
 
 

 
 
 
 
 
 

ABSTRACT 
 
 
 

Title of dissertation: NOVEL APPLICATIONS IN WETLAND SOILS 
MAPPING ON THE DELMARVA COASTAL PLAIN 

  
 
Margaret Anne Goldman, Doctor of Philosophy, 2018 
 
 

Dissertation directed by: Professor Brian A. Needelman, 
Department of Environmental Science and Technology 

 
 
 
 
On the Delmarva Peninsula, depressional wetlands provide a range of ecosystem 

services, including water purification, groundwater recharge, provision of critical habitat, 

and carbon storage. Concern for the health of the Chesapeake Bay and the establishment 

of the Bay Total Maximum Daily Load have led to growing interest in restoring 

depressional and other wetland types to mitigate agricultural nitrogen inputs. The ability 

of natural resource managers to implement wetland restoration to address nonpoint 

source pollution is constrained by limited spatial information on hydrogeologic and soil 

conditions favoring nitrogen removal. The goal of this study was to explore the potential 

of new digital soil mapping techniques to improve identification of wetland soils and map 

soil properties to improve assessment of wetland ecosystem services, including removing 

excess nitrogen, and inform natural resource decision making. Previous research on 

digital soil mapping has focused largely on the development of medium to low-resolution 



 
 

general purpose soil maps in areas of heterogeneous topography and geomorphology. 

This study was unique in its focus on mapping wetland soils to support wetland 

restoration decisions in a low relief landscape. A digital soil mapping approach involving 

the spatial disaggregation of soil data map units was used to create maps of natural soil 

drainage and texture class. The study was conducted in the upper part of the Choptank 

River Watershed on central Delmarva, where depressional wetlands occur in high 

densities and historical loss of wetlands is estimated to be high compared to similar 

Maryland watersheds. The soil disaggregation techniques developed in this study were 

successful in creating a more refined representation of natural soil drainage and texture 

class in forested depressional wetlands. Comparison of the disaggregated soils map with 

recently developed time-series inundation maps of the region demonstrate the need for 

further research to understand how indicators of historic and current hydrologic 

conditions can guide operational soils and wetland mapping and inform wetland 

restoration decisions.  
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Chapter 1 – Introduction 

 

1.1 Wetlands and water quality 

Wetlands are often highly productive ecosystems found in nearly all parts of the world. 

They are characterized by water saturation at or near the surface or inundation for varying 

periods of time throughout the year, including during the growing season. The frequency 

and duration of saturation or inundation is sufficient to support the development of 

unique soil conditions and vegetation that is adapted to saturated soils. There are many 

different kinds of wetlands, including marine and coastal wetlands such as tidal marshes, 

estuaries, and freshwater lagoons; and inland wetlands such as prairie potholes, playa 

lakes, and bogs. Due largely to their hydrology, wetlands provide valuable functions that 

provide many benefits to society, such as flood storage, shoreline stabilization, fish and 

wildlife habitat, carbon storage, and water purification.  

Hydrologic conditions determine the physicochemical environment in wetlands that 

support specific biota, which in turn modify the physicochemistry and hydrology of 

wetlands (Mitsch and Gosselink, 2007). The dynamic relationships that arise from the 

interaction of hydrologic, physicochemical, and biotic factors within different 

geomorphic settings determine the functions of a wetland. Water purification is among 

the most widely recognized and highly valued functions that wetlands provide. Wetlands 

purify water by dissipating stream energy and filtering and transforming nutrients and 

other contaminants transported by surface and groundwater. 
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Since European settlement, the conterminous U.S. has lost over half of its wetlands 

(Dahl, 1990). In the Chesapeake Bay watershed, which expands more than 64,000 square 

miles across six states, development, agriculture, invasive species, and sea level rise 

threaten tidal and non-tidal wetland habitats. Wetlands are vital in supporting clean water 

in the Chesapeake Bay watershed. Concern for the health of the Chesapeake Bay and the 

establishment of the Bay Total Maximum Daily Load (TMDL), a ‘pollution diet’ to 

restore clean water in the Chesapeake Bay and its tidal tributaries, have led to growing 

interest in restoring wetlands to mitigate pollution. Excess nitrogen and phosphorus in the 

Bay promote the growth of harmful algal blooms that block sunlight from reaching 

submerged aquatic vegetation and reduce or eliminate oxygen in the water column, 

creating ‘dead’ zones’ where fish and other animals cannot survive. In recent decades, the 

ecological and economic health of the Chesapeake Bay has deteriorated due to pollution 

from excess nutrients and sediment. As a result, the Chesapeake Bay and many of its tidal 

waters have been designated as “impaired waters” under section 303(d) of the federal 

Clean Water Act. The Chesapeake Bay TMDL sets pollution limits on nitrogen, 

phosphorus, and sediment necessary to meet water quality standards set by the U.S. 

Environmental Protection Agency (USEPA) in the Bay and its tidal rivers.  

The Delmarva Peninsula contributes disproportionately large loads of excess nitrogen and 

phosphorus to the Chesapeake Bay, most of which is sourced from agriculture (Ator and 

Denver, 2015). Nitrogen moves primarily from source areas on the landscape to tidal 

waters as nitrate in groundwater, whereas phosphorus moves from source areas to tidal 

waters primarily in particulate form over the land surface (Ator and Denver, 2015). 

Wetlands can function as removal sites for nitrogen primarily by promoting 
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denitrification, an anaerobic process in which microbes convert nitrate to gaseous 

nitrogen products, thereby permanently removing nitrogen from the soil-water 

environment. Wetlands can be highly efficient at removing nitrate, and if located at 

critical points in the landscape, have potential to provide significant water quality 

benefits at the watershed scale (Hansen et al., 2018). The 2014 Chesapeake Bay 

Watershed Agreement includes the outcome of creating or reestablishing 34,400 hectares 

of tidal and nontidal wetlands and enhancing the function of an additional 60,700 

hectares of degraded wetlands by 2025 (Chesapeake Bay Program, 2014).   

Seventy percent of the total nitrogen load from headwater streams on the Delmarva is 

transported to the Chesapeake Bay as nitrate in groundwater (Ator and Denver, 2015). 

Denitrification is observed in a variety of settings on the Delmarva, including 

depressional and riverine wetlands (Denver et al., 2014; Jordan et al., 2007), riparian 

floodplains (Duff et al., 2008; Puckett, 2004), along groundwater flowpaths (Bohlke and 

Denver, 1995; Denver et al., 2010), and in coastal swamps and marshes (Speiran, 1996).  

Complex interactions between land cover, soils, and geomorphology affect the fate and 

transport of nitrate from source areas to streams (Ator and Denver, 2015; Hamilton et al., 

1993; McCarty et al., 2008). An understanding of the conditions favoring denitrification 

in wetlands across the landscape is therefore necessary to plan wetland restorations at the 

watershed scale to improve water quality. 
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1.2 Choptank River Watershed 

The 1756 km2 Choptank River Watershed on the central Delmarva is relatively flat, with 

a maximum elevation of less than 30 m (Lee et al., 2000). Land cover in the Choptank 

Watershed is dominated by agriculture (65%), with smaller amounts of forest (26%) and 

urban areas (6%) (Fisher et al., 2006). Historical loss of wetlands in the upper part of the 

Choptank Watershed is estimated to be 19,200 ha; approximately 11% of the entire 

watershed area (MD DNR, 2002).  

The Choptank River Watershed is the focus of several long-term watershed studies, 

including the U.S. Department of Agriculture Conservation Effects and Assessment 

Project (CEAP). Objectives of CEAP include developing innovative remote sensing tools 

for monitoring wetland hydrology and connectivity on a watershed scale, examining the 

effects of land use and hydrology on nutrient and pesticide loading to streams, and 

developing watershed-scale water quality models to evaluate the effectiveness of 

conservation practices in the watershed. Water quality sampling throughout the 

watershed, much of which has recently been supported by CEAP, provides a rich dataset 

on hydrologic and geochemical conditions in the Choptank dating back to 1964 (Fisher et 

al., 2006; McCarty et al., 2008). The availability of these data makes the Choptank 

Watershed an excellent study area for testing new remote sensing and modeling 

techniques. 
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1.3 Depressional wetlands 

Depressional wetlands, known locally as Delmarva bays, occur in high densities 

throughout the northern part of the Choptank River watershed. Delmarva bays are similar 

to Carolina bays, which are found on the Atlantic Coastal Plain from Florida to New 

Jersey. Carolina bays are shallow, elliptical depressions with well-defined sandy rims 

(Prouty, 1952; Stolt and Rabenhorst, 1987a; Thom, 1970). They are often oriented 

northwest to southeast along the major axis and the sandy rims are usually best developed 

on the southeast side (Prouty, 1952; Sharitz and Gibbons, 1982). Carolina bays range 

from less than a hectare to greater than 3,600 hectares in size, and are most abundant in 

southeastern North Carolina and mid-coastal South Carolina (Sharitz, 2003). Delmarva 

bays are typically much smaller and less elliptical than Carolina bays, but are believed to 

have formed from similar processes during the late Pleistocene (Fenstermacher et al., 

2014; Stolt and Rabenhorst, 1987a). The most accepted theory of the formation of 

Delmarva and Carolina bays is that they are the product of blowouts; the depressions 

were created when strong winds removed sandy soil material, resulting in areas where the 

water table was above the surface. The characteristic elliptical shape and sandy rims were 

formed by wind-driven currents in the ponded water (Prouty, 1952; Savage, H., 1982; 

Stolt and Rabenhorst, 1987a).  

Many Delmarva bays contain a silty basin fill which is absent from most Carolina bays to 

the south (Stolt and Rabenhorst, 1987a). Depressions that have a silty basin fill typically 

have steeper slopes and greater relief than those with a sandy bottom (Stolt and 

Rabenhorst, 1987a). The silty basin fill in low areas of the depressions likely originated 
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from loess that was deposited during the last glacial period and gradually eroded to the 

center of depressions (Stolt and Rabenhorst, 1987a).  

 Delmarva bays exhibit a range of hydroperiods – from frequently dry to 

semipermanently flooded (De Steven and Lowrance, 2011). Water levels fluctuate 

seasonally and interannually and are strongly influenced by recent precipitation and the 

local groundwater flow system (Phillips and Shedlock, 1993). Water levels drop in the 

summer with increases in temperature and evapotranspiration. Delmarva Bays can act as 

both a recharge wetland in the summer and a discharge wetland in winter and spring 

(Phillips and Shedlock, 1993).  

Many depressional wetlands have been lost through artificial drainage and conversion to 

agriculture (De Steven and Lowrance, 2011), but complexes of depressional wetlands 

remain in poorly drained forested areas throughout the upper Choptank River watershed. 

Depressional wetlands are among the most challenging wetlands to map and monitor due 

to their variable hydroperiod, small size and low relief (Lang et al., 2013; Tiner, 1990). 

They are particularly difficult to map when forested, and most bays are naturally forested. 

Regardless, wetland mapping and monitoring is essential for informed natural resource 

management and policymaking (Lang and McCarty, 2008).  

 

1.4 Forested wetland mapping 

Traditionally, wetland mapping has relied on aerial photographs, but with increasing 

availability of fine-resolution optical data, radar, and lidar data, and advances in 

geospatial modeling, there is great potential to improve wetland maps and monitoring 
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efforts (Lang and McCarty, 2008). Several studies have been conducted through CEAP to 

advance the use of remote sensing in mapping and monitoring wetlands. In the Choptank 

Watershed, lidar-derived DEMs have been used to develop topographic metrics to predict 

forested wetland location (Lang et al., 2013) and to enhance detection of wetland-stream 

connectivity (Lang et al., 2012). Lidar systems are active sensors that emit short pulses of 

energy in the infrared part of the spectrum, calculating the distance to an object by 

recording the amount of time it takes for a pulse to return to the sensor. Lidar can be used 

to calculate highly accurate x, y, z locations. Whereas conventional digital elevation 

models (DEMs) have vertical accuracies of 1-10 m, lidar DEMs have vertical accuracies 

of 15 cm – 1 m) (Lang and McCarty, 2008).  

Lidar intensity (a measure of the strength of the return signal) can be used to detect 

wetland inundation. In the Choptank watershed, lidar intensity data were used to map 

inundation in forested wetlands with greater than 96% accuracy (Lang and McCarty, 

2009). A novel approach combining lidar intensity and Landsat time-series imagery has 

been developed in the region to map wetland inundation change over time (Huang et al., 

2014; Jin et al., 2017). Accuracy assessments of the inundation maps indicate that they 

can be used to extract long-term information on inundation dynamics with relatively low 

degrees of uncertainty (Jin et al., 2017). 

 

1.5 Soils mapping 

The U.S. Soil Survey Geographic Database (SSURGO) provides a major data source for 

support of identification and monitoring of natural, restored, and former depressional 
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wetlands and estimation of wetland ecosystem services. Soils data can be used to predict 

where wetlands occur or once occurred. Natural soil drainage class represents the 

frequency and degree of saturation under which a soil formed, which can be important for 

evaluating changes in hydrology and function due to anthropogenic factors. Soil maps 

can be used in modeling wetland ecosystem services at regional (Ator and Denver, 2012) 

and watershed (Tomer et al., 2013) scales and identifying potential restoration sites 

(Hunter et al., 2012).  

Efforts to utilize SSURGO soils data in water quality models and land management 

planning on the Delmarva are hampered by the coarse scale of survey maps relative to the 

scale of restoration decisions, the spatial aggregation of soil components, and the 

difficulty in accounting for uncertainty in soil maps. The subtle variations in topography 

depicted by fine-resolution lidar data are often not reflected within conventional soil 

maps. Extensive ditch drainage in agricultural and forested areas of the poorly drained 

portions of the Choptank watershed further limits the use of soils data in mapping current 

hydrologic conditions. New digital soil mapping techniques, including spatial 

disaggregation of soil data map units, have great potential to improve our ability to 

identify wetland soils and map soil properties to improve assessment of wetland functions 

and conservation practices and predict the effects of land management decisions on water 

resources. Spatial disaggregation is “the process of separating an entity into component 

parts based on implicit spatial relationships or patterns” (Moore, 2008). In general, 

disaggregation methods aim to create a more refined representation of soil classes and 

properties by identifying components within map units to meet new demands for soils 

data (D’Avello and Nauman, 2013). 
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1.6 Dissertation overview 

This dissertation is composed of three principal chapters. Chapter 2 presents an 

examination of the challenges to developing a watershed-scale approach to wetland 

restoration and creation for nitrate removal in the Chesapeake Bay watershed. This 

chapter also serves as the primary literature review for the dissertation. 

Biological/physical and political/social/economic challenges are explored through a 

review of the relevant literature and discussion of potential avenues of research for 

addressing the identified challenges. One of the major challenges identified in Chapter 2 

is accounting for subsurface connectivity between nitrogen sources and wetlands. 

Subsurface connectivity is dependent on local hydrogeologic and soil conditions. A 

proposed approach for addressing this challenge is improved use of geospatial data for 

predicting subsurface connectivity, including: 1) expanded use of lidar data and 

topographic indices derived from lidar; 2) better use of soils data; 3) incorporation of 

ditch network data; and 4) incorporation of remote-and ground-based sensor techniques 

for measuring variability in soil and vegetation characteristics. Chapter 2 introduces soil 

survey disaggregation as a possible way to improve the use of soils data to better identify 

areas where hydrology and soil conditions may favor N removal by wetlands.  

Chapter 3 presents a methodology for disaggregating soil survey map units for the 

purpose of supporting wetland restoration and conservation decisions in low-relief 

depressional wetland landscapes on forest and cropland. This is the main component of 

my dissertation research. Field data compiled from previous research and the local soil 

survey were used to train separate disaggregation models for forest and cropland using 

the Random Forests machine learning algorithm. Topographic metrics derived from lidar, 
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SSURGO, the National Wetlands Inventory, and ditch network data are used as 

covariates to predict natural soil drainage class and texture class. In forested areas, model 

predictions fit the tacit understanding of variability in natural soil drainage class and 

texture class on depressional wetland landforms. One of the limitations of the forest 

model, however, was that it was not able to differentiate very poorly from poorly drained 

soils. Chapter 4 addresses this limitation. 

Chapter 4 is an exploratory data analysis comparing the disaggregated soils map with 

time-series inundation maps of the region developed from Landsat and lidar intensity data 

(Huang et al., 2014; Jin et al., 2017) to determine whether the inundation data may help 

distinguish soils that are likely very poorly vs poorly drained in the study area. Chapter 4 

includes 4 objectives: 

1) Compare the disaggregated soil drainage class map with the inundation maps; 

2) Identify zones within areas mapped as very poorly drained/poorly drained that 

show stable, variable, or consistently low inundation patterns;  

3) Compare the topographic metrics with the inundation data; and 

4) Suggest potential avenues of research for investigating uses of the inundation data 

in wetland soils mapping. 

Implications for wetland soils and wetland extent mapping to support the assessment of 

wetland functions (e.g., nitrate removal) at a landscape scale and enhance the 

implementation of wetland conservation and restoration practices are discussed. 
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Chapter 2 – Wetland Restoration and Creation for Nitrogen Removal: Challenges 

to Developing a Watershed-Scale Approach in the Chesapeake Bay Coastal Plain 

 

2.1 Introduction 

Nitrogen losses due to increases in agricultural applications of fertilizer and manure over 

the past 60 years have contributed to eutrophication, hypoxia, and habitat loss in the 

Chesapeake Bay. The Chesapeake Bay receives an estimated 1.32 108 kg N per year, 

with agriculture contributing more than half of this load (Ator et al., 2011). In 2010, the 

US Environmental Protection Agency established the Chesapeake Bay Total Maximum 

Daily Load (TMDL), a “pollution diet” for the Chesapeake Bay and the region’s creeks, 

streams, and rivers. The TMDL sets pollution limits on nitrogen, phosphorus, and 

sediment necessary to meet water quality standards in the Bay and its tidal rivers. For 

nitrogen, this limit is set at 84.3 million kg N per year. Measures to achieve the TMDL 

must be in place by 2025 with 60% completion by 2017 (U.S. Environmental Protection 

Agency, 2010). Bay states are required to develop watershed implementation plans 

(WIPs) that document how local jurisdictions will work with state and federal 

governments to control nutrient and sediment loads and meet TMDLs. WIPs are to be 
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submitted to the EPA in three phases with increasing level of detail: Phase I 

implementation plans in November 2010, Phase II in March 2012, and Phase III in 2017. 

Reducing nutrient loading from agricultural sources will require a broad suite of 

practices, including on-farm, edge-of-field, and off-site practices. One potential edge-of-

field or off-site strategy is targeted restoration and creation of wetlands. Wetlands can 

function as removal sites or “sinks” for N primarily by promoting denitrification, a 

microbial process by which nitrate is converted to gaseous nitrogen products thereby 

permanently removing N from the soil-water environment. The 2014 Chesapeake 

Watershed Agreement includes the outcome of creating or reestablishing 34,400 hectares 

of tidal and nontidal wetlands and enhancing the function of an additional 60,700 

hectares of degraded wetlands by 2025 (Chesapeake Bay Program, 2014). 

The restoration and creation of wetlands for controlling nonpoint source pollution in 

agricultural watersheds has been widely investigated (Hernandez and Mitsch, 2007; 

Jordan et al., 2003; Kovacic et al., 2000; Phipps and Crumpton, 1994; Poe et al., 2003; 

Vellidis et al., 2003). For over 20 years, research in this area has emphasized the need for 

a watershed-scale approach to siting and designing wetlands in order to optimize 

performance and meet water quality goals (Crumpton, 2001; De Steven and Lowrance, 

2011; Mitsch et al., 2001; Osmond et al., 2012; Passeport et al., 2013; Van der Valk and 

Jolly, 1992; Woltemade, 2000; Zedler, 2003). In addition to biological and physical 

constraints, wetland restoration planning requires consideration of political, economic, 

and social factors that may pose barriers to implementation and are best addressed at the 

watershed scale. Wetland restoration must also be considered within the context of the 

broader response strategy, as one of many potential ways to address agricultural nonpoint 
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source pollution. Van der Valk and Jolly (1992) outlined a set of recommendations for 

research on the use of wetlands to address nonpoint source pollution: 

• Whole watershed demonstration studies 

• Studies of effectiveness of restored/created wetlands 

• Landscape simulation models of origin/movement of nonpoint source pollution 

• Studies on site selection and design criteria 

• Studies of farmers’ and local business/community leaders’ attitudes toward landscape 

approach 

• Studies exploring legal and public policy issues of wetland restoration programs 

• Studies evaluating the costs and benefits of this approach 

There has been little advancement in these research areas in the Chesapeake Bay 

watershed to date. Wetland projects are still planned primarily at the scale of the 

individual property. However, in recent years, environ- mental groups have initiated pilot 

projects in parts of the watershed to demonstrate the application of a watershed approach 

to wetland and stream restoration, with applications in both conservation planning and 

compensatory mitigation (The Nature Conservancy, 2013; Wilkinson et al., 2013). 

This paper addresses some of the barriers to implementing wetland restoration/creation 

practices in the region, discusses challenges to developing a watershed approach for 

treating nitrate, and recommends ways to overcome these challenges. We focus on the 

coastal plain portion of the Chesapeake Bay watershed because of the great potential for 

wetland restoration in this region due to the widespread agricultural land use and history 

of artificial drainage of wetlands. 
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2.2 Biological and Physical Challenges 

In taking a watershed-scale approach to siting and designing wetlands for mitigating 

nitrate runoff, we should consider where on the landscape agricultural nitrate is being 

delivered to streams and where the topography and soils are most suitable for wetland 

establishment. Where these factors coincide, there is an opportunity to restore or create 

wetlands that will be effective at removing nitrate and improving water quality. We have 

identified two major biological and physical challenges for the siting of wetlands for 

nitrate removal: (1) accounting for subsurface connectivity between nitrogen sources and 

wetlands and (2) estimating how effective wetlands will be at removing nitrate in order to 

demonstrate the benefits of targeted wetland restoration and compare alternative 

watershed plans. 

 

2.2.1 Subsurface Connectivity between Nitrogen Sources and Wetlands 

A wetland can only be effective at mitigating N if there is hydrologic connectivity 

between the N source and the wetland site. Nitrogen transport in the coastal plain of the 

Chesapeake Bay watershed is often subsurface and varies in depth and transport time. 

Also, the direction of flow does not necessarily follow topographic patterns. Subsurface 

hydrologic connectivity is not consistent over time and may be altered through 

hydrologic restoration. 

The Delmarva Peninsula forms the largest portion of the Mid-Atlantic Coastal Plain 

portion of the Chesapeake Bay watershed. The flat topography and permeable soils of 

much of the Delmarva Peninsula favor subsurface flow (Hamilton et al., 1993; Staver and 
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Brinsfield, 1998). Nitrate leaching from the crop rooting zone during winter months 

contributes to elevated groundwater nitrate concentrations (Staver and Brinsfield, 1998). 

The peninsula is underlain by a wedge of unconsolidated sediments comprised of a 

surficial unconfined aquifer ranging from less than 6 m to greater than 30 m thick 

(Hamilton et al., 1993) underlain by a series of confined aquifers (Cushing et al., 1973) 

(Fig. 2.1). Due to the high permeability of aquifer sediments, groundwater is well 

oxygenated throughout most of the aquifer and elevated nitrate concentrations are found 

even near the base of the surficial aquifer (Debrewer et al., 2007; Hamilton et al., 1993). 

Seventy percent of the nitrogen flux in headwater streams is attributable to base-flow 

nitrate flux (Ator et al., 2013). Debrewer et al. (2007) reported that median nitrate 

concentrations in groundwater are greater than 5 mg L-1 and often higher than 10 mg L-1 

in wells placed at a median depth of 6 m below the surface in agricultural areas. Similar 

nitrate concentrations in deeper groundwater (14 m below surface) reflect recharge in 

upgradient agricultural land (Debrewer et al., 2007; Hamilton et al., 1993). Mitigating 

nitrate loss is further complicated by the long travel time required for deep groundwater 

to move through the surficial aquifer; nitrate may remain in groundwater for decades to 

centuries before discharging into streams (Bohlke and Denver, 1995). 
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Figure 2.1 Stratigraphies of the Delmarva Peninsula. An extensive surficial aquifer 
overlies a series of confined aquifers. Image produced by the US Geological Survey, 
Hamilton et al. (1991) with modification by Denver et al. (2004). 
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Depressional wetlands have been the focus of much of the wetland restoration efforts on 

the Delmarva Peninsula. Two common wetland restoration techniques are commonly 

used in these landforms: (1) plugging agricultural drainage ditches and (2) excavating the 

topsoil and building a berm (“scraping”). In some cases, ditch-plugging may not be 

effective for groundwater nitrate mitigation. When a ditch is plugged, the water level in 

the ditch rises reducing the hydraulic gradient between the ditch and the groundwater. 

Groundwater that previously flowed into the ditch may begin to flow in another direction, 

potentially bypassing the wetland treatment area (T. Jordan, 2013, pers. comm.). 

Scraping is a more common practice in Maryland, but it is also unclear how this method 

affects N transport and processing. By compacting the subsoil during excavation, 

scraping likely affects soil properties such as bulk density and pore size distribution, with 

important implications for the fate of subsurface N. 

Potential restoration sites are evaluated through site visits and examination of 

topographic and soils maps, but these methods often do not adequately account for 

subsurface hydrologic flow paths, which are a major transport pathway of nitrate in 

coastal plain regions of the Chesapeake Bay watershed (Hamilton et al., 1993; Sanford et 

al., 2012; Staver and Brinsfield, 1996). 

Tile and ditch drainage are common in poorly drained agricultural areas, where wetlands 

are most likely to be successfully established. Artificial drainage networks can provide a 

conduit for the rapid and continuous de- livery of nitrate to surface waters. Few studies 

have been published on the effects of artificial drainage on water quality on the Mid-

Atlantic Coastal Plain (Kleinman et al., 2007; Needelman et al., 2007; Schmidt et al., 

2007; Vadas et al., 2007), but recent research in Maryland has shown that ditch depth and 
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the presence of subsoil clay-rich horizons can affect transport of nitrate through ditches 

(Schmidt et al., 2007; Vadas et al., 2007). Shallow ditches (0.5 m) function mainly as 

conduits for surface water during runoff-generating rainfall events, receiving few 

subsurface inputs (Schmidt et al., 2007). Deeper ditches (1 m) drain proportionately more 

water due to continuous subsurface flow inputs, and nitrate loss increases linearly with 

drainage outflow (Schmidt et al., 2007). The presence of low conductivity clay-rich 

horizons can cause water tables to perch temporarily following rain events, promoting 

rapid, lateral movement of water to ditches (Vadas et al., 2007). Old drainage ditches 

within restored wetlands can also have important implications for nitrate transport. 

Vellidis et al. (2003) identified preferential flow paths associated with old drainage 

ditches that permitted groundwater nitrate plumes to flow deep within wetland soils, 

limiting interaction with the biologically active rooting zone. Nitrate-enriched 

groundwater from agricultural fields is generally expected to flow through riparian areas 

to streams laterally through the shallow subsurface (Gold et al., 2001; Lowrance et al., 

1997) (Fig. 2.2). However, subsurface flow may be more heterogeneous and 

asymmetrical than this general model predicts (Angier et al., 2005; Gold et al., 2001). In 

some locations, deeper groundwater or preferential flow paths can deliver nitrate directly 

to streams with limited opportunity for N processing (Angier et al., 2005; Gold et al., 

2001) (Fig. 2.2). Thus, in areas where subsurface flow is the primary transport of nitrate, 

the effectiveness of wetland best management practices (BMPs) to mitigate nitrate 

depends on our ability to understand how nitrate is moving in the subsurface. 
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Figure 2.2 Groundwater flow paths through riparian areas can control the delivery of 
nitrate-enriched groundwater to streams. (A) Substantial interaction of ground water with 
biologically active zone in shallow aquifers; (B) Direct upwelling to streams in deep 
aquifers; (C) Bypass flow due to surface seeps; (D) Bypass flow due to filling and 
artificial drainage. Reprinted with permission, Gold et al. (2001). 

 

Subsurface flow may follow preferential flow pathways controlled by variations in soil 

and aquifer characteristics horizontally and with depth. Both macropore flow and 

funneled flow have important implications for so- lute transport. Kung (1990) identified 

preferential flow triggered by funnels created by abrupt textural discontinuities and 

inclined bedding planes as the dominant mechanism in a sandy vadose zone in 

Wisconsin. Funneled flow allows for rapid transport of contaminants and can be difficult 

to detect using common solute sampling techniques (Kung, 1990). 

In a first-order riparian zone in an agricultural catchment in the Mid- Atlantic Coastal 

Plain, Angier et al. (2005) found that much of the groundwater nitrate was delivered to a 
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stream through zones of concentrated flow. The authors observed higher hydraulic 

conductivities associated with 5-cm thick sand layers 80 and 120 cm below the surface 

within otherwise low conductivity fine-textured wetland soils. These layers probably 

acted as preferential transport sites, delivering groundwater to discharging macropores 

along the stream (Angier et al., 2005). Upwelling zones supplied a disproportionate 

amount of total stream flow, including a single upwelling area that comprised 0.006% of 

the riparian area but generated on average 4% of total stream flow (Angier et al., 2005). 

This example illustrates the importance of being able to identify surface features and soil 

properties that control hydrologic connectivity. Traditional models of horizontal matrix 

flow were inadequate for describing the connectivity of this riparian ecosystem where 

significant amounts of nitrate reached the stream channel. 

Differences in soil and aquifer hydraulic properties and the depth of groundwater flow 

have important implications for siting and designing wetlands. Where the surficial aquifer 

is thick, nitrate-rich groundwater may flow below the wetland treatment area, limiting N 

removal potential (Bohlke and Denver, 1995; Gold et al., 2001). Alternatively, 

groundwater may pass through reducing sediments at depth where nitrate removal by 

denitrification may occur before discharging into streams (Bohlke and Denver, 1995). 

Even adjacent watersheds with similar groundwater nitrate levels can display significant 

differences in groundwater flow patterns due to variation in local aquifer characteristics 

(Bohlke and Denver, 1995). 

Depressional wetlands are common throughout the upper and middle portions of the 

Delmarva Peninsula (Clearwater et al., 2000; Fenstermacher et al., 2014) in counties 

dominated by agricultural land use. The complexity of N fate and transport complicates 
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evaluating the effects of depressional wetlands on downstream water quality (Denver et 

al., 2014). In flat landscapes, groundwater flow paths do not always follow topographic 

gradients; seasonal reversals in the direction of groundwater flow can cause shallow 

groundwater to move away from the wetland to the agricultural upland (Denver et al., 

2014) (Fig. 2.3). Due to the multidimensionality of groundwater flow and variability in 

reducing conditions, limited geochemical and hydrologic measurements along a 

presumed hydrologic transect are often insufficient for determining the potential for 

nitrate interception and removal in wetlands (Denver et al., 2014). 

