
ABSTRACT

Title of Dissertation: REGISTRATION METHODS

FOR QUANTITATIVE IMAGING

Gustavo Kunde Rohde, Doctor of Philosophy, 2005

Dissertation directed by: Professor Carlos A. Berenstein and

Professor Dennis M. Healy Jr.

Department of Mathematics

At the core of most image registration problems is determining a spatial trans-

formation that relates the physical coordinates of two or more images. Registra-

tion methods have become ubiquitous in many quantitative imaging applications.

They represent an essential step for many biomedical and bioengineering appli-

cations. For example, image registration is a necessary step for removing mo-

tion and distortion related artifacts in serial images, for studying the variation

of biological tissue properties, such as shape and composition, across different

populations, and many other applications. Here fully automatic intensity based

methods for image registration are reviewed within a global energy minimization

framework. A linear, shift-invariant, stochastic model for the image formation

process is used to describe several important aspects of typical implementations

of image registration methods. In particular, we show that due to the stochastic



nature of the image formation process, most methods for automatic image reg-

istration produce answers biased towards ‘blurred’ images. In addition we show

how image approximation and interpolation procedures necessary to compute the

registered images can have undesirable effects on subsequent quantitative image

analysis methods. We describe the exact sources of such artifacts and propose

methods through which these can be mitigated. The newly proposed method-

ology is tested using both simulated and real image data. Case studies using

three-dimensional diffusion weighted magnetic resonance images, diffusion tensor

images, and two-dimensional optical images are presented. Though the specific

examples shown relate exclusively to the fields of biomedical imaging and biomed-

ical engineering, the methods described are general and should be applicable to

a wide variety of imaging problems.
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Chapter 1

Introduction and motivation

Recent advances in digital imaging technology have had profound impact on a

variety of technical fields including communications, medicine, surveillance, mil-

itary, entertainment, as well as many experimental sciences. The availability of

charged coupled devices (CCDs), for example, has encouraged widespread use of

digital cameras for a variety of purposes ranging from personal entertainment to

automated surveillance systems. Microwave-based imaging technologies such as

synthetic aperture radar (SAR) are widely used by militaries around the world for

the purposes of intelligence gathering. In the biomedical fields, imaging modali-

ties such as magnetic resonance imaging (MRI), computer assisted x-ray tomog-

raphy (CT), and ultrasound (US), to name a few, are becoming increasingly used

for diagnosing, treating, and monitoring pathologies. In addition, many scientific

fields such as experimental biology, chemistry, and materials sciences are also

becoming increasingly dependent on imaging technologies such as digital atomic

force microscopes and high-field magnetic resonance resonance spectroscopy and

imaging techniques, to name a few, for acquiring data to be used in validating

and even generating scientific hypothesis.

Taking advantage of the ever increasing computational power often cheaply

1



Figure 1.1: Pictorial representation of the image registration process. Because of

object or sensor motion, geometric distortions and other artifacts, corresponding

objects (circle and star) in two or more instances of the image may not share

the same spatial coordinate. Image registration is the process of identifying the

spatial correspondence between two or more images.

available, several image processing techniques are currently used to enhance and

fuse information from several imaging sources for the purpose of obtaining full

benefits from the image data. Paramount for optimal exploitation of available

image data is the proper design and application of digital image registration

techniques. Image registration refers to the process of identifying the spatial cor-

respondence, as characterized by a spatial transformation of coordinates, between

two or more digital images. A pictorial description of this process is provided in

Figure (1.1). Precise definitions for the digital images and the spatial transfor-

mations that register them will be given later.

Image registration techniques, both manual and automatic, are commonly

employed in many of the areas referred to above. In particular, image registration

methods have become essential for performing quantitative imaging by combining

information from two or more images. Activities such as target recognition and

2



intelligence gathering can be greatly enhanced by combining information from

several sensors placed in different airplanes, satellites, etc. Because of the different

position of each sensor, and their different geometric distortion properties, the

images first need to be aligned before any meaningful fusion of information is

to occur. Automated target tracking, a crucial activity in guided weaponry and

robotics, also requires establishing the spatial position of an object, or objects,

in a time series of images. Image registration methods can also be used for such

purposes.

In the biomedical fields, physicians and research scientists also benefit greatly

from image registration methods. It is known that different imaging modalities

highlight different properties of biological tissue. X-ray based computed tomog-

raphy, for example, is known for its ability to provide accurate descriptions of

hard tissue types, such as bone, while MRI is know for its sensitivity to differ-

ent types of soft tissue. Radiologists often benefit from combining CT and MRI

modalities for fully characterizing different conditions. Other quantitative imag-

ing modalities such as functional MRI (fMRI), diffusion tensor MRI (DT-MRI),

MR relaxometry, etc., depend on fitting models on multiple images acquired using

different acquisition parameters. In fMRI researchers are typically interested in

mapping the human brain’s response to different activities. To that end, multiple

(a few tens, or in some cases hundreds) of 3D MR images of a subject’s brain

are acquired while having the subject perform different activities such as read-

ing, listening, etc. The time series of images is then analyzed by correlating the

intensity value of each brain structure with the particular activity. In diffusion

tensor MRI the goal is to map the diffusion properties of biological tissues in

vivo and often in three dimensions. Multiple diffusion weighted MR images are
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acquired by introducing diffusion sensitizing magnetic field gradients of different

strengths and directions. The intensity values of all the images are then used for

fitting a multivariate exponential model, from which it is possible to extract a

diffusion tensor that characterizes the amount of local water molecule displace-

ment in three dimensions. Because of subject motion during image acquisition,

as well as geometric distortions related to acquisition parameters, the series of

acquired images can be severely misaligned with respect to each other. Naturally,

before any such automated analysis (fMRI or DT-MRI) are to be extracted from

the data, it is absolutely necessary that the multiple images be correctly aligned.

In addition to performing motion and distortion correction in intra-patient

data, researchers have also found useful to compare images of the same anatom-

ical part of different subjects (with the human brain being the most prominent

example) to study the variation of biological tissue properties, such as shape and

composition, described in images across a given population. The aim in such

endeavors is usually to provide a quantitative description of a healthy ‘normal’

population, as opposed to a diseased one. Though a significant amount of re-

search has been performed in the area of inter-subject comparisons, the area is

relatively new, and results of substantial impact are lacking. Moreover, citing con-

cerns over homology and correspondence, many researchers have expressed well

founded skepticism of many methods and results obtained with them [23, 28].

Because of its crucial importance for many imaging applications image regis-

tration methods have been extensively studied. For recent reviews refer to [72]

and [126, 84]. Because the application areas greatly vary, image registration meth-

ods have been studied by numerous scientists with varied scientific backgrounds,

including electrical engineers, applied mathematicians, scientific computation ex-
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Figure 1.2: Number of peer-reviewed journal publications about biomedical image

registration per year. Though this represents a lower bound estimate, the trend

exposes the increasing impact of image registration methods on the clinical and

biomedical communities.

perts, physicians, physicists, chemists, biologists, psychiatrists, statisticians and

possibly others. A quick study using the PubMed [80] search engine yields an

estimate of the number of peer reviewed journal publications about biomedical

image registration per year. The search term used was ‘image AND registration.’

The trend is shown in Figure (1.2). Of course, this is a lower bound estimate

since this particular search engine specializes in biomedical and clinical applica-

tions, and may exclude some more technical journals. Moreover, the number of

publications about image registration in areas other than clinical or biomedical

is likely to increase the totals by a significant amount. Nonetheless, the figure is

useful to expose the trend of increasing importance image registration methods

have had on the clinical and biomedical communities over the past two decades.
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1.1 Problem statement

As explained above, post-acquisition image alignment (registration) is routinely

performed in biomedical research and clinical practice [72, 84]. Applications

using image registration techniques include motion and distortion correction in

fMRI, DT-MRI, and MR relaxometry experiments. In addition, image registra-

tion procedures are increasingly being used in computational based studies of

neuroanatomy. This involves understanding the variability of tissue properties,

including shape, across specific populations. An example is voxel-based mor-

phometry, described in [11].

