ABSTRACT

Title of Dissertation: Networks for Fast and Efficient Unicast
and Multicast Communications

C'hing-Yi Lee, Doctor of Philosophy, 1992

Dissertation directed by: A. Yavuz Orug, Associate Professor
Department of llectrical Fngineering

This dissertation presents new results on networks for high-speed unicast and
multicast communications which play key roles in communication networks and
parallel computer systems. Specifically, (1) we present fast parallel algorithms
for routing any one-to-one assignment over Benes networks, (2) we propose new
multicasting networks that can efficient ly realize any one-to-many assigniments,
and (3) we give an explicit construction of lincar-size expanders with very large
expansion cocllicients.

Our parallel routing algorithms for Benes networks are realized on two different
topologies. Using these algorithms, we show that any unicast assignment that
involves O(k) pairs of inputs and outputs can be routed through an n-imput
Benes network in O(log® k4-1g 1) time without pipelining and O(lg &) time with

pipelining il the topology is complete, and in O(lg™ k + 1% kg 1) time withont

GAET ARAEAWE =0 LSBT

pipelining and O(lg” k+1g kg n) time with pipelining il the topology is extend
ed perfeet shuffle. These improve the best-known routing time complexities ol

parallel algorithms ol Lev et al, and Nassimi and Sahni by a factor of O(lgn).

Our multicasting network uses a very simple self-routing scheme which requires
no separate computer model for routing. Including the routing cost, it can be
constructed with O(nlg?n) bit-level constant fanin logic gates, O(lg®n) bit-
level depth, and can realize any multicast assignment in O(lg” n) bit-level time.
These complexities match or are better than those of multicasting networks
with the same cost that were reported in the literature. In addition to its
attractive routing scheme, our multicasting network is input-initiated and can
pipeline multicast assignments through itself. With pipelining, the average
routing time for O(lg? n) multicast assignments can be reduced to O(lg n) which

is the best among those of the multicasting networks previously reported in the

literature.

Our linear-size expanders are explicitly constructed by following a traditional
design and analysis technique. We construct a family of lincar-size with density
33 and expansion coeflicient 0.868. This expansion coellicient is the largest
among the linear-size expanders that were similarly constructed. Using these

expanders, we also report a family of explicitly constructed superconcentrators

with density 208.

O S IS RS TR A RO S

Networks for Fast and Efficient Unicast

and Multicast Communications

by

Ching-Y1 Lee

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1992

,I |
Advisory Committee:

Associate Professor A. Yavuz Orug, Chairman/Advisor
Professor Robert Newcomb

Associate Professor Prakash Narayan

Assistant Professor Bernard Menezes

Professor Stephen S. Kudla

GRS AR 20 ALRNGEAEGSNS

© Copyright by
Ching-Yi Lee

1992

Dedication

’l‘()
my dear wife Heng-Tzu Lee
for

her endless love and support

Acknowledgements

I am extremely gratelul to my advisor Dr. A, Yavuz Oruc for

his advice and guidance during the work of this dissertation. His
perspective, enthusiasm, patience and kindness have inspired and
benefited me very much. T would like to give my greatest respect
and acknowledgment to him here.

I am also grateful to Dr. Robert Newcomb, Dr. Prakash Narayan,

Dr. Bernard Menezes and Dr. Stephen Kuadla for their serving on

my committee and giving corrections of this dissertation.

Special thanks to my parents and parents in-law for providing me

mental and flinancial support. To them, T owe a lot of gratitude.
Iinally, I would like to thank my wile Heng-T'zu. Without her, this

dissertation would not have been possible.

i

TABLE OF CONTENTS

Llliplvr Page

List of Tables Vil

List of Figures viii
1 INTRODUCTION 1
1.1 "The Unicasting Problems 3,

1.2 T'he Multicasting Problems5

1.3 The (@, B)-Expanding Problems - 8

14 Contributions . - & & = =« ¢ 5 5 5 & % 9 & 8 &8 = 9 - o & 5 5 v & o« = 9

1.5 Dissertation Organization [

2 BASIC CONCEPTS 12
2.1 Basic Definitions and Facts 12
2.1.1 Networks e e |2

2.1.2 Performance Measures« ..o 0. 16

2:1.3 Pixed Conniectdons . « o o v o v v o 6 5 8 5 5w e s v = o ow |7

2.2 Some Well-Known Networkso [N
2.2.1 Self-Routing Networks o o« o o« o o w v o s 18

222 Unieasting Networks ¢ o o5 w o v v v s s o o 21

223 Sorting Networks L.

3 PARALLEL ROUTING ALGORITHMS FOR BENES NET-

WORKS

3.1 Infrodwclion . . . o o v w6 % o om s v m o o e s e a s e e e

3.2 The Routing Principle
3.2.1 Notations and Delimitions ... 00 . . .
322 The Routing Prineiple . . « = « « « 5 0 o . 0 0 6w s 0.

3.3 The Parallel Routing Algorithmo
3.3.1 The Connection Topologies o0 000 ..
3.3.2 The Parallel Routing Scheme . . 0 0 00 000 0 0 0 .
33.3 The Parallel Algorithim « « o« v o o w v v s 5 4 .
3.3.4 Performance Analysis

3.4 The Hardware Implementation 000000000

3.5 SHIMIMBLEY + = 5 ¢ = 56 ¢ = & 5 & @ 3 5@ B 5 5w E w3 F &R H &

4 EFFICIENT MULTICASTING NETWORKS

I Introduction © oo oo o
1.2 Concentrator Construction
1.2.1 Odd-Even Splitter Construction « ¢ s 5 s « «
[.2.2 Concentrator Construction
4.3 The Multicasting Network . : o o ¢ & o 2 o s a5 ¢ w0 v o = oo =
4.3.1 Multicasting Network Clonstruction
1.3.2 Routing Multicast Assignments
4.4 Performance Analysiso oo c oo e
LD SUTIATE oo . ¢ o & & w oo e m d w m h R R E A E WY 2 omom g b

149
19

H0

AT I AATEUG =0 A RNE GaGRETNN

EXPANDERS, BOUNDED CONCENTRATORS AND SU-

PERCONCENTRATORS 74
5.1 Introduction . 7
5.2 Lincar-Size Expander Construction 75
n.2.1 Lxpander Construction . 75
522 Expansion Coeflicient Caleulation 7T

.3 Bounded Concentrators and Superconcentrators S
531 Bounded Concentrator Construction 85

5.3.2 Superconcentrator Construction N

54 Summary S8
CONCLUSIONS 89
6.1 Summary of Contributions . 39
6.2 Iuture Rescarch . . 9]
95

Bibliography

Vi

LIST OF TABLES

Number Page
| C'omparison of parallel routing aleorithms for Benes networks., . 90
2 Complexities of various multicasting network designs in bit level. 92
3 Comparison of various linear-size expanders. 0 0 93

QRT ARATIVE =0 LB TOmanamt

LIST OF FIGURES

3

by

6

=J

ile
Graphical representation of an (n,q)-network. 11
IFixed connections on two sets of 1 points for n = 16. 19
Self-routing n-networks for n = 8. 20
The recursive construction of an n-input Benes network. Al
A recursive decomposed n-input Benes networks for n — 8. 29
(a) A Batcher’s sorting network with 8 inputs; (b) An n-shuffle
connected, lg? n-stage sorting network for n = 3. 9
I (n): a one-stage n-network consisting of n/2 2 % 2 switches. 27
Two chains with respect to a unicast Ih-assignment [or [(n)
where n = 16. IS
An illustration of the three steps in the first phase. 36
The subchains formed from the quadruples in (¢) of Figure 9. . 3S
T'he second and third phase of the parallel algorithim that follow
the first phase as shown in Figure 9. |
The recursive configuration of an n-input modified Benes network. 17
The recursively decomposed n-input modified Benes network for
=128, IS
D53

An odd-even n-splitter for n = 16.

Vil

16

20

GNY LAWTLE =

The balancer with 16 inputs and 8 outputs.

The nodes of the balancer and their operations.
[mplementations of the leal node, intermediate node and root
node in terms of logic gates with fanin 2.

Operation of the (16.8)-balancer.

The recursive construction of an n-concentrator.

An fully decomposed n-concentrator for n = 16.

The recursive construction of a multicasting n-network.
Destination coding for multicast routing,.

Mustration of the multicast routing scheme.

A multicasting 8-network shown to realize the multicast assign-
ment given in Figure 22,

An explicit construction of bhounded concentrators.

A recursive construction of an n-input superconcentrator.

60
61
63
67

64

69

~

&5

e |

DN TAMIIYE =i AEiL e37aas8lE

CHAPTER
ONE

INTRODUCTION

In communication networks as well as parallel computer systems, intercon-
nection networks are the key for good performance. Interconnection networks
serve as switching fabries which form the backbone of a communication network
and provide networking and switching services to realize switching patterns
that arise in the network [Cloh3, Ben6h, Pip82, [uiv0]. In parallel computer
systems, interconnection networks provide physical frames for interprocessor
and processor-memory communications [l“vnh‘l. BhusS7, DeC'89, Sie90]. For
todays rapid progress of broadband communication networks and high speed
parallel computers, high performance mterconnection networks are very eriti

cal [Toh90, MZ90, RBYOJ.

Among all switching patterns in communication networks and interconnection
requests in parallel computers, one-to-one or unicast assignments, and one-to
many or multicast assignments are the most general. Interconnection networks

that can realize unicast and multicast assignments are called, respectively, uni

LN EARITFEY =dF A EiSle=rasawls

casting and multicasting networks in this dissertation, and they have received

much attention in the literature [Clo53, Pau62, Ben6y. Ofm65, Can7l, MJ72,

HwaT72, Tho78, Pip82, OruSTa, Orus7h, Lea88, Turls, Hui90, YMYlal. Tradi-

tional designs of these networks typically focus on reducing the hardware cost,

but the recent rescarch has also focused on reducing the time needed to realize

unicast and multicast assignments.

the fast advances in semiconductor, integrated circuit (1C) and very large-scale

integration (VLSI) technologies, and partly because of the fast intercommu-

nication requirements in communication networks [Tob90, MZ90, RBY0O| and

parallel computer systems [Bhus7, DeC'8Y, Sie90].

In this dissertation, we consider three issues, namely the unicasting problems.

the multicasting problems and the (o, 3)-expanding problems. These issues are

critical with regard to unicasting and multicasting networks, and have attracted

much attention in the literature. Several results on these problems have heen

reported. First, we give a description of these issues and a survey of key results.

1.1 The Unicasting Problems

Unicast assignments are the most typical among all assignments that arise

1 communication networks and parallel computers, and they appeared in

the carliest stage of interconnection network literature [Clod3, Pau62, Ben62,
Ben64, Ben65). The well-known Benes networks [Ben6h] is a nnicasting net
work with O(nlgn) cost and O(lgn) depth. Batcher's networks [Bat6s] and
those that were introduced by Koppelman and Orug [KOY0] and by Douglass

and Oruc [DOYO] can also be used as unicasting networks, but they require

O(nlg’ n) cost and O(lg” 1) routing time in bit level.

This trend is enforced partly because of

R Sl et O e e -

Py

Recently, Jan and Orug [JO91] proposed a radix permutation network which
has O(n ng n) bit-level cost and can realize any complete unicast or permuta-

tion assignment in O(lg* nlglgn) bit-level time. Later, Lu and Oru¢ [1.LO92]

modified that network and reduced the cost to O(nlgn). More recently, Chien
and Oruc [C092] reported a binary sorting network which can also be used for
permutation switching. That network has O(nlgn) cost, O(lg*n) depth and

O(lg® n) routing time, all in bit level. Although these networks have impressive

cost and routing time, it is difficult and ineflicient to route incomplete unicast

assignments on them mainly because they are designed to route permutation

assignments.

Because of the O(nlgn) cost and O(lg n) depth, the Benes network is consid-

ered as an attractive unicasting network, and has received much attention in

interconnection network literature [Ben65, LPVSI, NS81, NS82a, Lee87]. In a

way, this network can be considered the forerunner of most multistage inter-
connection networks that have been extensively studied and used in some real

parallel computer systems [Sead9, Kea91].

One problem regarding the Benes network that remains to have a satisfactory
solution is its routing. Many routing algorithms have been reported extending
from the O(n lg”’) time]()()l)i“g I)r()(‘(‘(]ur(‘ of Waksman [\/\ak(i(\‘], and ()I)['(.,-,

- 2 . . i
man and Tsao-Wu [()'I‘W'Tl] to the O(lg”n) time parallel algorithms ol Lev
et al [LPVSI1], and Nassimi and Sahni [NS82a]. Other routing algorithms for
the Benes network include matehing and edge-coloring schemes [Hwa83, Cars6,

CO83).

The looping algorithm was developed wit h the realization that there are exactly
two subnetworks in the genter stage for the network’s inputs to connect to its

T, TN e

SSSSANS RS

LTINS FABITTY =dr i fsask

outputs, and with the added constraint that no two inputs can be connected

to two outputs through the same subnetwork in the center stage unless those

outputs belong to different switches in the last stage. Given a permutation

assignment from the inputs onto the outputs, one gets around this constraint

simply by looping between the switches in the first stage and those in the last

stage, and assigning the paths in an alternate fashion to the subnetworks in

the center stage. Given that there are n inputs to route, it takes the looping

algorithm O(n) time to set the switches in a 3-stage Benes network, and if the

same algorithm is applied recursively to the center-stage subnetworks then all

the switches in the fully decomposed Benes net work can be set in O(nlgn)

time.

The routing time of the Benes network can be reduced in several ways. The

most obvious approach is to use a binary tree to set the subnetworks in the

center stage in parallel as was done in [('O88]. The root processor ol the tree

sets the switches in the first level. its children set the switches in the next

level, and so on. It is casy to sce that the routing time, 1, of this sctting

Ty = Toyz + O(n) which implies that 15, = O(n).

scheme obeys the recurrence

The routing time can be reduced further by introducing parallelism into the

setting of switches in each level. This can be done by dividing the outputs into

equivalence classes such that two outputs will be in the same class if and only
il they must be routed through the same center-stage subnetwork. Once the

equivalence classes are decided, the switches in the first and last stages can be

set in parallel.
The parallel algorithm of Nassimi and Sahni [NS82a] is based on this discovery,

and the complexity of their algorithm depends on the complexity of the par-

ey, S R

IS GI IS

TGN EAEI Y =LF AL

allel computer model and the number of processors available. Their algorithm

takes O(lg?n) time on a completely interconnected n-processor computer, and

()(]g,"I n) time on a])(‘1'[‘('('1,»31111Hl(‘ interconnected n-processor computer. Lev et

al [LPVS1] provided similar parallel algorithms in a more general framework by

using edge-coloring schemes. Assuming a parallel computer with conflict free

access between O(n) processors and O(n) memory clements, their algorithm

also takes O(lg?n) time.

While these parallel algorithms are fast, (heir time complexities are still higher

than the O(lgn) depth of the Benes network. Purthermore, these algorithms
assignments. In case of incomplete

can only route complete or permutation

assignments where some inputs are idle. they cannot be used unless the idle

inputs are given dummy outputs. This takes additional time and may render
these algorithms inefficient. For those assignments which involve fewer pairs

of inputs and outputs, especially for the sparse connection assignments which
involve only O(k) pairs for k << n, it takes more time to assign dummy outputs

to the idle inputs. Besides, one does not gain any time to route incomplete

assignments since they are treated as complete assignments in these algorithms.

1.2 The Multicasting Problems

Multicast assignments are more general than unicast assignments, and they
include the unicast assignments. Several communication services such as tele
conferencing, cable TV hroadcasting, local and metropolitan arca net working
require multicasting of voice. video and other signals [Tob90, MZ90, RBYOI.

Multicasting networks, which realize multicast assignments, have been exten

sively studied in the literature [Ofim65H, MJIT2. Hwa72, ThoT8, LeaSS, Turss,

GG EELI I ~dF A L i

YM9la, YMI1b], and they were obtained by one of three approaches.

The first approach is based on extensions of 3-stage Clos networks [CloH3].
The constructions given in [MJ72, Hwa72, YM91a] are all based on this con
cept. The main problem with this approach is that to obtain asymptotically
minimum cost multicasting networks, one must recursively decompose these
extended Clos networks. However, the decomposed networks require complex
routing schemes for unicast assignments (see [LPVS1]), and realizing multicast
assignments on such networks is even more complex. We must also mention
the 2-stage broadcast network introduced in [RHS5]. While the construction
given there is based on a 2-stage decomposition, its routing amounts to finding
matchings in bipartite graphs, and thus, is as complex as the routing of 3-stage
networks [Hwa83]. Besides, it is not known whether this 2-stage broadcast net-
work, when recursively decomposed, leads to an asymptotically minimum cost

network.

The second approach, which was introduced by Ofiman [Ofm65], and also used
in [Tho78, Tur88, LeaSS, LeeS8S, YM91b], decomposes the design of a mual
ticasting network into two or more subproblems. Typically, the first problem
involves the construction of a network, called a generalizer in Thompson’s work.,
to generate the requisite copies of the packets to be multicast. Once the copies
are made, then a unicasting network is used to route these copies to their des
tinations. The multicasting networks obtained by this approach have several
drawbacks. IFirst, the sorter-based generalizers such as the one used in the
Starlite network [HKS81] have excessive switching cost; the sorter stage requires
O(nlg® n) comparators for n packets. Other generalizers such as the one de

scribed in [TurSs] use O(nlgn) switches, but they are blocking networks, and

LI AT ~dF i LSS araidd

are routed by adhoc conflict resolution schemes that may lead to uneven delays
among packets. Furthermore, routing of copied packets through the unicasting

network stage is as complex as in the first approach unless blocking is allowed.

The third approach is based on recursive decompositions of multicasting net
works. Unlike the second approach, the rationale behind this approach is to
generate the requisite copies of packets while they are being routed to their
destinations, rather than use a separate copy network. This approach was
introduced by Nassimi and Sahni [NS82b] who constructed an n-input multi-
casting network with O(kn'*"*lgn) 2 x 2 crossbar switches, O(klgn) depth,
and O(klgn) routing time in word level, for any A, 1 < A& < lgn. (All the defini
tions will be formally given in Chapter 2.) While the design of this multicasting
network is based on elementary switches. its routing relies on a parallel com
puter model with cube or perfect shuffle topology. In addition, the realization
of multicast assignments under this routing scheme requires sorting, and this
means that incomplete assignments can be realized only il the unused inputs
are assigned to some dummy outputs. Besides, paths on this multicasting net-
work to realize a multicast assignment are established from the output side to
the input side, e it is output-initiated, which is not practical as it is often

the case that the inputs initiate the requests.

I'inally, we should note that multicasting networks can also be obtained by
modifying the permutation networks reported in [JOOT, COY2). However, as in
the unicasting problems, it s difficult to route incomplete multicast assignments

over Sll(']l net \\'()l'l\'S.

R TE LTS

1.3 The (o, 3)-Expanding Problems

n [JO91], Jan and Orug also constructed permutation networks by using a
special type of networks, called linear-size expanders. But, they did not pro-
vide any construction for the expanders. In interconnection network literature,
expanders has been proven to be useful in constructing other types ol inter-
connection networks as well, and have been studied extensively (PinT3, ChuTs,

BasS1, Pip82, Mar73, GGS1, AMS5. AloS6, NAMST, JMST].

Informally, an n-input lincar-size expander is a directed bipartite graph with
O(n) edges such that any set of less than an inputs will be adjacent to some
set of more than gn outputs, where a < 3. This is called the (o, 3)-expanding
property of the expander in Bassalygo's work (BPT71, Bas8l]. Expanders are
important in that they are used in constructing concentrators [Chu7s], su-
perconcentrators [Chu78, Pip77]. generalizers [ChuTs, Pip78al, unicasting net-
works [I’iph“_)]. strictly and wide-sense nonblocking networks [BP 74, Chu7s,

Pip78h, Pip82, FI'P8S] and sorting networks [ANSS3].