 

 

Figure 2.3 Cross section of a prior-converted cropland site illustrating seasonal reversal 
in hydrologic gradient. Reprinted, Denver et al. (2014). 
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Soil characteristics and geomorphology can provide insight into how aquifer attributes 

affect groundwater flow and nitrate flux (Gold et al., 2001). For example, research on 

riparian zones has demonstrated that organic/alluvial deposits show a greater capacity for 

groundwater nitrate removal than till deposits (Gold et al., 2001; Rosenblatt et al., 2001). 

In a study of riparian zones in different hydrogeologic settings, Vidon and Hill (2004) 

demonstrated how landscape characteristics, including upland aquifer depth, slope, and 

riparian soil texture, can affect the magnitude and duration of nitrate inputs and the 

potential for nitrate removal in riparian zones. This study highlighted the importance of 

hydrologic connectivity between upland and riparian areas for nitrate removal; riparian 

sites with gentle topography, confining layers, and potentially high nitrate removal rates 

were not important nitrate sinks because of limited water and nitrate inputs from up- 

lands. Method of restoration can affect soil characteristics and the potential for nitrate 

removal in wetlands as well. For example, confining layers created by the addition of clay 

or compaction of soils during restoration may limit interaction between anoxic wetland 

sediments and nitrate in groundwater (Denver et al., 2014). 

There is great interest in using remote sensing and geospatial technology to target and 

monitor wetland restorations using information on topography, hydrology, land 

cover/use, and soil and aquifer properties. These technologies have successfully been 

used to predict surface hydrologic processes (Lang et al., 2013, 2012), but developing 

predictions of groundwater connectivity based on landscape and soil characteristics is 

more challenging. High resolution Light Detection and Ranging (LiDAR) data allow us 

to identify terrain attributes with high vertical (15 - 100 cm) and horizontal accuracy (50 - 

200 cm), and can significantly improve detection of surface hydrologic connections 



23 
 

(Lang et al., 2012). Soil data from the Soil Survey Geographic Database (SSURGO) 

contain information on soil hydrologic properties to a depth of approximately 2 m 

including hydric rating, soil texture, hydraulic conductivity, available water capacity, 

hydrologic group, drainage class, organic matter, and bulk density. SSURGO data, 

however, are considerably coarser (1:12,000 to 1:65,360) than LiDAR data, and their 

applications in land management planning are limited by the spatial aggregation of soil 

components. Differences in resolution can lead to problems when overlaying GIS data for 

mapping and spatial analysis. Spatial aggregation of SSURGO components also creates 

problems when mapping soil properties for use in landscape analysis. For example, when 

hydric soil rating is overlain on top of LiDAR data, the coarse resolution of the soil data 

can conceal the subtle variations in topographic indices of wetness depicted by the 

LiDAR data. Furthermore, map units often include major and minor components with 

both hydric and nonhydric soils. A common summarization technique is to assign hydric 

rating categories based on the cumulative percent composition of all components of a 

map unit rated as hydric (Fig. 2.4). However, such summarization does not address issues 

of scale. Due to spatial heterogeneity in hydrologic flow paths and geochemical 

conditions, finer scale soil property maps would help natural resource managers 

characterize near-surface hydrologic connectivity between agricultural uplands and 

wetlands and predict where geochemical conditions may be optimal for restoring 

wetlands to capture and remove nitrate. The challenge on the Mid-Atlantic Coastal Plain, 

however, remains that groundwater carrying abundant nitrate is often considerably deeper 

than 2 m, and aquifer characteristics have not been mapped to sufficient resolution or 

consistency to predict flow patterns (Ator et al., 2013). Using information compiled from 
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geophysical and lithologic logs taken across the Delmarva, geologists have mapped the 

base of the surficial aquifer at a resolution of 762 m2, which is too coarse for use at local 

scales (Andreason and Staley, 2013). 

 

 

Figure 2.4 NRCS Web Soil Survey hydric soil rating (Soil Survey Staff, 2014a). 

 

2.2.1.1 Proposed Approach 

Although we do not currently have the tools to accurately predict ground- water 

connectivity between N sources and wetlands at a watershed-scale, there are several 

actions we can take to better account for subsurface N transport when siting and 

designing BMPs. The following research is recommended in Mid-Atlantic Coastal Plain 

watersheds to enhance the implementation of appropriate N management strategies 

(detailed below): 

1. Assessing hydrologic connectivity in areas with artificial drainage 
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2. Catchment-scale studies of hydrogeomorphic predictions of hydrologic connectivity 

3. Improved use of geospatial data for predicting subsurface connectivity between N 

sources and wetlands 

 

2.2.1.1.1 Assessing Hydrologic Connectivity in Areas with Artificial Drainage 

Hydrologic connectivity in the Mid-Atlantic Coastal Plain is highly influenced by 

artificial drainage, but there have been a limited number of studies examining nitrate 

delivery to and from artificial drainage ditches (Schmidt et al., 2007; Vadas et al., 2007). 

Schmidt et al. (2007) found that shallow ditches on a research farm in southern Delmarva 

received negligible amounts of subsurface flow inputs; therefore management practices 

designed to impact groundwater flow would be ineffective in these locations. By contrast, 

wetlands, riparian buffers, denitrification walls, and controlled drainage structures would 

likely be effective at mitigating groundwater nitrate moving into deep ditches (Schmidt et 

al., 2007). Further research examining factors affecting hydrologic transport of N to 

ditches, including the relative importance of lateral matrix flow and preferential flow in 

different hydrogeologic settings, would help us identify opportunities to capture and treat 

nitrate before it reaches the ditch. In cases where ditches intercept groundwater nitrate, 

wetland restoration adjacent to ditches may help maintain anoxic conditions beneath 

ditches (Denver et al., 2014), thereby encouraging denitrification in ditch soils and 

sediments. Controlled drainage structures installed in ditches manage drainage outflow 

and may enhance denitrification. We recommend testing different designs in order to 

maximize the effectiveness of these BMPs. 
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2.2.1.1.2 Catchment-Scale Studies of Hydrogeomorphic Predictions of Hydrologic 

Connectivity 

Different hydrogeomorphic regions on the Mid-Atlantic Coastal Plain display unique 

groundwater flow and water quality patterns (Hamilton et al., 1993). The highest nitrate 

concentrations are found in groundwater beneath agricultural areas where the soils and 

surficial aquifer are composed of sandy, permeable sediments with little clay. 

Groundwater nitrate is particularly high in the “well-drained uplands,” a 

hydrogeomorphic region characterized by narrow incised streams, deep water tables (>3 

m below land surface), and oxic groundwaters. In the “poorly drained uplands” where 

stream incision is minimal and the water table is within 3 m of land surface, mixing of 

aerobic and anaerobic groundwater results in lower nitrate concentrations. The lowest 

groundwater nitrate concentrations are found in regions where organic matter is abundant 

and clay and silt deposits inhibit downward flow, including the “fine-grained lowlands” 

and parts of the “surficial confined” region (Hamilton et al., 1993). Different N 

management strategies may be targeted in different hydrogeomorphic regions. 

Opportunities for wetland restoration BMPs will likely be greatest in the “poorly drained 

uplands” and “surficial confined” regions, where the water table is close to the surface 

and much of the land is in agriculture. This includes much of the central peninsula (Fig. 

2.5).  

Where sediments are highly permeable and nitrate contamination in deeper groundwater 

is high, identification of groundwater discharge sites may be important for capturing 

nitrate. Where clay and silt deposits inhibit downward flow, identification of preferential 

flow paths in the shallow sub- surface may be more important for intercepting nitrate, and 
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it may be more feasible to predict subsurface connectivity based on local variability in 

soil and landscape attributes. Soil moisture predictions are significantly improved when 

both soil morphological properties and terrain attributes are considered (Takagi and Lin, 

2012). The relative importance of soil and terrain parameters in controlling soil moisture 

varies seasonally and with depth (Takagi and Lin, 2012). Therefore, catchment-scale 

studies of nitrate transport in different landscape settings are needed to improve our 

understanding of how topography and soil characteristics affect seasonality of hydrologic 

connections and the direction and depth of subsurface flow paths. 
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Figure 2.5 Hydrogeomorphic regions in the surficial aquifer in the Delmarva Peninsula. 
Image produced by the US Geological Survey, modified from Hamilton et al. (1993).  
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Assumptions of lateral subsurface flow need to be reexamined and better accounting of 

vertical flow processes and mixing of deeper “old” and shallower “new” groundwater is 

needed to improve our understanding of subsurface nitrate loss to surface waters. Trends 

in water chemistry can reveal patterns in nitrate fate and transport. McCarty et al. (2014) 

found that the relationship between nitrate-N concentration and metolachor metabolite, a 

stable, water-soluble herbicide degradation product, could be used to distinguish between 

dilution and denitrification effects on nitrate concentrations in surface waters of the 

Choptank River watershed. These patterns can help us identify watersheds where 

denitrification may be enhanced by restoring wetlands (McCarty et al., 2014). 

In addition to nitrate removal, wetlands may improve water quality in local streams 

through mixing and dilution (Denver et al., 2014). Forested wetlands upgradient from 

agriculture can be a source of low nitrate water to downstream waters, diluting nitrate 

concentrations and improving regional water quality (Denver et al., 2014). Thus, 

identifying opportunities to dilute groundwater nitrate by restoring hydrology to ditched 

forested wetlands will likely be an important component of a watershed approach to 

wetland restoration. 

 

2.2.1.1.3 Improved Use of Geospatial Data for Predicting Subsurface Connectivity 

between N Sources and Wetlands 

The success of a watershed approach to wetland restoration and creation will depend 

greatly on the effective use of geospatial data. Recent advances in geospatial technology 

and greater access to high resolution data allow for better mapping of landscape factors 
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influencing the fate and transport of nitrate. New GIS-based targeting tools are 

continually being developed to identify priority areas for wetland restoration (Hunter et 

al., 2012; Tomer et al., 2013; White and Fennessy, 2005). There are several ways to 

improve current use of geospatial data to better identify areas where the hydrology may 

favor N removal by restored/created wetlands. These are explained in the following 

sections. 

 

2.2.1.1.3.1 Expanded Use of LiDAR Data and Topographic Indices Derived from 

LiDAR 

High-resolution LiDAR data are available for much of the Mid-Atlantic Coastal Plain and 

can improve detection of saturated areas in the landscape and hydrologic connections 

between wetlands and surface waters (Lang et al., 2012). Tomer et al. (2013) used 

LiDAR topographic data in combination with output from water quality models to 

identify feasible locations for wetlands in an Illinois watershed and esti- mate watershed 

nitrate loads if they are constructed. Topographic metrics derived from LiDAR can be 

used to predict spatial patterns in soil saturation and map wetlands (Lang et al., 2013). 

The topographic wetness index, which is based on upslope contributing area and slope, 

can be generated using a number of different flow routing algorithms. In a raster layer, 

there are eight directions in which water can flow. GIS programs often use the D8 

algorithm, which directs water to the steepest downslope neighboring cell. Other 

algorithms use more complex decision rules to direct flow to neighboring cells. 

Distributed flow patterns may better predict flow in relatively flat landscapes (Lang et al., 
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2013). The topographic wetness index will be most useful in areas with a confining layer, 

where lateral flows dominate vertical flows (Lang et al., 2013). Other topographic metrics 

such as relief and curvature may also help predict extent and frequency of inundation. 

Further testing of these metrics in different landscapes is needed to deter- mine how they 

can best be incorporated into wetland planning (Lang et al., 2013). 

 

2.2.1.1.3.2 Better Use of Soil Data  

The SSURGO database provides information on a range of soil hydrologic properties to a 

depth of approximately 2 m. Wetland restoration planners often rely on hydric soils 

maps, but data on soil texture, hydraulic conductivity, available water capacity, 

hydrologic group, drainage class, bulk density, and organic matter are also available 

through SSURGO. These attributes may account for spatial and temporal variability in 

soil moisture that is not captured by topographic indices, and help planners predict 

hydrologic connectivity across the land- scape. For example, drainage class can indicate 

the duration and seasonality of saturation in potential wetland sites. Textural differences 

in soil layers may indicate preferential flow mechanisms that have important implications 

for solute transport (Steenhuis et al., 1998). 

Although SSURGO currently provides the most detailed soil geographic data in the US, 

its applications in land management planning are limited by its coarse scale and the 

spatial aggregation of soil components. SSURGO data consists of polygons representing 

map units and tabular soil property data associated with distinct components within each 
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map unit. A single SSURGO map unit may contain several major and minor components, 

each associated with different soils with contrasting properties. 

The recent development of gSSURGO, a raster soil dataset prepared by merging vector-

based SSURGO data and tabular data, will make it easier for conservation planners to 

map these attributes and combine soil information with other datasets. The potential 

wetland soil landscapes (PWSL) raster layer is an excellent example of the utility of this 

new dataset (Fig. 2.6). The PWSL expands on hydric soil rankings by identifying soils 

that were historically hydric based on additional soil attributes. For example, if a pixel 

falls within a map unit in which the dominant component is not identified as being hydric, 

the pixel is classified as PWSL if the drainage class is “poorly drained” or “very poorly 

drained” or the map unit name contains the phrase “ditched” or “drained” (Soil Survey 

Staff, 2014a). This dataset could provide a basis for identifying sites where wetland 

hydrology can most readily be restored. PWSL data could be combined with topographic, 

stream, and land use data to further improve characterization of hydrology and factors 

contributing to nitrate loss. 
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Figure 2.6 gSSURGO potential wetland soil landscapes (PWSL) (Soil Survey Staff, 
2014b). 

 

Another promising development in soil mapping is the disaggregation of soil map units 

into probabilistic raster maps of individual components. The distribution of components 

can be estimated based on correlations with environmental variables such as terrain 

position, parent materials, topography, and other landscape factors (Nauman and 

Thompson, 2014; Subburayalu et al., 2014). For example, Nauman and Thompson (2014) 

queried geomorphic and hillslope profile descriptors in the SSURGO database and 

developed rules based on environmental raster values for the component landform 

descriptions for a 3877 km2 study area in the Appalachian Mountains of West Virginia. 

These relationships were then used to build a set of training areas for all components, 

which were used in classification trees with additional environmental rasters to transform 

the original SSURGO soil map into a gridded soil component map (Fig. 2.7). 

Disaggregation has the potential to provide land use planners with more detailed soil 

maps that better represent spatial variation in soil attributes while reducing the amount of 

work required to use soil survey data in conservation planning. A similar approach could 



34 
 

be developed using environmental rasters such as LiDAR-derived topographic metrics to 

identify historic wetlands where the hydrology can most readily be restored. 

 

 

Figure 2.7 Maps comparing disaggregated SSURGO product (A) with original soil 
survey map units (B). Reprinted with permission, Nauman and Thompson (2014). 

 

2.2.1.1.3.3 Incorporation of Ditch Network Data   

Ditch network data can help identify areas promoting rapid transport of nitrate to streams 

by ditches. The Eastern Shore Regional GIS Cooperative has digitized tax ditches 

maintained by public drainage associations in select watersheds, and the data are 

available for free download (Eastern Shore Regional GIS Cooperative, 2004). As 

demonstrated by Schmidt et al. (2007), these deeper ditches receive continuous 

subsurface inputs from upland agricultural fields and can be important conduits for the 

accelerated delivery of nitrate to surface waters. Field ditches have also been digitized in 

several watersheds as part of Chesapeake Conservancy’s effort to advance the use of 
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geospatial technologies in conservation planning across the Chesapeake Bay watershed 

(Chesapeake Conservancy, 2014). 

 

2.2.1.1.3.4  Incorporation of Remote- and Ground-Based Sensor Techniques for 

Measuring Variability in Soil and Vegetation Characteristics   

Remote sensing offers a rapid, cost-effective way to incorporate spatial and temporal 

information on landscape attributes into wetland restoration planning. Advances in 

technology and new interpretation techniques have led to improvements in wetland 

mapping and detection of changes in hydrology, vegetation, and other surface 

characteristics (Klemas, 2013, 2011; Lang et al., 2008). Although limited primarily to 

studying changes in surface characteristics, remote sensing has great potential to assist 

conservation planners in restoration targeting. Airborne and high-resolution satellite 

imagers may be useful in siting and monitoring small wetlands. Satellite sensors such as 

IKONOS and QuickBird can provide resolutions of 0.5 - 1 m in panchromatic bands and 

2 - 4 m in multispectral bands in the visible and near-infrared regions of the 

electromagnetic spectrum (Klemas, 2011). Color infrared aerial photography and 

multispectral and hyperspectral imagery may be useful in studying vegetation 

characteristics that can be related back to wetland function (Klemas, 2013; Tuxen et al., 

2008). Indices such as the normalized difference vegetation index, which uses the red and 

near-infrared bands to detect the spectral characteristics of green plants, can be used to 

map spatial patterns in crop biomass (Hively et al., 2009). Patterns in crop biomass 

during dry and wet years may be good indicators of the hydrology of historic wetlands. 



36 
 

Multitemporal synthetic aperture radar (SAR) is particularly promising for wetland 

studies. SAR microwave energy is sensitive to variations in soil moisture and can pass 

through vegetation with little attenuation (Klemas, 2013). Lang et al. (2008) 

demonstrated how multitemporal C-band SAR can be used to detect seasonal changes in 

hydrologic characteristics of forested wetlands. SAR data are potentially useful for 

monitoring temporal fluctuations in soil moisture and wetland inundation on prior 

converted cropland (former wetlands drained for agricultural production). These data 

could also help us understand the role of forested wetlands upgradient of cropland in 

diluting nitrate concentrations in local streams. 

At field scales, geophysical tools such as ground penetrating radar (GPR) and 

electromagnetic induction (EMI) can be used to map soil physical properties. Gish et al. 

(2002) used GPR-derived subsurface digital elevation models (DEMs) to identify 

preferential flow pathways based on depth to a subsurface clay layer. Subsurface 

restricting layers within 2 m of the surface benefited corn grain yields during a drought 

year. Yields decreased with increasing horizontal distance from the GPR-identified flow 

pathways. 

GPR is often used in combination with EMI, which measures soil electrical conductivity 

(ECa). ECa is affected by factors such as soil moisture, clay content, and mineralogy, 

which can be used to differentiate soil components (Zhu et al., 2013). Recent studies have 

explored the application of these technologies in combination with in-field measurements 

to evaluate the effects of agricultural practices on soil properties (Jonard et al., 2013) and 

advance site-specific management for precision agriculture (Zhu et al., 2013). Using 

similar methods, geophysical tools could be used to evaluate potential restoration sites on 
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prior-converted cropland. Testing of these technologies in different landscape settings is 

needed to better understand how to use these tools. 

Continued advances in geospatial technology and remote- and ground- based sensing will 

likely improve our ability to predict where in the landscape restoring the hydrology of 

historic wetlands will promote denitrification or nitrate dilution. Integration of local 

knowledge with geospatial tools may provide for the most robust analysis of landscapes. 

 

2.2.2 Estimating Wetland Efficiencies 

Wetland efficiencies use simple relationships to predict N removal rates. N removal 

efficiencies allow conservation planners to make estimates of N attenuation at the 

watershed scale based on a few selected parameters that are readily available. Efficiencies 

also allow for directly comparing different N management options to select the most cost-

effective choice in terms of dollars per kilogram of nitrogen removed, facilitating policy 

making and documentation of progress toward achieving TMDLs. 

Wetland efficiencies for N are difficult to obtain for a number of reasons. First, nitrate 

removal efficiencies reported in the literature are highly variable, ranging from negative 

efficiencies (export of nitrate from the wetland) to greater than 90% nitrate removal 

(O’Geen et al., 2010). Efficiencies vary with wetland characteristics, climate, landscape 

position, N loading rates, objectives of restoration, and other factors (O’Geen et al., 

2010). Despite the vast number of studies done on the use of wetlands for nutrient 

treatment, little research has been done on wetlands treating agricultural nonpoint source 

pollution, and only a handful of studies have been done in the Chesapeake Bay 
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watershed. Efficiency estimates are often based on individual wetlands under highly 

managed conditions. Whether significant N removal can be achieved at the watershed 

scale has not yet been tested in the Chesapeake. For modeling purposes, the ratio of 

wetland to watershed area is commonly used as a surrogate for hydrologic retention time 

in estimating efficiencies due to the correlation between these variables, but this approach 

ignores site-specific conditions that can affect N removal, such as the amount of carbon 

available for denitrification, the permeability of upland and wetland sediments, and local 

subsurface connectivity.  

The challenge of estimating efficiencies at the watershed scale is exemplified by the 

Chesapeake Bay Watershed Model. Wetland BMPs are assigned efficiencies based on a 

relationship between percent N removal and wetland area as a percentage of the 

contributing watershed. Efficiencies are based on geomorphic province, with the 

assumption that the wetland to watershed area ratio increases moving from upland to 

low- land regions (Simpson and Weammert, 2009). Wetland BMPs in the Coastal Plain 

are assigned an efficiency rating of 25%, based on a 4% wetland to watershed area ratio; 

in the Piedmont Plateau a rating of 14% based on a 2% ratio; and in the Appalachian 

Plateaus a rating of 7% based on a 1% ratio. These efficiencies were derived through 

regression analysis of data from 16 studies, only one of which was conducted in the 

Chesapeake Bay watershed. The model, based on first-order kinetics, fits the data only 

weakly (Figure 2.8) and does not capture other factors affecting efficiencies such as 

wetland age, seasonal variation, flow variability, landscape position, land use conversion, 

and sediment accumulation (Simpson and Weammert, 2009). When developed, it was 

expected that these efficiencies would continue to be refined, but without monitoring 
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programs in place to assess wetland performance under different conditions, we have few 

regional or local data for developing and validating efficiency models. 

 

Figure 2.8 Percentage of nutrients removed annually versus wetland/watershed ratio. 
Reprinted with permission, Simpson and Weammert (2009). 

 

A second challenge to estimating wetland N removal efficiency is accounting for 

seasonality of nutrient discharges. Depending on climate and geomorphic setting, the 

volume and timing of runoff will vary throughout the year. N loss may be event-driven 
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(Kovacic et al., 2000) or it may be attributed to baseflow (Ator and Denver, 2012), 

warranting different wetland designs and efficiencies. For example, in constructed 

wetlands receiving tile drainage on the Embarras River in Illinois, the greatest tile dis- 

charges and nutrient fluxes occur during pulse flows in the spring and winter seasons 

(Kovacic et al., 2000). By contrast, in depressional wetlands in the Choptank watershed 

in Maryland, N fluxes depend on the depth and gradient of the water table, which vary 

seasonally and are controlled by a complex set of geologic, geochemical, and hydrologic 

conditions (Denver et al., 2014). In general, N loading in wetlands is likely to be lowest 

in the summer when crop uptake and microbial activity are greatest. In depressional 

wetlands on the Mid-Atlantic Coastal Plain, N removal efficiencies will be the greatest 

when the groundwater flows consistently from the agricultural upland to the wetland and 

passes through reducing soils within the wetland. With a better understanding of seasonal 

variability in nutrient fluxes in wetlands in different settings, a seasonal correction factor 

may help improve efficiency estimates (Simpson and Weammert, 2009). 

Finally, diverse wetland types and approaches to restoration will lead to variability in N 

removal efficiencies. On the Mid-Atlantic Coastal Plain, denitrification potential varies 

with wetland hydrogeomorphic type (riverine, depressional, flat) (Jordan et al., 2007). 

Method of restoration/creation may impact how quickly water quality functions are 

achieved. For example, ditch plugging causes little disturbance to the soil, but may divert 

nitrate-rich groundwater to a new groundwater flow path (T. Jordan, 2013, pers. comm.). 

Scraping, by contrast, removes organic-rich surface horizons, exposing subsurface 

horizons. After scraping, some of the topsoil is often replaced, or imported materials such 
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as sand, straw, or compost are added. Restoration methods will likely affect the amount 

of carbon available for denitrification and the degree of surface-groundwater interactions. 

 

2.2.2.1 Proposed Approach 

Nitrogen removal is most affected by hydraulic loading rate, residence time, nitrate 

concentration, nitrate loading rate (Crumpton et al., 2006), and carbon availability. A 

better understanding of how these factors and wetland design affect wetland performance 

in different hydrogeomorphic settings would help us to develop improved N removal 

efficiency estimates. As discussed previously, accounting for subsurface flows to, within, 

and from wetlands is a challenge on the Mid-Atlantic Coastal Plain. We recommend that 

developing reliable estimates of hydraulic and nitrate loading rates be a priority moving 

forward. Selective monitoring of wetlands representing a range of environmental 

conditions would provide documentation of nitrate reduction and data to calibrate models 

of N removal in wetlands. This is similar to the approach being taken in Iowa to advance 

watershed-based wetland restoration and construction for water quality improvement in 

the Mississippi River Basin (Crumpton et al., 2006) (see following section). 

 

2.3 Political, Social, and Economic Challenges 

In addition to biological and physical challenges, there are a number of political, social, 

and economic challenges to using wetlands to improve water quality in agricultural 

watersheds. These include (1) limited information on current wetland practices, (2) 
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broad/unclear objectives of wetland BMPs, and (3) factors limiting landowner 

willingness to adopt wetland BMPs. Within these challenges, there are questions such as 

• How well do existing institutions support wetland targeting for N attenuation? 

• How can we ensure that wetlands are maintained so that they continue to provide the 

expected benefits? 

• How do wetlands fit within the broader response strategy for reducing nutrient loads 

in the Chesapeake Bay watershed? 

 

2.3.1 Limited Information on Current Wetland Practices 

Wetland practices are supported largely by USDA Farm Bill programs that provide 

technical and/or financial support to landowners. These voluntary cost-share programs 

include the Conservation Reserve Program (CRP) and Conservation Reserve 

Enhancement Program (CREP), the Environmental Quality Incentives Program (EQIP), 

the Wetland Reserve Program (WRP), and the Wildlife Habitat Incentives Program 

(WHIP) (Table 2.1) with the majority of wetland restorations implemented under 

CRP/CREP and WRP (De Steven and Lowrance, 2011). Wetland projects are also 

supported by regional and state programs such as the Chesapeake and Atlantic Coastal 

Bays Trust Fund, Chesapeake Bay Trust, and the National Fish and Wildlife 

Foundation’s Chesapeake Bay Stewardship Fund. 

In 2003, the USDA initiated the Conservation Effects Assessment Project (CEAP) to 

quantify the benefits of conservation practices implemented under the Farm Bill. CEAP 

includes a wetland component aimed at assessing the effectiveness of wetland practices 
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in providing ecosystem services through several regional and watershed-scale studies 

(Brinson and Eckles, 2011). The CEAP Wetlands Mid-Atlantic study has been underway 

since 2008 with data collection ongoing on restored and natural wetlands and prior 

converted cropland in Delaware, Virginia, and Maryland. CEAP’s effort has been limited 

in the Piedmont and North Atlantic Coastal Plain by a lack of information on how 

conservation practices are implemented in the field (De Steven and Lowrance, 2011). 

Farm Bill conservation programs do not require monitoring of conservation benefits, and 

since projects are carried out on private land and farmer privacy is protected under 

Section 1619 of the Food Security Act, opportunities for research have been limited prior 

to CEAP. Detailed spatial data on wetland practices would allow us to more fully 

quantify the effects of wetlands on water quality at watershed scales (Gleason et al., 

2011), but this information is not publicly available for most programs (WRP easements 

are the exception). Information on Farm Bill expenditures on these practices, beyond 

overall program expenditures, is not reported either (USDA Natural Resources 

Conservation Service, 2013). Expenditures on wetland practices could help us evaluate 

the cost-effectiveness of these BMPs at county, state, and regional scales. 
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Table 2.1 Farm Bill conservation programs. 

Program Incentive type Contract period (yr) 
Conservation Reserve  
  Program (CRP) 

Annual rents plus cost  
  share 

10-15 

 

Conservation Reserve 
Enhancement Program  
  (CREP) 

 

Annual rents plus cost  
  share, easements 

 

10-15  

 

Wetland Reserve Program  
  (WRP) 

 

Cost share or one-time  
  easement plus cost share 

 

10 yr contract; 30  
  yr/permanent easement 

 

Environmental Quality  
  Incentives Program   
  (EQIP) 

 

Cost share 
 

1-10 

 

Wildlife Habitat Incentives   
  Program (WHIP) 

 

Cost share 
 

1-10 and 15+ 

 

 

2.3.1.1 Proposed Approach 

We recommend that monitoring plans be built into conservation programs. Following the 

recommendations of CEAP, monitoring programs should (1) specifically evaluate 

response to treatment (i.e., nitrate reduction through wetland treatment), (2) monitor 

conservation practices as intensively as water quality (i.e., through documentation of 

wetland restoration methods and maintenance), and (3) invest in long term monitoring 

and technical expertise (Osmond et al., 2012). A coordinated monitoring program could 

be conducted on a representative subset of wetlands, across a range of geomorphic and 

climatic settings. Measurements of inflow and outflow rates, nitrate concentrations, and 

temperature could be collected regularly throughout the year to account for seasonal 

variability in nitrate removal. With time, these measurements could be used to calibrate 

models of wetland performance in different landscapes. The monitoring program 

employed by Iowa CREP (see Box 2.1) may serve as a role model for the Chesapeake 
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Bay watershed. Alternatively, a program could be established whereby landowners 

monitor wetlands themselves, with appropriate technical oversight by the Natural 

Resources Conservation Service (NRCS) or partner organizations to ensure data quality. 

To our knowledge, this has not been tested, but it is possible that landowners would be 

willing to have wetlands on their property monitored so that they could document 

reductions for their nutrient management plans. 

 

In addition to a coordinated monitoring program, we propose that standards for 

recordkeeping be established to compare siting and design methods. At a minimum, pre-

restoration conditions (soils, hydrology, vegetation), methods of restoring hydrology, 

degree of earth-moving, addition of imported materials, and actual costs should be 

recorded in order to better evaluate practices and make future recommendations. 

