

and most widely applicable variant of the KSS conjecture is not tenable.
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Appendix E

A many species pion gas

This appendix examines how the restriction of the KSS bound to apply to only

sensible, or UV complete, theories. The issue is whether it restricts the number of

species preventing the increase of the Gibbs mixing entropy and thus preventing the

types of counterexamples considered in Ref. [162]. The pion gas illustrates this issue

nicely.

Consider a non-relativistic gas which is predominantly composed of one type

of pion of mass mπ, for instance, the π+. Such a gas undoubtedly has its origins in

QCD, a UV-complete quantum field theory. To describe such a gas in the context

of QCD, one can consider the theory at a finite temperature T , and a chemical

potential µu for the up quark u of the form µuuγ0u. (It is unnecessary to also

impose a chemical potential for the down quarks.) If the system is in the regime

T � mπ and Λ � µu > mπ where Λ is a typical hadronic scale of order 1 GeV,

then it is essentially a non-relativistic gas of π+ mesons. Now suppose that this is

generalized to a many-species pion gas. To do this, QCD needs to be generalized

to include Nf degenerate flavors of quarks with Nf large and even. Furthermore, a

common chemical potential µc can be added for half of the flavors:

Nf /2
∑

j=1

µcqjγ0qj (E.1)

while keeping T � mπ. This will create a non-relativistic system containing N2
f /4
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types of pions (each one with a quark of type qj with j ≤ Nf/2 and an anti-quark

of type qk with k > Nf/2). By carefully tuning µc while increasing Nf , the total

density of pions can be kept fixed while increasing the number of species. This

appears to allow one to create the conditions in which the Gibbs entropy dominates

the ratio of η/s and causes a violation of the KSS bound.

However, there is a catch: Recall that for small g, the beta function for QCD

is given by

β(g) = − g3

16π2

(

11Nc

3
− 2Nf

3

)

. (E.2)

Asymptotic freedom requires that 11Nc > 2Nf . By increasing Nf in order to violate

the bound in Eq. (5.1), the underlying theory is pushed outside of the domain of

“sensible” theories. Of course, one might try to evade this by increasing Nc at the

same time as Nf is increased; by fixing the ratioNc/Nf as the large Nf limit is taken,

asymptotic freedom can be maintained. However, recall that the cross section for

π−π scattering scales as 1/N2
c ∼ 1/N2

f [20]. For a weakly interacting fluid, the shear

viscosity is expected to scale with the inverse of the cross section [183]. Thus, by

increasing Nc along with Nf to maintain asymptotic freedom and keep the theory

sensible, one finds that η ∼ N2
f . On the other hand, the Gibbs mixing entropy grows

only with log(Nf ), so η/s ∼ N2
f / log(Nf ) for large Nf . As a result, in a pion gas in

the large number of species limit, the decrease in the cross section associated with

the Nc scaling necessary to maintain asymptotic freedom overwhelms the increase

in Gibbs mixing entropy due the to the Nf scaling, and η/s is driven to infinity in

the combined Nf ∼ Nc → ∞ limit. Hence, the KSS bound can not be violated for
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a large number of species of pions if the theory is kept ”sensible.”
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Appendix F

Numerical results from single species fluid model

In this appendix, numerical results in support of the argument that the par-

tition function increases with the number of resonant states N are presented. The

effects of the states associated with the center of mass motion on the partition func-

tion and the effects of states associated with confining the wave functions in each

cell as these states are independent of N , are neglected. The parameters of the

potential Eq. (5.7) were chosen as follows (in arbitrary units):

rmax = 1.0001; L = 1; m =
1

2
; ~ = kB = 1. (F.1)

Discussed in Sec. 5.3.3, one has to tune b and V0 to produce narrow reso-

nances, as N is increased. In Table F.1, the partition function and its logarithm are

calculated for different values of N with suitably tuned values of b and V0 at fixed

temperature, are shown. The values for b were chosen to ensure the resonant states

N b V0 T Zsub ln(Zsub)

5 100 2, 500.5 1600 5.06 1.62
10 200 10, 001.8 1600 10.46 2.35
15 350 30, 626.2 1600 15.46 2.74
20 480 57, 601.9 1600 20.98 3.04
30 700 122, 505 1600 30.09 3.40

Table F.1: Numerical results showing the increase in the partition function Zsub

calculated using the variational ansatz. N is the number of resonant states; b is
the strength of each delta function well in two-body interaction; V0 is the strength
of energy plateau that creates resonant states in the delta function wells; T is the
chosen temperature.
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were nearly degenerate, i.e., the larger b value, the smaller the spread in energy of

the resonant states. The values of V0 were chosen such that all states were barely

resonant states and not bound states, while the temperature, T , was chosen large

compared with the highest resonant state energy but smaller than the lowest-lying

state associated with the artificial confinement to within a cell.

Note that the partition function and its logarithm scales with larger number

of resonant states as expected by Eq. (5.21). To further illustrate this, the partition

functions and their logarithms are plotted in Figs. 3 and 4, along with linear and

logarithmic best-fit curves, respectively.

5 10 15 20 25 30

N

0.5

1.0

1.5

2.0

2.5

3.0

LnHZsubL

Figure F.1: Graph of the calculated partition function and a linear best-fit to the
data.

5 10 15 20 25 30

N

5

10

15

20

25

30

Zsub

Figure F.2: Graph of calculated logarithm of the parition function and a logarithmic
best-fit to the data.

This numerical data supports the argument that by increasing the number of
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resonances in the potential of Eq. (5.7), it is possible to increase the lower bound on

the partition function of the system, and thereby increase the lower bound on the

entropy.
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