The existence of linear-size expanders was first discovered by Pinsker [Pin73].
By using Konig's theorem on matchings in graphs, and combinatorial argu
ments, he was able to show that lincar-size expanders exist. Based on com
hinatorial or probabilistic arguments, other results proving the existence of
linear-size expanders were also given in [Chu78. BasS1, Pip82]. By using group
representations, Margulis [Mar73] first provided an explicit construction for
lincar-size expanders, but he could not specily the expansion coeflicient which
is an important parameter to measure a lincar-size expander. Subsequently,
Gabber and Galil [GGR1] modified Margulis™ construction and used harmonic

analysis to specily the expansion coeflicient (it is (2 — V3)/1) of their expander

graphs. More recently, Alon and Milman [AMS5, Alo86] used a matrix formu.
lation to express the expansion coeflicient as a function of the second largest
cigenvalue of a matrix representation of that expander. Using this formmula-
tion, Alon et al. [AMSE5, Alo86, NAMST| and Jimbo and Maruoka [IMST] ob-
tained expander graphs with expansion cocfficients 0.412 and 0.166. A1l {hese
constructions are based on Margulis™ expander design, and provide n-input

expanders where nois a square of any integer.

While these expanders have very low densities, their expansion coeflicients are
quite small, which may restrict their use in constructing other interconnection
networks. Alon [AloR6] suggested a method to construet expanders witly large
coeflicients from expanders with small expansion coellicients. However, the

drawback of this approach is that the density of the resulting expander is oo

high.

1.4 Contributions

For the problems described in the previous sections, the contributions of this
dissertation are three-fold. First, we design a parallel algorithim oy routing any
one-to-one (complete or incomplete) assignment over Benes networks. 1o route
an assignment involving O(k) pairs of inputs and outputs. our algorithm takes
O(log? k + g n) time without pipelining and O(lg k) time with pipelining on a
complete connection topology, and it takes O(lg' b 4 1g* ko) time withsst
pipelining and ()(\g:‘ k4 g kg i) time with pipelining on a perfect-shuflle ke
connection topology. In case of sparse assignments (e, when b -), Gur
algorithim achieves the optimum (O(lg n)) routing time for Bened networks.

@y & . u,
Compared with the time complexities of O(lg™ 1) on the complete connection

LR E I TN

topology and ()(lg'l n) on the perfect-shuffle connection topology of the parallel
algorithms in [NS82a, LPVS1], our algorithm has an O(lg n) factor of time gain
over those algorithms. These results provide the best-known time complexities

for routing one-to-one assignments on Benes networks.

Second. we construct a multicasting network which has a very simple self-
routing scheme. It uses very simple circuits consisting of constant fanin logic
gates Lo set the switches in cach stage. Including the routing cost, our mul
ticasting network can be constructed with O(nlg® n) bit-level constant fanin
logic gaivs and O(1g% n) bit-level depth, and can realize any multicast (com-
plete or incomplete) assignment in O(lg”® 1) bit-level time. These complexities
mateh or are better than those of multicasting networks that were reported in
the literature. Besides, unlike the multicasting networks reported in [NSx2D)
which are output-initiated and rely on parallel computer models for routing as-
signments, our multicasting network is input-initiated (which is more realistic)
and requires no other routing computer. In addition, multicast assignments
can be pipelined over our network. With pipelining, the vouting time can be
reduced to O(lgn), which is the best-known routing time among those of the

multicasting networks ever reported.

Third. we explore and explicitly construct a family of lincar-size expanders
with large expansion coeflicients. Our expanders are constructed similarly as
those in [Mar73, GGSLAMS5, AloS6, NAMST INNT] The density is 33, and
the expansion coeflicient is 0.865, which is larger than the largest expansion
coeflicient reported in [Mar73, GGSL AMSS . Alos6, NAMST, IMST]. Using,
these expanders, we also construct a family of bounded concentrators with

density 25.5 and a family of superconcentrators with density 208,

10

L TTEGE T A i L v B

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Tn Chapter 2, we give

some basic facts and definitions that will be used throughout this dissertation.

We also review some well-known multistage interconnection networks that ave

relevant to the results of this dissertation. Chapter 3 presents our parallel

2 (" b 1o \e @ b 3 .
routing algorithm for Benes networks. Chapter 4 displays the construction
<

8 g <l- 1 T . T S) R .« . . .
of our multicasting network. Chapter 5 gives our explicit design of linear-

size expanders, bounded concentrators and superconcentrators. Chapter 6 is a

conclusion which summarizes the results of this dissertation and suggests some

problems for future research work.

LB AT L i e e i

CHAPTER
TWO

BASIC CONCEPTS

In this chapter, we state some basic facts and definitions which will be used
throughout the dissertation. We also give a briel description of some well-known

interconnection networks which are relevant to the work of this dissertation.

2.1 Basic Definitions and Facts

2.1.1 Networks

An interconnection network with n inputs and ¢ outputs is denoted as an

(1, q)-network and formally defined as follows.

Definition 2.1 An (n.q)-nctwork is a divected acyclic graph with n distin-
guished source vertices, called inputs, distinguished sink vertices, called oul-
puls, some internal vevtices, and some cdges which conneet these vertices.

Ifn=q, an (n.q)-nctwork s abbrcviated as an n-network. ||

AP

Pictorially, an n-network will be depicted as a rectangle, and designated its

inputs and outputs by arrows on its sides. The inputs and outputs will be

normally aambered 0 through n — 1 and 0 through ¢ — 1 from top to hottom

(or left to right in some cases) as shown in Figure I unless otherwise stated.
An assignment for a network is a pairing of its inputs with its outputs such
that cach output appears i al most one pair. An input is called busy in an
assignment if it s paired with some oulput(s), and idle otherwise. Similarly.
an output is called husy i an assignment if it s paired with an input, and
called idle otherwise. An assignment consisting of k pairs will be called a k-
assigmment. An assignment is called one-to-one or unicastif each input appears
in at most one pair, and is called one-to-many or multicast, otherwise. A
permutation assignment for an n-network 1s a unicast n-assignment. A network
is said to realize an assignment if. for cach pair (a,b) in the assignment, a path
of vt cai e formed from input a to output b by determining the edges

between adjacent vertices in the network with the constraint that the paths for
) < e : c

no two pairs (a,b) and (e.d) overlap at the same edge unless a = ¢.

) U L specifving some routing mlormation :
Paths in a network will be established by spe ifying som & BREES
A Cits own destination information
- o that cach imnput holds 1
its inputs. 1415 assume d that ¢
. I 5 ; s routing information for cach
B also assumed that the !
unless otherwise st ated. It 1s ak
mput i npanied by some binary coded message that is to be routed from
put is accomps - ‘
. s » routing information. A message
. A enecified in the routin !
that input to those on\put(-‘) spe
‘ Cber will be termed a packet, and the
and routing information combined 1og¢ ther will ! 8
ket header. The message part
rout | t of a packet will be called the packet head a6C
ouling part ol a pdth
o of bits . will be assumed that
of a packet can have an arbitrary aumber of bits. bt 1 '
a packel Cé < < & .

e a network have noimpact
t tent and length ol the message(s) entering a nel) "
he content and leng

(n,q)-network .

outputs

inputs

n-1—p P g-1

Figure 1: Graphical representation of an (n, ¢)-network.

on its routing performance. Ior n inputs, the number of bits in the routing
information will vary between 1 and 2n — 2 for the networks described in this
dissertation. If a packet at input 2 uses m + 1 bits of routing mmformation.
its packet header will be denoted as (ri,d), ..., dy.dfy). The fivst bit r; to
be called the connecting bit, specilies whether input 7 is paired with some

output, and hence determines if input 7 is busy or idle. The remaining bits,

I [d,dy), carry the address information ol output(s) to which the

mn

packet at input ¢ will be sent (i.e.. with which input 7 is paired).

Two of the most useful networks are the unicasting network and the multicas

ting network which are formally defined as follows.

Definition 2.2 An n-nclwork s called a unicasting n-network «f it can reali=«

all unicast assignments between its mpuls and outpuls. ||

Definition 2.3 An n-nctwork is called a multicasting n-network if of can re-

alize all multicast assignments beltween s mpuls and oulputs. ||

FFor an n-network, because there are n!/(n — k) A-assignments hetween its

inputs and outputs, I < A& < n, the total number of unicast assignments which

it can realize is SSp_, n!/(n — k)t = O2"®"). For a multicasting n-network,

LA AR 27, £ i B

> oy
A LS TSN L

cach of its n output may be paired with none or any one of its n inputs, the

total number of multicast assignments that can be realized by the multicasting

n-network is (n 4+ 1)".

Some other networks are also useful and can be used to construct unicasting

and multicasting networks.

Definition 2.4 An (n,q)-nclwork, ¢ < n, is called an (n,q)-concentrator if
for any k.1 < k < q, and for any k of ils n mpuls, il can realize al least one

among the k! unicast k-assignment that pairs those k inpuls with the first k of

ils g oulpuls. H

Remark 2.1 [rom this definition, il is clear that cocry (n,q)-concentrator
is an (n,q')-concentrator for any ¢ < q. Therefore, we will only giee an n-
concenlralor construction in this disscrtation. 1f an (n.q)-concenlrator is neecd-

ed, for g < n, it can be implemented by chopping away the last w — ¢ oulpuls

of an n-concentrator. ||

Definition 2.5 Ann-nctwork is called an n-superconcentrator if, for any k. 1 <
k< n, and for any k of ils n inpuls and any k of its n oulpuls, it can rcalize

a unicast k-assignment that pairs those k inputs with those k oulpuls.

If an n-supcrconcentrator has no morc than dn cdges where d s a constant

independent of n, then it is called a lincar-size n-superconcentrator with densily

d, and will be denoted as an (n:d)-supcrconcentrator. ||

Definition 2.6 An (n,q)-nctwork is called an (n.q: k, o) -bounded concentra

tor if il is bipartite, i.c.. it has no lcrnal verter, and has no more than kn

LI ETETE TN P s

N, where

edges such that, for any subscl X of inputs with |[X| < an, [I'y| =

'y is the sel of oulpuls adjacent to the inpuls in A

Definition 2.7 An n-network is called an (n; k, c.a)-expander if il is bipartite

and has no more than kn edges such that, for any subsct X of tnpuls wilh

]_\'[< an, [l‘xl > [l +e(l — I\I/I/)”\] where Uy is the set of oulpuls adjacent

to the inpuls in X. ¢ is called the expansion cocllicient. ||

2.1.2 Performance Measures

Three parameters are typically used to measure the performance of a network,
and they can be recursively defined and calculated when the network is recur-
sively constructed. The cost of a network is the amount of hardware needed
to construct the network. The depth of a network is the maximum length
of a path from an input to an output. The routing time of a network is the
maximum amount of time to decide a path from an input to an output.

All these parameters can be expressed in two levels of complexities, namely

the word level and the bit level. In word level, the cost of an n-network is

measured in terms of digital circuits with no more than O(lg n) constant fanin
(independent of n) logic gates, the unit of the depth is a constant [anin logic
gate, and the unit of the routing time is the delay through a digital cireuit
which has at most O(lglgn) constant fanin logic gates along a path from any
input to any output of the digital circuit. However, it is assumed that the
hardware needed to construct an n-network can be implemented by constant
fanin logic gates, and then the performance parameters can be measured more

precisely in bit level. For a network, in bit-level, the cost is the total number of

16

£ T R PR LR 7 S

LTI

¢
0

constant fanin logic gates used in the network, the depth is the largest number
of constant fanin logic gates along a path from an input to an output, and the
routing time is the maximum amount of time needed to set all the switches in

the network for an assignment between the inputs and outputs of the network.

2.1.3 Fixed Connections

FFor network constructions, some fixed one-to-one connections hetween two sets
of n points are useful. They specily connections from a stage of switches ol
a network to another stage of switches of the network. In this subsection, we
describe some fixed connections that will be used later.

Let X and Y be two disjoint sets of points, each with n points, where n is a
power of 2. Let (b, ;. ..., 01, by) is the binary representation of point 7 with

/),'g”_, being the most signilicant bit, 0 </ < n — 1.

Definition 2.8 Fork =22 <[<lgn, the k-shufflc conncetion, oy, from
b (13415 Wi /:', X /1(’,) —

lo Y is a onc-to-onc mapping from X onto Y, given by oy o
g . . [-

(/l{'g,,,,‘..../),’M./),'M.,N,....,/)(',./;,'M__,), 0<:<n-1. |

Definition 2.9 Fork =22 <[<lgn. the k-banyan conncetion, ey from

oA i . . - . s y '
lo Y is a onc-lo-one mapping from X onto Y, given by Bre(blg u_ys- -

(] ? ! 7
(I)'gll—l‘ ooty ur /)ng. [’”'I)h’,l\'wl

Definition 2.10 The revcrse connection, p,. from XN to Y is a onc-lo-one

mapping from X onlo Y. given by Pl bl o isss e s

0<i:<n-—1. |

o RS

T I T i

For example, Figure 2 shows these fixed connections on two sets of - points for

w = 6.

2.2 Some Well-Known Networks

In this section. we describe some well-known networks that are relevant to the

subjects of this dissertation and will be nsed in the following chapters.

2.2.1 Self-Routing Networks

A network is called self-routing if cach of its switch can be set by using only the
routing information of the incoming packets in its inputs without reference to

other switches. Here, we describe three sell-routing n-networks. Sach ol these

n-network has lg n stages, numbered stage 0. stage 1, ..., stage legn — 1 from

left to right, and cach of their stages consists of n/2 2 x 2 switches. Fvery 2 x 2
switch can be set in two ways: either through state where the two inputs are
connected straight through to the two outputs, or cross state where the two

inputs are connected to opposite outputs.

An n-network consisting of lgn stages is called a baseline n-network if the
fixed connection from stage ¢ to stage ¢+ | is an (n/2°)-shullle connection,

¢t =0,1,....0lgn —2. An n-network consisting of lg n stages is called a banvan

n-network if the fixed connection from the inputs to stage 0 is an n-shullle

connection and the fixed connection from stage ¢ to stage ¢+ | is an (n/2")

banyan connection, r = 0, 1,.... lgn— 2. An n-network consisting ol lg n stages

is called an omega n-network il cach of the fixed connections from the inputs

to stage 0 and from stage ¢ to stage ¢+ 1,7 =0.1..... len — 2, 1s an n-shullle

pointsin X

points in X

points in X

Figure 2: I'ixed connections on two sets

0 ——mm8 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14

15 ~—m—————— 15

16-shuffle connection

0 — 0
1 1
2 2
3 3
4 4
5 5
6 6
7 Nemmm————— [
B) iwm——————— j
9 9
10 10
11 11
12 12
13 13
14 14
15 —mm 1§

8-shuffle connection

0 0
2 2
3 ——m———— 3
4 — 4
5 >< 5
6 6
T o
8 TE———————==
9 >< 9
10 10
11— 11
12 —mm8M8Mm — 12
13 >_< 13
14 14
15 e 15

4-shuffle connection
or
4-banyan connection

pointsin Y

pointsin Y

pointsin Y

19

points in X

points in X

points in X

0 ——mmmmm 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15

16-banyan connection

0 0
1 1
2 2
3 3
4 ¢ 4
5 5
6 6
g e—————%*]
g —————
9 9
10 10
11 1
12 12
13 13
14 14
15 15

8-banyan connection

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 1"
12 12
13 13
14 14
15 15

reverse connection

ol n points for n

pointsin Y

pointsin Y

pointsin Y

16.

0
1 1 1
1
. 2 5 2 =
o | e (2]
=i "3 53 32
= a =
£ 42 c4 jet
& g s 43
5 ©
6 6 6 &
7 7 ¥
baseline 8-network reverse baseline 8-network
0 0
0
0
1 1
1 1
e 2 o 2 5
w w
53 53 53 3=
Q a 3
2 =] 4 &
£ L= £ =
5 P 5 3
6 6
T 7 6
7
banyan 8-network reverse banyan 8-network
0 —— 0
1 1 1 0
1
2 2 2
o
2 3 15 Lg 2
a a 23 315
£ 43 ca e
Es 5 o i 5 4 5
5 o
6 6
7 ——p 7 6
7

omega 8-network reverse omega 8-network

Figure 3: Self-routing n-networks for n = 8.

one obtains a reverse network. Figure 3 illustrates each of these n networks for

Fach of these n-networks is self-routing because 1t possesses the HnqGue path

property. Iowever, they are not unicasting n-networks. For n in]ml.\, cach

. 2 3 vl 1-aee)) : fween 1te |
network can realize only n'? of the n! n-assignments between its mputs and

outputs. One can refer to [WIS0a, WESOD] for a detailed account of 1 -

networks.

20)

Pt

0 3 - : ‘ 0
sw sw, [t
1 5 ; = - -f-b 1
. (n/2)-input . 2
e
. W, [* Benes network . P SW, i
3 = = . 3 T’ 3
i »
2,] 2 % Fii i . 8
a ® L] f L] g ® o
1 1 i 5
=
- e ° s . EE ® EE e O
i H ¢ i
o % . (n/2)-input i * § =
° Benes network ° E‘ ;
-2 ° ® 13 ; D
A SWi2.1 n-1 n-1 £ SW, 2.4
n-1 > o L -1
L i]
last stage

first stage.
Figure 4: The recursive construction of an n-input Benes network.
2.2.2 Unicasting Networks

Perhaps, the most well-known unicasting network is the Benes network, which
can be constructed recursively as shown in Figure 1. For n inputs, cach of
the first and the last stages consists of 1n/2 2 x 2 switches, and the center
stag consists of two n/2-input Benes networks. For notational convenience,

the inputs and outputs of the upper n/2-input Benes network are numbered

0,2,...,n—2,and the inputs and outputs of the lower n/2-input Benes network
arc numbered 1,3,....n — 1, from top to bottom. I the hall-sized Benes

networks in the center stage are recursively decomposed then one obtains a

2 switches, assuming that n is a

(21lgn — I)-stage network consisting of 2 x

power of 2. Figure 5 depicts the recursively decomposed Benes network for

T = 8.

i -
w N
outputs

(7]

= 3

a

£ 1 4
5 —» 5
66— 6
7 —p 7

Figure 5: A recursive decomposed n-input Benes networks for n = 8.

It 1s clear that an n-input Benes network can also be obtained by concate-
nating a bascline n-network with a reverse baseline n-network. Similarly, oth-
er unicasting networks could be obtained by concatenating two self-routing
networks as shown in the previous subsection. For example, two baseline n-
networks [WES0Oa], or an omega n-network and a reverse omega n-network [Lee85]

or a banyan n-network and a reverse baseline n-network, will result in a uni

casting n-network.

2.2.3 Sorting Networks

An n-network is a sorting n-network if, for any A& numbers at any & of its »
nputs, I < & < — 1, it can realize a unicast assignment that pairs those 4
inputs to & consecutively numbered outputs such that those & numbers appear
ing at the A outputs are in an increasing (or decreasing) order. The well known
Batcher’s network [Bat68] is a sorting network which consists of len(lgn 1)

stages of 2x 2 comparators. Another well-known sorting network is t he network

2 comparators

of H. Stone [Sto71. KnuT73], which consists of le* 1, stages ol 2 x

where any two consecutive stages are n-shullle connected. Figure 6(a) and (h)

2—» »
» = i -+ + b " Pt
- 3 oo |
a g
£ 4 3

+ - - + + +

5 [» 5

66— 6
% - - + + +

7 L 7

(a)

0 0
I3 f + t

1 g * [, 1

2 2 »
%) i - - E 2 - 3 + + -
£ "L g
c 4 4 3
= o

+ + - + + +

5 N)

6 6

7 - - - + + +_)7

(b)

Figure 6: (a) A Batcher’s sorting network with 8 inputs; (b) An n-shuffle
connected, lg? n-stage sorting network for n = 8.
age

show a Batcher’s networks with 8 inputs and an n-shuflle connected. lg? st

sorting network for n = 8, respectively.

R e o i &
T e T DR L

CHAPTER
THREE

PARALLEL ROUTING
ALGORITHMS FOR BENES
NETWORKS

3.1 Introduction

Among all kinds of unicasting networks, {he Benes network is more attrac
{ and O(lg n) bit level depth.