Box 2.1 Iowa conservation reserve enhancement program 

The Iowa Conservation Reserve Enhancement Program (CREP) is an excellent 
example of how water quality monitoring can be built into a wetland conservation 
program. These CREP wetlands are strategically located and designed to remove 
nitrate from tile-drained cropland (Iowa  Department  of  Agriculture  and Land 
Stewardship, 2013). Representative wetlands are  monitored  each  year to 
document nitrate reduction (Crumpton et al., 2006). Wetlands selected for 
monitoring range from 0.5% to 2% wetland/watershed ratio and 10 to 30 mgl-1 
average input nitrate concentrations (Crumpton et al., 2006). Weekly grab samples 
are taken from each wetland, and automated samplers and flow meters are installed 
at inflows and outflows at a subset of wetlands. In addition, water levels are 
monitored continuously at outflow structures and water temper- ature is 
continuously recorded. In support of the CREP monitoring program, mass balance 
analysis and modeling are used to estimate variability in performance of CREP 
wetlands based on  temperature  and  precipitation  patterns  (Crumpton  et al., 
2006). These CREP wetlands reportedly remove 40% to 90% of nitrate inputs 
(Iowa Department of Agriculture and Land Stewardship, 2012). 
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Finally, we suggest that program expenditures be reported along with enrollment by 

acreage and count. Expenditure data would help us assess how programs are allocating 

their funds, and compare how much funding is available for wetland restoration/creation 

with how much is spent. Expenditure data would also allow for better accounting of the 

cost of wetland practices and help planners determine which programs are most cost-

effective with regard to implementing wetland BMPs for water quality improvement. 

 

2.3.2 Broad/Unclear Objectives of Wetland BMPs 

A number of wetland practices are available through WRP, CRP, EQIP, and WHIP, four 

of which are considered water quality BMPs: wetland construction, wetland restoration, 

wetland creation, and wetland enhancement (Table 2.2). The emphasis of these practices 

has traditionally been on provision of waterfowl and wildlife habitat, with little attention 

given to water quality in siting and design (Crumpton et al., 2006; De Steven and 

Gramling, 2012). Wetland construction (656), the only Farm Bill wetland practice whose 

explicit purpose is to reduce agricultural runoff, is not yet an approved practice in any of 

the Bay states, although the Maryland NRCS is currently considering adding it to the list 

of approved CREP practices (S. Strano, 2012, pers. comm.). 
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Table 2.2 Wetland conservation practice standards. 

NRCS Cons. Practice Standard Purpose 
Constructed Wetland (656) To reduce pollution potential of runoff and wastewater from   

agricultural lands to water resources 
 

Wetland Restoration (657) To restore wetland function, value, habitat, diversity, and   
capacity to a close approximation of the pre-disturbance 
conditions by restoring: conditions conducive to hydric soil 
maintenance, wetland hydrology, native hydrophytic 
vegetation, original fish and wildlife habitats 
 

Wetland Creation (658) To establish wetland hydrology, vegetation, and wildlife 
habitat functions on soils capable of supporting those 
functions 
 

Wetland Enhancement (659) To increase capacity of specific wetland functions by 
enhancing hydric soil functions, hydrology, vegetation, 
enhancing plant and animal habitats 

 

The degree to which water quality is addressed in restoration depends on the program and 

on the priorities of local and state governments. CREP program guidelines limit 

enrollment to eligible cropland containing prior-converted and farmed wetlands, while 

the WRP allows eligibility of hydrologically degraded wetlands on rangeland and forest 

production lands as well. In Maryland, WRP projects often consist of plugging ditches on 

forested land that does not receive agricultural N. These restorations remove little, if any, 

N from upland areas, although they may help improve regional water quality through 

dilution with low-nitrate water (Denver et al., 2014).  

Priorities of local conservancies and wildlife organizations also direct wetland restoration 

objectives. For example, Ducks Unlimited has frequently partnered with the US Fish and 

Wildlife Service and local agencies to restore wetlands, with the objective of creating 

waterfowl habitat (Ducks Unlimited, 2014). The Nature Conservancy (TNC) is actively 

involved in wetland restorations, working with federal and local agencies and landowners 

to carry out targeted restoration efforts to improve water quality and wildlife habitat (The 
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Nature Conservancy, 2014). TNC has developed a LiDAR-based targeting tool to site 

wetlands where they can intercept nutrient and sediment runoff (The Nature 

Conservancy, 2013). By working with scientists, conservation, planners, and other stake- 

holders, these efforts can help direct conservation program resources toward projects that 

have greater potential to achieve improvements in water quality. 

Several of the state WIPs include specific levels of wetland restoration by 2025 to help 

meet the Chesapeake Bay TMDL, including Maryland (6000 ha), Virginia (7776 ha), 

Delaware (2317 ha), New York (5581 ha), Pennsylvania (21,908 ha), and West Virginia 

(164 ha) (D. Hopkins, 2014, pers. comm.). WIPS are developed in consultation with local 

partners at the county scale (Maryland Department of the Environment, 2012); so 

planned wetland acreage should represent the combined amounts of individual county 

wetland goals. It is not clear how WIP planners arrived at these acreage goals and 

whether all of these projects include water quality as an explicit objective. For example, 

some WRP projects may be included that are not situated to receive significant 

agricultural runoff (USDA NRCS, 2012, pers. comm.; MDE, 2012, pers. comm.). Most 

wetland conservation practices have broad objectives, and water quality improvement is 

often an assumed benefit of restoring wetland hydrology, rather than an explicit objective. 

Restoration calls for the “return of a wetland and its functions to a close approximation of 

its original condition as it existed prior to disturbance” (USDA Natural Resources 

Conservation Service, 2014). It may be unrealistic to expect though that in working 

agricultural landscapes, we can recreate historic wetland conditions (Zedler, 2003). 

Prioritizing nutrient removal may conflict with other wetland functions, such as provision 

of wildlife habitat (Brinson and Eckles, 2011). For example, wetlands receiving high N 
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and P inputs can become dominated by monocultures of Typha spp. or similarly 

aggressive plant species (Woo and Zedler, 2002). Thus, establishing objectives and 

evaluating wetland success will require consideration of the multiple services wetlands 

provide and balancing the demands of the TMDL with additional local, state, and 

regional priorities. 

 

2.3.2.1 Proposed Approach 

Wetlands provide a number of ecosystem services, including filtering nutrients and 

sediments, providing wildlife habitat, flood control, and carbon sequestration – all of 

which are valuable restoration outcomes but may not all be achievable in any given 

project. The WIPs are intended to document how Bay jurisdictions will achieve nutrient 

reductions needed to meet the TMDL. We propose, therefore, that wetland restorations 

credited in WIPs include the explicit objective of improving water quality in project 

siting and design. 

Programs that seek to reduce nonpoint source pollution, such as CREP, may be best 

suited for implementing these restorations. Alternatively, Bay states could issue a 

directive establishing that WRP, CRP, and other wetland projects that are credited toward 

WIP wetland acreage include water quality as an objective. Performance-based 

evaluation through monitoring of select projects would add value by enabling Bay 

jurisdictions to document nutrient reductions, develop estimates of efficiency for different 

geomorphic and hydrologic settings, and strategize placement of wetlands. 
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2.3.3 Landowner Willingness to Adopt 

Farm Bill programs are voluntary, with landowners typically approaching local soil 

conservation districts to get support for implementing conservation practices. Some 

programs, such as the Virginia CREP, have used a targeting approach to direct outreach 

efforts toward landowners with eligible acreage (E. Horsley, 2013, pers. comm.). One of 

the greatest challenges moving forward with a watershed approach to wetland restoration 

will be the degree to which landowners are willing to adopt these practices. Possible 

obstacles to landowner participation need to be explored in order to develop educational 

programs on wetlands and water quality and direct outreach efforts toward those people 

most likely to adopt practices (David et al., 2013). Although no systematic study of 

farmer attitudes toward wetlands has been conducted in the Chesapeake Bay watershed, 

reports from other regions as well as research on agricultural BMP adoption provide 

insight into farmers’ perceived costs of wetlands and factors that might impede adoption. 

A recent study in Sweden identified “land management in the best possible way” as the 

primary motive of farmers considering constructing a wetland on their land (Hansson et 

al., 2012). Farmers surveyed in this study viewed food production as the ultimate use of 

the land, and thought productive land should be kept in cultivation. Land that is 

unproductive or marginally productive could be considered for other income-generating 

activities. In the US, high commodity prices incentivize farmers to plant on all arable 

land, including land with poor drainage where crop success is highly variable year to 

year. Farmers in Kansas reported wetland areas can be harvested three years out of five 

with only slightly below average productivity (Gelso et al., 2008). In the Mid-Atlantic 

Coastal Plain, in a dry year the wetter areas – areas where wetlands would be targeted – 
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are often the farmers’ most productive land. The challenge, therefore, is to identify the 

value farmers place on these areas. 

• How does the value vary with frequency and duration of saturation? 

• Under what conditions are these lands considered marginal or unproductive? 

Producers see themselves as stewards of the land, but economic and other objectives may 

outweigh stewardship goals (David et al., 2013). Farmers must consider their decision to 

adopt a given BMP within the context of their entire farm operation (David et al., 2013). 

Meeting the needs of landowners may limit options for wetland siting and design. 

However, in some instances, it may be desirable to take “productive” land out of 

production to achieve water quality benefits. It may be necessary to expand the concept 

farmers have of land productivity to include ecosystem services other than food 

production, as recommended by Hansson et al. (2012). 

Several other deterrents to wetland restoration can make obtaining landowner cooperation 

difficult. Gelso et al. (2008) found that a high degree of wetland dispersion on the farm 

substantially increases the perceived costs associated with wetlands, indicating that 

farmers are inconvenienced by having to transport equipment around wetland areas. 

These “inconvenience costs” limit options for siting wetlands at the farm level. For 

example, the best place to site a wetland to capture nitrate might be in the middle of the 

field, but the farmer may only be willing to put in a wetland at the edge of the field where 

it will not be in the way of farm operations. 

A related issue is wetland maintenance. The effectiveness of wetlands in improving water 

quality often depends on the degree to which the wetlands are maintained for this purpose 
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(Seitzinger et al., 2006). A long-term view is implicit in a watershed-scale approach, and 

requires consideration of both the ecological and programmatic lifetimes of conservation 

practices (Brinson and Eckles, 2011). For wetlands receiving high sediment loads, the 

ecological lifetime may be particularly short due to loss of surface water storage capacity 

through sediment infilling (Brinson and Eckles, 2011). A possible solution would be to 

periodically excavate the wetland, but this may impose additional inconvenience costs on 

the landowner. 

An additional concern shared by many farmers is the possibility of negatively impacting 

the drainage rights of their neighbors. Maintaining good relations with neighbors can be a 

priority value among farmers. Uncertainty about the effects of plugging a ditch or 

otherwise altering drainage on ditch networks may discourage farmers from installing 

wet- lands. This relates to the larger issue of farmers’ understanding of the effects of 

wetland restoration on hydrology and local and regional water quality. 

Farmers may not understand how wetlands contribute to nutrient removal at the farm and 

watershed scale (David et al., 2013; Hansson et al., 2012). Hansson et al. (2012) reported 

that interest in wetlands was lower among farmers who knew less about wetland 

ecosystem services. The traditional focus on the wildlife benefits of wetlands in US 

conservation programs indicates that farmers may appreciate the wildlife values, and are 

often persuaded by the hunting opportunities wetlands provide. The water quality benefits 

are less obvious, particularly since they are so rarely documented. Producers cannot see 

the loss of nutrients and may feel disconnected from the downstream effects (David et al., 

2013). In the Mississippi River Basin, farmers’ growing mistrust of policy makers is also 

a major barrier to collaboration (David et al., 2013). On the other hand, acknowledgment 
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that a constructed wetland is in fact contributing to nutrient reduction can give farmers a 

more positive feeling about wetlands, and even a sense of pride and satisfaction (Hansson 

et al., 2012). This finding provides further justification for the need for a coordinated 

monitoring program. 

 

2.3.3.1 Proposed Approach 

Studies on farmer attitudes in the Chesapeake Bay watershed toward wetlands would help 

us identify possible barriers to implementing a watershed-scale approach to wetland 

restoration. Results could be used to target practices that meet the needs of landowners 

and compare different N management strategies. A monitoring program also has the 

potential to help us meet this challenge. By directly linking water quality benefits to 

wetland conservation practices, farmers could document nutrient reductions in their farm 

operations. Assigning a dollar value to units of nutrients removed through performance-

based incentive payments or nutrient trading programs could enhance the perception that 

wetlands are “productive” and even profitable. 

 

2.4 Conclusions 

Due to the large percentage of land in agriculture and the extent of sub- surface drainage, 

the Mid-Atlantic Coastal Plain is an appealing choice for wetland restoration and creation 

in the Chesapeake Bay watershed. While the opportunities to restore wetlands in this 

region are abundant, there are numerous challenges to locating and designing wetlands to 
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capture nitrate runoff. Due to the heterogeneity of the surficial aquifer, variability in soil 

hydrologic characteristics, and seasonality of hydrologic connections, accounting for 

subsurface connectivity between nitrogen sources and wetlands is a challenge. Social, 

political, and economic constraints further complicate using wetlands to reduce nonpoint 

source pollution. There are a number of steps we can take to improve the likelihood that 

wetlands will contribute to water quality goals. Information on subsurface connectivity 

between nitrogen sources and wetlands is a significant challenge. We believe that this 

challenge can be addressed through improved assessment of hydrologic connectivity in 

areas with artificial drainage; conducting catchment-scale studies of hydrogeomorphic 

predictions of hydrologic connectivity; and improved use of geospatial data for predicting 

subsurface connectivity between N sources and wetlands including LiDAR, soil survey, 

ditch network data, and remote- and ground- based sensing techniques. Our poor ability 

to estimate wetland efficiencies can be addressed by implementing a coordinated 

monitoring program to assess the success of these projects across environmental 

conditions and management practices. Such a monitoring program would also provide 

needed information on the implementation of wetland practices supported through 

government programs. The use of programmatic information would also be improved 

with better recordkeeping standards and the reporting of expenditures, enrollment, 

acreage and count within these programs. Requiring water quality to be an explicit 

objective of restorations included within WIP accounting would avoid the inclusion of 

projects with minimal water quality benefits. Finally, we believe that research is needed 

on farmer attitudes in the Chesapeake Bay watershed toward wetlands for water quality 

protection. 
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Scale will be an important consideration moving forward with a targeting approach. State 

WIPs are developed at the county scale, but watersheds may cover multiple counties. At 

the scale of the entire Mid-Atlantic Coastal Plain, it may be useful to allocate efforts 

according to hydrogeomorphic region, with more effort to promote wetland BMPs in the 

“poorly drained uplands” and “surficial confined” regions. For local watersheds the size 

of a few thousand hectares, we believe that partnerships between government agencies, 

conservation planners, and researchers will facilitate engagement of landowners and 

selection of appropriate N management strategies. High resolution GIS data and tools 

will be important components of the planning process. At field scales, siting and 

designing wetlands with careful consideration of hydrogeomorphic controls on nitrate 

removal and integration of wetland BMPs into farm operations is critical. 

Wetland BMPs are just one approach to addressing water quality, and must be considered 

in the context of the entire suite of agricultural BMPs that can be used to mitigate 

nonpoint source pollution. In addition to edge-of-field and off-site practices, changes in 

management practices to reduce N inputs will also be needed to help meet N reduction 

goals. By advancing our understanding of nitrate transport to potential wetlands on the 

coastal plain and working collaboratively with landowners, we can target areas where we 

expect to find the greatest benefits through wetland restoration and creation practices. 

Wetlands can provide multiple ecosystem services and be an integral part of conservation 

programs on the Mid-Atlantic Coastal Plain. The demands of the TMDL will need to be 

balanced with these multiple objectives. Moving forward, we believe our proposed 

actions would clarify and support the use of wetland restoration and creation practices to 

meet water quality goals. 
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Chapter 3 – Digital soil disaggregation in a low-relief landscape to support wetland 

restoration decisions 

 

3.1 Introduction 

 

Knowledge of the spatial distribution of soils and soil properties is essential for 

understanding Earth surface processes and making scientifically-based decisions 

regarding the assessment, management, and monitoring of land and water resources. The 

field of digital soil mapping (DSM) has developed in response to the growing need for 

soils data and the enormous advances in remote sensing and information technology that 

permit rapid generation of soil property and class maps (Grunwald, 2010; McBratney et 

al., 2003). Digital soil mapping involves using qualitative “knowledge-based” and/or 

quantitative predictive models to map soil properties or classes (Bui, 2004; McBratney et 

al., 2003). DSM techniques commonly use legacy soils and/or field data and 

environmental covariates in combination with data mining and classification techniques 

to update soil maps (Kempen et al., 2009; Wei et al., 2010; Yang et al., 2011) or map 

specific soil properties (Akpa et al., 2016; Akumu et al., 2016; Odgers et al., 2014a; 

Rudiyanto et al., 2016). An evolving approach is to spatially disaggregate soil 

information within areas where multiple soil classes have been grouped together (Bui and 

Moran, 2001; Häring et al., 2012; Nauman et al., 2014; Nauman and Thompson, 2014; 

Odgers et al., 2014b; Subburayalu and Slater, 2013). 

In the U.S., Soil Survey Geographic Database (SSURGO) maps consist of map unit 

delineations (polygons) that are comprised of multiple soil classes (components) 



57 
 

occurring in proportions approximated by the soil surveyors. Map units are defined and 

delineations are drawn at scales that reflect the purpose of the soil survey, which is 

generally to provide guidance on land resource management. SSURGO maps are most 

commonly drawn at map scales of about 1:12,000 to 1:24,000 (Soil Survey Division 

Staff, 1993). Disaggregation methods typically aim to create a more spatially refined 

representation of soil bodies by transforming the more generalized polygon-based soils 

map into a grid-based format where raster cells represent probabilities of belonging to 

individual soil component classes (series). Here, we apply the term disaggregation more 

broadly to include output soil categories defined based on the goals and scope of a 

project, rather than simply soil series. In areas where there are a large number of mapped 

soil series, it can be difficult to predict all series due to data imbalance and computational 

limitations (Subburayalu et al., 2014; Subburayalu and Slater, 2013), so it may be more 

useful to focus on dominant soil series or categories of interest. 

Disaggregation techniques may be used to create general purpose (Odgers et al., 2014b; 

Yang et al., 2011) or use-specific (Thompson et al., 2010) soils maps. A potential use for 

disaggregated soil survey data is mapping wetlands. Wetlands are found on every 

continent except Antarctica and cover 4 – 6% of the Earth’s surface. They provide critical 

ecosystem functions, including water storage, water filtration, biological productivity, 

and carbon sequestration (Mitsch and Gosselink, 2007). Since the 1780’s, the 

conterminous U.S. has lost over 50% of its original wetlands (Dahl, 1990). Efforts to 

conserve remaining wetlands depend on routine monitoring. Wetland mapping is an 

essential part of monitoring wetlands to assess their function, with implications for 

regulation and natural resource management (Lang and McCarty, 2008). More spatially 
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detailed information on soils and soil properties can potentially help us better identify 

areas where wetlands likely occur and understand their functions within local and 

regional landscapes. 

Terrain attributes derived from digital elevation models (DEMs) are among the most 

commonly used predictor variables in DSM (Behrens et al., 2010a; Smith et al., 2006) 

and automated wetland mapping (Kloiber et al., 2015; Lang et al., 2013; Leonard et al., 

2012). As one of Jenny’s five soil forming factors, topography has a strong control on 

hydrologic, erosional, and depositional processes across landscapes (Jenny, 1941; 

Wysocki et al., 2011). Terrain attributes such as slope, curvature, aspect, local relief, and 

topographic roughness can be used to describe geomorphic surfaces, allowing the 

segregation of natural soil bodies across the soil continuum (Behrens et al., 2014; Wilson 

and Gallant, 2000; Wysocki et al., 2011). Topographic wetness indices (TWIs) are useful 

in mapping the potential spatial distribution of soil saturation (Beven and Kirkby, 1979), 

a measure of important wetland processes (Lang et al., 2013; Rampi et al., 2014; Rodhe 

and Seibert, 1999).  

To date, disaggregation techniques have been applied predominantly in areas of 

heterogeneous topography and geomorphology (Häring et al., 2012; Nauman et al., 2014; 

Nauman and Thompson, 2014; Sun et al., 2011). Elevation data used to derive predictor 

variables are typically at resolutions of 10 m or coarser. Finer resolution data with high 

vertical accuracy may be needed in areas of low-relief to capture the influence of 

topography on hydrology and soil forming processes. Lidar systems are active sensors 

that emit short pulses of light, calculating the distance to an object by recording the 

amount of time it takes for a pulse to return to the sensor. Lidar can be used to calculate 
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highly accurate x, y, z locations. Whereas conventional DEMs have vertical accuracies of 

1-10 m, lidar-derived DEMs have vertical accuracies of 15 cm – 1 m (Lang and McCarty, 

2008). Shi et al. (2012) found that terrain attributes created from 1 and 5 m horizontal 

resolution lidar-derived digital elevation models performed significantly better in 

knowledge-based digital soil mapping in a mountain watershed than 10 m National 

Elevation Data sources from the U.S. Geological Survey. Leonard et al. (2012) used 1 m 

lidar-derived DEMs with a vertical accuracy of 10 cm to generate local relief models that 

were able to capture subtle changes in local geomorphology important for detecting small 

wetlands in a low-relief area (~10 m gradient).  

A popular technique used in spatial disaggregation is the decision tree model. Decision 

trees are machine learning algorithms that can be used for both classification and 

regression. Training data are passed through a series of decision rules that recursively 

split the data into branches at each node. Binary splits result in increasingly homogeneous 

subsets of the training data. Once the model has been trained with a set of known 

instances, it can be applied to the larger dataset to make predictions in unknown areas. 

Input variables can be continuous or categorical. Tree-based models show great promise 

for operational digital disaggregation because they are flexible, make no assumptions 

about the data, and are easy to interpret (McBratney et al., 2003). 

A number of methods have been used to train decision tree classifiers for disaggregation 

models. These include: sampling polygons of legacy soil maps (Moran and Bui, 2002; 

Odgers et al., 2014b; Subburayalu et al., 2014), creating training areas within map unit 

polygons using rule matching based on legacy soils data and environmental raster 

covariates (Nauman and Thompson, 2014; Nauman et al., 2014), and using previously 
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collected soil profile data as training points (Häring et al., 2012). Sampling polygons 

based on relative areal extent of soil classes allows mapping large areas without field 

data, but the assignment of soil classes or properties to training data includes a higher 

level of uncertainty because polygons consist of more than one soil class. The 

development of rulesets to create training areas can result in high accuracy disaggregated 

maps in areas of heterogeneous topography where there are complete soil survey 

descriptions of soil geomorphic and landform attributes (Nauman et al., 2014; Nauman 

and Thompson, 2014). Developing soil-landscape rules in low-relief landscapes, 

however, is much more challenging because the topography is so subtle. Geomorphic and 

landform attributes may not be populated in SSURGO data tables. Thus, availability of 

field data is especially important in these landscapes. Where a set of representative soil 

profiles exists, there is opportunity to train the decision tree classifier using known 

instances. For example, Häring et al. (2012) used soil profile data to disaggregate 

complex soil map units in forests in Bavaria, Germany.  

The purpose of this research was to develop a methodology for disaggregating soil survey 

map units for the purpose of supporting wetland restoration and conservation decisions in 

low-relief depressional wetland landscapes. We used a 3 m lidar bare-earth DEM with ~ 

0.2 m vertical accuracy in combination with legacy soils data, the National Wetlands 

Inventory, and drainage ditch networks to disaggregate soil bodies within catenas that 

vary primarily by natural soil drainage and texture class. We derived several topographic 

metrics believed to reflect hydrologic and depositional processes in a low relief 

depressional wetland landscape. We employed the current soil landscape model for our 

study area to derive predictor variables from the SSURGO in an effort to better represent 
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soils as a continuum that reflects the parent material and soil forming processes driving 

variation in soil properties across the landscape. To train our disaggregation model, we 

used soil profile data collected from previous research and local soil surveyors. 

The objectives of this research were to 1) Develop a repeatable method for spatially 

disaggregating soil map units to better reflect natural soil drainage and texture class in a 

low relief landscape; 2) Test the use of previously collected field data in training our 

classification model; and 3) Identify which lidar-derived topographic attributes best 

predict variability in soil hydrologic and depositional processes in crop and forest land 

within in the study area. 

 

3.2 Materials and Methods 

3.2.1 Study area  

Our study area was in the upper Choptank River Watershed, which includes portions of 

Caroline, Queen Anne’s, and Talbot Counties in Maryland and Kent County in Delaware 

in the Atlantic Coastal Plain of the US (Fig. 3.1). The study area is situated on the 

Delmarva Peninsula which is underlain by a wedge of unconsolidated sediments 

comprised of a surficial unconfined aquifer ranging from less than 6 meters to greater 

than 30 meters thick (Hamilton et al., 1993). The surficial aquifer is underlain by a series 

of confined aquifers (Cushing et al., 1973). Sediments of the surficial aquifer represent 

several time-stratigraphic units deposited in fluvial, estuarine, marine, and marginal-

marine environments (Hamilton et al., 1993). The Choptank River drains the central 

Delmarva Peninsula in Maryland and Delaware. The 1756 km2 watershed is relatively 



62 
 

flat, with a maximum elevation of less than 30 m above sea level (Lee et al., 2000). The 

region is characterized by a humid, temperate climate with average precipitation of 120 

cm/yr, about half of which evaporates or is transpired by plants. The remainder recharges 

groundwater or runs off into streams (Ator and Denver, 2012). Land cover in the basin 

has changed dramatically over the past 350 years due to deforestation and 

agriculturalization. Today, land cover in the Choptank Watershed is dominated by 

agriculture (65%), with smaller amounts of forest (26%) and urban areas (6%) (Fisher et 

al., 2006). 

 

 

Figure 3.1 Upper Choptank River Watershed, Delmarva Peninsula. 

 

The study was conducted in the upland areas of the Choptank Watershed, which includes 

both well-drained and poorly-drained hydrogeomorphic subregions. Well-drained 

uplands are characterized by well-drained soils dominated by cropland, with wooded 

areas along highly incised streams. Poorly drained uplands are characterized by minimal 

stream incision and the prevalence of hydric soils. Land cover in the poorly drained 
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subregion includes a mixture of poorly drained forest and moderately well-drained to 

well-drained cropland (Hamilton et al., 1993; McCarty et al., 2008). Nitrate 

concentrations in the Choptank basin are lower in the poorly drained uplands 

hydrogeomorphic region than in the well-drained uplands region, and are positively 

correlated with percent agriculture and negatively correlated with percent forest (Hively 

et al., 2011). Most of the region’s wetlands are forested, including depressions, flats, and 

riparian wetlands (Lang et al., 2012). Forested wetland extent was once much greater 

prior to drainage and agricultural conversion (Lang et al., 2008). 

 

3.2.1.1 Depressional wetlands 

Depressional wetlands include Carolina bays, Delmarva bays, and other wetlands that 

occur in topographic depressions and exhibit a range of hydroperiods – from frequently 

dry to semipermanently flooded (De Steven and Lowrance, 2011). They are numerous 

across the Coastal Plain, but many have been lost through artificial drainage and 

conversion to agriculture (De Steven and Lowrance, 2011). Delmarva bays are elliptical 

depressions with sandy rims that occur primarily on the central portion of the Delmarva 

Peninsula (Stolt and Rabenhorst, 1987b). Delmarva bays and other depressional wetlands 

interact with surficial groundwater, and can act as both a recharge wetland in the summer 

and a discharge wetland in winter and spring (Phillips and Shedlock, 1993). There is 

great interest in the potential of these wetlands to intercept and transform agricultural 

nutrients and reduce sediment loads to the Chesapeake Bay, improving water quality in 

the Bay (Ator and Denver, 2012; Denver et al., 2014; Goldman and Needelman, 2015). 
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Depressional wetlands are commonly restored in the region by plugging drainage ditches, 

excavating topsoil, and/or building a berm.  

The function and extent of depressional wetlands on the landscape is controlled largely 

by hydrology. Small variations in topography can have important effects on the 

hydrology of depressional wetlands, resulting in temporal variations in water level and 

soil moisture (wetland hydroperiod) that affect wetland function (Lang et al., 2013; Lang 

and McCarty, 2008). The ability of depressional wetlands to store carbon, for example, is 

related to anaerobic conditions created by high water tables and prolonged soil saturation 

(Fenstermacher et al., 2016, 2014).  

 

3.2.1.2 Local soil survey 

The most recent soil survey was completed in 1995 in Queen Anne’s county and 2009 in 

Caroline and Talbot counties. These soil maps and data are available through the Soil 

Survey Geographic database (SSURGO) on Web Soil Survey, a website maintained by 

the United States Department of Agriculture Natural Resources Conservation Service 

(Soil Survey Staff, 2014). SSURGO data consist of polygons representing map units and 

tabular soil property data associated with distinct components within each map unit. A 

single SSURGO map unit may contain several major and minor components, each 

associated with different soils with contrasting properties.   

The expert-derived mapping model for the study area was based on distinguishing groups 

of soils primarily based on particle-size family class and surface texture (Appendix A, 

Supp. Table 3.1). Within groups, soils were differentiated by depth to water table as 
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indicated by hydromorphic features, including depth to iron depletions, depth to gleyed 

horizons, and surface organic matter accumulation and thickness. For example, the fine-

loamy group consists of Sassafras (water table depth > 180 cm), Hambrook (100–180 

cm), Woodstown (50–100 cm), Marshyhope (25–50 cm), Fallsington (0–25 cm), and 

Corsica (ponded to 0 cm) (Fig. 3.2).  Soils within groups were commonly mapped 

adjacent to one another, although pockets of high clay soils (Lenni series) occur in 

sandier areas, and soils on rims of depressions may be coarser textured than those in 

centers of depressions. Map unit polygons were delineated using topographic maps and 

color infrared imagery. 

 

  

 

Figure 3.2 Block diagram showing relationship of soils to topography and water table in 
depressional wetland landscapes on Delmarva Peninsula, Maryland (adapted from Soil 
Survey Staff (1970)). 

 

All but one map unit within the study area were mapped as consociations, which are 

comprised of one dominant component plus minor components. The remaining map unit 

was a complex mapped in Caroline County – the Hammonton-Fallsington-Corsica 
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complex, which was extensively mapped in areas containing Delmarva bay landforms in 

forested areas. This complex was used in these areas both to represent the fine-resolution 

catena associated with Delmarva bays and due to limited access to these areas, which 

made identification of individual consociations difficult. The SSURGO maps are thought 

to be less accurate in forested areas relative to agricultural areas, where more extensive 

field data were collected and less vegetation would have made it easier to interpret color 

infrared imagery (i.e., saturated soils would have been easier to identify on cropland 

because the soil would have had little or no vegetation cover when images were 

collected). 