In general, many of the current post-processing methodologies can be sum-

marized within a pipeline framework, as depicted in Figure (1.3). At first, a

set of medical images is acquired and reconstructed using standard tomographic

technologies. The tomographic reconstruction step in MRI typically involves

a Fourier transformation of the data (though filtered back-projection methods

are sometimes used) while reconstruction procedures in CT often involve Radon

transformation methods. Regardless of the tomographic reconstruction method

in use, in most quantitative imaging experiments the output of this step is a se-

ries of digital images to be stored in computer memory. Each image in this series

can be though of as a function (real or complex) of discrete input coordinates.

Mathematically, the nth image in this series is written as Sn(i), with i ∈ Zd,

where d represents the dimensionality of the images. For example, a common

digital image processing technique is to view the indexes of the image array i

as i = [i, j, k]T where each coordinate i, j, k belongs to the set {0, · · · , 255}, for

example. Naturally, the coordinates i are associated with the spatial coordinate

system of the laboratory. The specifics of this association are determined by the
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image acquisition and reconstruction procedure, but simplifications can be made

such that a coordinate in the laboratory frame of view x ∈ Ω := [0, 1]d ⊂ Rd can

be written as x = [cxi, cyj, czk]
T . The constants cx, cy, cz represent the resolution

(size of each sample) in the x, y and z dimensions, respectively, of the imaging

system.

Because of patient motion, or device dependent geometric distortions which

may not remain constant through acquisition of the entire image series, the series

of images Sn(i), 1 6 n 6 N , may be misaligned with respect to each other. This

means that a fixed image coordinate i may not represent the same structure or

anatomical region in all images of the series. To ensure that the same coordinate

i corresponds, as much as possible, to the same structure image registration is

performed to bring the series of images into alignment (see figure (1.3)). This

entails in finding functions fn : Ω → Ω, 1 6 n 6 N , so that the variability due

to subject motion or geometric distortions in the series Sn(fn(x)), 1 6 n 6 N ,

is removed. In addition to removing artifacts related to motion and distortion

the entire image series may also be spatially transformed onto a standardized

coordinate system so that the data may be more conveniently interpreted. More

on how these tasks are actually accomplished is to follow.

Once variability due to patient motion and geometric distortions have been

accounted for, the next step in a typical image processing pipeline is to use the

registered data for some quantitative analysis. Data analysis consists of extract-

ing or estimating some physically meaningful parameters from the sequence of

image data. Typically, this is done by fixing a coordinate x and defining a data

vector y = [S1(f(x)), · · · , SN(f(x))]T . Next a model, whose quantitative pa-

rameters may contain useful physical information, is extracted from the data y
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usually through estimation procedures such as the maximum likelihood method.

In DT-MRI, for example, the model parameters define a 3x3 symmetric effective

diffusion tensor. In fMRI and voxel based morphometry, the parameters define

statistical parametric maps. For such analysis to be meaningful, the vector y

must consist of image data values from the same anatomical region. For exam-

ple, if one wishes to analyze the effective diffusion properties of the human brain’s

corpus callosum it is paramount that the data y contain image values only from

the corpus callosum. Image misalignment may introduce data values from other

sources such as air (background) or cerebral spinal fluid in y, causing significant

errors in the estimated parameters. Thus, a large portion of quantitative imag-

ing applications, especially in biomedicine, depend on accurate image registration

methods.

1.2 Summary of Dissertation

Despite intense scrutiny and study, many unresolved issues regarding image reg-

istration methodology remain. Many of the difficulties currently encountered can

be attributed to the fact that image processing specialists tend to formulate the

problem without much consideration for the physical properties of the image for-

mation process. Likewise, scientists interested in applications such as fMRI and

DT-MRI tend to use image registration (and other image processing methods)

as a black box and usually exclude details about pre-processing steps in their

data analysis. Such disconnect is understandable given that a successful quanti-

tative imaging experiment involves scientists with a variety of backgrounds: from

imaging physicists and engineers at the data acquisition end, to biologists and

physicians concerned in making a specific discovery at the output end, and with
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Figure 1.3: Overview of a typical biomedical quantitative image processing

pipeline. First the images are acquired and reconstructed using one of the many

available tomographic reconstruction techniques. Next the images are registered

(aligned) to ensure, as much as possible, that a fixed image coordinate corre-

sponds to the same anatomical structure in all images. Finally, the registered

data are used to produce quantitative parameters through model fitting. The

output of the pipeline is then used by researchers in the biomedical fields for

testing and generating hypotheses, as well as for diagnostic and therapeutic ap-

plications.

9



applied mathematicians and scientific computation experts in the middle being

responsible for several data processing steps.

This work addresses some of the shortcomings of current image registration,

and data processing methods in general, by incorporating, as much as possible,

information about the image formation process into the formulation of the image

registration problem. Improvements over currently available technology are de-

scribed not only for finding the solution of the registration problems but also in

using the results for subsequent quantitative image analysis. Though all of the

applications investigated in detail here are of biomedical nature, the ideas to be

presented are general and could be used in many technical fields that depend on

image data.

Next, some of the main ideas used in biomedical image registration through-

out the years are reviewed so that the original contributions presented in this

work can be more easily identified and understood. Chapter 3 provides a gen-

eral overview of the original contributions to be presented in subsequent chap-

ters. The image registration problem is analyzed using a linear, shift-invariant,

stochastic image model. Equations and numerical methods to address the image

registration problem are derived in general, without specific attention to any sin-

gle application. In particular, we analyze the effects of object (sensor) motion,

geometric distortions, and thermal noise in serial images and propose methods

through which such artifacts can be addressed.

Chapter 4 investigates approaches for measuring the similarity between two

images, paying particular attention to thermal noise, in the context of solving

the image registration problem. In it, we show that the vast majority of image

registration methods implemented, by default, are not likely to produce optimal

10



answers. Rather, the solution achieved with current methods is likely to be biased

towards the most ‘blurred’ image. Methods through which such shortcoming can

be addressed are presented.

In chapter 5 the methodology described earlier is used to address the problem

of patient motion and eddy-current induced image distortions in serial acquisi-

tions of diffusion weighted MRI. In particular, the linear, shift-invariant, modeling

approach is used to derive appropriate spatial transformation models to be used

in the solution of the problem. Results presented using real patient data show

a significant improvement in the quality of the diffusion studies obtained. An-

other case study is presented in chapter 6, where we investigate motion artifacts

induced by muscle contraction in epicardial fluorescence optical imaging studies.

Again results obtained from real data experiments show that the motion artifacts

can be largely minimized using image registration methods.

Finally, in chapter 7 the effects of image interpolation and resampling meth-

ods on quantitative image applications such as diffusion tensor MRI are inves-

tigated. In particular, the effects of image intensity variance due to noise are

propagated through the image registration process to that maximum likelihood

and least squares fitting procedures, for example, can be properly implemented

for extracting quantitative model parameters. Concluding remarks are offered in

chapter 8.
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Chapter 2

Background

Here we provide a brief description of some of the main ideas researchers have

used to address several aspects of the registration problem defined in the previ-

ous chapter. The following discussion is not meant to represent an exhaustive

description of the currently available literature about image registration (for that

the reader is referred to [72, 126, 84, 29, 45, 76]), but rather to clarify and relate

the original ideas presented herein as compared to other work. Though image

registration methods can be categorized according to many criteria (see [72] for

good examples) we divide them into two main categories: 1) feature-based meth-

ods which rely on substantial amounts of, sometimes manual, pre-processing and

2) fully automatic intensity based methods.

2.1 Feature-based methods

Feature-based registration methods depend on the identification of correspond-

ing landmarks, curves or surfaces, for computing the spatial transformation that

brings two images into spatial alignment. Let T (x),x ∈ Ω := [0, 1]d ⊂ Rd repre-

sent a reference or target image to which we would like to align a source image

S(x),x ∈ Ω. Let X = [x1, · · · ,xM ] represent a series of M points xn ∈ Ω that
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correspond to a series of landmark points in the target image T (x). Suppose

that, somehow, the coordinates of the corresponding structures in image S(x)

are known. In the case of head image registration, such landmarks can be ob-

tained, manually or automatically, by using a fiducial object such as a stereotactic

frame screwed rigidly to the patient’s outer skull [68]. Methods for identifying

significant landmark points based on intensity values alone also exist. Corre-

sponding landmarks can be identified manually [34] or automatically [48]. Let

the corresponding coordinates in image S(x) be denoted Y. The coordinates

in the source image Y can be written, approximately or sometimes exactly, as

a function of the target image coordinates U(X, c), where c represents the vec-

tor of parameters that defines the spatial transformation. This can be done by

minimizing the error between the coordinate points in a least-squares sense:

min
c
‖Y − U(X, c)‖ (2.1)

When the spatial transformation U(·) is a rigid body one, i.e. U(X) = RX + t,

where R is an orthogonal rotation matrix and t is a translation vector, the

solution can be computed analytically in a least squares sense [97]. This approach

has been used extensively for registering images of different modalities [33, 52].

