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A hierarchical Bayesian formulation in Generalized Linear Models (GLMs) is

proposed in this dissertation. Under this Bayesian framework, empirical and fully

Bayes variable selection procedures related to Least Absolute Selection and Shrink-

age Operator (LASSO) are developed. By specifying a double exponential prior for

the covariate coefficients and prior probabilities for each candidate model, the pos-

terior distribution of candidate model given data is closely related to LASSO, which

shrinks some coefficient estimates to zero, thereby performing variable selection.

Various variable selection criteria, empirical Bayes (CML) and fully Bayes under

the conjugate prior (FBC Conj), with flat prior (FBC Flat) a special case, are given

explicitly for linear, logistic and Poisson models. Our priors are data dependent, so

we are performing a version of objective Bayes analysis.

Consistency of Lp penalized estimators in GLMs is established under regularity

conditions. We also derive the limiting distribution of
√
n times the estimation error

for Lp penalized estimators in GLMs.

Simulation studies and data analysis results of the Bayesian criteria mentioned



above are carried out. They are also compared to the popular information criteria,

Cp, AIC and BIC.

The simulations yield the following findings. The Bayesian criteria behave

very differently in linear, Poisson and logistic models. For logistic models, the per-

formance of CML is very impressive, but it seldom does any variable selection in

Poisson cases. The CML performance in the linear case is somewhere in between.

In the presence of a predictor coefficient nearly zero and some significant predictors,

CML picks out the significant predictors most of the time in the logistic case and

fairly often in the linear case, while FBC Conj tends to select the significant pre-

dictors equally well in all linear, Poisson and logistic models. The behavior of fully

Bayes criteria depends strongly on their chosen priors for the Poisson and logistic

cases, but not in the linear case. From the simulation studies, the Bayesian criteria

are generally more likely than Cp and AIC to choose correct predictors.
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Chapter 1

Introduction and Overview

Consider the variable selection problem, where there are n observations of a

dependent variable Y = (y1, y2, . . . yn)T and a set of p potential explanatory variables

or predictors, namely, X1, X2, . . . , Xp. Some of these predictors are redundant or

irrelevant, and therefore, the problem is to identify a subset of the predictors that

best describes the underlying relationship revealed by the data, in order to provide

estimation accuracy and enhance model interpretability.

Variable selection is very common in all disciplines. In the case of normal

linear regression, we have

Y = Xβ + ε, (1.1)

where X is a n × (p + 1) matrix, β = (β0, β1, . . . , βp)
T and ε ∼ N(0, σ2I). The

variable selection problem focuses on identifying the subset of nonzero βj.

The common variable selection methods for linear models (roughly in chrono-

logical order) are Mallows’ Cp [26], the Akaike information criterion (AIC) [1], the

Bayesian information criterion (BIC) [33], the risk inflation criterion (RIC) [11],

the Least Absolute Shrinkage and Selection Operator (LASSO) [35], the minimum
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description length (MDL) [17], the least angles regression (LAR) and the forward

stagewise regression [8].

However, in applications when the dependent variable is categorical or discrete,

instead of linear models one should use Generalized Linear Models (GLM). For GLM,

supposing that the dependent variable follows an exponential family, we have

g(E(Y )) = Xβ,

where g(·) is the link function. The key feature is that the mean of Y is a (nonlinear)

transformation of a linear combination of predictors. Although the linear model is a

special case of the GLM, the existing variable selection methods in linear models do

not carry through to GLM automatically. Specifically, the variable selection problem

in GLM is that the underlying mechanism of Y and the data can be described by

selecting some predictors such that the transformed mean, g(E(Y )), is a linear

combination of the predictors in the subset.

The dissertation is organized as below: Chapter 2 summarizes various variable

selection criteria in GLMs. A hierarchical framework is built in Chapter 3 which is

directly related to Least Absolute Shrinkage and Selection Operator (LASSO). An

empirical and a fully Bayes variable selection procedures are developed for linear, lo-

gistic and Poisson models in Chapter 4. Chapter 5 gives some asymptotic properties

for Bridge estimators in GLMs. Some simulation studies and data analysis results

of the performance of the Bayesian criteria derived in Chapter 4 are presented in

Chapter 6. Finally, some conclusions and future research are provided in Chapter

7.
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Chapter 2

Literature Review

2.1 Generalized Linear Models

A generalized linear model can be characterized by three components, which

are the distribution of the response variable, the link function and the predictors.

The response variable, Y consists of independent measurements that ought to come

from an exponential family distribution, of the form

f(Y |θ, φ) =
n∏
i=1

exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (2.1)

where θ = (θ1, θ2, . . . θn)T and φ are unknown parameters that may depend on the

predictors X0, X1, . . . , Xp and φ is called the dispersion parameter.

The parameters of the distribution are related to the predictors in a special

way. The connection is achieved by taking a transformation of the mean through

the link function and expressing it in terms of the linear predictors. That is,

E(yi) = µi = b′(θi);

Var (yi) = φ b′′(θi);
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and

ηi ≡ g(µi) = xiβ,

where g(·) is the link function and xi, i = 1, . . . , n, is the ith row of the design

matrix X. The dimension of X is n× (p+ 1), because the matrix always includes a

0th column of ones to accommodate the intercept. The link function that transforms

the mean to the natural parameter, θ, is called the canonical link. For the canonical

link, we have

η ≡ θ = g(µ) = (b′)−1(µ),

where η = (η1, η2, . . . , ηn)T and µ is the mean of Y .

With the help of the link function, the transformed mean g(E(Y )) can now

be modeled by the linear predictors. That is,

η = Xβ,

where η = g(µ) as mentioned above. Refer to McCullagh and Nelder [27] and

Kedem and Fokianos [19] for examples of GLM.

2.2 Model Selection

From the section about GLM above, one can see that the underlying problem

is indeed how to choose the predictors from a large set of potentially available

explanatory variables, in order to attain accurate inference and to obtain good

predictions. Let the binary vector, γ = (γ0, γ1, γ2, . . . γp)
T index each candidate

model, where γi takes value either 1 or 0, i = 1, 2, . . . , n, depending on whether or
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not the ith predictor is included in the model, and let |γ| be the size of the candidate

model, with |γ| =
∑p

i=1 γi. The variable selection problem in GLM can be described

as follows: one attempts to identify the vector γ, such that

η = Xγβγ .

2.3 Variable Selection Methods in Linear Models

For linear models, there are two types of variable selection methods that are

commonly used in practice, automatic selection procedures and information-based

criteria.

2.3.1 Automatic Selection Procedures

The automatic selection procedures are data-driven and include forward selec-

tion, backward elimination and stepwise selection procedures.

The forward selection procedure starts from the null model. Then it performs

a test to find the significant variables, by checking if the p-value of the variables

falls below some pre-set threshold. Among the significant variables, the procedure

chooses the most significant one and adds it to the model. One then refits the data

using this one variable model and searches for the next variable to enter, and so on.

This process continues until none of the remaining variables are significant.

Unlike the forward selection procedure, the backward elimination procedure

begins from the full model including all predictors. At each step, each variable is

tested for elimination from the model, by comparing the p-value of the variable to

5



the pre-defined level. From the variables whose p-values are above the chosen level,

the least significant one is deleted. With this reduced model, one may refit the data

and search for the next least significant variable to exclude. This procedure stops

when all remaining variables are statistically significant.

Stepwise selection is a mixture of the forward and backward procedures. This

procedures allows dropping or adding variables at the various steps. It initially uses

a forward selection procedure. But after each selection, the procedure employs a

backward approach by deleting variables if they later appear to be insignificant. Af-

ter refitting the data with the new model and repeatedly applying the stepwise rule,

the process terminates when all currently included variables satisfying a retention

criterion and no additional variables satisfy an inclusion criterion. These criteria

are chosen to avoid an endless loop.

2.3.2 Information Criteria

Information criteria are model selection methods that penalize the loglikeli-

hood for complexity of the model, where complexity depends on the number of

explanatory variables in the model. The most well known ones are the Akaike In-

formation Criterion (AIC) and Bayesian Information Criterion (BIC). AIC, closely

related to Mallows’ Cp [26], tries to minimize the Kullback-Leibler divergence be-

tween the true distribution and the estimate from a candidate model, whereas BIC

favors a model with the highest asymptotic posterior model probability. The goal is

to select a model by minimizing the information criteria and obtain estimates of β.

6



Akaike [1] proposed AIC, which is

AIC = −2 logL(X, θ̂) + 2m,

where L is the likelihood function, θ̂ is the maximum likelihood estimator of the

parameter vector and m is the complexity variable. Schwarz [33] took a Bayesian

approach and derived BIC, that is,

BIC = −2 logL(X, θ̂) +m log n,

where L, θ̂ and m are as defined previously.

Both the AIC and BIC criteria take the form of loglikelihoods with a deter-

ministic penalty. The difference is that when the true model is among the candidate

models, BIC selects the true model with probability approaching unity as n goes

to infinity. This property is called consistency and is shared by the minimum de-

scription length (MDL) method, originating from coding theory and discussed by

Hansen and Yu [17]. However, AIC is not consistent. Instead, if the true model is

not in any of the candidate models, AIC asymptotically chooses the model which

has the minimum average squared error. See Shao [34] and references contained in

his paper.

2.4 Regression with Lν Penalty

An alternative approach is to estimate β by minimizing the penalized loglike-

lihood criterion of the form,

− logL(X, ξ) + λn

p∑
i=1

|ξi|ν , (2.2)

7



where ξ is any point in the parameter space, λn > 0 is the tradeoff parameter

between the likelihood and the penalty, and ν > 0. Estimators of β obtained in this

way are called Bridge estimators by Frank and Friedman [12].

Note that the information criteria are the limiting cases when ν → 0 because

lim
ν↓0

p∑
i=1

|ξi|ν =

p∑
i=1

I(ξi 6= 0).

For linear models, in the case of ν = 2, the method is called ridge regression.

Moreover, ν = 1 refers to Least Absolute Shrinkage and Selection Operator (LASSO)

proposed by Tibshirani [35]. LASSO estimates some of the βi exactly at zero and

produces a sparse representation of β. Researchers recognize this attractive feature

of LASSO and use it for automatic model selection.

Besides the information criteria, LASSO and ridge regression, there are also

other penalties for the regression function, such as the Risk Inflation Criterion (RIC)

of Foster and George [11], the penalty functions of Fan and Li [10], and Least Angle

Regression (LAR) and stagewise regression developed by Efron et al [8].

2.4.1 Numerical Package in computing LASSO Estimates

The LASSO estimates vary as the tradeoff parameter or regularization param-

eter, λn, moves from zero to infinity. Hence, for each λn, the nonzero coefficients

from the LASSO estimation correspond to selected variables.

The LASSO estimates depend heavily on the regularization parameter. Through

the algorithm developed by Osborne, Presnell, and Turlach [28] for the linear case

and extended by Lokhorst [25] to include GLM, LASSO estimates are obtained for
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a pre-specified set of λn. The algorithm is available in R as the package lasso2.

However, in order to select the best model, one would like the regularization

parameters to run through the whole path from zero to infinity to see where the

minimum of some designated criterion occurs. This is made feasible by the efficient

lars algorithm provided by Efron et al [8], which includes LASSO as one of its op-

tions along with LAR and Stagewise Regression for the linear case, under the lars

package in R. Park and Hastie [29] developed the R package, glmpath, to handle

GLM problems. A new R package, glmnet, was recently developed by Friedman,

Hastie and Tibshirani [13]. The glmnet software provides fast algorithms via cycli-

cal coordinate descent method for fitting linear, multinomial and logistic models

with elastic-net penalties, which is a weighted combination of L1 and L2 penalties.

All three packages, lars, glmpath and glmnet, allow one to find solutions of L1

penalized regression problems for the entire path of λn.

2.4.2 Asymptotics for Penalized Regression Estimators

For linear models, Knight and Fu [21] develop the asymptotics for the Bridge

Estimators. They prove that under regularity conditions on the design and on the

order of magnitude of λn, the estimator is consistent. Supposed that Y is centered,

the covariates are centered and scaled with unit standard deviation. Then the L1

penalized least squares problem can be written as:

n∑
i=1

(Yi − xiξ)2 + λn

p∑
i=1

|ξj|ν = min! (2.3)

There are two regularity conditions on the design:
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Condition LC1 Cn = 1
n

∑n
i=1 x

T
i xi → C,

where xi is a row vector which represents the ith row of the design matrix X and

C is a nonnegative definite matrix and

Condition LC2 1
n

max1≤i≤n xix
T
i → 0.

Since the covariates are scaled, the diagonal elements of Cn and C are all identically

equal to 1.

According to Knight and Fu [21], define the random function

Zn(ξ) =
1

n

n∑
j=1

(Yi − xiξ)2 +
λn
n

p∑
i=1

|ξj|ν . (2.4)

The minimum of (2.4) occurs when ξ = β̂n.

In general, for ν > 0, Knight and Fu prove that β̂n is consistent if λn = o(n).

More specifically, they establish the following result.

Theorem 2.1 (Knight & Fu, 2000 [21]) If C in Condition LC1 is nonsingular

and λn/n→ λ0 ≥ 0, then β̂n →p argmin(Z) where

Z(ξ) = (ξ − β)TC(ξ − β) + λ0

p∑
i=1

|ξj|ν .

Thus if λn = o(n), argmin(Z) = β and so β̂n is consistent.

In fact, for ν ≥ 1, they also derive the limiting distribution of
√
n(β̂n − β) if

λn = O(
√
n) and prove its

√
n-consistency if λn = o(

√
n).

Theorem 2.2 (Knight & Fu, 2000 [21]) Suppose that ν ≥ 1. If λn/
√
n→ λ0 ≥

0 and C is nonsingular, then

√
n(β̂n − β)→d argmin(V ),

10



where if ν > 1,

V (u) = −2uTW + uTCu+ ν λ0

p∑
j=1

uj sgn(βj)|βj|ν−1,

if ν = 1,

V (u) = −2uTW + uTCu+ λ0

p∑
j=1

[uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)],

and W has a N(0, σ2C) distribution.

When ν ≤ 1, they need to assume a different rate of growth of λn to get a

limiting distribution.

Theorem 2.3 (Knight & Fu, 2000 [21]) Suppose that ν ≤ 1. If λn/n
ν/2 →

λ0 ≥ 0 and C is nonsingular, then

√
n(β̂n − β)→d argmin(V ),

where

V (u) = −2uTW + uTCu+ λ0

p∑
j=1

|uj|ν I(βj = 0)],

and W has a N(0, σ2C) distribution.

The consistency results for these estimators will be generalized to GLM in

Chapter 5.

2.5 Bayesian Model Selection

Some researchers have attempted to solve the variable selection problem using

a Bayesian approach (Raftery and Richardson [32], Raftery [30], Clyde [6], George
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and Foster [14] and Dellaportas, Forster and Ntzoufras [7]). In particular, George

and Foster [14] showed that for linear models, the criteria Cp, AIC and BIC cor-

respond to selection of the model with maximum posterior probability under a

particular class of priors in a hierarchical Bayesian formulation.

2.5.1 Hierarchical Bayesian Formulation

The hierarchical Bayesian formulation first assigns a prior distribution π(γ|ψ1)

on the model space, where γ is the binary vector that represents each candidate

model and ψ1 is the hyperparameter vector associated with the prior of γ. For

each candidate model, the Bayesian formulation further puts a prior distribution

P (βγ |γ,ψ2) on the model specific coefficient vector βγ , where ψ2 is the hyper-

parameter vector from the prior of βγ . Bayesians obtain a posterior distribution

π(γ|Y ,ψ1,ψ2) by updating the prior distribution over the model space with the

data Y :

π(γ|Y ,ψ1,ψ2) =
P (Y |γ,ψ2)π(γ|ψ1)∑
γ P (Y |γ,ψ2)π(γ|ψ1)

, (2.5)

where

P (Y |γ,ψ2) =

∫
P (Y |βγ ,γ)P (βγ |γ,ψ2) dβγ (2.6)

is the marginal distribution of Y after integrating out βγ with respect to the prior

distribution P (βγ |γ,ψ2).

There are two ways to handle the hyperparameters ψ1 and ψ2, namely, empir-

ical Bayes and fully Bayes. Empirical Bayes estimates the hyperparameters through

the data and plugs them into the posterior distribution to obtain π(γ|Y , ψ̂1, ψ̂2).

