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Automatic speaker recognition in uncontrolled environments is a very 

challenging task due to channel distortions, additive noise and reverberation. To 

address these issues, this thesis studies probabilistic latent variable models of short-

term spectral information that leverage large amounts of data to achieve robustness in 

challenging conditions. 

Current speaker recognition systems represent an entire speech utterance as a 

single point in a high-dimensional space. This representation is known as 

“supervector”.  This thesis starts by analyzing the properties of this representation. A 

novel visualization procedure of supervectors is presented by which qualitative 

insight about the information being captured is obtained. We then propose the use of 

an overcomplete dictionary to explicitly decompose a supervector into a speaker-

specific component and an undesired variability component. An algorithm to learn the 

dictionary from a large collection of data is discussed and analyzed. A subset of the 

entries of the dictionary is learned to represent speaker-specific information and 



  

another subset to represent distortions. After encoding the supervector as a linear 

combination of the dictionary entries, the undesired variability is removed by 

discarding the contribution of the distortion components. This paradigm is closely 

related to the previously proposed paradigm of Joint Factor Analysis modeling of 

supervectors. We establish a connection between the two approaches and show how 

our proposed method provides improvements in terms of computation and recognition 

accuracy. 

An alternative way to handle undesired variability in supervector 

representations is to first project them into a lower dimensional space and then to 

model them in the reduced subspace. This low-dimensional projection is known as “i-

vector”. Unfortunately, i-vectors exhibit non-Gaussian behavior, and direct statistical 

modeling requires the use of heavy-tailed distributions for optimal performance. 

These approaches lack closed-form solutions, and therefore are hard to analyze. 

Moreover, they do not scale well to large datasets. Instead of directly modeling i-

vectors, we propose to first apply a non-linear transformation and then use a linear-

Gaussian model. We present two alternative transformations and show experimentally 

that the transformed i-vectors can be optimally modeled by a simple linear-Gaussian 

model (factor analysis). We evaluate our method on a benchmark dataset with a large 

amount of channel variability and show that the results compare favorably against the 

competitors. Also, our approach has closed-form solutions and scales gracefully to 

large datasets. 

Finally, a multi-classifier architecture trained on a multicondition fashion is 

proposed to address the problem of speaker recognition in the presence of additive 



  

noise. A large number of experiments are conducted to analyze the proposed 

architecture and to obtain guidelines for optimal performance in noisy environments. 

Overall, it is shown that multicondition training of multi-classifier architectures not 

only produces great robustness in the anticipated conditions, but also generalizes well 

to unseen conditions. 
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Chapter 1 

 

1. Introduction 

Automatic speaker recognition is concerned with designing algorithms that 

infer the identity of people by their voices. This is a very challenging task since the 

speech signals are highly variable. The sources of variability can be classified in two 

types: intrinsic and extrinsic. When interested in making inferences about identity, 

intrinsic sources of variability include: the linguistic message, language, vocal effort, 

speaking-style, emotional and health state. Extrinsic sources are the channel 

distortions introduced by acquisition devices (e.g., telephones), and environmental 

distortions like additive noise and room reverberation.  

In order to design systems that are able to cope with such sources of 

variability in a wide number of domains, at least three key questions need to be 

addressed: i) how to train statistical models that leverage large amounts of data and 

are efficiently adapted to scenarios with limited amounts of data; ii) how to capture 

and represent diverse speaker-specific information that provides complementary 
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robustness to different sources of variability; iii) how to adaptively select the optimal 

available representation for the condition at hand. 

To partially address the first question―and mostly due to the emphasis placed 

by the NIST speaker recognition evaluations [1]―the main focus of the speaker 

recognition community in the past decade has been on coping with channel mismatch 

between speech samples. In particular, recent advances in speaker recognition are not 

necessarily due to new or better understanding of speaker characteristics that are 

informative or interpretable by humans; rather, they are the result of improvements in 

machine learning techniques that leverage large amounts of data. 

Following this trend, in this thesis we focus on the first and third questions 

mentioned above. Specifically, we advance the state-of-the-art in speaker recognition 

systems based on probabilistic latent variable models of short-term spectral 

information that leverage large amounts of data. By doing so, we are able to obtain 

significant robustness to channel mismatch as well as additive noise. 

Before continuing with a more detailed exposition of the organization of this 

thesis, the next section motivates this work by way of an example. 

1.1. Motivation 

Since 1996, the National Institute of Standards and Technology (NIST) has 

organized yearly evaluations of automatic speaker recognition systems [1]. This has 

provided a benchmark by which the technological improvements can be objectively 

assessed. The top panel of Figure 1.1 shows how state-of-the-art speaker verification 

systems―representative of the years indicated in the horizontal axis―would perform 
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on the latest NIST evaluation data of 2010 (data recorded by both landlines and cell 

phones) [1]. The results are presented in terms of Equal Error Rate (EER) which 

corresponds to the value in which the probability of miss detection equals the 

probability of false acceptance. Notice that, according to this dataset, an 8-fold 

improvement has occurred within 10 years (from around 16% EER of a system from 

2001 to the 2% of a system from 2011).  

 
(a) 

 
(b) 

Figure 1.1: (a) Performance of the representative state-of-the-art technologies of the years in 

the horizontal axis on telephone data from the latest NIST 2010 evaluation
1
. (b) Performance 

degradation in terms of Equal Error Rate (EER) of a state-of-the-art speaker verification 

system as a function of SNR of the test data for babble and car noises. 

 

                                                 

 
1 The numbers of Figure 1.1 (a) were provided by Brno University of Technology. 
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The numbers in the top panel provide a context for the results shown in the 

lower part of Figure 1.1. In particular, the lower panel shows how the performance of 

a state-of-the-art system (representative of 2011) decreases as function of the signal to 

noise ratio (SNR) of the test data (for babble and car noises). A system that produces 

a 2% EER in a 20dB scenario performs at a rate of around 14% for a 6 dB SNR. In 

other words, a 6 dB SNR produces a performance degradation equivalent to the 

improvements obtained over 10 years of research. This drastic decrease in 

performance illustrates the need for robust mechanisms and motivates the work of 

this thesis. 

1.2. Dissertation Outline 

The goal of this thesis is to improve the robustness of automatic speaker 

recognition systems so that they can be deployed in challenging scenarios in which 

channel distortions, additive noise, and reverberation are present. Specifically, we aim 

at advancing the state-of-the-art in speaker recognition systems―based on 

probabilistic generative models of short-term spectral information―that leverage 

large amounts of data. 

The field of automatic speaker recognition is approximately 50 years old; with 

some of the earliest work dating back to the 1960s. A large amount of research has 

been conducted since then and great technological advances have been accomplished. 

For this reason, Chapter 2 presents a brief summary of the basic concepts in the field 

to provide a context for the work presented in this thesis. 
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A common theme among current speaker recognition systems based on short-

time spectral information is the representation of a speech utterance as a single point 

in a high-dimensional space. This representation is denoted as “supervector” and all 

the systems studied in this thesis make us of it. Chapter 3 is dedicated to gaining a 

better understanding about the nature of this representation. A novel visualization 

procedure of supervectors is presented by which qualitative insight about the 

information being captured can be obtained. Based on this visualization approach, the 

Switchboard-I database (SWB-I) is used to establish a relationship between a data-

driven partition of the acoustic space and a knowledge based partition in terms of 

broad phonetic classes. 

The supervector formalism presented in Chapter 3 provides a mechanism to 

obtain a fixed-length representation of a variable length object. However, the direct 

use of this representation in a speaker recognition system is not optimal; since 

supervectors not only capture speaker-specific information but also contain a large 

amount of undesired variability entangled with the desired information. Hence, there 

is a need for a mechanism to disentangle the speaker-specific information and the 

undesired variability captured in the supervector representations. This is the objective 

of the work presented in Chapters 4, 5, and 6. The three chapters make use of 

probabilistic generative models with latent variables.  

The use of speaker recognition systems based on supervector representations 

modeled by Joint Factor Analysis (JFA) advanced the state-of-the-art significantly 

from 2004 until 2008. The main goal of Chapter 4 is to provide a connection between 

the JFA paradigm and the use of signal coding in overcomplete dictionaries learned 
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from data. Establishing this connection allowed for cross-pollination between fields 

and resulted in two algorithmic improvements over the baseline JFA system. One 

improvement came in the form of improved computation, whereas the other came in 

terms of improved recognition accuracy. 

A significant breakthrough occurred around 2010 by using a Factor Analysis 

model of supervectors as an unsupervised dimensionality reduction technique [2], [3]. 

The computed factors were denoted as “i-vectors” and explicit modeling of speaker-

specific and inter-session variability was performed in this lower-dimensional space. 

However, i-vectors were shown to exhibit non-Gaussian behavior and complex non-

Gaussian generative models were needed for optimal performance [4]. As an 

alternative, Chapter 5 proposes the use of two different non-linear transformations of 

i-vectors to reduce their non-Gaussian behavior. After applying either one of these 

transformations, i-vectors can be successfully modeled by a simple linear-Gaussian 

model. The proposed transformations are shown to be extremely effective and 

produce the same or even better performance as the more complex alternatives 

(Heavy-tailed models based on Student’s t distributions) while maintaining the 

simplicity and high scalability of the linear-Gaussian models. Results are presented 

on data from the latest NIST 2010 speaker recognition evaluation. The performance 

obtained for conditions with a high degree of channel variability is state-of-the-art. 

Also working with i-vectors, Chapter 6 explores noise robustness. A novel 

multi-classifier architecture trained on a multicondition fashion is proposed to address 

the problem of speaker recognition in the presence of additive noise. A large number 

of experiments are conducted to analyze the proposed architecture, and to obtain 
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guidelines for optimal performance in noisy environments. Overall, it is shown that 

multicondition training of multi-classifier architectures not only produces great 

robustness in the anticipated conditions, but also generalizes well to unseen 

conditions during training. The latest NIST 2010 evaluation data is used to validate 

these results. 

Finally, Chapter 7 summarizes the contributions of this thesis and discusses 

future perspectives. 

 



 

 

 

8 

 

Chapter 2 

2. Speaker Recognition: A Review 

The early research on speaker recognition was almost entirely limited to 

human listening; and it was mostly motivated by the desire to produce natural 

sounding speech from speech codecs [5]. Although the synthetic speech generated by 

the vocoders was quite intelligible, it was only partially successful in carrying the 

speaker-specific information necessary to easily identify the speakers. This problem 

motivated some initial research about the factors that carry speaker-specific 

information in the speech signal [6]. 

In the midst of these studies, in the early 1960s, the influential (and highly 

controversial
2
) work of Lawrence Kersta about visual spectrographic voice 

identification was published [7]. The results of this work, the availability of digital 

computers, and the curiosity to see if machines could duplicate human performance, 

                                                 

 
2 The use of the term “voiceprint”, in an attempt to equate spectrograms to the characteristic patterns of human fingerprints, 

created false expectations about the reliability of visual inspection of spectrograms. Numerous criticisms have been presented 

with respect to the term “voiceprint” since it ignores the behavioral nature of the speech signals (see [94], [89] and references 
therein for more details). 
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motivated one of the first attempts at automatic speaker recognition by Pruzansky [8]. 

In this pioneering work, a long-term average spectrum feature vector was computed 

using a filterbank. Then, a similarity score was obtained by a simple Euclidean 

distance. Improvements upon this early work came in the form of: modified 

representations of spectral information [9]; alternative sources of speaker information 

(prosody) [10], better modeling of the temporal dynamics [11], and improved 

statistical modeling [12]. 

According to the historical review of Furui [13], the first fully automated 

large-scale (hundreds of speakers) speaker verification system with a high operational 

performance was developed by Texas Instrument. Since then, the field of automatic 

speaker recognition has attracted a lot of attention and significant progress has been 

made both in the way the speaker-information is captured as well as the statistical 

modeling techniques. A large number of reviews/tutorials have been published over 

the years. Two of the most recent ones are [14] and [13]. Also, less recent, but still 

quite instructive, are the classical reviews of Campbell [15] and Atal [5]. 

In the following, we present a succinct exposition of some basic concepts 

necessary to contextualize the work presented in this thesis (referring the reader to the 

abovementioned reviews for details). First we describe important sources of speaker-

specific information in the speech signals. Then we provide some technical 

definitions and applications of speaker recognition systems. This is followed by an 

overview of the basic constituent elements of a generic speaker recognition system. 

Moreover, the classical paradigm of speaker recognition based on Gaussian Mixture 
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Models is reviewed. Finally, we survey some of the most common techniques used to 

add robustness to speaker recognition systems. 

2.1. Speaker Specific Information in the Speech Signal 

The speech signal is produced by the interaction of three mechanisms: the 

lungs, the vocal folds in the larynx, and the articulators. The lungs produce the 

airflow that is modulated by the vibration of the vocal folds in the larynx. The 

resulting acoustic signal is further transformed by the complex orchestration of the 

articulators―configurable elements of the voice production mechanism such as the 

tongue, jaw, soft-palate and lips. Changes in the way the vocal fold vibrate (including 

no vibration), and the vocal tract shape resulting from the configuration of the 

articulators are reflected on the acoustical properties of the signal. Many outstanding 

reviews exist about speech physiology (for example, [16]). Here we will focus on 

those aspects that are particularly relevant to the identity of the speaker. 

 
Figure 2.1: Hierarchy of speaker-specific information and associated determinant factors. 

The speech signal conveys information about the physical, psychological and 

social characteristics of the speaker [17]. This information is present at different 
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levels. Figure 2.1 shows a possible hierarchical classification of these sources of 

information as well as some associated factors.  

 Human listeners use these sources of information in a natural way to 

discriminate among speakers [18]. The idiosyncratic combination of these sources 

(e.g., low pitch, peculiar timbre, unique laughter, word choice, etc) facilitates an 

accurate identification. It is the unique relationship between these features that 

characterizes an individual’s voice. Also, for human listeners, there is a big different 

in the way identification is carried out depending on the familiarity of the listener 

with the speaker (e.g., parents, spouse, children, etc) [18]. However, this distinction is 

not currently applicable to automatic speaker recognition systems. Nonetheless, the 

way automatic speaker recognition is carried out is consistent with the theory 

presented, in Chapter 6 of [18], about how humans discriminate between unfamiliar 

voices. 

 
Figure 2.2: Information-theoretic model of speech production. (Adapted from [19]). 

The underlying factors conditioning each of these sources in Figure 2.1 are 

very diverse. From a hierarchical perspective, at the lowest level, the physical 

characteristics of the individual, as well as the anatomical characteristics of the vocal 

tract, are reflected on the spectro-temporal composition of the signal. At the highest 
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level, the habits and customs learned over a long period of time are the primal factors 

in the selection of words and semantic structures to convey a message. 

Nowadays, one of the most successful frameworks for speech recognition is 

based on the formulation of the speech production chain in terms of an information-

theoretic model [20]. This perspective provides a very useful conceptual framework 

that has also permeated to the area of automatic speaker recognition [21]. From this 

framework, Figure 2.2 shows the constituent stages of the speech production chain 

along with a hierarchy of the related levels of speaker-specific information. There are 

two main types of processes involved in this chain. On the one hand, there are 

psychological processes related to the higher levels of information. On the other hand, 

the lower levels of the hierarchy are associated with physiological processes. The 

high-complexity and elevated degree of abstraction that characterizes the 

psychological processes provides a partial explanation about the difficulty involved in 

the automatic extraction of the associated sources of speaker-specific information. 

Analyzing Figure 2.2 in detail we can observe that the starting from an 

intended message M, the speaker selects a sequence of words W (modeled by the 

linguistic channel). At this level of abstraction, there are potential sources of speaker-

specific information such as the particular tendencies to convey meaning as well as 

the conversational patterns of an individual [22]. Moreover, with respect to the 

linguistic channel, the particular word selection to convey a given message is also a 

potential source of information. Therefore, at the lexical level, the patterns of word 

usage of an individual speaker project its identity on the signal [23].  
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Following the linguistic channel, the articulatory channel transforms a discrete 

sequence of words into a continuous speech signal S in accordance with a set of 

phonological rules [24]. This stage is very rich in speaker-specific information [19]. 

The distinctive characteristics introduced at this stage belong to the levels of 

phonetic, prosodic and spectral information. The sounds produced in this stage are the 

results of physiological activities involving the interaction of the nervous system and 

the muscles. The orchestrated movements of the articulators transform the airflow to 

generate the acoustic signal S that passes through the acoustic channel to produce the 

measured speech signal A. This acoustic channel models both the physiological 

characteristics of the speaker as well as the extrinsic sources of variability such as the 

transmission channel and environmental noise. 

Representative examples of the practical application of high level sources of 

information in recognition systems are the use of: conversational patterns [22]; lexical 

ideolects [23]; phonotactics [25]; and prosodic information [26].  

Despite the availability of high level sources of speaker recognition, the vast 

majority of current automatic recognition systems relay mostly (if not uniquely) on 

low level information represented in terms of short-term spectro-temporal patterns of 

energy allocation. This is mostly due to the fact that the performance of systems 

based on spectral information is (at least) an order of magnitude better than the most 

competitive systems based on higher level information (see [27] for example). Also, 

in order to obtain a reliable model of the speaker based on higher levels of 

information, the amount of necessary speech is much larger than in the case of 

spectral information [21]. Nonetheless, the diversity of representation brought by the 
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use of multiple sources of information is an effective way to obtain robustness to 

environmental noise and channel distortions [27]. In this thesis we focus on low level 

information and achieve robustness by improving the statistical models and the 

representation of the spectral information. 

2.2. Automatic Speaker Recognition: Definitions and 

Applications 

The term speaker recognition is normally used in a generic way in the speaker 

recognition community. It refers to any mode of operation that involves inferring the 

identity of a speaker. Within this generic term we can further differentiate between 

two particular tasks: 

 Speaker identification: This mode of operation is concerned with 

associated an unknown with one particular speaker within a predefined 

set of speakers. Depending on the nature of the set it can be subdivided 

between open-set and closed-set identification. In the open-set 

situation it is possible that the observed speech sample might not 

belong to any of the predefined set of speakers. On the contrary, 

closed-set identification assumes that the observed sample belongs to 

one of the speakers in the set. Notice that open-set identification is 

more involved since it is necessary to establish a mechanism to 

determine if the test sample really belongs to any of the available 

speakers. 
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 Speaker verification: This mode of operation corresponds to a two-

class (binary) classification problem in which we are interested in the 

question of whether a collection of utterances belong to the same 

speaker or not. Traditionally, a subset of utterances is collected in an 

initial enrollment stage and a statistical model of the speaker is built 

based on that data. Then the test utterance is compared against the 

model to produce a verification score. If the score is larger than a 

threshold (defined based on the application at hand) then the collection 

of utterances used for train and the test utterance are considered to 

come from the same speaker. 

Another important difference between speaker recognition systems is based 

on the characteristics of the spoken text. In particular we can differentiate between the 

following: 

 Text-dependent: In this scenario, the same speech content is required 

in all the utterances in order to produce a similarity score. Typical 

examples of this mode of operation are the use of a user PIN number 

or password. Alternatively, instead of requiring a fix utterance, a text-

prompted strategy can be used in which the user is asked for a 

collection of words or short phrases from a predefined collection. 

Also, given two speech samples of unconstrained text content, an 

automatic speech recognition system can be used to find multiple 

occurrences of the same “token” and then perform text-dependent 

recognition based on them. This strategy assumes that there is enough 
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speech such that the probability of having multiple occurrences is 

high. 

 Text-independent: This modality does not impose any constraints in 

the linguistic content of the speech samples involved in the verification 

process. It is therefore less restrictive and also presents more 

challenges due to the lack of control over the content. 

The particular choice of verification/identification and text-dependent/-

independent will mostly depend on the particular application of the speaker 

recognition system. A possible grouping of applications follows: 

 Authentication: This is the typical application for which a password 

would be use. Instead, a speaker verification system can be used to 

obtain access to a physical facility or login into any internet site. 

 Content indexing: In this context the speaker recognition system is 

used to automatically index a multimedia collection (i.e., broadcast 

news, audio book archives, movies, etc) to facilitate searching and 

accessing content. 

 Forensic application: In this context the similarity between speech 

samples is used as evidence for investigative purposes or in a court of 

law. The improved performance of the recognition systems is 

attracting more attention to this kind of applications [28]. 