More generally, the transformation U(·) may be an elastic one in which points

X are displaced non-uniformly so as to match the set of points Y. A technique

often used is to model U(·) as a linear combination of symmetric, radial basis

functions φ(·) as:

U(x, c) =
M∑
i=1

ciφ(‖x− xi‖), (2.2)

where xi, 1 6 i 6 M , are the landmark points in the target image space, and, ci
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are the coefficients of the expansion. If the basis functions are positive definite

in the sense that the matrix Mj,k = φ(‖xj − xk‖) is positive definite, then the

coefficients ci in (2.2) can be solved for so that the landmark points in both images

match exactly. That is yn = U(xn, c) for all landmark points n. The procedure

outlined here is a specific example of data interpolation and approximation in

multiple dimensions. More details about currently available techniques can be

found in [96, 22]

Once the transformation U(x, c) has been defined, any point x in the domain

of the target image can be transfered to the source image domain. A simple im-

age interpolation or approximation procedure can then be used to resample the

source image so as to match the target image. The match should be almost exact

at the landmark points, the limitation being how well corresponding landmark

points can be defined. A not very flattering illustrative example of this proce-

dure is provided in figure (2.1), where the two-dimensional thin-plate spline basis

function was used to define the transformation in (2.2):

φ(r) = −r2 log(r2). (2.3)

The source image was resampled using bilinear interpolation (two-dimensional

linear interpolation).

The procedure outlined above can be expanded for matching curves in 2D, or

surfaces in 3D. The idea is very simple, and it is based on using the segmented

curves or surfaces as the sole input for computing the registration. The seg-

mentation can be performed manually. However, because this can be a labour

intensive procedure, especially in 3D, automatic segmentation methods based on

deformable models and level set methods are often used [125, 120]. Once prop-

erly segmented, the anatomical elements are matched with their counterparts
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Figure 2.1: Manual, landmark-based image registration example. A set of points

X = [x1, · · · ,x5] was manually selected in the baboon image. A set of corre-

sponding points Y = [y1, · · · ,y5] was selected in the human image. The trans-

formation yn = U(xn, c), as defined by equation (2.2) was computed according to

the procedure outlined above. The source (human) image was resampled using

bilinear interpolation. The overall effect is to warp the source (human) image

so that points Y ”move” to the locations X, as indicated by the white arrows.

Note that the intensity values of the human image are not significantly changed.

Rather it is the the position in space of each structure that is modified.
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in other images [82, 110, 30, 74]. Their correspondence is then used to guide

the two-dimensional or volumetric transformation from one image to another.

Naturally, the computational problem becomes nonlinear and algorithms become

iterative.

There are several drawbacks associated with the procedures discussed above.

First, the accuracy of the methods is limited to the initial feature extraction

procedure (segmentation of landmarks, curves and surfaces). Though significant

research in automatic segmentation methods has been performed, current tech-

nology is still susceptible to errors caused by local optima artifacts. Methods

for deformable model segmentation, for example, are known to be extremely de-

pendent on initialization. Lastly, such methods often provide a relatively sparse

match. That is, even though correspondence between general features can be

obtained, the correspondence between remaining structures is not defined. For

example, even though the correspondence between two surfaces can be computed,

the correspondence of structures inside or outside the surface is not determined.

For these and other reasons, the focus of much research related to image regis-

tration has shifted from feature-based registration methods to more ‘dense’ reg-

istration methods that use most or all available information in the images, with

little or no pre-processing, to compute the spatial correspondence between two

or more images. Such methods are termed intensity-based registration methods

and are discussed next.

2.2 Intensity-based methods

Intensity-based image registration methods differ from the approaches described

above in the sense that they generally do not depend on prior feature extraction or
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pre-processing of the image data, but rather use all the available intensity value

information in order to compute the transformations that register the images.

Through interpolation and approximation techniques (discussed in more detail

later) the images are viewed as a continuum, and spatial transformations are

sought such that the images being registered become more similar:

S(f(x)) ∼ T (x). (2.4)

An overview of the principal ideas commonly used in intensity-based image reg-

istration methods is provided here. We start by defining the image registration

problem within a global variational energy minimization context. The discus-

sion is followed by more detailed descriptions of algorithms and methodologies

in current practice. The main ideas used in modeling of deformation fields, de-

sign of image similarity measures, numerical optimization strategies, and image

interpolation/approximation methods for the problem of image registration are

discussed.

2.2.1 Problem statement

Let S(x) and T (x) be real valued continuous functions on a bounded domain

Ω := [0, 1]d, say the unit square or unit cube. The goal in image registration

is to obtain a continuous, differentiable, function f : Ω → Ω, with continuous

and differentiable inverse (diffeomorphism) that minimizes a functional (a non-

negative scalar measure on f):

min
f

Θ(f(x)). (2.5)
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The functional Θ(·) is meant to serve as a measure of image dissimilarity. For

simplicity, one may think of Θ(·) a being a functional of input images T (x) and

S(f(x)):

Θ(f(x)) =

∫
Ω

Φ(T (x), S(f(x)))dx. (2.6)

In the simplest cases, Φ(y1, y2) = (y1 − y2)
2. It is worthwhile pointing out that

the problem defined by equations (2.5,2.6) is ill posed in the sense that there

may exist many distinct functions f indistinguishable from each other under

functional (2.6). One obvious trivial example would be when both images S(x)

and T (x) are equal to a constant, say 1, for some connected set of coordinates

in Ω. In this case, the common solution is to restrict the search space and give

more preference to functions f which contain some smoothness properties [111].

This can be done explicitly through parameterization of f , say, modeling f as an

affine transformation as explained in a following section, or by adding a penalty

term to (2.6) such that:

Θ(f(x)) = I(T (x), S(f(x))) + C(f) (2.7)

where I(·, ·) is the image dissimilarity measure (the negative of the similarity

measure) and C(f) is the constraint term. In many applications, I(·, ·) is given

by equation (2.6), while the constraint term is usually measured as the energy of

some differential operator on f :

C(f) =

∫
Ω

Ψ(f(x))dx, (2.8)

where Ψ(·) usually represents a differential operator.
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Many methods try to solve the image registration problem by parameterizing

f , say with rotations or translations (see next section), and explicitly minimizing

the equations above. Other examples can be derived by using standard techniques

from variational calculus. Let f(x) be a minimizer for equation (2.7) which

satisfies some known boundary conditions f(x) = b(x),∀x ∈ dΩ. Choose any

differentiable function v(x), with v(x) = 0∀x ∈ dΩ, and substitute f(x) in (2.7)

with f(x) + εv(x). Equation (2.7) can thus be written as a function of ε:

Θ(ε) =

∫
Ω

F (x, f + εv, f
′
+ εv

′
)dx, (2.9)

where
∫

Ω
F (· · · )dx =

∫
Ω

Φ(·, ·) + Ψ(·)dx, as defined above. Note that in general

higher order derivatives may be included. If f(x) is indeed a minimizer, we must

have:

dΘ(ε)

dε
= 0. (2.10)

It can be shown that dΘ(ε)
dε

=0, as ε→ 0, is equivalent to:

∫
Ω

[
∂F

∂f
v +

∂F

∂f ′

dv

dx

]
dx = 0. (2.11)

Note that the partials ∂F
∂f
, ∂F

∂f ′
are formed by treating x, f and f

′
as independent

variables. This equation is known as the weak form of the variational energy and

can be used in finite element-based solutions to the registration problem. Noting

that v(x) vanishes at the boundary, integration by parts can be used to show

that the weak form above simplifies to:

∫
Ω

[
∂F

∂f
− d

dx

∂F

∂f ′

]
vdx = 0. (2.12)
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If f(x) is truly a minimizer, the equation above must be valid for all v that vanish

at the boundary, as explained earlier. Therefore, if f(x) minimizes the integral

equation 2.7, then it must satisfy the Euler-Lagrange equation defined as:

∂F

∂f
− d

dx

∂F

∂f ′ = 0. (2.13)

More technical aspects of the variational formalism used can be found in [51]. This

equation can be used to derive many finite difference-based image registration

schemes.