12



It chooses the model with the maximum posterior probability. Fully Bayes imposes

a prior on ψ1 and ψ2 and follows the standard Bayesian procedure to integrate out

the hyperparameters. The resulting posterior distribution π(γ|Y ) is again used as a

variable selection criterion to find the model with the largest posterior probability,

π(γ|Y ) =

∫ ∫
D

π(γ|Y ,ψ1,ψ2)P (ψ1,ψ2|Y ) dψ1ψ2

=

∫ ∫
D

P (Y |γ,ψ2)π(γ|ψ1)

P (Y |ψ1,ψ2)

P (Y |ψ1,ψ2)π(ψ1,ψ2)

P (Y )
dψ1ψ2

=

∫ ∫
D

P (Y |γ,ψ2)π(γ|ψ1)

P (Y )
π(ψ1,ψ2) dψ1ψ2, (2.7)

where P (Y |γ,ψ2) is given in (2.6) and D is the hyperparameter space of ψ1 and

ψ2.

This hierarchical Bayesian formulation is conceptually attractive as it is able

to incorporate various selection criteria, such as AIC and BIC, and put them in

a unified framework. George and Foster [14] first proposed the Empirical Bayes

approach for normal linear models using an independence prior for the models so

that each predictor is in the model independent from the other predictors with the

same inclusion probability q. They also imposed a conjugate prior for the model

coefficients, and estimated the hyperparameters using either a marginal maximum

likelihood criterion or a conditional maximum likelihood (CML) criterion.

Using the same priors as George and Foster, Wang and George [36] extended

the empirical Bayes method to GLM. Wang and George also developed a fully

Bayes approach to allow superimposing a prior distribution on the hyperparameters.

By maximizing the posterior distribution, they derived a fully Bayes criterion for

variable selection for GLM.
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Yuan and Lin [38] also took the empirical Bayes approach for linear models, but

they formulated the hierarchical Bayes paradigm in a different way. By specifying

a double exponential prior for the model coefficients and giving the following priors

with a determinant factor for the models,

π(γ) ∝ q|γ|(1− q)p−|γ|
√

det(XT
γXγ), (2.8)

Yuan and Lin established a variable selection criterion for linear model which is

equivalent to minimizing the L1 penalized likelihood. By using the LARS algo-

rithm [8] in R, they showed that they can compute their empirical Bayes criterion

efficiently and therefore perform variable selection.
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Chapter 3

LASSO Model Selection

In this chapter, a hierarchical Bayes formulation is carried out for logistic

regression as an illustration of extensions to GLM. By specifying a special prior for

the covariate coefficients, the posterior distribution is closely related to LASSO and

thus allows one to do variable selection in GLM problems.

3.1 Hierarchical Bayesian Formulation for Logis-

tic Regression

Yuan and Lin [38] formulated a hierarchical setup for linear regression. We

extend their approach to formulate a hierarchical structure for logistic data. This ex-

tension accounts for the fact that Var (Y ) depends on β. Suppose Y = (y1, y2, . . . yn)T

is the observation vector, X is an n × (p + 1) design matrix with xi representing

the ith row and the binary vector γ = (γ0, γ1, γ2, . . . γp)
T index of each model is as

defined in Section 2.2. The zero-th column of X is a column of ones. Ignoring the

intercept term, the size of the candidate model |γ| is defined to be |γ| =
∑p

i=1 γi.
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Moreover, Xγ denotes the columns of X that are in the model and xiγ is the ith

row of Xγ .

Assume that yi, i = 1, 2, . . . , n, are independent and each can take values of

either 1 or 0. The success probability of yi is

P (yi = 1|xiγ) =
exp(xiγβγ)

1 + exp(xiγβγ)
,

while

P (yi = 0|xiγ) =
1

1 + exp(xiγβγ)

is the probability of failure. Since yi follows a Bernoulli distribution, its mean is

µiγ = 1× P (yi = 1|xiγ) + 0× P (yi = 0|xiγ) = P (yi = 1|xiγ)

Using the canonical link function, which is the logit, one may express the trans-

formed mean as a linear combination of the predictors.

logitµiγ = log

(
P (yi = 1|xiγ)

P (yi = 0|xiγ)

)
= xiγβγ .

The density function of yi|βγ ,γ is

f(yi|βγ ,γ) = (P (yi = 1|xiγ))yi (P (yi = 0|xiγ))1−yi

= (exp(xiγβγ))yi
1

1 + exp(xiγβγ)
. (3.1)

Given the model γ,

β0|γ ∼ N(0, σ2
0). (3.2)

The quantity σ2
0 is large to create a vague prior. The intercept is not subject to

selection. Since γj = 0 means that the jth predictor is not in the model, βj|γj = 0
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is degenerate at 0. If γj = 1, βj has a double exponential prior distribution with

hyperparameter τ . Furthermore, the βj are conditionally independent given γ.

Therefore,

P (βj|γj, τ) =


0 if γj = 0

τ/2 exp(−τ |βj|) if γj = 1

(3.3)

where j = 1, 2, . . . , p. This double exponential prior will enable the method to set

certain βj equal to zero.

For γ, instead of the widely used independence prior which assumes that each

predictor enters the model independently with common probability q, for compu-

tational simplicity, assume that the prior of γ is proportional to the independence

prior times a function of sample quantities; that is,

π(γ|q) = q|γ|(1− q)p−|γ|
√

det(A+H) exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
(3.4)

where A is a (|γ|+ 1)× (|γ|+ 1) matrix, with

A =
n∑
i=1

(
xTiγ

exp(xiγβγ
∗)

(1 + exp(xiγβγ
∗))2

xiγ

)
, (3.5)

H is a (|γ|+ 1)× (|γ|+ 1) matrix, with

H =

 1/(2σ2
0) 01×|γ|

0|γ|×1 0|γ|×|γ|

 , (3.6)

e and t are both length |γ|+ 1 vectors, with

eT =
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xiγ = (e0, e1, . . . , e|γ|), (3.7)

and

tT =

(
β∗0
σ2

0

, 0, . . . , 0

)
, (3.8)
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where

βγ
∗ = argminβγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|

 .

The distributions (3.1), (3.2), (3.3) and (3.4) comprise a hierarchical Bayesian

formulation with some hyperparameters τ, q and σ0. In this section, we assume that

σ0 is fixed and known, but later in Section 3.3, we assume σ0 approaches infinity.

The remaining parameters τ and q can be obtained by empirical Bayes, which will be

discussed in Section 4.1. From the fully Bayes point of view, one can put hyperpriors

on the parameters and this will be further investigated in Section 4.1.

Our priors involve the observed yi explicitly in e (3.7) and through the data

dependent quantity βγ
∗, which is part of A,H and e. This is a version of objective

Bayes (Berger and Pericchi [4], Berger [5]).

Putting (3.1), (3.2), (3.3) and (3.4) together, one may write the joint

distribution P (γ,β,Y ) as

P (γ,β,Y ) ∝

(
n∏
i=1

exp(yixiγβγ)
1

1 + exp(xiγβγ)

)
1

σ0

√
2π

exp

(
− β2

0

2σ2
0

)(τ
2

)|γ|
× exp(−τ

∑
γj=1

j 6=0

|βj|)
(

q

1− q

)|γ|
(1− q)p

√
det(A+H)

× exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
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= (1− q)p 1

σ0

√
2π

(
q

1− q
· τ

2
·
√

2π

)|γ| √det(A+H)

(
√

2π)|γ|

× exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)

× exp

−
 n∑

i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

|βj|


 .
(3.9)

One may obtain the conditional distribution of P (γ,β|Y ), which is

P (γ,β|Y ) =
P (γ,β,Y )∑

γ

∫
β
P (γ,β,Y ) dβ P (γ)

.

After reparameterizing (τ, q) in terms of (λ, k), we obtain

P (γ|Y )

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

P (γ,β|Y ) dβγ

= G(Y )k|γ|
1

σ0

√
det(A+H)

(
√

2π)|γ|+1
exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
×
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ)

+
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|


 dβγ , (3.10)

where

k =

(
q

1− q
· τ

2
·
√

2π

)
,

λ = τ , and G(Y ) is a function of Y not depending on γ.
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3.2 Analysis of Posterior Probability

For the purpose of variable selection, one would like to evaluate the posterior

probability and select the model with maximum posterior probability. This involves

calculating the high dimensional integrals in (3.10) which do not have a closed form

solution. The integration can only be done by approximation using analytical or

numerical methods.

The candidate models are divided into two classes: regular and nonregular as

defined in Yuan and Lin [38]:

Definition 3.1 (Yuan and Lin, 2005 [38]) For a dataset (X,Y ) and a given

regularization parameter λ,

(1) a model γ is called regular if and only if βγ
∗ does not contain 0’s or |γ| = 0 and

(2) a model γ is called nonregular if βγ
∗ contains at least one zero component.

By means of Taylor expansion and Laplace approximation, we give an expres-

sion for the posterior probability for the regular class in Section 3.2.1. Then we show

that the posterior probability for the nonregular class is dominated by its regular

class counterpart in Section 3.2.2. That is, if γ is regular, we can find a regular

model γ∗ with P (γ|Y ) ≤ P (γ∗|Y ).

Let

βγ
∗ = argminβγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|

 .
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Define βγ = βγ
∗ + u. The posterior probability P (γ|Y ) becomes

P (γ|Y )

= G(Y )k|γ|
1

σ0

√
det(A+H)

(
√

2π)|γ|+1
exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
×

{∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγ(βγ
∗ + u))− yixiγ(βγ

∗ + u)

− log(1 + exp(xiγβγ
∗)) + yixiγβγ

∗) +
(β∗0 + u0)

2

2σ2
0

− β∗20

2σ2
0

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du


× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|


 .

(3.11)

The integral in (3.11) are approximated as follows, using Taylor expansions of the

logarithm of the integrand and Laplace’s method.

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγ(βγ
∗ + u))− yixiγ(βγ

∗ + u)

− log(1 + exp(xiγβγ
∗)) + yixiγβγ

∗) +
(β∗0 + u0)

2

2σ2
0

− β∗20

2σ2
0

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγ(βγ
∗ + u))− yixiγ(βγ

∗ + u)

− log(1 + exp(xiγβγ
∗)) + yixiγβγ

∗) +
1

2σ2
0

(β∗20 + 2β∗0u0 + u2
0)−

β∗20

2σ2
0

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du
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=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγβγ
∗)) +

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)
xiγu

+
1

2
uTxTiγ

exp(xiγβγ
∗)

(1 + exp(xiγβγ
∗))2

xiγu+R(u)− log(1 + exp(xiγβγ
∗))

− yixiγu) +
1

2σ2
0

(2β∗0u0 + u2
0) + λ

∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du (3.12)

≈
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
1

2
uT

(
n∑
i=1

(
xTiγ

exp(xiγβγ
∗)

(1 + exp(xiγβγ
∗))2

xiγ

))
u

−

(
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xiγ

)
u+

1

2σ2
0

(2β∗0u0 + u2
0)

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
uT (A+H)u− (e− t)Tu

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
uT (A+H)u− (e− t)T (A+H)−1(A+H)u

± 1

2
(e− t)T (A+H)−1(A+H)(A+H)−1(e− t)

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
uTΨ−1u−mTΨ−1u+

1

2
mTΨ−1m

− 1

2
(e− t)T (A+H)−1(A+H)(A+H)−1(e− t)

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du
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=

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
(u−m)TΨ−1(u−m)

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du

× exp

(
1

2
(e− t)T (A+H)−1(e− t)

)
, (3.13)

where R(u) is the Taylor series remainder term in (3.12) and the following approx-

imate equality comes from dropping R(u). We write,

Ψ−1 = A+H ,

and

m = (A+H)−1(e− t).

The remainder R(u) = o(||u||2) as u→ 0, according to the multidimensional Taylor

theorem. Therefore there exist c, δ > 0, such that R(u) < c||u||2 when ||u|| < δ.

Moreover if ||u|| < δ, exp[λ
∑

γj=1, j 6=0

(
|β∗j + uj| − |β∗j |

)
] lies in an interval (1 −

η, 1+η) where η is small. By modifying the proof of Proposition 4.7.1 of Lange [22],

we conclude that the ratio of (3.12) and (3.13) converges to 1 as ||A +H|| → ∞.

From (3.5) it can be seen that A is a sum of nonnegative matrices, so under mild

conditions on the xi, ||A|| → ∞ as n → ∞. Therefore our Laplace approximation

(3.12)/(3.13) ≈ 1 holds.

Define

f(u) =
1

2
(u−m)T (A+H)(u−m)

− 1

2
(e− t)T (A+H)−1(e− t) + λ

∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
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Note that by the definition of βγ
∗, f(u) is minimized at u = 0. Observe that

m, A+H and the second term of f(u) are constant with respect to u.

3.2.1 Regular Class

Because βγ
∗ does not contain zeros, f(u) is differentiable in a neighborhood

of u = 0, and

∂2f(u)

∂u∂uT

∣∣∣∣
u=0

=

(
n∑
i=1

(
xTiγ

exp(xiγβγ
∗)

(1 + exp(xiγβγ
∗))2

xiγ

))
+

 1
2σ2

0
0

0 0

 = A+H .

(3.14)

Using Taylor expansion and the Laplace approximation (3.12)/(3.13) ≈ 1, we obtain√
det(A+H)

(
√

2π)|γ|+1
exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
×

{∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγ(βγ
∗ + u))− yixiγ(βγ

∗ + u)

− log(1 + exp(xiγβγ
∗)) + yixiγβγ

∗) +
(β∗0 + u0)

2

2σ2
0

− β∗20

2σ2
0

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du


≈ 1, (3.15)

Substituting (3.15) into (3.11), the posterior probability is asymptotically

P (γ|Y )

= G(Y )k|γ|
1

σ0

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|


 .

(3.16)
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With high probability, in large samples with n→∞, the difference between βγ and

βγ
∗ which is u, is very small. Hence, the approximation above (3.15) holds. (The

statement is proved as Theorem 5.3 in Chapter 5.)

3.2.2 Nonregular Class

The posterior probability of the nonregular models cannot be obtained in the

same way since f(u) is not differentiable at u = 0. As discussed in this section, we

can show that the posterior probability of a nonregular model is always dominated

by that of a regular submodel. If one wants to do variable selection, one may simply

search through the models in the regular model class, which results in a parsimonious

model compared to the nonregular models.

Consider a model γ = (γ0, γ1, γ2, . . . γp)
T , that is, a (p+ 1)-dimensional vector

taking the form of (1, . . . , 1, 0, . . . , 0), where the first |γ|+1 components are 1’s, and

|γ| =
∑p

i=1 γi. The corresponding βγ = (β0, β1, . . . , βs, 0, . . . , 0), where s < |γ|. Let

γ∗ = (γ0, γ1, . . . , γs, 0, . . . , 0), with γ∗0 = γ∗1 = . . . = γ∗s = 1 and γ∗j = 0, j > s. We

wish to show that P (γ|Y ) ≤ P (γ∗|Y ).

Since f(u) is minimized at u = 0, the derivative of f(u) evaluated at u = 0,

is

∂f

∂uj

∣∣∣∣
u=0

= 0, ∀j ≤ s,

so that, after substituting for A,H , e and t,
∑n

i=1

(
yi −

exp(xiγβγ
∗)

1+exp(xiγβγ
∗)

)
xij − (β∗0/σ

2
0) = λ sgn(β∗γ 0), j = 0,∑n

i=1

(
yi −

exp(xiγβγ
∗)

1+exp(xiγβγ
∗)

)
xij = λ sgn(β∗γ j), 0 < j ≤ s.
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For s < j ≤ |γ|+ 1, β∗γ j = 0. Therefore,

∂f

∂uj

∣∣∣∣
uj=0+;ul=0,∀l 6=0

= −

(
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij −

β∗0
σ2

0

)
+ λ ≥ 0,

so that

λ ≥
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij −

β∗0
σ2

0

,

and

∂f

∂uj

∣∣∣∣
uj=0−;ul=0,∀l 6=0

= −

(
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij −

β∗0
σ2

0

)
− λ ≤ 0,

so that

λ ≥ −

(
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij −

β∗0
σ2

0

)
,

and λ > 0. Therefore,

λ ≥

∣∣∣∣∣
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij −

β∗0
σ2

0

∣∣∣∣∣ , (3.17)

for j = 0. Similarly,

λ ≥

∣∣∣∣∣
n∑
i=1

(
yi −

exp(xiγβγ
∗)

1 + exp(xiγβγ
∗)

)
xij

∣∣∣∣∣ , (3.18)

if 0 < j ≤ s, and

β∗γ j = 0, (3.19)

if s < j ≤ |γ|+ 1.