 

3.2.2 Study design 

To develop the disaggregation model, we followed procedures similar to those described 

by Nauman et al. (2014) adapting them to meet our project goals and fit local landscape 

characteristics. First we selected our map units and defined our soil classes. Next we 

assembled our environmental covariates. As our focus was on the hydrologic properties 

of soils, we created several topographic metrics expected to have the greatest influence 

on soil hydrology and erosional/depositional processes in this low-relief depressional 

wetland landscape: local elevation, specific catchment area, topographic wetness index 

(TWI), a ‘sink’ index indicating the likelihood a raster cell has no surface outlet, 

midslope position, and the morphometric protection index (MPI) (Table 3.1). Primary 

metrics such as slope and curvature were not included because initial observation of these 

surfaces indicated that they did not describe depressional landforms as well as the other 

metrics.  
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Topographic metrics were developed using a DEM derived from lidar data collected in 

spring 2006 (vertical accuracy ~ 0.2 m). Since the data were collected in spring when 

inundation is highest, the bare earth lidar data used to create the DEM may not accurately 

reflect the surface in inundated areas. This is due to the absorption of incident near 

infrared energy by water. Ideally, lidar data used to derive elevation models in the region 

would be collected in November-December, when inundation is lowest. These were the 

only lidar data available at the time, however. 

The 2 m DEM was resampled to 3 m using cubic convolution and projected using the 

Universal Transverse Mercator projection (zone 18N, North American Datum 1983) in 

ArcMap 10.2 (Esri, 2011). Three meters was selected for the resolution of the study to 

provide the degree of detail that would be appropriate for distinguishing soil bodies in 

this landscape. Other attributes were derived from SSURGO, the National Wetlands 

Inventory (NWI) and the agricultural ditch network (discussed below). Pedon data were 

assembled from existing field data for training our model. We then went through several 

iterations of model building and soil map generation until we were satisfied with our 

predictions. Finally, we an independent field validation of the disaggregation model was 

conducted. Steps are described in more detail below.  
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Table 3.1 Environmental covariates derived from Soil Survey Geographic Database 
(SSURGO), National Wetlands Inventory (NWI), and 3m lidar digital elevation models 
used in Random Forest models in the upper Choptank River Watershed, Maryland and 
Delaware. 

Variable Abbreviation Description Models 
SSURGO Map 
Units MU Grouped according to natural 

drainage class and texture class. forest, crop 

Adjacent SSURGO 
map units ADJ MU Map unit group with the highest 

percent area in a 200 m radius. forest, crop 

Topographic 
Wetness Index TWI 

SAGA wetness index. Based on 
slope and contributing area 
calculated using a multiple flow 
direction algorithm. 

forest, crop 

Catchment Area CA 
Modified Catchment Area in 
SAGA: Upslope contributing 
area per unit contour length. 

forest, crop 

Morphologic 
Protection Index MPI 

Topographic openness. 
Expresses the dominance or 
enclosure of a landscape 
location. 

forest, crop 

Local Elevation LELEV 

Deviation from mean elevation. 
Difference from the mean 
elevation in a 200 m radius 
divided by the standard 
deviation. 

forest, crop 

Mid-Slope Position MIDSL 
The extent that a location is 
similar to a ridge or valley 
position. 

forest, crop 

Sink Index SINK 
A measure of how likely a raster 
cell is a sink or an area of 
undefined flow direction. 

forest, crop 

NWI water regime NWI The National Wetlands 
Inventory water regime modifier forest 

Ditch density DIT DEN Density of agricultural ditches in 
a 200 meter radius crop 

Ditch distance DIT DIS Distance to an agricultural ditch crop 
 

 

3.2.2.1 Map unit selection 

Separate disaggregation models were built for forested and agricultural areas due to the 

differences in SSURGO mapping between these areas and because of extensive ditching 

and subsurface drainage in agricultural areas. Because there are over 100 soil series 

developed in similar parent material mapped in the study area, we decided to limit the 

number of soil classes we would try to predict in order to focus on differentiating natural 
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soil drainage class and particle-size family class. Soil series were therefore grouped 

according to the NRCS soil mapping model as described in Supplemental Table 1. 

Combinations of natural soil drainage class and particle-size family class yielded 20 soil 

groups (5 natural soil drainage classes: very poorly, poorly, somewhat poorly, moderately 

well, and well drained; and 4 particle-size family classes: fine, fine-silty/fine-loamy, 

coarse-loamy, and sandy). Fine-loamy and fine-silty were combined since sand and silt 

percentages were not recorded in the field-based training data. Examination of our 

training data and covariate surfaces and initial model runs indicated the model would not 

be able to differentiate such a large number of soil groups, and so we decided to model 

drainage class and texture class separately. Natural soil drainage class of each training 

point was assigned by applying strict criteria based on depth to redox features and 

thickness and darkness of the A horizon. When mapping, however, the soil surveyor may 

also consider ancillary information in determining drainage class (discussed below). 

 

3.2.2.2 Assembly of environmental covariates 

3.2.2.2.2 Ditch network attributes and removal 

Since an extensive ditch network covers much of the cropland in the region, we filled the 

ditches in order to create smooth surfaces for deriving the topographic metrics. The 3 m 

DEM was exported to an ASCII file to be filtered using System for Automated 

Geoscientific Analyses (SAGA) v. 2.2.2, a free open-source software designed for the 

analysis of spatial data (Conrad et al., 2015). An edge filter was applied to the DEM 

using a 3x3 cell neighborhood. We then classified the filtered DEM in ArcMap using 
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Jenks natural breaks and selected grid cells corresponding to ditches. Ditch cells were 

assigned a value of 1 and all other cells a value of 0. We used the raster cleanup tool to 

remove erroneous cells from the ditch network and then vectorized the raster to create a 

vector ditch layer in ArcScan (Esri, 2011).The vector ditch layer was further refined 

using editing tools in ArcMap and then used to derive our ditch attributes (see below). To 

fill the ditches we applied a 12 m buffer and removed the buffered cells from the 

unfiltered DEM. We then filled the buffered ditches with the mean cell value in a 5x5 cell 

neighborhood. The filled ditches were smoothed using a 5 kernel mean filter applied 

twice. Major roads were smoothed using similar methods (15 m buffer and 7 kernel mean 

filter).  

The presence of ditches is often an indication that soils were originally too wet to farm, 

and thus we expected more very poorly to somewhat poorly drained soils near ditches. 

We derived two attributes from the ditch network: ditch distance (DIT DIS) and ditch 

density (DIT DEN). Ditch distance was calculated using the Euclidean distance tool and 

ditch density using the line density tool with a 200 m radius in Spatial Analyst (Esri, 

2011). The ditch density layer was filtered several times with increasing kernel sizes in 

order to remove abrupt changes and create a smooth surface (Fig. 3.3). 
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Figure 3.3 Random Forests covariates derived from digitized drainage ditch layer in the 
upper Choptank River Watershed, Maryland and Delaware. Gray areas are forested. 

 

3.2.2.2.3 Topographic attributes 

Local elevation (LELEV) 

As our local elevation metric, we chose to use the deviation from mean elevation which 

measures the relative topographic position as a fraction of local relief (Wilson and 

Gallant, 2000) (Fig. 3.4). We first calculated the mean and standard deviation of the 

unfiltered DEM in a 200-m radius. This neighborhood size was chosen based on previous 

work on topographic metrics conducted by Lang et al. (2013) in the study area. We then 

filtered the DEM twice in SAGA using a 3 kernel low pass filter and calculated relative 

elevation as: 

 (filtered DEM – mean elevation) / standard deviation 
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Midslope position (MIDSL) 

Midslope position was calculated using the Relative Heights and Slope Positions module 

in SAGA v. 2.2.2 (Böhner and Selige, 2006). Midslope position calculates the extent that 

each cell is similar to a ridge or a valley position, with values on a scale of 0-1. The 3 m 

DEM was filtered twice with a 3 kernel and once with a 9 kernel low pass filter before 

running the module (Fig 3.4). 

 

Specific catchment area (CA) and topographic wetness index (TWI) 

Specific catchment area (upslope contributing area per unit contour length) and TWI 

were calculated using SAGA v. 2.0.8. The SAGA Wetness Index module (Böhner et al., 

2001; Böhner and Selige, 2006) calculates TWI using a multiple flow routing algorithm 

based on slope (Freeman, 1991). The 3 m DEM was filtered twice with a 3 kernel and 

once with a 9 kernel low pass filter before running the module (Fig 3.4). 
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Figure 3.4 Topographic covariates derived from 3 m lidar digital elevation models used 
in Random Forests models in the upper Choptank River Watershed, Maryland and 
Delaware: A) Sink Index; B) Local Elevation Index; C) Catchment Area; D) Midslope 
Position; E) Topographic Wetness Index; F) Morphometric Protection Index. 
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Morphometric Protection Index (MPI) 

MPI is a measure of topographic openness that expresses the dominance or enclosure of a 

location in the landscape (Yokoyama et al., 2002). The MPI was included as a potential 

indicator of depositional and erosional processes on wetland depressions, which could be 

predictive of soil texture. To calculate MPI, the unfiltered DEM was filtered three times 

using a multi direction Lee filter prior to running the MPI module in SAGA (Fig. 3.4).  

 

Sink index (SINK) 

We used ArcGIS Model Builder to calculate the sink index on the Lee-filtered DEM 

following methods similar to those described in Wu et al. (2014) (ESRI, 2011). Using the 

lidar data root mean squared error (0.2 m) to represent the magnitude of error in the 

elevation data, a Gaussian probability function (mean = 0, standard deviation = 0.2 m) 

was used to create a distribution of the probability of lidar error.  A simulation was then 

run in which a random sample was drawn from the probability function and added to 

each grid cell in the original DEM, and the cells in the error-added DEM were filled 

using the Fill tool in Spatial Analyst. With each iteration, filled cells were added to a 

cumulative grid. One hundred iterations were run and the resulting cumulative grid was 

used to represent the probability that a given cell belonged to a depression feature (Wu et 

al., 2014). Cell values in the sink index surface ranged from 0 to 100, with higher values 

indicating a cell was likely in a depression (Fig. 3.4).  
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3.2.2.2.4 SSURGO-derived attributes 

Two predictor variables were created from the SSURGO maps (Fig. 5). The first surface 

(MU) was developed by grouping the SSURGO map units according to the natural soil 

drainage and particle-size family classes (Fig. 3.5a). The second surface (ADJ MU) was 

derived from the first by determining which map unit groups covered the greatest areal 

extent within a 200 m radius of each raster cell (Fig. 3.5b). This second surface was 

intended to provide a measure of spatial relationships among soil classes by incorporating 

soil information from the local area. By considering soils adjacent to the cell being 

predicted, we sought to better represent soil systems – distinct groups of recurring soil 

sequences that are a product of stratigraphy, geomorphology, hydrology, and climate 

(Daniels, 1984). 
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Figure 3.5 Random Forests covariates derived from Soil Survey Geographic Database 
(SSURGO) map units. Map units were grouped according to the Natural Resources 
Conservation Service mapping model for Caroline County, Maryland (Appendix A, 
Supp. Table 3.1). Left: Map unit group (MU); Right: dominant map unit group within 200 
m radius of each raster pixel (ADJ MU). WD = well drained; MWD = moderately well 
drained; SWPD = somewhat poorly drained; PD = poorly drained; VPD = very poorly 
drained; FSi/FL = fine silty/fine loamy; CL = coarse loamy; S = sandy; F = fine. 

 

3.2.2.2.5 National Wetlands Inventory (NWI) 

Hydrologic modifiers from the NWI dataset were used to derive a wetlands layer for 

forested areas. Raster cells were classified into a total of 24 categories describing 

frequency and degree of saturation and flooding. 
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3.2.3 Training data 

Training data were derived from 382 pedon descriptions collected during NRCS soil 

survey, previous field research (Fenstermacher, 2012; Palardy, in prep) and this study. 

The NRCS pedon descriptions were collected during survey updates in the 1990s and 

2000s. Since no GPS coordinates were recorded at the time of the survey updates, 

locations of Soil Survey pedons were estimated based on handwritten notes included with 

the descriptions. Approximate locations of pedons were indicated by labeled points on 

color infrared aerial photographs. Points were digitized in ArcMap 10.2 (Esri, 2011) 

using background imagery as a reference. NRCS pedon descriptions were of soil series 

that tend to form on depressions (centers, slopes, and rims), but not all points were 

located on depressions. The research pedons were described in studies on carbon storage 

and decomposition in depressional wetlands in the Choptank watershed and included 

GPS coordinates (Fenstermacher, 2012; Fenstermacher et al., 2016; Palardy, in prep). 

Prior to building our model we collected 22 pedon descriptions with NRCS survey staff 

during preliminary investigations of forested wetlands in the study area. We then went 

through each of the 382 descriptions and omitted all of those that did not fall within the 

study area.  Also, in consultation with the NRCS, a small number of pedons were omitted 

because they exhibited unusual characteristics that made them difficult to classify based 

solely on the pedon descriptions. A total of 293 pedons were selected to train separate 

ensemble decision tree classifiers for forested areas and cropland. 
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3.2.4 Modeling 

Random Forests is an ensemble tree model in which each tree in the ensemble is built 

from a sample drawn with replacement from a training set (Breiman, 2001). A random 

selection of predictor variables is used to split the data at each node in the tree. The 

probability that an individual raster cell belongs to a particular soil class is based on the 

percentage of trees in the ensemble that predict that class for that cell. Random Forests 

are robust to Random Forests have been used to disaggregate soil components in West 

Virginia and Arizona landscapes (Nauman et al., 2014; Nauman and Thompson, 2014). 

Random Forests were also used by Häring et al. (2012) to spatially refine soil classes in 

complex map units and by Heung et al. (2014) to map soil parent material. 

R statistical software was used to build our Random Forests decision tree classifiers 

(Breiman, 2001; Liaw and Wiener, 2002; R Core Team, 2014). Our training points were 

divided into 98 forest points and 195 cropland points. In Random Forests, approximately 

one-third of the training data are left out when a bootstrap sample is drawn from the 

training set to build each tree. These out-of-bag (OOB) data are used to calculate an 

unbiased estimate of the classification error as trees are added to the forest. After each 

tree is created, both the training and OOB data are run down the tree. If two cases fall in 

the same terminal node, their proximity is increased by one. Proximities are normalized 

by dividing by the number of trees. Proximities can be used to identify outliers (cases 

whose proximities to all other cases are small) and visualize the data using metric scaling 

(Breiman, 2001). Using the proximity measure and the training classification error rates 

for each soil class in each model, we identified and removed outliers and combined soil 

classes. Classes were largely imbalanced in both cropland and forest areas, with very 
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poorly drained soils making up the majority of forest training points, and well drained 

soils the majority of cropland training points. Soil classes were combined into three 

drainage groups (very poorly/poorly, somewhat poorly/moderately well, and well 

drained) and two texture groups (fine and coarse) for forested areas and four drainage 

groups (very poorly, poorly, somewhat poorly/moderately well, and well drained) and 

two texture groups (fine and coarse) for cropland. Soils categorized as fine included those 

with fine-loamy, fine-silty and fine particle size classes (> 18% clay) according to Soil 

Taxonomy (Soil Survey Staff, 2010). Soils categorized as coarse included those with 

coarse-loamy or sandy particle size classes (< 18% clay) (Appendix A, Supp. Table 3.1). 

Three outliers were identified and removed from the forest training set in the drainage 

group model. Two hundred trees were used to grow each Random Forests model. 

 

3.2.5 Field validation 

Predictions were validated with independent field data collected from 24 forested 

wetlands and 24 wetlands converted to agriculture at a total of 12 field sites (6 forest, 6 

cropland). Sites were selected based on accessibility and to maximize distribution within 

the study area. Within each site, three depressional wetlands were selected at random for 

sampling within the set of accessible depressions at the given site. 

At each depressional wetland, transects were run from the center to the rim. We used a 

stratified random design to sample pedons within the depression, along the slope, and on 

the rim. The direction of each transect was selected using a random number generated 

based on degrees from North. Distances along each transect from the edge of each zone 
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were selected randomly for sampling. Two samples were collected within depressions, 

one along the slope, and one on the rim. In forested areas, samples within depressions 

were stratified based on presence/absence of standing water. On cropland, one sample 

was taken within 10 steps of the center of the depression and one between 10 steps and 

the edge of the depression. A total of 142 descriptions were collected (only one 

depression sample was taken at two of the forested wetlands) (Appendix B). 

 

3.3  Results and Discussion 

3.3.1 Model training 

Random Forests models were better able to capture differences in both drainage and 

texture groups in forested areas than in cropland. In forested areas, overall training error 

in the drainage group classification was 9.5%, with the majority of misclassified points in 

the well-drained group (Table 3.2). Training error in the forest model was 39.8% for the 

texture group classification (Table 3.3). On cropland, drainage group training error was 

28.7% when SSURGO attributes were included and 23.6% when SSURGO attributes 

were omitted (Table 3.4). Texture group training error was 25 – 26% on cropland, but 

coarse textured soils appeared to be highly underrepresented due to training class 

imbalance (74% fine, 26% coarse). Results of the cropland texture model are included in 

supplemental materials (Appendix A – Supp. Tables 3.2 & 3.3, Supp. Figures 3.1 & 3.2). 
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Table 3.2 Training point accuracy of drainage group predictions by Random Forests 
models in forested areas in  the upper Choptank River Watershed, Maryland and 
Delaware; overall training accuracy 90.5%. 

 Reference 

 VPD/PD SWPD/MWD WD 
VPD/PD 66 2 1 

SWPD/MWD 0 16 5 
WD 0 1 4 

Class error 0.0 0.16 0.60 
 

Table 3.3 Training point accuracy of texture group predictions by Random Forests 
models in forested areas in the upper Choptank River Watershed, Maryland and 
Delaware; overall training accuracy 60.2%. 

 Reference 

 Coarse Fine 
Coarse 44 22 

Fine 17 15 
Class error 0.28 0.59 

 

There are several possible explanations as to why we had better results in forest than on 

cropland. The majority of our training data on cropland came from handwritten notes 

taken by the soil surveyor. No GPS coordinates were collected at the time, so locations 

were approximated by the surveyor and then approximated by us when we digitized the 

points in a GIS, likely resulting in poor location accuracy compared to the GPS located 

pedons collected in forested areas. Furthermore, these areas have been farmed since the 

1600s, with intensive agricultural practices for the past 60 years. Erosion, deposition and 

mixing of the top 30 inches of the soil have likely changed the topography, modified soil 

textures, destroyed redox features, and depleted soil carbon. Installed ditches and 

subsurface drainage have drawn down the water table as well, resulting in carbon 

depletion. Although we tried to compensate for some of these alterations by filling the 
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drainage ditches in our DEM to mimic the landscape under which these soils originally 

developed, depth to redoximorphic features and thickness/darkness of the A horizon may 

no longer be well correlated with topography. Additional non-topographic indicators are 

therefore needed to identify seasonal fluctuations in the water table and locate potential 

areas for wetland restoration. 

 

Table 3.4 Training point accuracy of drainage group predictions by Random Forests 
models in cropland areas in the upper Choptank River Watershed, Maryland and 
Delaware: a) With map unit covariates (overall training accuracy 71.3%); b) Without 
map unit covariates (overall training accuracy 76.4%). 

(a) 

 Reference 

 VPD PD SWPD/MWD WD 
VPD 25 11 0 0 
PD 17 38 6 2 

SWPD/MWD 0 1 0 2 
WD 2 2 13 76 

Class error 0.43 0.27 1 0.05 
 

(b) 

 Reference 

 VPD PD SWPD/MWD WD 
VPD 30 7 0 0 
PD 11 42 6 3 

SWPD/MWD 1 2 2 2 
WD 2 1 11 75 

Class error 0.32 0.19 0.89 0.06 
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3.3.2 Attribute importance 

3.3.2.1 Forest 

We evaluated attribute importance based on the permutation importance measure output 

of the Random Forests model. Permutation importance measures the mean decrease in 

classification accuracy on the OOB samples when a particular variable is excluded from 

the model. For forested areas, SINK was the best predictor of drainage group, with 

LELEV, CA, and TWI following (Fig. 3.6a). LELEV and CA were the best predictors of 

texture group in forested areas (Fig. 3.6b).  

SSURGO attributes and the NWI water regime were not top predictors for either drainage 

or texture group. Forested areas with many topographic depressions were largely mapped 

as complexes (Table 3.5), so SSURGO’s ability to differentiate soil drainage and texture 

groups is greatly limited in these areas. Part of the reason NWI was not an effective 

predictor on forest land may be that there were a large number of NWI water regime 

classes with few training instances of each class. In addition many depressions are 

smaller than the NWI minimum mapping unit of 0.5 acres and thus may not be included 

in the dataset. Finally, forested wetlands are known to be particularly challenging to map 

using NWI techniques (Tiner, 1990). 
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Figure 3.6 Relative importance of Random Forests variables in predicting (a) drainage 
group and (b) texture group in forested areas in the upper Choptank River Watershed, 
Maryland and Delaware. SINK = Sink Index; LELEV = Local Elevation Index; CA = 
Catchment Area; TWI = Topographic Wetness Index; MIDSL = Midslope Position; MPI 
= Morphometric Protection Index; MU = SSURGO Map Unit Group; ADJ MU = 
Dominant SSURGO Map Unit Group in 200m radius; NWI = National Wetlands 
Inventory water regime modifier. 
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Table 3.5 Hammonton-Fallsington-Corsica complex in Caroline County, Maryland. 

HoB Complex 
Component (%) 

Natural soil 
drainage class 

Particle-size class 

Hammonton (35%) MWD CL 
 

Fallsington, undrained (20%) PD FL 
 

Fallsington, drained (10%) PD FL 
 

Corsica, undrained (15%) VPD FL 
 

Corsica, drained (5%) VPD FL 
 

Minor components (15%) PD (3%), WD (12%) CL (10%), S (2%), Fi (3%) 
 

 

Attribute importance can help us understand topographic controls on hydrology and 

erosion/depositional processes in forested depressional wetlands. Previous research in 

this area by Lang et al. (2013) indicates that extent and location of inundation in drier 

years is largely controlled by the surface expression of groundwater, whereas during 

wetter years surface water flows are also an important control of inundation extent and 

distribution. Local relief, a measure of the land surface relative to the groundwater table 

(similar to LELEV), was an important predictor of inundation in dry years, whereas TWI 

was a better predictor of inundation in wet years. The sink index, a measure of surface 

water outlets, was the best predictor of soil drainage groups in our study, indicating that 

the lack of an outlet for water is important for the formation of redoximorphic features in 

these depressions. 

Depressional landforms are characterized by sandy rims, with finer textured soils often 

found within depressions. This trend is captured by the Hammonton-Fallsington-Corsica 

complex, comprised of moderately well drained Hammonton soils with coarse-loamy 
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textures and more poorly drained Fallsington and Corsica soils with fine-loamy textures. 

Often, a silty basin fill is present in the centers of depressions, which is thought to be 

loess that was deposited during the last glacial period and relocated to the centers of 

depressions by erosion and deposition (Stolt and Rabenhorst 1987). The finding that 

LELEV and CA were the best predictors of soil texture group in forested areas is 

therefore consistent with the soil mapping model. Finer materials are expected to occur in 

local low spots, and larger catchment areas would contribute more fine materials to these 

low spots. 

We were not able to distinguish very poorly from poorly drained soils in forested areas. 

In preliminary runs of our model, nearly all poorly drained soils were classified as very 

poorly drained soils. Sometimes adjustment of model parameters and class weighting can 

improve classification in Random Forests models, but we did not see any improvement 

when we made adjustments to our model. It is possible that the topographic metrics were 

not able to distinguish these classes because there is not enough variation in surface 

characteristics within depressions, thereby limiting their predictive power. The addition 

of other types of remotely sensed data could aid in distinguishing these soil drainage 

classes within forested areas. Remote sensing data that have successfully been used to 

map hydrologic characteristics of forested depressional wetlands in the region include 

multitemporal C-band synthetic aperture radar (SAR) (Lang et al., 2008), lidar intensity 

data (Huang et al., 2014; Lang and McCarty, 2009), and Landsat time-series imagery 

(Huang et al., 2014; Jin et al., 2017). 
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3.3.2.2 Cropland 

 

On cropland, when SSURGO attributes were included, MU was the most important 

predictor of drainage group, followed by LELEV (Fig. 3.8). When SSURGO attributes 

were not included, LELEV was the most important predictor. In informal sensitivity 

analyses conducted while developing our Random Forests model involving varying 

model parameters, removing attributes, and weighting classes, we noticed considerable 

variability in the ranking of the other attributes. LELEV was regularly a top predictor of 

drainage group, however, which is consistent with the soil surveyor’s mental model of 

the soil landscape, and may help explain differences in hydrologic controls in forest vs. 

cropland. In agricultural areas, proximity to the water table may be more important than 

the lack of surface water outlets for controlling frequency and duration of soil saturation 

and inundation. Drainage ditches were installed to lower the water table so these areas 

could be farmed. 
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Figure 3.7 Relative importance of Random Forests variables in predicting drainage group 
in cropland areas in the upper Choptank River Watershed, Maryland and Delaware. SINK 
= Sink Index; LELEV = Local Elevation Index; CA = Catchment Area; TWI = 
Topographic Wetness Index; MIDSL = Midslope Position; MPI = Morphometric 
Protection Index; MU = SSURGO Map Unit Group; ADJ MU = Dominant SSURGO 
Map Unit Group in 200m radius; NWI = National Wetlands Inventory water regime 
modifier; DIT DEN = Ditch density; DIT DIS = Distance to ditch. 
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3.3.3 Soil probability maps 

Probability maps for the forest models showed the highest likelihood of very poorly and 

poorly drained soils within depressions, somewhat poorly and moderately well drained on 

slopes, and well drained soils on rims (Figure 3.8). Coarse soils were predicted to occur 

 

  

Figure 3.8 Probability of each drainage group predicted by Random Forests model in 
forest areas in the upper Choptank River Watershed, Maryland and Delaware. 

 

on rims and slopes and finer textured soils in depressions (Figure 3.9). Compared to the 

original SSURGO maps, the model-generated maps capture more landscape detail, 

highlighting individual depressions and their rims (Figures 3.9 & 3.10). Much of the 

forest in our study area was mapped as the Hammonton-Fallsington-Corsica complex, 

which includes very poorly to well drained components (Table 3.5). SSURGO data are 

commonly mapped as dominant condition when used as input in hydrologic and other 

environmental models; that is, for each map unit like soil classes are grouped, their 

corresponding percent compositions are summed, and the class with the largest percent 
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composition is assigned to the map unit (Soil Survey Staff, 2014). When mapped as the 

dominant condition, the Hammonton-Fallsington-Corsica complexes are mapped as 

moderately well drained. However, the probability maps suggest that there are higher 

percentages of very poorly to poorly drained and well drained soils in these forested 

areas. Moderately well drained soils are likely confined mainly to slopes of depressions. 

 

 

Figure 3.9 Soil texture group predictions and Soil Survey Geographic Database 
(SSURGO) particle size class in forest areas upper Choptank River Watershed, Maryland 
and Delaware. Fine include fine-loamy, fine-silty, and fine particle size classes. Coarse 
include coarse-loamy and sandy particle size classes. 
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Figure 3.10 Soil drainage group predictions and Soil Survey Geographic Database 
(SSURGO) drainage class in forest areas in the upper Choptank River Watershed, 
Maryland and Delaware. 

 

In the cropland model, when SSURGO attributes were included, transitions between 

predicted drainage groups closely followed SSURGO delineations, but predicted drainage 

group did not always match SSURGO (Figure 3.11), particularly with the SWPD/MWD 

soils, which were not as well represented in the training set as the other drainage groups. 

Most of the area mapped as SWPD/MWD by SSURGO (including Woodstown and HoB 

complexes) was mapped as other drainage groups by the model; this was also the case 

when SSURGO attributes were omitted from the model. In both cropland models, 

transitions between PD and VPD soils did not always follow the expected drainage 

pattern; in some depressions, VPD soils were mapped along the edges of depressions and 

PD soils in the center (Appendix A, Supp. Figure 3.3). One possible explanation for this 

is the presence of pockets of poorly drained high clay Lenni soils throughout the region. 

Lenni soils occur in depressions as dominant components in consociations and as minor 
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components in Hammonton-Fallsington-Corsica complexes. The training data included 

35 points classified as Lenni or “Lenni-like,” most of which were in centers of 

depressions and classified as PD according to the criteria used in our model. Another 

possible explanation is extensive modification of the terrain making it difficult for the 

model to differentiate neighboring soil classes in low relief areas. The use of crisp soil 

classes can lead to poor results if there is considerable overlap in the feature space (Hengl 

et al., 2007).  

One way to address the challenge of defining target soil classes in DSM would be to use 

fuzzy membership classes instead of crisp classes. For example, Hengl et al. (2007) found 

that the use of fuzzy membership classes improved interpolation of soil categorical 

variables when using soil profile observations to produce soil class maps in Iran. Yang et 

al. (2011) used fuzzy membership classes to update conventional soil maps in Canada, 

resulting in DSM maps with much greater spatial detail and higher accuracy than 

conventional maps. 
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Figure 3.11 Soil drainage group predictions and Soil Survey Geographic Database 
(SSURGO) soil drainage class (dominant condition) in cropland areas in the upper 
Choptank River Watershed, Maryland and Delaware. 

 

3.3.4 Class confusion indices 

To identify where our models had the greatest difficulty distinguishing drainage and 

texture groups, we developed a class confusion index (CI) from our probability maps 

using the following equation from Odgers et al. (2014b): 

CI = 1 – (Pmax – Pmax-1) 

where Pmax is the probability of the most probable soil class and Pmax-1 is the probability 

of the second most probable soil class. The CI is a measure of the model’s ability to 

assign the ‘correct’ class to each raster pixel. If the difference in the probabilities of the 

most probable and second most probable classes is small, than the CI is higher, indicating 

the model is more ‘confused’ as to which is the correct class. If the difference is large, 

than the CI is small, indicating the model is more confident in its assignment. 
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In forest areas, both drainage and texture models had the greatest difficulty distinguishing 

soil group on slopes of depressions, particularly on the lower slopes of depressions for 

the texture model (Figure 3.12). The models showed high confidence in their predictions 

in centers of depressions and on rims in most of the study area. On cropland, predictions 

of drainage group showed much higher levels of uncertainty than predictions of drainage 

group in forest areas (Figure 3.13). When SSURGO attributes were included, the CI 

tended to follow map unit delineations, with sharp changes in the index along polygon 

edges, indicating the model may be overfitting to SSURGO. The CI tended to be much 

lower in well drained SSURGO polygons than in polygons in other drainage classes.  

When SSURGO attributes were not included, patterns in the CI were more similar to 

those in forest areas, with high CI along slopes of depressions. 

 

 

Figure 3.12 Confusion between the most probable and second most probable soil class 
predicted by Random Forests models in forest areas in the upper Choptank River 
Watershed, Maryland and Delaware. Values closer to one indicate greater uncertainty in 
assigning soil class. 
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Figure 3.13 Confusion between the most probable and second most probable soil 
drainage group predicted by Random Forests models in cropland areas in the upper 
Choptank River Watershed, Maryland and Delaware. Values closer to one indicate 
greater uncertainty in assigning soil class. 

