Spectrum Auction Design

Peter Cramton University of Maryland

9 July 2007

Application: Spectrum auctions

- Many items, heterogeneous but similar
- Competing technologies
- Complex structure of substitutes and complements
- Government objective: Efficiency
 Make best use of scarce spectrum

Simultaneous ascending auction

Auction rules

- Simultaneous
 - All lots at the same time
- Ascending
 - Can raise bid on any lot
- Stopping rule
 - All lots open until no bids on any lot
- Activity rule
 - Must be activity to maintain eligibility

Strategy in SAA

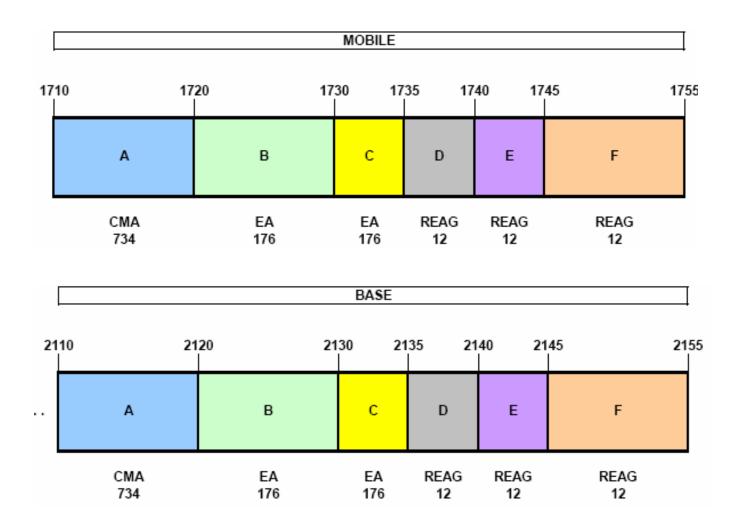
Auction as a Negotiation

- Learn what competitors need
- Learn how costly it is to ask for more
- Ask for more at the right time in the right place
- Manage eligibility

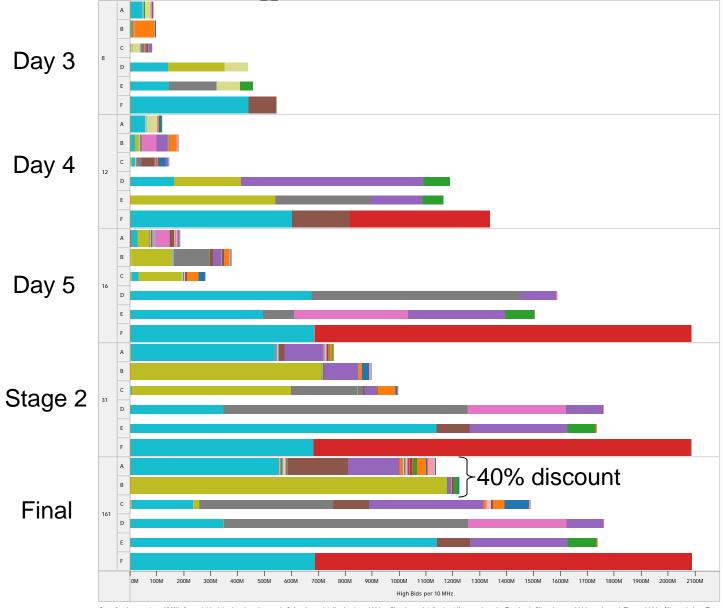
Retaliatory Bidding

- Stake a claim
- Punish intruders
- Use code bids to clarify

Simultaneous ascending auction


• Strengths

- Simple price discovery process
- Allows arbitrage across substitutes
- Piece together desirable packages
- Reduces winner's curse


• Weaknesses

- Demand reduction
- Tacit collusion
- Parking
- Exposure
- Hold up
- Limited substitution
- Complex bidding strategies

Limited substitution: US AWS 90 MHz, 161 rounds, \$14 billion

US AWS high bids in selected rounds

Sum of pwb amount per 10 MHz for each block broken down by round. Color shows details about pw_bidder. Size shows details about license_size_mhz. The view is filtered on pw_bidder and round. The pw_bidder filter excludes . The round filter keeps 8, 12, 16, 31 and 161.

Exposure problem

- With complements, bidding on individual lots is risky
 - Bidder must "go for it" or drop out early
 - Outcome is often inefficient
 - Experiments sometimes get high revenues
- Exposure problem eliminated with package bids

Variations of SAA

Variations of SAA

- Anonymous bidding
- Generic lots
- Package bidding

Package clock auction

- Porter-Rassenti-Roopnarine-Smith (2003)
- Ausubel-Cramton-Milgrom (2006)
- Clock auction for packages, followed by
- Best-and-final (proxy) round

Package clock auction

- Auctioneer names prices; bidders name only quantities
 - Price adjusted according to excess demand
 - Process repeated until market clears
- No exposure problem (package auction)
- Activity rule to promote price discovery
- Final round to fine-tune assignment

UK spectrum auctions

UK 2.6 GHz auction proposal

- 190 MHz (38 lots of 5 MHz)
 Compare US AWS, 90 MHz, \$14 billion
- How much paired vs. unpaired?