The expression below, which is part of the formula for P (γ|Y ) in (3.11) can
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be bounded using Laplace’s approximation and (3.17), (3.18) and (3.19):√
det(A+H)

(
√

2π)|γ|+1
exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
×

{∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−

(
n∑
i=1

(log(1 + exp(xiγ(βγ
∗ + u))− yixiγ(βγ

∗ + u)

− log(1 + exp(xiγβγ
∗)) + yixiγβγ

∗) +
(β∗0 + u0)

2

2σ2
0

− β∗20

2σ2
0

+ λ
∑
γj=1

j 6=0

(
|β∗j + uj| − |β∗j |

)
 du


<

√
det(A+H)

(
√

2π)|γ|+1
exp

(
−1

2
(e− t)T (A+H)−1(e− t)

)
×
{∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
uT (A+H)u

)]
du

}
<

√
det(A+H)

(
√

2π)|γ|+1

{∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

[
−
(

1

2
uT (A+H)u

)]
du

}
= 1. (3.20)

Hence, asymptotically

P (γ|Y )

< G(Y )k|γ|
1

σ0

× exp

−min

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|


 .

(3.21)

Since β∗γ j = β∗γ∗ j, for any j ≤ s, comparing the posterior probability for the

nonregular model (3.21) and the posterior probability for the regular model (3.16),

asymptotically, the ratio is

P (γ|Y )

P (γ∗|Y )
≤ k|γ|−s. (3.22)
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In fact, we have established P (γ|Y )/P (γ∗|Y ) < k|γ|−s(1+ε). The factor (1+ε)

arises by accounting for the error in the Laplace approximations in the numerator

and denominator. The size of these errors comes from bounding exp(R(u)). How-

ever, if n is sufficiently large, u is very close to zero with high probability, and

therefore ε can be made arbitrarily small.

The fact that P (γ|Y ) ≤ P (γ∗|Y ) if k ≤ 1 implies that, in order to locate

the model with the maximum posterior probability, one only needs to concentrate

on the models in the regular class and does not need to consider the models in the

nonregular class. One may set k = 1 to achieve this. This constrains our choice of

prior distributions.

3.3 Connection to LASSO

In this section, the connection of the hierarchical structure to LASSO is eluci-

dated. Before that, let us first discuss βγ
∗, the minimizer of the criterion embedded

in the posterior probability P (γ|Y ), in a limiting sense.

Supposed that κ0 = 1/σ0. Define

hκ0(βγ) = hκ0(β0,β[−1])

=
n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ λ
∑
γj=1

j 6=0

|βj|

=
n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2
κ2

0 + λ
∑
γj=1

j 6=0

|βj|,

where βγ [−1] is the vector βγ deleting the zero-th component (the intercept).

For each fixed κ0, recall that (β∗0(κ0),βγ
∗
[−1](κ0)) is the minimizer of
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hκ0(β0,βγ [−1]). Assuming γ is a model in the regular class, the minimizer

(β∗0(κ0),βγ
∗
[−1](κ0)) is obtained by solving the system of equations

∂hκ0(βγ)

∂βγ

=

 ∂
∂β0

∂
∂βγ [−1]

hκ0(β0,βγ [−1]) = 0.

Since γ is a regular model, ∂hκ0(βγ)/∂βγ is differentiable for each fixed κ0. By

the Implicit Function Theorem, (β∗0(κ0),βγ
∗
[−1](κ0)), is a continuously differentiable

function of κ0. Let κ0 → 0,

(β∗0(κ0),βγ
∗
[−1](κ0))→ (β̌∗0(κ0), β̌

∗
γ[−1](κ0)), (3.23)

and let (β̌∗0(κ0), β̌
∗
γ[−1](κ0)) be the minimizer of the limiting criterion,

h̃(γ) ≡ argminβγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) + λ
∑
γj=1

j 6=0

|βj|

 . (3.24)

Note that h̃(γ) is of the form of a LASSO-type criterion, where the first part is like

the loglikelihood of the logistic regression model and the second part is the penalty

component with regularization parameter λ.

In general, according to (3.22), if k ≤ 1, one may confine the search for the

highest posterior probability to the regular class and skip the entire nonregular

class. Recall that for each fixed σ0, the posterior probability for the regular model

asymptotically is

P (γ|Y ) ≈ G(Y )
1

σ0

exp(−h(γ)).

As a result, one should target the regular model which minimizes h(γ). Also,

as σ0 →∞, which is equivalent to κ0 → 0, one just has to focus on minimizing h̃(γ).
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Fortunately, by the proposition below there is no need to go through each individual

model in the regular class to determine the minimizer of h̃(γ) :

Proposition 3.1 Let β̂ minimizes
∑n

i=1[log(1 + exp(xiβ))− yixiβ] + λ
∑p

j=1 |βj|,

and let model γ̂ be such that γ̂j = I(β̂j 6= 0), where I(·) is the indicator function.

Then γ̂ is the regular model that minimizes h̃(γ).

Proof: Note that if γ1 is a submodel of γ2, h̃(γ1) ≥ h̃(γ2) due to the fact that h̃ is

a decreasing function of each of the components of γ.

By the definition of γ in Section 2.2, γ = 1p+1 represents the full model.

Therefore, for any regular model γ,

h̃(γ̂) = h̃(1) ≤ h̃(γ)

since h̃(γ̂) is a regular model. 2

Observe that h̃(1) is exactly the LASSO criterion and not surprisingly, h̃(γ̂)

is also the model produced by LASSO. Through Proposition 3.1, our hierarchical

Bayes formulations (3.1), (3.2), (3.3) and (3.4) are connected to LASSO with

k = 1 and κ0 → 0. With the available R package glmnet of Friedman, Hastie and

Tibshirani [13], or the R package glmpath of Park and Hastie [29], one can compute

the LASSO estimate for the entire λ path from λ = 0 to λ→∞.
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Chapter 4

Bayesian Model Selection Criteria

The hierarchical Bayes formulation in the last chapter requires the specification

for the values of the hyperparameters. Two approaches will be taken to deal with

this problem. Section 4.1 explores the empirical Bayes method and Section 4.2

discussed the fully Bayes approach, both for logistic case. These Bayesian variable

selection criteria are presented in Section 4.3 for Poisson regression and in Section 4.4

for linear regression.

4.1 Empirical Bayes Criterion for Logistic Model

Taking k = 1 and assuming σ0 is fixed, one would like to estimate λ in the

posterior probability P (γ|Y ), which turns out to be the regularization parameter

in LASSO. The empirical Bayes method advocates estimating the parameter from

the data. It selects the λ that maximizes the marginal density

f(Y |λ) =
∑

γ

∫
βγ

P (Y ,γ,βγ) dβγ . (4.1)

(Recall that P (Y ,γ,βγ) defined in (3.9) involves the parameter λ.)
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If the number of variables is relatively small, this maximization problem can be

solved easily. However, as more variables are introduced, it is increasingly more dif-

ficult to calculate this maximizer numerically. Consider an individual term in (4.1),

that is, the conditional density of Y given a model γ:

f(Y |γ, λ)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
λ

2

)|γ|
exp

[
−

(
n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ)

+ λ
∑
γj=1

j 6=0

|βj|


 1√

2πσ0

exp

(
− β2

0

2σ2
0

)
dβγ .

Given a particular tuning parameter λ, let the selected model be γ̂λ. Instead of

maximizing the marginal density f(Y |γ, λ) (4.1), one can maximize f(Y |γ̂λ, λ),

the largest component of f(Y |γ, λ), and select λ this way. George and Foster [14]

used a similar approach for linear models with Gaussian priors.

From Section 3.2.2, it is shown that γ̂ is regular. Then, for each fixed σ0,

f(Y |γ̂λ, λ) can be approximated as n→∞ by (3.11), (3.15) and Proposition 3.1 to

obtain:

f(Y |γ̂λ, λ)

≈
(
λ

2

)|γ̂λ| 1

σ0

(
√

2π)|γ̂λ|(det(A+H))−
1
2 exp

(
1

2
(e− t)T (A+H)−1(e− t)

)

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xγ̂λβγ̂λ
))− yixγ̂λβγ̂λ

) +
β2

0

2σ2
0

+ λ
∑
i∈γ̂λ
i 6=0

|βj|




=

(
λ

2

)|γ̂λ| 1

σ0

(
√

2π)|γ̂λ|(det(A+H))−
1
2 exp

(
1

2
(e− t)T (A+H)−1(e− t)

)
× exp

[
−min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) +
β2

0

2σ2
0

+ λ

p∑
i=1

|βj|

)]
. (4.2)

32



Therefore, maximizing f(Y |γ̂λ, λ) is approximately equivalent to minimizing the

negative logarithm of (4.2). The terms not involving λ can be dropped because

they do not affect the minimization. This minimization criterion is named the CML

criterion as in George and Foster [14], and it consists of three terms. For each fixed

σ0, the CML criterion by

CMLκ0(λ)

= −|γ̂λ| log

(
λ

2

)
− |γ̂λ| log

√
2π +

1

2
log(det(A+H))

−
(

1

2
(e− t)T (A+H)−1(e− t)

)
+ min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) +
β2

0

2σ2
0

+ λ

p∑
i=1

|βj|

)

= −|γ̂λ| log

(
λ

2

)
− |γ̂λ| log

√
2π +

1

2
log(det(A+H))

−
(

1

2
(e− t)T (A+H)−1(e− t)

)
+ min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) +
β2

0

2
κ2

0 + λ

p∑
i=1

|βj|

)
, (4.3)

where κ0 = 1/σ0 was defined in Chapter 3. As κ0 → 0 or equivalently σ0 →∞, the

minimizer of CMLκ0 converges to the minimizer of CML by the Implicit Function

Theorem and (3.23), where by definition

CML(λ) = −|γ̂λ| log

(
λ

2

)
− |γ̂λ| log

√
2π +

1

2
log(det(A+H))

−
(

1

2
(e− t)T (A+H)−1(e− t)

)
+ min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) + λ

p∑
i=1

|βj|

)
. (4.4)
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4.2 Fully Bayes Criterion

The fully Bayes approach deals with the hyperparameters, τ and q, by sup-

plying them with a prior distribution. To implement the Bayesian procedure, one

needs to integrate out the hyperparameters to obtain the posterior distribution.

Consider the same hierarchical formulations (3.1), (3.2), (3.3) and (3.4), but

now assume multiplicative priors on τ and q on a restricted region, such that

π(τ, q) = π(τ)π(q).

The model is once more divided into two classes: regular and nonregular. Flat priors

will be explored in Section 4.2.1, and conjugate prior distributions for τ and q will

be investigated in Section 4.2.3.

4.2.1 Restricted Region

Building upon the hierarchical formulations (3.1), (3.2) and (3.3), the marginal

distribution of Y given γ and τ for the regular case is, by (3.13)

P (Y |γ, τ)

=

∫ ∞
−∞

(
1

σ0

√
2π

)(τ
2

)|γ|

× exp

−
 n∑

i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

|βj|


 dβγ
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≈
(

1

σ0

)(τ
2

)|γ|
(
√

2π)|γ|(det(A+H))−
1
2 exp

(
1

2
(e− t)T (A+H)−1(e− t)

)

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

|βj|


 ,

(4.5)

while P (Y |γ, τ) for the nonregular case is, using (3.13) and (3.20),

P (Y |γ, τ)

=

∫ ∞
−∞

(
1

σ0

√
2π

)(τ
2

)|γ|

× exp

−
 n∑

i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)


 dβγ

<

(
1

σ0

)(τ
2

)|γ|
(
√

2π)|γ|(det(A+H))−
1
2

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)


 ,

(4.6)

where A, H , e and t are defined in (3.5), (3.6), (3.7) and (3.8). Incorporating (3.4),

which is the prior distribution for γ, one may express the posterior distribution of

γ given Y , τ and q by

π(γ|Y , τ, q) ∝ π(γ|q)P (Y |γ, τ).
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For the regular case, from (3.4) and (4.5),

π(γ|Y , τ, q)

∝ q|γ|(1− q)p−|γ|
(

1

σ0

)(τ
2

)|γ|
(
√

2π)|γ|

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)


 .

(4.7)

Similarly, for the nonregular case using (3.4), (4.6) and (3.20),

π(γ|Y , τ, q)

∝ q|γ|(1− q)p−|γ|
(

1

σ0

)(τ
2

)|γ|
(
√

2π)|γ|

× exp

(
1

2
(e− t)T (A+H)−1(e− t)

)

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)




< q|γ|(1− q)p−|γ|
(

1

σ0

)(τ
2

)|γ|
(
√

2π)|γ|

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)


 .

(4.8)

Following the notation in Section 3.2.2, let γ = (γ0, γ1, γ2, . . . γp)
T , where the

first |γ|+ 1 components are 1’s and |γ| =
∑p

i=1 γi. Only the first s + 1 elements of

those |γ|+1 components of the vector βγ
∗ are nonzero. Recall that γ∗ is a submodel

of γ with its first s+ 1 components equal to one.

36



Since β∗γ,i = β∗γ∗,i for any i ≤ s,

π(γ|Y , τ, q)
π(γ∗|Y , τ, q)

≤ q|γ|−s(1− q)−(|γ|−s)
(τ

2

)|γ|−s
(
√

2π)|γ|−s

≤
(

q

1− q
τ

2

√
2π

)|γ|−s
= k|γ|−s

It is clear that if q(1 − q)−1(τ/2)
√

2π ≤ 1, the posterior probability of the

nonregular case is smaller or equal to the posterior probability of a regular case. We

impose this condition on any prior distribution for (τ, q). However, the area under

the region R is unbounded, where

R =

{
(τ, q) :

(
1− q
q

√
2

π

)
≥ τ, τ > 0, 0 < q < 1

}
.

Instead, the prior distribution of (τ, q) is restricted to the bounded region R′, where

r is a fixed value, and

R′ =

{
(τ, q) :

(
1− q
q

√
2

π

)
≥ r, τ ≤ r, 0 < q < 1

}
. (4.9)

Forcing (τ, q) ∈ R′ assures that the posterior will be proper. (See Figure 4.1.)

Therefore, when searching for the best model with the highest posterior probability,

one should concentrate on the models in the regular class with the restricted region

R′.

4.2.2 Flat priors

Since the model with the maximum posterior probability is contained in the

regular class, we should focus only on the regular model for the rest of this chapter.

Assuming that τ and q both have a uniform prior over the restricted region R′ to
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Figure 4.1: Restricted Region R′

reflect not much prior information on the hyperparameters and independent priors.

Then for each fixed σ0, the posterior distribution becomes

πσ0(γ|Y )

∝
(

1

σ0

)(
1

2

)|γ|
(
√

2π)|γ|

× exp

−min
βγ

 n∑
i=1

(log(1 + exp(xiγβγ))− yixiγβγ) +
β2

0

2σ2
0

+ τ
∑
γj=1

j 6=0

(|βj|)




×
∫
R′

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq

=

(
1

σ0

)(
1

2

)|γ|
(
√

2π)|γ|

× exp

[
−min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) +
β2

0

2σ2
0

+ τ

p∑
i=1

|βj|

)]
×
∫
R′

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq. (4.10)
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Maximizing the posterior probability is equivalent to maximizing the terms involv-

ing γ since the terms independent of γ do not contribute to the maximization.

Therefore, for each fixed σ0, the posterior probability satisfies

πσ0(γ|Y ) ∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) +
β2

0

2σ2
0

+ τ

p∑
i=1

|βj|

)]
×
∫
R′

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq. (4.11)

By the Implicit Function Theorem and (3.23), as σ0 → ∞, the maximizer of

πσ0(γ|Y ) converges to the maximizer of π(γ|Y ) , where

π(γ|Y ) ∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ)

+ τ

p∑
i=1

|βj|

)]
×
∫
R′

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq. (4.12)

Partition the restricted region R′ into R1 and R2, where R1 is the rectangular

region bounded by the axes, the horizontal line τ = r and the vertical line q =

1/(1 + r
√
π/2), and R2 is the region bounded by the q-axis, the vertical line q =

1/(1 + r
√
π/2) and the curve τ = ((1− q)/q)

√
2/π. The integral in (4.12) depends

on whether
∑p

j=1 |β̌∗j | is zero or not and β̌∗j is defined in (3.23).