Whether consciously or not, the above optimization framework is used by

numerous researchers aiming to compute the registration between two or more

images. In section 2.2.5 we provide a few specific examples in which the equations

above have been used to solve typical image registration problems. In the next

section we discuss common approaches through which modeling of the spatial

transformations f(x) that register the images is performed.

2.2.2 Spatial transformations

Depending on the specific application, equation (2.7) can be minimized using

many different kinds of spatial transformations. In the simplest examples, rigid

body transformations are used. The transformation takes the form:

f(x) = Rx + t, (2.14)

where R is a pure rotation matrix, and t represents a translation vector. While

this is an appropriate model in many applications, examples include motion cor-

rection in serial images of the head and brain [123], it lacks flexibility to address

many other important problems in medical imaging. The next step is to add
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affine parameters to the transformation in (2.14). That is, the rotation matrix R

is replaced by an affine transformation A which not only includes rotations, but

also scalings and shears. Affine transformations have proved useful for gross-scale

comparisons of brain images of different subjects [70, 11]. In addition, affine trans-

formations are frequently used to remove linear geometric distortions in serial MR

images [47, 73]. Moreover, optimization, even in the 3D case is not prohibitively

computationally expensive due to the fact that only a few parameters (12 in the

case of affine) need to be optimized.

Many imaging applications, such as tracking deformable tissues (examples

include liver [94] and heart [98] registration) over time, require nonlinear image

coordinate displacements. The next logical step is to include polynomial terms

in the spatial transformation f(x) [124]. For example, let f(x) = {x′ , y′ , z′}T :

x
′
= Px0 + Px1x+ Px2y + Px3z + Px4x

2 + Px5xy + Px6xz + Px7y
2 + Px8yz + Px9z

2

y
′
= Py0 + Py1x+ Py2y + Py3z + Py4x

2 + Py5xy + Py6xz + Py7y
2 + Py8yz + Py9z

2

z
′
= Pz0 + Pz1x+ Pz2y + Pz3z + Pz4x

2 + Pz5xy + Pz6xz + Pz7y
2 + Pz8yz + Pz9z

2.

Naturally, the number of parameters to optimize (P·,·) increases substantially as

the order of the model increases. A similar idea is used by Ashburner and Friston

[10]. Instead of polynomials, however, the spatial transformation is composed of

cosine basis functions, parameterized by their coefficients, and distributed over a

regular grid in domain Ω:

f(x) = x +
∑
i∈Zd

ciφi(x), (2.15)

where c ∈ Rd is a vector of basis function coefficients, with d being the dimen-

sionality of the images. The basis functions φi(x) are separable in the sense:
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φi(x) =
d∏

j=1

φi(xj), (2.16)

while the 1D basis functions are given by the discrete cosine transform of an

N dimensional discrete signal [10]. The model above can be expanded to any

number N × d of degrees of freedom. Typically the authors choose to model the

deformation field with an 8× 8× 8 grid of 3D basis functions, resulting in about

1500 parameters to optimize.

Because of the large number of optimization parameters combined with the

fact that cosine basis functions do not have compact support, the spatial trans-

formation model described above may take a long time to compute. This is

especially true if the similarity measure being optimized is itself computationally

expensive. To alleviate this problem Rueckert and colleagues [95] opt for using

compactly supported b-splines for modeling the deformation field expressed in

(2.15). Thus, in their implementation φi(x) = β3(x−xi) with xi representing the

center coordinate for the ith basis function and

β3(x) =


2
3
− 1

2
|x|2(2− |x|) , 0 ≤ |x| < 1;

1
6
(2− |x|)3 , 1 ≤ |x| < 2 ;

0 , 2 ≤ |x| .

(2.17)

Realizing that nonlinear transformations with a large number of degrees of free-

dom may caused undesirable artifacts such as ‘folding’ or ‘tearing’ of the image,

the authors choose to constrain the optimization so as they be as smooth as

possible by defining the constraint term (2.8) with

C(f) =

∫
Ω

‖d
2f(x)

dx2
‖2dx. (2.18)

22



Both deformation field modeling methods described above (cosine and b-

splines) are based on a linear combination of basis functions organized on a

regular grid. In some situations very fine grids of basis functions are needed to

capture the necessary local deformations. One such application is inter-subject

brain comparisons where the cortical variability between different subjects may be

high. Such modeling approach may lead to optimization of hundreds of thousands

of basis functions. In oder to reduce the complexity of the spatial transforma-

tion Rohde et al. [87] propose an adaptive modeling scheme based on compactly

supported, radially symmetric basis functions. The idea is to concentrate de-

grees of freedom in regions where optimization is most likely to be successful

while minimizing computation in other parts of domain Ω. The determinant of

the Jacobian matrix of the computed deformation field f(x) is constrained to re-

main positive via a computationally efficient inequality derived based on operator

theory arguments.

Finally, there is a class of deformation fields that are non-parametric in the

sense that an explicit model (basis functions, affine, etc.) for the spatial trans-

formation is not assumed. Rather, the deformation field is estimated using dif-

feomorphic formulations derived based on assumptions from continuum mechan-

ics. These deformation fields are best described through the constraint function

C(f(x)) being used. Linear elasticity models are often used for constraining de-

formation fields. These can normally be expressed as some (spatial) differential

operation on the deformation field u = f(x). The energy of second derivatives of

f(x), such as the one in (2.18), are often used.

Fluid dynamics-type regularizations are also used. The key idea in these

methods is not to impose smoothness constraints on the deformation field u itself,
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but rather on its rate of change. Thus, an ‘artificial’ time variable is introduced

and used in the iterative solution of the registration problem. A good example is

found in the work of Christensen et al. [26] who use the Cauchy-Navier operator

in conjunction with the first variation of the 2-norm of the difference image. The

governing equations of the method are:

b = µ∇2v + (λ+ µ)∇(∇ · v), (2.19)

where the material properties are determined by the constants λ and µ, and b

represents the first variation of the 2-norm of the difference image. The rate of

change of the deformation is computed as:

∂u

∂t
= v − v · ∇u. (2.20)

Simple Euler time step integration is used to compute u at each step based on

the equations above.

Finally, regularizations based on the determinant of the Jacobian matrix

|J(f(x))|

C(f(x)) =

∫
Ω

ϕ(|J(f(x))|)dx (2.21)

are also used [87].

The regularization approaches described above are typically used in PDE-

based implementations derived based on the global variational energy minimiza-

tion framework described above. Some of these will be described in detail in

section 2.2.5. Lastly, note that the regularization functions described above can,

and are, also used in parametric optimization approaches.
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2.2.3 Image dissimilarity measures

Once a model for the spatial transformation f(x) is chosen, the image dissimi-

larity I(·, ·) part of equation (2.7) must be defined. The choice of I is usually

determined by the requirements of the application. In instances when images S

and T are expected to be nearly identical under optimal alignment, such as when

matching images from the same image sensor, L2-norms or the sum of squared

differences are often employed:

I(T (x), S(f(x))) =

∫
Ω

|T (x)− S(f(x))|2dx. (2.22)

The image S(f(x)) is usually computed using multidimensional linear interpola-

tion, though other options certainly exist and will be discussed in a later section.

The equation above may be the most frequent in computer implementations of

image registration methods due to its low computational requirements, easy dif-

ferentiation with respect to the parameters that define spatial transformation

f(x), and ease of implementation. Note also that in practice, equation (2.22) is

implemented as:

I(T (x), S(f(x))) ∼=
N∑

i=1

(T (xi)− S(f(xi)))
2, (2.23)

where N is the total number of sampling coordinates xi chosen.