CEPT band plan from ECC Decision (05)05

PMSE MOD	/ 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	Radio- astronomy etc.
	2500	2505	2510	2515	2520	2525	2530	2535	2540	2545	2550	2555	2560	2565	2570	2575	2580	2585	2590	2595	2600	2605	<u> </u>	2615	2620	2625	2630	2635	2640	2645	2650	2655	2660	2665	2670	2675	2680	2685	2690

Paired spectrum (FDD uplink in blocks 1 - 14 and FDD downlink in blocks 25 - 28) Unpaired spectrum (TDD or FDD downlink external)

Let auction determine band plan

Expansion of unpaired spectrum maintaining 120 MHz duplex spacing

PMSE / MOD	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		adio- nomy etc.
	2500	2505	2510	2515	2520	2525	2530	2535	2540	2545	2550	2555	2560	2565	2570	2575	2580	2585	2590	2595	2600	2605	2610	2615	2620	2625	2630	2635	2640	2645	2650	2655	2660	2665	2670	2675	2680	2685	2690	

Paired spectrum (FDD uplink in blocks 1 - 14 and FDD downlink in blocks 25 - 38) Unpaired spectrum (TDD or FDD downlink external)

All unpaired spectrum

PMSE/ MOD	1	1	2	3	4			6	7	8	9	10	1	1 1	2	13	14	15	16	17	18	8 1	9 2	0 2	1 2	22	23			26	27	28	29	30) 31	1 3	2 3:	3 34	4 3	5	36	37	38	Radio- astronomy etc.
	2500	2505	000	2510	2515	2520	2626	0707	2530	2535	2540	2545	2550	2555		0997	2565	2570	2575	2580	2585	2590	2595	2600	2020	GN 97.	01.97	2615	2620	2625	2630	2635	2640	2645	2650	2655	2660	2665	2670	26.75	C/07	2680	2685	2690

Unpaired spectrum (TDD or FDD downlink external)

3 paired winners; 3 unpaired

Outcome 6: 9 paired lots, 19 unpaired lots

PMSE MOD	/	2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
	2500	2505		0167	2515	2520	2525	2530	2535	2540	2545	2550	2555	2560	2565	2570	2575	2580	2585	2590	2595	2600	2605	2610	2615	2620	2625	2630	2635	2640	2645	2650	2655	2660	2665	2670	2675	2680	2685

Key design choices

- Generic 5 MHz lots
 - Lots are perfect substitutes
- Package bids
 - No exposure problem
- Clock stage
 - How many paired? How many unpaired? Supply = 38
 - Continue until no excess demand
- Activity rule
 - Demands for paired and unpaired cannot increase
- Best-and-final bids
 - Demand (p,u) = (p paired lots, u unpaired lots)
 - When drop below (p,u), give best bid for (p,u) lots
- Best-and-final round
 - Find value maximizing generic assignment
- Assignment stage
 - Require contiguous spectrum if possible
 - Top-up bid to determine specific assignment

Information policy in clock stage

- Anonymous: Aggregate demands reported
- Transparent: All demands reported
- Anonymous is simplest for bidders

 Focus on what is most important
- Transparent is best if bidders have "need to know"
 - For example, need to know likely winners to estimate value

Pricing rule

- In clock stage? In assignment stage?
- Pay-as-bid pricing
 - Incentives for demand reduction, bid shading
- Bidder-optimal core pricing
 - Stronger incentives for truthful bidding

Bidder-optimal core pricing

- Minimize payments subject to core constraints
- Core = assignment and payments such that
 - Efficient: Value maximizing assignment
 - Unblocked: No subset of bidders prefers to offer seller a better deal

Optimization

- Core point that minimizes payments readily calculated
- Use constraint generation method: find most violated core constraint and add it (Day and Raghavan 2005)
- Tie-breaking rule for prices is important

 Minimize square deviation from Vickrey prices

Why core pricing?

- Truthful bidding nearly optimal
 - Simplifies bidding
 - Improves efficiency
- Same as Vickrey if Vickrey in core (substitutes)
- Avoids Vickrey problems with compliments

 Prices that are too low
- Revenue is monotonic in bids and bidders
- Minimizes incentive to distort bids

Where do we see core pricing?