O(nlgn) bit-level cos

tive mainly because of 1ts
But, routing unicast assignm(‘nl.h‘ on the Benes network remains a problem.
The looping algorithm [Wak(ib‘, OTWTl] is not satisfactory simply because the
O(nlgn) time complexity is too large, vspv('ially compared with the O(lgn)
depth of the Benes network. The |)amllvl algorithms l'(‘[)(ll‘l('(l carlier [LPVSI,
NS82a] are ineflicient in that they can only realize complete or permutation
assignments. Besides, {heir time mlnplo,\'i\i(-s are still higher than the O(lgn)

depth of the Benes network.
[n this chapter, we presen! officient lmmllvl algorithms for routing unicast as
s chapter., :

signments on the Benes network. Our algorithms can also be pipelined to gain
a factor of O(lgn) speed up over the parallel algorithms of Nassimi and Sah-
ni [NS82a] and Lev et al [LPVSI]. Pipelining is made possible by routing the
Benes network stage by stage from left to right and overlapping the routing
steps for consecutive stages. Unlike our routing algorithms, the cited paral
lel algorithms proceed the settings [rom outer-stage switches to inner-stage

switches which makes pipelining diflicult.

We realize our routing algorithms on parallel processors interconnected by two
different topologies, namely the complete connection topology and the extended
perfect-shuflle connection topology. We show that if every pair of processors
are interconnected by a direct are (i.e., the connection topology is complete)
then routing a unicast assignment involving O(A) pairs of inputs and outputs
takes O(log?® k+1gn) time without pipelining and O(lg &) time with pipelining.
We also establish that using a weaker topology, the extended perfect-shullle
connection topology (defined in Section 3.3.1), leads to a routing algorithm
with O(lg" k + 1g° klgn) time without pipelining and O(lg® & + le kg n) time
with pipelining. These achieve the optimal O(lg n) routing time when & < < 1.
and they provide the best-known time complexities for routing any one-(o-one

assignment over the Benes network.

Also, in our routing schemes, each of the first lg n—1 stages of an mput Benes
network can be provided with its own special routing module rather than using

a single parallel computer to set all the switches. Fach routing module is

composed of some special purpose processors that can bhe mterconnected by a

number of topologies. Fach special processor is cquipped with a number of

O(lg n)-bit registers and some simple arithmetic and logic circuitry to compare

O(lg n)-bit numbers and perform some counting and decoding on them. With

these routing modules, once the first lgn — 1 stages are set, the last lg n stages

are then self-routed since they form a reverse baseline n-network as stated in

Section 2.2.1.

The rest of this chapter is organized as follows. Section 3.2 describes a rout-
ing principle which provides the basis of a parallel algorithm for routing on

the Benes network. Section 3.3 discribes this parallel routing algorithm, and
The chapter is summarized in

Section 3.4 gives its hardware implementation.

Section 3.5.

3.2 The Routing Principle

In this section. we describe a routing prin('i[)l(‘ which establishes that unicast as-
signments for the Benes network can be recursively decomposed into hall-sized
unicast assignments stage by stage from left to right. This routing principle
also permits pipelining of unicast assignments on Benes network.

3.2.1 Notations and Definitions

) e (i ©htY is the binary represen-
NOtatiOl]: l"()l‘ 0 < g é n — L l‘ ([)lgu——l" e .1’]- ()) . presen
tation of 7, then ¢ denotes the integer which has the binary representation
at of 2, then es b

b
- : ; 1 pair of integers. ||
. § ¥ e called a dual pat ol intef
(Blg ety -5 b5 005 and! 7 and ¢ are C
It is assumed that a packet header at input i of an n-input Benes network has
18 ass . at a packet
' i i) where r; 1s the connecting,
lg 124 1 bits, and is denoted as (,.'.,(l{g”»’,*....(ll.(/(,). wh ; ting
; esentati { the output paired with
g ; i Ary represe ntation o ‘
bit and ¢ T— i) s the binary e

o —

" bit b.
'b denotes the binary <'0I“l’l"““l“" of bit

20

(roPfynetr - -+ P PY)

(ro.dfy o1, - ., 7, O g
(.4 g, - -, A1 dd) SWo (FPlgny o PLPY
2 2 . o2 2 .2
5 (fz,d|gn.1,-.-,d|.dg) (2'Pign.1> - - -+ P Pp) > 2
3 3) 3 gy
(r3,dig p.q, - - -, dy, dg) SW, (r3,Pign.1» - - - » P> P)
3 > —p> 3
L] o °
L]) P
» ° N ° . i _ ° @
=1 5 (r2i 9% s - - -» 43,) (2P oy - -+ PR PEY . 2
a - - > 2i 2
< 2i+1 it g2i+1 SW, (r pfm PP i+l 5
=L (rai 82 4, ..., A1 a3 i 2isrPigh-1 - P PT)
2ix1 2i+1%g n-1 1 +1"Ig n > 21 o
° L ®
* L L]
® g -2 _n- ® n-2 n2 p-2
2 (l’n_z,dlr,Qf.'_«l, T d? ?dg 2) (r'n_z,p'gn_', e P S ’g)k
n- — ; o wgrepuadll L
) _n iy 4714 SWozt | GiPigny P
n- > » -

Figure 7: H(n): a one-stage n-network consisting of n/2 2 x 2 switches.

mput 7 with (/ll'gn_l being the most significant bit. In light of this assumption.

the following definition makes the notion of unicast assignments more precise.

Definition 3.1 A unicast k-assignment for an n-nelwork is a set
di di):0<i<n—]} such that exactly k v ’s are cqual to
eyl G 2 —_— ==

{(?’ (,'l" (llig n—1»
1]

I i
, and (PPN -

L]

i 7 i 3 e
i) ((/,g“_,,...,(/,.(/(,) whenever @ # j and r; = r

Let H(n) denote a one-stage n-network which comprises n/2 2 x 2 switches,

e o o . © Fieure 7. where nis a power of 2.
SWo, SW,, ..., 8 W, j2—1, as shown Figure 7, 4

Ld,)i Sn— l} a unicast as-

Definition 3.2 Given {(/-(7'1'1’/{gv'—""
i A (n) is

Wi,.....5H

11,71

.. . a] > J y ' ‘Sv
signment for H(n), a sequence ()f.sl”l/(/l(.\ SWi,,
menl if, for 0 < q < p—2 one

Said to form a chain with respect 1o that assign
; - . oF SW: ¢ pavred wi
and one of the inpuls of SWi,, are parred wilh a dual

[the tputs of SW;,
. . . i e ¢ .e., there exist ¥ = 9
Pair of outputs and have their conneeting bits sct to 1,1 st x = 24,

, 9; or which r, = r, =
ore =9 41 andy = Ziga 0T Y = Bopa + 1 for whi : v I and
21, ; !
v gy gy
(/5,(/1.(())-

kg " . . Yy
((/|g,,_, T (/22, di,dy) = ((/lp,"‘l

(SN
-3

jnputs outputs
1,1111 0
P 0 jjn SwW ——>
‘}/ - 1 1,0111 0 > 1
~ff’¢

2 1,1100 M sw. | > 2
3 _ (1,1011) 1 > 3

| 4 _(1,0011) : 4
C, :SW,, SW,,SW,, SW, g Tot0l ae NN
i —-(—)—PJO____ “
,Nw&v 7 (1 o000))] SWa | 07
i (1,0010) 8

. >

C, :SW,, SW, SW o, SW . ‘\ 7707 SW, 9
I,

1\ ;"‘ - (1,1110) > 10
Y %10 (1,1000) | SWs |

8
t “”*#»12 1,0110 : 12

1,1010) | : 14
112 (1,0100): W 5

Two chains with respect to a unicast Ih-assignment for /1(n) where

Figure 8:

16.

SWe L ds sadd Lo be a closed chain if the remain-

Furthermore, SW, , SW, ... e

ing inpul of SW ',-7,_1 and the remaining input of SW, are also paired with a dual
pair of oulputs, and to be an open chain otherwise, and then SW, and SWe,

are called the end switches of that open chain. ||

The size of a chain is the number of switches in the chain. Given a unicast A

assignment for /{(n), the size of a chain can be as large as min { [(A+2)/2],n/2)

hyn/2}

(when that chain is of size

and? as small as 1., and the number of chains can be as large as min

(when each chain has size 1) and as small as
[(A + 2)/2| or |k/2]). Figure 8 shows a closed chain (', and an open chain (Y

with respect to a unicast 15-assignment for H(n) where n — 16.

Fach of the two end switches of an open chain, depending on the states (busy

.,)
] denotes the largest integer equal to or smaller than o, and [r] denotes the smallest

integer equal to or larger than ».

or idle) of its inputs, can be in one of the two states: busy or semi-busy. An
end switch is called busy if both of its inputs are busy, and called semi-busy il
one of its inputs is busy and the other is idle. Based on the states of the end

switches, we distinguish between two types of open chains.

Definition 3.3 An opcn chain is said lo be a [ree open chain if ils end switches

are both busy or both semi-busy, and to be a half open chain iof one of ils ¢nd

swilches is busy and the other is semi-busy. ||

FFor example, (', given in Figure 8 is a half open chain since end switeh SH, is

busy and end switch SW5 is semi-busy.

3.2.2 The Routing Principle

The following theorem states how to decompose a unicast assignment into
two hall-sized unicast assignments, and will be applied recursively for routing

unicast assignments through the first half of stages of the Benes network.

Theorem 3.1 (/iven {(1',(1',-.(/,"g wagssveslysile)) 1 0 < 5 & 3 — l} a unicast k-

assignment for H(n), let (¥ ph . oo, Pipb) denote the header of the packel
Y o Plgn—1 1 (A /

There coist sctlings

al outpult v of H(n), 0 < <n — 1, as shown in Figure 7.

Jor SWy, SW,y, ..., SW,, 21 such that

{(37, (I'Q,-./)fg'”__l‘ s Pay P) B S uf2 ~ l} (s unteast kg-assegnment and
o 2it1 BT FFINK 1 o 5 o o o : . :
{(-’I F (PPl nis 5P s T)10 L i € w2~ l} ts a unicast ky-assign-

ment, where kg = [k/2] and ky = |k/2].
with respect

Proof: Suppose that there are ¢ chains, 1 < ¢ < min{k, n/2},

to the given unicast A-assignment. and suppose that there are [[ree open

29

chains among those ¢ chains, 0 < [< c. For cach chain, by Delinition 3.2 its

switches can be set such that, for those inputs ¢ and j which have r; = r; = |

. . .]] N X s S i 3 : . MO -
and (diy ... dy.dj dy) = ((llg“”],,..,(/z,(/,,(/”), one is routed to an cven

numbered output and the other is routed to an odd-numbered output, and once

a switch in the chain is set then the settings of the other switches in that chain

are fixed. Since the first chosen switch can be set in two ways (either through
or cross), there are exactly two ways to set each chain to satisly the above
statement. Besides. different chains can be set mutually independently, i.e

the setting of a chain will not aflect the setting of another chain. Therefore
there are 2° ways to set those ¢ chains since each chain has two ways ol settings

2° ways, then it is casy

&

If the switches in /(n) are set in any one of these
to verify that {(2/, (";,'-,I’fg"”—w'-'~I’:§)i-/"12/)) :0€i<n/2 - l} is a unicast Ay-

: 9 2i41 Wbl BTN o (1 o an
assignment and {(l/ + l.(rQ,_H./),éjL,ﬁ,...../)2’ PN 0< i< nf2 - l} is a

unicast kj-assignment for some integers kg and Ay with kg + Ay = & Thus, it
suflices to show at least one of the 2¢ ways of settings will result in kg = [4/2]
and ky = | k/2]. For the closed and free open chains, no matter how they are set,
they will increase kg and &y by the same number because such chains have even
numbers of busy inputs, and a half of the inputs are routed to even-numbered
outputs and the other half are routed to odd-numbered outputs. However, a
hall open chain has an odd number of busy inputs, and its two settings will
have different impact on the increases of kg and A, One setting, named the
Type-0 setting, will have ky increase one more than A, and the other setting,
named the Tyvpe-1 setting, will have Ay increase one less than Ay, Let [//2]
of those [hall open chains be in their Tvpe-0 settings and the other [/2]

hall open chains be in their Type-1 settings. Then, obviously, Ay = [k/2] and

b= [k/20.]

30

The previous theorem establishes a routing scheme for the Benes network.

Giiven a unicast assignment for an n-input Benes network, let the switches in

the first stage be set such that the statement of Theorem 1 is satisfied. Then

the two l('st'ahlishv(l half-sized assignments for the center-stage n/2-input Benes
networks are ales unicast and can be realized by them, respectively. This
implies that if the switches in the first stage are set such that the statement
of Theorem 1 is satisfied, then there exist settings for the switches in all of
the subsequent stages to realize the unicast assignment. Hence, any algorithm
which satisfies the statement of Theorem 1 can be used recursively to set the
switches in the first Ign — 1 stages. Thercafter the packets are routed on a
self-routing basis through the last lg n stages to their final destinations. This
is because the last lgn stages of the Benes network is a reverse baseline n-
network. which has the well-known property that, between cach pair of of its
inputs outputs, there is a unique path that can be formed by decoding the

output address bit by bit.

3.3 The Parallel Routing Algorithm

In this section, we present a parallel routing algorithm for the Benes network
to speed up the routing time. Following the discussion in the previous section,
it is only necessary to describe a parallel algorithm for /(n) such that the
routing principle stated in Theorem | is satistied, and then the parallel routing

algorithm for the Benes network follows.

In the parallel algorithm for 1/ (n). it is assumed that there are v interconnected
processors, PR(0), PR(1),....PE(n—1).and packet header (v df dy, d

lg n

is initially input to PR(7), and PR(2) and PR(2) are called a dual pair of pro

cessors and will determine the setting of SWiijap of H(n), 0 <2 <n —1. The

time complexity of the parallel algorithm depends on the intercommunication
capability of the connection topology between these n processors. T'he parallel

algorithm can run on two connection topologics, namely the complete connec-

tion topology and the extended I)('rf«*(’t‘f,s-hu///(' connection topology. It will be

shown that any unicast k-assignment can be realized over an n-input Benes

network in O(lg? &k + lgn) time if the connection topology is complete, and in

O(lg" k + 1g? klgn) time if the connection topology is extended perfect shullle.

3.3.1 The Connection Topologies

For case of discussion, we first describ three kinds of processes: move process
concentrate process and broadcast process, which will be used in the parallel
algorithm for exchanging data between the nointerconnected processors. A
move process transfers data from some old processors to some new processors

in a onc-to-one manner, i.c.. no data will be moved from one processor to more

than one processor, and no processor will receive data from more than one
processor. A concentrate process transfers data from some old processors to a
specific processor in a many-to-one manner. A broadcast process transfers data
from a specific processor Lo some new processors in a one-to-many manner. In
cach process, there are destination addresses used to specily the location(s)
of new processor(s) to which data are transferred. T'he time complexitios to
execute these processes depend on the intercommunication capability of the

connection topology between the processors, and are discussed as follows.

['he first connection topology between the n processors is the complete con

nection topology on which there is a connection bhetween any two processors.

between PR(0), PR(1L),..., PR(n —1)is the

The second connection topology
extended perfect-shuflle connection topology on which each dual pair of pro-

cessars are connected, and PR(0), ¥ R([isrr PR(n/2" —1) are (n/2")-shuflle
e, PR(D), PR(1),...,PR{n—1)are

interconnected, form = 0,1,..., lgn—2,
n-shuffle interconnected, PR(0), PR(1);-- ., PR(n/2—1) are n/2-shuflle inter-
connected, and so on. (learly, the complete connection topology uses O(n*)
contnections. and the extended perfect-shuffle connection topology uses O(n)
connections.

The complete connection topology has a very strong intercommunication ca-
pability. It is obvious that each of the three processes can be executed in
O(1) time on the complete connection topology. On the other hand, it takes
longer time to execute these processes on the extended perfect-shuflle connec-
tion topology. A concentrate process or a broadcast process can be finished
by repeatedly passing lgn times through the n-shuffle connection between the
extended perfect-shuflle interconnected processors, and hence they can be ex
ccuted in O(lgn) time. However, it takes three steps to execute a move pro
cess on the extended perfect-shuflle interconnected processors. Suppose that
there are k processors that have data to be moved in a move process. At
the first step, these & data items are moved to & of the first 20K hrocessors
by I)HSSi‘Il‘Q" lg n times through the n-shullle connection. At the second step.
these & data items are sorted according to their destination addresses by re
peatedly passing [lg &]? times through the (2% 51y shuffle conneetion between
PRO), PR(1), ..., PRE2MAT 1), as discussed in Subsection 2.2.3. At the third

step, the sorted data are moved to their final destinations by passing lg e times

through the n-shuflfle connection. Henee, it O(lg? k + lg n) time 1o execute a

33

mmove process involving k processors on the extended |><‘r[(-<"t—s|mf||(- connection

topology.

3.3.2 The Parallel Routing Scheme

To facilitate an understanding of the parallel routing algorithm, we give a

parallel routing scheme which outlines the algorithm.

I'rom the proof of Theorem 3.1, inputs that belong to a chain can be partitioned

into two equivalence classes such that the inputs in one equivalence class are

connected to even-numbered outputs and the inputs in the other equivalence

class are connected to odd-numbered outputs. Once the equivalence classes ol

inputs in a chain are established, the determination ol the settings [or the cham

is straightforward. The parallel algorithm will use such equivalence classes to
determine the setting of each switch. First, the following proposition shows

how to determine the pairs of inputs that are in the same equivalence class.

he a unicast

St

Proposition 3.1: Let {(i,(v',.(/,"w_,....‘</1.(/(",)) 0<i<n-1
assignment for H(n). I (dj - didy) = (g gy 281 dp)s i = 7 |
and 7 # j, then inputs ¢ and J are in the same equivalence class and inputs
and 7 are in another equivalence class.

Proof: By Definition 3.2, ‘H"‘YL,'/QJ and H”'L//'zj arce in the same chain since
input 7 of SWi) and input j of ST, 2 are paired with a dual pair of outputs.
Thus, by Theorem 3.1, inputs 2 and j must be routed in different directions.
one connected to an even-numbered output and the other connected to an odd
numbered output. Because ¢ and ¢ are a dual paiv ol inputs and j and) are

another dual pair of inputs, i and j are in the same equivalence class, and so

are j and 7. ||

3

Remark 3.1 1o manifest the cquivalence class relation, cach mput will be
transformed into an ordered quadruples in which the first clement 1s a bina-
ry bit used to indicate if this inpul belongs to a closed or an open chain, the
sccond element corresponds lo this impul, the third clement points to an inpul
that is in the same equivalence class as this inpul, and the fourth clement, to be
called the representative of this inpul, will be used to roule this impul. 1f i and
J satisfy the hypothesis of Proposilion 3.1, two ordered quadruples (152, 5: p;)
and (15 j,i;p;) will be established, where their first elements are initialized to |
and their fourth elements are initialized to p, = min{e,j} and p; = min{j.i}. If
r; = 1 and there is no r; = 1 for which ((lllg ”;I,....(/’) = (‘/i/g,: s ws g (/',’.(/i/,)
(i.c., inpul 1 is paired with an oulpul whose dual oulpul is idle), an ordered
quadruple (1;1,—1;1) will be established, where —1 is used to denote that this
inpul belongs to a busy end switch of an open chain, or an opcn chain of sizc 1.
Ifr; =0, an ordered quadruple (051, —2;10) will be established, where —2 s used
to denote that this inpul belongs to a scmi-busy end switch of an open chain,

or an idle switch. ||

The parallel algorithm can be roughly divided into four phases. In the first
phase, ordered quadruples as defined in Remark 3.1 are established. In the
second phase, the representative in cach quadruple is computed such that cach
input knows which chain it belongs to, and all the mputs in the same cquiva
lence class will agree on a common representative. In the third phase, cach hall
open chain is assigned either the Type-0 setting or Tvpe-1 setting so that the
statement of Theorem 3.1 (i.e., by = [k/2] and &k, = [A/2]) will be satisfied.
In the fourth phase, cach switch is set by using the representatives of its two

mputs.