 

3.3.5 Model validation 

Overall accuracy was high in both forest models, with 77.1% of validation pedons 

correctly predicted by the drainage group model (κ = 0.54) and 70.6% of validation 

pedons correctly predicted by the texture group model (κ = 0.45) Examination of user’s 

accuracies (number correctly predicted class y/total predicted class y) and producer’s 

accuracies (number correctly predicted class y/total actual class y), however, shows that 

class error was imbalanced (Tables 3.6 & 3.7). In cropland areas, overall accuracy was 

50% for both drainage group models (κ = 0.31 with SSURGO, κ = 0.30 without 

SSURGO). SSURGO drainage class (mapped as dominant condition) was a slightly 

better predictor than both models, predicting 56% of validation pedons correctly (κ = 

0.39) (Table 3.8). 
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Table 3.6 Validation point accuracy of drainage group predictions by Random Forests 
models in forested areas in the upper Choptank River Watershed, Maryland and 
Delaware; overall accuracy 77.1%, κ = 0.54. 

  Reference   

Predicted VPD/PD SWPD/MWD WD 
User's 

Accuracy 
VPD/PD 41 8 1 82.0% 

SWPD/MWD 3 8 4 53.3% 
WD 0 0 5 100.0% 

Producer's Accuracy 93.2% 50.0% 50.0%   
 

 

Table 3.7 Validation point accuracy of texture group predictions by Random Forests 
models in forested areas in the upper Choptank River Watershed, Maryland and 
Delaware; overall accuracy 70.6%, κ = 0.45. 

  Reference   

Predicted Coarse Fine 
User's 

Accuracy 
Coarse 24 6 80.0% 

Fine 17 21 55.2% 
Producer's Accuracy 58.5% 77.8%   
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Table 3.8 Validation point accuracy of drainage group predictions by Random Forests 
models in cropland areas in Upper Choptank River Watershed, Maryland and Delaware: 
(a) with mapunit covariates, (overall accuracy 50.0%, κ = 0.31); and (b) without map unit 
covariates, (overall accuracy 50.0%, κ = 0.30). (c) Validation of Soil Survey Geographic 
Database (SSURGO) drainage class (dominant condition) in cropland areas (overall 
accuracy, 55.6%, κ = 0.39). 

(a) 

  Reference   

Predicted VPD PD SWPD/MWD WD 
User's 

Accuracy 
VPD 7 4 0 0 63.6% 
PD 7 13 6 7 39.4% 

SWPD/MWD 0 0 1 0 100.0% 
WD 1 3 8 15 55.6% 

Producer's Accuracy 46.7% 65.0% 6.7% 68.2%   
 

(b) 

  Reference   

Predicted VPD PD SWPD/MWD WD 
User's 

Accuracy 
VPD 4 0 1 1 66.7% 
PD 10 17 6 6 43.6% 

SWPD/MWD 0 0 0 0 NA 
WD 1 3 8 15 55.6% 

Producer's Accuracy 26.7% 85.0% 0.0% 68.2%   
 

(c) 

  Reference   

Predicted VPD PD SWPD/MWD WD 
User's 

Accuracy 
VPD 8 1 0 0 88.9% 
PD 4 10 3 1 55.6% 

SWPD/MWD 3 2 4 3 33.3% 
WD 0 7 8 18 54.5% 

Producer's Accuracy 53.3% 50.0% 26.7% 81.8%   
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3.4 General discussion 

Overall, our model predictions fit our understanding of variability in natural soil drainage 

class and texture class on depressional wetland landforms in forested areas. Resulting 

soils maps provide a higher level of spatial detail for natural soil drainage and texture 

class than current SSURGO maps as well as a measure of uncertainty that is linked to 

terrain. The relative success of the forest model compared to the crop model illustrates 

both the advantages provided by lidar-derived elevation data and the challenges of 

capturing the soil surveyor’s mental model in a highly engineered, low-relief landscape. 

Several factors could contribute to higher accuracy in forest areas: less human 

modification of the landscape in forest areas; differences in the natural variation in soil 

properties in forest vs. cropland; and the nature of the training data used in forest vs. 

cropland. Most of the Choptank River basin was forested when Europeans first arrived in 

the mid-seventeenth century. By 1800, virtually all arable land had been deforested, with 

remaining forest limited primarily to poorly drained stream corridors that were too wet to 

farm (Fisher et al., 2006). Ditches are common in currently forested areas, indicating that 

attempts were made in the past to drain them but were unsuccessful (Denver et al., 2014). 

The topographic metrics we derived may be better able to capture natural soil variation in 

forest vs. cropland in our study area. The majority of training data used in forested areas 

were compiled from previous field studies in which transects were run from the center of 

depressions outward using a random, stratified design with GPS locations. By contrast, 

training data used in the cropland model were compiled by local soil survey staff, which 

did not include GPS locations and were collected in an effort to map the entire landscape, 
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not just the Delmarva Bay landforms. Most machine learning classifiers are trained with 

the assumption that the classifier is run using data that is drawn from the same 

distribution as the training data (Provost, 2000). Imbalanced training data (when the 

number of observations belonging to one class is much lower than those belonging to 

other classes) can result in poor classification accuracy for the minority classes in 

Random Forests (Chen et al., 2004) Both the forest and cropland models were trained on 

imbalanced data, but the actual class distribution on Delmarva bay landforms may have 

been better represented by the training data in forest than on cropland. 

Because much of the forested area in the region was mapped as complexes, the use of 

pedon data was critical in training our Random Forests model on forest land. Approaches 

to training by sampling legacy soil maps include: 1) using the full extent of map unit 

delineations for training single component map units and rule matching to create training 

areas for components in soil associations (Nauman and Thompson, 2014); 2) sampling 

map unit delineations based on the percentage of series components using normalized 

possibility distributions (Subburayalu et al., 2014); 3) using weighted random choice 

assignments to points sampled from map unit delineations (Odgers et al., 2014b); and 4) 

using fuzzy membership functions to relate combinations of environmental factors to 

mapped soil classes (Yang et al., 2011). Training by sampling legacy soil maps would 

have been very difficult to employ in our study area since the topography is so subtle, the 

landforms of interest were often mapped as complexes in forest areas, and there were so 

many soil series mapped in the cropland areas. There was also little information in 

SSURGO tables that could be used to differentiate soil classes through rule matching. By 

using field data collected from previous research and local soil surveyors to train our 
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models, we developed a DSM approach that makes use of existing field data that were 

not in an existing pedon database and demonstrates that Random Forests can produce 

accurate predictions using a limited number of training observations in a low relief 

landscape. 

There are challenges to using field data when there are a limited number of training 

points and large number of soil components, often resulting in class imbalance. In our 

study area, both drainage and texture groups were highly imbalanced, resulting in 

considerable variability in training and validation accuracies across classes. Brungard et 

al. (2015) also found that classification accuracy in DSM models was highly dependent 

on the frequency distribution of pedon observations, with fewer pedon observations 

resulting in lower classification accuracy for that class. Potential ways to deal with a 

large number of classes and class imbalance include increasing the number of 

observations for classes with few observations or decreasing the number of classes 

(Brungard et al., 2015). For example, Kempen et al. (2009) aggregated 96 map units into 

ten map units when using DSM to update the national soil survey map of the Netherlands. 

Häring et al. (2012) enforced a proportion of 2:1when randomly sampling training 

pedons in cases where there was more than twice as much of one soil class compared to 

the other soil class in map unit complexes. 

Soil classes were aggregated to the extent that the resulting maps would still be useful for 

updating legacy soils maps and informing wetland conservation and restoration decisions. 

We also experimented with class weighting schemes but this did not improve prediction 

of the less well represented classes based on training accuracy and visual examination of 

map output.  
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Although aggregating soil classes did help us construct models that provide greater 

spatial detail than traditional soil maps, it is important to note that we lose a considerable 

amount of information that is present in the polygon structure of the original maps. 

SSURGO polygons relate to a rich database of information on soil properties and 

interpretations. The simplified soil classes we created relate only to drainage class or 

texture. Operationally, models such as these are not a replacement for traditional soil 

survey methods, but could be very useful for updating existing soil maps by providing 

accurate soils information that cannot be mapped using traditional methods.  

One of the objectives of this research was to identify which topographic attributes can 

best predict variability in soil hydrologic and depositional processes in low-relief 

landscapes. We chose a limited number of topographic metrics based on previous 

research in the region and project goals, and overall results aligned with our 

understanding of hydrologic and depositional processes controlling soil drainage and 

texture class. We found that one of the challenges in developing DSM methods in highly 

modified low-relief landscapes is deciding which filtering algorithms and neighborhood 

sizes to use when preparing lidar-derived elevation metrics. In order for these methods to 

be repeated in other low-relief landscapes, careful consideration of filtering algorithms 

and neighborhood sizes in preparing terrain covariates will be necessary. 

The models developed in this study were not able to distinguish VPD and PD drainage 

classes in forested areas, illustrating the limitations of relying on topographic variables to 

disaggregate natural soil drainage class. VPD soils have the highest carbon accumulation, 

so identification of these areas is important for improving our understanding of carbon 

sequestration and denitrification functions of these wetlands. Where adequate nitrate is 
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available, it is likely that VPD soils would have higher denitrification rates than PD soils 

because of higher carbon, shallower depth and greater frequency/duration of anaerobic 

conditions. Previous studies on the Delmarva Peninsula have attributed lower nitrate 

concentrations in the poorly drained uplands region (compared to the well-drained 

uplands) to denitrification in anoxic groundwaters and dilution of high nitrate oxic 

groundwater by wetlands (Denver et al., 2014; Phillips et al., 1993). It is difficult to 

evaluate ground water influence on wetland hydroperiod based solely on topography. For 

example, water table mounding is common beneath depressional wetlands in the upper 

Choptank, indicating that water table gradients do not always follow topographic 

gradients (Denver et al., 2014).  

SSURGO soil maps are representations of the soil surveyor’s knowledge of the 

distribution of soils in the landscape (Bui, 2004). The SSURGO-derived ADJ MU 

attribute was developed in an effort to include information on soil relationships beyond 

what is encompassed in individual map units. This attribute incorporated SSURGO 

information from a 200 m neighborhood surrounding each 3 m grid cell. DSM techniques 

offer the opportunity to combine knowledge of soil geography with a vast array of digital 

environmental data using advanced statistical methods, with soil systems representing the 

bridge between existing knowledge and digital data (De Gloria et al., 2014). 

Incorporating high cardinality categorical variables such as SSURGO soil classes in 

predictive models is challenging, however. In forested areas, SSURGO attributes were 

not important predictors, likely due in part to the lack of variability in attribute values. On 

cropland, our model was extremely sensitive to the inclusion of the categorical SSURGO 

attributes, with output maps following SSURGO delineations and ADJ MU transitions 
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closely. Validation results were the same though whether or not SSURGO attributes were 

included. A better approach to represent soil systems in developing attributes may be to 

derive terrain (and other) metrics at multiple scales. Since soil forming processes operate 

at varying scales, patterns observed at one scale may not be observed at other scales 

(Miller and Schaetzl, 2016). Behrens et al. (2010) and Lindsay et al. (2015) offer 

frameworks for investigating scale effects in deriving terrain metrics which could be 

useful for incorporating soil systems knowledge in DSM. 

 

3.5 Conclusions  

Our study indicates that DSM techniques can be used with legacy profile data to create 

maps that depict natural soil drainage class and texture class on Delmarva Bay landforms 

in forested areas better than conventional soil maps. Model predictions have the potential 

to improve watershed models in depressional wetland landscapes by contributing higher 

spatial detail as well as a quantitative measure of uncertainty. The attribute importance 

measures can also inform our understanding of wetland hydrology and elucidate future 

research needs for advancing our understanding of hydrologic and depositional processes 

in these landscapes. Depressional wetlands (e.g., Carolina bays) occur along the Atlantic 

Coastal Plain from Florida to New Jersey; thus the methods developed here could be 

applied to other forested depressional wetland landscapes where lidar data are available. 

Future research should examine methods for incorporating information on dynamic 

controls on wetland hydrology in modeling natural soil drainage class, and creating new 

metrics that account for multiple controls. 
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Chapter 4 – Natural Soil Drainage Class and Inundation Dynamics in Forested 

Depressional Wetlands in the Choptank Watershed, Maryland 

 

4.1 Introduction 

The establishment of effective wetland conservation and restoration practices depends on 

accurate information on wetland location and extent. Field mapping of wetlands is time 

and cost-prohibitive at the landscape scale, so wetland mapping methods often rely on 

remote observations and expert knowledge (Lang et al., 2013). On the Mid-Atlantic 

Coastal Plain, wetlands are frequently forested, and the extent and degree of saturation 

and inundation can be highly variable, both spatially and temporally (Huang et al., 2014; 

McCarty et al., 2008). Depressional wetlands, which are numerous across the Coastal 

Plain, exhibit a range of hydroperiods – from rarely inundated to semipermanently 

inundated (De Steven and Lowrance 2011). On the Delmarva Peninsula, depressional 

wetlands (commonly Delmarva bays) are typically small (~2 ha) with low relief (~1 m) 

(Fenstermacher et al., 2014). The combination of forest cover, variable hydroperiod, 

small size, and low relief make these wetlands some of the most challenging to map and 

monitor (Lang et al., 2013; Tiner, 1990). Depressional wetlands provide a range of 

ecosystem services, including water purification, groundwater recharge, provision of 

critical habitat, and carbon storage; therefore the ability to monitor these wetlands is not 

only important for determining their location and extent but also for understanding their 

functions and establishing effective conservation and restoration practices 

(Fenstermacher et al., 2016; Sharitz and Gibbons, 1982; Tiner, 2003). 
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Traditionally, wetland mapping primarily relied on a combination of aerial photography, 

photointerpretation techniques, and field verification (Lang and McCarty, 2008). 

Recently, advances in remote sensing technology have led to the development of new 

approaches using a variety of remotely sensed data types, including lidar and multi-

temporal Landsat imagery, to map wetlands in low-relief landscapes. On the Delmarva 

Peninsula, topographic metrics including local relief and a multiple-flow direction based 

topographic wetness index have been shown to be good predictors of wetland location 

(Lang et al., 2013). Lidar intensity data collected during peak hydrologic expression has 

been used to accurately map inundation below the forest canopy (Lang and McCarty, 

2009). A novel approach combining lidar intensity and Landsat time-series imagery has 

been developed in this region to map wetland inundation change over time (Huang et al., 

2014), resulting in a long-term wetland inundation monitoring product. The inundation 

product consists of maps of subpixel water fraction (SWF) indicating the percent of 

surface water in each 30 m pixel for the years 1985 – 2011 (Jin et al., 2017). Accuracy 

assessments of the SWF maps indicate that they can be used to extract long-term 

information on inundation dynamics with relatively low degrees of uncertainty (Jin et al., 

2017).  

While inundation time series maps provide valuable insights into wetland extent and 

hydroperiod, some wetlands rarely exhibit surface inundation and instead contain soils 

that are saturated within the root zone. For this reason, surface water extent maps may not 

detect these wetland areas and could thus omit areas with hydric soils. Hydric soils are 

soils that are “formed under conditions of saturation, flooding or ponding long enough 

during the growing season to develop anaerobic conditions in the upper part” (Federal 
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Register July 13, 1994). Wetlands, as defined by the U.S. Army Corps of Engineers and 

the U.S. Environmental Protection Agency for Section 404 of the Clean Water Act (U.S. 

Army Corps of Engineers, 1987), are:  

“Areas that are inundated or saturated by surface or ground water at a frequency 

and duration sufficient to support, and that under normal circumstances do 

support, a prevalence of vegetation typically adapted for life in saturated soil 

conditions . . .” 

Hydric soils, along with wetland hydrology and hydrophytic vegetation, are a 

fundamental component of wetlands. By excluding areas that are saturated but not 

ponded, inundation maps likely underestimate wetland extent, omitting areas with unique 

physicochemical properties and biota.  

Digital soil mapping techniques (DSM) show promise for improved mapping of wetland 

soil properties. DSM involves using qualitative “knowledge-based” and/or quantitative 

predictive models to map soil properties and classes (Bui, 2004; McBratney et al., 2003). 

One approach is to spatially disaggregate soil information within areas where multiple 

soil classes have been grouped together (Bui and Moran, 2001; Häring et al., 2012; 

Nauman et al., 2014; Nauman and Thompson, 2014; Odgers et al., 2014b; Subburayalu 

and Slater, 2013). Chapter 3 describes disaggregation methods in which topographic 

metrics were used to accurately map natural soil drainage class – an indicator of the 

frequency and duration of soil saturation/inundation – in forested depressional wetlands.  

Natural soil drainage class is defined by the conditions under which the soil was formed; 

it includes seven classes ranging from excessively drained to very poorly drained. 
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Wetland soils generally fall in the very poorly or poorly drained classes, and sometimes 

in the somewhat poorly drained class. A limitation of the disaggregation methodology 

described in Chapter 3 was that it was not able to distinguish very poorly drained from 

poorly drained soils. Very poorly drained soils are wet for most of the growing season 

and frequently ponded, whereas poorly drained soils are typically wet at or near the 

surface for part of the growing season. In the field, the thickness and darkness of the A 

horizon – indicators of the amount of organic matter in the soil – are used to distinguish 

the two classes. Differences in frequency and duration of wet periods affect organic 

accumulation, decomposition, soil and water chemistry, nutrient cycling, species 

composition, and primary productivity in wetlands (Mitsch and Gosselink, 2007). Hence 

the distinction between very poorly and poorly drained soils is important for 

understanding wetland function and thus supporting natural resources decision-making.  

Together, the disaggregated soils map and inundation maps can potentially provide a 

comprehensive picture of the extent of saturated soils and inundation dynamics in 

forested depressional wetlands on the Delmarva Peninsula. The inundation maps were not 

originally included in the disaggregation study because the final products were not 

complete at the time the disaggregation model was built. The disaggregation methods 

were also intended to be repeatable in similar landscapes, so only data that were broadly 

available were used as predictors. The omission of information on soil saturation and 

inundation derived from optical imagery was recognized as a limitation of the study in 

Chapter 3. Leaving the inundation maps out of the model, however, allowed for an 

additional independent validation of the disaggregation results and evaluation of the 

advantages and limitations of each product. The disaggregated soils map can potentially 
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help identify wetland areas not captured by the inundation maps, and the inundation maps 

can potentially help distinguish soils that are likely very poorly vs poorly drained in the 

disaggregated soils map. For example, in areas mapped as poorly or very poorly drained, 

zones that are semipermanently inundated are likely very poorly drained, whereas zones 

that are rarely inundated are likely poorly drained. Furthermore, a comparison of the 

topographic metrics (a measure of potential wetness), with the inundation data (a measure 

of actual wetness), may elucidate why the disaggregation model was unable to 

distinguish very poorly drained from poorly drained soils. 

I conducted an exploratory data analysis of the inundation dataset in forested depressional 

wetlands on the Mid-Atlantic Coastal Plain for the purpose of examining how these 

products complement each other and how they can best be leveraged to map wetland soils 

and inform predictions of wetland function.  My objectives were to: 

1. Compare the disaggregated soil drainage class map with the inundation maps; 

2. Identify zones within areas mapped as very poorly drained/poorly drained that 

show stable, variable, or consistently low inundation patterns; 

3. Compare the topographic metrics with the inundation data; and 

4. Suggest potential avenues of research for investigating uses of the inundation data 

in wetland soils mapping. 

Stable and variable inundation patterns are defined here based on the constancy of 

surface water presence during the season of peak inundation over time. This distinction 

can have important implications for soil characteristics and wetland function. The 

frequency at which wetland depressions are seasonally inundated influence wetland 
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hydrology and surface water connections which can affect soil development, organic 

matter accumulation, cation exchange capacity, water chemistry, vegetation communities, 

fish assemblages, amphibians and other fauna (Cook and Hauer, 2007; Sharitz, 2003; 

Sharitz and Gibbons, 1982; Snodgrass et al., 2000, 1996). For example, areas that are 

regularly inundated (stable) create an anaerobic environment that allows accumulation of 

soil carbon (Fenstermacher et al., 2016) and conversion of nitrate to gaseous nitrogen 

through denitrification (Goldman and Needelman, 2015); areas that are occasionally 

inundated from year to year (variable) may provide critical habitat for certain species of 

amphibians that are characteristic of areas with shorter hydroperiods (Snodgrass et al., 

2000). Within very poorly/poorly drained areas in the disaggregated soils map, it is 

predicted that very poorly drained soils occur primarily in stable inundation zones, poorly 

drained soils occur in zones with consistently low to no inundation, and there is greater 

uncertainty in drainage class in variable inundation zones. 

 

4.2 Methods 

4.2.1 Study area 

The study area was located in the upper Choptank River watershed on the Delmarva 

Peninsula (Fig. 4.1). The Choptank River drains the central Delmarva Peninsula in 

Maryland and Delaware. The 1756 km2 watershed is relatively flat, with a maximum 

elevation of less than 30 m above sea level (Lee et al., 2000). Land cover in the Choptank 

Watershed is dominated by agriculture (65%), with smaller amounts of forest (26%) and 

urban areas (6%) (Fisher et al., 2006). The study was conducted in the “poorly drained 
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uplands” hydrogeomorphic subregion of the Choptank watershed. This subregion is 

characterized by relatively slow streams running across a low topographic gradient, 

poorly incised valleys, and shallow water tables (within 3 m of land surface) (Hamilton et 

al., 1993). The study area was selected based on the high density of forested, seasonally 

inundated depressions (Fig. 4.2a). To focus the study on depressional wetlands, 

floodplain soils in the U.S. Soil Survey Geographic Database (SSURGO) were identified 

and excluded from analysis, thereby avoiding most riparian wetlands (Fig. 4.2b). Wetland 

flats also occur in the study area but are more difficult to discern from depressional 

wetlands and were not distinguished from depressional wetlands. Forested areas were 

identified using the National Landcover Dataset (NLCD forest and woody wetland 

classes) (Homer et al., 2015). 

 

 

Figure 4.1 Location of study area in the upper Choptank River Watershed (outlined in 
black) on the Delmarva Peninsula (Basemap source: Esri (2013)). 
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(a)     (b) 

Figure 4.2 Maps of the study area in the upper Choptank River Watershed showing: (a) 
locations of depressional wetlands identified in lidar digital elevation models 
(Fenstermacher, 2012); and  (b) National Landcover Database (NLCD) forest (green) and 
Soil Survey Geographic Database (SSURGO) floodplain soils (yellow) (Basemap 
Source: Esri (2013)). 

 

 

4.2.2 Soil drainage class maps 

Three meter resolution natural soil drainage class maps were created using the methods 

described in Chapter 3. Drainage classes were grouped into three categories: very poorly 

to poorly drained (VPD/PD), somewhat poorly to moderately well drained 

(SWPD/MWD) and well drained (WD). 
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4.2.3 Inundation maps 

The inundation maps were obtained from the Agricultural Research Service, United 

States Department of Agriculture (ARS-USDA) in Beltsville, MD. The data were derived 

from lidar intensity data (Lang et al., 2013; Lang and McCarty, 2009) and Landsat time-

series imagery collected from 21 years during the period 1985 - 2011, covering the entire 

Delmarva Peninsula (Huang et al., 2014; Jin et al., 2017). All Landsat images were spring 

images (March-April) collected during the peak inundation period (end of leaf-off). To 

create the maps, field-validated lidar intensity data were used to derive reference 

inundation data at 1 m resolution (Lang et al., 2012), which were then aggregated to 

calculate subpixel water fraction (SWF) at 30-m resolution. Regression trees were used to 

model relationships between SWF and Landsat surface reflectance (6 spectral bands) and 

a suite of spectral indices. The derived model was then used to predict SWF in different 

years and over areas where reference data were not available (Huang et al. 2014). The 

data include 30 m resolution (SWF) maps and Principal Components Analysis (PCA) 

maps derived from the SWF time-series. Methods for developing the SWF maps are 

described in detail in Huang et al. (2014) and Jin et al. (2017). SWF maps of the study 

area are displayed in Figure 4.3. 

PCA is a mathematical technique for reducing dimensionality of datasets with a large 

number of variables. The first principal component (PCA 1) is the linear combination of 

variables that has maximum variance. PCA 1 accounts for as much of the variability in 

the inundation time-series as possible. Each succeeding component accounts for as much 

of the remaining variability as possible. PCA is one of the simplest and most robust ways 

to reduce data dimensionality without losing too much information. For time series data, 
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PCA is often preferable to taking the mean across years, which does not reflect inter-

annual variability. 

 

Figure 4.3 Sub-pixel water fraction (SWF) maps of the study area in the upper Choptank 
River Watershed, 1985 - 2011. SWF values represent the percent of surface water in each 
30 m pixel; values were derived from lidar intensity data (Lang et al., 2013; Lang and 
McCarty, 2009) and Landsat time-series imagery (Huang et al., 2014; Jin et al., 2017). 
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R statistical software (v. 3.4.2) was used to calculate total inundated area (weighted by 

percent) in the study area over time (Figure 4.4). Inundation was highly variable across 

years, with nearly no inundated area in 1985, 1998, and 2002 and highest inundation in 

1995, 2000, and 2011. Of the 76 km2 of non-floodplain forest in the study area, 

approximately 16% was inundated in the wettest year, 1995. 

 

 

Figure 4.4 Total inundated area derived from subpixel-water fraction maps (excluding 
floodplains) in study area in upper Choptank River Watershed over time. Red dotted lines 
indicate years for which there were no inundation data. 

 

4.2.4 Comparison of inundation and disaggregated soils maps 

First, the disaggregated soils map was visually compared with the first band of the PCA 

in ArcGIS Pro 2.1 software (Esri, 2011). Only PCA 1 was used because it captures 97% 

of the variation in the inundation data. Next, the SWF raster layers were converted to 
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points to create a point shapefile with SWF values for all 21 years using the Raster to 

Point tool in ArcGIS. Points were defined at the centers of raster cells. Points on 

floodplains or non-forest were removed. Since the disaggregated soils map is 3 m 

resolution and the inundation data are 30 m resolution, the focal statistics tool in ArcGIS 

was used to determine the majority drainage group value within a 30 x 30 m 

neighborhood in order to compare with the 30 m SWF maps. The majority drainage 

group values were then extracted to the point shapefile. This resulted in some NA values 

in areas where there was no majority drainage group.  Points were then exported to R for 

analysis. Average SWF and total inundated area were calculated for each drainage group 

by year and the Kruskal-Wallis test was used to test for differences in average SWF 

across drainage groups. 

 

4.2.5 Identification of inundation zones 

To identify stable vs variable inundation zones in forested depressional wetlands, wetland 

extent was first defined as those areas mapped as VPD/PD in the disaggregated soils 

map. This may exclude a small fraction of wetland soils that fall in the SWPD natural soil 

drainage class (SWPD/MWD group). The VPD/PD regions cover a greater extent than 

what is indicated as periodically inundated by the SWF maps. This may be because the 

SWF maps represent current hydrologic conditions, whereas the soils maps represent 

historical hydrologic conditions, and SWF maps do not capture areas that may be 

saturated near the surface but not periodicall inundated. To prepare the maps for analysis, 

ArcScan tools were used to smooth the maps by cleaning up isolated pixels (Esri, 2011). 
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The classified drainage group raster was then converted to polygon, and non-forest areas 

and floodplain soils were clipped out. Small polygons (< 0.001 km2) were removed (Fig. 

4.5). SWF points falling within VPD/PD polygons were exported to R to determine mean 

and variance in SWF values at each point across the entire time series.  

 

 

Figure 4.5 Polygons of very poorly and poorly drained soils from the disaggregated soils 
map in the upper Choptank River Watershed overlaid on the first band of the Principal 
Components Analysis (PCA) of the inundation time-series. White areas represent areas 
with higher inundation. Yellow boundary marks the northern extent of the disaggregated 
soils map. 

 

The ArcGIS Grouping Analysis tool was used to identify areas with more stable vs 

variable inundation patterns. The Grouping Analysis tool uses a K Means clustering 
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algorithm to group features so that features within groups are as similar as possible and 

groups themselves are as different as possible. Feature similarity is based on a set of 

attributes specified by the user (Esri, 2011). To identify areas that have more stable vs 

variable inundation patterns, mean and variance in SWF values across all 21 years of data 

were used to define groups. The user chooses the number of groups to create. Based on 

visual examination of the inundation time-series, three groups were selected with the 

expectation that the algorithm would be able to distinguish areas with consistently high 

SWF values (stable), highly variable SWF values (variable), and consistently low SWF 

values. Only a small fraction of forest in the study area was expected to fall in the stable 

category since in some years the entire study area appears to have very little inundation 

(Fig. 4.3). 

 

4.2.6 Topographic metrics and inundation data 

Topographic metrics were developed using a DEM derived from lidar data collected in 

2013 - 2014 as part of the post-Hurricane Sandy lidar collection in DE and MD. The 

topographic metric analysis was limited to the Caroline County, MD portion of the study 

area, where lidar data were collected in December, when seasonal inundation was low, 

allowing for development of a more accurate bare-earth DEM. One meter DEM tiles 

were downloaded from the USGS National Map (U.S. Geological Survey, 2017), 

mosaicked, resampled to 3 m using cubic convolution and projected to UTM (12N WGS 

84). 
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A sink index (SINK), a topographic wetness index (TWI) and a local elevation index 

(LELEV) were generated using the same methods described in Chapter 3. SINK is a 

measure of the likelihood a raster cell is a sink – a location with no surface water outlet. 

TWI is a measure of potential surface saturation based on catchment area and slope. 

LELEV is a measure of relative topographic position within a 200 m radius. For 

comparison with the 30 m SWF data, the 3 m topographic metric surfaces were smoothed 

by calculating the average value in a 30 m neighborhood using the focal statistics tool in 

ArcGIS. Values were then extracted to the points in forested areas. Points within 60 m of 

floodplain soil polygons or 30 m of ditches or forest edges were removed. A 30 m buffer 

was chosen for ditches in order to remove points within ditches and on berms alongside 

ditches. It is possible that ditches may affect surface inundation beyond this 30 m buffer, 

which is recognized as a source of uncertainty in this analysis. Remaining points were 

checked against imagery of the study area and those falling on infrastructure, patches of 

cleared land, and ponds/reservoirs were removed. Points were exported to R and 

distributions of each metric were examined and compared with the inundation PCA to 

explore their potential usefulness in predicting inundation within forested areas. 

 

4.3 Results and Discussion 

4.3.1 Comparison of SWF and disaggregated soils maps 

The first band of the PCA was compared with the drainage groups in the disaggregated 

soils map (Fig. 4.6). Within forested areas, the majority of the soils were mapped as 

VPD/PD, indicating much of the area is periodically saturated or inundated (Table 4.1). 
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The brightest areas in the PCA correspond well with the VPD/PD drainage group, but do 

not cover as great an extent. The brightest areas are frequently in the centers of 

depressions. 