In many applications the constant image intensity assumption is not appropri-

ate. When the relationship between the intensity values of S and T is unknown

but expected to be linear (such as when matching images from the same type

of sensor) I can be based on the linear cross correlation (zero mean correlation

coefficient) of their intensity values:

25



I(T (x), S(f(x))) =
〈T (x), S(f(x))〉
‖T (x)‖‖S(f(x))‖

, (2.24)

where

‖S(x)‖2 = 〈S(x), S(x)〉 =

∫
Ω

|S(x)|2dx. (2.25)

Again, in practice the integral defined above is computed using discrete samples

xi, 1 6 i 6 N organized on a regular grid:

〈S(x), S(x)〉 ∼=
1

N

N∑
i=1

|S(xi)|2. (2.26)

Though heavily used, the image similarity measures described above are not

appropriate for matching images of different modalities. Consider, for exam-

ple, the task of finding the spatial correspondence between MR and CT images.

Because the physics of the imaging process of MR and CT images differ sub-

stantially, so do their intensity values. CT, for example, is known for providing

high intensity values for bony structures, while the intensity value due to bone

is low in MR. Because of the complex nature of the problem a definitive model

that relates the intensity values in these two image modalities has yet to come

forth. To circumvent such difficulties during image registration researchers have

adopted more general measures of statistical dependency between the images’

intensity values as a way of measuring their similarity. The primary example of

such approaches involves the use of the mutual information similarity measure

[61], first used in medical image registration problems in [56, 70].

Let T represent a random variable associated with the experiment of choosing

an intensity value from image T (x) at random positions x chosen from the entire

domain of the images. The probability density function (pdf ) of T is denoted
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PT (t), where t refers to the probability of outcome of the experiment. Similarly let

Sf be the random variable associated with the experiment of choosing, randomly,

an intensity value from image S(f(x)). Similarly, we denote the pdf of this

experiment as PSf
(s). Finally, let PSf ,T (s, t) represent the (joint) pdf of random

variables Sf and T . The mutual information of random variables T and Sf is

defined as:

I (Sf , T ) =

∫ ∞

−∞

∫ ∞

−∞
PSf ,T (s, t) log

(
PSf ,T (s, t)

PSf
(s)PT (t)

)
dsdt, (2.27)

where the integrals, unless noted otherwise, are taken from −∞ to ∞. Alterna-

tively, the mutual information can also be expressed in terms of the entropy of

the random variables:

I (Sf , T ) = H (T ) +H (Sf )−H (Sf , T ) , (2.28)

with

H (T ) = −
∫
PT (t) log (PT (t)) dt, (2.29)

H (Sf ) = −
∫
PSf

(s) log
(
PSf

(s)
)
ds, (2.30)

and

H (Sf , T ) = −
∫ ∫

PSf ,T (s, t) log
(
PSf ,T (s, t)

)
dsdt. (2.31)

Naturally, the pdf ’s needed to perform the computations above are not gener-

ally available. Rather, all that is available are (sampled) instances of the images

T (x) and S(f(x)), the later computed using image interpolation or approxima-

tion methods described in the next section. Thus methods for estimating the

probabilities density functions PT (t), PSf
(s) and PSf ,T (s, t) are needed. Two

families of methods are used for that purpose. The simplest relies on estimating
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PSf ,T (s, t) using joint histograms of their intensity values [70]. To that end the

intensity values of the images are divided into discrete, contiguous, and equally

distributed intervals indexed using integers i and j. Thus:

PSf ,T (s, t) ∼= PSf ,T (i, j) =
number of co-ocurrences i, j

total number of samples
. (2.32)

The marginal density functions are:

PSf
(i) =

∑
j

PSf ,T (i, j), (2.33)

and

PT (j) =
∑

i

PSf ,T (i, j). (2.34)

The integrals in equations (4.21),(2.29),(2.30), and (2.31) are then replaced by

discrete sums over the bins of the histograms.

Joint histograms methods are the most computationally efficient, and most

widely used, methods for estimating the mutual information similarity measure

between two images. The method, however, is not void of shortcomings since, due

to the discrete nature of histograms, small changes in transformation f(x) can

cause changes in the histograms that are difficult to predict, making estimates

of the gradient of the mutual information with respect to the transformation

parameters not well defined.

Methods for estimating the necessary density functions from the sample data

using kernel functions [101] present an alternative to histogram methods. The

idea is to build an approximation to the joint pdf as a linear combination of basis

functions G(s, t) centered at the data points si, ti (taken from images Sf (x) and

T (x)):

PSf ,T (s, t) =
N∑

i=1

G(s− si, t− ti). (2.35)

28



The marginal pdf ’s can then be estimated via integrating over separate dimen-

sions, as above. The basis functions G(s, t) are usually chosen to be radially

symmetric, two-dimensional Gaussian functions:

G(s, t) =
1

σ1σ22π
exp

(
−1

2

(
s

σ1

)2

− 1

2

(
t

σ2

)2
)

(2.36)

though basis functions of short compact support have also been used [117].

While kernel based approaches overcome some of the difficulties associated

with histogram methods (mainly differentiation of the cost function w.r.t. the

spatial transformation) their computational complexity can be high. Thus re-

searchers are forced to use a low number of data samples to estimate equation

(2.35) and to use stochastic optimization approaches [56].

Finally, one novel and interesting class of image registration problems is the

multi-channel (multi-spectral one). In this class of problems, one is interested in

registering two or more images that at each spatial coordinate x ∈ Rd contain

not a scalar number by a vector of values each representing unique information.

Multi-channel similarity measures have been proposed in Rohde et al. [89, 88].

Naturally, the computational load of multi-channel registration problems is sig-

nificantly higher. However, it is hoped that the additional information present

in the multiple channels can increase the accuracy of the spatial transformations

obtained.

2.2.4 Image interpolation and approximation

Before any of the image similarity measures mentioned above can be computed,

a continuous model for the discretely sampled image data is needed. That is,

from a set of discrete samples S(i, j, k) ∈ R, 1 6 i 6 N, 1 6 j 6 N, 1 6 k 6 N ,
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organized on a cartesian grid representing a 3D image (note that the number of

samples in each dimension may differ), a mathematical operation is necessary for

computing the image values at an arbitrary spatial position x = {x, y, z}T ∈ Ω.

Because of practical computational requirements the continuous image is usu-

ally computed as a linear combination of separable basis functions:

S(x) =
∑
i∈Zdi

c(i)b(x− i), (2.37)

where

b(x) =
d∏

i=1

b̂(xi), (2.38)

and c(i) ∈ R are the coefficients of the expansion. From sampling theory it

is known that a continuous version of a bandlimited signal (a continuous func-

tion whose Fourier transform has finite compact support) can be perfectly re-

constructed from a sample version of the same signal if the sampling operation

satisfied the Nyquist criterion. In this case c(i) = S(i) and

b̂(x) = sinc(x) =
sin(πx)

πx
. (2.39)

Sinc interpolation kernels, however, are seldom used in medical image anal-

ysis because of several reasons. First, it is often argued that the objects one is

interested in reconstructing cannot be assumed to be bandlimited [107]. In addi-

tion, due to the infinite support of (2.39) equation (2.37) cannot be implemented,

with the exception of when (2.37) is being used to compute pure translations of

periodic signals. Lastly, due to its slow decay, image interpolation using the sinc

function is know to produce so called ‘ringing’ artifacts.

To circumvent these and other difficulties, researchers often prefer to use

apodized and truncated versions of (2.39) in computing spatially transformed
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images S(f(x)). In addition, simpler basis functions of compact support are also

used. Amongst these, the linear (hat function) basis functions is by far the most

widely used interpolation procedure used by image registration methods. The

linear basis function takes the form:

b̂(x) =

 1− |x| if |x| ≤ 1;

0 if |x| > 1.
(2.40)

This is the most used interpolation kernel since its support is short, allowing for

efficient computer implementations, and the coefficients in the expansion in (2.37)

are the data values themselves: c(i) = S(i). Citing continuity and approximation

properties, some researchers prefer higher order basis functions such as B-splines:

b̂(x) = βn(x) =
n+1∑
k=0

(−1)k(n+ 1)

(n+ 1− k)!k!