- Core methods have a long history in matching
 - Match interns to hospitals
 - Match students to schools
- Core methods in auctions are much more recent
 - Auctioning many items with complements
 - All standard auctions find point in core

10-40 GHz Auction

Category and band	Number	Spectrum	Eligibility	Reserve price
	of lots	endowment	pts per lot	per lot
A: 10 GHz national	10	2 x 10 MHz	1	£10,000
B: 28 GHz national	2	2 x 112 MHz	6	£60,000
C: 28 GHz sub-region 1	1	2 x 112 MHz	2	£20,000
D: 28 GHz sub-region 2	1	2 x 112 MHz	1	£10,000
E: 28 GHz sub-region 3	1	2 x 112 MHz	3	£30,000
F: 32 GHz national	6	2 x 126 MHz	6	£60,000
G: 40GHz national	6	2 x 250 MHz	3	£30,000

Package clock auction

- Principal stage
 - Primary rounds (clock auction)
 - Supplementary bids
 - Optimization: Winners and base prices
- Assignment stage
 - Assignment bids
 - Optimization: Specific assignments and additional payments

Activity rule

- Whenever reduce package size, value on all larger packages limited by prices at the time of reduction
 - Example
 - Bidder drops from package of size 40 to 36 at prices p
 - For all packages x of size 37 to 40, bid ≤ p ⋅ x
- Implication
 - Profit maximization is poor strategy
 - Bid to maximize package size subject to profit ≥ 0

Full-scale test of design (Maryland PhD students)

- Experienced subjects
 - Course in advanced game theory
 - Prior participation in package clock auction
- Motivated subjects
 - Average subject payment = \$400
- Realistic scenarios
- 4 mock auctions with moderate competition (6 bidders)
- 8 mock auctions with weak competition (4 bidders)

Six bidder auctions

Mock	Truth	Value Effi	ciency	Profit	Share
6a.1	<mark>93%</mark>	5,782	<mark>93%</mark>	2,706	<mark>43%</mark>
6a.2	<mark>97%</mark>	5,540	<mark>89%</mark>	3,755	<mark>60%</mark>
6a.all	100%	6,248	100%	2,646	42%
6b.1	<mark>96%</mark>	4,176	<mark>93%</mark>	1,751	<mark>39%</mark>
6b.2	<mark>100%</mark>	4,303	<mark>96%</mark>	1,147	<mark>26%</mark>
6b.all	100%	4,494	100%	1,101	25%

Truth = average of bid/value; Share = profit/value. Mock *.all includes all bids (about 50,000) at value.

- Deviation from truth is caused by activity rule, not strategic behavior
- Activity rule
 - Destroys price discovery
 - Undermines efficiency

Four bidder auctions

Mock	Truth	Value Ef	ficiency	Profit	Share
4a.1	<mark>100%</mark>	2,858	<mark>96%</mark>	1,446	<mark>49%</mark>
4a.2	<mark>100%</mark>	2,859	<mark>96%</mark>	1,698	<mark>57%</mark>
4a.3	<mark>100%</mark>	2,880	<mark>97%</mark>	1,296	<mark>44%</mark>
4a.4	<mark>100%</mark>	2,970	<mark>100%</mark>	1,370	<mark>46%</mark>
4a.all	100%	2,978	100%	976	33%
4b.1	<mark>100%</mark>	1,865	<mark>99%</mark>	1,033	<mark>55%</mark>
4b.2	<mark>100%</mark>	1,590	<mark>84%</mark>	410	<mark>22%</mark>
4b.3*	<mark>100%</mark>	1,891	<mark>100%</mark>	1,054	<mark>56%</mark>
4b.4	<mark>100%</mark>	1,819	<mark>97%</mark>	1,016	<mark>54%</mark>
4b.all	100%	1,882	100%	879	47%

Truth = average of bid/value; Share = profit/value.

Mock *.all includes all bids (about 34,000) at value.

* White's package violates minimum size constraint.

• Activity rule destroys price discovery

Activity rule is readily fixed

- Revealed-preference activity rule
 - Compare times s and t (s < t),
 Prices: p_s, p_t Demands: x_s, x_t
 - At time s, x_s is better than x_t : $v(x^s) p^s \cdot x^s \ge v(x^t) p^s \cdot x^t$
 - At time t, x_t is better than $x_s : v(x^t) p^t \cdot x^t \ge v(x^s) p^t \cdot x^s$
- Adding inequalities yields the RP activity rule:

$$(\mathbf{RP}) \qquad (\mathbf{p}^t - \mathbf{p}^s) \cdot (\mathbf{x}^t - \mathbf{x}^s) \leq \mathbf{0}.$$

Revealed preference for supplementary bids

- For each package T in clock stage, provide a value v(T), consistent with revealed preference
- For each supplementary package S, provide a value V(S) consistent with revealed preference: v(S) – P^t(S) ≤ v(T) – P^t(T) (T was more profitable than S at time t)

Evaluation from test

- Activity rule destroys price discovery
 - Readily fixed by switching to revealed preference
- Efficient
- Robust
- Low risk
- Simple for bidders
- Competitive revenues
- Simple for the auctioneer

Conclusion

- Package clock auction
 - Eliminates exposure
 - Eliminates gaming
 - Enhances substitution
 - Allows auction to determine band plan
 - Readily customized to a variety of settings