PRs PRs B
o [@111 0 (7,(1,0000)) 0 [T<1:0,11:0>

1 21,21,0111;; 1 (13,(1,0001)) 1 rd‘;?é,;;zb
2 (2,(1,1100)) 2 (8,(1,0010)) 2 “1iRi8a
3 (3!(111011)) 3 (4!(1100,1)) 3 <1,3,15,3>
4 (4,(1,0011)) 4 (15,(1,0100)) 4 <1;4,9;4>
5 (5,(1,0101)) 5 (5,(1,0101)) 5 | <1;5,14;5>

6 <0;6,-2;6> N 6 [(12,(1,0110)),<0:6,-2;6>| g 6 <0;6,-2;6>
4 (71(1 ,0000)) move 7 (1 ,(1 !01 1 1)) es‘ablishing 7 <1 ;.7,1 2.;7>

8 10 8 (11,(1,1000)) 8 <1;8,5;5>

{8,{1,0010)) process quadruples p

9 (9!(1!1101» 9 9 <1,9,3,3>
10 | (10,(1,1110)) 10 ((1342(11,1100111(;;) :? ;1;110,: ::
11 1000 1 (1, <0;11,-1;11>
12 gl’:g:OHOB 12 (2,(1,1100)) 12 | <1;12,0;0>
13 | (13,(1,0001)) 13 (9,(1,1101)) 13| <1;13,6;6>
14 | (14,(1,1010) 14 (10,(1,1110)) 14| <1;14,2;2>
15 | (15,(1,0100)) 15 (0,(1,1111)) 15 [<1;154;4> |

el
0
»

The Third Step
(c)

The Second Step

The First Step
(b)

(a)
Figure 9: An iMustration of the three steps in the first phase.

The first phase applies Remark 3.1 to establish ordered quadruples. and can
be further decomposed into three steps. At the first step, packet headers are
input to the processors, and the idle inputs which belong to the semi-busy
switches have their quadruples established. At the second step, packet headers
are moved to new processors so that cach dual pair of processors can apply
Remark 3.1 in parallel. At the third step, the remaining quadruples are estab-
lished and then moved to new processors specified by their second elements,
and their first elements are changed to 0 if their third elements are 1. Using,
the unicast assignment given in Figure 8 as an example, the first phase is illus
trated in Figure 9, where a column with 16 entries is used to express the data
stored in the 16 processors at cach step.

The second phase is an iterative procedure to compute the representative of
cach quadruple. This computation is the crux of the parallel algorithm, and it

needs to be explained in detail before we go to the desceription of the second

phase.

36

1 ing <« tupe. s decomposed into two sequences of
Any chain, depending upon its type, 15 | I

. . o where the auadruples in each sequence bhelong
quadruples in the first phasc where the qui I g I

to the same equivalence class. Let us use the quadruples in cach sequence as
alel v N

nodes to form a directed graph in which a directed arc is established from a

sl v ~if the third element of the former
quadruple to another quadruple il and only if

- Jement of the latter quadruple. Then, a A-
quadruple is equal to the second element of the la e I ¢

size closed chain will form two k-node closed subchains for which each node

has an incoming arc and an outgoing arc, and a k-size open chain will form two

k-node open subchains for which ecach source node has an outgoing arc, cach

sink node has an incoming arc, and ecach of the other nodes has an incoming

arc and an outgoing arc. lor example, Figure 10 explicitly depicts the four

subchains obtained from the quadruples in (¢) of Figure 9.
These subchains will be used to facilitate an understanding of the iterative
procedure. Initially, for cach quadruple as it is established in the first phase,
its first element is 0. its third element is either -1 or -2 and its fourth element
points to its second element if this quadruple is the sink quadruple of an open
subchain, or otherwise its first element is 1, its second element points to the
second element of its immediate successor (i.e., the quadruple at distance |
away from itsell) and its fourth element points to the second element of either
itself or its immediate successor. In the m-th iteration, the elements of cach
quadruple is updated as follows. Il a quadruple is in a closed subchain, then
its first element remains 1. its third element points to the second element of
its 27 -th successor and its last clement points to the smallest input among,
the 2 second elements of its first 2™ successors. I a quadruple s an open
subchain, then the way its elements are updated depends on when it is known

that this quadruple is in an open subchain. When this quadruple is at distance

3

.
o i,

™ <1;0,11;0> 7]
<1;1,13;1>
<1;2,8;2>
<1;3,15;3>
<1;4,9;4>
<1;5,14;5>
<0;6,-2;6>
<1;7,12;7>
<1:8,5;5>
<1;9,3;3>
<1;10,1;1>

<0;11,-1;11>
<1;12,0;0>
<1;13,6;6>
<1;14,2;2>

L <1;15,4;4> |

The subchains formed from the quadruples in (¢) of [igure 9.

Figure 10:
less than 2™ away from the sink quadruple, this quadruple is recognized to be
in

an open subchain, and its first element is changed to 0, its third clement

points to the third element of the sink quadruple and its last element points

(o the second element of the sink quadruple. On the other hand, when this
quadruple is still at least 2" far away from the sink quadruple, its elements are
updated in the same way as if this quadruple is in a closed subchain. That s,
in cach open subchain, the updating information is exponentially propagated
from the sink quadruple to the source quadruple. Using this iterative updating,
procedure, after lg[A] iterations, any k quadruples that form a closed subchain
will select the smallest input among their second elements as their common
representative, and any & quadruples that form an open subchain will select
the second element of the sink quadruple as their common representative. lor
example, the four subchains in Figure 10 need two iterations to determine their
representatives, and inputs 2, 3. 11 and 6 will be selected as the representatives

of the quadruples in SC, SCY, SCY and SCY, respectively.

Now we proceed to describe the second phase of the algorithim. Given a unicast

k'-assignment, the second phase is assumed to consist of lg[k] iterations, where

A = min{| (A + 2)/2|,n/2}. This asstmption
subchains and min{|(&'+2)/2], nf2}is

is justified since there is no prior

information about the exact s1zes of the

an upper bound for {he sizes of the subchains with respect to the A -assignment
as stated in Subsection 3.1.1. Technically, each iteration can he further decom
posed iﬁt,o {hree steps. At the first step, those quadruple whose first clements
are | are duplicated and the copies are moved to new processors specilied by
their third elements. At the second step, cach processor updates the quadru
ple(s) that it holds as follows: (1) when it holds only a quadruple, it kills the
quadruple if the first element of the quadruple is 1. and otherwise it keeps
the quadruple intact; (2) when it holds (1;4,4;pi) and (134, 5 pi) - it replaces
the first quadruple by (1;1,j; pp) where p = min{p;, pr}. and kills the second
quadruple; (3) when it holds (117, iipr) and (03, #;7) where #1s cither —1 or
it replaces the first quadruple by {1:1, +: 7) and keeps the second quadruple

intact. At the third step, each updated quadruple is first moved to a new pro

cessor specified by its second element il its first element remains 1, and then
its first is changed to 0 if its third element is either -1 or -2. For example, we
illustrate the second phase in (a) to (¢) of Figure 11, where the transitions from
(a) to (b) and from (b) to (¢) constitute the first iteration, and the transitions

from (¢) to (d) and from (d) to (¢) constitute the second iteration. Note that,

after the computation of the second phase, PR(i) and PR(7) hold the quadru
ples that corresponds to inputs and 7 of SWiizz), respectively. Besides, the
chain to which SW;/, belongs is clarified by checking the elements of the two
quadruples held in PR(i) and PR(i). If both of their first clements are 1, then
SWiisz) belongs to a closed chain. If both of their third elements are -1 or -2

then SWi/2) belongs to a free open chain. If one of their third elements is -1

and the other is -2, then SWiszj belongs to a half open chain.

Subsequently, the third phase assigns Lypes of settings to cach of the hall open
chains, and can be decomposed into three parts. In the first part, the repre-
sentative of the quadruple held in PR(2) 1s concentrated to PR(0) if the third
v if the second and third elements ol the

clement of that quadruple is -1 ar
quadruple held in PR(2) is ¢ and -2, respectively (i.e., SWiiya) is the semi-busy
end switeh of a hall open chain and mput i is the busy input). In the second
part, PR(0) assigns Type-0 settings to a half of the concentrated representa-
tives and Type-1 settings to the other half, and broadcasts this informat ion to

In the third part, for each quadruple, its third clement is

all the processors.
changed to 0 if its representative is assigned the Type-0 setting, and to |l

its representative is assigned the Type-1 setting. For example, (f) of Figure I

shows the result of the third phase, where the third elements of the quadru

ples held in PR(0). PR(T), PR(11) and PR(12) are change to 0 since these

quadruples belong to half open chain () and (' is assigned the Tvpe-0 setting.

Having decided the type of cach chain and computed the representative of cach
quadruple, the fourth phase determines the settings of switches in H(n). Iach
switch is set by a dual pair ol processors which hold the two quadruples that

correspond to the inputs of this switch, and the setting depends on the type of

the chain to which this switch belongs.
Case 1: If PR(i) holds (1:i. ki j) and PR(:) holds (134,06 j) . then ST) IS

in a closed chain. Assuming that ST, y) is set through, ST, must he set

through if i — j is even and cross otherwise,
I or

Case 2: If PI(i) holds (0:4,p; j) and PR(7) holds (0:7. pil) where p

10

o
3
7

NOHEWLUN-O

duplicate g
and move g
processes 10
11
12
13
14
15

PRs
0 [<1;0,11;05 |
) «<1;1,13;1>
2 <1;2,8;2>
3 <1;3,15;3>
4 <1;4,9;4>
5 | <1;514;5>
6 <0;6,-2;6>
14 <1;7,12;7>
8 <1;8,5;5>
9 <1;9,3;3>
10 <1;10,1;1>
11 <0;11,-1;11>
12 <1;12,0;0>
13 <1;13,6;6>
14 <1:14,2;2>
15 [<1;15,4;4>_|]
original
quadruples
(a)
PRs
0 [<1;7,0,0>]
1
2 <1;5,2;2>
3 <1;4,3;3>
4 <1;3,4;3>
5 <1:2:5:2>
6 <1;1,6;1>
74
8 <1;14,8;2>
9 <1;15,9;4>
10
11 <1;12,11;0>
12
13 | «1;10,13;1>
14 <1;8,14;5>
15 <1;9,15;3>
b= —d
duplicated
and moved
qaudruples

<0;0,-1;11> |
<1;1,6;1>
<1;2,5;2>
<1:;3,4;3>
<1;4,3;3>
<1;5,2;2>
<0;6,-2;6>
<1;7,0;0>
<1;8,14;5>
<1;9,15;3>
<1;10,13;1>
<0;11,-1;11>
<1;12,11;0>
<0;13,-2;6>
<1;14,8;2>
<1;15,9;4>
s -

updated
quadruples

(d)

Figure 11: The second and third

the first phase as shown in Figure

PRs

—<1:12,0;0> | — <1:0,11;0>7] 0 F‘O;OH 1>
<1:10,1;1> <1:1,13;1> 1 <1;1,6;1>
<1114,22> <1;2,8;2> 2 <1;2,5;2>
<1:9,3:3> «1:3,15;3> 3 <1;3,4;3>
<1:15,4:4> <1:4,9;4> 4 <1;4,3;3>
<1:8,5;5> <1;5,14;5> 5 <1;5,2;2>
<1:13,6:6> <0:6,26> | — ‘75 <06,-2:6> [
. . <1;7,0,0> .
<1:2,8:2> ‘:{:’éj:{;: update g | <1814:5> | duplicate
(.04~ <1.933> |andmove 9 | <1 \9.15;3> | and move
i <1:10,1;1> processes 10 | <1;10,13;1> processes
<1:0,11;0> <0:11,-1;11> 11| <0;11,-1;11>
<1;7,12;7> <1;12,0,0> 12 | <1;12,11;0>
<11.43;1> <1:13,6;6> 13 | <0:13,-2:6>
<1:5,14;5> <1;14,2;2> 14 <1:14,8;2>
<1;3,15;3>J <1;15,4;4>_| 15 _<1;15,9;4>_j
duplicated original updated
and moved quadruples quadruples
qaudruples
(b) (c)
PRs PRs
0 [<0;0,-1 11> 0 <0:0,0;11>"]
1 <0;1,-2;6> 1 <0;1,-2;,6>
2 <1;2,2;2> 2 <1;2,2;2>
3 <1;3,3;3> 3 <1;3,3;3>
4 <1;4,4;3> 4 <1:4,4.3>
5 <1;5,5;2> 5 <1;5,5;2>
> 6 <0;6,-2;6> - 6 <0;6,-2;6>
7 | <0;7,-1;11> 7 <0;7,0;,11>
update 8 <1:8,8;2> concentrate 8 <1:8,8:2>
and move 9 <1;9,9;3> assign setting and 9 <1:9,9;3>
processes 10 | <0;10,-2;6> broadcast processes 10 | <0;10,-2;6>
11 | <0;11,-1;11> 11| <0;11,0;11>
12 | <0;12,-1;11> 12 <0;12,0;11>
13 | <0;13,-2;6> 13 <0:13,-2;6>
14 | <1;14,14;2> 14 <1;14,14;2>
15 <1;15,15;3>J 15 <1:15,15;3>
. 1 Wl
nawhy final
updated
quadruples
quadruples
(e) U

phase of the parallel algorithm that follow

9.

p = —2, then SWijz is in a free open chain, and SWiire) and SWyap are the

end switches of the free open chain. Assuming that the smaller one of ST, /)
and SWyy) is set through, when j < [, SWiij2p must he set through il — s

even and cross otherwise, and when (< j, SWii/2) must be through if ¢ — [is
even and cross otherwise.

Case 3: If PR(:) holds (0:4,¢3) and PR(7) holds (057, —2;1) where ¢ = 0 or
I, then SWiijy) is in a hall open chain and SW\; /2 is the semi-busy end switch
of the half open chain. When ¢ =0 (i.c., the half open chain is assigned the
Type-0 setting), SWiijz) must be set through if 1 is even and cross otherwise.
When ¢ = 1 (i.e., the hall open chain is assigned the Type-1 setting), SW iz
must be set through if 7 is odd and cross otherwise.

For example, switches SWo, SW,, SW,, SWs and SW2 in Figure 8 are set

through and switches SW,, SWy and SWs are set cross by checking the final

quadruples held in cach dual pair of processors as shown in () of Figure 11.

3.3.3 The Parallel Algorithm

The following parallel routing algorithm formalizes the steps outlined in the
previous subsection.

Step 1: Given (1'.(1',',(/]’;;”7l dy.dy)) imput to PR(:), PR(:) establishes
i, =2 ifrn=00<25n~1. Let A be the number of r,'s whose value
are 1, and let & = min{[(A +2)/2].n/2}. Let m be initialized to 0.

Step 2: Move (7, (i, dlg,,— 15+ - iy sdh)) o PR{x) v, = | and (df_,_ys» s dy . diy)
is the binary representation of o, 0 < < n — 1.

Step 3: Given that PR(x) holds (¢,r) and PR(x) holds (j.r,). PR(x) es

tablishes (1;2.j; p;) and PR(x) establishes (15 .0 p,) where p, = min{e,j} and

p; = min{j,i} if r; =71; = I, or PR(x) establishes <l§’.~”l3’.> ity = 1 and
4 3 3 J

: . R T P G S
r; =0, or PR(Z) establishes <|;‘/~—_]\/> if 7 = 0 and r; 1,0 . "

Then, Move (134,45 pi) to PR(i). and PR(:) changes the first element from |
to0if j=—1,0<i<n-—L
(Step 1, Step 2 and Step 3 constitute the first phase.)

Step 4: m=m+ 1. lfm < [lg k] then go to Step 5, else go to Step 8.

Step 5: Duplicate (1;0,7;p) and move a copy to PR(), 0 <& < n— 1.

("Those quadruples whose first clements are 1 are duplicated and moved to new

processors specified by their third clements.)

Step 6: Case (1)— When P(:) holds only a quadruple: il the first element
of the quadruple is | then PR(1) kills the quadruple, else PR(2) keeps the
quadruple intact, 0 <7 <n — I

Case (2)— When PR(i) holds (1: 06 p) and (L4, g pi) © PR(7) replaces the
first. quadruple by (1; 1, j; pj) where p; = min{p,, pi} and kills the second quadru

ple, 0 <1 <n— I

Case (3)— When PR(:) holds (131, i;pr) and (0;4,%;7) where % is —2 or —1 :
P R(i) replaces the first quadruple by (I lo#57) and keeps the second quadruple
itact, 0 <2< n—1.

Step 7: Move (1:4,j:p;) to PR(i), and PR(z) changes the first element from
tobDifj=—-lorj=-2,0€4i<n -1 Then, go to Step 1.

(Step 4, Step 5. Step 6 and Step 7 constitute the second phase.)

Step 8: If PR(:) holds (0;7,—1;7) and PE(2) holds (050, —2;¢) . then PR(7)
concentrates j to PR(0), 0 < ¢ < n— L. Upon receiving the concentrated num

bers, say Ji, Jay. .- Jry PR(0) broadcasts an ordered sequence, (jy, J7)s
to PR(z), 0 < ¢ < n — 1. Then, PR(:) changes its quadruple (0:7. 15)

to (0;4,0;) il j is among the first [f/2] elements of (jy.ja.....js). and to

[//ZJ clements of (A/.l.'/'zw----_/.f)~ P<esn-—-1

(0:4,1;) if j is among the last
(Step 8 constitutes the third phase.)
Step 9: Case 1: Il PI(i) holds (l:i../:lh) and PR(z) holds (I:4, 0 pi) s then

PR(1) sets SWiiyz) through if ¢ — pi 1s even and cross otherwise, 0 < ¢ < n —1.
Case '3 [f PR({) holds (0:4,p:J) and PR(i) holds (0:4,p; 1) where p = —1or
p = —2. then they compare J and 1. When j < 1, PR(1) sets SW g2 through if
i — j is even and cross otherwise, and when { < j, PR(i) sets SWipy through
if 7 — I'is even and cross otherwise, 0 <1< n — L.

Case 3: If PR(i) holds (0;i,¢;) and PR(i) holds (0;2,=2:0) where ¢ =0
or ¢ = 1. PR sets SWygy through i i — g is even and cross otherwise

O02<n—1.

(Step 9 constitutes the third phase.)

3.3.4 Performance Analysis

In the previous parallel algorithm, move processes dominate the time complex
ity. As shown in Subsection 3.3.1, cach move process can he executed m O(1)
time if the n processors are completely interconnected, and m ()(lp,"' k< lgn)
time if the n processors are extended perfect-shuflle interconnected. For a uni
cast k-assignment. since the algorithm uses O(lg k) move processes, the switches
in H(n) can be set in O(lg &) time il the interprocessor connection topology IS
complete, and in O(lg‘j h4lg hlgn) time il the interprocessor connection topolo
gy is extended perfeet shuffle. To realize the unicast A-assignment on the Benes
network, it only needs to recursively apply this algorithm [lg &] times for setting,
switches in the first [lg] stages. This is because the unicast A-assignment is

decomposed into two half-sized unicast assignments after an application of the

algorithm, and it will be decomposed into L unicast l-assignments alter [lg k]

applications. Therefore, by using this parallel algorithm, the routing time for
.y D] ~

an n-input Benes network to realize a unicast k-assignment 15 O(lg” k+lgn) il

. e A g o (e Tl
the interprocessor connection lul)()l()ﬁ’;.\‘ is complete, and is O(lg” k + g b lgn)

if the interprocessor connection topology is extended perfect shuffle.

Also, unicast assignments can be pipelined over the stages of the Benes network

by using this parallel routing algorithm. That is. when the switch settings

in a stage for a unicast assignment are finished, the switch settings in that

stage for another unicast assignment can proceed. Pipelining will reduce the
average routing time needed to realize a series of unicast assignments. Suppose
that there are o consecutive unicast assignments to be realized over an n-
input Benes network. Without pipelining, the average routing time (o realize
an assignment is O(lg? k + lgn) if the interprocessor connection topology 1s
complete, and is ()(Ig-"' k + 1g* klgn) if the interprocessor connection topology
s (‘xt,('n.(l('(l perfect shuflle. But with pipelining. the total routing time to
realize these a assignments is U(lgz k4 lgn+ (a— 1)lg k)il the processors is
completely interconnected, and is O(lg* k + le? klgn+ (o — D)(lg” k4 1g kg n))
il the processors is extended perfect-shuflle interconnected, and the average
routing time to realize an assignment is reduced to O(lg &) il the interprocessor

“ » 3 . .
connection topology is complete, and to O(lg” k+1g kg n) il the interprocessor

connection topology is extended perfect shuflle, for a = lgn.

3.4 The Hardware Implementation

The parallel routing algorithm stated in the previous section can be imple

mented on simple hardware circuits as well as parallel computer models. In

this section, we show briefly how to build such routing modules into the stages

in the first half of the Benes network.