 

  

Figure 4.6 Zoomed-in maps of the study area showing: Top: band 1 of the Principal 
Components Analysis (PCA) of the inundation time-series; and Bottom: Drainage groups 
classified by the disaggregation model with the semi-transparent PCA overlaid on top. 
Blue shades are classified as very poorly drained/poorly drained; yellow shades are 
classified as somewhat poorly drained/moderately well drained; green shades are 
classified as well drained. Lighter shades have higher PCA values. Highest PCA values 
tend to occur in the centers of depressions (light blue). 

 

 

 



120 
 

Table 4.1 Total area in each drainage group (majority group in 30 m neighborhood) in 
forested areas (excluding floodplains) in the upper Choptank River Watershed. VPD/PD 
= very poorly drained/poorly drained; SWPD/MWD = somewhat poorly 
drained/moderately well drained; WD = well drained; NA = not classified. 

Drainage Group VPD/PD SWPD/MWD WD NA 

Area (km2) 45.6 19.9 5.4 0.39 

% Total Area 63.9 28.0 7.6 0.55 
 

 

Average SWF and total inundated area by drainage group over time are displayed in 

Figure 4.7. SWF values were consistently highest in the VPD/PD areas. Boxplots of 

average SWF are shown in Figure 4.8. The Kruskal-Wallis rank sum test was used to test 

for differences in average SWF between drainage groups. The results of the Kruskal-

Wallis test were significant (H = 22.6, df = 3, p = 0.000048).  
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(a)  

(b)  

Figure 4.7 (a) Average sub-pixel water fraction (SWF) by soil drainage group over time. 
(b) Total inundated area (weighted by percent) by drainage group over time. Dotted grey 
lines indicate years with no data. VPD/PD = very poorly drained/poorly drained; 
SWPD/MWD = somewhat poorly drained/moderately well drained; and WD = well 
drained. 
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Figure 4.8 Boxplots of average sub-pixel water fraction (SWF) values by soil drainage 
group. VPD/PD = very poorly drained/poorly drained; SWPD/MWD = somewhat poorly 
drained/moderately well drained; and WD = well drained. 

 

4.3.2 Identification of inundation zones 

The grouping analysis was able to distinguish three groups based on average SWF and 

variance in SWF over time, but was not able to differentiate areas with stable inundation. 

SWF average and variance values are summarized by group in boxplots and density plots 

in Figure 4.9. One group shows consistently low inundation (L). The other two groups 

show variable inundation; these groups are distinguished as variable low (VL) and 

variable high (VH). The majority of points (74%) fall in group L (Table 4.2). The results 

are displayed in a map in Figure 4.10. VH points appear to correspond frequently with 

the centers of depressions, bordered by VL points. L points tend to occur more toward the 

edges of depressions, but in some areas nearly entire depressions fall in group L. 

Zooming into these areas, however, shows that drainage ditches often occur within or 

near these depressions (Figure 4.11). 
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Time series of distributions of SWF values are displayed in Figure 4.12a and average 

SWF values by year are displayed in Figure 4.12b. From the time series, it is evident how 

variable inundation is from year to year within forested depressions in the study area. In 

the driest years (1985, 1998, 2002) average SWF is less than 10% in the VH group. There 

is considerable spread in SWF values in both the VH and VL groups, however, indicating 

that some areas are still close to 100% inundated in these years. Thus there are likely 

areas within the study area that have more stable inundation patterns, but the grouping 

analysis was not able to differentiate them. An alternative to the grouping analysis 

approach could be to threshold inundation values based on expert knowledge. 

 

Table 4.2 Total area classified in each inundation group within areas predicted to be very 
poorly drained/poorly drained by disaggregated soils map. L = consistently low 
inundation; VL = variable low inundation; VH = variable high inundation. 

Inundation Group L VL VH 

Area (km2) 31.3 6.3 4.5 

% Total Area 74.3 15.0 10.7 
 

 

The grouping analysis results demonstrate that the inundation maps are able to pick up 

varying degrees of wetness within areas classified as very poorly/poorly drained by the 

disaggregation methods. This is an indication that the inundation data could help 

distinguish very poorly from poorly drained soils. Areas with consistently low SWF 

values (L group) likely include poorly drained soils. Very poorly drained soils likely fall 

in the VL and VH groups. Complicating factors, however include: 1) the presence of 
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drainage ditches in or near many of these depressions; and 2) groundwater pumping for 

irrigation has likely drawn down the regional water table over time. Current indicators of 

wetness may not be reflective of the conditions under which the soils formed. Thus it is 

likely that areas with low SWF values (a measure of current wetness) contain very poorly 

drained soils (an indicator of historical conditions). 

 

 

 

Figure 4.9 Boxplots and density plots summarizing average and variance in sub-pixel 
water fraction (SWF) values by group. Density plots show the smoothed distribution of 
values, with the peaks displaying where there is the highest concentration of values. L = 
consistently low inundation; VL = variable low inundation; VH = variable high 
inundation. 
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(a)         (b) 

Figure 4.10 (a) Grouping analysis results in a portion of the study area in the upper 
Choptank River Watershed. (b) Zoomed in to several depressions. Points are located at 
centers of raster cells in the inundation maps. L = consistently low inundation; VL = 
variable low inundation; VH = variable high inundation. 

 

 

 

Figure 4.11 Example of drainage ditches intersecting depressions with consistently low 
inundation values (L group) in the upper Choptank River Watershed. Points are located at 
centers of raster cells in the inundation maps. L = consistently low inundation; VL = 
variable low inundation; VH = variable high inundation. 
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 (a)  

(b)  

Figure 4.12 (a) Boxplots showing distributions of sub-pixel water fraction (SWF) values 
in each inundation group over time in the study area in the upper Choptank River 
Watershed. (b) Average SWF in each inundation group over time. L = consistently low 
inundation; VL = variable low inundation; VH = variable high inundation. 
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4.3.3 Topographic metrics and inundation data 

Overall distributions of topographic metrics in forested areas are displayed in Figure 

4.13. Distributions of topographic metrics by inundation group are displayed in Figure 

4.14. Topographic metric values in areas that were classified by the disaggregation model 

as VPD/PD are readily distinguished from metric values in areas with better drainage. 

Distributions of topographic metric values for the three inundation groups within 

VPD/PD areas are not as readily differentiated. Distributions show the expected trend 

though, with SINK and TWI values increasing and LELEV decreasing in the order L, 

VL, VH. 

The purpose of examining the topographic metrics in relation to the inundation data was 

to better understand the limitations of the disaggregation methods used in Chapter 3. It is 

possible that despite the high resolution and accuracy of lidar, there is a limit to the 

predictive power of the lidar-derived topographic metrics in low-relief landscapes, 

especially when local hydrology has been altered through ditching and other practices. 

Topographic metrics, by representing landscape structure, provide a measure of potential 

wetness. The inundation data provide a measure of actual wetness, and are able to discern 

varying degrees of wetness in those areas that are potentially wet (i.e., within 

depressions).  
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Figure 4.13 Overall distribution of topographic metric values in forested areas in study 
area in the Upper Choptank River Watershed. SINK (sink index) is a measure of the 
likelihood a raster cell is a sink – a location with no surface water outlet. TWI 
(topographic wetness index) is a measure of potential surface saturation based on 
catchment area and slope. LELEV (local elevation index) is a measure of relative 
topographic position within a 200 m radius. 
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Figure 4.14 Density plots of topographic metric values and band 1 of the Principal 
Components Analysis (PCA) of the inundation time-series by inundation group. L = 
consistently low inundation; VL = variable low inundation; VH = variable high 
inundation. Density plots labeled NA (grey) represent data that are in better drained 
portions of the study area (outside of areas predicted to be very poorly drained/poorly 
drained areas by the disaggregated soils maps). 

 

4.3.4 Comparison of pedon data with inundation data 

The inundation data could potentially improve discernment of soil drainage classes if 

included as a predictor variable in the disaggregation model. To test its potential 

usefulness as a predictor, PCA values were extracted to points where field training 

pedons used in the disaggregation model were collected. Boxplots showing the 
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distribution of PCA values by drainage class are displayed in Figure 4.15. Pedons were 

also compared with the results of the grouping analysis (Table 4.3). 

 

 

Figure 4.15 Boxplots of band 1 values of the Principal Components Analysis (PCA) of 
the inundation time-series by natural soil drainage class. VPD = very poorly drained; PD 
= poorly drained; SWPD = somewhat poorly drained; and WD = well drained. Pedons are 
those used as training data for the disaggregation model in Chapter 3. The number below 
each boxplot indicates the number of training pedons in that drainage class.  
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Table 4.3 Frequency table of pedon drainage class by inundation group. Inundation 
groups: L = consistently low inundation; VL = variable low inundation; VH = variable 
high inundation. Soil drainage class: VPD = very poorly drained; PD = poorly drained; 
SWPD = somewhat poorly drained; and WD = well drained. Only pedons located within 
areas classified as VPD/PD by the disaggregation model (where the grouping analysis 
was performed) are included. 

Drainage Class VL VH L 

VPD 11 18 19 
PD 0 2 5 

SWPD 1 0 2 
MWD 0 1 2 
WD 0 1 0 

 

 

There is a clear pattern of decreasing PCA values with increasingly better drainage, but 

also high variability in the PCA values. There is considerable overlap in the distributions 

of PCA values for VPD and PD soils. Comparison with the grouping analysis shows that 

the majority of PD training pedons occur in low inundation areas (L). 60% of VPD 

training pedons occur in VL or VH areas and 40% occur in L areas. The results indicate 

that although the inundation data show varying degrees of wetness within VPD/PD areas, 

they may not be that helpful in distinguishing VPD from PD soils. In some areas, this 

could be due to the presence of drainage ditches nearby, which would result in lower 

inundation in areas that were historically wet enough to form VPD soils. A 

disaggregation model incorporating the inundation data would need to account for the 

presence of drainage ditches, and differences in spatial scale between the lidar and 

inundation data. 
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4.4 Conclusions 

A comparison of the inundation time-series maps with the disaggregated soil drainage 

class map within forested depressional wetlands demonstrated that the products provide 

complementary information on wetland location and extent in the Choptank watershed. 

The disaggregated soils map provides information on the extent of both inundated and 

saturated soils, but does not distinguish degrees of wetness well. The inundation product 

does not include soils that are saturated but not periodically inundated, but it does provide 

reliable information on wetland inundation dynamics. Because natural soil drainage class 

is defined by the conditions under which the soils formed, the soils map may be a better 

indicator of historic wetland status, whereas inundation maps may better indicate current 

wetland status. 

The high degree of variability in year to year inundation patterns indicate that 

information on actual wetness derived from optical imagery from a few select dates may 

not improve the disaggregation model, unless those dates represented the full range of 

inundation conditions. The SWF maps represent a well-calibrated robust inundation time-

series that may be useful in predicting soil properties, but it is unclear whether they 

would improve prediction of natural soil drainage class, especially in a heavily altered 

(e.g., ditched) landscape. A new disaggregation model incorporating the inundation data 

would need to account for drainage ditches, which may be the reason for consistently low 

inundation in some wetland depressions. A disaggregation model could be developed for 

un-ditched forest areas by only using training pedons in un-ditched forest areas. 

Establishing an appropriate ditch buffer distance to define un-ditched forest would 

benefit from information on the effects of ditches on inundation patterns in forested 
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wetlands in the study area. The training set used here was also highly imbalanced, with 

many more instances of VPD pedons than other classes. A new disaggregation model 

would benefit from a more balanced training set. 

Maps of wetland extent and function are needed to guide natural-resource decision 

making. To address conservation issues including habitat loss and degradation, changes 

in species composition, changes in water quality, quantity, and flow rates, sea-level rise 

and coastal resilience, as well as expansion in domestic energy development, we need 

reliable wetlands data (U.S. Fish and Wildlife Service, 2018). in the need for critical 

information on wetland function has led to the augmentation of National Wetlands 

Inventory (NWI) maps with hydrogeomorphic attributes to create NWI+ maps (Tiner, 

2010). 

Products such as the SWF and disaggregated soils maps can help provide information 

relevant to wetland function. For example, probability maps of natural soil drainage class 

at the scale of individual depressions could be helpful in quantifying the extent of poorly 

and very poorly drained soils in hard to access forested areas, which could be useful in 

modeling the contribution of forested wetland complexes to downstream water quality. 

Natural soil drainage class can also be used to identify historic wetlands and thus 

opportunities for wetland restoration. It is possible that over time, the installation of 

drainage ditches could result in some VPD soils becoming PD due to depletion of organic 

carbon resulting from higher decomposition rates and lower primary productivity. VPD 

soils in areas with drainage ditches and consistently low inundation are likely losing 

organic carbon, so these areas may be good candidates for wetland restoration for carbon 

storage. 
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The addition of inundation data to digital soil mapping models could be useful in 

predicting other soil characteristics influenced by hydrology, such as carbon content, soil 

texture, and horizon thickness – factors which could influence hydrologic, 

biogeochemical, and habitat functions.  Inundation information could also help natural 

resource managers characterize near-surface hydrologic connectivity that could be used, 

for example, to identify areas where geochemical conditions may be optimal for 

capturing and removing nitrate (Goldman and Needelman, 2015). 

Although limited in being able to describe varying degrees of potential wetness within 

depressional wetlands, lidar-derived topographic metrics are important tools for mapping 

wetland extent and function. Topographic metrics are extremely useful in describing the 

structure of depressional wetland landscapes and were able to pick up variations in 

drainage class from rim to slope to depression. As demonstrated in Chapter 3, 

topographic metrics were also able to differentiate coarser textured soils on rims from 

finer textured soils in depressions in forest areas. Furthermore, landscape metrics, such as 

the number and size of wetlands, topographic wetness index and drainage density can be 

useful in predicting hydrologic connectivity in Delmarva bay wetland complexes (Epting 

et al., 2018). Hydrologic connectivity has been shown to affect water chemistry, soils, 

vegetation, and biota in depressional wetlands (Cook and Hauer, 2007; Snodgrass et al., 

1996).  

A suggested follow-up to this analysis is to quantify the accuracy of lidar-derived 

topographic metrics in predicting SWF and identify topographic conditions in this low-

relief landscape where lidar data are no longer able to predict variations in inundation. 

Estimates of how potential wetness relate to actual wetness would inform operational 
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soils and wetland mapping by helping to quantify uncertainty in using lidar-derived 

topographic metrics to predict soil saturation. DSM is a new field and only recently 

beginning to shift from a research phase to operational use (Minasny and McBratney, 

2016). DSM is typically done at low to medium resolutions, but high resolution DSM can 

be useful for developing maps for specific applications, such as mapping wetland soils to 

predict function. A better understanding of the uses and limitations of lidar-derived 

topographic metrics would help the field of DSM move from research to operational use. 

Automated approaches to wetland mapping can greatly reduce the cost of monitoring 

wetlands and provide reliable information for wetland managers. With continued 

advancements in the acquisition of remote sensing data and increasing accessibility of 

complex data mining techniques, the ability to develop wetland monitoring tools at low 

cost will continue to improve. Model calibration based on field data and field validation 

will continue to be necessary to constrain uncertainty but as demonstrated by the 

inundation and disaggregation products, effective models can be built using a limited 

amount of field data. 
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Chapter 5 – Conclusions 

 

Wetlands are vital in supporting clean water in the Chesapeake Bay watershed, where 

excess nutrients and sediment loads from human activities have contributed to a decline 

in water quality over the last few decades. There is great interest in restoring wetlands to 

mitigate excess agricultural nitrogen inputs, but efforts to develop a watershed-scale 

approach to planning wetland restorations have been met with considerable challenges. 

These include biological/physical challenges, and political/social/economic challenges. 

Biological/physical challenges to siting wetlands for nitrate removal include: 1) 

accounting for subsurface connectivity between nitrogen sources and wetlands; and 2) 

estimating how effective wetlands will be at removing nitrate in order to demonstrate the 

benefits of targeted wetland restoration and compare alternative watershed plans. 

Political/social/economic challenges include: 1) limited information on current wetland 

practices; 2) broad/unclear objectives of wetland BMPs; and 3) factors limiting 

landowner willingness to adopt wetland BMPs. In Chapter 2, I explored each of these 

challenges and proposed potential avenues of research for addressing them. The 

following chapters related to the first challenge, accounting for subsurface connectivity 

between nitrogen sources and wetlands. 

On the Delmarva Peninsula, the complexity of nitrogen fate and transport complicates 

evaluating the effects of depressional wetlands on downstream water quality (Denver et 

al., 2014). In Chapter 2, I proposed three approaches to better account for subsurface N 

transport and enhance the implementation of wetland restoration practices 1) assessing 

hydrologic connectivity in areas with artificial drainage; 2) catchment-scale studies of 
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hydrogeomorphic predictions of hydrologic connectivity; and 2) improved use of 

geospatial data for predicting subsurface connectivity between N sources and wetlands. 

Central to all of these is spatial information on soils and soil properties that influence and 

are influenced by hydrologic conditions. For example, the presence of clay-rich horizons 

can cause water tables to perch temporarily following rain events, promoting rapid, 

lateral movement of water to ditches (Vadas et al., 2007). Different hydrogeomorphic 

regions on the Mid-Atlantic Coastal Plain display unique groundwater flow and water 

quality patterns (Hamilton et al., 1993). The highest nitrate concentrations are found in 

groundwater beneath agricultural areas where the soils and surficial aquifer are composed 

of sandy, permeable sediments with little clay. The lowest groundwater nitrate 

concentrations are found in regions where organic matter is abundant and clay and silt 

deposits inhibit downward flow (Hamilton et al., 1993).  

At the watershed scale, effective use of geospatial data is critical for planning wetland 

restorations. Developing predictions of groundwater connectivity based on landscape and 

soil characteristics is particularly challenging. There are several ways to improve current 

use of geospatial data to better identify areas where hydrology may favor N removal by 

wetlands. These include 1) expanded use of lidar data and topographic indices derived 

from lidar; 2) better use of existing soils data; 3) incorporation of ditch network data; and 

4) incorporation of remote- and ground-based sensor techniques for measuring variability 

in soil and vegetation characteristics.  

SSURGO data contain information on soil hydrologic properties to a depth of 

approximately 2 m, but their applications in land management planning are limited by the 
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coarse scale of survey maps relative to the scale of restoration decisions, the spatial 

aggregation of soil components, and the difficulty in accounting for uncertainty in soil 

maps. Chapter 2 introduced soil survey disaggregation as a possible way to improve the 

use of soils data to better identify areas where hydrology and soil conditions may favor N 

removal by wetlands. 

In Chapter 3, I developed a method for generating more spatially refined maps of natural 

soil drainage and texture class in a depressional wetland landscape using soil survey 

disaggregation techniques. The disaggregation methods developed here were unusual in 

that they were 1) developed for a low-relief landscape; 2) developed at high spatial 

resolution (3 m); 3) developed for the explicit purpose of mapping wetland soils to 

support wetland restoration decisions; 4) used field data for training models; 5) used 

SSURGO data as input variables in the models; and 6) separate models were built for 

forest and cropland to account for differences in expected hydrologic and depositional 

controls on soil properties on these lands.  

The Random Forests machine learning algorithm was used to generate probability maps 

of drainage and texture class in forest and cropland settings in the upper part of the 

Choptank River watershed on central Delmarva. Predictor variables included topographic 

metrics derived from lidar, SSURGO data, NWI data, and agricultural ditch network data. 

Overall, model predictions fit our understanding of variability in natural soil drainage and 

texture class in forested areas, with increasingly better drainage from depression to slope 

to rim, and coarser textured soils on rims compared to depressions. Overall validation 

accuracy in the forest models was 77.1% for drainage class and 70.6% for texture class. 
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The development of disaggregation techniques was more challenging on cropland. This 

was attributed to several factors: 1) greater human modification of the landscape in 

cropland areas; 2) differences in the natural variation in soil properties in forest vs 

cropland; and 3) the nature of the training data used in forest vs cropland. 

The benefits of disaggregated soils maps compared with conventional soil maps include 

not only greater spatial detail, but also a measure of uncertainty associated with predicted 

soil classes and estimates of the importance of different attributes in predicting soil 

classes. Measures of uncertainty in soil class predictions are important for informing land 

management decisions and developing models incorporating soils information. Attribute 

importance can help guide operational soils and wetland mapping by providing 

information on local landscape processes controlling soil formation and development. In 

forest areas, the sink index, a measure of the likelihood there is no surface water outlet at 

a given point in the landscape, was the best predictor of soil drainage class. Relative 

elevation and catchment area were the best predictors of texture class. 

In Chapter 4, I conducted an exploratory data analysis comparing the disaggregated soils 

map with time-series inundation maps of the Delmarva developed from Landsat and lidar 

intensity data covering the period 1985 - 2011 (Huang et al., 2014; Jin et al., 2017). One 

of the limitations of the forest disaggregation model was that it was not able to 

differentiate very poorly from poorly drained soils. Chapter 4 explored whether the 

inundation data could be helpful in distinguishing these two drainage classes and 

attempted to identify areas with more stable vs variable inundation patterns, which could 

be an indication of the relative importance of specific wetland functions. 
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Comparison of the inundation maps with the disaggregated soils map demonstrated that 

the two products are complementary. Patterns in inundation corresponded well with 

drainage class, with highest inundation in the centers of depressions where very 

poorly/poorly drained soils were mapped. There were significant differences in average 

inundation values between VPD/PD, SWPD/MWD and WD soils. 

A K means clustering algorithm was used to identify spatial variation in inundation 

patterns in areas mapped as VPD/PD. The cluster analysis was unable to differentiate 

areas with stable inundation, but it did pick up varying degrees of wetness, which in 

general showed a pattern of increasing inundation from the edges of depressions to the 

centers of depressions. In approximately 74% of the areas mapped as VPD/PD by the 

disaggregation methods, inundation was consistently low. In some places, entire 

depressions had consistently low inundation patterns. Comparison of the pedon data used 

to train the disaggregation model with the inundation data indicated that VPD soils could 

not be readily distinguished from PD soils based solely on the inundation data. 

The exploratory data analysis in Chapter 4 pointed to several research directions that 

could inform the continued development of advanced soil and wetland mapping 

techniques. There is a need for better understanding of the effects of drainage ditches on 

indicators of current vs historic hydrologic conditions in forested depressional wetlands. 

A number of VPD pedons were located in areas that showed low to no inundation over 

the 30 year inundation time-series. Further research is needed to identify whether 

hydrologic conditions have changed from those under which the soils developed in these 

areas. If so, these sites could be good candidates for wetland restoration for carbon 
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storage. This is also an indication that drainage ditches should be accounted for if a new 

disaggregation model is built using the inundation data. 

Another area of research identified in Chapter 4 is to further explore the relationships 

between the topographic metrics (a measure of potential wetness) and the inundation data 

(a measure of actual wetness). Quantification of this relationship in not only depressional 

wetlands but also riparian wetlands and wetland flats could inform the development of 

operational soils and wetland mapping methods by providing a measure of uncertainty in 

using the topographic metrics to predict saturation and inundation. 
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Appendix A: Supplemental Materials for Chapter 3 

Supplemental Table 3.1 NRCS soil mapping model for Caroline County, MD. Courtesy of Jim Brewer. 

   Fine-loamy Fine-loamy Coarse-loamy Coarse-loamy Sandy Sandy 
Water Table 

Depth Fine-silty Fine-silty SL/L surface SiL surface LS/SL surface L surface (w/ Bt) (w/o Bt) 

(Redox Features) SiL/SiCL Bt (>50" silts) SCL Bt SiL/L Bt SL Bt L/SL Bt LS Bt  >72"                    
W Matapeake  Sassafras Reybold Downer Greenwich Galestown Evesboro 

40-72"           
SWWD Nassawango  Hambrook Queponco Ingleside Unicorn Cedartown Runclint 

20-40"                
MW Mattapex Leipsic Woodstown Manokin Hammonton Pineyneck  Galloway 

 Butlertown        
10-20"               
SWP Crosiadore  Marshyhope Annemessex Glassboro   Klej 

0-10"                    
P Othello Tent Fallsington Quindocqua Hurlock Carmichael  Askecksy 

 Elkton   Blackiston     
 Whitemarsh        

ponded to 0"      
VP Kentuck  Corsica  Pone    

 

  



143 
 

Supplemental Table 3.1 (contined) NRCS soil mapping model for Caroline County, MD. Courtesy of Jim Brewer. 

Water Table 
Depth Fine Arenic Paleudults Other Coarse-loamy Coarse-loamy  Sandy 

(Redox Features) SiCL/SiC/C 
Bt SL Bt arenic/gross (no drainage 

order) (no Bt) (3" to 6" Bt)  w/ Bh 

    Udorthents, refuse     
>72"                    

W  Fort Mott Henlopen Udorthents, 
borrow     

40-72"           
SWWD  Rosedale  Udorthents     
20-40"                
MW Keyport Rockawalkin Pepperbox Beaches     

10-20"               
SWP         
0-10"                    

P Lenni        
ponded to 0"      

VP     Mullica   Berryland 
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Supplemental Table 3.2. Training point accuracy of texture group predictions in cropland areas:  a) with 
map unit covariates (overall training accuracy 74.9%); b) without map unit covariates (overall training 
accuracy 73.8%). 

(a) 

 Reference 

 Coarse Fine 
Coarse 15 13 

Fine 36 131 
Class error 0.71 0.09 

 

(b) 

 Reference 

 Coarse Fine 
Coarse 12 12 

Fine 39 132 
Class error 0.76 0.08 

 

 

Supplemental Table 3.3. Validation point accuracy of texture group predictions in cropland areas:  a) with 
map unit covariates (overall accuracy 43.1%, κ = -0.11); b) without map unit covariates (overall accuracy 
45.8%, κ = -0.06). 

(a)  

  Reference   
  Coarse Fine User's Accuracy 

Coarse 0 4 0.0% 
Fine 37 31 45.6% 

Producer's Accuracy 0.0% 88.6% 
  

(b) 

  Reference   
  Coarse Fine User's Accuracy 

Coarse 1 3 25.0% 
Fine 36 32 47.1% 

Producer's Accuracy 2.7% 91.4% 
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Supplemental Figure 3.1. Soil texture group predictions and SSURGO particle size class (dominant 
condition) in cropland areas. 
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(a) 

 

 

(b) 

Supplemental Figure 3.2 Relative importance of variables in predicting texture group in cropland areas: a) 
with map units; b) without map units. 
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Supplemental Figure 3.3. Example of cropland area where VPD soils were mapped along the edges of 
depressions and PD soils in the center. 

  



148 
 

Appendix B: Validation Pedon Descriptions 

 

Site: MD 6A depression inner Described: M. Goldman, C. Seitz 4/2/2015 
Landcover: Forest Water Table: Ponded to 6 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 9 
  

2.5YR 
2.5/2 

  

 

A 47 LS 8 10YR 2/2 
  

 

EAg 61 LS 7 10YR 6/1 
  

 

Eg 83 S 3 10YR 7/1 
  

 

Btg 91 SCL 21 10YR 4/1 
  

 

CBg 97 SL 10 10YR 4/1 
  

 
 

 

 

Site: MD 6B depression outer Described: M. Goldman, C. Seitz 9/3/2015 
Landcover: Forest Water Table: 10 cm 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 11 
  

2/5YR 
2.5/2  

  A1 54 LS (SL) 6 10YR 2/2 
   A2 74 LS 7 10YR 2/2 
   Bg 80 S 4 10YR 5/1 
   Btg1 89 SL 19 10YR 6/1 20% D 

  Btg2 106 SCL 26 5Y 6/1 1% D 
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Site: MD 6C slope Described: M. Goldman, C. Seitz 9/3/2015 
Landcover: Forest Water Table: Not recorded 
Drainage Class: PD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 7 
  

2.5YR 
2.5/2 

   A1 12 SL 8 5YR 2.5/1 
   AE (EA?) 27 SL (LS?) 3 2.5Y 3/1 
   Eg (E?) 80 SL (LS?) 2 2.5Y 5/1 
   Bg 

 
LS 9 2.5Y 4/1 

    

 

 

Site: MD 6D rim Described: M. Goldman, C. Seitz 9/3/2015 
Landcover: Forest Water Table: 67 cm 
Drainage Class:  WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 5 
  

2.5YR 
2.5/2 

  

 

A 10 S 4 2.5Y 3/1 
  

 

Bw1 21 S 4 10YR 4/4 
  

 

Bw2 44 LS 6 7.5YR 4/4 
  

Spodic 
properties? 

Bw3 54 LS 6 7.5YR 3/4 
  

 

 
63 LS 5 

7.5YR 
2.5/2 

  

 

 
80 LS 5 

2.5YR 
2.5/2 

  

 

Ab 96 LS (S) 4 10YR 2/2 
  

 

 
101 LS 8 10YR 4/3 
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Site: MD 2A depression outer Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: 7 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 10 
  

2.5YR 
2.5/2 

  
 

A1 50 LS 8 10YR 2/1 
  

 

A2 73 LS 7 10YR 3/1 
 

15% D 
2.5Y 5/2 
at 65 cm  

Bg 92 LS 6 10YR 4/2 
  

 
CB 100 S 2 10YR 5/3 

  
 

 

 

 

Site: MD 2B slope Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: 26 cm 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 10 
  

2.5YR 
2.5/2 

  

 

A1 50 LS 8 10YR 2/1 
  

 

A2 73 LS 7 10YR 3/1 
 

15% D 
2.5Y 5/2 
at 65 cm 

 

Bg 92 LS 6 10YR 4/2 
  

 

CB 100 S 2 10YR 5/3 
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Site: MD 2C rim Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: 50 cm 
Drainage Class:  SWPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 14 
  

2.5YR 
2.5/2 

   
AE 20 LS 10 10YR 2/1 

  

uncoated 
sand grains 

 
33 LS 9 10YR 3/2 

   Bg 54 SL 12 2.5Y 6/1 25% D 
  Btg 71 SL 16 5Y 6/1 1% D 
  CBg 82 S 2 2.5Y 6/1 5% D 
  Cg 103 S 2 2.5Y 6/2 7% D 
  C 112 S 1 2.5Y 6/3 40% D 
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Site: MD 3A depression inner Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 13 
  

2.5YR 
2.5/2 

   A 53 LS 8 10YR 2/1 
   AB 91 LS 7 10YR 3/2 
   Bg 100 S 2 10YR 4/2 
    

 

Site: MD 3B slope Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: 43 cm 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

 

Horizon Depth Texture Clay % Color Conc. Depl. 
 