(i) If
∑p

j=1 |β̌∗j | = 0,

π(γ|Y ) ∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)]

×
[∫

R1

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq +

∫
R2

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq

]
,

(4.13)

where β̌
∗

is defined in (3.23). From simple calculations, the first integral in (4.13)
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is

∫
R1

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq

=

∫ (1+r
√

π
2 )
−1

0

∫ r

0

τ |γ|q|γ|(1− q)p−|γ| dτ dq

=

∫ (1+r
√

π
2 )
−1

0

q|γ|(1− q)p−|γ| τ
|γ|+1

|γ|+ 1

∣∣∣∣r
0

dq

=
r|γ|+1

|γ|+ 1

∫ (1+r
√

π
2 )
−1

0

q|γ|(1− q)p−|γ|dq

=
r|γ|+1

|γ|+ 1

Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)
, (4.14)

where B0(·) is the CDF of the beta distribution with parameters α = |γ| + 1, β =

p− |γ|+ 1. The second integral is

∫
R2

∫
τ |γ|q|γ|(1− q)p−|γ| dτ dq

=

∫ 1

(1+r
√

π
2 )
−1

∫ 1−q
q

√
2
π

0

τ |γ|q|γ|(1− q)p−|γ| dτ dq

=

∫ 1

(1+r
√

π
2 )
−1
q|γ|(1− q)p−|γ| τ

|γ|+1

|γ|+ 1

∣∣∣∣
1−q
q

√
2
π

0

dq

=
1

|γ|+ 1

∫ 1

(1+r
√

π
2 )
−1
q|γ|(1− q)p−|γ|

(
1− q
q

√
2

π

)|γ|+1

dq

=

(√
2

π

)|γ|+1
1

|γ|+ 1

∫ 1

(1+r
√

π
2 )
−1
q−1(1− q)p+1 dq. (4.15)

Plugging (4.14) and (4.15) into (4.13), for
∑p

j=1 |β̌∗j | = 0, the logarithm of the
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posterior distribution satisfies

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)
− log(|γ|+ 1)

+ log

[
r|γ|+1 Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)

+

(√
2

π

)|γ|+1 ∫ 1

(1+r
√

π
2 )
−1
q−1(1− q)p+1 dq

+ Const.

(4.16)

(ii) If
∑p

j=1 |β̌∗j | > 0,

π(γ|Y ) ∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)]

×

[∫
R1

∫
τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

+

∫
R2

∫
τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

]
, (4.17)

where β̌
∗

is defined in (3.23). The first integral in (4.17) is

∫
R1

∫
τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

=

∫ (1+r
√

π
2 )
−1

0

∫ r

0

τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

=
Γ(|γ|+ 1)(∑p
j=1 |β̌∗j |

)|γ|+1
G0(r)

∫ (1+r
√

π
2 )
−1

0

q|γ|(1− q)p−|γ|dq

=
Γ(|γ|+ 1)(∑p
j=1 |β̌∗j |

)|γ|+1
G0(r)

Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)
, (4.18)

where G0(·) is the CDF of the gamma distribution with parameters α = |γ|+1, λ =
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∑p
j=1 |β̌∗j |. The second integral in (4.17) is∫

R2

∫
τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

=

∫ 1

(1+r
√

π
2 )
−1

∫ 1−q
q

√
2
π

0

τ |γ| exp

(
−τ

p∑
j=1

|β̌∗j |

)
q|γ|(1− q)p−|γ| dτ dq

=
Γ(|γ|+ 1)(∑p
j=1 |β̌∗j |

)|γ|+1

∫ 1

(1+r
√

π
2 )
−1
q|γ|(1− q)p−|γ|G0

(
1− q
q

√
2

π

)
dq. (4.19)

After substituting (4.18) and (4.19) into (4.17), we obtain

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)

+ log Γ(|γ|+ 1)− (|γ|+ 1) log

(
p∑
j=1

|β̌∗j |

)

+ log

[
G0(r)

Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)

+

∫ 1

(1+r
√

π
2 )
−1
q|γ|(1− q)p−|γ|G0

(
1− q
q

√
2

π

)
dq

]
+ Const.

(4.20)

4.2.3 Conjugate Priors

Under restricted region R′, consider the conjugate priors

τ ∼ Gamma

(
a,

1

b

)
, τ > 0, q ∼ Beta (α, β), 0 < q < 1.

Similar to the arguments in Section 4.2.1, focusing on the relevant terms and ap-

plying the Implicit Function Theorem, the posterior probability is proportional to

π(γ|Y )

∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−min

β

(
n∑
i=1

(log(1 + exp(xiβ))− yixiβ) + τ

p∑
i=1

|βj|

)]
×
∫
R′

∫
τ |γ|+a−1 exp

(
−τ
b

)
q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq. (4.21)
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As in Section 4.2.2, the restricted region is decomposed into R1 and R2. The eval-

uation of the integral in (4.21) relies on whether the sum of
(∑p

j=1 |β̌∗j |+ 1/b
)

is

zero or not.

(i) If
(∑p

j=1 |β̌∗j |+ 1/b
)

= 0,

π(γ|Y ) ∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)]

×
[∫

R1

∫
τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

+

∫
R2

∫
τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

]
. (4.22)

The first integral in (4.22) is

∫
R1

∫
τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=

∫ (1+r
√

π
2 )
−1

0

∫ r

0

τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=
r|γ|+a

|γ|+ a

∫ (1+r
√

π
2 )
−1

0

q|γ|+α−1(1− q)p−|γ|+β−1 dq

=
r|γ|+a

|γ|+ a

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)
, (4.23)

where B(·) is the CDF of the beta distribution with parameters α = |γ| + α, β =

p− |γ|+ β. The second integral is

∫
R2

∫
τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=

∫ 1

(1+r
√

π
2 )
−1

∫ 1−q
q

√
2
π

0

τ |γ|+a−1q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=
1

|γ|+ a

∫ 1

(1+r
√

π
2 )
−1
q|γ|+α−1(1− q)p−|γ|+β−1

(
1− q
q

√
2

π

)|γ|+a
dq (4.24)

=

(√
2

π

)|γ|+a
1

|γ|+ a

∫ 1

(1+r
√

π
2 )
−1
qα−a−1(1− q)p+a+β−1 dq. (4.25)
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Maximizing the posterior probability is the same as maximizing the logarithm of

the posterior probability, so that,

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)
− log(|γ|+ a)

+ log

[
r|γ|+a

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)

+

(√
2

π

)|γ|+a ∫ 1

(1+r
√

π
2 )
−1
qα−a−1(1− q)p+a+β−1dq

+ Const.

(4.26)

(ii) If
(∑p

j=1 |β̌∗j |+ 1/b
)
> 0,

π(γ|Y )

∝
(

1

2

)|γ|
(
√

2π)|γ| exp

[
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)]

×

[∫
R1

∫
τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

+

∫
R2

∫
τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

]
.

(4.27)

The first integral in (4.27) is∫
R1

∫
τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=

∫ (1+r
√

π
2 )
−1

0

∫ r

0

τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
× q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=
Γ(|γ|+ a)G1(r)(∑p
j=1 |β̌∗j |+

1
b

)|γ|+a ∫ (1+r
√

π
2 )
−1

0

q|γ|+α−1(1− q)p−|γ|+β−1 dq

=
Γ(|γ|+ a)G1(r)(∑p
j=1 |β̌∗j |+

1
b

)|γ|+a Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)
, (4.28)
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where G1(·) is the CDF of the gamma distribution with parameters α = |γ|+a, λ =∑p
j=1 |β̌∗j |+ 1/b. The second integral is

∫
R2

∫
τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=

∫ 1

(1+r
√

π
2 )
−1

∫ 1−q
q

√
2
π

0

τ |γ|+a−1 exp

[
−τ

(
p∑
j=1

|β̌∗j |+
1

b

)]
× q|γ|+α−1(1− q)p−|γ|+β−1 dτ dq

=
Γ(|γ|+ a)(∑p

j=1 |β̌∗j |+
1
b

)|γ|+a ∫ 1

(1+r
√

π
2 )
−1
q|γ|+α−1(1− q)p−|γ|+β−1G1

(
1− q
q

√
2

π

)
dq.

(4.29)

The highest posterior probability can be obtained by maximizing log (π(γ|Y )) ,

where

log (π(γ|Y ))

=
|γ|
2

log
(π

2

)
−

n∑
i=1

(
log(1 + exp(xiβ̌

∗
))− yixiβ̌

∗
)

+ log Γ(|γ|+ a)− (|γ|+ a) log

(
p∑
j=1

|β̌∗j |+
1

b

)

+ log

[
G1(r)

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)

+

∫ 1

(1+r
√

π
2 )
−1
q|γ|+α−1(1− q)p−|γ|+β−1G1

(
1− q
q

√
2

π

)
dq

]
+ Const

. (4.30)

Note that (4.16) and (4.20) are special cases of (4.26) and (4.30) with a = 1, b =

+∞, α = 1 and β = 1.
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4.3 Poisson Models

In this section, the dependent variable Y follows a Poisson distribution. Using

the methods described in Chapter 3 and 4 with priors similar to those in Section 3.1,

we derive the empirical Bayes and fully Bayes criteria for Poisson models and sum-

marize the results below.

Assume that yi, i = 1, 2, . . . , n, are conditionally independent given µiγ , i =

1, 2, . . . , n, and that yi|µiγ follows a Poisson distribution,

yi|µiγ ∼
exp(−µiγ)

yi!
µyiiγ ,

where

log µiγ = xiγβγ .

The density of yi|βγ ,γ can be written as

f(yi|βγ ,γ) =
1

yi!
exp(− exp(xiγβγ)) exp(yixiγβγ). (4.31)

Taking the priors (3.2), (3.3) and (3.4) and calculating parallel to the derivation

of the logistic case yields the empirical Bayes criterion:

CML(λ) = −|γ̂λ| log

(
λ

2

)
− |γ̂λ| log

√
2π +

1

2
log(det(A+H))

−
(

1

2
(e− t)T (A+H)−1(e− t)

)
+ min

β

(
n∑
i=1

(exp(xiβ)− yixiβ) + λ

p∑
j=1

|βj|

)
, (4.32)

where

A =
n∑
i=1

(xTiγ exp(xiγβγ
∗)xiγ), (4.33)
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eT =
n∑
i=1

(yi − exp(xiγβγ
∗))xiγ , (4.34)

and

β̌
∗

= argminβ

(
n∑
i=1

(exp(xiβ)− yixiβ) + λ

p∑
j=1

|βj|

)
.

By analysis analogous to Section 4.2.2 and Section 4.2.3 and hyperpriors specified

in those two sections, the fully Bayes criteria are as follows:

I. Flat priors

(i) If
∑p

j=1 |β̌∗j | = 0,

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(
exp(xiβ̌

∗
)− yixiβ̌

∗
)
− log(|γ|+ 1)

+ log

[
r|γ|+1 Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)

+

(√
2

π

)|γ|+1 ∫ 1

(1+r
√

π
2 )
−1
q−1(1− q)p+1 dq

+ Const,

(4.35)

where B0(·) is the CDF of the beta distribution with parameters α = |γ| + 1, β =

p− |γ|+ 1.

(ii) If
∑p

j=1 |β̌∗j | > 0,

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(
exp(xiβ̌

∗
)− yixiβ̌

∗
)

+ log Γ(|γ|+ 1)− (|γ|+ 1) log

(
p∑
j=1

|β̌∗j |

)

+ log

[
G0(r)

Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√

π
2

)

+

∫ 1

(1+r
√

π
2 )
−1
q|γ|(1− q)p−|γ|G0

(
1− q
q

√
2

π

)
dq

]
+ Const,

(4.36)
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where G0(·) is the CDF of the gamma distribution with parameters α = |γ|+1, λ =∑p
j=1 |β̌∗j |.

II. Conjugate priors

(i) If
(∑p

j=1 |β̌∗j |+ 1/b
)

= 0,

log (π(γ|Y )) =
|γ|
2

log
(π

2

)
−

n∑
i=1

(exp(xiβ
∗)− yixiβ∗)− log(|γ|+ a)

+ log

[
r|γ|+a

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)

+

(√
2

π

)|γ|+a ∫ 1

(1+r
√

π
2 )
−1
qα−a−1(1− q)p+a+β−1 dq

+ Const,

(4.37)

where B(·) is the CDF of the beta distribution with parameters α = |γ| + α, β =

p− |γ|+ β.

(ii) If
(∑p

j=1 |β̌∗j |+ 1/b
)
> 0,

log (π(γ|Y ))

=
|γ|
2

log
(π

2

)
−

n∑
i=1

(
exp(xiβ̌

∗
)− yixiβ̌

∗
)

+ log Γ(|γ|+ a)− (|γ|+ a) log

(
p∑
j=1

|β̌∗j |+
1

b

)

+ log

[
G1(r)

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√

π
2

)

+

∫ 1

(1+r
√

π
2 )
−1
q|γ|+α−1(1− q)p−|γ|+β−1G1

(
1− q
q

√
2

π

)
dq

]
+ Const,

(4.38)

where G1(·) is the CDF of the gamma distribution with parameters α = |γ|+a, λ =∑p
j=1 |β̌∗j |+ 1/b.
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4.4 Linear Models

Yuan and Lin [38] gave the empirical Bayes criterion for linear models. Build-

ing upon their priors, we specify hyperpriors for the hyperparameters and develop

the fully Bayes criterion in this section.

Consider a linear model:

Y = Xβ + ε,

where ε ∼ N(0, σ2I). Each predictor is centered and scaled so that its sample mean

is 0 and sample standard deviation is 1.

Assigning a double exponential prior (3.3) for βj and using the following prior

for γ,

π(γ|q) = q|γ|(1− q)p−|γ|
√

det(XT
γXγ). (4.39)

Yuan and Lin [38] gave the empirical Bayes criterion:

CML(λ) = −(n+ |γ̂λ|)

[
log

(
minβ(||Y −Xβ||2 + λ

∑p
j=1 |βj|)

n+ |γ̂λ|

)
+ 1

]
+ log(det(XT

γXγ))− 2|γ̂λ| ln(
√

2πλ/4), (4.40)

In order to obtain a proper posterior distribution, define the restricted region as

R′ =

{
(τ, q) :

(
1− q
q

√
2

πσ2

)
≥ r, τ ≤ r, 0 < q < 1

}
, (4.41)

where r is a fixed value and σ2 is known.

We will write

β∗ = min
β

(||Y −Xβ||2 + λ

p∑
j=1

|βj|)
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throughout this section. Under the restricted region R′, we employ the flat priors

in Section 4.2.2 and conjugate priors in Section 4.2.3. The fully Bayes criteria are

as follows:

I. Flat priors

(i) If
∑p

j=1 |β̌∗j | = 0,

log (π(γ|Y )) = −(n− |γ|) log(
√

2πσ2)− |γ| log 2− ||Y −Xβ
∗||2

2σ2
− log(|γ|+ 1)

+ log

[
r|γ|+1 Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√
πσ2/2

)

+

(√
2

πσ2

)|γ|+1 ∫ 1

(
1+r
√
πσ2/2

)−1
q−1(1− q)p+1 dq

+ Const,

(4.42)

where B0(·) is the CDF of the beta distribution with parameters α = |γ| + 1, β =

p− |γ|+ 1.

(ii) If
∑p

j=1 |β̌∗j | > 0,

log (π(γ|Y )) = −(n− |γ|) log(
√

2πσ2)− |γ| log 2− ||Y −Xβ
∗||2

2σ2

+ log Γ(|γ|+ 1)− (|γ|+ 1) log

(
p∑
j=1

|β̌∗j |

)

+ log

[
G0(r)

Γ(|γ|+ 1)Γ(p− |γ|+ 1)

Γ(p+ 2)
B0

(
1

1 + r
√
πσ2/2

)

+

∫ 1

(
1+r
√
πσ2/2

)−1
q|γ|(1− q)p−|γ|G0

(
1− q
q

√
2

πσ2

)
dq

]
+ Const,

(4.43)

where G0(·) is the CDF of the gamma distribution with parameters α = |γ|+1, λ =∑p
j=1 |β̌∗j |.
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II. Conjugate priors

(i) If
(∑p

j=1 |β∗j |+ 1/b
)

= 0,

log (π(γ|Y ))

= −(n− |γ|) log(
√

2πσ2)− |γ| log 2− ||Y −Xβ
∗||2

2σ2
− log(|γ|+ a)

+ log

[
r|γ|+a

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√
πσ2/2

)

+

(√
2

πσ2

)|γ|+a ∫ 1

(
1+r
√
πσ2/2

)−1
qα−a−1(1− q)p+a+β−1 dq

+ Const,

(4.44)

where B(·) is the CDF of the beta distribution with parameters α = |γ| + α, β =

p− |γ|+ β.