Fach routing module is an hardware implementation of the parallel algorithm
3.3.3. and will be called a router. [cach router is con-

deseribed in Subsection
wsors that are interconnected by some

posed of a sct of special purpose proce
tion choice is the complete connection

connection topology. One interconne
ate is the extended perfect-shuflle

topology, and another interconnection candid
connection topology, as stated in the previous section. Three types of hardware
devices registers, counters and comparators and some connection circuitry are
provided in ecach special purpose processor. Registers are used to hold packet
headers and quadruples that are input. generated, transferred and updated as
stated in the algorithm. Counters are used to record the number of the move
processes executed. Comparators are used to update the quadruples while the

representatives are computed. And, connection circuitry 1s used to interconnect

these hardware devices in each special purpose processor.

Using such routers, Figure 12 shows the recursive conliguration of an n-input
modified Benes network in which there is an (n.n/2)-router in the first stage.

di,d)’s, from the

I'he (n,n/2)-router receives n packet headers, (1, iy 1

inputs of switches in the first stage and then generates n/2 binary control bits.
p] . . ye .

s;’s, to set the n/2 switches in that stage. With its center-stage subnetwork

=1 (9 1I*, nf2¥)

fully decomposed, the n-input modified Benes network has
routers in its k-th stage, | < & < lgn— 1, and it can thus st its own switches to

realize any unicast assignment. Figure 13 shows such a recursively decomposed

n-input modified Benes network for n 8. As one can see. the possibility

of pipelining over such a recursively decomposed modilied Benes network s

16

(n,n/2)-

router
0
1
(n/2)-input modified
2 Benes network
3 2
ﬂ =
a 2
3 = |
£ o 3
L]
L]
(n/2)-input modified
Benes network
n-2
w2-1 -
n" I / o —
......... g

first stage

The recursive configuration of an n-mput modified Benes network.

Figure 12:

obvious.

3.5 Summary

This chapter has presented an efficient parallel algorithm for routing unicast as
signments on Benes networks. The algorithm generalizes Nassimi and Sahni’s

parallel algorithm which only routes permutation assignments. The algorithm
takes O(1g? k + lgn) time if cach pair of processors are connected by a direct
link. On a weaker routing module, where the processors are connected by the

extended |)('r|'<'('l.—s||llIH(‘ connection, the algorithm takes ()(l.u,'/f Fole?hlgn)
time. These times can be further reduced by a factor of lgn il unicast as
signments are |>i|)(‘lin(-<l through the stages of the network. For k n. the
among all unicasting networks.

algorithm even provides the fastest routing time

inputs

(8,4)-router g
(4,2)-router
0 010 ' moT 010 01 001 000 o
1 100 110 101 001 00 001 1
2 110 1 001 11 101] 010, 010 2
o1 10 001 11 H 011 011
3.2 | | 1 3
]
........ b
3
Q.
(4,2)-router =1
— 5]
g4 1M 1ooT 10 00 01 100 4
5 001 \iot1 00 o1l [if \ 10 101 ¢)
6 000 111 o011 10 11 110 6
7 101 000 111 111 111 11 o
| S g —J e | c— g }' | Sm—

CHAPTER
FOUR

EFFICIENT MULTICASTING
NETWORKS

4.1 Introduction

The Beneg network and its routing algorithms as deseribed in Chapter 3 can
only route unicast assignments. In some applications such as teleconferencing
and cable broadcasting, messages need not only be routed but also be duplica

ed as required. Thus, multicasting networks are needed. Multicasting networks
are more powerful than unicasting networks in that they can realize nilticast
as well as unicast assignments. However, as stated in Section 1.2, it still lacks ol
efficient multicasting networks that can route any multicast assignments (not
Just complete multicast assignments).

In this chapter, we give a multicasting network which is constructed in terms
ol simple logic gates and eliminates the need for a parallel computer for rout

ing as the multicasting network given in [NSS2b]. Our multicasting network s

19

recursively constructed by using concentrators as defined in Definition 2.1, and
as its routing is based on an absolute address

it does not require any sorting
. =2
i can be constructed with O(nlg”n) constant

decoding scheme. For n inputs,
bit-level depth, and can realize any multicas

fanin logic gates and O(lg*n)
These complexities cither matceh o

t assignments in O(lg”n) bit-level time.
¢ multicasting network reported i the

are better than the complexities of th
lticasting network is input-initiated and is more

literature. Morcover, our mu
applicable to the real situations than the output-initiated multicasting net-

works as in [NS82b]. With the inpnl.»inilintv(l property, multicast assignments
and the average routing time

can be pipelined over our multicasting network,
(lg*n) order to O(lgn)

for O(lg? n) multicast assignments can be reduced a O

in bit level. Unlike on our multicasting network, multicast assignments are
difficult to be pipelined on most of the multicasting networks reported in the
literature [NS82b, HwaT2, YM9la, ThoT7s], mainly because those networks are

output-initiated or their switches are set from the outer stages to the mner

stages.
I'he rest of this chapter is organized as follows. Section 1.2 gives a concentrator
design that forms the backbone of our multicasting network. Section 1.3 de

scribes the construction of the multicasting network, and Section 1.1 analyzes

M.

its performance. The chapter is summarized in Section |

4.2 Concentrator Construction

In this section. we describe a concentrator which is recursively constructed by
using another type of networks, called odd-even splitters. In routing packets

through the splitters and the concentrator, only the connecting bit (as defined

H0

in Subsection 2.1.1) of cach packet header is used. Tor n-inputs, our concen-
anin, bit-level logic gates, and O(lgn) depth and

trator has O(n lg n) constant [
evel. where n is a power of 2.

O(lg*n) routing time, both in bit |

4.2.1 Odd-Even Splitter Construction

Definition 4.1 An n-nelwork s called an n-splitter tf, for any k, 1 < k< n.
i can realize a unicasl k-assegnment thal pairs

and for any k of its n inpuls,
outpuls in a fired n/2-subscl of

cractly [k/2] of the k inpuls with some [k/2]
oulpuls, and the remaining [k/2] inpuls wilth some |k[2] oulpuls in the other

n/2-subsct of outpuls. ||
we will use the following nar-

['or case of explaining our network construction,

rower version of an n-splitter.

Definition 4.2 An n-splitler is called an odd-coen n-splitter if the two fired

n/2-subsets of oulputs in Definition §.1 comprisc odd-numbered oulpuls and

coen-numbered oulpuls, respectiocly. [l

Next, we give a construction for the odd-even n splitter.

A: Odd-Even Splitter

To construct an odd-even n-splitter, we use a stage of n/2 2x 2 switches and an

(1, n/2)-network, called an (n,n/2)-balancer, put in parallel. Figure 1 shows

= 16. Inputs 2/ and 2¢ + 1 of the odd-even n

this odd-cven n-splitter for n

splitter are connected to the inputs of switch ST, and the setting of ST s

controlled by the binary input s,. 0 < 7 < n/2—1.1f 5;is 0, SW, is set through;

otherwise, it is set cross. The function of the (n,n/2)-balancer, whose inputs

I

are the connecting bits of the incoming packets, 1s to decide the values of the

control inputs for the n/2 switches. Let r! be the leading bit of the packet at

output 7 after the setting ol SW,;, 0 < ¢ < n. Then, obviously, r},, = r,; and

if =2 Poped @ A =1 ils; = 1,01 < nf2— |
"-’z,-+| = Fayyy if 8¢ =10, and 1y = T2i41 and 1y, 2i ; L0 < i< /2 ‘

Before we show the design of the balancer, we will first prove that, given &

packets at any & busy inputs, 1 < k < n, there is a proper setting for s,.
0 < i< mn/f2—1,such that some [k/2] of the k busy inputs are routed onto

some [h/2] even-numbered outputs and the remaining | A/2] busy inputs are

routed onto some |[k/2] odd-numbered outputs.

Theorem 4.1 Let s;'s, r;'s and r;s, 0 < i<n/2—1,0<i<mn-—1, b
defined as above. For any k of ri’s set to I, 1 < k < n, there crists a sclling

Jor cach s;, such that eractly f/\'/‘ﬂ of vl s and cractly “/3] of "'Izwl s are 1,

0<i<n/2—1 |

Proof: I'or cach pair ol connecting bits (rgis72i41) at switch SW,, 0 <
n/2 — 1, we consider two cases.

Case [: If both ry and ryiyy arve the same, (ry,r,4) is called an identical
pair. For any identical pair (ry; roi). 1, = 1) regardless of the value of s,
Henee, regardless of how switch ST is sety the identical pair (1,1, v1) either
leaves the number of 1's at even- and odd-numbered outputs unchanged, or it
increases the number of 1's at both by 1. We will arbitrarily set s, = (.

Case 2: If ry; and ryyy arve different, (ry;, ryipy) is called a complementary pair.
First, mark all the complementary pairs as unmatched. Then, for a nnmatched
complementary pair (ry.r541). lind another unmatched complementary pair

(r2j,12j41), choose s; and s, such that), and "/.’,, are different (and so are i i1

=
(8%

inputs

Tg
g

10
11

ri2
13

M4
L T

(16,8)-balancer
S,
+*AAAAAAAAAAAAAA ¢ a y
sW : 0
| r
;91
Wy
} Sy
¢
sW, r':
} 3
r
SW4 r:
} 84
r'g
swW, e
} Sy
: r
| SW r_::’
i 8%
s 012
sWe [~ o
; Sy
"a
SW., B

Figure 14: An odd-cven n-splitter for n = 16.

outputs

; . " . Pos T as matched. At the
and 1%}, and mark both pairs (rai72i+1) and (ryj, ra;41) as matched. At th
«]

end of this marking process, il I+ is even. there is no unmatched complementary
) v (e N ¢ eodade)

pair left out, and exactly k/2 rg; S and exactly k/2 1l s will be 1. 11 A is odd

there must be exactly one unmatched complementary pair (raisr2ig1) et In

bl ; ol = . l tl 3 S ” >
g TIPS . . . 11¢ Nnen exad)
this case, s; can be chosen such that ry; = 1 and 15, =10, a At

'Y

TN s 1. & he statement follows.
“'/ﬂ Poy 8 and exactly U"/-EJ Faig1 S will be 1, and the stats (I

B: Design of Balancer
The algorithm described in the proofl above will be used to construct an (r,1/2)

balancer for the odd-even n-splitter. In describing this balancer, we will use

the terms identical pair and complementary pair as defined in the proof. Iur-

thermore, a complementary pair (rai,r2i41) 18 said to be zero type il ry, = 1

and 1y, = 0, and to be one type if ryp =0 and ry; 4 = 1.
The (n,n/2)-balancer receives n routing bits, 7,71, ... 7, from which it
determines the values of its n/2 outputs, so, 81«3 Snj2-1- We will use a lgn

level binary tree to implement the (n,n/2)-balancer, which is operated by a

routing scheme similar to that described in [DO90]. Figure 15 shows this
balancer for n = 16.

Fach routing pair (rai, r2ier) 18 connected to a leaf node, denoted LN at level 0
ol the binary tree, 0 < ¢ < n/2—1 1 (rai raign) is an identical pair, then the leal
node can decide s; by itself and set s; = 0.1 (12, r201) 18 @ complementary pair,
then the leaf node can not decide how to set s, and it passes this information
to its parent node in the form of a pair of outputs (z.1.) where z = | indicates
that the leafl node is tied to a complementary routing pair and /. specifies the

type of the complementary pair. Iz = L and o= 0, then the leal node has a

zero-type complementary pair; and if 2= 1 and £, . then it has a one-type

R

level 3 N \
level 2 IN // IN
level 1 IN IN IN //IN
level 0 | LN LN LN LN LN LN LN LN
ro1 ﬁﬁ J frs Ta 1r5 s $9 ri? o r?o ?51 N2 ha|ha Tys
So S1 S2 S3 S4 S5 Sé S7

Figure 15: The balancer with 16 inputs and 8 outputs.

=g

complementary pair. In both these cases, the leaf node must use its input. f.
from its parent node to set its control input. Figure 16(a) and Figure 17(a)
" a) ¥

show the function and ilnplmm‘nmI'i()n of a leal node, respectively.

From level 1 to level lgn — 2 of the binary tree, the balancer has intermediate

. . 1e Tach intermediate node receives two yairs of
nodes, denoted IN in Figure 15. Lach intermedia i

inputs, (r, 1) and (¥, t,), one from cach of its two children. If x =y = 0, then

none of the descendant leaf nodes of this intermediate node has an unmatched

complementary pair, and this node needs not engage nn aty action. If wehy =1,

then exactly one of the descendant leal nodes of this intermediate node has an

unmatched complementary routing pair, and it just passes this information

to its parent without any other action. Finally, if 2 = y = I, exactly two

of the descendant leaf nodes of this intermediate node have an unmatched

complementary pair, and the intermediate node uses the type mmformation (.

and 1, to set the control inputs of these two leaf nodes. ift.dt, =1, ie., the

two complementary pairs are of different types, both control inputs can be set

to 0; if £, dt, = 0, i .. the two complementary pairs arc of the same type,
then the control input for the left child is arbitrarily set to 1, and the control

input for the right child is set to 0. The function and implementation ol an
intermediate node are shown in Figure 16(h) and Figure 17(h), respectively.

The rool node. RN, at level lgn — 1 receives two pairs of inputs, (@, /) and

(y.1,) from its two child nodes. If @ and y are the same, then the operation
of the root node is the same as that of an intermediate node. I o and y are

different, then exactly one of the descendant leaf nodes of the root node has an

unmatched complementary pair (i.e., the number of 1's among the connecting,

' denotes the binary FX(¢ 'LUSIVE OR operation.

H0

Z =
tz - fz QI 2|+1

: _{[1) if r,=0andr,, =1,
T 1 i 271, if rz,_1and Bie1=0.
LN
f lf r2| @ r2H‘1'_1
T T 0, otherwuse
i Dis1 Si

(a) Leaf node

t 7 f Z= X@y
. ‘ t,, ifx= 1 and y=0;
1 T t,= yufx =0 and y=1;

0, otherwise.

f,, if x=1 and
II£E££ fx{1z, :fi 1g;n_1yanodt®t_o;

0, otherwise.
£ f,, ifx=0 and y=1;
y 0, otherwise.

(b) Intermediate node

. if %=1 and y=0;
RN £ o 1, it x=1, y=1 and t @1 /=0
T TlT TJ 0, otherwuse
, if x=0 and y=1;
bex bty vty v= O otherwise.

(c) Root node

Yo e 3 . .
Figure 16: The nodes of the balancer and their operations.

Fonr | Z
M2j41—
f §;
Z
(a) Leaf Node
t
X o
t
y
f
X
L’
(=D t
i e ?
e z
f f
z — y
(b) Intermediate Node
==
ty
f
y
X = f
- s y

(c) Root Node

Figure 17: Implementations of the leal node, intermediate node and root node

in terms of logic gates with fanin 2.

level 3

level 2

(16,8)-balancer.

Figure 18: Operation of the

bits in the inputs is odd), and the root node sets the control input of this leal

node according to the type information: it sets the control input to £, if s

I, and to ¢, if yis L. The function and implementation ol the root node are

shown in Figure 16(c) and Figure 17(c), respectively. .

All these steps are illustrated i an example in Figure 18 for a halancer with 16

inputs and 8 outputs, where the dashed lines between the nodes indicate that

the unused ares for the given pattern ol connecting bits.

4.2.2 Concentrator Construction

Using the odd-even splitters constructed in the previous subsection, an n

concentrator is recursively constructed as shown in Figure 19, where n s a

power of 2.

. outputs
inputs

n/2-concentrator

s odd-even
n-splitter

n/2-concentrator

banyan connection n-shuffle connection

cursive construction of an n-concentrator.

Figure 19: The re
Theorem 4.2 The n-nelwork shown in Figure 19 is an n-concenlrator.

Proof: Given k packets at any k busy inputs, the odd-even n-splitter can simul-

tancously connect some [k/2] of the k packets onto some [k/2] even-numbered

outputs, and the remaining |k/2]| packets onto some [A/2] odd-numbered out

puts. Because the outputs of the n-splitter are followed by a banyan connection,
the [Ak/2] packets at its even-numbered outputs are routed to the inputs of the
upper n/2-concentrator, and the other [k/2] packets at its odd-numbered out

puts are routed to the inputs of the lower n/2-concentrator. By induction, the
two n/2-concentrators can route these [A/2] and [A/2] packets onto their first
[k/2] and first |k/2] outputs, respectively. The n-shuflle connection, which

follows the two n/2-concentrators, then moves these & packets into the first &
of the n ontputs of the n-concentrator. ||

The concentrator in Figure 19 can be recursively decomposed into a net work
consisting of splitters only. Such a decomposition is shown in Iligure 20 for
n = 16. We note that the (2.2)-sphitters in the last stage do not need balancers

since they can be set directly by using the connecting bits they receive. We

60

16-splitter ;
Two 8-splitters

""") ennRAAAAAS ARSI AN BN Four 4-splitters

(8,4)-balancer (4.2)-balancer Eight 2-splitters
| L —

(16,8)-balancer

OUTPUTS

o1

1

) \

3

4 bl

5
. =3
2 7 s et
% o+ LELLI M A f— g
s —

—1

LU [T

12
13 \
14 T
15 31 4 F
il [142}-h-|--m reverse
(84)-balencer connection

20: An fully (l(\('()mpnsml n-concentrator for n = 16.

Figure
also note that the fixed connection following the last stage of 2 x 2 switches
is a reverse connection which results from the composition of the cascade of

shuffle connections that are generated in the recursive decomposition ol the

|6-concentrator.

61

4.3 The Multicasting Network

(liven the n-concentrator just described, we [)r()('(‘v(l with the construction ol
1 5 » - i L ' §

a multicasting network in this section.

4.3.1 Multicasting Network Construction

. . Cenre 21, Tt is constructed recursively
, . _ ool So o rure 21. - ! i
I'he multicasting network 1s shown in Figu

where the non-recursive part consists of a distributor stage and two (n,n/2)

concentrators. The distributor is an array of n (1,2)-copiers where cach (1.2)

le. any one or both of its two outputs, and the

copier can map its input to not
concentrators can be realized by the construction given in the previous section.
We first establish that this network is a multicasting n-network.

Theorem 4.3 The network shown in Figure 21 is a multicasting n-netu o~

Proof: Consider an arbitrary, but fixed multicast assignment ol the mmputs to

the outputs. If an input in this assignment is paired with an output in the first

hall of outputs then route it to the upper (n,n/2)-concentrator, if it is paired

with an output in the second half of outputs then route it to the lower (n.n/2)

concentrator: and if it is paired with outputs in both hall of outputs then route
it to both concentrators. Now, the point is that no matter how the multicast
assignment is fixed, cach concentrator can receive no more than 12 packets,
since otherwise an output must he assigned to more than one input which s
impossible. Thus, the (n, n/?2)-concentrators can route the packets they receive

to the inputs of the multicasting (n/2)-networks, and the statement follows by

induction. ||

distributor outputs

inputs
0 // —p —» ()
— > - 1
° (n,n/2) . multicasting .
concentrator . n/2-network .
[]
1 y — n/2-1
——
® ® -
. » - N/2
. N icasti —n/2+1
® (n,n/2) multicasting n
/ °| concentrator | 3 n/2-network .
n‘1 . L4 [] °
—><\< ‘ P — n-1
T

Figure 21: The recursive construction of a multicasting n-network.

Unlike the previously reported multicasting networks, the multicasting net work

given here does not use any dedicated copy network. Rather, it generates {he

copies of the packets as they are being routed to their destinations. As we
shall see subsequently, this approach reduces the amount of destination address

information that cach input must use in order to route its packet to the outputs

it desires.

4.3.2 Routing Multicast Assignments

In this subsection. we show how multicast assignments are routed through the

previous multicasting n-net work by using O(n) bits of routing information per

imput.

63

Definition 4.3 For a given multicast assignment, a m ulticast patlern for an

: ' ! ' 0 a multicasting n-nelwork is a binary
impul i (or for a packel al that inpul) in a g

; — 1 if and only if inpul i is paived wilh
sequence ((1,(,,(1,1,...,(/,.,,_1), where a; Lo y i g

output j. ||

Proposition 4.1: In a multicasting n-network, any given input can have any

one of 2" multicast patterns.