In the next section we introduce the typical structure of a speaker recognition 

system. 
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2.3. Structure of Speaker Recognition Systems 

The problem of speaker recognition, like the majority of problems in pattern 

recognition, can be divided into two parts: feature extraction and similarity 

computation. The feature extraction part is also denoted as “front-end” and the 

similarity computation as “back-end”.  

The ultimate goal of the front-end is to generate a representation from the 

speech signal that emphasizes the speaker-specific information while removing any 

undesired variability. This can be stated more formally in the following list of 

desiderata [29]: 

 Efficient representation of speaker-specific information (i.e., small 

within-speaker variability and large between-speaker variability) 

 Easy to compute 

 Stable over time 

 Occur naturally and frequently in speech 

 Not be susceptible to mimicry 

 Robust to environmental distortions 

Usually, a speech utterance is converted into a sequence of feature vectors by 

densely sampling the signal in regular temporal intervals. In the case of low level 

spectral information the speech signal is analyzed using a short-time running window 

of approximately 20 to 40 ms that is shifted over time in 10 ms increments. The short-

time segment of speech is normally denotes as “speech frame” and correspond to 

pseudo-stationary segments of speech. Among the most typical parameterizations of 

the information contained on a speech frame we find: 
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 Linear Prediction Cepstral Coefficients (LPCC) [30]: Based on a 

Linear Predictive Coding (LPC) [31] analysis of the speech frame, the 

set of prediction coefficients (typically 10 or 12) is transformed into a 

set of cepstral coefficients. The LPC analysis is based on an all-pole 

model of the speech signal that provides an efficient parametric 

representation of the spectral envelope. 

 Perceptual Linear Prediction (PLP) [32]: Based on LPC analysis of 

a speech frame with several psychophysically based spectral 

transforms inspired from models of human perception. The 

transformations provide a small degree of robustness. 

 Mel-Frequency Cepstral Coefficients (MFCC) [33]: Based on 

Fourier analysis of the speech frame and followed by a reduction of 

the frequency resolution by means of spectral integration using a 

collection of triangular filers spaced according to a mel-frequency 

scale. The output of the filters is mapped into the logarithmic domain 

and then projected onto a Discrete Cosine Transform (DCT) basis to 

reduce the correlation between the coefficients. 

Each of the features described above can be finely tuned for the application at 

hand by optimizing the configuration of the building blocks of the feature extraction 

process. As an illustration, Figure 2.3 shows the typical signal processing chain used 

to compute MFCCs for speaker recognition.  
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Figure 2.3: Signal processing chain of a conventional configuration of MFCCs for speaker 

recognition along with visual representations at three different points. 

The first step involves computing a spectrogram based on the Short-Time 

Fourier Transform (STFT) that is applied over 20 ms windows with a 10 ms temporal 

increment. A lower resolution version of the spectrogram is obtained by averaging the 

spectral components of adjacent frequencies of the spectral slices (i.e., FFT 

coefficients of a speech frame) of the spectrogram. This spectral integration results in 

a dimensionality reduction and is performed according to a mel-frequency spacing of 

a collection of triangular filters [33]. For example, in the case of an 8 KHz sampling 

rate (4 KHz of speech bandwidth) the number of FFT coefficients is 128 and the 

number of mel-filters is typically 24.  

Moreover, the output of the mel-filters is transformed into the logarithmic 

domain and projected into an orthogonal DCT basis. In practice, the first coefficient 

of the DCT (which corresponds to the geometric average of energy in dBs) is either 



 

 

 

20 

 

discarded or sometimes replaced by the normalized log-energy of the speech frame. 

Also, only a subset of the remaining higher-order coefficients is preserved.  

For speaker recognition applications it is customary to keep a larger number 

of DCT coefficients than for speech recognition (i.e., 19 coefficients as opposed to 

13). By keeping a larger number of coefficients the details of the spectral envelope 

are represented with more accuracy.  

Finally, temporally-steady spectral distortions are removed from the 

coefficients by applying normalizing transformations (see Section 2.5 for typical 

options), and a larger temporal context is obtained by computing first (delta) and 

second order (delta-delta) differences with the adjacent frames (normally a span of 2 

frames from the left and right). In this way, an initial vector with 19 base DCT 

coefficients plus log-energy would result in a vector of 60 MFCCs by appending the 

delta and double-delta components to the base coefficients. Therefore, the final result 

corresponds to a temporal sequence of 60 dimensional MFCCs computed every 10 ms 

from temporal spans of around 100 ms. 

Once a mechanism to extract information from a speech utterance is in place, 

the back-end is responsible for computing a similarity score between different 

utterances. There are two phases in the use of the back-end system: training and 

evaluation.  

During the training phase, data from a particular speaker is used to build a 

model. It is also possible to require a large collection of utterances (development 

data) from a background population of speakers in order to build the speaker model 

(an example of this is given in the next section). Once a model is available, the back-
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end can operate in the evaluation mode and produce a similarity score between a 

speaker’s model and a sample test utterance. Depending on the strategy used to 

construct the model, the score will have a probabilistic interpretation or it will simply 

quantify the similarity or distance between two speech samples. In both cases a higher 

number indicates a higher similarity.  

A possible partition of back-end types in terms of the training paradigm is 

between non-probabilistic and probabilistic models. The non-probabilistic models 

use the training data to build a discriminative function that directly maps the input 

data into a similarity score (or class label in case of hard-decisions). A typical 

example of this approach that has been very successful in the speaker recognition 

community is the use of Support Vector Machines [34], [35]. In the case of 

probabilistic models, a further differentiation can be made between generative or 

discriminative [36] approaches. The main distinction between these two subclasses is 

that generative models attempt to model the class-conditional distributions, whereas 

the discriminative models target the posterior distribution of the classes directly. 

Notice that the class-conditional can be used along with the prior distributions to 

obtain the posterior probabilities using Bayes’ rule. However, directly attempting to 

model the posterior distributions typically results in a smaller number of parameters 

[36] which may produce better estimates for a given fixed dataset.  

All the speaker recognition systems presented in this thesis belong to the class 

of probabilistic generative models. Also, all of them evolved from the classic 

paradigm introduced by Reynolds et al. [37] based on adapted Gaussian Mixtures 

Models. For this reason, we review this paradigm in the next section. 
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2.4. Adapted Gaussian Mixture Models 

The state-of-the-art systems discussed in this thesis evolved from the classic 

paradigm of Maximum a Posteriori (MAP) adapted Gaussian Mixture Model (GMM) 

introduced by Reynolds et al. [37]. As illustrated in Figure 2.4, this scheme can be 

seen as a likelihood ratio (LR) detector between a GMM model of a given speaker, 

and an average background GMM model, the so called Universal Background Model 

(UBM).  

 
Figure 2.4: Speaker verification system based on likelihood ration between MAP-adapted 

speaker model and Universal Background Model GMM. 

The UBM model is trained from a large collection of data using a Maximum 

Likelihood (ML) objective by the Expectation-Maximization (EM) algorithm [38]. It 

serves two purposes. The first one is to provide a model of a “generic” average 

speaker that will be used to compute a likelihood ratio. The second one is to provide a 

prior distribution to perform Maximum a Posteriori training of the speaker model 

[39]. Specifically, the parameters of the UBM are used to define the hyper-parameters 

of the conjugate prior distributions used for each of the Gaussians in the GMM of the 

speaker. Although it is possible to adapt all the parameters of the UBM (i.e., weights, 

means and covariance matrices) it is customary to only adapt the means of the 

Gaussian. This strategy (only adapting the means of the GMM from the UBM) has 
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been proven empirically optimal by many researchers in the field for applications in 

which the amount of data available to train a speaker model is in the order of minutes 

[37]. Conceptually, this implies that the speaker-specific information contained in the 

training utterance is only encoded in the mean parameters of the speaker’s GMM. 

That is, the particular ways in which a given speaker differs from a generic average 

speaker represented by the UBM are completely captured in the differences between 

the means of the UBM and the mean-only MAP-adapted speaker GMM.  

Figure 2.5 illustrates this principle. The left picture depicts the configuration 

of a 3-mixture UBM that has already been trained in a two-dimensional feature space. 

On the right picture, the green crosses represent the feature vectors of the speaker’s 

training utterance (e.g., MFCCs). Then, the GMM of the speaker (solid ellipsoids) is 

obtained by Bayesian adaptation of the means of the UBM [37]. Notice that only the 

means of the two Gaussians that are close to the observed data (responsible for the 

data) are adapted while the third one remains the same. Hence, for regions of the 

feature space in which no data is observed during training, the speaker model backs-

off to the prior knowledge captured by the UBM (average generic speaker).  

 
Figure 2.5: MAP adaptation of the means of the UBM based on observed data from speaker. 

Note that only the means of the mixtures responsible for the data are moved. 
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2.5. Undesired Variability and Compensation Approaches 

As described in Section 2.1 the speech signal is the result of a complex 

process that involves respiratory, laryngeal, and vocal tract movements. This gives 

speakers a lot of degrees of freedom to alter their voices along dimensions such as: 

loudness, pitch, articulation rate, voice quality, etc. Moreover, the properties of a 

particular speech utterance vary along these dimensions as a function of a large 

collection of factors: phonetic content, language, speaking-style, environment, 

emotional state, health, etc.  In this way, it is possible that a speaker never produces 

an utterance in the exact same way twice. Differences within a single speaker across 

occasions and utterances are called intraspeaker or intrinsic variability.  

Besides the intrinsic variability, there are other factors of extrinsic variability 

such as the channel distortions introduced by acquisition devices (e.g., telephones), 

and the environmental distortions resulting from additive noise and room 

reverberation. The combination of both intrinsic and extrinsic variability is 

collectively referred to as intersession variability.  

The success of a speaker recognition system relies on its ability to determine 

whether the nature and extent of the observed differences between two speech 

samples is better explained by the intersession variability (in which case the two 

utterances would belong to the same speaker) or by the interspeaker variability that 

arises from the speaker-specific information in the speech samples. To facilitate this 

judgment and improve the performance in a wide variety of application domains, the 

speaker recognition systems need mechanisms that suppress or attenuate the 

intersession variability.  
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One way to characterize these techniques is based on the domain in which 

they are applied: feature domain or model domain. Since most of the work in this 

thesis is based on improvements over model domain techniques, or transformations of 

latent variables from probabilistic generative models, we defer their exposition to 

Chapters 4, 5, and 6.  

The following is a necessarily incomplete but representative list of the most 

widely used techniques for speaker recognition in the feature domain: 

 Cepstral mean normalization (CMN) [30]: This technique is aimed 

at reducing the effects of convolutive noise from the channel. It is 

based on the principle that a convolutive distortion in the time domain 

is transformed into a constant offset into the cepstral domain. 

Therefore, by removing the mean of each cepstral coefficient the 

effects of the channel (assuming is not time-varying) are ameliorated. 

 Relative Spectral filtering (RASTA) [40]: Based on knowledge 

about the dominant components of the modulation spectrum of the 

speech signal, the RASTA filter is designed as a band pass filter to 

eliminate the very slow changing components (convolutive noise) as 

well as the rapidly changing components (additive noise).  

 Feature Warping [41]: This technique is aimed at reducing the effects 

of additive and convolutive noise by applying a nonlinear 

transformation that transforms the empirical distribution of each 

cepstral coefficient to a Gaussian distribution (Gaussianization). It is 
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normally applied using a running window of around 3 seconds of 

duration. 

 Feature Mapping [42]: This is a data-driven technique that uses a 

collection of UBMs trained on data from a discrete set of distortions 

(i.e., cell phone speech, reverberant speech) to learn an inverse 

mapping of the distorted cepstral coefficients. This technique, along 

with its model domain counterpart [43], can be regarded as discrete 

versions of the state-of-the-art approaches based on Factor Analysis. 

All the techniques mentioned above can also be combined with the model 

domain techniques that will be described in Chapters 4, 5, and 6. 

2.6. Chapter Summary 

In this chapter we presented a compact exposition of the basic concepts 

necessary to contextualize the work presented in this thesis. First we described the 

process by which speech signals are generated and the important sources of speaker-

specific information they carry. Then we provided technical definitions about 

different speaker recognition modalities such as verification and identification, as 

well as the notions of text-dependent and text-independent Also, we listed the most 

typical applications in which they are used. This was followed by an overview of the 

basic constituent elements of a generic speaker recognition system. Moreover, the 

classical paradigm of speaker recognition based on Gaussian Mixture Models was 

summarized. Finally, we surveyed some of the most common techniques used to add 

robustness to speaker recognition systems that work in the feature domain. 
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Chapter 3 

3. Supervector Representations 

3.1. Introduction 

A common theme among current speaker recognition systems based on short-

time spectral information is the representation of a speech utterance as a single point 

in a high-dimensional space. This representation is denoted as “supervector” (SV) and 

all the systems studied in this thesis make us of it.  

In this chapter we first provide some background knowledge and review the 

process used to map a sequence of feature vectors into a supervector. We then present 

a novel procedure for the visualization of supervectors by which qualitative insight 

about the information being captured can be obtained. Based on this visualization 

approach, the Switchboard-I database (SWB-I) is used to study the relationship 

between a data-driven partition of the acoustic space and a knowledge based partition 

in terms of broad phonetic classes.  
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3.2. Background 

Obtaining fixed-size representations of variable-length objects is a pervasive 

technique among many pattern recognition applications [44], [45], [46]. The 

widespread use of these techniques stems from the fact that mapping variable-length 

objects into the same vector space facilitates the use of standard pattern recognition 

techniques. For example, we might be interested in classifying emails as spam/not-

spam, and most likely, each email will have a different number of words. In this 

context, one of the best known examples of these techniques is the use of “bag-of-

words” representations to describe documents [44]. This approach maps a document 

(considered as an unordered collection of words) into a fixed-length vector whose 

size equals the cardinality of a predefined vocabulary, and whose entries corresponds 

to the number of times each word appears in the document. Note that documents with 

different number of words are mapped into the same fixed-size space. This allows 

direct comparison between objects whose initial representation was of different size.  

The same concept has also been applied to domains where the notion of 

“word” is not immediately apparent. For example, visual object categorization based 

on images of different sizes (i.e., different number of pixels) [45]. These approaches 

construct “visual words” by describing an image as a collection of patches (e.g., 5x5 

pixel blocks) and performing some form of clustering to obtain a discrete set of 

codewords (i.e., cluster centroids). The predefined visual vocabulary (dictionary) is 

typically learned from a large collection of images representative of the task at hand. 

Once the vocabulary is set, the patches of a given image are clustered into the visual 

words and the image is represented as a histogram of the counts of each visual word. 
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In this way, we can highlight four important stages of these methodologies with 

examples from visual object categorization: 

 Patch formation: The first step in this stage is the definition of a sampling 

grid from which the patches will be extracted. Two typical approaches are the 

use of uniform densely-sampled grids [47], or sparsely-sampled grids based 

on regions of interest (keypoints) [45]. Also the size of the patch is an 

important design variable. 

 Feature representation: This stage transforms the patch content into a 

feature vector. A desired property of these feature vectors is robustness to 

typical sources of variability. SIFT descriptors [48] are commonly used for 

this reason in the vision community. 

 Dictionary construction: This stage uses the feature vectors from a large 

collection of training data to obtain a discrete set of codewords that will be use 

to represent new images. Typically, the  -means algorithm is used to cluster 

the feature vectors of the training data into   codewords that will define the 

dictionary [49]. 

 Object representation: Once the dictionary is defined, an object (e.g., image) 

is represented as a fixed-size vector of codeword counts. 

It is important to remark that the ordering of the data beyond the patch size is 

completely ignored by this representation (spatial structure for images or temporal 

structure for speech or text).  

In the following section we describe how this general technique has been 

particularized (in the field of speaker recognition) to represent speech utterances. 
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3.3. From Sequences of MFCCs to Supervectors 

As described in Section 2.3, the short-time spectral information in a speech 

signal is normally represented as a sequence of MFCCs. In this way, the notions of 

patch formation and feature representations described in the previous section are 

encapsulated in the way MFCCs are computed.  In particular, the most typical setups 

in speaker recognition use 20 ms Hamming windows with 10 ms increments to 

compute the STFT.  Hence, a MFCC feature vector comprising Delta and Double-

Delta coefficients (with a span of two frames each) will contain     frames, which 

corresponds to a patch of 100 ms of speech. Note that this patch size is in the time 

scale of phonetic units in English [50]. 

Alternatively, considering the 2-D spectro-temporal representation of Mel-

filterbank energies with   channels (typically     ) as the initial representation, a 

2-D spectro-temporal segment of dimensions (          ) corresponds to the 

notion of patch. Moreover, the information contained in this spectro-temporal patch is 

compressed into a feature vector of MFCCs (normally 39 to 60 coefficients); thus, 

obtaining a compact representation for subsequent processing. The top left part of 

Figure 3.1 illustrates this process. 

Once the notions of patch formation and feature representation are 

established, the next step is to define a dictionary. Unlike in the case of visual object 

categorization mentioned above, the strategy followed to compute speech 

supervectors is not based on hard-clustering thru  -means; instead, a soft-clustering 

of the acoustic space spanned by the MFCCs is performed using a GMM-UBM. 

Therefore, the “acoustic words” of the dictionary correspond to the means of each 
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Gaussian mixture. In practice, the typical number of mixtures of the GMM-UBM 

used to construct the dictionary is either 1024 or 2048.  

The use of a GMM-UBM to perform a soft partition of the acoustic space is a 

natural choice in the context of speaker recognition; mostly because the classic 

recognition architecture is based on a GMM-UBM (see Section 2.4). A large 

collection of training data (typically 10 or 20 hours of data from around a thousand 

speakers) representative of the task at hand is used to train the GMM-UBM in a ML 

fashion. Normally, a few iterations of the EM algorithm (10 to 15 iterations) are 

enough to obtain a successful GMM-UBM. 

Once a GMM-UBM is trained,                      , a speech utterance 

parameterized in terms of sequences of MFCCs,          
  with        is 

mapped into two supervectors (Figure 3.1 illustrates this process). The first 

supervector is denoted as the supervector of counts, and is constructed by appending 

together the soft-counts of the GMM. More formally, given the GMM-UBM      

and a feature vector   , the responsibility of mixture   for the observation frame   , at 

time    is given by: 

    
              

   
 
               

   (3.1) 

Moreover, the soft-count for mixture   is obtained by summing the responsibilities 

over all frames: 

       

 

   

  (3.2) 

Then, the supervector of counts is formed as             
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The second supervector is denoted as the supervector of means, and for each 

mixture component is computed as the weighted average of the observed data; with 

the weights corresponding to the responsibilities of the mixture for each frame: 

   
 

  
    

 

   

    (3.3) 

Then the supervector is obtained by appending the means for each mixture 

component as:      
    

    
      

 
Figure 3.1: Computation of supervector of counts and means from the temporal sequence of 

mixture responsibilities for each MFCC vector. 

Figure 3.2 provides an alternative view of the process followed to compute 

both supervectors (assuming that the acoustic space is two-dimensional). Notice that 

instead of just creating a supervector of means    a supervector of offsets   is created 

by centering   around the supervector of GMM-UBM means      
    

    
     

In this way, the information encoded in the supervector of offsets highlights how a 

particular speaker differs from an “average” speaker (represented by the GMM-
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UBM) in the realization of the particular sounds that are being modeled by the 

corresponding GMM mixture. In particular, one can think of the GMM-UBM as an 

unsupervised data-driven mechanism to define regions of short-term patterns of 

spectral allocation of energy that occur very frequently. Then, considering the mean 

of each GMM component as an average “canonical” realization of the patterns 

represented by a region, the supervector of offsets encodes the characteristic way a 

particular speaker realizes those patterns.  

Moreover, the supervector of counts represents the relative frequency with 

which a speaker produces those patterns. Hence, the counts will be highly dependent 

on the linguistic content (i.e., influenced by the statistical distribution of occurrence 

of the different sound of a language). However, they also encode the reliability of the 

corresponding components of the offset supervector; since the more often we observe 

a similar repetition of the same pattern, the more we can believe that it is a reliable 

descriptor of how a speaker realizes a patter over multiple instantiations. 