(ii) If
(∑p

j=1 |β∗j |+ 1/b
)
> 0,

log (π(γ|Y ))

= −(n− |γ|) log(
√

2πσ2)− |γ| log 2− ||Y −Xβ
∗||2

2σ2

+ log Γ(|γ|+ a)− (|γ|+ a) log

(
p∑
j=1

|β∗j |+
1

b

)

+ log

[
G1(r)

Γ(α + |γ|)Γ(p− |γ|+ β)

Γ(p+ α + β)
B

(
1

1 + r
√
πσ2/2

)

+

∫ 1

(
1+r
√
πσ2/2

)−1
q|γ|+α−1(1− q)p−|γ|+β−1G1

(
1− q
q

√
2

πσ2

)
dq

]
+ Const,

(4.45)

where G1(·) is the CDF of the gamma distribution with parameters α = |γ|+a, λ =∑p
j=1 |β̌∗j |+ 1/b.
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4.5 Implementation of the Bayesian Criteria

For each of the models considered in this Chapter, the CML and fully Bayes

criteria depend on β̌
∗
, where β̌

∗
minimizes (3.24), the penalized negative loglikeli-

hood for a given penalty λ
∑p

i=1 |βj|. Available R packages (lars [8], glmpath [29],

glmnet [13]) permit one to solve the LASSO problem for all values of λ. Therefore

the CML and fully Bayes criteria can be computed for each λ and hence the opti-

mum λ can be determined. This means that model selection using CML or fully

Bayes criteria can be implemented.

The R packages mentioned above already produce optimum λ values for the

Cp, AIC and BIC criteria. Therefore our criteria can be applied directly to solve

L1 penalized likelihood problems. We will apply our criteria to both simulated and

real- world data in Chapter 6.
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Chapter 5

Asymptotic Results for LASSO-type Estimators in GLM

In this Chapter, extension of Theorems 2.1, 2.2 and 2.3 will be presented when

the regularization parameter λ is deterministic. The following regularity conditions

are imposed throughout this chapter.

Condition C1 Cn(ξ) =
∑n

i=1 x
T
i φ b

′′(xiξ)xi/n
uniformly−→ C(ξ),

where xi is a row vector which represents the ith row of the design matrix X and

C = C(ξ) is a nonnegative definite matrix. The convergence is uniform over ξ ∈ K,

a compact and convex set containing β.

Condition C2 max1≤i≤n xix
T
i /n→ 0.

Assume C is nonsingular throughout this chapter. Write the likelihood function as

L(Y ,β) =
∏n

i=1 li(yi,β). Define the random function

Zn(ξ) = − 1

n

n∑
i=1

log

[
li(yi, ξ)

li(yi,β)

]
+
λn
n

p∑
j=1

(|ξj|ν − |βj|ν)

= −1

φ

n∑
i=1

1

n
[yixiξ − b(xiξ)− yixiβ + b(xiβ)]

+
λn
n

p∑
j=1

(|ξj|ν − |βj|ν) , (5.1)
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which is minimized at ξ = β̂n.

We are interested in the minimizer of Zn(ξ) and will show that the minimizer

of Zn(ξ) converges to the minimizer of some limiting function Z(ξ). The following

two theorems are used to establish the required convergence:

Theorem 5.1 (Andersen & Gill, 1982 [2]) Let E be an open convex subset of

Rp and let F1, F2, · · · , be a sequence of random concave functions on E such that

∀x ∈ E,Fn(x) →p f(x) as n → ∞ where f is some real function on E. Then f is

also concave and for all compact A ⊂ E,

sup
x∈A
|Fn(x)− f(x)| → 0 as n→∞.

Definition 5.1 (Kim & Pollard, 1990 [20]) Let (Ω,A,P) be a probability space.

The outer expectation of a bounded, real function f on Ω is defined by

P∗f = inf{P g : f ≤ g and g is integrable}.

Definition 5.2 (Kim & Pollard, 1990 [20]) Let (X , ρ) be a metric space and

U(X ) be the set of bounded, uniformly continuous, real functions on X . For maps

Xn from Ω into X and a probability measure Q on the Borel σ-field of X , define the

convergence in distribution Xn ; Q to mean:

(i) Q has separable support;

(ii) P∗h(Xn)→ Qh for each h in U(X ).

Theorem 5.2 (Kim & Pollard, 1990 [20]) Let Bloc(Rd) be the space of all lo-

cally bounded real functions on Rd, equipped with the topology of uniform conver-
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gence on compacta. Let {Zn} be random maps into Bloc(Rd) and {tn} be random

maps into Rd such that:

(i) Zn ; Q for a Borel measure Q concentrated on Cmax(Rd), where Cmax(Rd) is

the separable set of continuous functions x(·) in Bloc(Rd) such that x(t)→ −∞

as |t| → ∞ and x(·) attains a unique maximum in Rd;

(ii) tn = Op(1);

(iii) Zn(tn) ≥ supt Zn(t)− αn for random variables {αn} of order op(1).

Then tn ; argmax(Z) for a Z with distribution Q.

Lemma 5.1 Let x1,x2, . . . ,xn be independent and identically distributed with joint

cumulative distribution function H(x). Let K ⊂ Rp be a compact set and let β belong

to the interior of K. Define

Fn(ξ) =
1

n

n∑
i=1

[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)] .

and assume that Fn(ξ)→ F (ξ) uniformly for ξ ∈ K. Then if λn/n→ λ0 ∈ (0,∞),

for Zn(ξ) in (5.1),

sup
ξ∈K
|Zn(ξ)− Z(ξ)| −→p 0 (5.2)

where

Z(ξ) = lim

{
1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

}
+λ0

p∑
j=1

(|ξj|ν − |βj|ν) .
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Proof: Consider the function

Zn(ξ) = −1

φ

n∑
i=1

1

n
[yixiξ − b(xiξ)− yixiβ + b(xiβ)]

+
λn
n

p∑
j=1

(|ξj|ν − |βj|ν)

= − 1

n

n∑
i=1

[
1

φ
(yi − b′(xiβ))xi(ξ − β)

]
+

1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

+
λn
n

p∑
j=1

(|ξj|ν − |βj|ν) . (5.3)

Note that

Var

[
1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

]

=
1

n2 φ2

n∑
i=1

(ξ − β)TxTi
(
E(yi − b′(xiβ))2

)
xi(ξ − β)

=
1

nφ2
(ξ − β)T

(
1

n

n∑
i=1

xTi φ b
′′(xiβ)xi

)
(ξ − β)

→ 0, (5.4)

since (1/n)
∑n

i=1 x
T
i φ b

′′(xiβ)xi converges uniformly to a finite nonnegative matrix

C(β) by Condition C1. From (5.4) and the compactness of K, we have

sup
ξ∈K

{
Var

[
1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

]}
→ 0. (5.5)

Using Chebyshev’s inequality on the first term of Zn(ξ), when n→∞,

P

[∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

∣∣∣∣∣ > ε

]

≤ 1

ε2
Var

[
1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

]
→ 0, (5.6)
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uniformly over ξ ∈ K. Then for each ξ ∈ K,

1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)→ 0. (5.7)

Supposed that T (ξ) = |
∑n

i=1(yi − b′(xiβ))xi(ξ − β)/(nφ)|. If ξ1, ξ2 ∈ K and

ω ∈ [0, 1], then

T (ωξ1 + (1− ω)ξ2)

=

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ωξ1 + (1− ω)ξ2 − β)

∣∣∣∣∣
=

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ωξ1 + (1− ω)ξ2 − (ω + 1− ω)β)

∣∣∣∣∣
=

∣∣∣∣∣ ωnφ
n∑
i=1

(yi − b′(xiβ))xi(ξ1 − β) +
1− ω
nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ2 − β)

∣∣∣∣∣
≤ ω

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ1 − β)

∣∣∣∣∣+ (1− ω)

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ2 − β)

∣∣∣∣∣
= ω T (ξ1) + (1− ω)T (ξ2).

Hence, |
∑n

i=1(yi − b′(xiβ))xi(ξ−β)/(nφ)| is a convex function. Also, the function

converges pointwise to 0 by (5.7). From the results of Theorem II.1 from Andersen

and Gill [2], we have

sup
ξ∈K

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)− 0

∣∣∣∣∣→p 0, (5.8)

as n→∞.
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Observe that

|Zn(ξ)− Z(ξ)|

≤

∣∣∣∣∣1φ
n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

− lim

{
1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

}∣∣∣∣∣
+

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

∣∣∣∣∣
+

∣∣∣∣∣
(
λn
n
− λ0

) p∑
j=1

(|ξj|ν − |βj|ν)

∣∣∣∣∣ . (5.9)

The supremum of the last term

sup
ξ∈K

{∣∣∣∣∣
(
λn
n
− λ0

) p∑
j=1

(|ξj|ν − |βj|ν)

∣∣∣∣∣
}
→p 0 (5.10)

because ξ is bounded which follows from ξ ∈ K and the function
∑p

j=1 |ξj|ν is

bounded. Then,

sup
ξ∈K
|Zn(ξ)− Z(ξ)|

≤ sup
ξ∈K

∣∣∣∣∣1φ
n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

− lim

{
1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)]

}∣∣∣∣∣
+ sup

ξ∈K

∣∣∣∣∣ 1

nφ

n∑
i=1

(yi − b′(xiβ))xi(ξ − β)

∣∣∣∣∣
+ sup

ξ∈K

∣∣∣∣∣
(
λn
n
− λ0

) p∑
j=1

(|ξj|ν − |βj|ν)

∣∣∣∣∣ .
→p 0. (5.11)

by the hypothesized uniform convergence of Fn(ξ), (5.8)and (5.10). 2
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Remark 5.1 It can be seen from the proof of Lemma 5.1 that

Z(ξ) = lim

{
1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− yixi(ξ − β)]

}
+ λ0

p∑
j=1

(|ξj|ν − |βj|ν) .

Remark 5.2 The hypothesis about the convergence of Fn(ξ) can be modified by

adding conditions on the xi or on H. As an example, we state the following corollary.

Corollary 5.1 If the xi are uniformly bounded, then the conclusion of Lemma 5.1

holds.

Proof: Boundedness of the xi, the strong law of large numbers and compactness of

K guarantee the uniform convergence of Fn(ξ) to

Fn(ξ) = EH [b(xiξ)− b(xiβ)− b′(xiβ)xi(ξ − β)] . 2

Theorem 5.3 below shows that the Bridge estimators β̂n are consistent if λn

is of order o(n).

Theorem 5.3 If C(β) defined in Condition C1 is nonsingular and λn/n→ λ0 ≥ 0,

then β̂n →p argmin(Z) where

Z(ξ) = lim

{
1

φ

n∑
i=1

1

n
[b(xiξ)− b(xiβ)− yixi(ξ − β)]

}
+ λ0

p∑
j=1

(|ξj|ν − |βj|ν) .

Thus if λn = o(n), argmin(Z) = β and so β̂n is consistent.

Proof: Define Zn as in (5.1). We need the following two conditions:

sup
ξ∈K
|Zn(ξ)− Z(ξ)| →p 0 (5.12)

for any compact set K and

β̂n = Op(1). (5.13)
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Under (5.12) and (5.13), we have

argmin(Zn)→p argmin(Z).

For ν ≥ 1, Zn is convex, and therefore (5.2) and (5.13) are true from the uniform

convergence of Zn(ξ) to Z(ξ) and by applying Theorems II.1 from Andersen and

Gill [2]. For ν < 1, Zn is not convex, but (5.2) follows from Lemma 5.1. Note that

Zn(ξ) ≥ − 1

n

n∑
i=1

log

[
l(yi, ξ)

l(yi,β)

]
= Z(0)

n (ξ),

for all ξ. Since argmin(Z
(0)
n ) = Op(1), it follows that argmin(Zn) = Op(1). 2

The limiting distribution of the Bridge estimators can be obtained when λn

grows slowly. Theorem 5.4 shows that the Bridge Estimator is
√
n-consistent when

λn = o(
√
n) for ν ≥ 1, whereas Theorem 5.5 proves that the rate of growth should be

λn = o(nν/2) when ν < 1. Before stating the theorems, let us consider the following

lemma:

Lemma 5.2 If y follows an exponential family distribution which has the following

probability density function:

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
,

then the moment generating function of exp (y/φ) is

E

[
exp

(
ty

φ

)]
= exp

[
1

φ
(b(t+ θ)− b(θ))

]
.
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Proof:

E

[
exp

(
t y

φ

)]
=

∫
exp

(
t y

φ

)
exp

[
yθ − b(θ)

φ

]
exp(c(y, φ)) dy

=

∫
exp

[
1

φ
(b(t+ θ)− b(θ))

]
exp

[
1

φ
((t+ θ)y − b(t+ θ))

]
exp(c(y, φ)) dy

= exp

[
1

φ
(b(t+ θ)− b(θ))

]
. 2 (5.14)

Lemma 5.3 Suppose that Y , u are vectors with length n and p + 1 respectively.

If Y follows an exponential family distribution (2.1), then the moment generating

function of exp [(1/(
√
nφ))

∑n
i=1 (yi − b′(xiβ))xiu] satisfies

Mn(t) = E

{
exp

[
t√
nφ

n∑
i=1

(yi − b′(xiβ))xiu

]}

−→ exp

[
t2

2φ2
uTC(β)u

]
.

Thus, as n → ∞, exp
[

1√
nφ

∑n
i=1 (yi − b′(xiβ))xiu

]
−→d u

TW , where W has a

N(0,C(β)/φ2) distribution.

Proof: Observe that by Taylor expansion,

n∑
i=1

b

(
xi

(
β +

tu√
n

))
=

n∑
i=1

[
b(xiβ) +

t√
n
b′(xiβ)xiu+

t2

2n
uTxTi b

′′(xiβ
∗)xiu

]
,

(5.15)

where β∗ is between β and β + t/
√
n. By Lemma 5.2,

E

[
exp

(
txiu√
nφ

yi

)]
= exp

{
1

φ

[
b

(
xiβ +

t√
n
xiu

)
− b(xiβ)

]}
. (5.16)
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Then

Mn(t) =
n∏
i=1

E

{
exp

[
t√
nφ

(yi − b′(xiβ))xiu

]}
=

n∏
i=1

{
exp

[
1

φ

{
b

(
xiβ +

t√
n
xiu

)
− b(xiβ)− t√

nφ
b′(xiβ)xiu

}]}

= exp

[
1

φ

n∑
i=1

{
b

(
xi

(
β +

tu√
n

))
− b(xiβ)− t√

nφ
b′(xiβ)xiu

}]

= exp

[
1

φ

n∑
i=1

{
b(xiβ) +

t√
n
b′(xiβ)xiu+

t2

2n
uTxTi b

′′(xiβ
∗)xiu

− b(xiβ)− t√
nφ

b′(xiβ)xiu

}]
= exp

[
1

φ

n∑
i=1

{
t2

2n
uTxTi b

′′(xiβ)xiu

+
t2

2n
uTxTi (b′′(xiβ

∗)− b′′(xiβ))xiu

}]
= exp

[
t2

2φ2
uT

(
1

n

n∑
i=1

(xTi φ b
′′(xiβ)xi)

)
u

]

× exp

[
t2

2φ2
uT

(
1

n

n∑
i=1

(xTi φ (b′′(xiβ
∗)− b′′(xiβ))xi)

)
u

]

−→ exp

[
t2

2φ2
uTC(β)u

]
.

The justification of the last statement is as follows. Since b′′(xiβ
∗) − b′′(xiβ) =

O(xiβ
∗/
√
n), writing ||x|| for the L2 norm of x,

∣∣∣∣xiβ∗√n
∣∣∣∣ ≤ ||xi||1/2||β∗||1/2√

n
≤
(

max
||xi||1/2√

n

)
︸ ︷︷ ︸

−→0

||β∗||1/2︸ ︷︷ ︸
O(1)

−→ 0

by Condition C2. Therefore

t2

2φ2
uT

(
1

n

n∑
i=1

(xTi φ (b′′(xiβ
∗)− b′′(xiβ))xi)

)
u−→0,

over β∗ in the compact and convex set K, as n→∞. 2
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Theorem 5.4 Suppose that ν ≥ 1. If λn/
√
n→ λ0 ≥ 0, and C(β) is nonsingular,

then

√
n(β̂n − β)→d argmin(V ),

where if ν > 1,

V (u) = −uTW +
1

2φ2
uTC(β)u+ ν λ0

p∑
j=1

uj sgn(βj)|βj|ν−1,

if ν = 1,

V (u) = −uTW +
1

2φ2
uTC(β)u+ λ0

p∑
j=1

[uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)],

and W has a N(0,C(β)/φ2) distribution.