Proof: It follows from Definition 1.3. I

Proposition 4.2: If an input i a multicasting n-network must specily the

outputs to which it is assigned independently of other inputs, then it must use

atl least n bits.

243 1 v have & 7 » of 97 . e
Proof: By Proposition 1.1, aninput may have any one of 2" multicast patterns.

If the input is to specily any one of these patterns without relying on the

specifications of the other inputs, then it obviously needs lg 2" = n bits. ||
We note that the independence assumption used here is very nch like as-

suming that each input must use al least lgn bits to specily the output to

which it is assigned in a unicasting n-network where cach input can be paired
with at most one output. We also note that il the independence assumption
is relaxed, then it is possible that all (n)" assignments for a multicasting
n-network can be coded only with lg(n + 1)" = O(n lg n) bits. In fact, this
coding scheme can be enforced if the assignments are specified from outputs to
inputs, since cach output can only be connected to at most one input, and thus
O(lgn) bits of source address per output will suffice. However, in the multi-
casting network construction given here, it is assumed that the inputs are the

active ports and initiate the connection requests. In this case, we do not know

of any coding scheme that works with O(lgn) destination bits per input to

61

if i nt I some multicast assignments can
specify any multicast n-assignment although :

be indeed be specified by O(lg n) destination bits per input. For example, the

multicast n-assignments for which cach input is paired with a set o consecu-

tively numbered outputs can be specified by 2lg n destination bits per imput

with the first lgn bits specilying the number of outputs paired with an input

and the second lgn bits specilying (he smallest numbered output. Therefore,

we assume that the inputs independently specily their multicast patterns by

. " s s e N G a3 5 . \l-" a1 . 1 r schemes,
using O(n) bits per input. We will deseribe two destination coding schem

both using Ofn) destination bits per input, to realize multicast assigniments.

Pirst, we establish the following propositions which will be used in the two

destination coding schemes. Let (it « <= 5Bt} DE & multicast pattern ol a

packet at an input of the multicasting n-network as shown in Figure 21, 1t

is obvious that the packet is routed to the first hall of outputs il and only

if the elements @g, @y, .-, @nf2—1 are not all zero, or equivalently, ag + ay +4

f gy = 1.2 and. it is routed to the second half of outputs if and only if

Apjy F Appogr + o F @ = I. More generally, the following proposition holds.

Proposition 4.3: Suppose that the outputs in the network of Figure 21

are partitioned into 2k groups of n/2% consecutive outputs from top to bot-

tom, 1 < k < lgn. Then, a packet at an input whose multicast pattern is

(ag.ttys ... a,_y) is routed to the ith group of outputs, 0 < ¢ < 28 — 1 if and
£ § ; P T . oyl

only il at least one of the a, 28 < j< i+ 1nf2%is 1. ||

Define a binary variable (/,k on kand i, 0 < i <281, as 4/,A | il and only

if at least one of the a;. in/28 < j < (i + Dn/2%is 1. Let OF denote the ith

Here + denotes the binary OR operation

6hH

. ; . . T e have the following equivalent
group of outputs defined in Proposition (3. We have the following equivalen

proposition.
Proposition 4.4: Suppose that a packet at an input of the multicasting n-

21 has a multicast pattern (ap,ay,y...,a

). Let (/f"

n—I

network shown in Figure
. ok . 4 . K) ’ ACKE
and OF be defined as above, g€ -1 1% k < lgn. Then, the packet

would be routed to OF il and only il di = 1. I

To route a packet with a multicast pattern (@g, @y, ... dy-1) through the multi

casting n-network, the (1,2)-copiers along the path(s) of the packet can use ds

to decide their settings. When it is recursively decomposed, the multicasting

n-network has lg n distributor stages. If these distributor stages are numbered

1.2, ..., lgn, from left to right. then stage & has 2571 distributors, numbered

0. 1..... 2" _ 1 from top to bottom, | < k < lgn. Bach (1.2)-copier in the

ith distributor at stage k uses the pair (b, 5, p) 1t receives to decide its own

setting as described subsequently.

A: Routing with 21 — 2 Destination Bits

In the first coding scheme, cach packet at an input is given a (2n — 2)-bit
. . R R lgn gl Ig =
destination address (d.d}, d5. d7,d3. di,....dg " df",dE"). These 2n — 2

destination bits are defined as in Proposition 4.4. Figure 22 shows an example
of this coding scheme for n = 5. Given such a coding of destination addresses,
routing multicast assignments is straightforward. For cach value of A, dt, 0 <

N A specify 2% Jestination bits used by the distributors at stage A 1l

a (1,2)-copier in the ith distributor at stage Ak is on a path ol a packet, then

it uses «l.ﬁi and 1/51»1_1 that it receives to route that packet, (0 < ; < 281 "
3 . o A k .
| <k < lgn. If ((/2‘.(/21+|) = (0,1) then that packet is routed to the lower

output of the copier, if (%, d5,) = (1.0) then it is routed to the upper

66

Destination Code

input Multicast Pattern
i old! d3didsd? optoddidiodeya?

8y2,3,333435% A7

OO0 O =
O—-~0000C0O0
cococo—-00 =
Q2200 -0 —
S S o S T S S S
OO0 O0O—+-00 =
COO0OO—=-000
OO0 00
O—=-0000C0—=
e Se SN s S B
QOO0 O0OO0OO =
QOO O0O—+-000
QOO O—=+000
OO O—+000
OO0 —-00000
QOO0 O—-~00
CQOOCOOOO0O —
O—=+0Q0 000

Noor,wNn—=O
(slcjelelalie el
OO0 —=-000
OO0 O0O-+000
QOO+ 00O00
00200000
QO00OO~~00

Destination coding for multicast routing,.

Figure 22:

ik gk ot s routed to both outputs. Along with
output, and if ((l.ﬁi.(lé,-“) = (1,1) then 1t 1s routed [

that packet, the copier also routes a valid destination code for the remaining
al packel, L :

stages on the path(s) of that packet. The determination of the destination code

depends on the output(s) that that packet is routed to. If the packet is routed

to the upper output of the copier, then the first half of the destination code

for cach of the remaining stages is retained, and the second hall is discarded.
<l) v

and if it is routed to the lower output, then the second half of the destination

code for each of the remaining stages is retained and the first hall s discarded.
Therefore, at all distributor stages. the leftmost two bits of the destination
code that arrives with a packet at a (1,2)-copier are used to decide the setting
of the copier.

This routing scheme is illustrated in Figure 23 by using the multicast pattern
for input 3 shown in Figure 22 as an axample, where input 3 is routed to
outputs 1, 2 and 3, and only the first four outputs are depicted. The (1.2)

copiers (('Ps) that are adjacent in the tree are separated by a concentrator

stage which is not shown. A more complete deseription of the routing scheme

. — . concentrator stages, is shown |
for a multicasting g network, including the concentrator stages, 13 51 LR

Figure 24 The multicasting network 18 obtained by decomposing the two
> / > ant

- Lo 3 LR I The
multicasting A-networks hased on the construction gven i Figure 22 e
nlticast assignment (hat is realized is the one given i igure 23. It is assumed

that. in routing their busy inputs, (he concentrators operate as deseribed i

Section 4.2,

B: Routing with n Destination Bits

The length of the destination code can be reduced from on—2 to n, by increasing

the complexity of routing at cach copier node. In this case, the packet al cach

mput carries its own n-bit multicast pattern (ag,@ys--+>fn- 1) as s destination

address. The (1 2)-copiers must rely on more bits in order to determine which

way to reute the packets {hey receive. More Sl)(‘(‘lh('&l”_\". the copiers in the kth
distributor stage must examine ”/kal bits, 1 £k S lg n, 1o determine their

settings. Other than {lhis. this multicast pattern coding scheme is very similar

{o the previous one, and its det ails are omitted.

Remark 4.1 We nole thal using O(n) bits per mpul to encode mullicast as-
stgnmenls s quile r_/]i(-i('nl s compart d to the coding schemes used in moullicas-
ting nelworks thal rely on separale copy nelworks [I,uh'(\'/. Those destination
coding schemes 1 quire O(nlgn) bils to speeify a multicast pattern for cach -

pul, or O(n*lgn) for all the inpuls as compart d lo O(n*) bits of our coding

h'('ll(mes. H

4.4 Performance Analysis

In this section, we determine the cost, depth and routing time of the multi

casting network described in the previous section. As before, we continue 1o

68

10 /1100/01110000

Input 3

Figure 23: ustration of tl

Multicast Codes Distributor
Stage

11/1001/10000010
input 0
00/0000/00000000
input 1
01/0010/00000100
input 2
10/1100/01110000
input 3
00/0000/00000000
input 4
01/0010/00001000
input 5
01/0001/00000001
input 6
00/0000/00000000

Concentrator

input?7

Figure 24: A multicasting

given in Figure 22.

Distributor
Stage

01/0010
01/0001

10/1000

-network shown to realize the mu

6Y

e multicast rou

Concentrator

10/0100

ting scheme.

Distributor Concentrator
Stage Stage

lticast assignment

e Thias or of two number of
assume in this section that all our networks have a power (

mputs and outputs.

; outing s O (1), Deone(10)y Teane(n2)
IYirst, we compute the cost, depth, and routimg time, Ceonc(m) ne(10) n

. % Uil A9 ¥ - ontre |\
for the m-concentrator. As described in Section 1.2, this n-concentrator

recursively constructed by using an odd-even n-splitter from which we Tave

('51,1,'](7)) + 2('r'um'(”/.‘z)'

I

Ceone(m)
Deone(n) = Dprizin) + D.oncln/2),

I) = Taptie(n) + Teone(n/2);

denote the cost, depth, and routing time of

where C0(n), Dl n) Tsprit(1)

the odd-even n-splitter, in that order. The odd-even n-splitter is composed ol

: ; . : MN_bhalaneer Jiere the balancer
an array of n/2 2 x 2 switches and an (n,n/2)-balancer, where the balancer

is used to set the switches. Once the switches are set, the packets can pass

through the switches. Hence, the routing time of the odd-even n-splitter is

decided by the routing time of the balancer. and the depth of the splitter is the

depth of a 2 x 2 switch. Assuming that a 2 x 2 switch can be implemented by

using six bit-level logic gates with fanin 2, and depth 2, we have

('sp/l'l.(”) = 3“ + ("WMHM /'(”)a
]).‘1‘]111’(”) = 2,

’I;pll/(”) == '/‘fw/mu'v I'(”)'

where Coaaneer (1) Thataneer (1) denote the cost and routing time of the balancer,

respectively. The (n,n/2)-balancer has n—1 nodes and the longest path fronyan

input to an outnput is 2 len. As shown in Figure 17, cach node in the balancer
| | g £

)

can be implemented by no more than 1 bit-level logic gates with fanin 2,

and within any node, the largest mimber of 2-input logic gates along a path

70

-y ’—‘ 7 n ’ <
. . . R (n) < 1Tn and Tgi(n) <
from an input to an output is 1. Hence, Cspir(n) =

ssions into the cost, depth and routing time

Slgn. Substituting all these expre

recurrences for the n-concentralor, and solving the recurrences with Ceone(2)

Oy Lol 2) = 25 and '['(,“,“,(2) = |, we find

Coone(n) = [7Tnlgn — Hn,

Doanc() = 2lgn,

Ponal) < Alg?n +4lgn.

conc

We note that for n = 2, the n-concentrator reduces to a 2 x 2 switch from

2, Dol 2V and Teonc(2) follow.

which the values for Copne(2

With these expressions, we can now compute the cost, depth, and routing time

of our multicasting n-network. Let Caani(B), D, (), and T, () denote

its cost, depth and routing time. As shown in Figure 21, the multicasting

n-network is recursively constructed by using an (n,2n)-distributor and two

(n,n/2)-concentrators. Hence,

(’mulli(”) = ('([[slr(”) = Z(V('um'(”) - 2(‘rrz::/11(’1/2)-
I)mulii(”‘) = I)//z'.s'tr(”) o I)(‘nm'(”) <} [)mulll(“/.-))~

’['”,”1“(,”) = /I'vlislr'(”) + lll'vun'(”) -+ 'l‘mu[(i(”/.l)'

The (n2.2n)-distributor is an array of n (1.2)-copiers and cach (1.2) copier can

he implemented by two logic gates of fanin 2. Hence, Cyisir(n) = 20D gi5.(n1) =
L and 7., (n) = 1. Substituting these, and the expressions for €' (1), Do (10).

and T

conc

(1) into the above e recurrences, and solving them with €7, (2) -

Do utii(2) = Tutii(2) = 2, we have

‘ M 14D
(mu/u(“) < 17n]‘L‘, 1,

Dprii(n) = lg*n +2lgn+ L

i) = ‘1/:”3%':"1+1|g2n +11/31gn.

The routing time given above catl be further reduced by pipelining consecutive

multicast assignments over the multicasting n-network. Suppose that there ar

o consecutive multicast assignments to be routed through the multicasting n

network. An assignment can enter a stage after the previous assignment leaving

i o DR ol 95 v overlapped. TFrom
that stage, and hence routings in different stages can be overlappe . 1

the previous caleulation, the odd-even n-splitter needs O(lgn) routing time,

and is the “bottle-neck stage” of this multicasting n-network. Thus, it takes

O(lg* n+ (o — 1) 1gn) time to route these a consecutive multicast assigniments,

oipy = 9 s
and the routing time per assignment is reduced to O(lgn) if @ > lg°n.

4.5 Summary

In this chapter, we prvsvnt,(‘(l a multicasting network. Unlike the previously

reported multicasting networks. this network has a very simple design, and can
be routed very fast. Including the routing cost, it has O(n le* n) cost. O(lg*n)
depth, and O(lg”? n) routing time without pipelining, and O(lg n) routing time
0 bit level. These complexities compare favorably with

with pipelining, all i
those of the best generalized connectors reported ecarlier.

While this chapter did not explicitly treat unicast assignments, those can also
be realized by the multicasting n-network described. I the multicasting n-
network is sought to realize only unicast assignments, then the distributor
design and the destination coding can both be simplified (only lg e destination
bits per input is sufficient). This, however, does not reduce the cost. depth and

routing time complexities of the network.

-1
8%

<liv S ‘s' 1)l{([dl -concen lt() ' ll‘ l](lﬁ()(/llj //)
I'a I hl 4
COll ructiol). 1 O
5« h(l‘,)t‘(I l]\() }.’,(]\(a h

- elining. and O(lg n)
i i yelining, anc s
. lepth. and O(lg? n) routing tune without pi
cost, O(lg®n) depth, a ‘

aties all])(‘
I L j 38E ('()“”)'(‘.\”l(‘ ca

i I J‘ i” > l"lll i” ,)”]\\v(‘]. l["h((o}
B “tri“[_" ':i“l(‘ \\'l”] l)l’)(1n ‘L’.

I(‘(l”(’(-(, < f ' s -]» ‘ ' » \1 TG (‘(] 11 f' = {44 ' Cll¢ LET, th(\” ‘}
as o (1@ T l\\ I'KS (e con 1 nex ' 1¢
il I) D O] ¢ 1) ’

ClLW() |
R =] I l > I Cas [= > 3 < l J 1, ' 1 (
11 l] O Sl ¢
J n) (aAlsc e S(o(l,()\\ { ,) , »
m '

()]“l)l(\It.l(- O [1€ ' 1 t 1£]](‘\\(I] 11

same factor of reduction.

CHAPTER
FIVE

EXPANDERS, BOUNDED
CONCENTRATORS AND
SUPERCONCENTRATORS

5.1 Introduction

The cost of the multicasting network described in Chapter 1 can be rediced
from O(n lg*n) to O(nlgn) if the concentrators can be constructed with (O(n)
instead of O(n lgn) cost. One approach to construct such O(n)-cost con
centrators is to employ so called lincar-size expanders. The key step to ac
complish this is to construct expanders with large cnough expansion cooll;
cients. Although linear-size expanders have explicitly been constructed e
fore [Mar73, GGSI, AMSS, AloS6, NAMST. JMST], their expansion cocflicients

are quite small (0.466 for the expander in [NAMST7. JMST).

In this chapter, we imvestigate the possibility of explicit constructions of linear

size exbanders w T rellie
panders with larger expansion coeflicients than those of the previously

constructed expanders. S[)(‘(‘ifi(‘a”‘\'. we construct a new family of linear-size
expanders with density 33 and expansion coeflicient 0.626 when a = 1 and 0.868
when a = 0.5. These expanders are obtained by using the method of Alon et
al. [INAMS7] and Jimbo and Maruoka [JMST] that ties the expansion cocflicient
of an expander to the second largest cigenvalue of a matrix representation of
that expander. Using these expanders, we also obtain a lincar-size hounded
concentrator with density 25.5 and a linear-size superconcentrator with density

208.

The rest of this chapter is organized as follows. Section 5.2 gives the con

struction of our expander, and determines its expansion coellicient. Section 5.3
outlines how our expander can be used to obtain lincar-size concentrators and

superconcentrators. Section 5.1 summarizes this chapter.

5.2 Linear-Size Expander Construction

[this section, we will construct a lincar-size n-input expander with density 33
where n =12 for any positive integer m. This construction follows he original

formulation given by Margulis [Mar73] and the analysis in [AloSG, JMST].

5.2.1 Expander Construction

Let Z,, = {0,1,...,m — I'} denote the modulo—m integer ring with the usual
modulo addition and multiplication operations, and let Aw =2, x Z. where
gl)

x denotes the Cartesian product. Define the following permutations on A

e

mi(e,y) = (r+ 6y.y),

mo(w,y) = (v +6y.y—1),

~7

— (x4 6y.y+1)

ra(z,y) =

ra(ay) = (@+060y 2),
rley) = (@t 2y =20 =3);
relz,y) = (&+2 —2a — 3y — 1),
ro(e,y) = (@ 42y, =20 =3y + 1),
rele,y] = (&+2,—27~ 3y +2),
ro(ey) = (v.60+1),

rolr,y) = (@— 1.6 + 1Y),
rlml) = (x4 1,60 +y)
ra(z,y) = (T + 2.6x + 1Y)
rs(r,y) = (¢ —2y,22—3y),
rale,y) = (x—2y—1,2r=3y),
ms(z,y) = (& — 2y + 1,2x — 3y),
melz,y) = (&—24+ 2,20 — 3y),

for any (a,y) € A,,, where the arithmetic operations are defined over Z,,. 1t s

casy to verify that m;, 1 <1 < 16, are permutations over 7, X Z,,.
Now define a 32-regular graph (/' = (V. I2) on the vertex set V' = A, by joining
cach vertex (r,y) € V to vertices mi(x,y) and x Yz, y), for i =
Then, based on (i, construct a bipartite graph (i = (1. O,) with the set ol
inputs [= V and the set of outputs O = V such that, for any (v, y) € [

and any (2/.y) € O, ((x.y), (2" y") € £ il and only if (x.y) = (2'sy') or

((,y), (2, y") is an edge of (7. Obviously. ¢/ has no more than 33n edges.

70

e the fi ing theoren.
Applying the results of Alon et al, we have the following

fined above, let Ag be the adjacency malrer

« v ! >
Theorem 5.1 Given (i and G de

4 elgenv " ¢l catrie A = (1/32)Aq.
of G and let X be the second largest cige noalue of the n J

qal v s e " s "/I
Then, ¢ is an (‘N..H.(',,..H)"~’l’”"‘l" wil

sii~-&
R —— -
o A+ 4da(l —A)+ 22 4+ 8a(l = A)(2—A)

Jor any o, 0 < o < 1.

Proof: Sce Theorem 2.1 to Corollary 2.3 in [N"\MST]' |

For a fixed a, it 1s not too difficult to check that ¢, is a decreasing unction

of A so that an upper bound on A will yield a lower bound on the expansion

coefficient, ¢,,. In the next subsection, we derive an upper bound on A and then

calculate the expansion coefficient of this expander.