In order to gain a better understanding of the information being captured by 

the supervector of offsets, it is important to answer the following question: Is there 

any relationship between a data-driven partition of the acoustic space and a 

knowledge-based partition? Answering this question will help understand the nature 

of the partition of the acoustic space, and therefore, the characteristics of the speaker-

specific information represented in a supervector of offsets. 

In the rest of this chapter we address this question in two different ways. First, 

we propose a novel technique for the visualization of supervectors of means. This 

visual representation provides qualitative insights into the information being captured. 
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Second, we conduct a quantitative analysis between the correspondence of an 

unsupervised data-driven partition of the acoustic space of MFCCs and a knowledge-

based partition in terms of broad phonetic classes. 

 
Figure 3.2: Computation of supervectors of counts and data means using a GMM-UBM to 

partition the acoustic space of MFCCs. 

3.4. Experimental Setup 

In this section we present the details about the dataset used for our analysis as 

well as the configuration to obtain a GMM-UBM and the supervectors. 

3.4.1. Switchboard-I Database 

The Switchboard-I database is comprised of conversational speech between 

two speakers recorded over landline telephone channels with a sampling rate of 8 
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KHz [51]. The average duration of each conversation is 5 minutes (approx. 2.5 min 

per speaker) and each conversation side is recorded in a different file. The total 

number of speakers in the database is 520 with a balance in gender and recorded into 

4856 speech files. The telephone handsets were either electret or carbon bottom with 

an approximate proportion of 70% and 30% respectively. The availability of manual 

phonetic transcriptions [21] along with a fairly limited amount of channel/handset 

variability makes this database a good candidate for the experiments in this chapter.   

3.4.2. UBM Training 

Each file in the database was parameterized into a sequence of 19-dimensional 

MFCC vectors using a 20ms Hamming window with a 10ms shift. The MFCC 

vectors were computed using a simulated triangular filterbank on the FFT spectrum. 

Prior to projecting the Mel-frequency band (MFB) energies into a DCT basis, 

bandlimiting was performed by discarding the filterbank outputs outside of the 

frequency range 300Hz-3138Hz. Finally, after projecting the MFB energies into a 

DCT basis and discarding C0, the 19-MFCC vectors were processed with RASTA 

filtering to reduce linear channel bias effects. No delta features were computed since 

we wanted to focus our analysis on static information only.  

Two 2048-mixtures UBMs were trained based on a partition of SWB-I into 

two sets, P1 and P2, of 260 speakers each with a balance in gender and handset type. 

The UBM trained on P1 was used to obtain supervectors for the files in P2 and vice 

versa. The resulting dimension of the supervectors was                 
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3.5. Visualization of Mean Supervectors  

The speech technology community has greatly benefited from the ability to 

visualize spectro-temporal representations of the speech signal. A trained eye can 

gain a lot of qualitative insight by a simple inspection of a spectrogram. 

Unfortunately, what has proven very useful for information displaying (i.e., temporal 

sequences of FFT coefficients) is not optimal for other task unless further post-

processing is applied. In the particular case of speaker recognition, examples of such 

post-processing include high-frequency resolution decrease, projection into 

orthogonal basis and dimensionality reduction. These standard signal processing 

techniques have tremendously improved the performance of the recognition systems. 

However, once the information has been processed in this way, it is extremely hard to 

make sense of what is really happening. One way to cope with this issue is to obtain a 

useful representation for the application at hand (i.e., speaker recognition) and then 

try to transform such representation to a domain in which qualitative knowledge can 

be obtained. 

In this way, Figure 3.3 shows a diagram in which a SV of data means is 

transformed back into a matrix of clustered sets of FFT coefficients. The 

transformation process starts by reshaping the SV into a matrix with each mixture 

mean as a column. Subsequently, a number of clusters is specified and the mean 

vectors are grouped together by a K-means algorithm. As a result, the mean vectors 

corresponding to the Gaussian mixtures that are close together (i.e., in the Euclidean 

sense) in the acoustic space are clustered together. Up to this point, no meaningful 
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transformation has being accomplished. The key of the process lies in the next step 

that we have denoted as “pseudo-inversion”. 

 
Figure 3.3: Visualization of SV of data means. 

Figure 3.5 depicts the steps followed in the pseudo-inversion. It is clear that it 

attempts to inverse the orthogonalization of the DCT basis as well as the effect of the 

simulated triangular filterbank. However, since we dropped the C0 coefficient in the 

computation of the 19 MFCCs, the result of the DCT inversion will be a vector of 20 

MFB normalized energies. Moreover, the triangular filterbank processing is not an 

invertible mapping since it is many-to-one. It is for this reason that the prefix 

“pseudo” is attached to this inversion process. Hence, the pseudo-inversion of this 

process is performed by constructing a matrix whose columns are the weights of each 

one of the triangular filters (i.e., dimensions 128 x 20). Finally, it is important to note 

that since the spectrum was bandlimited during the feature extraction process, the 

resulting FFT coefficients only span the frequency range 300Hz-3138Hz. 
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Figure 3.4: Pseudo-inversion of MFCC coefficients back to vectors of 128 FFT coefficients. 

Panel (b) of Figure 3.5 shows the result of processing the SV of the UBM 

means of the partition P1 of SWB-I. In the following section we present the insights 

that this representation provides with respect to the information being captured in a 

supervector representation. 

 
(a) 

 
(b) 

Figure 3.5: (a) Broad-phonetic class alignment with the data-driven partition of the acoustic 

space (see text for description of the codes used for the phonetic classes). (b) Visualization of 

the mean SV of the UBM for partition P1 of SWB-I. 

3.6. Relation between Data-Driven Partitions and Broad 

Phonetic Classes 

A mean supervector can be understood as a summary of the short-term 

average patterns of spectral allocation of energy of a particular speaker. Moreover, 

the linguistic content of the speech signal imposes some constraints on these patterns 

(e.g., relative position of formants). In this way, it seems natural that the elements 
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(i.e., mean vectors) of the supervector will exhibit some kind of clustering. To check 

this, a K-means procedure was used to partition the elements of the two UBMs 

supervectors into a set of classes. The Euclidean distance between the mean vectors 

(i.e., 19 MFCC vectors) was used for the clustering and the number of classes was set 

to 16. We followed the visualization methodology of Figure 3.3 to display the GSV of 

the UBM for P1. Panel (b) of Figure 3.5 shows the result. The same behavior was 

observed for the UBM of P2.  

It is important to note that the clustering was done prior to the pseudo-

inversion stage (in the MFCC space) and therefore no imprecision was introduced in 

the process. An inspection of the UBM supervector of Figure 3.5 reveals that the 

mean vectors that get grouped together share in common their most predominant 

regions of spectral allocation of energy (i.e., formants). This raises the following 

question: Is there any relationship between a data-driven partition of the acoustic 

space and a knowledge-based partition (such as the broad phonetic classes)? 

In order to answer this question the following experiment was conducted in 

each of the SWB-I partitions independently. First, for each file, the manual phonetic 

transcriptions of SWB-I [51] were used to align each feature vector with a broad 

phonetic class. The following set of phonetic classes was used: liquids (LIQ), nasals 

(NAS), voiced/unvoiced fricatives (V/U-F), voiced/unvoiced stops (V/U-S), 

diphthongs (DIP), and back/center/front vowels (B/C/F-V). Then a probabilistic 

alignment of each feature vector with their corresponding UBM was performed. Only 

the top-1 scoring mixture was used for each feature vector. During this process, we 

kept track of the number of times each one of the 2048 UBM’s mixtures was used to 
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score a frame with a particular phonetic class label. As a result, we obtained a 

probabilistic alignment of each UBM mixture with the aforementioned set of broad 

phonetic classes. As an example, if a given mixture was used 80% of the time to score 

frames in nasal regions, the process would assign a 0.8 probability mass to that 

mixture with respect to nasals. 

 Two important observations were made. First, every mixture had a non-zero 

probability mass for each broad phonetic class. Second and most important, the 

probability mass was not uniformly distributed and was highly concentrated on one or 

two phonetic classes for each mixture. Moreover, in order to establish a connection 

between the data-driven clusters and the broad phonetic classes we averaged the 

probabilistic assignments among all the mixtures in the same data-driven cluster. The 

top panel of Figure 3.5 shows the result of thresholding this averaged probabilistic 

alignment to keep approximately 90% of the probability mass. Each data-driven 

cluster gets aligned with at most 2 broad phonetic classes. After a close analysis of 

the resulting pairings between data-driven clusters and phonetic classes, it can be 

observed that there is a good matching between the formant regions of the clusters 

and the canonical formant regions of the phonetic classes (see [50] for examples of 

these). Although Figure 3.5 only depicts the results for the partition P1 of SWB-I, the 

same observations were made by analyzing the results of P2. This supports the 

generality of the results.  

Based on the experiments presented in this section we can claim that not only 

supervectors capture short-time average patterns of spectral allocation of energy, but 

also a phonetic meaning can be attached to partitions of the supervector. 
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3.7. Chapter Summary 

In this chapter we first argued that obtaining fixed-size representations of 

variable-length objects is a pervasive technique among many pattern recognition 

applications. We then provided examples of how this idea has been used in pattern 

recognition applications based on test documents and images. These examples were 

used to abstract four fundamental stages common to these methodologies.  

After that, we explored how this technique was manifested in the speaker 

recognition community. In particular, we identified how the four fundamental stages 

were particularized to represent speech utterances. That is, how to map a sequence of 

MFCCs into a supervector of counts and a supervector means. We described how a 

GMM-UBM was used to perform an unsupervised data-driven partition of the 

acoustic space of MFFCs. Then, we provided intuition about the information being 

captured by a supervector representation.  This intuition was formalized by using a 

novel procedure for the visualization of supervectors by which qualitative insight 

about the information being captured was obtained. Based on this visualization 

approach, the Switchboard-I database (SWB-I) was used to study the relationship 

between a data-driven partition of the acoustic space and a knowledge based partition 

in terms of broad phonetic classes. The results of the analysis indicated that different 

subsets of supervector entries can be identified with a particular phonetic context with 

high probability. In light of that, a supervector of means can be understood as a 

summary of the short-term average patterns of spectral allocation of energy of a 

particular speaker in different phonetic contexts. 
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Chapter 4  

4. Overcomplete Dictionaries for 

Speaker Recognition 

4.1. Introduction 

The supervector formalism presented in the previous chapter provides a 

mechanism to obtain a fixed-length representation of a variable length object. That is, 

an entire speech recording is mapped into a fixed-length supervector in a very high-

dimensional space (of the order of 100,000 dimensions). Moreover, as detailed in 

Section 3.6, subsets of entries of a supervector can be associated with linguistically 

meaningful units such as broad phonetic classes. However, the direct use of this 

representation in a speaker recognition system is not optimal; since supervectors not 

only capture speaker-specific information but also contain a large amount of 

undesired variability entangled with the desired information (see Section 2.5). Hence, 

there is a need for a mechanism to disentangle the speaker-specific information and 

the undesired variability captured in the supervector representations. 
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Inspired by the speaker adaptation work based on eigenvoices [52], and its 

early application to the field of speaker recognition [53], the work in [54] proposed 

the use of Joint Factor Analysis (JFA) to explicitly model the speaker-specific and the 

undesired variability present in GMM mean supervectors. Specifically, JFA assumes 

that most of the speaker-specific information lies in a subspace of much lower 

dimensionality than the ambiance space, and that a supervector can be decomposed 

into a speaker-specific component and an undesired variability one. Based on this 

paradigm, removing undesired components from speech representation becomes 

much easier since they are explicitly modeled.  

The theory of the JFA paradigm presents an elegant probabilistic perspective 

around a generative linear-Gaussian model on GMM mean supervectors. Hence, a 

consistent application of the product and sum rules of probability suffice to obtain a 

speaker recognition system based on likelihood ratios. However, the high-

dimensional nature of the supervector space proved to be challenging and a lot of 

algorithmic approximations to the theory were explored (between the period of 2004 

and 2008) in order to make the paradigm useful in realistic scenarios (see [55] for a 

review). 

The main goal of this chapter is to provide a non-probabilistic view of the 

underlying processes followed in JFA. In particular, we explore the connection 

between the JFA paradigm and the use of signal coding in overcomplete dictionaries 

learned from data. By establishing this connection we are able to provide two 

algorithmic improvements over the baseline JFA system. One improvement comes in 

the form of improved computation whereas the other comes in terms of improved 
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recognition accuracy. The remainder of this chapter is organized as follows. Section 

4.2 provides an overview of the baseline JFA system. Section 4.3 establishes a novel 

connection between overcomplete dictionaries and JFA. Moreover, two algorithmic 

improvements are proposed. Section 4.4 provides details about the experimental setup 

used to test the proposed ideas. Section 4.5 presents the experimental results. Finally, 

Section 4.6 summarizes the chapter. 

4.2. Overview of Joint Factor Analysis 

Since the introduction of JFA in [54] a great number of modifications have 

been proposed [55]. In order to remove any ambiguity about our particular choice of 

JFA variant, this section presents an overview of the three fundamental steps involved 

in the construction of a speaker recognition system: model training, hyperparameter 

estimation and score computation.  

4.2.1. Paradigm 

The Joint Factor Analysis paradigm [56] assumes that a sequence of   I.I.D. 

observed vectors,          
  with        comes from a two-stage generative 

model. The first stage corresponds to a  -component Gaussian Mixture Model 

(GMM),                   , that is responsible for generating each observed 

vector    :  

               

 

   

 
 

    
 
      

 
 

     
 

 
       

   
           (4.1) 
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The weights and covariance matrices of the GMM are considered fixed and 

known a priori. The means are assumed to be random vectors generated by the second 

stage of the generative model. In particular, a mean supervector      
      

    

    is constructed by appending together the means of each mixture component and 

is assumed to obey an affine linear model of the form 

             (4.2) 

where the vector       is a fixed offset, the matrices          and           

correspond to factor loadings and the diagonal matrix          is a scaling 

matrix. Moreover, the vectors        and       are considered as the common-

factors and       as the residual-factors. All three vectors,     and   are assumed 

independent of each other and distributed according to a standard Normal distribution 

of appropriate dimension. Consequently, equation (4.2) implies that the prior 

distribution of the supervector   is Gaussian with mean and covariance given by 

                                   (4.3) 

The rationale behind equation (4.2) is that, aside from the offset  , the mean 

supervector is the superposition of three fundamental components with rather 

distinctive meanings. The component that lives in the         is used to denote the 

undesired variability contained in the observed vectors (e.g., convolutive or additive 

noise). Additionally, the         is where the basic constituting elements that 

capture the essence of the observed data live (speaker-specific information). Finally, 

the diagonal matrix   spans the entire ambiance space and provides a mechanism to 

account for the residual variability not captured by the other two components.  
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In equation (4.1), the weights      and covariance matrices      of the GMM 

  are assumed to be fixed and known a priori. In practice, they are obtained from a 

previously trained GMM      called Universal Background Model (UBM). This 

UBM must be trained using a large collection of data that is representative of the task 

at hand. Maximum Likelihood estimation is the most common approach [37]. 

4.2.2. JFA Model Training 

Now that all the elements involved in the JFA model have been defined, we 

are in position to formulate the inference problem (i.e., model training). That is, given 

a sequence of observed vectors          
 , we want to estimate the free parameters 

of the generating GMM that maximize the posterior distribution―which in this case 

are only the component means     . We will also assume that the hyperparameters 

           of the second stage of the generative process are also known (i.e., they 

have been obtained previously from a development data set via the ML approach 

described in next section). Thus, our optimization problem takes the form 

   
 
            

 
                 (4.4) 

In order to keep the formulas as clean as possible, we will refer to the entire 

collection of loading matrices by                and all the factors will be 

collected in               . Using this compact form, the mean supervector 

can also be expressed as 

        (4.5) 
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Moreover, based on the prior distributions of the factors     and   as well as their 

independence, the vector   is distributed according to a standard Gaussian 

distribution. That is 

                (4.6) 

Making use of equations (4.5) and (4.6) and substituting back into (4.4) an equivalent 

minimization problem can be obtained in terms of  : 

   
 
                              (4.7) 

Once the optimal      is obtained, we can compute the optimal mean supervector 

     as: 

              (4.8) 

As usual, the analytical solution of this problem is not tractable and we use the EM 

algorithm to obtain a local optimizer. In the E-step we compute the occupations of the 

mixture component   for the observed vector    as 

    
               

   
 
                

   (4.9) 

where        
       

  
 
    is initialized with  . Then, in the M-step we use the 

occupations       to compute the complete-data log likelihood, that along with the 

prior for  , allow us to obtain the easier to optimize surrogate objective 

      
 

 
      

 

   

 

   

           
   

              
 

 
      (4.10) 

where    is the  -dimensional sub-vector of   indexed by the mixture component  . 

In order to obtain a complete vector-form expression for (4.10) without the 

summations, the following definitions are useful: 
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      (4.11) 

             
        

The scalar    represents how much of the observed data is accounted for by mixture 

 . The diagonal matrix   is an intermediate construct that replicates the scalar    

throughout   diagonal entries and the diagonal matrix  ―constructed using the 

        operator―contains the   matrices   in its diagonal entries. Additionally, the 

following objects are also useful: 

   
 

  
                 

      
        

 

   

        (4.12) 

with    representing the weighted average of the observed data that is accounted for 

by the     mixture component. Taking equation (4.10), summing over the index  , 

and using    from (4.12) we obtain the equivalent objective
3
 

     
 

 
    

 

   

           
   

              
 

 
      (4.13) 

Finally, the summation over   can be taken care of―in an implicit way―by using the 

supervector notation: 

     
 

 
                  

 

 
      (4.14) 

where the diagonal matrix             
     . Moreover, letting       , we 

can obtain the alternative expression: 

                                                 

 
3 Note that equations (4.10) and (4.13) are not equal but just equivalent for the optimization process with respect to     This 

stems from the fact that the covariance matrices      are taken from the UBM and kept fixed. 
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   (4.15) 

Noting that by construction   is diagonal positive semi-definite (or positive definite 

if all Gaussians are responsible for some data), it is easy to see that      is strongly 

convex. Hence, computing the gradient and setting it to zero provides a necessary and 

sufficient condition for a unique global minimizer.  Performing this operation we 

obtain a closed-form solution to problem (4.7): 

                     (4.16) 

4.2.3. Hyperparameter Estimation 

Since the JFA paradigm is only as good as its hypermeters
4
, the estimation of 

the set           has received a lot of attention. In particular, some of the variables 

being explored are: amount and type of data, number of dimensions of the subspaces, 

joint or independent estimation, generalization capabilities based on utterance 

duration and recording environments [57]. The most widespread criterion for the 

estimation process is the maximization of the likelihood function over a development 

data set [58]. The EM algorithm is used to maximize the likelihood. The offset 

supervector   comes from the UBM model. Independent estimation of the matrices 

    and   reduces the computational complexity greatly and provides state-of-the-art 

results [57]. Hence, that is the setup considered throughout this chapter. In particular, 

given an initial guess   ―which depending on the matrix being updated is identified 

with        or   ―the E-step, for each data file  ,  produces the posterior means 

                                                 

 
4 Note that we are not including the covariance matrices      as part of the hyperparameters to emphasize the fact that we 

keep them fixed once computed in the UBM training process. 
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    and correlation matrices       

        
      

       
 . The M-

step results in the update equation [58]: 

    
   

       

 

   

  
   
         

 

   

      
   

  

  (4.17) 

where the super-index   indicates the  -dimensional subset of rows corresponding to 

the mixture   and the index   runs through the elements of the training data set. Thus, 

if JFA comprises a GMM with  components and          , the updated      

requires the solution of   independent systems of   equations with   right-hand side 

elements. 

4.2.4. JFA Scoring 

Once the hyperparameters and model training procedures are available, the 

only remaining component for a complete speaker recognition system is a similarity 

measure between models and test utterances. In [59] a comparison of scoring 

techniques ranging from a fully Bayesian approach to simple MAP point estimates 

was presented. The results indicated that―given enough data―a linear 

approximation of the log-likelihood results in a much faster computation of 

similarities without any significant loss in performance. Adapting their formulation to 

our notation, the speaker model is represented by                
       and the 

test utterance is summarized by its normalized, centered and session compensated 

first order sufficient statistics            
    . Recalling that             

  , the 

final score is nothing more than the frame-normalized inner product 
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      (4.18) 

defined by the diagonal and positive definite matrix
5
      . 