(
(n+ 1)

2
+ x− k

)n

+

, (2.41)

where x ∈ R and n ∈ N represents the order of the spline. By definition

(x)n
+ = (max(0, x))n. The coefficients of the expansion (2.37) can be computed by

solving a linear system similar to the one set up in equation (2.2). Alternatively,

the coefficients of the expansion may also be computed using recursive filtering

techniques [114, 115].

Objective comparisons between the several image interpolation methods in the

context of medical imaging (linear, truncated sinc, B-splines, etc.) have been per-

formed in [66, 107, 108, 75]. Lehmann et al. perform quantitative and qualitative

comparisons between several interpolation methods including nearest neighbor,

linear, quadratic, piece-wise cubic polynomial, cubic B-spline, truncated sinc and

others. Qualitative analysis was done by assessing interpolation error for partic-

ular interpolation tasks on digital X-ray image data. Quantitative analysis was
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performed by comparing each function’s Fourier properties and computational

complexity in computer implementations. The authors conclude that piece-wise

cubic polynomials can be recommended for most medical imaging operations for

its computational efficiency, simple implementation, and continuity properties.

Thévenaz et al [107, 108] advocate the use of B-splines as a good compromise

in terms of their linear approximation properties and computational complexity.

Conclusions are based on experiments in which a single image is successively

rotated by a certain amount of degrees until an approximation of the original

image is obtained. The error between the original image and the successively

rotated image is measured. The authors conclude that the approximation order

of the basis function being used to generate the continuous image model is the

most important index representing the quality of the interpolated images, while

the support of the basis function is the most indicative parameter in terms of the

computational requirements of using a particular basis functions. Meijering et al.

[75] arrive at similar conclusions using similar experiments, though in this report

effort is made to base results obtained using a variety of real medical image data.

An interesting effect of interpolation methods in the context of medical image

registration is reported in [70, 85, 112, 117]. In these works authors report that

the Mutual Information similarity measure I(T (x), S(f(x)), given in equation

(4.21), can behave undesirably as the parameters of the spatial transformation

f(x). Such artifacts cause spurious local optima in the objective function, often

restricting optimization methods (see next section) from finding the global optima

and producing precise and accurate results. Though such artifacts have been

detected for almost ten years now, and researchers have linked these artifacts to

the interpolation or approximation procedure being used, their investigation of
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the phenomenon is empirical at best and fail to describe the true nature of the

artifacts and proper ways to mitigate them [70, 85, 112, 117].

2.2.5 Numerical optimization strategies

The global energy minimization approach to image registration described earlier

is combined with a numerical optimization strategy to find the spatial transfor-

mation that aligns the images. Here again we differentiate parametric and non-

parametric methods for deformation fields since the implementation of numerical

optimization strategies can differ in practice. In both cases, the deformation

field being sought belongs to the class of diffeomorphisms. In non-parametric

deformation-based registration, however, optimization usually involves finite dif-

ference schemes to solve the derived Euler equation (2.13). In parametric deformation-

based image registration, numerical methods usually involve traditional nonlinear

optimization methods such as steepest descent, and Newton-type methods.

We first derive one very popular finite difference implementation, known as

the optical flow formulation for the nonrigid matching problem, based on the

variational setup described earlier. Let the functional being minimized be the

squared of the 2-norm of the difference between the images:

Θ(u) =

∫
Ω

F (S(x + u), T (x)) dx (2.42)

with u(x) + x = f(x) and

F (S(x + u), T (x)) = (S(x + u)− T (x))2 (2.43)

A constraint term will be added later, but for the moment let us just consider the

functional above. Following the discussion provided earlier, a stationary point in
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(2.42) must satisfy the Euler-Lagrange equation (2.13). Setting the first variation

of (2.42) to zero we have:

2 (S(x + u)− T (x))∇S(x + u) = 0. (2.44)

Solving (2.44) per se in the context of image registration is not necessarily a

very good idea. For example, expanding constant value regions so that the entire

domain Ω is dominated by regions in which ∇S(x + u) ∼ 0 would go a long way

towards satisfying (2.44) without necessarily aligning the images. Some of this

difficulty can be overcome through constraints applied on the spatial transforma-

tion, soon to be discussed. Another option is to set

S(x + u)− T (x) = 0. (2.45)

Using a first order expansion of the source image S about coordinate x + u

S(x + u) ∼ S(x) + u · ∇S(x) (2.46)

we have

u · ∇S(x) = T (x)− S(x). (2.47)

Naturally, the equation above does not uniquely define u. However, one may

check by simple substitution that

u =
(T (x)− S(x))∇S(x)

‖∇S(x)‖2
(2.48)

does satisfy (2.47). The equation above addresses the concern expressed earlier

with equation (2.44) since the magnitude of the gradient of S(x) is eliminated.

Naturally, the equation (2.48) is only valid for small displacements, since a first

order Taylor expansion was used in deriving it. Therefore registration algorithms
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use it iteratively by setting xk+1 = xk+uu. It is worth noting that equation (2.48)

is unstable for small values of ‖∇S(x)‖2 a difficulty which can be circumvented

by using

u =
(T (x)− S(x))∇S(x)

‖∇S(x)‖2 + (T (x)− S(x))2
. (2.49)

In optical flow parlance u is considered as a velocity measurement because the

images S(x) and T (x) are usually taken to be two successive frames in a time

series of images.

Finally one must also constrain the method above since due to noise and flat

regions in the images the iterative method above may become highly unstable.

To that end the Lagrangian in (2.43) is substituted with:

F (S(x + u), T (x)) = (S(x + u)− T (x))2 + ‖ux‖2 (2.50)

where ux(x) = ∇u(x) (note that in two or more dimensions, the gradient norms

are component-wise). The new Euler equation becomes:

2 (S(x + u)− T (x))∇S(x + u)− 2uxx = 0. (2.51)

Considering the second term by itself, we must have that the component-wise

Laplacian uxx be zero. It is possible to estimate the component-wise Laplacian

uxx using a convolution with a Gaussian filter G(x):

uxx = G ∗ u− u. (2.52)

Thus, the equation (2.49) is usually regularized via convolution with a Gaussian

kernel:

u =

(
(T (x)− S(x))∇S(x)

‖∇S(x)‖2 + (T (x)− S(x))2

)
∗G. (2.53)
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The derivation above was done to show that popular image registration meth-

ods such as the one presented in [109] can be viewed as finite difference solutions

to the Euler equations associated with a global variational energy between the

source and target images - in this case the 2-norm of their difference. Another

popular derivation is based on the optical flow assumption that the intensity value

of a particular structure in the image does not change, only its position [54]. The

derived equations, however, are nearly identical. Variational approaches for mini-

mization of similarity measures such as the correlation coefficient, and the mutual

information have also been developed [50] and shown to be well-posed [35].

When the spatial transformation f(x) is explicitly parameterized, say as a

rigid-body transformation as in equation 2.14, or as a combination of basis func-

tions as in 2.15, the optimization is performed with respect to the model pa-

rameters themselves. For example, in the case of B-spline based transformation

models such as the one defined through equations (2.15) and (4.34), to goal is

to seek the value of a set of coefficients C of N vector coefficients ci such that

the overall cost function Θ expressed in (2.7) (similarity measure plus constraint

term) is minimized. The set of basis function coefficients C is usually initialized

to zero (unless prior information is available) and it is updated using the following

procedure:

Ck+1 = Ck − αkξ (Ck) , (2.54)

where ξ(·) is a function that determines a descent direction, and the constant αk

is determined through a line minimization procedure. In the simplest example,

and often the most used in biomedical image registration, the descent direction

is chosen as the steepest gradient, ξ(C) = ∇Θ(Ck), however many other options

such as the conjugate gradient method, quasi-newton methods, etc., are available
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[77]. The procedure is iterated until

‖∇Θ(Ck)‖ 6 ε, (2.55)

or

|Θ(Ck)−Θ(Ck−1)| 6 ε, (2.56)

for arbitrary ε.

Naturally, the basis function-based approach described above is very computa-

tionally expensive, especially for performing inter-patient nonrigid registration in

three dimensions. Many structures of interest in medical images, especially in the

brain, are in the order of millimeters. Deforming such structures requires placing

basis functions at approximately every couple of millimeters which can require the

optimization of a few hundred thousand basis function coefficients. For example,

registering two typical three-dimensional MR image volumes (256x256x128 pixels

large) using a 64x64x32 regular grid of splines generates a 393 216-dimensional

search space. Finding an optimum in such a search space is not only time con-

suming but difficult because of convergence to local optima.