Proof: Define Vn(u) by

Vn(u) = −
n∑
i=1

log

[
l (yi,β + u/

√
n)

l(yi,β)

]
+ λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν) , (5.17)

where u is a length p + 1 vector and observe that Vn is minimized at
√
n(β̂n − β).
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Examining Vn carefully, one finds that

Vn(u) = −
n∑
i=1

1

φ

{
yixi

(
β +

u√
n

)
− b
(
xi

(
β +

u√
n

))
− yixiβ + b(xiβ)

}

+ λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν)

= −1

φ

n∑
i=1

{
yixi

u√
n
−
[
b(xiβ) +

uTxi√
n
b′(xiβ)

+
1

2n
b′′
(
xi

(
β +

ũ√
n

))
uTxTi xiu

]
+ b(xiβ)

}
+ λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν)

= − 1√
nφ

n∑
i=1

(yi − b′(xiβ))xiu+
1

2φ2
uT

[
φ

n

n∑
i=1

xTi b
′′(xiβ)xi

]
u

+
1

2φ2
uT

{
φ

n

n∑
i=1

xTi

[
b′′
(
xi

(
β +

ũ√
n

))
− b′′(xiβ)

]
xi

}
u

+ λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν) , (5.18)

where ũ is between u and β. Similar to the proof of Lemma 5.3, since

b′′
(
xi
(
β + ũ/

√
n
))
− b′′(xiβ) = O(xiũ/

√
n),

by Condition C2, as n→∞,

1

2φ2
uT

{
φ

n

n∑
i=1

xTi

[
b′′
(
xi

(
β +

ũ√
n

))
− b′′(xiβ)

]
xi

}
u−→0,

over ũ in the compact and convex set K.

Hence, by Lemma 5.3 and Central Limit Theorem (CLT),

− 1√
nφ

n∑
i=1

(yi − b′(xiβ))xiu+
1

2φ2
uT

[
φ

n

n∑
i=1

xTi b
′′(xiβ)xi

]
u

+
1

2φ2
uT

{
φ

n

n∑
i=1

xTi

[
b′′
(
xi

(
β +

ũ√
n

))
− b′′(xiβ)

]
xi

}
u

−→d −uTW +
1

2φ2
uTC(β)u. .
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When ν > 1,

λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν) = λn

p∑
j=1

∣∣∣∣ uj√n
∣∣∣∣ν I(βj = 0)

+ λn

p∑
j=1

((
βj +

uj√
n

)ν
− βνj

)
I(βj > 0)

+ λn

p∑
j=1

((
−βj −

uj√
n

)ν
− (−βj)ν

)
I(βj < 0).

In the case of βj = 0,

λn

∣∣∣∣ uj√n
∣∣∣∣ν =

λn√
n

√
n

∣∣∣∣ uj√n
∣∣∣∣ν =

λn√
n

|uj|ν

(
√
n)ν−1

−→ 0,

as n→∞. If βj > 0, applying the binomial theorem,

λn

((
βj +

uj√
n

)ν
− βνj

)
= λn

[
βνj + ν

uj√
n
βν−1
j + o

(
1√
n

)
− βνj

]
=

λn√
n

[
ν ujβ

ν−1
j + o

(
1√
n

)]
−→ ν λ0uj |βj|ν−1.

Similarly, when βj < 0,

λn

((
−βj −

uj√
n

)ν
− (−βj)ν

)
= λn

[
(−βj)ν + ν

(
− uj√

n

)
(−βj)ν−1 + o

(
1√
n

)
− (−βj)ν

]
=

λn√
n

[
ν(−uj)(−βj)ν−1 + o

(
1√
n

)]
−→ −ν λ0uj |βj|ν−1.

Therefore

λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν) −→ νλ0

p∑
j=1

uj sgn(βj)|βj|ν−1.
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When ν = 1, the penalty component can be decomposed into three parts:

λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣− |βj|) = λn

p∑
j=1

((
βj +

uj√
n

)
− βj

)
I(βj > 0)

+ λn

p∑
j=1

((
−βj −

uj√
n

)
− (−βj)

)
I(βj < 0)

+ λn

p∑
j=1

∣∣∣∣ uj√n
∣∣∣∣ I(βj = 0).

That is,

λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣− |βj|) −→ λ0

p∑
j=1

[uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)].

Hence, Vn(u) →d V (u). Since Vn(u) is convex and V has a unique minimum, by

Geyer [15], the following result holds:

argmin(Vn) =
√
n(β̂n − β)→d argmin(V ). 2

When ν < 1, a different rate of growth of λn is assumed to get a limiting

distribution.

Theorem 5.5 Suppose that ν < 1. If λn/n
ν/2 → λ0 ≥ 0 and C(β) is nonsingular,

then

√
n(β̂n − β)→d argmin(V ),

where

V (u) = −uTW +
1

2φ2
uTC(β)u+ λ0

p∑
j=1

|uj|ν I(βj = 0)

and W has a N(0,C(β)/φ2) distribution.
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Proof: Following the same idea of the proof of Theorem 5.4, define

Vn(u) = − 1√
nφ

n∑
i=1

(yi − b′(xiβ))xiu+
1

2φ2
uT

[
φ

n

n∑
i=1

xTi b
′′(xiβ)xi

]
u

+
1

2φ2
uT

{
φ

n

n∑
i=1

xTi

[
b′′
(
xi

(
β +

ũ√
n

))
− b′′(xiβ)

]
xi

}
u

+ λn

p∑
j=1

(∣∣∣∣βj +
uj√
n

∣∣∣∣ν − |βj|ν) . (5.19)

As in the proof of Theorem 5.4, the sum of the first two terms in Vn converges in

distribution to −uTW +uTC(β)u/(2φ2). The penalty component consists of three

pieces depending on the sign of βj. If βj > 0, using the binomial theorem,

λn

((
βj +

uj√
n

)ν
− βνj

)
=

λn
(
√
n)ν

(
√
n)ν
[
βνj + ν

uj√
n
βν−1
j + o

(
1√
n

)
− βνj

]
=

λn
(
√
n)ν

[
1

n(1−ν)/2ν ujβ
ν−1
j + o

(
1

n(1−ν)/2

)]
→ λ0 · 0 = 0.

since 1/(n(1−ν)/2)→ 0 . Similarly, when βj < 0,

λn

((
−βj −

uj√
n

)ν
− (−βj)ν

)
−→ λ0 · 0 = 0.

If βj = 0,

λn

∣∣∣∣ uj√n
∣∣∣∣ν =

λn
(
√
n)ν

(
√
n)ν
∣∣∣∣ uj√n

∣∣∣∣ν =
λn√
n
|uj|ν −→ λ0|uj|ν .

Therefore, λn
∑p

j=1

(∣∣∣βj +
uj√
n

∣∣∣ν − |βj|ν) converges uniformly to

λ0

∑p
j=1 |uj|ν I(βj = 0) over compact and convex sets of u. Then,

Vn(·)→d V (·)

on the space of functions topologized by the uniform convergence on compact and

convex sets. Since Vn is not convex, applying the results of Theorem 2.7 on page
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198 from Kim and Pollard [20] , argmin(Vn)→d argmin(V ) if argmin(Vn) = Op(1).

Note that, for all u and n sufficiently large,

Vn(u) ≥ −
n∑
i=1

log
l (yi,β + u/

√
n)

l(yi,β)
− λn

p∑
j=1

∣∣∣∣ uj√n
∣∣∣∣ν

≥ g(u)− (λ0 + δ)

p∑
j=1

|uj|ν

= V (l)
n (u),

where the function g is a broken straight line function. The last inequality holds

because the loglikelihood function of an exponential family is convex and a convex

function can be bounded below by a broken straight line function. Since the first

component of V
(l)
n is a linear function of u, and the second component is just a

fraction of u, the first component of V
(l)
n grows faster than the second component.

Therefore, we have argmin(V
(l)
n ) = Op(1) so that argmin(Vn) = Op(1). Because

argmin(V ) is unique with probability 1, argmin(Vn)→d argmin(V ). 2
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Chapter 6

Simulation Studies and Data Analysis

In this Chapter we present simulation studies conducted to report the per-

formance of the Bayesian criteria including the empirical Bayes criterion (CML),

the fully Bayes criterion with flat prior (FBC Flat) and fully Bayes criteria with

conjugate priors (FBC Conj) developed in Chapter 4. We also include the popular

information criteria Cp, AIC and BIC for the purpose of comparison.

In addition to that, a real dataset on South Africa Heart Disease is analyzed

using the proposed Bayesian criteria and compared to the results using AIC and

BIC.

6.1 Simulation Studies

Simulation studies are carried out for linear models, as well as for Poisson and

logistic models. The Bayesian criteria behave differently according to the various

models.

In the linear cases, we look at a variety of settings for the coefficients (β). We

examine the same setups as Tibshirani [35] and Yuan and Lin [38] for the correlated
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cases to allow comparison with their results. In the case of independent predictors,

we investigate three models which represent

1. some coefficients significantly different from zero and others exactly equal to

zero;

2. some coefficients significantly different from zero, but one coefficient nearly

zero and the others exactly equal to zero;

3. some coefficients significantly different from zero while the other coefficients

are all nearly but not exactly zero.

Note that the last scenario was the case for which Leeb [23] pointed out the peculiar

conditional distribution of the coefficients estimates (β̂) based on the selected model.

Leeb showed that the sampling distribution of β̂ chosen by a consistent variable

selection procedure is not at all asymptotically normal and sometimes may not

even have a unimodal distribution. The results of these simulations are reported in

Section 6.2.

Our simulations represent prediction problems in which jointly distributed

observations (xi, yi), i = 1, . . . , n, are used to find an accurate predictor of a future

Y from a future x. The model is intended to predict Y accurately, rather than to

estimate each regression coefficient accurately.

All computations were performed in R. We used existing R packages to compute

the entire LASSO path. We developed our own code to evaluate the various Bayesian

criteria and to perform model selection, as described in Section 4.5.
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For the Poisson and logistic cases, we focus on orthogonal predictors. We

examine two models, including a model with some significant predictors and others

zero, and a model with one nearly zero predictor and some significant predictors

and others exactly zero. These results are reported in Sections 6.3 and 6.4.

6.1.1 Measures of Various Performance Criteria

To assess the performance of various variable selection criteria, we use multiple

ways for calibration. These include the number of times selecting the correct model

(# Correct), the number of times selecting a model containing the correct model

(# Contained), the average model size (Model Size), the model error for linear

models (Model Error), the prediction error for Poisson models (Pred. Error) and

the percentage of prediction accuracy for logistic models (Pred. Acc.).

For linear models, we define model error as follows:

Model Error = (β̂ − β)TV (β̂ − β),

where V = E(XTX). The model error combines possible errors in selecting the

correct prediction and sampling variation in β̂. An ‘oracle’ would know the correct

model. The oracle’s average model error is

Oracle Error = Etrue[Model Error]

and involves only sampling error, since the oracle always chooses the true model.

From Anderson [3], we have

(i) if rows of X (xi) are identical and independent Np(0,V ), then (XTX) =∑n
i=1 xix

T
i ∼ Wishart(V , n);
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(ii) E[(XTX)−1] = V /(n− p− 1).

Using the facts from Anderson [3] stated above, the oracle error is evaluated as

follows:

Etrue[Model Error] = Etrue[(β̂ − β)TV (β̂ − β)]

= Etrue[tr(V (β̂ − β)(β̂ − β)T )]

= tr[V Etrue{(β̂ − β)(β̂ − β)T}]

= tr[V Etrue{E((β̂ − β)(β̂ − β)T |X)}]

= tr[V Etrue(σ
2(XTX)−1)]

= σ2 tr[V V −1/(n− dftrue − 1)]

= σ2 dftrue/(n− dftrue − 1), (6.1)

where dftrue is the true model size. The oracle errors are computed in the simulations

for linear models.

The prediction error for Poisson models is defined to be

Pred. Error =
n∑
i=1

(yi − exp(xiβ̂))2.

The oracle prediction error (Oracle Pred. Error) is the expected prediction error

under the oracle, which cannot be evaluated analytically. Therefore, we compute

the Oracle Pred. Error by Monte Carlo methods with 2000 replications in our

simulations for Poisson models.

Finally, we use 0.5 as the cutoff point for logistic models. The data point yi

is classified to be a success if the estimated success probability is greater than or
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equal to 0.5; that is,

P (yi = 1|xi) =
exp(xiβ̂)

1 + exp (xiβ̂)
≥ 0.5.

This prediction is then compared with the actual observation and the percentage

of prediction accuracy is computed for each sample. The percentage of oracle pre-

diction accuracy (Oracle Pred. Acc.) is defined to be the percentage of expected

prediction accuracy under the oracle and this quantity cannot be evaluated analyt-

ically. In our simulation studies for logistic models, we compute the percentage of

Oracle Pred. Acc. by Monte Carlo methods with 2000 replications.

The measure of number of times selecting the models with the most significant

predictors (# Significant) is also used when the magnitude of some coefficients in

the model are significantly greater than the others. Model size is defined to be the

number of nonzero parameters in the model. Histograms of the model size by the

various variable selection methods are also presented for the models discussed in the

simulation studies.

6.2 Linear Models

We consider the following models where the columns of X = [xij] are indepen-

dent and the xij are drawn independently from the standard normal distribution.

A new X matrix is generated for each Monte Carlo replication.

Model I. The coefficient vector β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ = 3.

Model II. The coefficient vector β = (3, 1.5, 0, 0.05, 2, 0, 0, 0)T and σ = 3.

Model III. The coefficient vector β = (3, 1.5, 0.01, 0.01, 2, 0.01, 0.01, 0.01)T and σ =
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3.

Following the setups in Tibshirani [35] and Yuan and Lin [38], four more models are

considered:

Model IV. The coefficient vector β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ = 3. The corre-

lation between xij and xik is ρ|j−k| with ρ = 0.5.

Model V. The coefficient vector β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T ,

same covariance structure as in model IV, and σ = 3

Model VI. The coefficient vector β = (5, 0, 0, 0, 0, 0, 0, 0)T with the same covariance

structure as in model IV, and σ = 2

Model VII. The coefficient vector β = (2, . . . , 2, 0, . . . , 0)T where these are 2 blocks

of 20 repeated coefficients. The Xs are correlated in such a way that xij = zij +wi,

where the zij and wi are independent standard normal random variables, and use

σ = 3. Hence, ρ(xij, xik) = 1/2 for all j 6= k.

The simulation studies in this section are carried out in R using lars [8]. For

Models I to VI, simulated samples of 20 are generated in each of 200 Monte Carlo

replications. For Model VII, 200 Monte Carlo data sets are generated, each with

sample size 100.

The Cp and BIC criteria are compared with the Bayesian criteria. Various

priors are assigned to the fully Bayes criteria including a flat prior and informative

priors for τ and q both with small means, to explore the sensitivity of the criterion

to the various priors. Under the informative prior (denoted FBC Conj), a gamma

prior is given to τ with hyperparameters a = 0.01, b = 20 and E(τ) = 0.2, and q

has a beta prior with α = 1, β = 10 and E(q) = 1/11. For the flat prior (denoted
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FBC Flat and this notation is used throughout the entire Chapter), both τ and q

have an uniform distribution. The restricted region for linear model is defined in

(4.41) and r = 1. Tables 6.1 and 6.3 summarize the simulation results. Figures 6.1

to 6.7 show the histograms of the model size for the various models.
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Figure 6.1: Histograms of model size for Model I from linear models based on 200

Monte Carlo replications.