5.2.2 Expansion Coefficient Calculation

‘or tional convenience. we shall assume that each pair in A, as a two
v notational convenience,

s 2 " I — . fine
element column vector. Given © = m?, let N = {0,1,....n — 1}. Deline an
; . . J1)
automorphism v between N and A,, such that, ¥j € N,v(j) = e A,
J2
where j = j; +mjy, 0 < jioj2 < m— L (i.c., (Jy.J2) is an m-ary code of).
Henee, for any permutation m; on A0 = 120 16, there is a counterpart

permutation o; on N defined by o:()) = v lm(f) = v Wmri(v())), V) € N.
For cach permutation o;, we have a permutation matrix M, I”',[/./.| whose
entries are given by '”,'/.lv = 6(miv()) (k). 0 < gk < n— 1, where (-,) is {he
well-known Kronecker’s delta function. Let M} denote the transpose matrix ol

M, . 1t is not difficult to verify that M7 is the permutation matrix associated

: ; ; _1 _ ,,~1.=1, Therefore, Ac the adjacency
with the inverse])(‘l‘mlllili.l()ll a; = - m; V. I'herefore, Ag (adje :
matrix of) is the summation of these 32 permutation matrices, and matrix

A= (1/32)A is given by

| Je " 5 }
= Z{Mm + M,

& gl
16

1
Ay + Aq, where Ay = 9 ; ;\I,’,' and Ay = Ay

Il

In the construction of the (‘.\Z])?\ll(l('r~ we use two types of permutations on Ay

namely lincar permutations and affine permutations. I'he linear permitations

are expressed by multiplying a 2 %2 invertible matrix over 7., with cach element

of A,,, and the afline permutations are expressed by adding a constant vector

to linear permutations. More specifically, we use the following matrices and

vectors:

1 6 ; | 2
I)’| = If;l = 3 /;;; = If; =
0 |1 -2 -3
1 0] B
Bs = By' = . Br=Bi'=
6 1 2 =3
| 0
a; = . =
0 |

In terms of these matrices and vectors, the permutations on N are rewritien

as:
oy = v B, v, oy = v ' —ay+ Bv),
o3 = v W ay+ Byv), 04 = v~ 2ay + Byv),
o5 = v~ Bap, o = v '(—ay+ Byr),
o7 = v Yay+ Bsyr). o8 = v '(2a2 + Byv),

_ pY(—a, + Bsv),

oy = v~ By, Fip =
o = v Wa, + Bsw), Tz = v~ (2a) + Bsr),
Ty = v~ 1B, ol = v (—a; + B-v),
o = v a+ B-v), T = v=1(2a, + Bzv).

Now. define a unitary matrix O = [wjklnxn over the complex numbers by
Wi g = (l/'nl)w<w(./).rf(/v)> 0<j,ksn— 1. where w = (.1'/)[(27r/m)\/ —1] and

<, > denotes the mner product of vectors. Because A is symmetric and the

5 - : F A s e know that
sum of entries in any row or any column of A is 1, we kn ‘

o . @
0 - -
0 AQ = = Ay + Ag
: I
0]
where [l = [hl-‘k](,,,l)x(”_l) is a Hermitian matrix, \1 = 0*A Q) and _, -

0 A,0. The largest eigenvalue of Ais 1 since the sum of entries in cach row or

cach colummn of A is 1, and hence the second largest eigenvalue of A is equal to

the largest cigenvalue of 1.
Subsequently, we specily cach entry of 11 and then to determine an upper
First. we need the following two lemmas

bound on the largest cigenvalue of 1.

of Jimbo and Maruoka [JMST]:

o
X
SN

Lemma 1: If 7 is a linear permutation on A, .o, 1l there exists some .
invertible matrix B over Z,, such that the counterpart permutation o — 1wy

of 7 is given by ¢ = v~ ' By, then O*MiQ) = M;, where & - T (i

Lemma 2: If 7 is an afline permutation on A, e il there exists some 2 x 2,
invertible matrix I3 over Z,, and some two-clement constant column vector a

such that the counterpart permutation o = v lrroof mis given by o = v (a

79

By, then Q*MLQ = diag {“"<

n—1 N =
_,,,,,(‘1)\)} M;, where ¢ =V
1=0

drag{-} denotes a diagonal matrx.

Applying these lemmas, we can compute

Furthermore, using the facts that

J1 and < ag, v(j) >= Jja2, where (Ji.J2) 1

Ay as

16
A, = (1/32) M 0
=1

w(i)> < —az2,w(1)>
w<uzl(_/) + w

[
= ?E(/I(l.([{l +
w<—2”2‘u(ll)>}[/‘11/—|((H|—l)')_l" + 1\[“_1((H"‘-1)1)—1p]

o< I g =™ w(1)>

|igiaens
+ :—;_—z(lmg{ I +

b o< (M, gyt + Moty

is the m-ary code of j, we obtain

A = (1/:;2)(11‘(1_(,{1 +w! +w 4 uf’-”} [Mgy, + M)

+ (1/32)diag {l 4w w4+ u,‘_z“} [M,, + M,,]

Similarly, using the facts that Ag = Ay and M7, = M,,_, = -”(,j'{
t = 1,2,3,4, we compute Ay as
Ay = (1/232)(11'(1,3]{1 Fw™ 4w +u-‘2"1} [z”,,»l + M, 1]
1 1

The j, k-th entry of H is the summation of the j, k-th entries of Ay and A,

+ (l/:;z)(/m_q{l Fw™? w4 »u’-“} [x\ln,;l + M,]

and is hence given by

lj

+

= %(|+ w 4w 4w) [o(Bi(f). (k) + 8(Bav(j). (k)]

Foos (W™ W) BB (). o) + (B k)]
i(| 4w 4w 4w) [8(Bsv(j). v(k) + 6(Brv()), v(k)]

+ %(L w4 w4 @) [S(Bar(j).v(k)) + 8B (). v(k))]

S0

t(B~"" " 'v and

(B = Bs, (B)07 = Br < anwli) >=

for

)

for 1 <j,k<n-—1.
alue A of H, we define a real-valued matrix

l'o upper bound the largest eigeny

"= [(‘,'[,A'](n—l))((,,-l) ‘)\
S(Biv(y),v(k))

Cijk =

= Lll ™ 4 "
32

S(Biv()).v(k)) (h.1)

U_Mx H'M_

I =12 iz J
. + +w?
oty T
where 1 < j,k < n— 1. Then ¢ > |hjxls | < j kL n~1, and (' is symmetric

because H is Hermitian. By the well-known prin('ipal of Rayleigh, there exists

5 o | 3 > s laroenc
an upper bound on the largest cigenvalue A¢ of (7, and, i turn, A (the largest

cigenvalue of 1) is upper bounded by X (See Pmpo\m(ms 3.5 & 3.6 in [l\l‘w]

for detail). Specifically, we have the following inequality:
n—1
A < max Z Vi kCik

— 1<j<n—1

where 5, is any real valued function of j and k. which satisfies the conditions
that v;4 > 0,9j% = 1/Vk.0 1 1 < j,k < n—1 Let D; = L1 vucia. Then
A € maxigjcn—1 Dj-

Now, in order to upper bound A, we need a real-valued function 5, . Mirst, let

: J
| || be a normon A, defined by || | = Re(w”)+ Re(w’?) lor cach
J2

(jrsj2) € Ap, where Re(-) denotes the real part of a complex number. Then,
define ;4 by
VB vG) =1 v k) |
ik = l i | #() =11 v (k) I
VI3t ey <l v (o) |
= (1/VBDud vG) I =N+ o v =1 (k)]

+ V3 k) = G D

S

. b otep function defined as
where 6(-) is the Dirac delta function and p(-) 18 the step function < i

ple) = 1if & >0; otherwise /l.(-l') = 0

3 ; o are ¢ ot 8 distinet A's such that
I'rom Fquation 5.1, we find that there an at most 8 ¢

. e B e Bl e
¢ x # 0 for any given j, 1 < j<n-L Specifically, they are ki = v Biv(y)s

RS are (‘.\’pr(‘ssv(l as

92 3. Hence, the corresponding 7.k,
R+ 8B+ () where B = [=R
8.

| ()| — || Bir(i ||l011—l.4,..,.
Combining these, ; can be written as

1 B (E) + V3Ap(—E,
D; ==l +w “-i—u'“-{-w]iZl: o Fi) o+ 8LE) 2)}

l =2 12 ,202 ’l/ B+ 6(E;) + :;.l/l(—l’;;)ﬁl
bl +w™ 4w +uw I'};[m/f() v

['rom now on, for calculation convenience, we will change the discrete version

I
A

ey
/

of D, into the continuous version. Given any v()) Wl &
J2

x = 27 /m and y = D7)y /m. Since @ = cap[(2m/m)V/—1]. we

m — 1, let

have |1 + w™ + " + w| = 41|(~u.<(.r)('o.~:(.1'/'_’)| and |1 +w™

12 4 2 4 L‘(,-‘,I:l

Aeos(y)cos(y/2)]. Furthermore, because || v(7) H: Re(w)+re(w’?) = cos()+

cos(y), I's can be (‘Xpl‘(‘ss‘('(l as

K, = 2smm(3y+ r)sin(3y),
Fy, = 2sm(3y — .l').ﬁllll(:‘.lj),
3 4 ol
Es = 8sin{ yt+). ',,,(_I#‘i)l) 08 Lt,ﬂ)

<

Jva+y, . xt+y g, &1 3

[}, = 8sin(Jstn(——)cos 5)
[, = 2sin(3x+ y)sin(3x),
Es = 2sin(3x —y)sin(3r),
E: = 8sin(—;—{/—)_——l ysan(L/—:——I)eos*(Yy 7 £).

 3z—y, . Ty 2T Y 5.2
g = 8.&'[”(_f-)/—’)"“”(—/‘)")(U‘s 2) ()

s version D(r.y) of D; given by

[-—l’»p(E;) + 6(FE;) + V3. l//(flz',)}

I'herefore, we get the continuou

™M=

[—’-1\/';"7/1([+ 6(F) + V3Au(— /'f,’)J (5.3)

|
Mx,n) = ;‘('o.s'(.r)('(;.s'(.z'/;’)l

¢

M= 1

|
+ 3 |cos(y)cos(y/2)

=5

1=

Now, A is bounded by A < maX_r<ry<n D(x,y), where r and y are not both

0. In addition. we note that D&, y) 1s .\'_\'mmvlri('. e, D(eyy) = D(y.x) =

D(—x,y) = D(x,—y). Therefore,

A < max D(x,y), where = {(.I'.!/HO <yLarsmaty # 0},
(r,y)eR

We will show that the right-hand side of the above inequality is upper bounded

by 0.705. From Iiquation 5.3, we first note that D(x,y) depends both on the

signs of 19;’s and the values of]('os(.r)('()s(.l'/'u))I and ""'-“(.’/)(“)-*‘(!//2)|. We then

partition I into the following subranges:

R = {(x,y)|lx+3y = 2n}

Ry = {(x,y)|r+3y<2m,a—3y<0,3x—y 22w}

Ry = {(z,y)|lz+3y <2m,0—-3y < 0,3r —y <2m,3x +y > 2r}
Re = {(x,y)le =3y >0,30+y =37}

s = {(x,y)|le =3y >0,2r <3r+y< 3}

Rs = {(z.y)|x-3y>0,x £3z+y < 2r}

R: = {(z,y)|le =3y <03x+y<2ma+3y>n}

Re = {(x,9)]x =3y <0304y >mao+3y<n}

Ity = {(x,y)B3x+y<nm}.

83

= v el Pt = 1.2 S and calculate
In cach Hlll)l'angv, we can check the sign of cach I,

‘ 0S8 os(y/2)]. Subsequently, it is casy
the maximums of |('().~:(.I‘)(‘().s‘(.l'/.})' and [(u.«(,l/)(()*(!//)|

705 in cach subrange, : the
to verify that D(a,y) is upper bounded by 0.705 m cach subrange, and then
‘ ' . . i 5 7 @ B
D(x,y) is upper bounded by 0.705 in K. Also, A 1s upper bhounded by 0.705.

i . : Theorem 5.1, we have
Finally, applying this result to ['heorem 5.1 ‘

2.36
Co Z 17705 + L18a + /3.06a + 0.1971
Taking o = 1, our construction yields an (n,33.0.632, 1)-expander, and taking
o = 0.5, it yields an (n 33.0.868,0.5)-expander. Both these expanders have
expanders constructed similarly [Mar73,

larger expansion coefficients than the

GGSL, AMSH, Alos6, NAMST. JMST].

Remark 5.1 The sclection of our permulalions is based on an obscrvation as
Jollows. If different permulations on A, are chosen, the upper bound on 1he
sccond largest cigenvalue N may be different. In fact, different permutations will
yield different I5,s in Equations 5.2 and a diffcrent D{ay) in [Cquation 5.5
In turn, it will generate a different partition on B = {(x,y)[0 < y < ¢ <
T 4+ y £ 0}, Finally, in cach subrange R;’s. D(x,y) is upper bounded by a
different number. By trial and error, we found thalt our permutations wil have

the smallest upper bound on D(x,y) in cach subrange and henec on Ao ||

5.3 Bounded Concentrators and Superconcentrators

In this section, we use the expander constructed in the carlier section to obtain
explicit constructions of linear-size concentrators and superconcentrators. The

constructions follow those in [Pip77. GGS1.

outputs

inputs
0
1

0 — i
1 —p /
. /(p+1)-1
2 n/(p+1)
T

\A4

n/(p+1)
n/(p+1)+1

Expander with
np/(p+1) inputs 20/(p+1)-1
n(p-1)/(p+1)+1
n(p-1)(p+1)

np/(p+1)-1

np/(p+1)-1 —J

np/(p+1)
NP/(P+1)41 ——pr

Yy

n-1

y

Figure 25: An explicit construction of bounded concentrators.

5.3.1 Bounded Concentrator Construction

A linear-size bounded concentrator can be constructed by using a lincar-size
expander. Figure 25 shows such a construction of a bounded concentrator
which has n inputs and pn/(p+ 1) outputs. For the last n/(p+ 1) inputs, cach
are joined to the

of them ig Joined by p edges to p outputs, and no two of them

same output.

Theorem 5.2 The network constructed i Figure 25 is an (n, pn/(p41): 1.0.5)-
bounded concentrator if the expander is an (pn/(p + D)k, e, (p? | }2p*)-
crpander with an crpansion coeflicient ¢ > 2p%/(p? + D(p — 1), where & -
P+ 1)/(p+1).

Proof: Obviously, the network as shown in Figure 25 is bipartite and has

pPlk + D/ (p + 1) edges. By Definition 2.6. it suflices to show that. for any

stubset X of mputs with [X]| < 0.5n, I'x| > ||, where 'y is the set ol outputs

. - o enntions of X and the subsets
adjacent to inputs of X. Let Xy and X2 be the interse tions of A ¢

of the first pn/(p+ 1) inputs and the last n/(p+ 1) inputs, respective ly. Then
number of outputs

IX| = | X, + | Xo). I | X2] 2 IX|/p, Uy > |X| since the
¥,]. Otherwise, [Xi] 2 (7= 1)/p)| X, and let

adjoint to inputs X, is exactly p

is clear that Y7 is a subset of inputs of

X’ be a ({p— l)//;)]_\’[»sul)svl of Xi. It

the (pn/(p + 1); k.e,(p? — 1)/2p*)-expander and |X7] < ((p* = D/P")on/(p +

1)) because | X] < 0.5n. From the definition of expander (See Definition 2.7),

e set of outputs adjacent to

ICx:| > [1+e(1—(p*— 1)/p)]IX] where Iy is th
inputs of X’. Therefore, [I'x| > [I'x:| 2 (p/(p —)X’ = [X]if the expansion
coefficient ¢ > 2p*/(p* + D)(p = 1)- |l
Taking p = 3 and substituting the |)1‘<‘\'i()nsl.\f constructed (3/1/'1:33.().!)[.-I/H)-

95 we obtain an (n,3n/4;25.5,0.5)-

expander into the construction in Figure 2o,

bounded concentrator.

5.3.2 Superconcentrator Construction

Using two (n,pn/(p + 1); k.0.5)-bounded concentrator, Figure 26 shows a re
cursive construction of an n-input superconcentrator in which there is an edge

joining input 7 and output 7, 0 <7 <n — L.

= m . e v e
Theorem 5.3 The network constructed in Figure 26 is an (n; d)-supcrconce nin-

ator ford = (p+ 1)(2k + 1).

Proof: For any k inputs and any k outputs, 1 < Ak < n. let mput . he
paired with output ¢ if input ¢ is one of the A& inputs and output ¢ is one
of the k outputs, and let X and Y be the sets of the remaining inputs and

outputs that can not be paired in this way, respectively. Then, |\| N,

outputs

Reverse

(n.np/(p+1):k,0.5 j
Sl I b m-ﬂg/(mjj)-gﬂ-f?)
Concentrator superconcentrator |- | o0 :Ctg:] tg .

Figt

re 26: A recursiv . . . _
& 26: A recursive construction of an n-input snpvrvmn‘vnlmtul.
< nj/2. Now (ind a unicast assignment from A

IX| + |V] < k and [X],[Y]
(n.pn/(p+ 1): k0.5

onto s v B . .
ome set, say X', of outputs of the

)—l)(mn(l('(l coll-

centrator, ¢ .

0r, an ; pa— ; - , 7 p
and find a unicast assignment. from Y onto some sel, say Y ol
led concentrator. Then, by

ill])lxt,s of T
[the reverse (n,pn/(p+ 1) k. 0.5)-bount
erconcentrator cal

) realize a nnicast

induction, the sandwiched (pn/(p+ 1)-sup
assignment from X'’ onto Y. C‘ombining {he unicast assignments from N on-
‘;() X7, from X’ onto Y’ and from y* onto Y, we have a unicast assignment
f'l‘(nn X onto Y. Therefore, the hetwork in Figure 20 Is a sn|)('r("m|<'('nt‘mlur. I
S(n) denotes the number of edges of such an n-input snp('r('un('vnlrnlm'. then
we have the density

"“'('II = S .
) (pr/(p+ 1))+ (2k+1 Jn. Solving this recurrence,
d=(p+1)2k+1)- |l

of the superc
he superconcentrator given by

[Using
sing the (n,3n/4;25.5 5
(n, F ..,«).‘).l)..))-lnmml('(l concentrators constructed in the 1)!'(‘\'i
ons section, we have ¢ ami i
s have a family ol superconcentrators with density 208, We
must note the i v 1
1at 3 ‘s ; . 1
at this density is not the smallest density that 1s known: Alon

et al [NAMS (i S S S
[(l]. and Jimbo and Maruoka [.)MU[] already (‘t)ll.‘ll'll('t‘(‘(l super
concentrators snsity 12 S
¢ 5 with density 122. However, we should also note that i still

possible . : . : :
le to reduce the density by using our (‘.\']mn(l('r m a su])vr('om'vmm(ul

('(‘." ¥ 36 i
sign different from that given in [(i(h\’]].

5%
4 Summary
The
FETRIUN. SR . _ , , ,
pander construction given in this chapter has a very large expansion
as compared to the densities of the

coefficie : o
ient but its density is also quite large
explicit constructions of m2-expanders,

previous exp:
us expander constructions. For

‘h(‘ {c -
llowing problems remain open:
ller density. but with about the

(a) Does .
s there exist an expander with a sma

same expansion coefficient as the expander given here?
I " ’

(b) Does there exist an expander with density < 20 and expansion cocellicient
o 1

= 0.77 1f so, this will give a superconcentrator with density at most 85.
(¢) More generally, can one find a tight lower bound on the expansion coellicient
as a function of the density?

1e density question for con-

The ¢
answers s ; .
rs to these questions will largely settle tl

centre S
rators and superconcentrators

CHAPTER
SIX

CONCLUSIONS

6.1 Summary of Contributions

We have presented parallel routing algorithms with the fastest routing time
for the Benes networks. Using these algorithms, an n-input Benes network
can route any unicast A-assignment, I < k< n,in ()(lg_';2 b+ lgn) time with-
pair of processors are

out pipelining and O(lg k) time with pipelining if cach

directly connected, and in O(lg* & + lg* klgn) time without pipelining and

O(lg” k + 1g k1g n) time with pipelining if the processors are extended perfect
shuflle connected. We list the comparison of various parallel routing algorithms

for the Benes networks in Tabel 1.
We have also introduced new networks with self-routing schemes for routing any

multicast assignment. For n inputs, the multicasting network has O(nlg“n)

¢

bit-level constant fanin logic gates and O(lg?) bit-level depth. and can

alize any multicast assignments in O(lg” n) bit-level time without pipelining

39

—— N
Algorithm Topology Routing Time for
k- Assignments
L B e) BT el
Nassimi and Sahni complete O(lg*n)
[NS582a] perfect shuffle O(lg' n)
Leveet al [LPVSI] complete O(lg* n)
Our Algorithm complete ()(Ig2 b+ lgn)
O(lg k) pipelinling
perfect shuffle ()(]g“ b+ lgz klgn)
O(lg” k + lg kg n) pipelining

Table 1: Comparison of parallel routing algorithms for Benes networks.