By necessity, methods for accelerating nonrigid registration methods based

on parametric deformation models have been extensively researched. The first

approach is based on finding the optimal transformation through successive ap-

proximations computed within a multi-resolution image model. That is, a solu-

tion fk(x) the problem defined by equations (2.5) and (2.7) is computed using

a coarse (low resolution) approximation of the images S(x) and T (x). A coarse

approximation of the images allows for faster computation of the overall cost

function, as well as its gradient with respect to the transformation parameters.

Thus, an initial estimate fk(x) can be computed relatively quickly. This estimate
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is then used to restart the optimization using a higher resolution approximation

of the images and compute a new estimate of the spatial transformation fk+1(x).

The coarse to fine optimization method described above relies on building

multi-resolution pyramid-type approximations to the image data. To date, many

methods for building such pyramids are available. One of the most used, due to

its simplicity and self-consistency, is the multi-resolution approximation scheme

explained in [116]. The idea is to use a hierarchical approximation over nested

B-spline subspaces. Let VQ ⊂ VQ−1 ⊂ · · · ⊂ V0 define a sequence of Q+1 nested

subspaces, with each Vq defined as the span of vectors:

Vq = Span{βn
( x

2q
− i
)
}, (2.57)

where βn(x) is the nth order b-spline function defined in equation (2.41). The

coefficients of the expansion at each level are computed by minimizing the 2-

norm between the original signal and its approximation. This computation can

be performed efficiently via recursive filtering operations [114, 115].

The multi-resolution image approximation scheme discussed above can also be

combined with multi-scale approximations to the spatial transformations f(x),

when f(x) is also being modeled as a combination of basis functions. That

is, when using low resolution approximations of the images S(x) and T (x) it

does not make much sense in using dense models for f(x) since, due to the

coarse representation of the image data, highly localized deformations are not

likely to be picked up. Thus, low resolution approximations of the image data

are coupled with low resolutions approximations of the spatial transformation.

The solutions obtained using low resolution image and spatial transformation

models are then used to restart the problem using higher resolution data and
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transformation approximations.

Finally, additional speed up may be achieved through selective placement and

optimization of the basis functions that define the spatial transformation model.

Using the notion that not all regions in the domain Ω may benefit from non-rigid

displacements (i.e. in some regions the images may be severely mismatched, while

in others less so), Rohde et al. [87] use a simple method for detecting which re-

gions will benefit most from spatial adjustment, and focus most computations in

these regions. The optimization is done within the multi-resolution, multi-scale

context described above. Results show that such adaptive deformation field mod-

eling approaches can significantly speed up computations without compromising

the quality of results.
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Chapter 3

Overview of Contributions

As shown in the previous chapter, the vast majority of automatic, intensity-based,

image registration methods can be characterized as specific examples of global

energy minimization strategies. That is, the goal in image registration problem

is to find the spatial transformation f(x) that minimizes a cost function con-

taining an image dissimilarity measure term and a constraint term. Registration

methods based on explicit parametric models of the spatial transformation f(x)

use traditional optimization approaches, such as the steepest gradient descent

method and others, to find the transformation parameters that optimize the cost

function of interest. It was also shown that image registration methods based

on partial differential equations formulations, such as the optical flow method,

can also be viewed within an energy minimization context. This is because the

equations used in such methods can be shown to be related to the Euler-Lagrange

equations that arise from a global variational energy framework.

In this chapter the original contributions to the field of registration methods

for quantitative imaging described in this dissertation are reviewed in the context

of the energy minimization framework presented in the previous chapter. It is

shown that much can be gained by including a model for the image formation
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process in accounting for artifacts caused by patient (object) motion, device de-

pendent geometric distortions, and system noise in the design and implementation

of post-acquisition image processing methods.

We start by using a general shift invariant image formation equation, based on

which we calculate the effects of patient motion and geometric distortions. Due

to uncertainties introduced by thermal noise in several stages of modern imaging

systems, the model must be statistical in nature. Next, we highlight the use of

the image formation model for addressing some of the previously ‘open’ problems

in biomedical image registration. The individual aspects of the research appear

in subsequent publications, included here as separate chapters.

3.1 Image formation model

Until now the images of interest have been described as a set of discrete values

sampled during an imaging experiment and stored digitally in computer memory.

The sampled images are then registered using an energy minimization framework

together with a continuous model for the images. In many applications, however,

it is useful to note that the digital images being manipulated in the computer are

not necessarily an exact representation of the functions one wishes to obtain (i.e.

a function describing the properties of the object of interest with infinite fidelity)

but, rather, they represent the desired function as viewed through a particular

imaging instrument and experiment. We consider here shift-invariant imaging

systems of the form:

S(x) =

∫
W (p)h(x− p)dp (3.1)

41



where x,p ∈ Rd, with d being the dimensionality of the images, W (x) repre-

senting the object or scene from which one wishes to obtain information, and

h(x) is the transfer function of the imaging system. While this model for image

formation may not be universal, it is a good approximation for many imaging

devices. Optical based systems such as charged coupled devices, for example, are

often modeled using a linear, shift invariant, image formation equation as the

one above. As shown in chapter 5, in the appendix, magnetic resonance imaging

systems can also be viewed in this framework. Even though not discussed in this

dissertation, the model above is also suitable to describe, at least approximatelly,

other imaging systems such as synthetic aperture radar and x-ray computed to-

mography [78].

Because of patient motion with respect to the imaging instrument, we must

realize that a particular instance of the image S(x) may be corrupted by a func-

tion f(x) describing the motion of the object:

S(x) =

∫
W (f(p))h(x− p)dp. (3.2)

Note that the integration process above is assumed to be infinitesimally short

(in time) compared to any significant time variations in the motion function f .

Naturally, this is not always a reasonable assumption, since significant motion

can occur during lengthy image acquisitions. Motion during data acquisition,

however, causes defocusing of the image in a way that cannot be corrected using

image domain-based registration methods.

In addition to patient motion, the acquired image S(x) may also suffer from

geometric distortions represented here by g(x) so that:

S(x) =

∫
W (f(p))h(x− g(p))dp. (3.3)
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It is important to note that any image formation process is statistical in nature

due to the fact that noise from thermal and other effects is almost always present.

Thus the measurement at location x is corrupted by a zero mean random variable

η(x) so that:

S(x) =

∫
W (f(p))h(x− g(p))dp + η(x). (3.4)

Finally, we note that the function above is usually sampled at discrete positions

xi,j,k with i, j, k ∈ N usually defining a regular grid. Digital sampling, strictly

speaking, is a nonlinear operation since most analog to digital converters effec-

tively implement step-like functions. Thus, any digital image formation process

is inherently nonlinear. In many cases, however, the effects of digital sampling

can be minimized in real experiments, the effects of sampling error can often be

taken into account stochastically. That is, the error due to digital sampling in

the measured signal S(x) can be viewed as probabilistic and modeled in the term

η(x). In some cases, the image above may also be convolved with an additional

filter during reconstruction (such as in ‘filtered’ back projection reconstruction

in computed tomography, or appodisation filters in magnetic resonance images).

In this case, the random variable above is an example of a correlated stochastic

process.

Now, let y = x− g(p). The equation above can be rewritten as:

S(x) =

∫
W (f(g−1(x− y)))h(y)dp + η(x). (3.5)

with g−1(x) representing the function inverse of the spatial transformation g(x).

Naturally, for the equation above to make sense, g(x) must be a homomorphism.

Let |J(g−1(u))| represent the determinant of the Jacobian matrix of the spatial

transformation g−1(u). In this case we can integrate with respect to y instead of
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p:

S(x) =

∫
W (f(g−1(x− y)))h(y)|J(g−1(x− y))|dy + η(x). (3.6)

If we think of the transfer function of the imaging system h(y) as an approxima-

tion to the Dirac delta distribution, the measured image can be approximately

expressed as:

S(x) = W̃ (f(g−1(x)))|J(g−1(x))|+ η(x). (3.7)

W̃ above is meant to represent the object function blurred by the point spread

function (psf ) of the imaging system. The equation above states that, for the

case of shift-invariant imaging systems under the effects of motion and geometric

distortions, the measured image can be thought of as, approximately, the object

shifted by the function f(g−1(x)), weighted by the determinant of the Jacobian

matrix of the transformation g−1, convolved with the point spread function of

the imaging system, and with noise added. The function |J(g−1(x))| represents

the signal modulation caused by changes in volume (area) of the perceived object

due to spatial distortion fields. Note that object motion (even non-rigid) does

not have such an effect.