4.3. JFA and Signal Coding in Overcomplete Dictionaries 

In this section we present a reinterpretation of JFA as a signal approximation 

methodology―based on Ridge regression―using an overcomplete dictionary   

learned from data. With a simple change in perspective we will be able to abstract 

some of the unimportant details of JFA and bring to the foreground its essential 

principles. Moreover, establishing a connection between JFA and signal coding (SC) 

opens the doors for cross-pollination between fields (see [60] for a review of current 

trends in data-driven overcomplete dictionaries). 

4.3.1. Signal Coding (SC) 

We propose to deemphasize the two-stage generative model and focus on the 

EM part of the inference process. That is, to think of the E-step as a process that 

given a speech signal          
  with     

  and a  -mixture UBM      

                 produces a fixed-length target vector       (see equation 

(4.12)) as well as a weighting diagonal matrix  . Then, the M-step can be 

reinterpreted as a signal coding process―of the target vector  ―based on a weighted 

regularized linear regression approach. By looking at equation (4.15), we see that the 

objective function is comprised of two terms.  The first one is a conventional 

                                                 

 
5 Note that in the finite precision case where not all Gaussians may be responsible for at least one observation, the matrix 

      is in fact positive semi-definite. In that case, equation (4.18) is still correct if we define the inner product in the subspace 

where the diagonal entries of       are strictly positive. 
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weighted least squares loss; whereas the second is a penalty on the energy of the 

regression coefficients (i.e., ridge regularization term). These two terms represent a 

trade-off between the goodness-of-fit and the energy used to fit the target. The goal is 

to approximate the target vector  ―as well as possible―with a linear combination of 

the columns of   while considering that there is a quadratic cost incurred by the 

amount of usage of each column. The diagonal weighting matrix   provides a 

mechanism to emphasize/deemphasize the relative importance of the coefficients of   

in the approximation process. Fortunately, there is a unique closed-form solution to 

this problem and it was given in (4.16). Therefore, when using a JFA paradigm based 

on point estimates, the model training process is equivalent to a signal approximation. 

In this case, the signal being approximated happens to be the offsets―with respect to 

the UBM supervector  ―of the normalized first order statistics  , contextualized by 

the soft-partition of the acoustic space induced by the UBM. 

4.3.2. Dictionary Learning 

Following the jargon particular to the sparse coding community, we will refer 

to the matrix   as a dictionary whose columns are denoted as atoms. For JFA, the 

dictionary is comprised of            and is considered overcomplete since there 

are more columns than rows. This notation also applies to the eigenchannel 

configuration           as well as the relevance MAP formulation       

      (although in this last case the dictionary is not overcomplete). The atoms of 

the dictionary should represent the basic constituent elements of the signals being 

coded as well as their typical distortions. In order for this to be the case, the best 
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alternative is to learn these atomic representations from actual data similar to the one 

being coded. Thus, the process of learning a dictionary from data is equivalent to the 

estimation of hyperparameters in JFA. Specifically, given a training data set   

       
  with   utterances―after applying the E-step described in the (SC) 

section―the information in each utterance    is represented by the pair        . 

Hence, the dictionary training problem is expressed as: 

   
      

    

 
          

 

 

       
 

 

   

  (4.19) 

Note that unlike equation (4.15), the objective in (4.19) also involves the dictionary as 

an optimization variable. Hence, even though when considered as a function of either 

     or   the objective is convex, it is not the case for the joint optimization in (4.19). 

This situation arises quite frequently and the use of alternating optimization [61] is 

one of the most conventional ways to address it. 

Block Coordinate Descent (BCD) Minimization 

A particular configuration of alternating optimization known as block 

coordinate minimization (i.e., non-linear Gauss-Seidel) is well suited for the case at 

hand [61]. Specifically, we consider a two step process. In one step, the block of 

variables   is fixed and the objective is minimized with respect to     . In the other 

step, the dictionary is updated while keeping the coefficients obtained in the previous 

step     
    fixed. Cycling between these two steps is repeated until convergence or 

sufficient decrease of the objective is obtained. Because the joint objective in (4.19) is 

non-convex this method only finds a local minimum and different initial values of the 

dictionary    lead to different solutions.  Note that the first step is exactly the SC 
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stage described in the previous section. The second step is denoted as dictionary 

update (DU) and is addressed next. 

Dictionary Update 

Keeping the regression coefficients fixed for all utterances, the minimization 

of the objective in (4.19) with respect to the dictionary reduces to 

   
 

    

 
          

 

 

 

 

   

 (4.20) 

A simple application of the definition of convexity reveals that for any given 

utterance         the corresponding term inside the summation is convex. 

Subsequently, the positive sum of   convex functions remains convex. Note that 

unlike in the SC step, in general the DU objective in (4.20) is not strongly convex and 

therefore there is no guarantee for a unique minimizer. However, any local minimizer 

is also global. Again, due to convexity, computing the gradient and setting it to zero 

provides a necessary and sufficient condition for a local/global minimizer. Using the 

identity             the problem in (4.20) is equivalent to 

   
 

           
    

 

   

            
      (4.21) 

Setting the gradient with respect to the dictionary   to zero results in 

        
  

 

   

       
 

 

   

  (4.22) 

Which, when restricted to the   rows corresponding to the     mixture simplifies to 
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  (4.23) 

Comparing this result with the one obtained in (4.17) we can see that they are the 

same if we set the posterior covariance matrices         
   to zero. This is consistent 

with our formulation since we are ignoring the underlying probabilistic assumptions 

of the JFA model and treating the problem as a simple signal approximation. 

Dictionary Learning Algorithm 

An important algorithmic opportunity arises from this new perspective. In 

particular, we are going to exploit the computational advantage derived from the fact 

that no explicit matrix inversions are necessary. That is, we no longer need to 

compute          
   explicitly for each utterance to perform the dictionary 

update. This observation affects the DU step slightly but the most important gain 

comes from the SC step of the dictionary learning process. That is, much faster and 

numerically stable methods like Gauss-Seidel [62] or Cholesky factorizations can be 

used in the SC step
6
 since no explicit matrix inversions are needed. Regarding the DU 

step, denoting the sum of   rank-one matrices corresponding to the     mixture by 

        
 

 

   

   
   

        (4.24) 

and assuming that   is large enough so that   
   

is invertible, the updated      

requires the solution of   independent systems of   equations with   right-hand side 

                                                 

 
6 These techniques are also suitable for the JFA model, but if used instead of an explicit inversion, the task of computing the 

posterior covariance matrices still remains. 
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elements. A hybrid update formula between (4.23) and (4.17) can be obtained by 

setting 

  
             

     
      

  

          
 

 

   

 (4.25) 

where    comes from the previous iteration of the DU (or from a simple PCA 

initialization for the first iteration). Also,     
   

     
   

    with     
   

 

 

 
    

    
    from the training set and        

 
   . In this way, instead of 

completely neglecting the covariance matrices         
   of the JFA model, we 

approximate all of them with a common one obtained by averaging the occupancy 

matrices   
   

 over the entire training set. Also, using (4.25) removes any uncertainty 

about   
   

 being invertible. 

Dictionary learning algorithm 

1: Input:             
  and    

2: Initialize:      
 

 
   
 
   ,              

3: Until convergence: 

4: 
SC: Solve for each    in (4.16) using Gauss-

Seidel or Cholesky with      

5: Dictionary update (DU): 

6: For each mixture       

7:           
              

  
  or      and      

8: For each utterance       

9:                 
   

10:              
   
  
   

11: End for each utterance 

12: Solve     
   

      using Gauss-Seidel or 
Cholesky 

13: End for each mixture 

14:           
        

    

15: End Dictionary Update  
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16: End until convergence 

Table 4.1: Dictionary learning algorithm based on alternating minimization with two 

steps. 

Table 4.1 summarizes the proposed algorithm for the dictionary learning 

process. Note that throughout the theoretical presentation in Sections 4.2 and 4.3 we 

have used the dictionary   as a wild-card notation to refer to multiple combinations 

of the loading matrices     and  . Hence, the dictionary learning algorithm in Table 

4.1 should be applied in a way consistent with the configuration at hand. As it was the 

case for the hyperparameter estimation procedure in Section 4.2, the formulation 

presented in this section is only applicable for the decoupled/independent estimation 

of     and  . Therefore, the way to present the data to the dictionary learning 

algorithm should be consistent with this approach. An experimental analysis 

regarding the influence of the choice of   
   

 in the resulting dictionary   is presented 

in Section 4.5.1. Moreover, the influence in speaker recognition performance is also 

analyzed. 

Scoring 

Given two utterances A and B defined by         and         after 

coding them with the dictionary           ―we obtain two approximations 

            and           . Since some of the atoms in the dictionary are 

explicitly representing undesired distortions (i.e., columns of  ), setting to zero the 

corresponding entries in    and    yields a compensated approximation of the signals 

      and      . Once these compensated signal approximations are obtained, a 

similarity measure can be defined by means of the frame normalized inner product 
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         (4.26) 

where    can be any symmetric positive definite matrix. Immediate candidates are 

      and     . Note that from the perspective of signal coding, the concepts of 

model and test segment are blurred since both utterances are represented in the same 

way. However, if we identify       as a model and set       the only difference 

between (4.26) and the linear approximation of the log-likelihood ratio in (4.18) is the 

way in which the test segment is encoded. Specifically, the test segment is 

represented by simply removing its encoding with respect to the atoms in   from   . 

A comparison of both approaches is presented in the next section. Finally, another 

interesting idea that will be explored in the experiments is the effect of normalizing 

the scores (i.e., using the cosine of the angle between the compensated 

approximations as the similarity measure). 

            
               

               

   
                

   
 (4.27) 

This normalization technique has already produced successful results when used as a 

kernel for SVMs on the speaker factor space spanned by the columns of   [63].  

Moreover, an extension of that work into a new subspace―denoted as total 

variability space―has validated the excellent discriminative power of this similarity 

measure [64]. However, to the best of our knowledge, no use of this normalization 

has been directly studied in the mean supervector space. 
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4.4. Experimental Setup 

4.4.1. Switchboard-I Database (SWB-I) 

The Switchboard-I database is comprised of conversational speech between 

two speakers recorded over landline telephone channels with a sampling rate of 8 

KHz. The average duration of each conversation is 5 minutes (approx. 2.5 min per 

speaker) and each conversation side is recorded in a different file. The total number 

of speakers in the database is 520 with a balance in gender and recorded into 4856 

speech files. The telephone handsets were either electret or carbon button with an 

approximate proportion of 70% and 30% respectively. 

4.4.2. Configuration of Recognition System 

Each file in the database was parameterized into a sequence of 19-dimensional 

MFCC vectors using a 20ms Hamming window with a 10ms shift. The MFCC 

vectors were computed using a simulated triangular filterbank on the FFT spectrum. 

Prior to projecting the Mel-frequency band (MFB) energies into a DCT basis, 

bandlimiting was performed by discarding the filterbank outputs outside of the 

frequency range 300Hz-3138Hz. Finally, after projecting the MFB energies into a 

DCT basis and discarding C0, the 19-MFCC vectors were augmented with delta 

features resulting in      coefficients per frame. 

SWB-I was partitioned into two sets, P1 and P2, of 260 speakers each with a 

balance in gender and handset type. A 2048-mixture gender-independent UBM with 

diagonal covariance matrices was trained on P2. The data in P2 was also used for 
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hyperparameter/dictionary learning. In particular, we used an eigenchannel setup 

          with     77824,         and the standard relevance-MAP 

diagonal matrix   was fixed to         with     . This configuration is general 

enough to validate our theoretical developments while avoiding unnecessary 

complexity in illustrating the underlying principles of the proposed techniques. 

4.5. Experiments 

In order to evaluate the theoretical exposition of the previous section we 

present three different sets of experiments. The first one is concerned with the effects 

of different DU steps in the learned dictionaries as well as the effect in speaker 

recognition accuracy. The second set of experiments is designed to evaluate the 

influence of different signal coding strategies along with various types of inner 

products for scoring. Finally, the third batch of experiments analyzes the influence of 

the normalization of the scores according to (4.27) in a verification task and compares 

our proposed similarity measure with the linear approximation of the log-likelihood 

introduced in [59]. 

4.5.1. Analysis of Dictionary Learning Procedure 

Equation (4.17) from the JFA model as well as equations (4.24) and (4.25) 

from the SC model provide three different DU mechanisms. We will refer to the 

updates in (4.17), (4.24) and (4.25) as Full, Zero and Average updates respectively. 

This notation stems from the fact that (4.17) takes a full account of the posterior 

covariance matrices; (4.24) can be understood as setting them to zero; and (4.25) 
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considers a common and averaged covariance matrix for all utterances in the 

dictionary training set. The computational advantages of (4.24) and (4.25) over (4.17) 

were briefly discussed in Section 4.3.2. However, the effects of this computational 

saving in the learned dictionaries are not evident and thus require some experimental 

analysis. We would like to know how the dynamics of the sequence of dictionaries 

generated by multiple iterations of the dictionary learning algorithm in Table 4.1 are 

affected. To study this, we apply the dictionary learning algorithm with the full, 

average and zero updates to obtain a sequence of eigenchannel subspaces 

            and       with         . The 2411 utterances coming from the 260 

speakers of P2 where used for each iteration. To quantify the similarity between two 

subspaces, we used a metric between the subspaces spanned by the columns of the 

matrices          and          known as the projection distance [65] 

                      
   (4.28) 

Since the projection distance is at most the           , we normalized (4.28) to 

produce results between      .  

Figure 4.1 shows the projection distance of the average and zero updates with 

respect to the full update. The curves with the triangle markers refer to the distance 

between the full and average updates. The curves with the asterisk indicate the 

distance between the full and the zero update. Moreover, the color codes refer to the 

dimension of the subspaces computed (i.e., blue=128, green=64 and red=32 

dimensions). A simple look at the y-axis shows that the normalized projection 

distances are very low for all configurations (since the maximum possible value is 1). 

Furthermore, the larger the dimensionality of the subspaces the larger the projection 
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distance. As expected, the distance of the subspaces produced by the average update 

is smaller than those produced by the zero update. These results confirm that the three 

DU techniques produce very similar dictionaries. 

 
Figure 4.1: Normalized projection distance between subspaces of dimensions 128, 64 

and 32 learned using different DU formulas. 

Even though the distance between subspaces might not be too large, the 

effects in the recognition accuracy may not behave in the same way. To check this, a 

closed-set identification experiment was used. We coded each of the 2408 utterances 

from partition P1 using the dictionaries obtained after the 6
th

 iteration. The 

normalized score in equation (4.27) was used with the inner product defined by the 

weights and covariance matrices of the UBM. We obtained 33866 identification trials 

based on the 2408 utterances. The details about how we constructed these trials are 

provided in next section. Table 4.2 shows that the effect in identification accuracy is 

negligible. Hence, we can claim that for a scenario where enough utterances are 

available for dictionary training, the average and zero update rules provide 

computational advantages without any significant loss in performance. 
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   Full   
   

 Avg.   
   

 Zero   
   

 

128 95.0% 94.9% 94.9% 

64 94.5% 94.5% 94.5% 

32 93.3% 93.3% 93.3% 

Table 4.2: Closed-set identification accuracy for dictionaries learned with three DU 

formulas (full, average and zero). Three dimensios of the eigenchannel space   are 

presented. 

4.5.2. Closed-set Speaker Identification 

This section explores the influence of different signal coding strategies along 

with various types of inner products in the context of speaker identification. We 

intentionally selected an identification setup in order to remove the influence of a 

verification threshold from the analysis. We obtained 33866 identification trials based 

on the 2408 utterances from 260 speakers in P1. The protocol followed was as 

follows: for each speaker we picked one of its utterances and encode it to represent a 

model, and then, another utterance form that same speaker was selected as the test 

segment; the remaining utterances from the rest of the speakers were used as models. 

This procedure was repeated exhaustively for all the utterances of each speaker and 

for all the speakers. The dimensionality of the eigenchannel space was explored and 

128 dimensions produced the best results. Also, the average update rule was used in 

the learning process. 

Figure 4.2 shows the influence of three different inner products in our SC 

formulation with normalized scoring (middle left panel). The three inner products are 

defined by the matrices     ,      and      . The last two have already been 

discussed and the first one indicates the standard inner product. For comparison, we 

also analyze the influence of these inner products in other techniques such as: ML 
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model training (top left), relevance MAP (top right), and the standard eigenchannel 

configuration with linear scoring (middle right). A general trend is observed 

regardless of the modeling technique used; the use of the standard inner product 

performs much worse in all cases. This makes sense since not all the information is 

evenly distributed across the acoustic space. Therefore, penalizing by the amount of 

data (i.e., small value of the first order statistics) as well as the variability within the 

soft regions associated with each Gaussian (i.e., covariance of the UBM) is very 

effective. This concept is not new and has been exploited in the formulation of the 

KL-kernel (i.e., inner product defined by     ) in [35]. The results obtained with 

     and       change depending on the modeling strategy followed. For our SC 

approach, the use of both inner products produces comparable results. However, for 

the standard eigenchannel model with linear scoring,       produces significantly 

better results (and in the same range as the SC approach). The sensitivity with respect 

to the inner product is understandable since the linear scoring is an approximation of 

the log-likelihood ratio and by changing the inner product the approximation is less 

accurate. 

After the first two iterations not much difference is obtained in the 

identification performance. This extremely fast convergence might be explained by 

the fact that the dictionary training data and the test set are very similar. Also, 

identification results based on only the factors (bottom right) and the information in 

the eigenchannel subspace (bottom left) are included for diagnostic purposes. In 

particular we can observe that the eigenchannel subspace also contains speaker 
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information since an accuracy of almost 70% is obtained. The factors   and   behave 

as expected.  

 

 
Figure 4.2: Closed-set identification results for six different  modeling approaches (see main 

text for description) along with three different scoring techniques based on the inner products 

defined by the symmetric positive definite matrices              . 

Finally, the performance of the normalized and un-normalized scoring 

techniques was assessed. No significant difference was observed for neither the SC 

approach nor the standard eigenchannel formulation. This makes sense since for 
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identification purposes what matters is the relative positioning of scores and not their 

scaling. In the next section we explore this issue in the context of speaker verification 

where the scaling of the scores is critical. 

4.5.3. Speaker Verification 

Based on the 2408 utterances from the 260 speakers in P1 a verification 

experiment was designed. Specifically, a leave- one-out strategy was used. That is, 

each file was used as a model and the remaining 2407 utterances were used as test 

segments. This protocol produced a great number of trials (33,866 target and 

5,764,598 non-target). However, since our proposed scoring as well as the linear 

scoring methods are simple inner products between high dimensional vectors, the 

entire set of trials was computed in a less than 5 minutes. The main purpose of this 

setup was to assess the influence of the score normalization proposed in (4.27). 

Figure 4.3 shows the verification results. Three observations are in place. 

First, using the cosine of the angle between the vectors results in more than a 25% 

relative improvement in EER for both linear scoring in (4.17) and the proposed un-

normalized inner product of (4.26). Second, the effects of the normalization are 

slightly better for our approach. Finally, while the performance of the un-normalized 

scores is better for the linear scoring, the normalized SC scores produce slightly better 

performance under normalization. 
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Figure 4.3: Verification results for different scoring methods. 

 

4.6. Chapter Summary 

In this chapter, we have established a connection between the Joint Factor 

Analysis paradigm for speaker recognition and signal coding using an overcomplete 

dictionary learned from data. The probabilistic concepts of model training, 

hyperparameter estimation and likelihood ratio computation were equated to the non-

probabilistic notions of signal coding, dictionary learning, and similarity computation 

respectively. Two novel ideas were proposed that resulted in algorithmic 

improvements. The first idea provided computational improvements by allowing a 

faster estimation of the JFA model hyperparameter. The second idea provided an 
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alternative scoring technique with performance improvements. Specifically, the 

proposed technique for hyperparameter estimation was able to avoid the need for 

explicit matrix inversions in the M-step of the ML estimation. This allowed the use of 

faster techniques such as Gauss-Seidel or Cholesky factorizations for the computation 

of the posterior means of the factors     and   during the E-step. Regarding the 

scoring, different similarity measures based on inner products―defined by symmetric 

positive definite matrices derived from data―were studied. A simple normalization 

technique of these inner products was shown to improve the verification performance 

of our recognition system using a dictionary comprised of eigenchannels and a fixed 

relevance-MAP matrix  . Based on this experimental setup, slightly better results 

than those produced by the state-of-the-art linear scoring approach were reported.  