90

O(lg*n) multicast assignments.

and O(lg n) bit-level time with pipelining for
‘erent multicasting networks.

Tabel 2.4 - ; .
abel 2 shows the complexities ol three diff
a family ()flinvzlr—sizv('.\‘p;mtlvrs

Fine
ally, we have given an explicit construction of
{ 0.868, a family of hounded concen-

with SN TR e] e
density 33 and expansion coeflicien
rs with density 208.

trators wi . o)
ators with density 25.2 and a family of superconcentrato
the cost of our multicasting networks to

'l‘}l(‘s
51 S N s e
networks can be used to reduce

« various designs of lincar-size expanders.

O(nlgn) in bit level. Tabel 3 compare

6.2 Future Research

Our parallel routing algorithm for the Benes networks can run not only on
the complete and the extended perfect-shuffle topologies as described in this
dissertation, but also on other topologies. One future research is to consider
and another direction of future

other e)
1ier topologies that will fit the algorithm,
demonstrate

l‘(‘:\'(‘('-”'(vh .S <))
is to build hardware prototype routers to implement and

the algorithm.
time

It scems : .
s that our algorithm has possibly provided the fastest routing

for the Benes _
Benes network, and that it is difficult to change the structure ol the
our

algorithm to ¢ :
' o pet a major gai - : : . . _r
get a major gain of routing time. With minor adjusting.
el

algorithm also fits other unicasting networks that can be recursively const ructe
as the Benes network, such as the omega plus reverse omega stwoils and the
baseline plus baseline networks. Hence, it is also diflicult to obtain a Easter
routing time for these networks than that for the Benes network. However. one
possible exception is the 21gn — 1 stages shuffle/exchange network because it i
not recursively constructable. Although this network has heen proved to be a

unicastine network [F : .)
wting network [I2J91], it still lacks a routing algorithm and even a parallel

91

el RN
Routing Time
Construction (lost Depth
——’/"F—_/l*f*———l,——
— P s

Nassimi and O(n lg*n)

Sahni [NS82b]
O(nlgn)

Thompson O(nlgn) O(lgn)
[ThoTs]
' - O(lg” n)
Our Network O(nlg®n) O(lg* n) (lg
O(lg n) pipelining
*/’—l—‘—lﬂ/——-/#il_k, E

e . ' . o atwork designs in bt level.
lable 2: Complexities of various multicasting ne twork &

" : ‘L etioate this possibility.
routing algorithm. One future research is 1o investigate this | ,

_ o afficie sthod that uses
As for multicasting networks, we have showed an efficient methe ‘

: . SN S SR . we still do not
O(n) bits per input to encode any multicast assignment. But,

: . ; nee. a future esearch 1s 1o
know how to reduce it to O(lgn) bits per input. Hence, a future resed

. w . SO w A g fcasting networks.
find a more cfficient encoding method for input-initiate d multicasting

Z s , . SN icasting networks
Instead, as shown in this dissertation, oulput‘—nm,ml((l multicasting 1

! ; Bas Care sullicient.
can be used, and O(lg n) bits of source address coding per output are
. . : : ! " ; eentages of this approach
A direction for future research is to investigate the advantages of this appro:
. Ao e S of o8l | epth
and construct output-initiated multicasting networ ks with lower cost and dej

than the input-initiated counterparts.

Regarding linear-size expanders, it would be worthwhile to construct lincar:

size expanders with smaller density and larger expansion coelficients, and to use

Construction

Margulis [Mar73]

Gabber and Galil [GGS81]

Alon et al [NAMST] and

Jimbo and Maruoka [JMST]

Our Expander

Density

R

33

unknown

0.007

0.412

0.16-1

0.868

Table 3: Comparison of various lincar-size expanders.

93

ther . ' » o
N to construct concentrators, supvr('um'vni rators, punicasting and multic ast-

3 3 R T
onstruction improves (hat of Gabber

i“'l ne P
g networks. Qur hounded concentrator ¢

vor (‘ullsl‘l'll('li()n

"'Il(l “ i ¢ o o . 2l N
Galil, and our superconcentrs follows that of Pippenger.
«l concentrators are still possible and

Hovy
Never S S 3 <
cr, better constructions of bounde
one

As for the .s‘ul)('r('()n('('nlr;ltors.

wotlc 5 E 1l e
I be worthwhile for future rescarch.

e improved constructiol ¢ of Pippenger,

1s over thos

future r :
ire rescarch is to explor

@) .
hung and Bassalygo.
We
Il()l(\‘ . . . L. , s > " .
that there are still no efficient routing algorithms for lincar-size expand-
ers and those , ; . ;
those networks that are constructed accordingly. Edge coloring schemes
are possible . ¢ 3 L . ; o
: ble, but they are inefficient. Hence, it 1s worthwhile to design efficient

routing aleori .
ing algorithms for those networks.
IMinal
Uly, we s 4T i e ; . : y
Y, note that this dissertation has not touched on the ssucs of strictly

These networks

and wide-serse .
sense nonblocking networks. are important in tele-
: 2

li which has O(nlg n) cost and

phone switchings. Cantor’s network [CanTl
O(lgn) depth, can be viewed as the rvpr('svnl,ali\'(‘ of strictly nonblocking net-
works. However, the existing routing algorithms for Cantor’s networks are
hot satisfactory. Lin and Pippenger (LPI1] presented an O(lg” n) time par-
allel routing algorithm for Cantor’s networks by using O(n) processors and
O(nle?

(n1g? n) memory space. This time complexity s too high compared with the
O(lg n) depth of the network. Therefore, one area of future rescarch is to design
is to build other

I)(‘t‘(i] ; {
Ler r)l”l“” ("‘l"(4 I
’)l”‘ J 3 y: g
h”]h '()l (v(l“i.()] S ”(‘1 \\'()I']\'ﬁ'. ('”“I (’”]()(h(\r

nonblocking netw g e
king networks with efficient routing schemes.

94

[AI\.S‘\;"‘] M. Ajtai, J Komlos, and E. Szemeredi.

[/\l(),\’(i]

[AMS5]

[Bas8|]

[Ba L68]

[Hf'n(i‘l]

[B(*n(i.”

[Ben6s)]

BIBLIOGRAPHY

I

Sorting in clogn paralle

Y y y ¢ : e 1 QRS

steps. Clombinatorica, 3:1 19, January 1983.

! 1 B ‘ Q9 06 O80.

N. Alon. Eigenvalues and (‘_\'pa.n(l('rs. Combinalorica, 6:83 96, 1956
/ 1 5 <4 e 1 3 wlitine for or: S.

N. Alon and V.D. Milman. Ay, isoperimetric inequalities for graph

and superconcentrators. Journal 0./'(_'mnl)/'n(//m'/(l,/ Theory, 1B 38:73

88, 1985.
[.. Bassalygo. Asymptotically optimal switching circuits. Problems

of Information Transmission, 17:206-211, .lul_\'—S(‘plvmlwr 1981.

K. k. Batcher. Sorting networks and their applications. In Procecd-
ings of AFIPS Spring Joint Conference, pages 307 311, 1908,

Bell

V. B Benes. On rearrangeable three-stage connecting networks.
Systems Technical Journal, 41:1481 1493, September 1962

V. Benes. Optimal rearrangeable connecting networks. Bell Systems

Technical Journal, 13:1641 1656, July 1964.

V. Benes. Mathematical Theory of Connecting Networks and Tele-

phone Traffic. Academic Press Publishing Company. New York,

1965.

for parallel and distributed

[Bhus7
7] L.N. Bhuyan. Interconnection networks
20:9 12, June 1987,

processing. [IEE Compuler Magazine,
isker. Complexity of optimum nonblocking

BP7
(BP74] L. Bassalygo and M. P
Trans-

S mtehia S 52
witching without reconnections. Problems of [nformation

mission, 9:64- 66, January-March 1974.
[CanTl o
| D.G. Cantor. On non-blocking switching networks. Nelworks, 1:360
377, 1971.
[CarS6 <o
] . Cardot. Comments on a simple algorithm for the control of rear-

JEEE Transactions on Clommunica-

rangeable switching networks.

tions, COM-34:395, April 1986.
[ChuTs I £ ¢
| . R. K. Chung. On concentrators. superconcentrators, generalizers,
and nonblocking networks. Bell Systems Technical Journal, 58:1765
1777, October 1978.
£ Clos, & study of W
los. A study of nonblocking switching networks. Bell Systems

[('l().’).‘i]

Technical Jowrnal, 32:406- 125, February 1953.

J. Carpinelli ¢ ro R
pinelli and A. Y. Oruc. Applications of <'<Igv—('ulm'ing algo-

[CORS]
rithms to routing i
s to routing in parallel computers. In Proceedings of Srd In-
ternali ¥ i '
ational Conference on Supe rcompuling, Santa Clara, CA, May
1 98S.
[(C092] M. V. Chi
S . V. Chien ¢ , , . .
vien and A. Y. Orug. Adaptive binary sorting schemes and

associated interco i
‘ nnect of ycns Do 4 S 1 Y
jection networks. Technical Report UMIACS-

,l‘]{"{ 2- bl DR s "
)2-10,CS-TR-2830, Institute for Advanced Computer Studies,

University of Maryland, College Park, MD. 1992,

96

[De(ng]

[DOYO)

[lFens]

[FEPSS)

(191]

[GGRIT

[1K84]

[Hui90]

A. DeCegama. Parallel Processing Architectures and VLSI Hard-
ware. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

B. Douglass and A. Y. Oruc. Self-routing and route balancing in
Technical Report UMIACS-TR-

. University ol Mary-

connection networks. .‘)()732,('&'1‘[{-

121, Institute for Advanced Computer Studies

land, College Park, MD., 1990.
Lection networks. JELE Compuler

PR
I'. Feng. A survey of intercont

Magazine, 14:12 27, December 1951

P. Feldm: . i i |
Feldman, J. Friedman, and N. Pippenger. Wide-sense nonblockimg

networks. S7A/ : . A
works. SIAM Journal on Algcbraic and Discrete Methods, [:156

173, February 1988.

(‘ /] N Sigaale \ 3 .
M. Fiduccia and E.M. Jacobson. Universal multistage networks
Technical Report SRC-TR-91-050, Super-

via linear permutations.
Analyses, 17100

computing Resecarch Center, Institute for Defense
Science Drive, Bowie, MDD 20715-4300, Dec. 1991

s super-

() (: .7 ol ' Al . 5) .
abber and 7. Galil. Explicit constructions of linear siz¢
22:107

concentrators. Journal of Compuler and System Sciences,
420, 1981.
A. Huane : i ; ;

tang and S. Knauer. Starlite: A wide band digital switch. In
Disornissa il e
Proceedings of Globe Com, 121-125, November 1984.
'J~ \”.[i 2 tehi 9] . A

lui. Switching and Traffic Theory for Integraled Broadband

Neluiork e . o ‘
Network. Kluwer Publishing Company, Boston, MA, 1990.

97

[Hwa 72]

“ I waS3|

[JMS7]

[JO91]

“\'(‘af)l]

[Knu73]

[KOY0]

[Leass]

{ multiconnection three-stage net-

I K. Hwang. Rearrangeability o

works. Networks, 2:301-306, 1972
porithms for rearrangeable ('los networks.

I K. Hwang. (‘ontrol al
M-31:952-951, Angust

II" DY L i . ’))
L Transaclions on Communtcalions, O

1983.
Jimbo and A. Maruoka. Iixpanders obtained from affine transfor-
mations. Combinatorica, 7:343 355, 1987.
C. Y. Jan : ’ . . .)
Jan and A. Y. Oruc. Fast self-routing permutation switch-
ing arl HEV - o ; :
g on an asymptotically mmimuin cost network. Technical Report
UMIACS-T 97 ('Q_TR.275 : ;
MIACS-TR-91-127,CS-TR-2753, Institute for Advanced Computer
Studies : : :
udies, University of Maryland, College Park, MD, 1991.
e cedar system. In

]- l{ 1cek : m
onicek and et al. The organization of tl
19 56, St.

Internali ;
walion Y S !
al Conference on Parallel Processing, pages

Charles, L., August 1991.
D. E. K 7 e
nuth. The Art of Compuler Programming, Vol 3: Sorting

and Searching. Addison-Wesley, Reading, MA, 1973.

D. Koppelm:

. Iné ¢ r s .

Pl i and A, Y. Orug. A self-routing permutation network.
August

Jour " Par .
crnal of Parallel and Distributed Compuling, 6:110 151,

1990.
C. Le:
roadcast switch. [EEE Transactions on Communi-

calions, COM-36:1128 1137, October 1988.

98

[Leess)

[LeesT)

“1('(\(\’&]

[LOY2)

[LP91]

[Ll)\/y(\‘l]

[Mar73]

[MJ72]

2lgn — 1 stage p('rnnltniiun

On the rearrangeability of

K. Y. Lee.
(-34:412-425, May

networks. [FEE Transactions on Compulers.

1985.

o B
K. Y. Lee. A new Benes network control alg()rillnn. JEEE Transac-
tions on Compulers, C-36:768-772, June 1987.

t switching. IEEL

T. Lee. N : .
Lee. Nonblocking copy networks for multicas
1455 1465, Decem-

Jour s . i .
vrnal on Selected Arcas in ('()111/7111,1/(-(1[1()/1.s', O:

ber 1988,
¢ realizing point-to-

M. Lu and A. Y. Oruc. Efficient networks fo
Technical Report UMIACS-

Yoint assig N 5y
I it ASSIZILITC nts m])EH'H-”(‘] I)l'()('(‘HS()I'S.
‘(' (Y()Hl[)lll(‘l' ‘)‘f‘ll(“(‘.\'.

I'R-92-63.C'S-TR-2910, Institute for Advance

| SE——] .
University of Maryland, College Park. MD, June 1992.

G. Lin z ok : 3
wnd N. Pippenger. Parallel algorithms for routing in nonblock-
me networks > Y v ' . i .
g orks. In Proc. ACM Symposium on the Theory of Compul-
ing, pages 272277, 1991,
G. F. Lev, N. Pi
., N. Pippenger, and L. Valiant. A fast parallel routing

algorithm for routing i .
or routing in permutation networks. 1EEE Transaclions

on Computers, C-30:93 100, February 1981.

(.. A. Mareguli
. A. Margulis. Explicit constructi .
e Ioxplicit constructions ol concentrators. Problems

of Information Transmissi
/ n Transmission, 9(1):325 332, 1973.

(i. M. Mass
. M. Masson a = ; ;
and B. W. Jordan. Generalized multistage connection

networks. Networks, 2:191-209, 1972

99

[MZ90]

[NAMST]

[NSS1]

[NSh‘Za]

[NS82h]

[()f'm(i.ﬁj

[Orus87al

[Orus7h]

N. Maxemchuk and M. El Zarki. Routing and flow control in high
JEEE, 78:205- 221,

speed wide arca networks. Proccedings of Lhe

January 1990.
N. Alon. 7. Galil and V.D. Milman. Better expanders and supercoln-
347, 1987.

centrators. Journal of ;1/{/01'1’//}111.& 8:337
1 3 me 108 WOork yar-
D. Nassimi and S. Sahni. A self-routing Benes network and pé
Y e
1 i pfe Transactions mpulers
allel permutation algorithms. [l F Transactions on (ompt

(130:332 340, May 1981.
D). Nassimi and S. Sahni. Parallel algorithms to set up the Benes
network. IEEE Transactions on Compulers, (-31:148 154, February

1982.

). Nassimi and S. Sahni. Parallel permutation and sorting algo-
Journal of the

rithms and a new g('m'mlizml connection network.

ACM, 29:642-667, July 1952.

J. P. Ofman. A universal automaton. Transactions of the Moscou

Mathematical Socicty, 11:200 215. 1965.

A. Y. Oruc¢. Designing permutation networks through coset decom-
positions of symmetric groups. Journal of Parallel and Distributed
Computing, 3:402-422, August 1987.

A. Y. Oruc. Rearrangeable networks based on double coset decom-
positions of symmetric groups. In FProc. 21st Information Systems
Johns Hopkins University.

and Sciences Conference, pages 453 158,

Baltimore, MD, 1987.

100

[()'l‘\’\"TIJ D. Opferman and N. Tsao-Wu. On a class of rearran

[Pan62]

“’inT.‘{]

[Pip77]

[Pip78al

“)i])TSI)J

[Pips2]

[(RBYO)]

peable switching

50:1579- 1618, May-June

networks. Bell Systcms Technical Journal

1971.
Bell Systems

/ s ot of @ networks.
M. (. Paull. Reswitching ol connection

.) | 4 ol = ‘-)
Technical Journal, 41:833-855, May 1962.
3 ator wae. of THh
M. S. Pinsker. On the complexity of a concentrator. In Proc. of
o 218/1 318/4. Stockholm,
International Teletraflic Congress, pages 318/1-318/4

Sweden, 1973.
; . Compuling.
N. Pippenger. Superconcentrators. SIAM Journal on Comj

6:298-304, 1977.

A : n Compuling.
N. Pippenger. Generalized connectors. SIAM Journal on /

7:510-511, November 1978.

. king switchi ctworks.
Pippenger. On rearrangeable and nonblocking switching n S
17:145 162, September

Journal of Computer and System Sciences,

1978.
N. Pippenger. Telephone switching networks. Symposwa i Appliec
: 9 st . M1é | 'éI,
Mathematics, volume 26, pages 101-133. American Mathematic

Society, 1982.

I. Rubin and J. Baker. Media access control for high speed local

: - dworks. Proceedings of the
arca and metropolitan communication ne tworks. Proccedings of

[EEL, T8:168 203, January 1990.

101

[RHS5]

[Scas9]

[Sic90]

[StoTl]

[Tho7s]

['l‘()h.‘)()]

[Turss]

[Wak6s]

(!, W. Richards and I'. K. Hwang. A two-stage rearrangeable hroad

cast switching network. [EEE Transactions on Communicalions,

COM-33:1025-1034, October 1985,

I. J. Siegel and et al. Using the multistage cube network topology
in parallel supercomputers. Proceedings of the IEEE, TT:1932 1953,

December 1989.

[.J. Siegel. Interconneelion Nelworks for Large-Scale Parallel
Processing Theory and Case Studies. McGraw-Hill Publishing Com-

pany, New York, 1990.

I1. Stone. Parallel processing with the perfect shutlle. 1EEL Trans-

actions on Computers, C-20:153 161, February 1971.

('. D. Thompson. Generalized connection networks [or parallel pro-

cessor intercommunication. J1EE Transactions on Compulers, (-

9271119 1125, December 1978.
I°. Tobagi. Fast packel switch architectures for broadband integrat
ed services digital networks. Proccedings of the TEREE, T8:133-167,

January 1990.

Design ol a broadcast packet switching network. 1EEE

J. Turner.
743, June 1T98S.

Transactions on Communications, COM-36:731
A. Waksman. A permutation network. Journal of the ACM, 15:159

163, January 1968.

102

nterconnection

[WI'80a ‘
] C.L.Wuand T.Y. Feng. On a class of multistage |
networks. 1I2EE Transactions on Compulers, (-20:69.1- 702, August

1980.

[\NI“SUI)J C. L. Wa and T. Y. F -
’ and T. Y. Feng. The reverse-exchange interconnection net-

work. TEEE Transacti v .
<. B Transactions on Compulers, (-29:801- 811, September

1980.

[YM91a] Y. Yang
J . Yang and (i. Masson. Nonblocking broadcast switching networks.
TBEL Transaets , ,
I Transactions on Compulers, C-10:1005 1015, H('pl('mlwr 1991.

[YN](” bl ¥. Y.
i . Yang ¢ A . i
J g and (. Masson. Broadcast ring sandwich networks. Tech-

nical Repor
Report JHU-91/01, Department of Computer Science, Johns

Hopkins University, Baltimore, MD, 1991.