Oe 8 
  

2.5YR 
2.5/2  

  A 38 SL 8 10YR 2/1 
   AB 50 SL 7 10YR 4/2 
   Bg 59 S 5 10YR 6/1 1% D 

  Btg1 73 SL 12 5Y 6/2 15% D 
  Btg2 85 SL 11 5Y 6/2 35% D 
  

BCg 94 S 3 2.5Y 6/2 1% D 
 

small 
gravels 

Cg 104 S 2 2.5Y 7/1 
  

small 
gravels 
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Site: MD 3C rim Described: M. Goldman, C. Seitz 4/9/2015 
Landcover: Forest Water Table: 60 cm 
Drainage Class:  MWD Texture Group: Coarse 
 
Comments: 
 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 14 
  

2.5YR 
2.5/2 

   
AE 32 LS 8 10YR 2/1 

  

uncoated sand 
grains 

AB 43 LS 7 10YR 3/2 
   BC 73 LS 7 10YR 5/3 
  

gravel @ 57 cm 
CB 87 S 4 2.5Y 5/3 

   Cg 104 LS 6 2.5Y 6/2 8% D 
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Site: SNS 19A depression inner Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: ponded to 48 cm 
Drainage Class:  VPD Texture Group:  
 
Comments: Root mat followed by muck. High clay, high OM surface. At 56 cm mucky SiCL, 
concentrations (35%), depletions. At 77 cm, concentrations drop to 20%, no depletions. At 80 cm, 
prominent concentrations, sand increase, clay decrease, matrix lightens. 
 

 

 

Site: SNS 19B depression outer Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: ponded to 4 cm 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 13 

  
5YR 2.5/2 

  
 

A 44 mucky SL 9 10YR 2/1 
  

 
Bg 56 SL 11 2.5Y 5/1 4% D 

 
 

Btg1 76 SL 18 2.5Y 5/1 35% D 
 

 

Btg2 92 SCL 22 2.5Y 5/1 
8% D 2% 
P   

Btg3 105 SCL 30 2.5Y 5/1 4% D 
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Site: SNS 19C slope Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: 25 cm 
Drainage Class:  PD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
  

2.5YR 
2.5/2 

  
 

A 24 LS 8 10YR 2/1 
  

 
Bg1 55 S 2 2.5Y 5/2 

  
 

Bg2 65 S 2 2.5Y 6/2 
  

 
Bg3 100 S 1 2.5Y 4/2 

  
 

 

 

 

Site: SNS 19D rim Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: 93 cm 
Drainage Class:  MWD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 13 
  

2.5YR 
2.5/2 

   A1 21 LS 5 10YR 2/1 
   A2 24 LS 5 10YR 3/2 
   

BA 49 SL 8 10YR 4/4 
  

Small 
gravels 

Bw 67 SL 9 2.5Y 5/4 5% F 1% D 
 

Bg1 82 LS 5 2.5Y 6/1 
20% D 
(3% P)  

 
Btg 91 LS 12 5Y 6/1 

25% D 
(5% P)  

 
C 107 S 2 2.5Y 6/3 

20% D 
(3% P)  
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Site: SNS 9A depression inner Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: ponded to 55 cm 
Drainage Class:  VPD Texture Group:  
 
Comments: Organic surface. A horizon to 67 cm. SiL/L. Depleted matrix at 75 cm. 
 

 

 

Site: SNS 9B depression outer Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: 3 cm 
Drainage Class:  VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 16 
  

2.5YR 
2.5/2  

 
 

A1 50 
Mucky 
LS 5 10YR 2/1 

  
 

A2 73 LS 7 10YR 2/2 
  

 
Abg 90 LS 5 10YR 4/2 

 
13% D  

Bg 103 LS 5 5Y 6/2 1% F 
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Site: SNS 9C slope Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: 26 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 11 
  

2.5YR 
2.5/2 

  
 

A 36 LS 6 10YR 2/1 
  

 
Bg 53 S 6 10YR 4/2 

  
 

Ab? 70 LS 7 10YR 2/2 3% D 
1% 10YR 
4/2  

Cg 84 SL 10 2.5Y 5/2 7% D 
 

 
 

 

 

Site: SNS 9D rim Described: M. Goldman, C. Seitz 4/12/2015 
Landcover: Forest Water Table: not reached 
Drainage Class: WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 9 
  

2.5YR 
2.5/2 

   A 13 LS 7 10YR 2/1 
   Bw1 83 S 2 10YR 5/6 
   Bw2 100 S 1 10YR 5/6 25% D 
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Site: SNS 11A depression inner Described: M. Goldman, C. Seitz 4/21/2015 
Landcover: Forest Water Table: ponded to 2 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Comments 

A 31 LS 

Mucky 
surface ~6 
cm 

 
60 LS Darker 

 
74 LS 

Reddish 
Brown 

 
100 LS 

spodic 
properties 

 

 

 

Site: SNS 11B depression outer Described: M. Goldman, C. Seitz 4/21/2015 
Landcover: Forest Water Table: 4 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 

 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comment 

Oe 3 
  

2.5YR 
2.5/2  

  
A1 23 LS 11 

7.5YR 
2.5/1  

  
 

38 LS 7 10YR 3/2 
   

 
62 LS 8 7.5YR 3/3 

  

Bsh or 
organic 
staining? 

 
82 SL 10 10YR 4/3 

   
 

100 SL 6 7.5YR 3/4 
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Site: SNS 11C slope Described: M. Goldman, C. Seitz 4/21/2015 
Landcover: Forest Water Table: 44 cm 
Drainage Class: SWPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 5 
  

2.5YR 
2.5/2 

   
AE 13 SL 9 10YR 2/2 

  

60% grains 
coated 

Bt1 46 SL 12 10YR 4/4 
 

5% 10YR 
6/2 starts at 
44 cm  

Bt2 81 SL 16 10YR 5/3 
10% D, 2% 
P 

20% 10YR 
6/1 3% chert 

BC 100 LS 4 10YR 5/3 
 

30% 10YR 
6/1 4% chert 

 

 

 

Site: SNS 11D rim Described: M. Goldman, C. Seitz 4/21/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe (i) 9 root mat 
 

2.5YR 
2.5/2  

  
A1 11 SL 10 

2.5YR 
2.5/1  

  A2 14 SL 10 10YR 2/2 
   Bw1 69 LS 6 10YR 4/4 
   Bw2 95 LS 4 10YR 4/6 
   Bw3 103 SL 3 10YR 4/6 
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Site: DEA 4A depression center Described: M. Goldman, K. Rankin 6/12/2015 
Landcover: Forest Water Table: 18 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 4 

  
10YR 2/2 

   A 6 SiL 11 2.5Y 2.5/1 
   Btg1 30 SiCL 28 2.5Y 6/1 25% P 

  Btg2 36 SiC 44 2.5Y 6/1 25% P 
  Btg3 44 SiC 48 2.5Y 6/1 25% P 
  BCtg 58 C 55 5Y 6/1 35% P 
   

 

 

Site: DEA 4B depression outer Described: M. Goldman, K. Rankin 6/12/2015 
Landcover: Forest Water Table: 97 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 2 

  
10YR 2/2 

   A 6 SiL 12 10YR 2/2 
   Btg1 13 SiL 16 2.5Y 5/1 
   Btg3 20 SiL 23 2.5Y 6/1 15% D 

  Btg4 32 SiL 25 2.5Y 6/1 25% P 
  Btg5 54 SiCL 38 2.5Y 5/1 30% P 
  BCg1 75 SiCL 35 5Y 5/1 25% P 
  BCg2 100 SiCL 36 5Y 6/1 25% P 
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Site: DEA 4C slope Described: M. Goldman, K. Rankin 6/12/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: MWD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
A 7 SiL 12 10YR 2/2 

   Bt1 46 L 23 2.5Y 5/4 
   Bt2 62 L 26 10YR 5/6 
   

Bt3 72 L 26 10YR 5/6 
 

2% 2.5Y 
6/2  

Bt4 106 L 24 10YR 5/6 30% D 
5% 10YR 
6/1  

 

 

 

Site: DEA 4D rim Described: M. Goldman, K. Rankin 6/12/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

A 11 L 12 
10YR 
2/2 

   Bt1 42 L 17 2.5Y 5/3 
   

Bt2 56 L 24 
10YR 
5/4 

   
Bt3 68 L 26 

10YR 
5/6 

   
BC 81 SL 16 

7.5YR 
5/6 35% D 

  

C 107 S 3 
10YR 
5/6 35% D 

 

gets yellower at 94, 
some chert at 
bottom 
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Site: DEA 3A depression inner Described: M. Goldman, K. Rankin 6/19/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
  

7.5YR 
2.5/2 

   A1 13 SiL 13 10YR 2/1 
   A2 19 SiL 15 10YR 3/2 
   Btg1 28 L 25 10YR 5/1 20% P 

  Btg2 54 L 26 10YR 5/1 25% P 
  BCg 66 SCL 21 10YR 5/1 20% P 
  

 
103 SC 38 2.5Y 5/2 15% D 

   

 

 

Site: DEA 3B depression outer Described: M. Goldman, K. Rankin 6/19/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: SWPD Texture Group: Fine 
 
Comments: 

 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 6 

  
7.5YR 2.5/2 

  
A 18 SiL 11 

10YR 
3/2 

  

darker top 3 
cm 

AB 32 L (border SiL) 11 2.5Y 5/3 
   

Bt1 45 L (border SL) 24 2.5Y 6/3 
15% D 
(5% P)  

 
Bt2 55 L (border SL) 26 2.5Y 5/3 35% P 

5% 2.5Y 
6/1  

Btg 78 L (border SiL) 26 2.5Y 5/2 30% P 
  BCg1 96 L (border SiL) 25 5Y 6/1 20% P 
  BCg2 108 SiL (border L) 26 5Y 6/1 10% P 
   

  



163 
 

Site: DEA 3C slope Described: M. Goldman, K. Rankin 6/19/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

A1 6 L 12 
10YR 
2/2 

   
A2 13 SiL 9 

10YR 
3/3 

   Bw1 53 LS 5 2.5Y 5/4 
   Bw2 67 LS 6 2.5Y 6/4 5% D 

  

Bw3 100 LS 9 2.5Y 6/4 5% D 
 

spodic-like 
concentrations of 
OM+Fe 

 

 

 

 

Site: DEA 3D rim Described: M. Goldman, K. Rankin 6/19/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 3 

  
10YR 2/2 

   A 12 SiL 12 10YR 2/2 
   Bt1 36 L 17 10YR 5/4 
   

Bt2 107 L 16 
7.5YR 
5/6 
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Site: DEA 5A depression inner Described: M. Goldman, K. Rankin 6/30/2015 
Landcover: Forest Water Table: ponded to 2 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 1 

      A 13 SiL 12 10YR 3/2 
   Btg1 22 L 23 5Y 6/1 
   

Btg2 33 L 26 5Y 6/1 

20% D 
along 
roots  

 Btg3 62 SiCL 34 2.5Y 5/1 35% P 
  

Btg4 72 C 48 2.5Y 6/1 
25% D 
and P  

 
Btg5 105 CL 35 5Y 6/1 

15% D 
(5% P)  

  

 

 

Site: DEA 5B depression inner Described: M. Goldman, K. Rankin 6/30/2015 
Landcover: Forest Water Table: 70 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 6 

  
10YR 2/2 

   A 10 L 11 10YR 3/2 
   

 
19 L 14 2.5Y 5/2 

  
BA or B/A 

 
31 L 18 5Y 6/1 

15% D 
(2% P)  

 

 
43 L 24 5Y 6/1 

20% D 
and P  

 
 

52 SiC 43 2.5Y 5/1 45% P 
  

 
60 SiCL 31 5Y 6/1 25% P 

  
 

74 CL 33 5Y 6/1 25% P 
  

 
103 CL 29 5Y 6/1 25% P 

  
 

105 
  

5Y 6/1 10% D/P 
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Site: DEA 5C slope Described: M. Goldman, K. Rankin 6/30/2015 
Landcover: Forest Water Table: 99 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments: SWPD 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 6 

  
7.5YR 3/2 

   A 15 SL 12 10YR 3/2 
   B/A 36 SL 10 2.5Y 5/2 
  

B/A 

 
49 SL 12 10YR 4/2 

   

 
62 SL 15 2.5Y 5/2 

2% D at 
bottom  

 
 

80 SL 17 2.5Y 6/2 5% D 
  

 
94 SCL 22 2.5Y 6/1 35% P 

  
 

104 SL 19 2.5Y 6/1 20% P 
  

 
110 SL 12 2.5Y 6/1 40% P 

   

 

 

Site: DEA 5D rim Described: M. Goldman, K. Rankin 6/30/2015 
Landcover: Forest Water Table: 102 cm 
Drainage Class: MWD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 5 
  

5YR 
2.5/1 

   
A 8 SiL 11 

7.5YR 
2.5/1  

  B 25 L 13 2.5Y 5/4 
   Bt1 38 L 17 2.5Y 6/4 
   Bt2 50 L 24 2.5Y 5/6 
   

Bt3 68 L 26 2.5Y 5/6 20% D 
5% 2.5Y 
6/3 

 
Bt4 81 CL 28 2.5Y 6/4 25% D 

25% 2.5Y 
6/1 

 BCg 102 L 25 2.5Y 6/1 35% P 
  Cg 110 SL 12 2.5Y 6/1 30% P 
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Site: BJF 11A depression inner Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: ponded to 6 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
matted 
vegetation  5YR 2.5/1 

   A 20 L 9 10YR 3/2 
   Btg1 46 L 16 10YR 5/1 
   Btg2 62 L 16 5Y 6/1 
   Btg3 92 L 26 5Y 6/1 25% P 

 
5% beaverdam chert 

BCg 110 SCL 20 5Y 6/1 
  

7% chert, small 
gravels 

 

 

 

Site: BJF 11B depression outer Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: 5 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 6 

  
2.5YR 2.5/1 

  A 20 L 6 10YR 4/1 
   Btg1 40 L 20 10YR 5/1 
   Btg2 70 CL 32 10YR 5/1 10% P 

  BCg 99 SCL 23 2.5Y 5/1 10% P 
  Cg 106 SCL 20 2.5Y 5/1 10% P 
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Site: BJF 11C slope Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: 17 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 14 

  
2.5YR 2.5/2 

   A 22 L 5 10YR 2/2 
   Btg1 34 L 20 2.5Y 5/1 
   Btg2 54 L 22 2.5Y 5/1 5% P 

  Btg3 86 CL 32 2.5Y 5/1 15% P 
 

3% chert 
Cg1 100 SCL 24 2.5Y 6/1 

  
7% gravels 

Cg2 111 SCL 20 2.5Y 6/1 10% P 
 

7% gravels 
 

 

 

Site: BJF 11D rim Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: MWD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 3 
  

2.5YR 
2.5/2  

  A 7 L 8 10YR 2/2 
   

 
31 L 12 10YR 4/4 

   
 

51 SL 10 10YR 5/4 
  

12% gravels 

 
69 SL 12 10YR 5/6 10% D 

 
4% gravels 

 
80 CL 28 10YR 5/6 30% P 

  
 

103 SiCL 34 5Y 6/1 40% P 
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Site: BJF 28A depression inner Described: Maggie Goldman, Chris Seitz 5/25/2015 
Landcover: Forest Water Table: ponded to 4 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 

 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 10 

  
5YR 2.5/2 

  
 

A 31 L 7 10YR 2/1 
  

 
AB 45 SiL 10 10YR 3/2 

  
 

Btg1 69 SiL 18 10YR 4/1 25% P 
 

 
Btg2 85 SiL 16 2.5Y 5/1 15% P 

 
 

Cg 92 SL 12 10YR 4/1 10% P 
 

 
 

 

 

Site: BJF 28B depression outer Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: 2 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 10 
  

2.5YR 
2.5/2  

  A 31 SL 7 10YR 2/1 
   Btg1 42 L 17 10YR 4/1 
   Btg2 72 L 16 2.5Y 5/1 5% P 

  Btg3 89 L 16 2.5Y 5/1 
   BCg 95 SL 12 2.5Y 5/1 
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Site: BJF 28C slope Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: ~16 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. 
Oe 15 

  
2.5YR 2.5/2 

  A 35 SL 6 10YR 2/1 
  

 
48 SiL 11 10YR 3/1 5% P 

 
 

62 SiL 15 10YR 4/1 20% P 
 

 
76 SiL 18 10YR 4/1 20% P 5% 10YR 5/1 

 
90 CL 28 2.5Y 6/1 15% P 

 
 

96 SCL 34 2.5Y 6/1 
   

 

 

Site: BJF 28D rim Described: M. Goldman, C. Seitz 5/25/2015 
Landcover: Forest Water Table: 70 cm 
Drainage Class: SWPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8   
2.5YR 
2.5/2    

A 12 SL 5 10YR 2/1    
Bw 35 SL 8 10YR 5/3 15% P   
Bg 60 SL 10 2.5Y 6/2 25% P   
Cg1 77 SL 14 5Y 6/1 25% P   
Cg2 101 SL 17 5Y 6/1 25% P   
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Site: BJF 10A depression inner Described: M. Goldman, K. Rankin 6/29/2015 
Landcover: Forest Water Table: not recorded 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8   
7.5YR 
2.5/1   

large flat 
depression 

A 29 L 14 7.5YR 3/1  
1% 10YR 
4/1 

rims defined 
by ag field 
and road 

 53 L 13 7.5YR 4/1  
1% 
7.5YR 5/1 

slope not 
apparent in 
field 

 66 L 11 7.5YR 4/1    
 73 SL 18 10YR 5/1    
 82 SL 16 2.5YR 6/1    
 91 SCL 22 2.5YR 6/1 5% P   
 98 SCL 22 2.5YR 6/1 10% P   
 105 SL 18 2.5YR 6/1 5% P   

 

 

 

Site: BJF 10B depression outer Described: M. Goldman, K. Rankin 6/29/2015 
Landcover: Forest Water Table: 24 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
  

7.5YR 
2.5/2  

  

A 29 SiL 15 
7.5YR 
2.5/1  

1% 
10YR 
4/1  

Btg1 50 SiL 26 
10YR 
4/1 

2% D 
starting 
at 44  

shell fragments beginning in 
A, pick up in bottom horizon 

Btg2 92 CL 35 
2.5Y 
6/1 25% P 

  CBg 105 SL 18 5Y 6/1 2% P 
 

10% coarse frags 
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Site: BJF 10C slope Described: M. Goldman, K. Rankin 6/29/2015 
Landcover: Forest Water Table: 42 cm, saturated throughout 
Drainage Class: PD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
Oe 8 

  
5YR 2.5/1 

   A 21 SL 13 7.5YR 2.5/1 
   

 
41 SL 14 10YR 3/2 

 

5% 
10YR 
4/2  

 
55 SL 14 10YR 5/2 

   
 

62 SL 18 2.5Y 6/2 3% D 
  

 
95 SL 16 5Y 6/1 

15% P 
starting 
@ 87  

 
 

100 LS 6 2.5Y 6/1 15% P 
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Site: BJF 10D rim Described: M. Goldman, K. Rankin 6/29/2015 
Landcover: Forest Water Table: 74 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
  

7.5YR 
2.5/1  

  

A 19 SL 10 

7.5YR 
2.5/1 
and 
7.5YR 
3/2 @ 
16 cm   

 

 
36 SL 12 

10YR 
4/3 

10% D 
along 
roots 

10% 10YR 
4/2, 2% 5/2 buried A? 

 
44 SL 11 

10YR 
3/2 2% D 

  

 
52 SL 12 

10YR 
4/3 5% D 2% 2.5Y 5/2 

 
 

61 SL 15 2.5Y 6/2 
   

 
71 LS 10 

2.5Y 
6/2(1) 

   
 

81 LS 8 5Y 6/1 35% P 
  

 
92 

SL (almost 
SCL) 19 5Y 6/1 35% P 

 
clay jump 

 
105 

SL (almost 
SCL) 19 5Y 6/1 20% P 
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Site: SDI 3A depression inner Described: M. Goldman, K. Rankin 7/13/2015 
Landcover: Forest Water Table: not reached 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 11 
  

2.5YR 
2.5/2 

   A 20 SiL 14 10YR 2/2 
   

 
36 SiL 20 10YR 3/2 5% D 

5% 10YR 
4/1  

 
50 SiCL 30 10YR 3/2 5% D 

5% 10YR 
4/1  

 
79 SiCL 35 10YR 3/2 10% D 

8% 10YR 
4/1  

 
99 SiC 42 10YR 3/1 30% P 

30% 7.5YR 
6/1  

 
104 SiC 42 5Y 6/1 45% P 

   

 

 

Site: SDI 3B depression outer Described: M. Goldman, K. Rankin 7/13/2015 
Landcover: Forest Water Table: 72 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 4 
  

2.5YR 
2.5/1  

  
A1 27 SiL 12 

10YR 
2/2 

   

A2 35 SiL 12 
10YR 
2/2 

 

2% 
10YR 
4/1  

 
62 SiCL 29 2.5Y 5/1 3% D 

 

3% small rocks and 
gravels 

 
82 SiCL 32 2.5Y 5/1 8% P 

 

3% small rocks and 
gravels 

 
98 CL 38 5Y 6/1 8% P 

 

5% small rocks and 
gravels 

 
112 S 3 2.5Y 7/1 
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Site: SDI 3C slope Described: M. Goldman, K. Rankin 7/13/2015 
Landcover: Forest Water Table: 96 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 

Oe 8 
  

5YR 
2.5/2 

   
A 30 SiL 12 

10YR 
2/2 

   

 
50 SiL 25 

2.5Y 
4/1 

   

 
67 SiCL 33 

2.5Y 
4/1 5% P 

  

 
81 SiCL 33 

2.5Y 
5/1 20% P 

small 
rocks and 
gravels 
increasing 
from 2% - 
10% 
moving 
down  

 
97 CL 37 

2.5Y 
6/1 

   

 
103 SL 18 

2.5Y 
6/1 

 

20% 
small 
rocks and 
gravels  

 

Site: SDI 3D rim Described: M. Goldman, K. Rankin 7/13/2015 
Landcover: Forest Water Table: 96 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Horizon Depth Texture Clay % Color Conc. Depl. Comments 
A1 8 L 12 2.5Y 2.5/2 

   A2 33 L 12 10YR 2/2 
   

 
46 SL 7 10YR 3/2 

   
 

52 LS 3 2.5Y 6/2 
   

 
62 SiCL 33 5Y 6/1 10% P 

  

 
81 CL 29 5Y 6/1 

15% D, 
5% P  

 
 

90 CL 33 5Y 6/1 
   

Cg 106 

too 
gravelly 
to texture, 
but still a 
bit of clay  5Y 6/1 

  

very gravelly, 
small rounded 
rocks 
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Site: TJR 6A depression inner Described: M. Goldman, C. Seitz 9/18/15 
Landcover: Forest Water Table: 64 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: used moss line to define edge of depression (no groundcover in center) 
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

 
10 

  

7.5YR 
2.5/2 

   

 
25 

SiL 
(mucky?) 16 10YR 2/1 

   
 

41 SiL 15 10YR 3/2 
  

mica? 

 
63 SiL 26 10YR 3/2 15% D 

 
mica? 

 
85 SiCL 34 10YR 3/2 25% P 

2% 10YR 
5/1 mica? 

 
93 SiCL 32 10YR 3/2 25% P 

10% 10YR 
5/1  

 
110 SiCL 37 2.5Y 6/1 25% P 

   

 

 

Site: TJR 6B depression outer Described: M. Goldman, C. Seitz 9/18/15 
Landcover: Forest Water Table: not reached 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 
Oe 6 

      A 11 
  

7.5YR 2.5/2 
  

 
32 L (not quite mucky) 14 

10YR 
2/1 

  

>20% 
unncoated 

 
43 L (not quite mucky) 17 

10YR 
2/1 

 

5% 
10YR 
5/1 

 

 
57 SCL (close to CL) 30 

10YR 
2/2 5% D 

10% 
10YR 
5/1 organics 

 
75 SCL (close to CL) 33 

10YR 
5/1 15% P 

 
organics 

 
100 

SL (toward bottom of 
horizon) 19 

 
5% P 
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Site: TJR 6C slope Described: Maggie Goldman, Chris Seitz 9/18/15 
Landcover: Forest Water Table: not reached 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

 
16 L 8 

10YR 
2/1 

  

50% 
uncoated 

 
30 L 13 

10YR 
2/2 

  

25% 
uncoated 

 
43 SL 8 

10YR 
4/2 

  
Transition 

 
57 LS 4 

10YR 
5/2 

   

 
79 SCL 23 

10YR 
3/1 5% D 

10% 10YR 
4/1 organics 

 
89 SL 13 

10YR 
5/2 10% P 

 
organics 

 
102 SL 17 2.5Y 5/2 5% D 

  
 

107 SCL 33 5Y 5/2 5% D 
   

 

 

Site: TJR 6D rim Described: M. Goldman, C. Seitz 9/18/15 
Landcover: Forest Water Table: not reached 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 10 
  

5YR 
2.5/2 

   
A 22 SL 11 

10YR 
2/2 

  

50% 
uncoated 

 
29 LS 4 

10YR 
4/2 

10% D, 
5% P  

 

 
55 SL 3 

10YR 
5/2 10% D 

  
 

87 SL 13 2.5Y 6/1 30% P 
  

 
105 SL 10 5Y 6/1 

25% P 
including 
pockets 
of 7.5YR 
5/8   
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Site: TJR 5A depression inner Described: M. Goldman, C. Seitz 9/20/15 
Landcover: Forest Water Table: 23 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. 

 
9 

  
5YR 2.5/2 

  
 

14 
  

10YR 2/1 
  

 
25 SiL 11 10YR 2/1 

  
 

40 SiL 8 10YR 2/1 
  

 
59 SiL 21 10YR 2/1 

  

 
85 SiCL 33 10YR 2/1 

10% D to 20% P 
beginning at 72 
cm  

 
90 SiC 42 

10YR 2/1, 
pockets of 10YR 
4/3 10% P 

 
 

112 SiCL 28 7.5YR 3/2 5% D 
 

 
117 

  
2.5Y 3/2 5% D 

  

 

 

Site: TJR 5B depression outer Described: M. Goldman, C. Seitz 9/20/15 
Landcover: Forest Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

 
10 

  

5YR 
2.5/2 

  

Top 2 horizons >20% 
sand, then sand 
disappears 

 
31 SiL 14 

10YR 
2/1 

 

1% 
10YR 
4/2 10% uncoated 

 
50 SiL 10 

10YR 
2/1 5% D 

1% 
10YR 
4/2  

 
63 SiL 18 

10YR 
2/1 

5% D 
(1% P) 

1% 
10YR 
4/1  

 
75 SiCL 30 

10YR 
2/2 30% P 

30% 
2.5Y 
5/1 pockets of organics 

 
93 SiC 41 

5Y 
5/1 15% P 

  

 
107 SiC 47 

2.5Y 
4/1 15% P 
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Site: TJR 5C slope Described: M. Goldman, C. Seitz 9/20/15 
Landcover: Forest Water Table: 119 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

 
8 

  

5YR 
2.5/1 

   
AE 38 SL 8 10YR 2/1 

  

25% 
uncoated 

E 52 LS 5 10YR 4/2 
   EB 63 SL 2 2.5Y 6/2 
   Btg1 81 SCL 28 2.5Y 5/1 20% P 

  Btg2 90 C 41 5Y 6/1 10% P 
  Cg 100 S 1 2.5Y 7/1 

    

 

Site: TJR 5D rim Described: Maggie Goldman, Chris Seitz 9/20/15 
Landcover: Forest Water Table: 146 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

 
9 

  

5YR 
2.5/1 

   

 
15 L 9 

7.5YR 
2.5/1  

 

10% 
uncoated 

 
20 L 9 10YR 3/2 

  

10% 
uncoated 

 
31 SiL 19 10YR 3/4 

   
 

50 L 25 10YR 3/6 3% P 
  

 
65 SCL 22 2.5Y 4/3 

15% D 
(2% P)  

 
 

86 LS 4 2.5Y 5/2 25% P 
  

 
96 S 1 2.5Y 7/1 5% D 

  
 

104 S 2 2.5Y 6/4 20% D (5% P) 
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Site: CLN 13A depression inner Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: 6 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 7 
  

7.5YR 
2.5/1 

   A1 20 SiL 8 10YR 2/2 
   A2  42 SiCL 29 10YR 2/2 
  

<15% S 

Bg1 53 SiCL 31 2.5Y 4/2 

5% D 
along 
roots  <15% S 

Bg2 70 L 26  2.5Y 4/2 

5% D 
along 
roots  

  

 

Site: CLN 13B depression outer Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: 22 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 
Oe 8 

  
10YR 2/2 

   A1 16 
  

10YR 2/2 
   

A2 28 SiL 8 10YR 2/1 
 

3% 2.5Y 
6/1  

AB 45 SiCL 28 10YR 2/1 
   Bg1 85 SiCL 30 10YR 4/2 10% D  

  Bg2 102 SiCL 32 10YR 4/1 10% D  
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Site: CLN 13C slope Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not reached 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 
Oe 11 

      
AE 35 

L (close to 
SL) 12 

10YR 
2/2 

  

uncoated mineral 
grains 

 
46 SL 17 

10YR 
2/2 

   

B/A 60 SCL 21 

50% 
10YR 
2/2 and 
50% 
10YR 
5/3  

  Bg 82 SL 11 2.5Y 6/2 
   BCg 96 LS 5 2.5Y 6/2 
   Cg 106 S 3 2.5Y 6/2 
    

 

 

Site: CLN 13D rim Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not reached 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 7 
  

5YR 
2.5/2 

   
AE 11 SL 8 

10YR 
2/2 

  

uncoated mineral 
grains 

Bw1 25 SL 10 
10YR 
4/4 

   
Bw2 64 LS 6 

10YR 
5/4 

   
Bw3 75 LS 5 

10YR 
4/6 

   
Bw4 92 LS 4 

10YR 
5/6 

   

Bw5 100 SL 4 
10YR 
5/6 

7.5YR 
4/6 
nodules  
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Site: CLN 9A depression inner Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not reached 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 
Oe 8 

  
10YR 2/2 

   
A 17 SiL 20 10YR 3/2 

 

1% 2.5Y 
6/1 

<15% sand in all 
horizons 

AB 42 SiCL 36 10YR 3/2 10% P 
20% 2.5Y 
6/1   

Bg 66 SiCL 42 2.5Y 5/1 10% P 
  Bg 94 SiCL 46 5Y 6/1 40% P 
   

 

 

Site: CLN 9B depression outer Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not recorded 
Drainage Class: VPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 6 
  

7.5YR 
2.5/2  

  
AE 13 SiL 16 

7.5YR 
2.5/1  

 

uncoated mineral 
grains 

 
39 SiL 24 

7.5YR 
2.5/1  

5% 2.5Y 
4/1  

Btg1 57 SiCL 36 
10YR 
4/1 

   
Btg2 84 SiC 41 

10YR 
4/1 20% P 

  BCg 100 SiC 45 2.5Y 5/1 20% P 
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Site: CLN 9C slope Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not reached 
Drainage Class: SWPD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 2 
  