From Table 6.1, the fully Bayes criterion with conjugate prior is more likely

than the other criteria to select the correct model. This criterion and BIC produce

smaller model errors than the other criteria. Since there are three nonzero predictors,

the correct model size should be 3. The average model size for the fully Bayes criteria

FBC Flat and FBC Conj are 3.13 and 3.17, respectively. CML behaves similarly

to the fully Bayes criteria with slightly smaller # Correct and model size 3.32. Cp

tends to overfit. The histograms (Figure 6.1) shows the mode of the model size is 3
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Table 6.1: Simulation Results for Linear Models

Cp BIC CML FBC Flat FBC Conj

Model I, True Model Size = 3, Oracle Model Error = 1.69

# Correct 18 34 44 48 50

# Contained 166 143 123 113 116

Model Error* 4.90 (.32) 4.37 (.25) 4.47 (.22) 4.51 (.21) 4.35 (.20)

Model Size* 4.96 (.12) 3.91 (.10) 3.32 (.09) 3.13 (.09) 3.17 (.08)

Model II, True Model Size = 4, Oracle Model Error = 2.25

# Correct 10 8 10 10 10

# Contained 81 36 31 16 14

# Significant 28 53 60 68 69

Model Error* 4.29 (.24) 3.71 (.19) 3.75 (.20) 3.68 (.20) 3.59 (.18)

Model Size* 4.94 (.12) 3.96 (.10) 3.59 (.10) 3.24 (.08) 3.23 (.07)

Model III, True Model Size = 8, Oracle Model Error = 4.50

# Correct 10 2 1 0 0

# Contained 10 2 1 0 0

# Significant 22 41 52 70 71

Model Error* 4.42 (.27) 3.72 (.20) 3.63 (.16) 3.48 (.14) 3.49 (.15)

Model Size* 4.78 (.11) 3.90 (.09) 3.56 (.08) 3.32 (.06) 3.29 (.06)

* Monte Carlo average (Monte Carlo standard error)
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Table 6.2: Simulation Results for Linear Models (continued)

Cp BIC CML FBC Flat FBC Conj

Model IV, True Model Size = 3, Oracle Model Error = 1.69

# Correct 17 31 37 45 46

# Contained 150 137 129 119 118

Model Error* 4.34 (.29) 3.64 (.19) 3.62 (.17) 3.79 (.17) 3.82 (.18)

Model Size* 4.85 (.11) 4.02 (.09) 3.68 (.07) 3.46 (.08) 3.44 (.07)

Model V, True Model Size = 8, Oracle Model Error = 4.50

# Correct 8 3 0 0 0

# Contained 8 3 0 0 0

Model Error* 4.38 (.24) 4.15 (.20) 3.97 (.15) 4.54 (.17) 4.55 (.17)

Model Size* 5.74 (.09) 5.35 (.09) 5.04 (.09) 4.59 (.09) 4.57 (.09)

* Monte Carlo average (Monte Carlo standard error)
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Table 6.3: Simulation Results for Linear Models (continued)

Cp BIC CML FBC Flat FBC Conj

Model VI, True Model Size = 1, Oracle Model Error = 0.25

# Correct 54 90 0 116 126

# Contained 190 200 200 200 200

Model Error* 1.31 (.11) 0.93 (.07) 0.80 (.05) 0.84 (.06) 0.84 (.06)

Model Size* 3.16 (.14) 2.10 (.09) 2.47 (.06) 1.62 (.06) 1.53 (.06)

Model VII, True Model Size = 20, Oracle Model Error = 2.28

# Correct 0 0 0 0 0

# Contained 200 199 199 199 199

Model Error* 7.67 (.20) 7.22 (.17) 7.58 (.18) 7.45 (.18) 7.45 (.18)

Model Size* 29.08 (.21) 27.17 (.14) 26.91 (.13) 26.87 (.13) 26.87 (.13)

* Monte Carlo average (Monte Carlo standard error)
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Figure 6.2: Histograms of model size for Model II from linear models based on 200

Monte Carlo replications.
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Figure 6.3: Histograms of model size for Model III from linear models based on 200

Monte Carlo replications.
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Figure 6.4: Histograms of model size for Model IV from linear models based on 200

Monte Carlo replications.
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Figure 6.5: Histograms of model size for Model V from linear models based on 200

Monte Carlo replications.
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Figure 6.6: Histograms of model size for Model VI from linear models based on 200

Monte Carlo replications.
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Figure 6.7: Histograms of model size for Model VII from linear models based on 200

Monte Carlo replications.
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for CML, FBC Flat and FBC Conj.

Model II is similar to Model I with a nearly zero predictor added to the model.

Since the original three predictors (X1, X2, X5) are much more significant than X4

in magnitude, the measure # Significant is used to see if any of these criteria can

detect the significant predictors. Table 6.1 shows that none of the criteria performs

well in terms of number of times selecting the correct model. However, all three

Bayesian criteria are able to pick up the significant predictors more often than Cp

and BIC. The average model size and the histograms (Figure 6.2) show that the

Bayesian criteria tend to pick models with three significant predictors while Cp has

a tendency to overfit.

Model III is the full model with some of the coefficients very close to zero,

while keeping the coefficients of (X1, X2, X5) as in Models I and II. As expected

from what Leeb [23] mentioned in his paper, all variable selection criteria perform

poorly, even a consistent procedure like BIC. However, the Bayesian criteria detect

the significant predictors more frequent by than Cp and BIC. The fully Bayes criteria

include the significant predictors 35% of the time and they also outperform other

criteria in terms of model error. Figure 6.3 shows that the fully Bayes criteria and

CML are likely to pick models with size 3.

Model IV is similar to Model I but with correlated Xs. The Bayesian criteria

outperform the other criteria in terms of number of times picking the correct model

and model size. CML performs fairly compared to other criteria, but it does the

best for model error. The histograms (Figure 6.4) show that there is a peak for the

Bayesian criteria at 3 while the peak for Cp and BIC occurs at 4.
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Model V is a full model with small coefficients. All the criteria perform poorly

for the measures used as they all try to do some variable selections. The Bayesian

criteria tend to pick smaller models than Cp and BIC. CML performs slightly better

than the others in terms of model error.

Model VI is the case with a single significant predictor. The fully Bayes criteria

performs substantially better than the other criteria in terms of number of times

selecting the correct model and the model size. On the other hand, CML always

chooses the correct predictor, but it also adds in an extra unnecessary predictor so

the model size is usually 2. Figure 6.6 describes the distibution of the model size

for this model.

Finally, Model VII contains 20 nonzero parameters and none of the criteria

behaves satisfactorily. While BIC does slightly better than the other criteria in terms

of model error, CML, FBC Flat and FBC Conj are superior in terms of model size.

Figure 6.7 shows the distribution of the nonzero parameters are concentrated on the

upper 20s for all the criteria.

The results from Models IV to V are similar to the results obtained by Tib-

shirani [35] and Yuan and Lin [38]. The Bayesian criteria perform variable selection

to some extent. For the simulated models discussed above, the fully Bayes crite-

ria usually outperform the other criteria in terms of number of times selecting the

correct models. In the linear case, we can see that the behavior of the fully Bayes

criteria is not very sensitive to the priors. The results from FBC Flat are very sim-

ilar to the results from FBC Conj. CML, FBC Flat and FBC Conj tend to select

the significant predictors more often than Cp and BIC. Cp has a tendency of overfit.
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6.3 Poisson Models

We consider the following models where the columns of X = [xij] are orthogo-

nal and the xij are drawn independently from the uniform distribution ranging from

-1/2 to 1/2. A new X matrix is generated for each Monte Carlo replication. The

intercept β0 = 0.5.

Model I. The coefficient vector β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ0 = 10.

Model II. The coefficient vector β = (3, 1.5, 0, 0.05, 2, 0, 0, 0)T and σ0 = 10.

Two hundred datasets were generated, each with sample size 20. The Bayesian

criteria are compared with the AIC and BIC criteria. The conjugate prior (FBC Conj)

for τ is a gamma distribution with a = 2, b = 20, and q has a beta prior with α = 2

and β = 20. The restricted region is defined in (4.9) and r = 1. The simulation

studies in this Section are carried out in R using glmpath [29]. The simulation results

are presented in Table 6.4.

When the significant predictor coefficients are largely different from zero as

in Model I, FBC Conj selects the correct model twice as often as than FBC Flat

and BIC, and almost fours times more often than AIC. FBC Conj also outperforms

the other criteria in terms of average model size. Histograms of the model size

(Figure 6.8) also confirm that the model size of FBC Conj is concentrated near 4

(three nonzero parameters and the intercept). However, it does not do very well in

terms of prediction error. FBC Flat behaves similarly to BIC. CML does not do

any variable selection at all as it is inclined to select the nearly full model. Both

AIC and BIC overfit.
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Table 6.4: Simulation Results for Poisson Models

AIC BIC CML FBC Flat FBC Conj

Model I, True Model Size = 4, Oracle Pred. Error = 39.97

# Correct 25 41 0 46 94

# Contained 195 193 180 193 177

Pred. Error* 33.93 (1.27) 41.43 (1.48) 73.89 (11.11) 38.65 (1.33) 60.00 (2.17)

Model Size* 6.20 (.10) 5.58 (.09) 7.55 (.12) 5.65 (.10) 4.53 (.07)

Model II, True Model Size = 5, Oracle Pred. Error = 34.49

# Correct 6 9 0 5 15

# Contained 104 73 168 75 39

# Significant 15 34 0 39 71

Pred. Error* 34.03 (1.37) 41.47 (1.59) 35.80 (4.25) 38.00 (1.42) 52.42 (1.89)

Model Size* 6.50 (.10) 5.76 (.09) 8.02 (.07) 5.85 (.10) 4.91 (.07)

* Monte Carlo average (Monte Carlo standard error)
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Figure 6.8: Histograms of model size for Poisson Model I based on 200 Monte Carlo

replications.
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Figure 6.9: Histograms of model size for Poisson Model II based on 200 Monte Carlo

replications.
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In Model II, there is a predictor much smaller in magnitude than all the other

predictors. All the criteria behave poorly in terms of number of times picking the

correct model, with FBC Conj the best. In addition to that, # Significant shows

that the fully Bayes criteria seem to pick out the significant predictors more often

than AIC, BIC and CML. The average model size for FBC Conj is 4.91, which

is closer to the true model size 5 with four nonzero parameters and an intercept

compared to other criteria. The results from FBC Flat are comparable to the ones

from BIC. From the histograms (Figure 6.9), CML again likes to select a bigger

model.

The CML criterion does not seem to perform any variable selection in the

Poisson models. The performance of FBC Flat seems to be comparable to the

performance of BIC for the simulated models. FBC Conj performs better than

other criteria in terms of number of times selecting the correct model and the model

size, and it tends to recognize the significant predictors. From the simulation results,

the fully Bayes criteria behave differently depending on their priors.

6.4 Logistic Models

We consider the following models where the columns of X = [xij] are orthog-

onal and the xij are drawn independently from the standard normal distribution. A

newX matrix is generated for each Monte Carlo replication. The intercept β0 = 0.5.

Model I. The coefficients β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and σ0 = 10.

Model II. The coefficients β = (3, 1.5, 0, 0.05, 2, 0, 0, 0)T and σ0 = 10.
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Two hundred datasets were generated, each with sample size 100. The Bayesian

criteria were compared to the AIC and BIC criteria. The conjugate prior (FBC conj)

for τ is a gamma distribution with a = 1.2, b = 2, and q has a beta prior with α = 1.2

and β = 20. The restricted region is defined in (4.9) and r = 1. The simulation

study in this section is carried out in R using glmnet [13]. Table 6.5 summarizes the

simulation results.

Table 6.5: Simulation Results for Logistic Models

AIC BIC CML FBC Flat FBC Conj

Model I, True Model Size = 4, Oracle Pred. Acc. (%) = 87.71

# Correct 25 118 179 49 100

# Contained 200 200 199 200 200

Pred. Acc.* (%) 88.76 (.24) 88.04 (.25) 87.41 (.23) 88.46 (.23) 88.07 (.23)

Model Size* 6.20 (.10) 4.68 (.07) 4.10 (.02) 5.41 (.08) 4.77 (.07)

Model II, True Model Size = 5, Oracle Pred. Acc. (%) = 87.97

# Correct 8 8 2 8 7

# Contained 200 200 195 200 200

# Significant 46 134 188 72 129

Pred. Acc.* (%) 88.23 (.24) 87.23 (.24) 87.04 (.24) 87.93 (.23) 87.46 (.23)

Model Size * 5.77 (.10) 4.43 (.05) 4.01 (.02) 5.05 (.07) 4.48 (.05)

* Monte Carlo average (Monte Carlo standard error)

From Table 6.5, the prediction accuracy for all criteria sits around 88%, but
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Figure 6.10: Histograms of model size for Logistic Model I based on 200 Monte

Carlo replications.
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Figure 6.11: Histograms of model size for Logistic Model II based on 200 Monte

Carlo replications.
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CML performs exceptionally well for Model I. It selects the correct model 90% of

times and the model size is very close to the true model size 4 including three

nonzero coefficients and the intercept. FBC Flat tends to choose a bigger model

and it does not do as well as FBC Conj. FBC Conj behaves comparably to BIC.

The histograms in Figure 6.10 clearly shows that the model size of CML highly

concentrates around 4.

For Model II, none of the criteria is able to detect the small coefficient of X4

so none of them do well in terms of picking the correct model. However, CML is

very efficient in selecting the significant predictors, which is shown in the measure of

% Significant and in the histograms (Figure 6.11). Similar to Model I, the behavior

of FBC Conj is comparable to that of BIC as shown in Table 6.5 and in Figure 6.11.

FBC Flat tends to overfit but it is able to detect the significant predictors more

often than AIC. The prediction accuracy for all criteria falls around 87%.

In the logistic case, CML performs remarkably well when the predictors are

very significant as in Models I and II. FBC Conj and BIC behave similarly for the

simulated models. FBC Flat tend to select larger models but not as big as AIC.

From the simulation results, it is obvious that the behavior of fully Bayes criterion

is sensitive to their priors.

6.5 Summary of Simulation Results

The Bayesian criteria behavior differs from linear, Poisson and logistic models.

While CML performs exceptionally well in logistic cases and is terrible in Poisson
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cases, CML performs variable selection to some extent in linear cases. The fully

Bayes criteria performance are sensitive to their chosen priors for Poisson and lo-

gistic models, but it does not seem to be true in the linear cases. The behavior of

FBC Conj and BIC is similar in the logistic cases, while the behavior of FBC Flat

is more comparable to BIC in the Poisson cases.

6.6 South Africa Heart Disease Data Analysis

This heart disease dataset, used previously in Hastie, Tibshirani and Friedman

[16] and Park and Hastie [29], consists of nine feature attributes from the medical

record of 432 males in a heart disease high-risk region of the Western Cape, South

Africa. The responses are binary with the value one indicating the presence of coro-

nary heart disease. The nine feature attributes are systolic blood pressure (sbp),

tobacco (cumulative tobacco usage in kilograms), low density lipoprotein cholesterol

(ldl), adiposity, family history of heart disease (famhist) with the value one indicat-

ing the presence of family history of heart disease, type-A behavior (typea), obesity,

current alcohol consumption (alcohol) and age at onset (age).

Logistic regression is used for the heart disease data since the response variable

is binary. The three Bayesian criteria (CML, FBC Flat and FBC Conj) and two

information criteria (AIC and BIC) are applied to select the explanatory variables

(features) related to heart disease. FBC Conj employs the same priors for τ and q

as in the logistic models in Section 6.4 and the restricted region is defined in (4.9)

with r = 10. We use σ0 = 15 for this dataset. The analysis is performed in R using
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glmnet [13] and the results are shown on the second column of Tables 6.6 to 6.10.

CML is clearly the most aggressive criterion as it tends to select the least number

of predictors including tobacco, famhist and age. These features are shared by all

the other criteria. BIC selects two extra feature variables which are ldl and typea.

The model chosen by FBC Conj differs from BIC only by the feature sbp. Finally,

both FBC Flat and AIC favor the six-feature model including obesity and all the

predictors that FBC Conj selects.

Using glmnet by Friedman, Hastie and Tibshirani [13], the entire solution path

is plotted in Figure 6.12 except famhist for graphical display purpose. However, it is

always included in the model as indicated by all the above criteria. The horizontal

axis is the lambda scaled by the maximum lambda from all the steps of the solution

path provided by glmnet and the vertical axis represents the values of the estimated

coefficients. The vertical line are the various models chosen by the three Bayesian

criteria, as well as AIC and BIC.

Bootstrap analysis (Efron and Tibshirani [9]) is used to validate the coeffi-

cient estimates selected by the above variable selection criteria. We generate 1000

bootstrap samples. For each sample, we fit a logistic regression path by glmnet and

record the coefficient estimates chosen by the above mentioned variable selection

criteria. The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b))

are then computed from the 1000 bootstrap samples for each selection criterion.

Tables 6.6 to 6.10 summarize the results for the variable selection criteria AIC, BIC,

CML, FBC Flat and FBC Conj respectively. The second column represents the co-

efficient estimate(β̂b) for each feature obtained by the particular selection criterion.
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various models chosen by the three Bayesian criteria, as well as AIC and BIC.
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Mean(β̂b) and SE(β̂b) are given on the third and fourth column and the last column

is the number of times that the coefficient is nonzero (# Nonzero) out of the 1000

bootstrap samples. For the coefficients of the predictors estimated at zero, fewer

than 40% of the bootstrap estimates are nonzeros. The only exception is ldl by

CML with 49% of the bootstrap samples nonzero. However, the t statistics shows

this predictor is not significant.

Table 6.6: Bootstrap results for South Africa Heart Disease data using AIC. The

coefficient estimates (β̂b) are obtained by AIC.