The experimental validation of these two novel techniques was presented using 

closed-set identification and speaker verification experiments over the Switchboard 

database. 
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Chapter 5 

5. Speaker Recognition Based on I-

vector Representations 

5.1. Introduction 

The use of speaker recognition systems based on supervector representations 

modeled by Joint Factor Analysis (described in Chapter 4) advanced the state-of-the-

art significantly from 2004 until 2008. However, the fact that using the projection 

onto the inter-session subspace (i.e., channel factors) to perform speaker recognition 

produced results better than chance motivated the introduction of Factor Analysis 

(FA) of supervectors as an unsupervised dimensionality reduction technique [2], [3]. 

The computed factors were denoted as “i-vectors” and explicit modeling of speaker-

specific and inter-session variability was performed in this lower-dimensional space 

(i-vector space). The initial formulation to compensate for undesired variability made 

use of a combination of Linear Discriminant Analysis (LDA) along with the use of 
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Within Class covariance Normalization (WCCN) [3]. Moreover, a verification score 

was computed by means of a cosine similarity between the compensated i-vectors.  

While this approach improved the performance with respect to JFA, more 

principled approaches based on a probabilistic generative model of i-vectors were 

suggested in [66] and [4]. These models adapted the Probabilistic Linear Discriminant 

Analysis (PLDA) model introduced in [67] to the task of speaker recognition
7
. A 

common theme among these probabilistic approaches is that they ignore the process 

by which i-vectors were extracted (i.e., FA model) and instead pretend they were 

generated by a prescribed generative model. The distinguishing factor between these 

approaches is the set of assumptions embedded in the model. The two most 

commonly used assumptions are that: i) the speaker and channel components are 

statistically independent; and ii) they are Gaussian distributed. The main advantage of 

these assumptions is that the speaker detection likelihood ratios can be obtained in 

closed-form. The work in [66] is an example of a Gaussian-PLDA (G-PLDA) model.  

Alternatively, the Heavy-Tailed PLDA model (HT-PLDA) presented in [4] 

replaced the Gaussian priors by a Student’s t distribution. Two main motivations were 

behind this approach. First, to allow for larger deviations from the mean (e.g., severe 

channel distortions). Second, to increase the robustness to outliers in the ML 

estimation of the model parameters. Since no closed-form solution of the speaker 

detection likelihood ratio is obtained when using the heavy-tailed priors, variational 

Bayes was used to approximate it [36]. The results presented in [4] showed superior 

performance of the HT-PLDA model over the Gaussian prior based alternative; 

                                                 

 
7 PLDA was proposed in the context of face recognition and corresponds to a particularization of the JFA model to the case of 

a single Gaussian. 
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hence, providing strong empirical evidence towards non-Gaussian behavior of 

speaker and channel effects. 

In this chapter we pursue an alternative approach to deal with the non-

Gaussian behavior of the i-vectors. That is, we keep the Gaussian assumptions in the 

model, but perform a non-linear transformation of the i-vectors to reduce the non-

Gaussian behavior (i.e., i-vector Gaussianization). The goal is to obtain a system that 

matches the high performance of the more complex HT-PLDA model while 

maintaining the simplicity and high scalability of the G-PLDA model. The rest of this 

chapter is organized as follows. Section 5.2 presents a formal mathematical 

description of how i-vectors are computed as well as the two variants of the PLDA 

model. Section 5.3 describes the novel non-linear transformations proposed in this 

thesis. Section 5.4 analyzes the behavior of the proposed transformations and 

demonstrates their excellent performance on the telephone portion of NIST SRE 

2010. Finally, Section 5.5 summarizes the contributions of this chapter. 

5.2. Background Knowledge 

5.2.1. I-vector Extractor 

An i-vector extractor [3] is a system that maps a sequence of feature vectors 

         
  with     

   obtained from a speech utterance, to a fixed-size vector 

     . An  -component GMM,            
        

        
   , denoted as 

Universal Background Model (UBM) is used to collect zero- and first-order Baum-

Welch sufficient statistics from the utterance:      and      for      , where 
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                         ; and     is the soft occupation count of mixture   

for frame   . Subsequently, a supervector      
      

        is constructed by 

appending together the first-order statistics for each mixture component and is 

assumed to obey an affine linear model (i.e., factor analysis (FA) model) of the form: 

               (5.1) 

where the supervector          is formed by appending the means of the UBM; 

the columns of the low-rank matrix         span the subspace where most of the 

speaker-specific information lives (along with channel variability);   is a standard-

normally distributed latent variable; and      is a Gaussian noise term with zero 

mean and precision matrix         . The diagonal matrix          (or block-

diagonal in case the UBM comprises full-covariance matrices) is constructed by 

multiplying each of the   inverse covariance matrices of the UBM by the 

corresponding zero-order statistic    and placing the resulting matrices as part of the 

block-diagonal entries of  . For each speech utterance, an i-vector   is obtained as 

the MAP point estimate of   : 

                              (5.2) 

The matrix   is learned from a large collection of representative data by ML 

estimation [3].  

The i-vector extraction process is unsupervised with respect to the identity of 

the speaker in each utterance. Therefore, it can be regarded as a simple unsupervised 

data-driven dimensionality reduction technique that maps supervectors into i-vectors. 

In practice, the typical dimensionality of i-vector spaces ranges from 400 to 800 

dimensions [3], [68]. For a supervector space derived from   -dimensional feature 
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vectors and a 2048 mixture UBM, the compression ratio is approximately 300:1. 

Despite this remarkable dimensionality reduction, the data-driven nature of the 

process allows i-vector representations to capture a great amount of the speaker-

specific information contained in the speech utterances. 

5.2.2. Gaussian Probabilistic Linear Discriminant Analysis 

(G-PLDA) 

A common theme among probabilistic approaches in i-vector space is that 

they ignore the process by which i-vectors were extracted (i.e., MAP point estimates 

of latent variables in a FA model) and instead consider them as observations from a 

prescribed probabilistic generative model. In this section we focus on the 

Probabilistic Linear Discriminant Analysis (PLDA) model proposed in [67] since its 

adaptation to the field of speaker recognition represents the state-of-the-art [69], [68], 

[66]. In the following we present the details about the PLDA model as well as how to 

use it to compute verification scores. 

i) Modeling: PLDA regards an i-vector as the sum of a speaker-specific 

component and an undesired variability component (often referred to as the channel 

component or inter-session variability). Moreover, the speaker and channel 

components are assumed statistically independent and Gaussian distributed. In 

particular, assuming   utterances for speaker  , and denoting the corresponding 

collection of i-vectors as       , with         , the PLDA paradigm models an 

observed i-vector      as: 
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                          (5.3) 

The speaker-specific part            describes the between-speaker 

variability and does not depend on the particular utterance. The channel component 

                 is utterance dependent and describes the within-speaker variability. 

Specifically,   is a global offset common to all speakers; the columns of   provide a 

basis for the speaker-specific subspace (eigenvoices);   is a latent identity vector 

having a standard normal distribution; the columns of   provide a basis for the 

channel subspace (eigenchannels);   is a latent vector having a standard normal 

distribution; and   is a residual term assumed to be Gaussian with zero mean and 

diagonal covariance  . Note that the distributions of both   and   are the same for all 

speakers and utterances. Also, all latent variables are assumed statistically 

independent. Since the i-vectors considered in this work are of sufficiently low 

dimensionality (i.e., 400 for our experiments), we follow the modification used in 

[68] and assume that   is a full-covariance matrix and remove the eigenchannels from 

(5.3). Thus, the modified PLDA model used in this work follows:  

                    (5.4) 

Equation (5.4) can also be considered as a generalization of a FA model where the 

noise term is full-covariance instead of diagonal. The ML point estimates of the 

model parameters         are obtained from the development data using an EM 

algorithm as in [67]. 

ii) Verification score: A verification trial comprises an identity claim and 

a test utterance (i.e., a person claims to be speaker   and provides a speech utterance). 

In the multicondition training setup of this work, a model for speaker   is represented 
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by a collection of   i-vectors       , with        . Also, the test segment is 

mapped into an i-vector denoted as   . In the PLDA framework, a verification score 

is computed as the log-likelihood ratio between two alternative hypothesis: the same-

speaker hypothesis   , and the different-speaker hypothesis   . Under the same-

speaker hypothesis, the collection of i-vectors from the claimed identity and the test 

segment are assumed to follow the generative model: 

 

    
 

    
  

   

 
 
 
 

   

 
 
 
 

     

    
 
    
   

  

or 

                       

(5.5) 

On the other hand, for the different-speaker hypothesis, the i-vectors are assumed to 

follow: 

 

    
 
    
  

   

 
 
 
 

   

 
 
 
 

 
 
 
 

  
  
  
   

    
 
    
   

   

or 

                                   

(5.6) 

where    . Hence, in (5.5) all the i-vectors are generated using the same latent 

identity variable   , whereas in (5.6) two different identity variables are involved. 

Based on the Gaussian assumptions about the noise and latent identity variables, and 

the independence of the speaker-specific component and channel component, it 

follows that the verification score is the ratio of two Gaussian distributions: 
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(5.7) 

where    is a block diagonal matrix with     copies of the noise covariance matrix 

  in the diagonal. Hence, the log-likelihood ratio involves two Gaussian distributions 

with the same means but different covariance matrices. The verification score can be 

computed very efficiently by making use of the matrix inversion lemma―avoiding 

the explicit computation and storage of the high-dimensional covariance matrices. 

It is important to note that the verification score is not based on point 

estimates of the latent identity variables; but on the Bayesian principle of 

marginalization over latent variables. This paradigm acknowledges the uncertainty of 

the inference process. Hence, the question we are asking during verification is 

whether the observed i-vectors were generated from the same identity variable or not; 

regardless of what the actual identity was. Therefore, a high verification score means 

that it is more likely that the observed i-vectors were generated by the same speaker 

(i.e., a single latent identity variable) than from two different speakers (i.e., two 

distinct latent identity variables). 

When training a classifier based on a PLDA model with a multicondition data 

set, we will refer to it as Pooled-PLDA. This will help to differentiate it from a single-

condition PLDA model, and to emphasize that we are pooling the data together to 

obtain a common set of parameters for all the conditions or subset of conditions used 

to train the system. We will make use of this terminology in Chapter 6. 



 

 

 

77 

 

5.2.3. Heavy-Tailed Probabilistic Linear Discriminant 

Analysis (HT-PLDA) 

The HT-PLDA model was first introduced in [4]. While the general 

formulation includes a channel subspace, the HT-PLDA model used in our 

experiments will be based on (5.4) but with priors on   and    following multivariate 

Student’s t distributions rather than Gaussian. Precisely,   is assumed to have zero 

mean, identity scale matrix and    degrees of freedom. Also,    is assumed to have 

zero mean, full scale matrix   and     degrees of freedom. It is important to note the 

number of degrees of freedom parameter controls the behavior of the tails of the 

distribution. That is, the smaller the number of degrees of freedom the heavier the 

tails. On the other hand, as the number of degrees of freedom increases the Student’s t 

distribution converges to a Gaussian distribution [36]. In this way, one can think of 

the G-PLDA model as a particularization of the HT-PLDA model where the number 

of degrees of freedom grows to infinity. 

For the HT-PLDA model, the log-likelihood ratio in (5.7) does not have a 

closed form solution. In [4], a variational lower bound was used as a proxy for each 

of the marginal likelihoods (i.e., evidence) involved in the log-likelihood ratio. In this 

way, each verification score requires much more computation than in the case of G-

PLDA. 

5.3. I-vector Transformations 

The results presented in [4,69] showed superior performance of the HT-PLDA 

model over G-PLDA for the telephone conditions of NIST SRE 2010. This provides 
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strong empirical evidence of non-Gaussian behavior of speaker and channel effects in 

i-vector representations. However, due to the simplicity and computational efficiency 

of G-PLDA we are interested in keeping the Gaussian assumptions in the model and 

performing a transformation of the i-vectors to reduce the non-Gaussian behavior. A 

successful i-vector transformation should close the gap in performance between HT-

PLDA and G-PLDA. 

5.3.1. Radial Gaussianization (RG) 

Besides the Gaussian prior assumption, the statistical independence between 

speaker and channel factors is also questionable. As noted in [4], the success of 

cosine scoring [2] suggests that there is a principal axis of channel variation that is 

dependent on the speaker identity. Thus, if we drop the independence assumption and 

keep the multivariate Student’s t distribution assumption for the prior on the latent 

variables, the generative i-vector model can be expressed as:  

          (5.8) 

where the latent variable   now represents both the speaker and channel factors and 

follows a Student’s t distribution. In this way,   is nothing more than an affine 

transformation of a multivariate Student’s t distribution which belongs to the family 

of Elliptically Symmetric Densities (ESD) [70]. Thus, a transformation of the i-

vectors―that renders the Gaussian and statistical independence assumptions 

appropriate―needs to be able to transform members of the ESD family into a 

Gaussian distribution. As pointed out in [70], linear transforms have no effect on the 

dependencies beyond second order for ESD. Thus, if   follows a multivariate 
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Student’s t distribution, we need to resort to non-linear transformations to accomplish 

our goal. Fortunately, an effective technique denoted as Radial Gaussianization (RG) 

was proposed in [70]. This technique follows a two step process. First, the ESD is 

transformed into a Spherically Symmetric Density (SSD) by removing the mean and 

applying a linear whitening transformation learned from data samples. Second, a non-

linear histogram warping of the length distribution of the centered and whitened 

variable      is performed (this second step stems from the fact that the length of 

vectors drawn from a standard Gaussian distribution follows a Chi distribution with 

degrees of freedom equal to the dimension of the vector). In particular, the length 

transformation function is given by 

             
              (5.9) 

This is nothing more than the function composition of the inverse cumulative Chi 

distribution with the cumulative distribution of the length random variable   

      . In practice,    needs to be estimated from data. 

5.3.2. Length Normalization (LN) 

The need to estimate the cumulative distribution of the length random variable 

         in the RG process requires the use of a held-out set of data. To avoid this 

constrain, we propose to simplify the second step of the RG process and simply scale 

the length (i.e., norm) of each centered and whitened i-vector      to unit length. 

This approximation is very reasonable in spaces of high dimensionality (such as i-

vector spaces with typical dimensionality in the range of 400 to 800), since in high 

dimensions most of the probability mass of a standard Gaussian distribution is 
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concentrated on a thin shell around a hyper-sphere (see [36], pp. 36-37 for more 

details). Moreover, the thickness of the shell decreases with the dimensionality of the 

space. Hence, projecting the data onto a hyper-sphere (whose radius depends on the 

dimensionality of the space) results in an approximation of the second step of RG that 

becomes more exact as the dimensionality of the space increases. Also, using (5.7) it 

is easy to show that the radius of the hyper-sphere is unimportant since it only 

translates into an offset in the verification score. Therefore, we will use a unit radius 

hyper-sphere for convenience. In particular, for an i-vector space of dimension 400, 

the distribution of the lengths of data drawn from a standard Gaussian follows a Chi 

distribution with 400 degrees of freedom. Figure 5.1 shows this distribution (black 

curve) and we can observe that the radius of the hyper-sphere is approximately equal 

to 20 (i.e., the mode of the distribution) and most of the probability mass is 

concentrated around it.  

To summarize, the length normalization transformation involves two steps: 

Step 1: Centering and whitening 

 Compute mean and sample covariance         from development data  

 Obtain whitening transformation     
 

    with           

 Center and whiten i-vector:              

Step 2: Scaling 

 Project onto unit sphere:     
    

      
 

Finally, during verification, the transformation learned from the development data is 

applied to both development and evaluation data. 
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5.4. Experiments 

In this section we present an experimental validation of the benefits of i-vector 

transformation in speaker verification performance. The following section provides 

details about the experimental setup used throughout all the experiments. 

5.4.1. Setup 

The NIST SRE 2010 data from the extended-core telephone-telephone 

condition (i.e., condition 5) was used. Throughout the experiments we refer to this set 

as the evaluation data. Verification performance is reported in terms of Equal Error 

Rate (EER) as well as the Detection Cost Function (DCF) defined by (       , 

      and           ). 

For all our experiments, we have used the i-vectors provided by Brno 

University of Technology (BUT) [69]. They are extracted using a 20ms short-time 

Gaussianized MFCCs plus delta and double-delta. A full-covariance gender-

independent UBM with 2048 mixtures was trained from NIST SRE 04 and 05 

telephone data. A gender-dependent i-vector extractor was trained from telephone 

data from: NIST SRE 04, 05, 06, Switchboard and Fisher. The dimension of the i-

vectors is 400. Both the G-PLDA and HT-PLDA model parameters were estimated 

from the same data used in the i-vector extractor (excluding data from Fisher database 

since it was found in [69] to deteriorate the verification performance). We refer to this 

set as development data. The number of eigenvoices in G-PLDA was set to 120. Also, 

in order to reduce the computational cost of the HT-PLDA system, a LDA 

dimensionality reduction to 120 dimensions was used prior to any other processing of 
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the i-vectors. The number of eigenvoices was also set to 120 as in the G-PLDA case. 

No score normalization is used in the reported results since it did not help improve 

the performance. 

5.4.2. I-vector Length Analysis 

As mentioned before, the length of vectors drawn from a standard Gaussian 

distribution follows a Chi distribution with number of degrees of freedom (DOF) 

equal to the dimension of the vector (i.e., 400). In principle, an i-vector extractor is 

supposed to generate i-vectors that behave in this way (especially if a Minimum 

Divergence [56] step is used). 

 
Figure 5.1: Histograms of the i-vector length distribution for development and evaluation data 

separated by gender: male (M) and female (F). Also the probability density function of a Chi 

distribution with 400 degrees of freedom is depicted. 
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 Figure 5.1 depicts the probability density function of a Chi distribution with 

400 DOF. Also, histograms of the i-vector length distribution for development and 

evaluation data (separated by gender) are presented. Three important observations are 

in order. First, neither the development data not the evaluation data match the Chi 

distribution. Second, the behavior for both genders is similar. Third, and most 

important, there is a significant mismatch between the length distributions of the 

development and evaluation i-vectors. This is not surprising since the i-vector 

extractor is trained on the development set and therefore fits this data set better than 

the evaluation set. Hence, when considering both development and evaluation data 

together, the bimodal distribution of the lengths indicates non-Gaussian behavior in 

the i-vectors. Although not surprising, this behavior is undesirable―especially if we 

are interested in using a simple G-PLDA model―since the mismatch can be 

considered as a strong source of heavy-tailed behavior. To further investigate the 

effects of this mismatch, we used the HT-PLDA system and checked how the ML 

estimates of the degrees of freedom parameters    and    behaved as we transformed 

both the development and evaluation i-vectors by RG and length (L) normalization. 

The results are summarized in Table 5.1. We can observe that the behavior between 

male and female speakers is consistent. More interestingly, both RG and LN 

transformations increase the value of    and decrease the value of    when compared 

to the original i-vectors. This indicates that the transformations make the HT-PLDA 

more like a partially-HT model where the eigenvoices have lighter tails (i.e., more 

Gaussian) and the residual shows a stronger heavy-tailed behavior. Also, the LN 

normalization seems to induce a more extreme behavior. 
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Transformation type 
Eigenvoices (  ) Residual (  ) 

Male Female Male Female 

dev_eval 11.09 12.39 17.10 17.42 

RG-dev_RG-eval 25.35 27.30 13.24 14.81 

LN-dev_LN-eval 48.07 54.71 9.21 10.42 

Table 5.1: Value of the degrees of freedom parameters for i-vector transformations in 

the HT-PLDA system. 