7.5YR 
2.5/2 

   
AE 15 SL (L?) 12 

10YR 
2/2 

  

 hi organic; uncoated mineral 
grains 

E 31 SL 10 
10YR 
3/3 

  
uncoated mineral grains 

 
48 SL 12 

10YR 
3/2 

 

1% 
2.5Y 
5/2  

 
62 SL 14 

10YR 
3/2 

 

30% 
2.5Y 
5/2  

Cg1 78 LS 6 
2.5Y 
6/1 

   
Cg2 100 S 4 

2.5Y 
7/1 

    

 

Site: CLN 9D rim Described: M. Goldman, C. Seitz 9/3/15 
Landcover: Forest Water Table: not reached 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 6 
  

7.5YR 
2.5/2  

  
AE 15 LS 9 

10YR 
2/2 

  

uncoated mineral 
grains 

Bw1 71 LS 4 2.5Y 5/4 
   Bw2 81 LS 6 2.5Y 5/6 
   Bw3 97 LS 6 2.5Y 5/4 5% D 

  BC 114 LS 5 2.5Y 6/3 15% D 
  Cg 118 

  
2.5Y 6/1 20% P 
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Site: CLN 14A depression inner Described: M. Goldman, C. Seitz 9/11/15 
Landcover: Forest Water Table: 13 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 8 
     

from 0-35 goes from 
fibrous to mucky; black at 
16cm 

O 22 
     

Compression when 
auguring so depths very 
rough 

O 35 
     

marsh grasses 

A 49 SiL 10 
10YR 
2/1 

   
BA 75 SiC 43 

10YR 
3/2 

   
B 110 SiC 47 

10YR 
4/2 

    

 

 

Site: CLN 14B depression outer Described: M. Goldman, C. Seitz 9/11/15 
Landcover: Forest Water Table: 95 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 10 
  

7.5YR 
2.5/2  

  A 18 SiL 13 10YR 2/1 
  

35% sand 
AE 40 L 9 10YR 2/1 

  
45% sand 

Bt 58 CL 30 10YR 3/2 
 

5% 10YR 
4/2  

Btg 70 SCL 33 10YR 4/2 
   BCg 82 SL 19 10YR 5/2 
   Cg 101 LS 6 10YR 6/2 
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Site: CLN 14C slope Described: M. Goldman, C. Seitz 9/11/15 
Landcover: Forest Water Table: saturated at 156 cm 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 12 
  

5YR 
2.5/2 

  

spodic 
properties 

AE 35 LS 5 
10YR 
2/1 

  

uncoated 
mineral grains 

 
57 S 4 

10YR 
2/2 

  
dark 

Bhs 75 LS 4 
7.5YR 
3/2 

  

reddish brown 
and dark 
brown-black 

 
91 LS 4 5YR 3/3 

  

coffee red with 
pockets of 
black 

 
110 S 4 

7.5YR 
5/6 

  

lighter w/ 
pockets of red 
and black 

 

 

 

Site: CLN 14D rim Described: M. Goldman, C. Seitz 9/11/15 
Landcover: Forest Water Table: saturated at 156 cm 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Horizon Depth Texture Clay% Color Conc. Depl. Comments 

Oe 3 
  

5YR 
2.5/2 

   
A 8 SL 11 

10YR 
3/3 

   

 
15 SL 13 

10YR 
4/3 

   

 
29 SL 15 

10YR 
5/6 

   

 
54 SL 17 

10YR 
5/6 

   

 
63 L 17 

10YR 
4/6 

  
transition 

 
84 L 26 

7.5YR 
5/6 

   

 
111 LS 5 

10YR 
4/6 
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Site: JLH 4A depression inner Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
16 SiL 12 2.5Y 4/2 

   39 SiL 17 2.5Y 5/1 10% D 
  52 SiL 26 2.5Y 6/1 5% D 
  78 SiCL 30 2.5Y 6/1 22% D 
  

91 SCL 34 5Y 6/1 <5% D 
 

crumbly coarse 
sand, 5% coarse 
frags, chert 

95 SCL 34 5Y 7/1 15% D 
 

sticky, 10% coarse 
frags, chert, quartz 

 

 

Site: JLH 4B depression outer Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: 90 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
26 L 10 2.5Y 4/2 10% F 

  39 SL 20 2.5Y 5/2 
   70 SL 11 2.5Y 6/1 15% D 

  87 SCL 26 2.5Y 5/1 30% D 
 

5% coarse frags, chert 
101 SCL 29 2.5Y 6/1 5% D 

 
7% coarse frags, chert 
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Site: JLH 4C slope Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
25 SL 9 10YR 4/3 

   35 SL 12 10YR 4/4 
   49 SL 18 10YR 4/4 
   59 SCL 21 10YR 4/4 
   70 SL 17 10YR 4/4 
   87 LS 6 10YR 4/6 
   102 LS 5 10YR 4/6 
    

 

Site: JLH 4D rim Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
29 SL 7 

    40 SL 11 
    55 SL 15 
    87 LS 10 
    101 LS 7 
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Site: JLH 2A depression inner Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: 82 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 

28 SiL 15 2.5Y 4/3 
5% D along 
root channels   

57 SiL 12 2.5Y 6/1 2% D 
  74 SiL 20 2.5Y 5/1 30% D 
  98 L 20 2.5Y6/1 20% D 
   

 

Site: JLH 2B depression outer Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: 71 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
34 SiL 7 2.5Y 4/2 5% D 

  66 L 19 2.5Y 6/1 15% P 
  90 SL 18 2.5Y 6/1 20% P 
  98 SL 10 2.5Y 6/1 10% P 
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Site: JLH 2C slope Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
32 SL 7 2.5Y 4/2 

   52 LS 6 2.5Y 6/2 
   

86 LS 4 2.5Y 6/2 

10% P, 
black in 
center of 
firm nodules   

100 S 2 2.5Y 7/1 
    

 

Site: JLH 2D rim Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 8 2.5Y 4/2 

   52 LS 7 2.5Y 5/6 
   77 LS 5 2.5Y 5/4 
   96 

  
2.5Y 6/4 10% D 
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Site: JLH 10A depression inner Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: ponded 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
36 SiL 8 2.5Y 5/2 10% D 

  
54 SL 8 2.5Y 4/2 

 

2.5Y 5/2, 
5% D  

74 SL 18 2.5Y 6/1 10% D 
   

 

Site: JLH 10B depression outer Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: 21 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
54 L 11 2.5Y 4/2 5% 

  72 SL 9 2.5Y 6/1 10% D 
  88 SCL 22 2.5Y 6/1 30% D 
  98 SL 19 2.5Y 6/1 30% D 
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Site: JLH 10C slope Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
39 SL 8 2.5Y 4/2 

   54 SL 10 2.5Y 6/2 3% F 
  70 SL 18 2.5Y 6/4 10% D 
  82 SCL 25 2.5Y 7/1 30% D 
  100 SCL 23 2.5Y 7/1 30% D 
   

 

Site: JLH 10D rim Described: M. Goldman, C. Seitz 4/16/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
26 SL 10 2.5Y 4/2 

   58 SL 14 10YR 4/4 
   101 SL 8 10YR 5/6 
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Site: JLW 1A depression inner Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 75 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
29 SL 13 10YR 2/1 

   48 L 18 2.5Y 6/1 15% D 
  64 CL 34 2.5Y 6/1 10% D 
  82 CL 35 2.5Y 6/1 5% D 
  

90 LS 7 2.5Y 7/1 
5% D (2% 
D)  

 
101 LS 9 2.5Y 7/1 

25% D, 
10% P  

  

 

Site: JLW 1B depression outer Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 98 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 

  
10YR 2/1 

   40 L 18 2.5Y 4/1 2% P 
  

54 CL* 31 5Y 5/1 5% D, 10% P 
5Y 6/1, 
20%  

67 CL* 33 5Y 6/1 3% D, 15% P  
 91 SL 10 2.5Y 7/1 10% D, 2% P  
 101 SL 13 2.5Y 6/1 10% P 

   

  



192 
 

Site: JLW 1C slope Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 97 cm 
Drainage Class: MWD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 8 10YR 3/1 

   40 SL 10 2.5Y 4/1 
   55 LS 7 10YR 5/6 or 7.5YR 4/6 
   69 LS 6 10YR 5/6 or 7.5YR 4/6  25% 

 88 fine SCL 35 5Y 7/1 15% P 
  100 fine SCL 33 

 
5% P 

   

 

 

Site: JLW 1D rim Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: SWPD Texture Group: Coarse 
 
Comments:  
 

 

Depth Texture Clay % Color Conc. Depl. Comments 
21 SL 12 10YR 3/2 

   44 SL 12 2.5Y 5/4 
   51 SL 14 2.5Y 5/4 15% D 35% 2.5Y 7/1 

 84 SL 10 2.5Y 7/1 15% D 
  98 LS 5 2.5Y 5/4 30% D 30% 2.5Y 7/1 3% coarse frags 

110 S 3 2.5Y 7/1 
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Site: JLW 3A depression inner Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 17 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
9 Mucky L 14 10YR 2/1 

   30 SiL 13 10YR 2/1 
   

50 SiL 25 2.5Y 5/1 5% D, 10% P 
5% 10YR 
6/1  

70 SiL 26 2.5Y 6/2 5% D, 10% P  
 82 SiL 24 2.5Y 5/2 10% P 

   

 

Site: JLW 3B depression outer Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 60 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: Same as JLW 3A. Muck to 6 cm. bottom of A at 30 cm. Clay jump at 30 cm. Concentrations 
and depleted matrix at 44 cm. SiL textures. 
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Site: JLW 3C slope Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 13 10YR 2/1 

   52 SL 18 10YR 4/1 
   65 LS 8 10YR 5/1 
   90 SCL 23 2.5Y 7/1 30% P 

 
2% coarse frags, chert 

100 LS 13 2.5Y 6/1 10% D 
   

 

Site: JLW 3D rim Described: M. Goldman, C. Seitz 4/19/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 

30 SL 13 
10YR 
3/2 

  
 

60 LS 9 
10YR 
6/1 

  
 

105 SL 4 2.5Y 6/2 
10% P to 71, 20% D 
to87 10% at 87  
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Site: JLW 2A depression inner Described: M. Goldman, C. Seitz 4/21/15 
Landcover: Crop Water Table: 57 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
6 L 11 10YR 2/2 

   30 L 15 10YR 3/2 
   41 LS 4 2.5Y 5/2 
   62 SL 17 2.5Y 4/1 
   74 SL 14 2.5Y 6/1 10% D 

  83 SL 10 2.5Y 6/2 30% D 
  100 SL 12 2.5Y 7/1 5% D 
   

 

Site: JLW 2B depression outer Described: M. Goldman, C. Seitz 4/21/15 
Landcover: Crop Water Table: 89 cm 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 

32 L 15 10YR 3/2 

10% D 
(along root 
channels)   

40 SL 16 2.5Y 5/2 5% D 
  50 SL 13 2.5Y 6/2 5% D 
  64 SL 18 2.5Y 5/1 

   88 SL 16 2.5Y 6/1 15% D 
  102 SCL 25 2.5Y 6/1 
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Site: JLW 2C slope Described: M. Goldman, C. Seitz 4/21/15 
Landcover: Crop Water Table: 89 cm 
Drainage Class: SWPD Texture Group: Fine 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
24 SL 14 10YR 3/2 

   38 SL 18 10YR 5/3 
   57 SL 18 2.5YR 6/2 
   68 SL 19 2.5YR 6/1 5% D 

  98 SL 19 2.5YR 6/1 25% D 
  108 SCL 28 5Y 6/1 

    

 

Site: JLW 2D rim Described: M. Goldman, C. Seitz 4/21/15 
Landcover: Crop Water Table: 96 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
25 L 12 10YR 4/3 

   43 SL 18 10YR 5/3 
   69 SCL 24 10YR 5/3 
   99 S 2 2.5Y 7/1 25% D 

  
108 LS 4 2.5Y 7/1 20% P 

15% 10YR 
5/4  
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Site: BJC 4A depression inner Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
21 SiL 15 10YR 3/1 

   
30 SiL 15 10YR 3/1 

 

2% 10YR 
4/1  

54 SiCL 37 2.5Y 5/2 30% P 
  

73 SiCL 37 2.5Y 6/1 15% P 
5% 2.5Y 
7/1  

100 SiCL 39 2.5Y 6/1 40% P 
   

Site: BJC 4B depression outer Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: 100 cm 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
36 L 15 10YR 2/1 

   
59 SL 15 2.5Y 4/1 

 

5% 2.5Y 
6/2  

70 SL 18 2.5Y 5/1 10% D, 2% P 
5% 2.5Y 
6/2  

97 CL 38 2.5Y 7/1 30% P 
15% 2.5Y 
4/1  

109 SCL 34 2.5Y 7/1 
 

15% 2.5Y 
4/1  
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Site: BJC 4C slope Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: 71 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
25 SL 10 10YR 3/2 

   

65 LS 5 2.5Y 6/4 

20-40% D 
increasing 
downward   

81 LS 4 2.5Y 6/4 
   96 LS 4 2.5Y 6/4 
   100 S 3 2.5Y 7/1 
    

 

Site: BJC 4D rim Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: 90 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 

21 SL 10 
10YR 
4/3 

   
62 SL 14 2.5Y 5/4 

15% D, 
2% P 

10% 2.5Y 
5/3 

 90 LS 4 2.5Y 6/4 15% D 
  100 S 3 2.5Y 7/2 10% P 
  

        

  



199 
 

Site: BJC 3A depression inner Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: VPD Texture Group: Coarse 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 L (SL) 12 10YR 3/1 

   

72 L (SL) 18 2.5Y 5/1 10% D 

5% 
2.5YR 
6/1  

83 SCL 25 2.5Y 6/1 30% P 
  106 LS (S) 4 2.5Y 7/1 15% P 
   

 

Site: BJC 3B depression outer Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: VPD Texture Group: Fine 
 
Comments: 
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SiL 13 10YR 3/1 

   60 SiL 16 10YR 3/2 5% D 
  89 SiL 22 5YR 6/1 10% P 
  100 SiCL 34 5YR 6/1 35% P 
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Site: BJC 3C slope Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: sand over 20% 
 

Depth Texture Clay % Color Conc. Depl. Comments 

34 SiL 14 10YR 3/2 
 

~1% 2.5Y 6/2 
starting at 30 
cm  

63 SiL 18 10YR 4/1 
   74 SiL 25 10YR 4/1 5% D 30% 2.5Y 6/2 3% BD chert 

85 SiCL 31 10YR 4/1 30% P 35% 5Y 6/1 7% BD chert 
101 SiL 26 5Y 6/1 30% P 

 
4% BD chert 

 

 

Site: BJC 3D rim Described: M. Goldman, C. Seitz 5/5/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: VPD Texture Group: Fine 
 
Comments: sand over 20% 
 

Depth Texture Clay % Color Conc. Depl. Comments 
34 SiL 15 10YR 3/2 

   57 SiL 16 2.5Y 4/1 
 

35% 2.5Y 5/1 
 81 SiL 18 2.5Y 5/1 5% D 

  94 SiL 20 2.5Y 5/1 15% D 40% 5Y 6/1 
 101 SiL 26 5Y 6/1 25% P 
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Site: BJC 5A depression inner Described: M. Goldman, C. Seitz 5/6/15 
Landcover: Crop Water Table: 107 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 

20 L 15 10YR 4/2 
15% D 
along roots  

 47 SiL 23 10YR 4/2 5% D 
  65 SiCL 38 2.5Y 4/1 15% P 
  97 SiC 42 2.5Y 4/1 2.5Y 4/1 5Y 7/1 

 107 SiC 42 2.5Y 5/1 2.5Y 5/1 5Y 7/1 
  

 

Site: BJC 5B depression outer Described: M. Goldman, C. Seitz 5/6/15 
Landcover: Crop Water Table: 88 cm 
Drainage Class: PD Texture Group: Fine 
 
Comments: borderline VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 
14 L 12 10YR 3/2 

   
40 SL 9 10YR 4/2 

15% D 
along roots  

 53 L 15 2.5Y 5/2 
   84 SL 20 5Y 6/1 25% P 

  100 SCL 26 5Y 6/1 15% P 
  110 SCL 34 5Y 6/1 20% P 
 

2% BD chert 
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Site: BJC 5C slope Described: M. Goldman, C. Seitz 5/6/15 
Landcover: Crop Water Table: 95 cm 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

 

Depth Texture Clay % Color Conc. Depl. Comments 
13 SL 9 10YR 4/3 

   67 SL 10 10YR 5/4 
   88 LS 5 10YR 5/6 15% D 

  109 S 3 10YR 5/6 15% D 
   

 

Site: BJC 5D rim Described: M. Goldman, C. Seitz 5/6/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
13 SL 9 10YR 4/3 

   30 SL 8 10YR 4/4 
   70 LS 10 10YR 5/6 
   85 LS 4 10YR 5/6 
  

5% BD chert 
112 LS 4 10YR 5/6 10% P Mn 

 
6% BD chert 
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Site: CSH 14A depression inner Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: borderline VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 

45 SiL 16 10YR 4/3 

15% D 
along 
roots  

 

61 SiL 25 2.5Y 5/2 

10% D 
along 
roots  

 

78 SiCL 32 2.5Y 5/2 

10% D 
along 
roots, 
5% P   

95 SiCL 28 2.5Y 6/1 
  

2% chert 

102 SCL 28 2.5Y 6/1 15% D 
 

20% coarse 
frags 

107 gravel 
 

2.5Y 6/1, 
10YR 5/6  

   

 

Site: CSH 14B depression outer Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: borderline VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 

23 SiL 13 10YR 4/2 

10% D 
along root 
channels   

53 SiL 16 2.5Y 6/2 25% P 
  88 CL 28 2.5Y 6/1 20% P 
  

96 S 3 2.5Y 7/1 

10% P at 
very top of 
horizon   
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Site: CSH 14C slope Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
42 SiL 10 10YR 4/2 

   72 CL 30 2.5Y 5/2 20% P 
  93 LS 6 40% 2.5Y 6/4 

   102 LS 5 5Y 7/1 and 40% 2.5Y 7/4 20% P 
   

 

Site: CSH 14D rim Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
49 L 12 10YR 4/2 

   
72 CL 28 2.5Y 5/3 

25% P Fe 
and Mn  

 85 SL 10 2.5Y 5/2 20% P 
  

100 LS 5 

50% 2.5Y 
7/1 and 
50% 2.5Y 
6/4   
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Site: CSH  12A depression inner Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: 94 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments: borderline VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SiL 16 10YR 4/2 5% D 

  
54 SL 12 2.5Y 5/2 

8% P Fe 
and Mn  

 

69 SL 12 2.5Y 5/2 

12% P 
Fe and 
Mn  

 

82 LS 5 2.5Y 6/1 

5% P Fe 
around 
Mn  

 

103 LS 5 2.5Y 6/1 

40% 
brown, 
red, 
black  

Many colors: orange, black, 
grey 

 

 

Site: CSH  12B depression outer Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: PD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SiL 9 10YR 4/3 

   59 L 12 2.5Y 5/2 5% 
  

75 SL 16 2.5Y 6/1 
15% Mn nodules and 
Fe   

90 LS 5 2.5Y 7/1 
15% P; coffee brown 
masses Fe and Mn   

100 LS 5 
10YR 5/4, 
2.5Y 6/2  
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Site: CSH  12C slope Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 9 10YR 4/3 

   46 SL 10 2.5Y 5/4 5% D 
  62 SL 12 2.5Y 5/4 

   
80 L 14 2.5Y 5/6 

15% Mn, 
10% D Fe  

 
90 CL 29 2.5Y 5/4 

15% Mn, 
10% D Fe  

 102 CL 37 2.5Y 7/1 20% P Fe 
   

 

Site: CSH  12D rim Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 

30 LS 6 
10YR 
4/3 

   
55 LS 6 

10YR 
5/6 

   

100 LS 6 
10YR 
5/6 

10% D 
7.5YR 
5/6, 5% 
Mn  
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Site: CSH  13A depression inner Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: 92 cm 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 7 10YR 4/3 

   53 SL 9 2.5Y 5/4 5% P 
  71 L 12 2.5Y 5/3 5% P 
  87 L 14 2.5Y 4/1 

   101 L 23 2.5Y 6/1 10% D/P 
   

 

Site: CSH  13B depression outer Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
43 SL 7 10YR 4/3 

   52 L 21 2.5Y 5/4 
   65 L 24 2.5Y 5/4 10% P 

  72 SL 19 2.5Y 6/2 30% P 
  82 SL 10 10YR 5/6 

   
93 SCL 21 2.5Y 7/1 

40% 10YR 
5/6  20% gravels 
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Site: CSH  13C slope Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SL 7 10YR 4/3 

   
52 L 23 10YR 5/6 5% D 

10% 10YR 
5/2-5/3  

80 LS 6 10YR 5/6 10% D 
  

89 LS 6 2.5Y 5/3 
40% 10YR 
5/6  

 

100 LS 6 2.5Y6/1 

40% 10YR 
5/6, 5% P 
cemented Fe 
conc.   

 

 

Site: CSH  13D rim Described: M. Goldman, K. Rankin, C. Seitz 5/14/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
30 SiL 9 10YR 4/3 

   70 SiL 25 10YR 4/6 
   87 L 18 10YR 4/6 
   109 LS 6 10YR 5/6 
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Site: MAS 15A depression inner Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 

19 SiL 15 10YR 4/3 
5% D 
along roots  

 36 SiL 17 10YR 4/3 5% D 
  47 SiL 23 2.5Y 5/4 5% D 
  67 SiCL 33 10YR 6/6 

   100 SiCL 37 10YR 5/6 20% P 
   

 

Site: MAS  15B depression outer Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
38 L 16 10YR 4/3 

   56 L 24 2.5Y 5/6 
   70 CL 38 10YR 5/6 5% D 

  
83 C 42 10YR 5/6 

5% D (2% 
P)  

 
107 SiCL 36 10YR 5/6 35% P 

15% 10YR 
6/2  

 

  



210 
 

Site: MAS  15C slope Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
41 SL 12 10YR 4/3 

   
51 SL 14 

10YR 4/3 + 
10YR 5/4  

  67 L 17 10YR 5/4 
   81 SiCL 32 10YR 5/6 5% D (2% P) 

 102 SiCL 34 10YR 5/6 15% D (5% P) 
  

 

Site: MAS 15D rim Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: MWD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
29 SL 9 10YR 4/4 

   48 SCL 23 10YR 5/6 
   

70 LS 5 
7.5YR 
5/6 

   
81 SCL 21 10YR 5/6 

20% 2.5YR 
4/8 10% 10YR 6/2  

107 SCL 21 10YR 6/1 
 

25% 10YR 5/6 + 
25%2.5YR 4/8  
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Site: MAS  19A depression inner Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
26 SiL 13 10YR 4/3 

   36 SiL 14 10YR 4/4 
   54 SiCL 31 2.5Y 5/4 
   104 SiCL 37 10YR 5/4 5% D 

   

 

Site: MAS  19B depression outer Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
29 L 16 10YR 4/3 

   45 L 18 10YR 5/6 
   72 CL 34 10YR 5/6 
   

93 CL 36 2.5Y 6/4 10% P 
10% 10YR 
7/2  

107 SCL 21 10YR 5/8 
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Site: MAS  19C slope Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
28 SL 12 10YR 4/3 

   58 SL 17 10YR 4/4 
   77 SCL 21 10YR 5/6 
   

101 CL 28 10YR 5/6 
5% D 
(2% P)  

  

 

Site: MAS  19D rim Described: M. Goldman, K. Rankin 6/1/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
27 SL 7 10YR 4/3 

   44 SL 11 10YR 5/4 
   60 SL 13 10YR 5/6 
   72 L 18 10YR 5/6 
   98 L or SiL 16 10YR 5/6 10% D 

  107 S 3 10YR 5/6 
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Site: MAS  9A depression inner Described: M. Goldman, K. Rankin 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 

24 SiL 12 
2.5YR 
4/4 

   
93 SiL 22 

2.5YR 
4/4 

  

clay increases gradually from top 
from 20 to 24% 

102 SiL 24 
2.5YR 
4/3 

    

 

Site: MAS  9B depression outer Described: M. Goldman, K. Rankin 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

 

Depth Texture Clay % Color Conc. Depl. Comments 
25 L 14 10YR 4/4 

   
67 L 17 10YR 4/4 

  

gradual increase to 
bottom 

102 SiL 17 10YR? 
   110 SiL 21 10YR 3/3 
    

  



214 
 

Site: MAS  9C slope Described: M. Goldman, K. Rankin 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  

 

 

Depth Texture Clay % Color Conc. Depl. Comments 
36 SL 10 10YR 4/4 

   53 SL 14 10YR 5/6 
   74 SL 19 10YR 5/6 
   

89 SCL 25 7.5YR 5/6 
10% Fe 
masses  

masses 2.5YR 
4/6 

100 SCL 33 7.5YR 5/6 
10% Fe 
masses  

  

 

Site: MAS  9D rim Described: M. Goldman, K. Rankin 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Fine 
 
Comments:  
 

 

Depth Texture Clay % Color Conc. Depl. Comments 
25 SiL 20 10YR 4/4 

   50 L 27 10YR 5/6 
   76 SL 18 10YR 5/6 
   100 SL 19 10YR 5/6 
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Site: OVW  5A depression inner Described: M. Goldman, K. Rankin 6/4/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: Probably originally VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 

23 SiL 14 2.5Y 4/3 10% D along roots 
3% 10YR 
6/1  

36 L 25 2.5Y 4/3 10% D along roots  
 44 L 24 10YR 6/1 5% D along roots  
 55 SiCL 28 10YR 6/1 25% P 

  69 SiC 44 10YR 6/1 25% P 
  83 L 26 5Y 6/1 15% P 
  100 SiC 43 5Y 6/1 10% P 
   

 

Site: OVW  5B depression outer Described: M. Goldman, K. Rankin 6/4/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: probably originally VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 

25 iL 15 2.5Y 4/3 

5% D 
along 
roots  

 

40 L 24 2.5Y 6/1 

5% D 
along 
roots  

 50 CL 28 5Y 6/1 15% P 
  75 CL 29 5Y 7/1 20% P 
 

3% chert gravels 
88 CL 30 5Y 7/1 25% P 

 
3% gravels 

97 C 45 5Y 7/1 15% P 
 

3% gravels 

104 SCL 23 5Y 7/1 10% P 
 

coarse white grains shell 
fragments 
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Site: OVW  5C slope Described: M. Goldman, K. Rankin 6/4/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: probably originally VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 
29 SL 14 2.5Y 4/3 

   
47 L 18 2.5Y 4/2 

2% along 
roots  

 60 CL 28 2.5Y 5/1 10% P 
  83 CL 36 2.5Y 5/1 20% P 
  94 L 26 5Y 6/1 30% P 
  102 CL 28 5Y 7/1 25% P 
   

 

Site: OVW  5D rim Described: M. Goldman, K. Rankin 6/4/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
21 SiL 13 10YR 4/3 

   36 SiL 16 10YR 4/6 
   49 CL 29 10YR 4/6 
   64 L 23 10YR 4/6 
  

5% gravel 
71 SL 14 10YR 5/6 

  
15% gravel 

100 LS 6 10YR 5/6 
  

5% gravel 
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Site: OVW  2A depression inner Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments: probably originally VPD 
 

Depth Texture Clay % Color Conc. Depl. Comments 

25 SiL 15 10YR 4/3 

5% D 
along 
roots  

 

44 SiL 14 10YR 3/2 
 

5% 10 YR 4/2 
starting at 30 
cm  

54 SiL 26 2.5Y 7/1 10% D 
  60 SiL 26 2.5Y 7/1 15% P 
  72 SiCL 36 2.5Y 6/1 30% P 
  85 SiC 41 5Y 6/1 45% P 
  105 SiC 44 5Y 6/1 20% P 
   

 

Site: OVW  2B depression outer Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
26 L 14 10YR 4/3 

   43 L 26 2.5Y 6/2 10% D 
  54 CL 29 2.5Y 6/1 20% P 
  63 CL 32 2.5Y 6/1 25% P 
  92 SCL 24 2.5Y 7/1 30% P 
  106 L 16 5Y 7/1 35% P 
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Site: OVW  2C slope Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

 

Depth Texture Clay % Color Conc. Depl. Comments 

21 SL 13 10YR 4/3 
5% D starts 
at 13 cm  

 39 SCL 23 10YR 5/6 
   46 SCL 28 10YR 5/6 
   66 SL 15 10YR 5/8 
   92 LS 8 10YR 5/8 
   102 S 6 10YR 5/8 
    

 

Site: OVW  2D rim Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: WD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
40 L 11 10YR 3/2 

   55 CL 30 10YR 4/4 20% D 
  70 SCL 25 10YR 4/4 10% D 
  100 LS 8 10YR 5/6 15% D 
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Site: OVW  7A depression inner Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
19 SiL 25 10YR 3/2 

   42 SiCL 36 2.5Y 6/1 20% P 
  63 SiCL 34 2.5Y 7/1 15% P 
  81 SiCL 28 5Y 6/1 15% P 
  100 C (SiC) 41 5Y 6/1 20% P 
  103 C 42 5Y 6/1 20% P 
   

 

Site: OVW 7B depression outer Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: PD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
20 SiL 17 10YR 4/3 

   
30 SiL 17 10YR 4/2 2% D 

2% 2.5Y 
6/2  

42 SiL 25 10YR 4/2 2% D 
5% 2.5Y 
6/2  

62 SiCL 29 2.5Y 6/1 15% P 
  74 CL 33 5Y 6/1 25% P 
  82 SCL 25 5Y 6/1 15% P 
  102 LS 7 5Y 6/1 2% P 
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Site: OVW 7C slope Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: VPD Texture Group: Fine 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
23 L 15 10YR 3/2 

   
33 L 13 10YR 3/2 

 

5% 10YR 
6/1  

48 SCL 23 2.5Y 6/1 10% P 
  69 SCL 22 10YR 6/1 40% P 
  77 SCL 20 2.5Y 7/1 35% P 
  96 SL 19 2.5Y 7/1 15% P 
  107 SCL 26 5Y 7/1 5% P 
   

 

Site: OVW 7D rim Described: M. Goldman, K. Rankin, C. Seitz 6/12/15 
Landcover: Crop Water Table: not recorded 
Drainage Class: SWPD Texture Group: Coarse 
 
Comments:  
 

Depth Texture Clay % Color Conc. Depl. Comments 
37 SL 11 2.5Y 4/2 

   71 LS 7 2.5Y 6/2 
   87 SL 19 2.5Y 6/2 30% P 

  110 SCL 22 10YR 7/1 30% P 
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