Feature β̂ Mean(β̂b) SE(β̂b) # Nonzero

sbp 0.0053 0.0050 0.0051 661

tobacco 0.0744 0.0734 0.0284 991

ldl 0.1619 0.1530 0.0622 987

adiposity 0 0.0099 0.0224 316

famhist 0.8573 0.8361 0.2423 999

typea 0.0335 0.0324 0.0141 969

obesity -0.0270 -0.0359 0.0465 530

alcohol 0 0.0002 0.0037 411

age 0.0460 0.0434 0.0106 1000

The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b)) are based on 1000 boot-

strap samples. The last column are the number of times that the coefficient is nonzero (# Nonzero)

out of the 1000 samples.

Figures 6.13 to 6.17 show the bootstrap distribution of the coefficient estimates
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Table 6.7: Bootstrap results for South Africa Heart Disease data using BIC. The

coefficient estimates (β̂b) are obtained by BIC.

Feature β̂ Mean(β̂b) SE(β̂b) # Nonzero

sbp 0 0.0023 0.0041 284

tobacco 0.0526 0.0559 0.0285 922

ldl 0.1005 0.1079 0.0639 868

adiposity 0 0.0015 0.0066 96

famhist 0.5986 0.6325 0.2813 940

typea 0.0130 0.0176 0.0153 663

obesity 0 -0.0047 0.0176 85

alcohol 0 0.0002 0.0017 63

age 0.0360 0.0369 0.0099 999

The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b)) are based on 1000 boot-

strap samples. The last column are the number of times that the coefficient is nonzero (# Nonzero)

out of the 1000 samples.
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Table 6.8: Bootstrap results for South Africa Heart Disease data using CML. The

coefficient estimates (β̂b) are obtained by CML.

Feature β̂ Mean(β̂b) SE(β̂b) # Nonzero

sbp 0 0 0.0005 9

tobacco 0.0082 0.0223 0.0246 559

ldl 0 0.0337 0.0445 488

adiposity 0 0.0002 0.0020 14

famhist 0.0991 0.2381 0.2108 842

typea 0 0.0014 0.0048 100

obesity 0 -0.0001 0.0021 3

alcohol 0 0 0 0

age 0.0220 0.0239 0.0081 993

The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b)) are based on 1000 boot-

strap samples. The last column are the number of times that the coefficient is nonzero (# Nonzero)

out of the 1000 samples.
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Table 6.9: Bootstrap results for South Africa Heart Disease data using FBC Flat.

The coefficient estimates (β̂b) are obtained by FBC Flat.

Feature β̂ Mean(β̂b) SE(β̂b) # Nonzero

sbp 0.0053 0.0045 0.0049 619

tobacco 0.0744 0.0712 0.0277 990

ldl 0.1619 0.1468 0.0604 985

adiposity 0 0.0071 0.0183 254

famhist 0.8573 0.8092 0.2410 999

typea 0.0335 0.0302 0.0138 961

obesity -0.0270 -0.0278 0.0411 448

alcohol 0 0.0003 0.0033 341

age 0.0460 0.0429 0.0104 1000

The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b)) are based on 1000 boot-

strap samples. The last column are the number of times that the coefficient is nonzero (# Nonzero)

out of the 1000 samples.
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Table 6.10: Bootstrap results for South Africa Heart Disease data using FBC Conj.

The coefficient estimates (β̂b) are obtained by FBC Conj.

Feature β̂ Mean(β̂b) SE(β̂b) # Nonzero

sbp 0.0024 0.0043 0.0048 590

tobacco 0.0645 0.0698 0.0273 989

ldl 0.1261 0.1431 0.0597 982

adiposity 0 0.0059 0.0167 222

famhist 0.7359 0.7935 0.2396 999

typea 0.0235 0.0290 0.0140 947

obesity 0 -0.0239 0.0379 403

alcohol 0 0.0003 0.0031 305

age 0.0408 0.0425 0.0103 1000

The estimated bootstrap means (Mean(β̂b)) and standard errors (SE(β̂b)) are based on 1000 boot-

strap samples. The last column are the number of times that the coefficient is nonzero (# Nonzero)

out of the 1000 samples.
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chosen by AIC, BIC, CML, FBC Flat and FBC Conj respectively assuming that the

original data are randomly re-sampled with replacement from the population. The

red vertical bars represent β̂ selected by the particular selection criterion from the

whole data and the blue thick bars are the frequencies of zero coefficients. As

indicated in the histograms for each selection criterion, the red bar situates near

the center of the bootstrap distribution for predictors whose coefficient estimates

are nonzero. For the coefficients of the predictors estimated at zero, the histograms

have a peak exactly at zero.
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Figure 6.13: The bootstrap distribution of the coefficient estimates chosen by AIC.

The red vertical bars represent β̂ selected by AIC from the whole data and the blue

thick bars are the frequencies of zero coefficients.

The bootstrap results confirm the coefficient estimates selected by various
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Figure 6.14: The bootstrap distribution of the coefficient estimates chosen by BIC.

The red vertical bars represent β̂ selected by BIC from the whole data and the blue

thick bars are the frequencies of zero coefficients.
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Figure 6.15: The bootstrap distribution of the coefficient estimates chosen by CML.

The red vertical bars represent β̂ selected by CML from the whole data and the blue

thick bars are the frequencies of zero coefficients.
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Figure 6.16: The bootstrap distribution of the coefficient estimates chosen by

FBC Flat. The red vertical bars represent β̂ selected by FBC Flat from the whole

data and the blue thick bars are the frequencies of zero coefficients.
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Figure 6.17: The bootstrap distribution of the coefficient estimates chosen by

FBC Conj. The red vertical bars represent β̂ selected by FBC Conj from the whole

data and the blue thick bars are the frequencies of zero coefficients.
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variable selection criteria. The FBC Flat and AIC tend to pick a bigger model

compared to other criterion. Even though the behavior of FBC Conj is similar to

the BIC’s in the simulation studies for the models with independent columns of Xs

(Section 6.4), it is not the case for this correlated heart disease data. The model

selected by FBC Conj has one additional predictor, sbp, as opposed to the one

chosen by BIC.

In an unpublished preliminary version of Park and Hastie [29], the authors also

performed a bootstrap analysis on the same heart disease dataset using glmpath.

They employed BIC as the selection criterion to choose the model. Their BIC

results obtained by glmpath are different from my BIC results using glmnet. The

glmpath and glmnet algorithms choose the value of the regularization parameter λ

differently and consequently select a different model. However, the model picked by

my FBC Conj is the same as that chosen by Park and Hastie’s BIC criterion. Their

estimated coefficients and my estimated coefficients are very close, allowing the

numerical discrepancy between glmpath and glmnet. Furthermore, the histograms

obtained by my FBC Conj and Park and Hastie’s BIC possess the same shape and

resemble each other.
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Chapter 7

Summary and Future Research

7.1 Summary

In this dissertation, we have proposed a hierarchical Bayesian formulation in

GLMs and developed two Bayesian variable selection procedures related to LASSO.

By specifying a double exponential prior for the covariate coefficients and a special

prior for each candidate model, we have shown that the posterior distribution of the

candidate model given the data is closely related to LASSO which has the property

of shrinking some coefficient estimates to zero, and hence allows one to perform

variable selection.

Since the selected model will be the one with maximum posterior probability,

using a logistic regression as an illustration for the GLM, we evaluated the posterior

probability both for the regular and nonregular classes. We have also shown that the

posterior probability for the nonregular class is dominated by its regular class coun-

terpart. Therefore, the search for the model with maximum posterior probability

can be strictly confined in the regular class.
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We derived an empirical Bayes (CML) and a fully Bayes criterion under the

Bayesian formulation for variable selection in GLMs. The fully Bayes criterion,

FBC Conj, employs a conjugate gamma prior for τ with hyperparameters a and b

and a conjugate beta prior for q with hyperparameters α and β. The fully Bayes crite-

rion flat prior, FBC Flat, is a special case of FBC Conj with a = 1, b = +∞, α = 1

and β = 1. We have devised the CML, FBC Flat and FBC Conj criteria for logistic

and Poisson models, as well as the fully Bayes criterion for the linear model.

The asymptotic behavior of the Bridge estimators in GLMs has been explored.

We have proved that under regularity conditions on the design, if λn/n goes to zero,

the estimator is consistent. Furthermore, we are able to characterize the estimation

error. We also derive the limiting distribution of
√
n times the estimation error for

all Bridge estimators in GLMs.

The performance of the Bayesian variable selection criteria has been studied

by simulations and a real data analysis. The Bayesian variable selection criteria

are also compared to the popular information criteria, Cp, AIC and BIC and they

behave very differently in linear, Poisson and logistic models. For logistic models,

the performance of CML is very impressive but it almost does not do any variable

selection in Poisson cases. The CML performance in linear case is somewhere in

between. In the presence of a predictor coefficient nearly zero and some significant

predictors, CML picks the significant predictors most of the time in the logistic

case and fairly often in linear case, while FBC Conj tends to select the significant

predictors equally well in all linear, Poisson and logistic models. The behavior of

fully Bayes criteria depends strongly on their chosen priors for Poisson and logistic
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cases. However, such a distinction is not obvious in linear case. From the simulation

studies, the Bayesian criteria are generally more likely than Cp and AIC to choose

correct predictors. The real data analysis also showed that CML tends to pick a

smaller model in logistic case and this agrees with our simulation results.

7.2 Future Research

There are a few issues to be investigated as extensions of my work:

7.2.1 Priors Specification

The double-exponential prior for the coefficients is chosen because the result-

ing posterior distribution of candidate model given data is closely related to LASSO.

However, the special priors for candidate models are selected mainly due to compu-

tational and analytical convenience. The simulation and real data analysis results

show that the fully Bayes criteria are sensitive to their prior. This prompts us to

think if there are other ways to specify the priors and hyperpriors so that the be-

havior of these Bayesian criteria will have better model selection performance, such

that they will penalize heavily for bigger models. Moreover, we would like to explore

the possibility of finding priors that are flexible enough to incorporate the expert

information such as the preference that certain variables must be included in the

model, as well as the adjustment of the priors if some variables are highly correlated

to each other.
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7.2.2 Bayesian Model Averaging

In practice, model selection is usually based on some criteria and hence a

single representable model that captures the essential information of the data is

chosen. One criticism is that the selected model may be unstable as it does not

properly account for model uncertainty. The Bayesian criteria from my work take

model uncertainty into account as there is a prior distribution for the candidate

models. Another approach to handle the model uncertainty is Bayesian Model

Averaging where each candidate model is associated with a prior probability and

prior distributions are chosen for the parameters within each model. Using the

Bayesian mechanism, the posterior probabilities of the models can be computed and

the result is a weighted combination of some models. Refer to Raftery, Madigan and

Hoeting [31] and Hoeting, Madigan and Raftery [18] for details in Baysian model

averaging. We would like to investigate application of Bayesian model averaging as

extension of this work to increase model stability and prediction accuracy.

7.2.3 Model Selections in GLMs with Noncanonical Link

For the Bayesian variable selection criteria in GLMs proposed in this disserta-

tion, only canonical link is considered. A natural extension is to explore the use of

noncanonical link in the GLMs. Noncanonical link is common in practice but it also

requires more technicalities in computing the posterior distribution. In conjunction

to that, will the connection of posterior distribution to LASSO preserved to allow

model selection? These are the issues waiting to be addressed.

108



BIBLIOGRAPHY

[1] Akaike, H. (1973). Information theory and an extension of the maximum like-
lihood principle, Proceedings of International Symposium on Information The-
ory, Ed. B. N. Petrov and F. Csaki, 267-281, Budapest: Akademia Kiado.

[2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting
processes: a large sample study, Annals of Statistics, 10, 1100-1120.

[3] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis,
second edition, New York: Wiley.

[4] Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian Methods for
Model Selection: Introduction and Comparison. Lecture Notes-Monograph Se-
ries, Model Selection, 38, 135-207.

[5] Berger, J. O. (2006). The Case for Objective Bayesian Analysis. Bayesian Anal-
ysis, 1, 385-402.

[6] Clyde, M. A. (1999). Bayesian model averaging and model search strategies.
In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.),
Bayesian Statistics, 6 (pp. 157-185). Oxford: University Press.

[7] Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). On bayesian model and
variable selection using mcmc. Statistics and Computing, 12, 27-36.

[8] Efron, B., Johnston, I., Hastie, T. and Tibshirani, R. (2004). Least angle re-
gression, Annals of Statistics, 32, 407-499.

[9] Efron, B., and Tibshirani, R. (1993). An introduction to the Bootstrap, Boca
Raton: Chapman and Hall.

[10] Fan, J. and Li, R. (2001). Variable selection via noncave penalized likelihood
and its oracle properties, Journal of the American Statistical Association, 96,
1348-1360.

109



[11] Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple
regression, Annals of Statistics, 22, 1947-1975.

[12] Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics
regression tools (with discussion), Technometrics, 35, 109-148.

[13] Friedman, J., Hastie T. and Tibshirani, R. (2008) Regularized Paths
for Generalized Linear Models via Coordinate Descent Manuscript, De-
partment of Statistics, Stanford University. Available at http://www-
stat.stanford.edu/ hastie/Papers/glmnet.pdf.

[14] George, E. I. and Foster, D. P. (2000). Calibration and empirical Bayes variable
selection, Biometrika, 87, 731-747.

[15] Geyer, C. J. (1996). On the asymptotics of convex stochastic optimization.
Unpublished manuscript.

[16] Hastie, T., Tibshirani R. and Friedman J. (2002). The Elements of Statistical
Learning; Data Mining, Inference, and Prediction, New York: Springer-Verlag.

[17] Hansen, M. and Yu, B. (2001). Model selection and the principle of minimum
description length, Journal of the American Statistical Association, 96, 746-
774.

[18] Hoeting, J., Madigan, D., and Raftery, A. E. (1999).
Bayesian model averaging: A tutorial (with discussion), Sta-
tistical Science, 14, 382-417. Corrected version available at
http://www.stat.washington.edu/www/research/online/hoeting1999.pdf.

[19] Kedem, B. and Fokianos, K. (2002). Regression Models for Time Series Anal-
ysis, New York: Wiley.

[20] Kim, J. and Pollard, D (1990). Cube root asymptotics, Annals of Statistics,
18, 191-219.

[21] Knight, K. and Fu, W (2000). Asymptotics for LASSO-type estimators Annals
of Statistics, 28, 1356-1378.

[22] Lange, K. (1999). Numerical Analysis for Statisticians, New York: Springer-
Verlag.

[23] Leeb, H. and Pötscher (2006). Can one estimate the conditional distribution of
post-model-selection estimators? Annals of Statistics, 34, 2554-2591.

110



[24] Leeb, H. and Pötscher (2005). Model selection and inference: facts and fiction
Econometric Theory, 21, 21-59.

[25] Lokhorst, J. (1999). The LASSO and Generalised Linear
Models. Honors Project, Department of Statistics, Univer-
sity of Adelaide. Available as file Doc/justin.lokhorst.ps.gz from
http://www.maths.uwa.edu.au/ berwin/software/lasso.html.

[26] Mallows, C. L. (1973). Some comments on Cp, Technometrics, 15, 661-675.

[27] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, London:
Chapman and Hall.

[28] Osborne, M.R., Presnell, B. and Turlach, B.A. (2000). A new approach to
variable selection in least squares problems, IMA Journal of Numerical Analysis
20, 389-403.

[29] Park, M. Y. and Hastie, T. (2007). L1 Regularization path algorithm for gen-
eralized linear model, Journal of the Royal Statistical Society: Series B, 69,
659-677.

[30] Raftery, A. E. (1996). Approximate bayes factors and accounting for model
uncertainty in generalized linear models, Biometrika, 83, 251-266.

[31] Raftery, A. E., Madigan, D. M., and Hoeting, J. (1997). Model selection and
accounting for model uncertainty in linear regression models, Journal of the
American Statistical Association, 92, 179-191.

[32] Raftery, A. E. and Richardson, S. (1993). Model selection for generalized linear
models via glib, with application to epidemiology. In D. A. Berry and D. K.
Stangl (Eds.), Bayesian Biostatistics. New York: Marcel Dekker.

[33] Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics,
6, 461-464.

[34] Shao, J. (1997). An asymptotic theory for linear model selection (with Discus-
sion), Statistica Sinica, 7, 221-242.

[35] Tibshirani, R. J. (1996). Regression shrinkage and selection via the LASSO,
Journal of the Royal Statistical Society: Series B, 58, 267-288.

[36] Wang, X. and George, E. I. (2007). Adaptive Bayesian criteria in variable se-
lection for generalized linear models, Statistica Sinica, 17, 667-690.

111



[37] Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict
between model identification and regression estimation, Biometrika, 92, 937-
950.

[38] Yuan, M. and Lin, Y. (2005). Efficient empirical Bayes variable selection and
estimation in linear models, Journal of the American Statistical Association,
100, 1215-1225.

112