5.4.3. Speaker Verification Results 

Table 5.2 summarizes the results for multiple combinations of transformations 

of development and evaluation sets. For the G-PLDA system both the RG and LN 

transformation provide an impressive improvement over the unprocessed i-vectors 

both in EER and in DCF. Also, the simpler length normalization achieves equivalent 

performance to the RG technique with the advantage of not requiring a held-out set to 

estimate the empirical cumulative distribution of the lengths. 

System codes 
Male scores Female scores 

EER(%) minDCF EER(%) minDCF 

U_U G-PLDA 3.08 0.4193 3.41 0.4008 

U_RG G-PLDA 1.44 0.3032 2.15 0.3503 

U_LN G-PLDA 1.29 0.3084 1.97 0.3511 

LN_LN G-PLDA 1.27 0.3019 2.02 0.3562 

RG_RG G-PLDA 1.37 0.3066 2.16 0.3393 

U_U HT-PLDA 1.48 0.3357 2.21 0.3410 

LN_LN HT-PLDA 1.28 0.3036 1.95 0.3297 

RG_RG HT-PLDA 1.27 0.3143 1.95 0.3339 

Table 5.2: Verification results for extended-core condition 5 of NIST SRE 2010. G-PLDA 

and HT-PLDA systems are evaluated with various combinations of i-vector 

transformations. Both systems use 120 eigenvoices and full-covariance residual. The top 5 

rows correspond to G-PLDA system and the lower 3 to HT-PLDA system. The system 

codes correspond to: dev_eval system. For example, the first row indicates that both the 

dev and eval data were not transformed and the system was G-PLDA. 
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Another interesting observation is that as long as the evaluation data is 

transformed, keeping the development i-vectors in their original form does not affect 

the performance much (rows 2 and 3). Thus, the key step is the transformation of the 

evaluation data i-vectors. In the case of length normalization, this can be explained by 

taking a look at the scoring equation (5.7) and noting that a global scaling of the 

length of all the evaluation i-vectors only produces a global scaling of the scores (i.e., 

it does not alter the relative position of the scores). Hence, once the length 

normalization has been applied, instead of unit-length we can select the target length 

to match the mode of the development data distribution. In this way, we have greatly 

eliminated the mismatch and the results should reflect that. Thus, the choice of unit 

length is an arbitrary one and we can think that effectively the length normalization is 

mapping the length of all the evaluation data to the mode of the development data 

length histogram. 

Regarding the HT-PLDA system, first we can note that the performance gap 

between G-PLDA and HT-PLDA is greatly reduced (if not completely eliminated). 

Also, although HT-PLDA is able to successfully cope with the development and 

evaluation mismatch induced by the i-vector extraction procedure, a small 

improvement is observed after transforming the i-vectors. 

Figure 5.2 shows the DET curves for the G-PLDA, LN G-PLDA and HT-

PLDA systems separated by gender. It can be observed that the improvements 

brought by the LN transformation are present at all operating points. In terms of EER, 

a 58% relative improvement is obtained for the male trials and 40% for the female 

trials by using LN G-PLDA. 
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(a) 

 
(b) 

Figure 5.2: (a) Verification results for male trials of the extended-core condition 5 of NIST 

SRE 2010. (b) Results for female trials. The DET curves correspond to the G-PLDA, Length 

normalized LN G-PLDA and HT-PLDA systems. 
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5.5. Chapter Summary 

In this chapter we have presented a method to boost the performance of 

probabilistic generative models that work with i-vector representations. First we 

reviewed the mathematical formulation of the i-vector representation. Then the 

Gaussian PLDA and the Heavy-Tailed PLDA models were introduced. It was noted 

that the better performance of HT-PLDA provided strong evidence about the non-

Gaussian behavior of the i-vectors. However, the success of HT-PLDA came at the 

expense of larger complexity and slower computation of verification scores. The goal 

of this chapter was to obtain a system that matched the high performance of the more 

complex HT-PLDA model while maintaining the simplicity and high scalability of 

the G-PLDA model.  That is, to keep the Gaussian assumptions in the model and 

perform a non-linear transformation of the i-vectors to reduce the non-Gaussian 

behavior (i.e., i-vector Gaussianization). Two transformations were suggested, 

namely: radial Gaussianization and length normalization. Moreover, length 

normalization was formulated as an approximation of the previously proposed radial 

Gaussianization. This approximation becomes more exact as the dimensionality of the 

space is increased. Also, unlike in radial Gaussianization, length normalization was 

able to avoid the use for a held-out set. 

Experimental validation on the telephone portion of the NIST SRE 2010 

evaluation showed that by performing a simple length normalization of the i-vectors, 

the performance of a G-PLDA system was able to match that of a more complicated 

HT-PLDA one. Also, the mismatched induced by the i-vector extraction mechanism 

was identified as a major source of non-Gaussian behavior. Overall, a 58% relative 
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improvement in terms of EER was obtained for the male trials and 40% for the 

female trials (with respect to the baseline G-PLDA system) by using length-

normalized i-vectors with the G-PLDA model. 
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Chapter 6 

6. Noise-Robust Speaker Recognition 

In this chapter we explore noise robustness using a model compensation 

approach based on direct multicondition training in i-vector space. Section 6.1 

identifies two main causes of performance degradation of current speaker recognition 

systems in the presence of additive noise. Section 6.2 reviews the most common 

approaches used to ameliorate the effects of additive noise in system performance. 

Section 6.3 presents the system architectures proposed in this chapter. Section 6.4 

provides details about the experimental setup as well as the process followed to 

generate multicondition training data. Section 6.5 presents an extensive set of 

experiments that characterize the behavior of the proposed architecture and show its 

robustness in terms of speaker verification performance. Finally, Section 6.6 

summarizes the chapter. 

6.1. Introduction 
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Automatic speaker recognition is concerned with designing algorithms that 

infer the identity of people by their voices. This is a very challenging task since the 

speech signals are highly variable. The sources of variability can be either intrinsic or 

extrinsic. When interested in making inferences about identity, intrinsic sources of 

variability include: the linguistic message, language, dialect, accent, vocal effort, 

speaking-style, emotional and health state. Extrinsic sources are the channel 

distortions introduced by acquisition devices (e.g., telephones), and environmental 

distortions like additive noise and reverberation.  

In the past decade, the main focus of the speaker recognition community has 

been on ameliorating the effects of extrinsic variations. Recent advances in speaker 

recognition are not necessarily due to new or a better understanding of speaker-

specific characteristics and how extrinsic sources distort or mask them; rather, they 

are the result of improvements in machine learning techniques that leverage large 

amounts of data that are representative of the application domain [56], [71], [42], [3], 

[68], [4],[72], [73]. In this chapter we continue along this path, and focus on speaker 

recognition in the presence of background noise, since it is one of the “grand 

challenges” for the ubiquitous use of speech technologies [74], [75].  

Two main factors make speaker recognition in the presence of background 

noise a challenging task: 

i) Loss of speaker-specific information by noise masking: This results in 

increased uncertainty about the speaker identity. That is, even if there is no 

mismatch between the model and test data, the loss of information due to 

noise masking makes the problem harder. 
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ii) Complex changes in the statistical properties of the noisy signal: This 

induces a mismatch between the models obtained from “clean” speech and the 

noisy observations [76], [77]. This mismatch is hard to characterize, since, in 

most real scenarios, the noise is time-varying and unpredictable. Moreover, 

even if the noise is well characterized, the non-linear interaction between the 

speech signal and noise in the feature space (i.e., cepstral domain) makes the 

task of noise compensation difficult [76]. 

In the next section we review the main approaches that have been suggested in 

the literature to obtain robustness to additive noise. 

6.2. Related Work 

The issue of noise robustness has received a lot of attention in the speech 

community and many methods have been proposed in the literature. They can be 

grouped in two classes: feature compensation and model compensation [78].  

The goal of feature compensation is to reduce the mismatch between the test 

segments and the speaker models by attenuating the noise. It is computationally 

cheaper than model compensation and independent of the recognizer. Also, it is 

normally performed either in the spectral domain (e.g., spectral subtraction [79]) or 

directly in the feature domain (e.g., RASTA [80], and MMSE [81], [82]). In its most 

basic form, the main drawback of feature compensation is that it produces point 

estimates of the clean features without providing any information about the reliability 

of the estimates (i.e., ignoring uncertainty). This drawback can be eliminated by 

producing full posterior distributions in the compensation domain and then 
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propagating them to the recognition domain. This framework is referred to as 

uncertainty propagation and deals with the issue of how to propagate probability 

distributions (or statistical moments) through nonlinearities [83]. 

Another alternative, and the most commonly used to account for both 

uncertainty and model mismatch, is to use model compensation techniques. These 

techniques deal with model mismatch and uncertainty by modifying the parameters of 

the modeling distributions. They come in four flavors: i) direct multicondition 

training; ii) general purpose data-driven adaptation; iii) mismatch-function 

techniques; iv) missing-feature theory. 

The direct training approach simply creates a single model [84] or a collection 

of models [85] using a multicondition dataset. In general, single model multicondition 

training results in improvements for both seen and unseen training conditions [86]. 

However, this normally comes at the expense of a small reduction in performance for 

the clean condition [87]. To partially overcome this issue, multiple models can be 

trained based on partitions of the multi-condition dataset. However, partitioning the 

data too much may result in loss of generalization. Typical ways to partition the data 

involve noise types and SNR levels [85], [88]. At recognition time, either the best 

matching model is selected [85], or a combination of all their outputs [89]. 

In their basic form, general purpose adaptation approaches assume a prior 

“clean” model and adapt its parameters to different conditions by imposing some 

general functional form of the transformation (i.e., affine). Specifically, they do not 

make any explicit assumptions about the interaction between the noise and the clean 

signal and simply focus on adapting the parameters of the “clean” model based on 
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adaptation data. Classic examples of these techniques are: Maximum Likelihood 

Linear Regression (MLLR) [90] and Maximum a Posteriori (MAP) adaptation [39]. 

More sophisticated training strategies, like Noise Adaptive Training (NAT) [91], can 

be used in situations where assuming a clean model is not realistic. 

Alternatively, techniques based on mismatch-functions explicitly model the 

interaction between the noise and speech features to produce a parametric model in 

the feature domain. Unfortunately, the interactions described by the mismatch-

functions do not have a closed-form solution in the model domain and different types 

of approximations have been proposed. Two good representatives of these 

approximations are Data-driven PMC (DPMC) [92] and Vector Taylor Series (VTS) 

[76], [77]. In contrast with general purpose adaptation techniques, they are more 

complex, but require less adaptation data. In fact, most of them only require estimates 

of the noise moments (i.e., mean and variance). 

Finally, the family of missing-feature approaches [93], [94] assumes that a 

reliable estimation of the properties of the noise is not realistic and simply ignores the 

severely degraded feature components (i.e., those that are not well accounted for by 

the model). 

The majority of the techniques mentioned so far were initially developed in 

the context of speech recognition. However, they are directly applicable to the area of 

speaker recognition. In particular, to handle extrinsic variability, the mainstream of 

speaker recognition techniques has mostly followed either the route of general 

purpose data-driven adaptation or direct training. Even though most of the techniques 

have been presented in the context of channel variability, most of them are general 
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purpose techniques
8
. Within the context of generative probabilistic formulations, the 

classic technique of relevance MAP adaptation of Gaussian Mixture Models (GMMs) 

[37] was the precursor of a series of developments that resulted in the current state-of-

the-art based on i-vector representations [3]. An extension to the basic GMM-UBM 

framework, denoted as feature mapping [95] was followed by the use of 

eigenchannels [96], [97]. This framework was extended into the Joint Factor Analysis 

(JFA) paradigm [56], that finally evolved into the current state-of-the-art based on i-

vector representations
9
 [3].  

The i-vector formulation provides an elegant way to obtain a low dimensional 

fixed-length representation of an entire speech utterance. The low-dimensional nature 

of the i-vector space facilitates the use of large amounts of data to remove/attenuate 

the effects of adverse conditions. It also has opened the door for new ways to 

decompose a speech signal into a speaker-specific component and an undesired 

variability component. 

6.3. Speaker Recognition System 

All the recognition systems studied in this chapter are based on an i-vector 

front-end followed by a back-end comprising one or more Gaussian probabilistic 

generative models. Moreover, we assume access to a multicondition development set 

comprising   speakers with multiple utterances per speaker observed under   

conditions (e.g., different noise types and SNRs). The development set was used to 

                                                 

 
8 In fact, that is the reason why it is quite common to see the use of the word “channel” variability to refer to anything that it 

is not related to speaker-specific information. 
9 Note that the list of key contributions from GMM-UBM to i-vectors is not an exhaustive one and many other ideas were 

involved in the process. 
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train the i-vector front-end as well as the back-ends. Also, in order to assess the 

system performance, an evaluation set with data from speakers not present in the 

development set was used. The evaluation set comprises model segments and test 

segments. A speaker model will be constructed by using a collection of model 

segments from a single speaker that have been observed under the   conditions 

represented in the development set. The test segments will be used to produce 

verification trials. Some of the test segments will belong to one of the   anticipated 

conditions in the development set while others will not. This will allow us to assess 

the recognition performance in anticipated as well as in unseen conditions.  

In the following we present an overview of the four speaker recognition 

architectures studied in this chapter. This is followed by a detailed description of a 

modified version of the PLDA model introduced in Section 5.2.2 denoted as TIED-

PLDA and a score combination block. 

 

(a) 

 

(b) 

Figure 6.1: (a) Single-classifier architecture. (b) Multi-classifier architecture with J 

subsystems. The final score is a linear combination of the individual scores. 
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6.3.1. System Architectures 

Figure 6.1 depicts two speaker recognition systems: one based on a single 

classifier (panel a), and another one based on multiple classifiers (panel b). 

Combining the single- and multiple-classifier setups with the option to train them in a 

single-condition or multicondition fashion results in the four architectures studied in 

this work.  

For the single-classifier architectures, the verification score is the log-

likelihood ratio outputted by the classifier. Since we are only considering 

probabilistic generative models, if the classifier parameters are trained using 

multicondition data, the optimal set of parameters will achieve a compromise that 

results in a good average representation for all conditions. While this might help to 

improve the generalization capability of the system, it might also be an unrealistic 

model when the conditions under which the system will operate vary widely (i.e., 

SNRs from 40 to 0 dB). For this reason we also consider architectures with multiple 

classifiers where each subsystem is only trained on a subset of conditions. This 

approach increases the number of parameters of the system and therefore reduces the 

need to compromise between conditions. In particular, for a multi-classifier setup 

with   classifiers, the final verification score is a convex mixture of the individual 

scores of each subsystem (details about how to obtain the mixture coefficients are 

given in Section 6.3.3). Note that the total number of classifiers   and the number of 

observation conditions   need not be the same. In fact, the mapping between 

conditions and classifiers is a key aspect of the system design and it is analyzed in 

Section 6.5.6. 
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For all the architectures, the front-end i-vector extractor (see Section 5.2.1) is 

trained only with clean data (i.e., the original development dataset before it is 

augmented with synthesized corrupted versions). The back-ends make use of the 

entire multicondition data set, except for the baseline system that is trained on the 

original data only. 

The four system architectures analyzed in this work are: 

 Single classifier and Single condition: This setup represents the 

baseline system and is used to characterize the behavior of a state-of-the-art system 

when no explicit compensation for noise is included. All performance improvements 

due to multicondition training are compared to this baseline system. 

 Single classifier and Multicondition: In this setup, all the available 

multicondition development data is pooled together and a unique set of classifier 

parameters is learned. This configuration provides the largest ratio of data points to 

model parameters. 

 Multiple classifiers and Single condition: In this setup, each subsystem 

is trained on data from only one of the K available conditions (i.e., the number of 

subsystems J is equal to the number of conditions K). The final score is a convex 

mixture of the subsystem scores. 

 Multiple classifiers and Multicondition: This is the most general 

architecture studied in this work. There are two key aspects of this setup that control 

the number of free parameters of the architecture. The first one is the mapping 

between conditions and subsystems. Note that we are not assuming a partition of a set 

of K conditions into J disjoint subsets. Hence, data from the same condition can be re-
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used to train multiple subsystems. The second one is the selection of the 

multicondition training scheme (i.e., Pooled- or Tied-PLDA approaches described in 

Sections 5.2.2 and 6.3.2 respectively). When using this architecture, special care is 

needed to prevent overfitting. 

In the following we provide a detailed presentation of the two building blocks 

that are specific of the abovementioned architectures. 

6.3.2. Tied-Probabilistic Linear Discriminant Analysis 

When i-vectors are observed under a wide range of conditions (e.g., high and 

low SNRs), the PLDA model introduced in Section 5.2.2 might be too restrictive. 

Mostly because it assumes that given a latent identity variable all observations are 

generated using the same set of parameters        . A generalization of the PLDA 

model, denoted as Tied-PLDA [67], is obtained by clustering the observed i-vectors 

into   conditions and allowing the parameters to be different depending on the 

observation condition. In the following we describe how to model i-vectors and how 

to compute scores using Tied-PLDA. 

i) Modeling: Consider a total of   observation conditions and one 

utterance per condition from speaker  . A Tied-PLDA model for the observed i-

vectors follows: 

 

    
    
 
    

   

  

  

 
  

   

  

  

 
   

     

    
    
 
    

   (6.1) 

Note that the latent identity variable    is the same across all conditions (i.e., it ties 

the hyperparameters). Also, the number of parameters of a Tied-PLDA system with   
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conditions              
  is   times larger than the number of parameters in the 

basic PLDA system. Hence, the modeling power of Tied-PLDA is much larger and 

caution is needed not to over fit the model. As in the PLDA case, ML point estimates 

of the model parameters are obtained from the development set using the EM 

algorithm [67]. A number of hybrid models can be created by only allowing a subset 

of the parameters to be condition-dependent. For example, one might consider a 

system in which only the noise covariance matrices depend on the observation 

conditions            
 . These hybrid models provide a mechanism to control the 

number of parameters. 

ii) Verification score: The procedure to compute verification scores under 

the Tied-PLDA formulation is essentially the same as in the PLDA case with two 

minor distinctions. First, equations (5.5), (5.6) and (5.7) need to be modified to 

account for the condition-dependent nature of the parameters. Second, the test 

segment i-vector needs to be assigned to one of the   conditions. Since we only use 

Tied-PLDA in the multi-classifier setup, we perform this assignment by defining one 

subsystem per condition (i.e.,    ) and assuming that the test segment was 

generated by the condition represented by the classifier. For example, if we consider 

    conditions, and subsystem           is trained on data from conditions 1 and 

2, with the goal of being an “expert” for condition 2, then, under the same-speaker 

hypothesis    the observed i-vectors would follow: 

 

    
    
  

   

  
 

  
 

  
 

   

  
 

  
 

  
 

    

 
 
 
     

 

    
 

    
 
 
 
 
 

  (6.2) 



 

 

 

100 

 

The model for the different-speaker hypothesis    follows immediately by adding a 

second latent identity variable in the same way as it was done in (5.6). Hence the 

subsystem   that represents (is an expert in) condition 2, and was trained with data 

from conditions 1 and 2, will be characterized by the Tied-PLDA parameters: 

    
 
   

 
   

 
     

 
   

 
   

 
  . 

6.3.3. Multi-classifier Combination 

In the multi-classifier architectures, the final verification score is obtained as a 

convex mixture of a collection of   scores      according to the weights      (see 

Figure 6.1 (b)). Specifically, weight    corresponds to the posterior probability of 

system   having generated the test i-vector   , regardless of the claimed identity. 

Denoting    as the prior probability of observing data from subsystem  , and letting 

the likelihood of the test i-vector for subsystem   be        , a direct application of 

Bayes’ theorem results in: 

                               

 

    

   (6.3) 

Ideally we would like the vector of posterior probabilities            
 
to be 

sparse and have most of the probability mass concentrated around the systems trained 

on data similar to the conditions of the test segment at hand. In this way, the systems 

that better match the test condition will have the largest contribution to the final 

score. Therefore, we can consider each subsystem as an “expert” on a subset of 

conditions and the final score as a weighted combination of their opinions. 



 

 

 

101 

 

6.4. Experimental Setup 

6.4.1. Original Dataset and Configuration Setup 

All the experiments were conducted on the male part of condition 2 of the 

extended NIST SRE 2010 evaluation [1] (i.e., interview data). Throughout the 

experiments we refer to this set as evaluation data. We selected condition 2 because it 

provides the largest amount of trials among the 9 available conditions. However, 

since there is no reason to suspect that the effects of multicondition training will be 

dependent on the gender of the speaker, we focused on the male trials to keep the 

amount of data more manageable. This subset comprises 1,108 models and 3,328 test 

segments from which 6,932 target trials and 1,215,586 non-target trials were 

obtained. Verification performance is reported in terms of Equal Error Rate (EER).  

We used 400 dimensional i-vectors in all experiments. They were computed 

using a gender-dependent i-vector extractor trained on data from NIST SRE 04, 05, 

06, 08, Switchboard and Fisher. The necessary Baum-Welch sufficient statistics are 

collected using a diagonal-covariance gender-dependent UBM with 2048 mixtures 

trained on the same data. Note that neither the UBM nor the i-vector extractor were 

exposed to the noisy conditions, since they were trained only on this “original” data. 

We constructed a development set by selecting a subset of the data used to 

train the i-vector extractor. In particular, we only kept the data from speakers with 

more than 3 speech utterances. This resulted in 907 male speakers with a total of 

10,695 files. The PLDA model parameters of all the aforementioned architectures 
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were trained using this dataset (or the augmented multicondition version described in 

the next section). 

All speech files were parameterized using 38 LFCCs [98] (i.e., 19 base 

coefficients without c0 plus deltas) obtained every 10 ms from a 20 ms Hamming 

window. Only the information in the frequency band of 300-3400 Hz was used. 

Global mean and variance normalization was applied to the entire utterance. 

For each file in the original development and evaluation datasets, voice 

activity detection (VAD) was performed using a combination of the ASR transcripts 

provided by NIST [1] and an energy-based VAD system. Both channels (i.e., 

interviewer and interviewee) were used to remove the interviewer’s speech from the 

interviewee channel. 

 

   

   

   

Figure 6.2: Spectrograms of 5 second portions of the noises (except white noise) used to 

generate the multicondition development and evaluation dataset. 
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6.4.2. Multicondition Data Generation 

In order to create a set for multicondition training and testing, 70 noisy copies 

of each file from the evaluation and development sets were created by electronically 

adding 10 different types of noises: white, babble, car, helicopter, airport, subway, 

street, restaurant, music (music-A), and music (music-B) at 7 SNR levels: 30, 20, 15, 

10, 6, 3, and 0 dB. Figure 6.2 shows spectrograms of a 5 second portion of each of the 

noises (except for the white noise). I-vectors were computed for each file in the 

multicondition development and evaluation sets (i.e., original plus 70 corrupted 

versions). Since there are 4,436 files in the original evaluation set and 10,695 in the 

development set, the multicondition dataset comprises 314,956 (i.e., 71 x 4,436) 

evaluation and 759,345 development i-vectors. 

The resulting SNR of the noisy files was defined by the energy levels of 

speech and the added noise in the speech regions (determined by VAD) and the 

silence regions were excluded for the SNR calculation. Also, the same VAD 

computed from the original files was used for the noisy versions. This VAD strategy 

is suboptimal since it lets too much noise into the system for low SNRs. However, the 

focus of this work is on the relative trends among the explored architectures, 

therefore, this is not a big concern. In future work we will explore the effects of better 

VAD strategies in the absolute values of the speaker verification performance. 

During the experiments, we defined two groups based on the noise types: P1 = 

{original, babble, car, helicopter, white}, and P2 = {original, airport, subway, street, 

restaurant, music-A, music-B}. Note that except for the original data, the two subsets 

are disjoint. We also defined Pall as the union of P1 and P2. The purpose of these 
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partitions is to evaluate the multicondition training strategies under both anticipated 

and unanticipated conditions. When the systems are trained on data from P1 and 

tested on data from P2 (or vice versa) we refer to it as the unseen condition. On the 

contrary, when the train and test data belongs to the same partition, we refer to it as 

then anticipated condition. 

6.5. Experiments 

In the following we present all the experiments conducted in this chapter. We 

start with an analysis of the effects of i-vector length normalization. This is followed 

by a characterization of the baseline system when no explicit noise compensation is 

applied. After this, we start exploring various aspects of multicondition training. In 

particular, we first analyze the effects of SNR granularity, and then address the issue 

of how to achieve good performance in a broad range of conditions. We continue 

with a detailed comparison of the different multi-classifier training strategies and an 

assessment of the optimal number of classifiers. After that, we examine the behavior 

of the score combination module as well as the effects of multicondition training on 

the parameters of the PLDA model. Finally, we conclude with an evaluation of the 

score calibration of the systems. 

6.5.1. Length Normalization 

In [68] it was shown that the current strategy (e.g., [3]) used to extract i-

vectors induces a severe mismatch between the length of the development and 

evaluation i-vectors. This was identified as a major source of non-Gaussian behavior. 

A nonlinear transformation of the i-vectors denoted as length normalization was 
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proposed to reduce this mismatch and allow for effective Gaussian modeling. Here 

we further extend those observations by looking at the distribution of i-vector lengths 

as a function of the SNR. 

Figure 6.3 shows the results of fitting Gaussians (i.e., one Gaussian per SNR) 

to the length distributions of i-vectors from utterances corrupted by babble noise at 

different SNRs. As a general trend we can observe that lower SNRs result in larger 

shrinkage. This is also true for other noises as well as for the i-vectors in the 

development set. Since both the UBM and i-vector extractor are trained on clean data 

only, the noisy conditions are not represented as well in the i-vector subspace and 

produce lower energy (shorter) i-vectors. Thus, when considering a collection of data 

with a wide range of SNRs, severe length mismatch is not only observed between 

development and evaluation datasets but also within them. 

 

 

Figure 6.3: Gaussian fits to the distributions of i-vector lengths of the evaluation data 

for different SNRs in babble noise. 
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Noise type 
SNR 

(dB) 

Single classifier architecture 

Baseline PLDA 
Multicondition trained 

Pooled-PLDA 

Length normalization Length normalization 

NO YES NO YES 

Original - 1.35 0.97 (28%) 1.88 1.22 (35%) 

White 

20 4.25 2.86 (33%) 2.69 1.95 (28%) 

10 19.02 14.31 (25%) 10.49 8.3 (21%) 

6 27.77 22.66 (18%) 18.42 15.23 (17%) 

0 39.94 36.22 (9%) 32.9 28.46 (13%) 

White Average 22.75 19.01 (16%) 16.13 13.49 (16%) 

Table 6.1: Verification performance in EER along with relative improvement (in 

parenthesis) due to length normalization. The baseline system was trained only on the 

original data. The multicondition pooled-PLDA system was trained on: original, babble, 

car, and helicopter data. Results are presented for test segments in white noise, hence 

representing an unseen condition. 

In order to assess the effects of this behavior in recognition performance, 

Table 6.1 shows the verification results of two systems: one with length 

normalization and another without it. Both systems are based on single-classifier 

architectures. The baseline system is trained on the original development data, 

whereas the Pooled-PLDA system is trained on: original, babble, car, and helicopter 

data. Results are presented for test segments corrupted by white noise; hence, 

representing an unseen condition for both systems. Based on the relative 

improvements shown in parenthesis, we can observe that both systems greatly benefit 

from the use of length-normalized i-vectors. Also, on average, the same relative 

improvement is observed regardless of multicondition or single-condition training. 

Moreover, the effectiveness of length normalization decreases as the SNR increases. 

This suggests that, at lower SNRs, the degradation in recognition performance is 

mostly dominated by the loss of speaker information and the effects of using the 

wrong modeling assumptions (i.e., assuming that the data can be well represented 

with a Gaussian model) are less prominent. Hence, even though the within 
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development/evaluation i-vector length mismatch may seem as an opportunity for 

length normalization to offer even larger relative improvements, the dominating  

artifact at low SNRs is the loss of information and length normalization cannot 

compensate for that. However, the overall performance improvements of length 

normalization are quite impressive, and therefore, all the experiments in this work are 

conducted using length-normalized i-vectors.  

6.5.2. Baseline System 

The baseline system is only trained on the original data. It is used to 

characterize the behavior of a state-of-the-art system when no explicit compensation 

for noise is included. Figure 6.4 and Table 6.2 show the performance of the baseline 

system across all noises from both partitions: P1 and P2. We can observe a fast 

degradation in performance for all noises. For example, on average, the EER 

increases approximately by 3, 6 and 23 times when the SNR falls to 15dB, 10dB and 

0dB respectively. Interestingly, the degradation rate for white and subway noises is 

much faster. This can be attributed to two factors.  

First, the SNR is an average statistic over the entire file and only provides a 

partial description of the noise characteristics. Hence, care must be taken when 

making comparisons across noise types that have the same average SNR. In 

particular, the variance of the noise energy across time plays an important role in i-

vector representations and it is not reflected in the average SNR. Since i-vectors are 

based on averages of clusters of speech frames over time, if the variance of the noise 

energy is very high, it means that a small portion of the frames might be severely 
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corrupted while the rest remain less affected. This uneven corruption of the 

information may facilitate the extraction of speaker-specific information from the less 

corrupted regions. On the contrary, a noise with very low energy variance results in 

almost all frames being corrupted similarly, and therefore, makes the extraction of the 

speaker-specific information harder; hence resulting in reduced performance. These 

claims are consistent with the behavior observed in the spectrograms of the different 

noises (5 second portions shown in Figure 6.2). 

The second factor is related to the spectral distribution of energy. Since we are 

using a linearly-spaced filterbank to obtain the LFCCs, the higher resolution in the 

high-frequency range makes the system more sensitive to noise corruptions with high 

energy in the high frequencies (i.e., white noise and subway noise have a much flatter 

spectrum than the other noises which results in higher energy at high frequencies). 

However, when considering the overall picture, the higher sensitivity to these two 

types of noises might be a price worth paying, especially if considering utterances 

from females speakers, due to the consistently better performance of LFCCs over 

MFCCs in the original utterances of condition 2 of SRE10  [98]. 
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Test 

noise 

S
N

R
 (

d
B

) 

Single-classifier architecture 
Multi-classifier 

architecture 

Base 
Pooled-PLDA with all 

SNRs 

Pooled-PLDA with 

subset SNRs 
2 class Pooled-PLDA 

Train-

orig. 

Train-

Pall 

Train-

P1 

Train-

P2 

Train-

Pall 

Train-

P1 

Train-

P2 

Train-

Pall 

Train-

P1 

Train-

P2 

Orig. - 0.99 1.29 1.27 1.34 1.21 1.19 1.17 0.88 0.90 0.92 

A
v

g
. 

ac
ro

ss
  

P
1

 n
o

is
es

 

30 1.04 1.33 1.34 1.36 1.24 1.24 1.18 0.91 0.91 0.91 

20 1.77 1.52 1.53 1.52 1.43 1.41 1.38 1.20 1.18 1.27 

15 3.59 1.85 1.85 2.20 1.75 1.73 2.01 1.62 1.63 2.00 

10 7.53 2.85 2.73 4.09 2.79 2.57 3.85 2.75 2.63 3.93 

6 13.22 4.87 4.61 7.66 4.84 4.39 7.29 4.79 4.53 7.53 

3 19.39 7.80 7.42 12.10 7.78 7.15 11.66 7.78 7.34 11.94 

0 26.59 12.37 11.64 18.30 12.33 11.32 17.86 12.30 11.53 18.15 

Avg. 

30-

15 

2.13 

(0%) 

1.57 

(27%) 

1.57 

(27%) 

1.69 

(21%) 

1.47 

(31%) 

1.46 

(31%) 

1.52 

(29%) 

1.24 

(42%) 

1.24 

(42%) 

1.39 

(35%) 

Avg. 

10-0 

16.68 

(0%) 

6.98 

(58%) 

6.60 

(60%) 

10.54 

(37%) 

6.94 

(58%) 

6.36 

(62%) 

10.17 

(39%) 

6.91 

(59%) 

6.51 

(61%) 

10.39 

(38%) 

A
v

g
. 

A
cr

o
ss

 P
2

 n
o

is
es

 

30 1.05 1.33 1.34 1.37 1.24 1.23 1.18 0.91 0.92 0.94 

20 1.63 1.47 1.56 1.50 1.38 1.44 1.32 1.11 1.18 1.15 

15 2.98 1.71 2.06 1.73 1.64 1.92 1.58 1.50 1.75 1.55 

10 6.11 2.36 3.58 2.37 2.30 3.40 2.21 2.27 3.34 2.27 

6 10.70 3.70 6.53 3.60 3.66 6.26 3.46 3.64 6.28 3.56 

3 15.60 5.73 10.30 5.49 5.70 9.96 5.37 5.68 10.08 5.47 

0 21.74 9.29 15.69 8.85 9.21 15.21 8.74 9.20 15.42 8.80 

Avg. 

30-

15 

1.89 

(0%) 

1.50 

(20%) 

1.65 

(12%) 

1.53 

(19%) 

1.42 

(25%) 

1.53 

(19%) 

1.36 

(28%) 

1.18 

(38%) 

1.28 

(32%) 

1.21 

(36%) 

Avg. 

10-0 

13.53 

(0%) 

5.27 

(61%) 

9.02 

(33%) 

5.08 

(62%) 

5.22 

(61%) 

8.71 

(36%) 

4.94 

(63%) 

5.20 

(62%) 

8.78 

(35%) 

5.02 

(63%) 

Table 6.2: Verification performance in EER along with relative improvement over the 

Baseline system (in parenthesis). The systems are either based on a Single- or Multi-classifier 

architecture. All systems (except baseline) are trained using multicondition data from the 

three partitions (Pall, P1, P2). The verification results are also separated in partitions to 

facilitate evaluation of anticipated and unseen conditions. There are two variants of the 

Single-classifier architecture that use different subsets of SNRs. The Multi-classifier system 

uses 2 classifiers trained in Pooled mode (see Section 6.5.6 for details about the 2 classifiers). 



 

 

 

110 

 

 

6.5.3. SNR Granularity 

In this section we explore the effects of the SNR granularity on the 

verification performance. That is, we are interested in knowing what SNR increments 

should be considered when generating a multicondition dataset. We focus our 

experiments on the single-classifier Pooled-PLDA architecture, since there is no 

reason to believe that the choice of architecture would have a significant effect on the 

question at hand.  

During the experiments we trained two Pooled-PLDA systems using different 

combinations of SNRs. In one system we used all the SNRs available in our 

development dataset and in the other we removed the samples corresponding to SNRs 

of 15 dB and 3 dB. Also, the experiments were done taking into account the noise 

partitions where we computed results for three training variants. The first variant used 

noises from both partitions (Pall), and therefore, all test conditions were seen during 

 

 

Figure 6.4: Comparison of the baseline system with a 2-classifier Pooled-PLDA 

system trained on different partitions (Pall, P1, and P2) of the development data. The 

performance is reported in EER for all noises and SNRs in the evaluation set. 
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training. The second one only used the noise data from partition P1, and the third one 

from P2. In this way we can observe the effects of SNR granularity in both 

anticipated and unseen conditions.  

Columns 4 thru 9 of Table 6.2 show the results for the six configurations (2 

systems with 3 training variants). Before analyzing the influence of the SNR 

granularity, it is important to point out that both systems significantly outperform the 

baseline system. Also, as expected, the improvement in anticipated conditions is 

better than in unseen conditions. However, the performance in unseen conditions is 

still quite impressive. For example, if we consider the performance of the system 

trained on both partitions (Pall) as the “oracle” performance, then, the results for 

unseen conditions (i.e., trained on P1 and tested on P2 and vice versa) get very close 

to the oracle for the range of SNRs between 30 to 15 dB. For lower SNRs, the gap 

between the actual performance and the oracle is larger. However, the achieved 

performance always exceeds 50% of its full potential when considering the oracle as 

an upper bound. 

Going back to the SNR granularity, if we compare the results in columns 4 

and 7, we can see that the trend of performance with SNR is not affected by the fact 

that the second system was trained only on a subset of all the available SNRs. That is, 

the results for SNRs of 15 dB and 3 dB follow the same trend in both systems. Note 

that the same is true when the systems are trained only on noises from P1 or P2 and 

tested on both anticipated and unseen conditions. This suggests that sampling SNRs 

in increments smaller than 6 dB is unlikely to improve performance. Interestingly, 

this low sensitivity to SNR granularity was also pointed out for speech recognition in 
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[85]. Moreover, the verification performance obtained with the sub-sampled system 

for higher SNRs (i.e., average between 30 and 15 dBs) is slightly better than that of 

the system using all available SNRs. This can be explained by the fact that the 

average SNR across all the training data for the sub-sampled system is 13.2 dB as 

opposed to 12 dB for the full set. Hence, this bias towards higher SNRs produces a 

small improvement on the test conditions with higher SNR. This observation is 

further explored in the next section. 

6.5.4. Balancing Development Conditions 

An important question in the multicondition training setup is: What is the 

appropriate way to balance the training data to achieve good performance across a 

broad range of testing conditions? The success of multicondition training lies in its 

ability to expose the unreliable components of a representation. This allows the model 

to focus its representational power on the robust (invariant) components. However, 

for a fixed model complexity (i.e., number of system parameters), the larger the range 

of conditions in which we expect the system to be competent, the less outstanding it 

will be for any particular one. This concept is succinctly captured in the well known 

figure of speech: “Jack of all trades, master on none”. To explore how this idea is 

manifested in our particular setup, we trained three systems using different subsets of 

SNRs. The three SNR ranges were denoted as: ALL = (original, 30, 20, 10, 6, 0); HI-

SNR = (original, 30, 20, 10); and LOW-SNR = (original, 10, 6, 0). The systems were 

based on a single-classifier Pooled-PLDA architecture and used all the available noise 

types. Also, we omitted the 15 dB and 3dB sets based on the results reported in the 
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previous section.  

Figure 6.5 shows the verification performance averaged over all noise types at 

different SNR levels for the three systems. The system trained on all the SNRs 

produces good results for the entire range, but it is outperformed in the higher SNR 

range (original – 15 dB) by the system trained on the HI-SNR subset, and in the lower 

SNR range (3 – 0 dB) by the systems trained on the LOW-SNR subset. However, the 

performance of the biased systems (either towards HI-SNR or LOW-SNR) is much 

worse than that of the system trained on all the data for the SNR ranges not included 

in their training sets. Hence, for single-classifier architectures, a good performance in 

a wide range of operating conditions comes at the expense of performance 

degradation in any particular one. This suggests that a multi-classifier setup might be 

a good way around this tradeoff. For example, based on the results in Figure 6.5, if 

we were to use the system biased towards high SNRs to produce scores for 

verification trials comprising high SNR test segments, and the system biased towards 

low SNRs for test segments with low SNRs, we would obtain a system that covers the 

same range as the ALL data single-classifier system but with improved performance. 

However, this strategy assumes the ability to automatically select the system that 

should produce the verification score. Moreover, it is not immediately apparent how 

many classifiers to use as well as which training methodology to select. These 

questions are explored in the following sections starting with the analysis of the 

training strategy. 
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6.5.5. Multi-classifier Training Strategies 

The use of multi-classifier techniques has the potential to produce verification 

systems that cover a broad range of conditions without sacrificing performance in 

each one of them. In this section we compare the verification performance of three 

multi-classifier architectures. Two of them are based on multicondition training (i.e., 

Pooled- or Tied-PLDA) and the other one is based on single condition training and it 

is denoted as Individual-PLDA training. 

The Individual-PLDA training architecture assumes that the number of 

classifiers is equal to the number of development conditions (i.e.,    ). Hence, for 

the experiments in this section we use the same configuration for the two other 

architectures to facilitate comparison. Note that under this configuration the ratio of 

data points to model parameters is the smallest and care must be taken not to over fit 

 

Figure 6.5: Verification performance averaged over all noise types at different SNR 

levels for three systems trained on different subsets of SNRs: all (or,30,20,10,6,0), 

biased-hi (or,30,20,10), biased-low (or,10,6,0). 
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the data. For this reason, we performed the experiments taking into account the two 

partitions: P1 and P2. In this way, the generalization capabilities of the three training 

approaches can be assessed for unseen conditions. In particular, the number of 

classifiers for the systems trained on P1 and P2 are 21 and 31 respectively (since we 

are not including the subsets of 15 dB and 3 dB in the training sets).  

 Additionally, the multicondition training of the Tied- and Pooled-PLDA 

systems was done by using the original data along with the data of the corresponding 

condition of the classifier. For example, the classifier trained for babble noise at 20 

dB used the development data corresponding to that condition plus the original data 

set. This strategy was found to be successful in the preliminary work reported in [73]. 

However, the lack of an extensive set of unseen conditions in [73] did not allow for a 

very conclusive assessment of the generalization ability of each training scheme. Here 

we have expanded those experiments using a larger set of unseen conditions. 

Relative improvement over 

baseline (%) 

Test 

Average 30-15 dB Average 10-0 dB 

Train System P1 P2 P1 P2 

P1 

Pooled 40 25 66 27 

Tied 42 21 68 17 

Individual 17 2 49 0 

P2 

Pooled 26 28 33 67 

Tied 26 33 27 69 

Individual 15 14 16 50 

Table 6.3: Relative improvement of EER over the baseline system for three multi-

classifier architectures (Pooled, Tied, Individual). Results are averaged over two ranges 

of SNRs (30-15 and 10-0) for the four combinations of training/testing of the two 

partitions. See text for details about the multi-classifier setup. 

Table 6.3 shows the performance for the three training strategies in terms of 

relative EER improvement over the baseline system. The results are averaged for all 

the noises in each partition over two ranges of SNRs: 30 to 15 dB and 10 to 0 dB. The 
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numbers in bold correspond to the anticipated conditions and the rest to unseen 

conditions. It can be observed that the three approaches outperform the baseline 

system in both conditions. However, the Pooled- and Tied-PLDA systems 

significantly outperform the Individual-PLDA approach. Specifically, for the 

anticipated conditions and SNR range of 30-15 dB, the performance of the 

Individual-PLDA is less than half of the performance of the other two systems. For 

lower SNRs the gap is smaller but still significant. Also, in the unseen conditions, the 

improvement of the Individual-PLDA model trained on P1 is negligible. These 

observations indicate that, under the multi-classifier PLDA framework, the key to 

successfully leverage the multicondition data is to train the parameters of each 

classifier using data from multiple conditions. This can be explained by the fact that 

when the training set comprises speech utterances corrupted by different distortions, 

the reliability/unreliability of the components of the representation becomes more 

apparent. This in turn facilitates the identification of the speaker-specific component 

and the intersession variability. 

Comparing the Tied- and Pooled-PLDA systems we can observe that Tied-

PLDA slightly outperforms Pooled-PLDA for the anticipated conditions. However, 

the results for unseen conditions follow the opposite trend. This indicates that Tied-

PLDA is overfitting the data since it has twice as many parameters as the Pooled-

PLDA system. The fact that doubling the number of parameters of the model only 

leads to slight improvements in anticipated conditions―at the expense of a noticeable 

loss in generalization capability―leads us to select Pooled-PLDA as a more reliable 
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alternative. The rest of the experiments will therefore be focused on this alternative. 

In the next subsection we explore different strategies to map conditions to classifiers. 

6.5.6. How Many Classifiers? 

Up to this point we have observed two behaviors that provide guidelines regarding 

the question: How to map development conditions to classifiers? On the one hand, 

based on the results in Section 6.5.4, we observed that multi-classifier techniques 

have the potential to produce verification systems that cover a broad range of 

conditions without sacrificing performance. On the other hand, the results in Section 

6.5.5 showed that care must be taken to avoid overfitting the data, and therefore, 

controlling the ratio of data points to number of model parameters is a key design 

variable. These two opposing principles suggest that a successful strategy can be 

obtained by striking a balance between: spreading the data too thinly, and averaging 

too much. 

To explore this trade-off, we trained four Pooled-PLDA systems from the 

development data in P1 (omitting the 15 dB and 3 dB subsets). The four different 

mappings between conditions and classifiers were: i) pooling all data together into a 

single classifier; ii) two classifiers, one based on (original, 30 dB, 20 dB, 10 dB) and 

the other (original, 10 dB, 6 dB, 0 dB); iii) six classifiers, one for each SNR, where 

we pool all the data from the same SNR along with the original set; and iv) twenty 

one classifiers with data from one noise type and SNR per classifier, along with the 

original set. Figure 6.6 shows the verification performance of each architecture 

averaged across noise types. The top panel corresponds to anticipated conditions and 
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the bottom to unseen ones. Even though we are only displaying results for the system 

trained on P1, the same behavior is true for the system trained on P2. We can notice 

that the system with 21 classifiers outperforms the rest in anticipated conditions 

(especially in the low-SNR region); but performs the worst in unseen conditions at 

the lower SNRs. This is a clear indication of the overfitting risk that we have 

previously discussed. On the contrary, the systems based on one and two classifiers 

have the best generalization capability, and provide a competitive performance for the 

whole range of SNRs in the anticipated conditions. Also, the behavior of the 6-

classifier system indicates that the corresponding mapping between conditions and 

classifiers is not as good as the other alternatives. The observed results suggest that, 

unless the system is deployed in a very controlled scenario, where the operating 

conditions are always very close to those included in the development set, the single-

classifier or the two-classifier systems are the best alternatives. A more detailed 

comparison between these two can be established by looking at the last six columns 

of Table 6.2. We can notice that for the low-SNR range the two systems provide 

nearly identical results. However, the two-classifier system outperforms the single-

classifier architecture in the original dataset as well as the high-SNR range (30 dB– 

15 dB). This is true for both anticipated and unseen conditions. Noting that the single-

classifier architecture works worse than the baseline system in the original and 30 dB 

datasets helps us to appreciate the benefits of the two-classifier architecture. In 

particular, the use of two classifiers, one targeted towards high-SNR and another 

towards low-SNR results in a system that does not compromise performance in high-

SNR in order to produce good results in low-SNR levels. In the next section we 
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analyze the behavior of the score combination mechanism (i.e., Figure 6.1.b) for this 

architecture. 

6.5.7. Analysis Mixing Coefficients 

As described in Section 6.3.3, the final score for a verification trial is obtained 

by combining the scores of each classifier based on the posterior probability of the 

subsystem given the trial at hand. Therefore, the success of this approach relies 

heavily on the quality of these mixing coefficients.  

 

Figure 6.6: Comparison of multi-classifier architectures based on the number of 

classifiers. The performance is averaged across noise types and presented for each 

SNR. The top panel shows results for systems trained and tested on P1. The bottom 

panel shows results for systems trained on P1 and tested on P2 (unseen conditions). 
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Figure 6.7 shows the mixing coefficients (i.e., subsystem posterior 

probability) for the two-classifier Pooled-PLDA system averaged across all the 

verification trials of each SNR. Recall that the sub-system biased towards high-SNRs 

was trained on (original, 30 dB, 20 dB, 10 dB), whereas the subsystem biased towards 

low-SNRs was trained on (original, 10 dB, 6 dB, 0 dB). The left plot corresponds to 

the performance for the anticipated conditions and the right plot to unseen conditions. 

Note that we are only displaying the results for the system trained on P1 but the same 

behavior is true when training with P2. Ideally, the mixing coefficient for the high-

SNR sub-system should be one for trials with SNRs above 10 dB, and zero for SNRs 

below 10 dB. Compared to the ideal case, the results for the anticipated conditions 

show a bias towards the low-SNR subsystem. However, the high verification 

performance of the system indicates that this bias is not detrimental. In fact, similar 

experiments in the preliminary work reported in [73] showed that no improvement in 

performance was obtained by replacing the actual mixing coefficients with the ideal 

(oracle) ones. Moreover, the mixing coefficients for the unseen conditions are quite 

close to the ideal case. This shows that the system is competent in performing a gross 

 

Figure 6.7:  Posterior probability of a 2-cassifier Pooled-PLDA system for anticipated 

conditions (left) and unseen conditions (right). The probability corresponds to the 

portion of the bar encoded with the color of the classifier (as indicated in the legend). 
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classification of high- and low-SNR trials for noise conditions not observed during 

training. 

6.5.8. Effects of Multicondition PLDA Parameters 

In this section we study the effects of multicondition training on the speaker-

specific subspace learned by a single-classifier Pooled PLDA system. In particular, 

we learn four speaker-specific subspaces using different partitions of the development 

set (original, Pall, P1, and P2) and then analyze the variability captured by the 

subspaces as well as the distance between them. All the subspaces are of dimension 

200. 

Table 6.4 shows the results of these two analyses. The quantities in 

parenthesis indicate the percentage of variability (i.e.,                  ) 

captured by each of the four speaker-specific subspaces. Also, the similarity between 

subspaces is quantified by means of the projection distance [99], which has been 

normalized to take values in the interval (0,1). A projection distance equal to 1 

indicates that the subspaces are orthogonal. As expected, the speaker-specific 

subspace learned using the original set captures the largest percentage of variability. 

When the dataset is augmented with noisy observations, the learning algorithm 

correctly assigns more energy to the intersession variability component. Regarding 

the projection distance, the subspace learned on the original data is the farthest from 

the other three. Also, the distance is almost the same with respect to all of them. 

Additionally, the distance between the subspaces trained on P1 and P2 is almost half 

of their distance with respect to the subspace trained on the original data. This 
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explains the better generalization capability of the systems trained in a multicondition 

fashion, and validates the idea that multicondition training exposes properties of the 

signal that facilitate discarding fragile components; even if the noises observed in the 

deployment conditions are not anticipated in the development set. 

Projection 

distance 

Pall  

(23.1%) 

Original 

(32.8%) 

P1    

(22.8%) 

P2 

 (23.9%) 

Pall 0 0.45 0.20 0.16 

Original * 0 0.46 0.44 

P1 * * 0 0.27 

P2 * * * 0 

Table 6.4: Normalized projection distance [99] between the speaker-specific subspaces of 

a single-classifier Pooled-PLDA system trained on different partitions of the development 

data. In parenthesis is the percentage of variability captured by the speaker subspace. All 

the subspaces have 200 dimensions. 

6.5.9. Calibration of Scores 

In all the previous sections of this chapter we have reported system 

performance in terms of EER separated by noise type and SNR level. This was done 

to facilitate a detailed comparisons in terms of discriminative power alone; regardless 

of the potential score misalignments across noise types and SNR levels. However, at 

deployment time, we want our system to produce well-calibrated scores across all 

conditions. Hence, we dedicate this section to analyze the effects of multicondition 

training on score calibration
10

. 

In particular, we first compute an experimental upper bound in performance 

and then compare it with the actual performance of our system. The gap between the 

“oracle” and actual performances serves as an indicator of the calibration quality of 

the system. That is, the smaller the gap, the better the system calibration. We use 

                                                 

 
10 Note that we are using the term calibration rather loosely to refer to score alignment across conditions. 
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Detection Error Tradeoff (DET) plots to show the results across all operating points. 

The experimental upper bound is obtained by applying a condition-dependent oracle 

calibration to the scores before pooling them together. A collection of noise type and 

SNR dependent affine calibrations was trained using the logistic regression function 

included in the Bosaris toolkit [100]. We refer to them as oracle calibrations because 

they were trained directly on the actual scores of the system instead of a held-out 

development set. Moreover, they were applied to the scores making use of the noise 

type and SNR labels. On the contrary, the actual performance of the system is 

obtained by simply pooling together all the scores. 

Figure 6.8 shows the DET curves for the baseline system and a single-

classifier Pooled-PLDA system trained on P1. Both systems are tested on P1 and P2. 

The oracle results are indicated in the figure’s legend. A few observations are in 

place. First, the multicondition Pooled-PLDA system greatly outperforms the baseline 

system in all operating points (not just for the EER point reported in previous 

sections). Second, both the Pooled-PLDA and baseline systems provide better 

calibration in the low false-alarm region (which is the region of interest for most 

forensic applications) than in the high false-alarm region. Third, the effects of score 

misalignment seem to be proportional to the system performance and therefore the 

absolute value of the gap is smaller for the multicondition Pooled-PLDA system. 

Finally, the overall behavior of the scores indicates that both the target and non-target 

distributions are multimodal. This suggests that a calibration strategy that uses quality 

measures [100],[101] to uncover different modes could be helpful to reduce the 



 

 

 

124 

 

performance gap for the high false alarm region. However, this is out of the scope of 

this thesis and it is not explored here. 

6.6. Chapter summary 

This chapter investigated the use of multi-classifier architectures trained on a 

multicondition fashion to address the problem of speaker recognition in the presence 

of additive noise. We used i-vector representations of the speech utterances and 

proposed four architectures based on PLDA models of i-vectors. A detailed 

description of the three building blocks of the systems (i.e., i-vector extractor, PLDA 

models, and score combination) was presented. Multicondition development and 

 

Figure 6.8:   DET curves obtained by pooling together the scores produced by three 

systems for all conditions (noise type and SNR). The dashed lines correspond to 

scores preprocessed by an oracle calibration prior to pooling them to compute the 

DET curve. (See Section 6.5.9 for details). 
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evaluation sets were created by adding 10 different types of noise at 7 SNRs to a 

subset of data from the NIST 2010 speaker recognition evaluation. Two different 

partitions of the data were defined to allow cross-validation and also to characterize 

the behavior of the systems in conditions seen during training and also unseen. Based 

on these data sets, a large number of experiments were conducted to compare the 

proposed architectures. The results of these experiments suggest a number of 

important guidelines to obtain optimal performance in noisy environments. 

 First, length normalization produces great performance improvements for 

multicondition and single-condition training schemes. Also, any of the multicondition 

approaches greatly outperforms the baseline system in both anticipated and unseen 

conditions. A SNR granularity beyond 6 dB is unlikely to improve performance. 

While a single-classifier Pooled-PLDA system is able to produce good results for a 

broad range of conditions, better results can be obtained with a multi-classifier 

architecture. In particular, after analyzing different mappings between conditions and 

systems, and three training strategies (pooled, tied, and individual), a 2-classifier 

Pooled-PLDA architecture (one targeted towards high SNR and the other towards 

low) was able to cover a broad range of conditions without sacrificing performance in 

each one of them. Moreover, the analysis of the score combination module showed 

that the estimated mixing coefficients were close to the ideal case; even for the 

unseen conditions. Finally, an analysis of the score calibration indicated that the score 

alignment is quite good for the low false-alarm region; however, that is not the case 

for the high false-alarm region. We intend to address this issue in future work by 

using quality-based score calibration.  
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Overall, we can conclude that, besides being a highly scalable solution, 

multicondition training of multi-classifier architectures in i-vector space, not only 

produces great robustness in the anticipated conditions (up to 60% average relative 

improvement in EER over the baseline at low SNRs), but also generalizes well to 

unseen conditions (up to 30% average relative improvement in EER for the noises 

considered in this work). 
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Chapter 7 

7. Conclusions and Future Perspectives 

7.1. Conclusions 

In this dissertation we have advance the state-of-the-art in automatic speaker 

recognition based on probabilistic latent variable models of short-term spectral 

information that leverage large amounts of data. By doing so, we have expanded the 

applicability of automatic speaker recognition systems towards challenging scenarios 

with severe channel mismatch and environmental distortions. 

After reviewing the basic principles of automatic speaker recognition systems 

in Chapter 2, Chapter 3 was dedicated to gaining a better understanding of the 

information being captured by the widely used supervector representation of speech 

utterances. In particular, we proposed a novel procedure for the visualization of 

supervectors by which qualitative insight about the information being captured was 

obtained. Based on this visualization approach, the Switchboard-I database (SWB-I) 

was used to study the relationship between a data-driven partition of the acoustic 



 

 

 

128 

 

space and a knowledge based partition in terms of broad phonetic classes. The results 

of the analysis indicated that different subsets of supervector entries can be identified 

with a particular phonetic context with high probability. In light of that, a supervector 

can be understood as a summary of the short-term average patterns of spectral 

allocation of energy of a particular speaker in different phonetic contexts. 

In Chapter 4, we established a connection between the Joint Factor Analysis 

model of speaker supervectors and signal coding using an overcomplete dictionary 

learned from data. Two novel ideas were proposed that resulted in algorithmic 

improvements. The first idea provided computational improvements by allowing a 

faster estimation of the JFA model hyperparameter. The second idea provided an 

alternative scoring technique with performance improvements.  

An alternative way to handle undesired variability in supervector 

representations is to first project them into a lower dimensional space and then to 

model them in the reduced subspace. This low-dimensional projection is known as i-

vector. In Chapter 5, we presented a method to boost the performance of probabilistic 

generative models that work with i-vector representations. First we reviewed the 

mathematical formulation of the i-vector representation. Then, the Gaussian PLDA 

and the Heavy-Tailed PLDA models were introduced. It was noted that the better 

performance of HT-PLDA provided strong evidence about the non-Gaussian behavior 

of the i-vectors. However, the success of HT-PLDA came at the expense of larger 

complexity and slower computation of verification scores. In light of this, we 

proposed to transform the i-vectors so that a linear-Gaussian model could be used. 

Two transformations were suggested, namely: radial Gaussianization and length 
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normalization. Experimental validation on the telephone portion of the NIST SRE 

2010 evaluation showed that by performing a simple length normalization of the i-

vectors, the performance of a G-PLDA system was able to match that of a more 

complicated HT-PLDA one. Also, the mismatched induced by the i-vector extraction 

mechanism was identified as a major source of non-Gaussian behavior. Overall, using 

length-normalized i-vectors with the G-PLDA model was able to produced state-of-

the-art performance on a challenging dataset comprising a large amount of channel 

variability. 

Finally, in Chapter 6 we investigated the use of multi-classifier architectures 

trained on a multicondition fashion to address the problem of speaker recognition in 

the presence of additive noise. We used i-vector representations of the speech 

utterances and proposed four architectures based on PLDA models of i-vectors. A 

detailed description of the three building blocks of the systems (i.e., i-vector 

extractor, PLDA models, and score combination) was presented. A large number of 

experiments were conducted to compare the proposed architectures. The results 

suggested a number of important guidelines for optimal performance in noisy 

environments.  First, length normalization produced great performance improvements 

for multicondition and single-condition training schemes. Also, any of the 

multicondition approaches greatly outperforms the baseline system in both 

anticipated and unseen conditions. A SNR granularity beyond 6 dB is unlikely to 

improve performance. While a single-classifier Pooled-PLDA system is able to 

produce good results for a broad range of conditions, better results can be obtained 

with a multi-classifier architecture. Moreover, the analysis of the score combination 
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module showed that the estimated mixing coefficients were close to the ideal case; 

even for the unseen conditions. Overall, it was observed that, besides being a highly 

scalable solution, multicondition training of multi-classifier architectures in i-vector 

space, not only produced great robustness in the anticipated conditions, but also 

generalized well to unseen conditions. This made the proposed architecture an 

excellent candidate for application scenarios with additive noise. 

7.2. Future Perspectives 

As mentioned before, recent advances in speaker recognition are not 

necessarily due to new or better understanding of speaker characteristics that are 

informative or interpretable by humans; rather, they are the result of improvements in 

machine learning techniques that leverage large amounts of data. While this is 

perfectly valid for a large array of applications, it falls short in the case of forensic 

speaker recognition where interpretability of results by humans is of great 

importance.  To address this issue, a long-term goal of my research is to modify the 

current recognition systems to make them informative to humans. In this way, the 

systems will not only provide accurate answers to the question of whether two speech 

samples are from the same speaker or not, but will also make more apparent what 

exactly it is that makes two particular voices similar or different. These systems will 

be useful to empirically validate our current linguistic theories as well as provide new 

insights about how speaker identity is conveyed in the properties of the speech signal. 

Also, the overwhelming majority of the research in robust speaker recognition 

(including the work in this thesis) has mostly focused on ameliorating the effects of 
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extrinsic variations (channel mismatch, noise and reverberation). Moreover, this has 

been done in a highly compartmentalized way by addressing the problem one variable 

at a time. While this is the correct way to start addressing the problem, there is a need 

for joint models of the phenomena; as real scenarios usually comprise complex 

interactions between a large collection of sources of variability―both intrinsic and 

extrinsic. To go in this direction, a large collection of data that represents these 

complex interactions is needed. 

Finally, since speaker-specific information is conveyed at multiple levels in 

the speech signal (prosodic, phonetic, lexical, semantical, etc), tapping into these 

alternative sources might be the key to obtain even more robust systems. 
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