To remove the effects of motion and distortion in the measured image S(x)

one must find f̃−1 (the inverse of the displacement field due to motion) and g̃ so

that:

S(g(f−1(x)))|J(g(x))| ∼ W̃ (x) + η̃(x). (3.8)

Note that the noise variable above η̃(x) differs from the noise variable in the

‘un-processed’ image defined in equation (3.7). This is because the spatial trans-

formation defined above needs to be computed based on a finite set of samples

from the original image, using an approximation or interpolation scheme. Let S

represent the vector of image values sampled from (3.7) using a regular grid-type
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sampling scheme. Let ΣS represent the covariance matrix of the measurements.

As shown in the previous chapter, image interpolation or approximation schemes

can usually be computed as a linear operation on the sampled image data val-

ues. Let AS define such an operation. The covariance matrix of the transformed

image is then given by AΣSA
T . More precise explanations of the effects of the

processing steps necessary to correct for the artifacts above on several steps in a

quantitative imaging pipeline will be described in the following chapters.

The remaining chapters of this dissertation consist of separate journal publi-

cations. In each of these, the stochastic, linear, image formation model described

above, combined with different modeling and optimization methods, is used to

tackle different aspects of image registration problems. A brief description of the

content of each publication is described here.

3.2 Measuring image similarity

Here the effects of thermal noise in the image formation process on the func-

tional minimization approach to image registration are examined. It is shown

that certain types of polynomial interpolation methods, in particular low order

ones, used in computing spatially transformed versions of the images will cause

undesired effects on the image dissimilarity measures typically used in image reg-

istration. Previously, researchers have reported that image interpolation meth-

ods can cause local optima in mutual information-type image similarity measures

[70, 85, 112, 117]. These articles, however, merely present an empirical study

of the effects of different interpolation methods on the mutual information sim-

ilarity measure with respect to global image translation. We show that such

artifacts are general, in the sense that they are not limited to mutual information
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similarity measures but will also occur in L2 and correlation-type cost functions.

Moreover, they are also not limited to global transformations, such as translation

and rotations, but also occur in more local, nonlinear type of transformations.

We explain the source of the artifacts in terms of the covariance properties of

spatially transformed images. We explain why some interpolators such as the

linear hat function and low order B-splines will cause local optima artifacts in

popular similarity measures and argue that sinc approximating basis functions

should be used instead. In some simple analytical examples we give analytical

formulas describing the locations and shape of the local optima. We also vali-

date our hypotheses using real and simulated image data. Our results contradict

several previous studies which found no practical evidence for using higher-order

sinc approximation functions [66, 107, 108, 75].

3.3 Registration of diffusion weighted MRI’s

Here the image formation model defined in equation (3.7) is used to derive a com-

prehensive approach for correcting artifacts related to patient motion and eddy

current-induced geometric distortions in diffusion weighted MRI experiments of

the human brain. MRI-based studies of microscopic water molecule displacement

[17] have become a valuable tool in the quantification of many important physical

properties of biological tissues, in vivo. They can indicate the direction of nerve

bundles [83], for example, amongst many other important quantities. Previous

approaches for addressing the problem of geometric distortions caused by the fast

switched diffusion weighting magnetic field gradients [47, 55, 73] exist. However,

most of the approaches are ad-hoc in the sense that little or no justification is

given for the models being used. Moreover, the extent of all sources of artifacts,
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including motion, distortion, intensity modulations, etc., are not considered. We

model and optimize patient motion and geometric distortions simultaneously, as

suggested by the model in equation (3.7) in three dimensions. A 3D rigid body

transformation is used to account for patient motion, while a spherical harmon-

ics expansion in cartesian coordinates is used to model the eddy current-induced

fields that cause geometric distortions. In addition, intensity and b-matrix correc-

tions (see chapter 5) are performed. The algorithm is implemented numerically

using a mutual information-type cost function and a gradient descent-type min-

imization strategy. The series of images is produced using a single interpolation

step, with minimum degradation of image quality. Results with real data show

that the approach can recover much of the diffusion information lost due to spatial

misalignment in typical diffusion tensor imaging experiments. Note that most of

the work presented in this chapter was previously published (with modifications)

in Rohde et al. [91].

3.4 Motion correction in optical mapping

Here similar techniques are used to address motion artifacts in optical mapping

experiments. High-resolution optical mapping is an emerging technique to record

the activation and propagation of transmembrane potential on the surface of

cardiac tissues. Important electrodynamic information previously not available

from extracellular electric recordings can be extracted from these detailed optical

recordings. A typical imaging setup is shown in figure 3.1. Fluorescence from

the potentiometric dye-stained heart surfaces is elicited by a solid state laser and

the induced fluorescence is imaged with a high-speed CCD camera. The data

from the experiment is then used to analyze the spatiotemporal distribution of
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Figure 3.1: Typical cardiac optical mapping experiment setup.

transmembrane potential under different stimuli patterns. However, motion from

the beating heart remains one of the main sources of artifacts in such experiments.

It can can significantly degrade the quality of electro-physiological measurements

such as action potential duration. A novel approach for minimizing such artifacts

based on image registration methods is presented. The image registration method

is an alternative to more traditional approaches such as mechanical restraint

of the heart of addition of chemical uncouplers, which can interfere with the

phenomena being measured. Finally, note that the work presented in this chapter

was published, with modifications, in Rohde et al. [93].

3.5 Post-registration noise variance estimates

As fitting and estimation procedures from registered image data become increas-

ingly more elaborate and quantitative, knowledge of the intensity variance due

to noise will become more important for increasing the accuracy and scientific

value of the results obtained from them. A Method for estimating the variance
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in registered images is presented. The general approach is a simple extension of

the stochastic image model described above and can be summarized as follows.

The output of the registration procedure is computed using an image interpo-

lation or approximation procedure. More often than not, the interpolation or

approximation procedure can be written as a linear combination of the values

of the images being registered. The coefficients of the linear combination are

determined by the choice of interpolation or approximation kernel. Since the

values of the images being registered are typically corrupted by noise, this oper-

ation can be viewed as a linear combination of random variables. The variance

of the linear combination is given by well-known statistical formulas. It is shown

that incorrect information about intensity variance due to noise can significantly

degrade the quality of quantitative results resulted from imaging experiments.

Particular focus is given to analyzing diffusion tensor imaging experiments. The

results, however, should be general and apply to almost any situation in which

registered or processed images are used for quantitative experiments. Finally,

though modifications and improvement were made, most of the work presented

in this chapter was previously published in Rohde et al. [92].
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Chapter 4

Measuring image similarity for image registration

4.1 Introduction

Image registration is the process of identifying the spatial correspondence be-

tween different images. Registration of medical images is an important procedure

in many aspects of biomedical research and clinical practice where it is used to

fuse information from images of a single subject taken at different times to ac-

count for subject motion, or geometric distortions. Image registration methods

are also used by neuroscientists to relate images taken from different subjects.

In the context of brain neuroanatomy for example, researchers (neuroscientists

assisted by imaging engineers, scientific computation experts, mathematicians,

and statisticians) have long used image registration methods to study the vari-

ation of biological tissue properties, such as shape and composition, described

in images across a given population. The aim in such endeavors is usually to

provide a quantitative description of a healthy ‘normal’ population, as opposed

to a diseased one.

Though implementations vary, most methods seek to solve the digital image

registration problem within an optimization framework whose goal is to find a
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function f : x → x′ that transforms the spatial coordinates x ∈ Rd of a target

image T (x) to the spatial coordinates x′ ∈ Rd of a source image S(x′). For the

source and target images to be spatially aligned the mapping function f should

be chosen in such a way as to optimize some cost function (objective function)

between the two images. Mathematically, the image registration problem can be

stated as a minimization problem:

min
f

Θ(S(f(x)), T (x), f) (4.1)

where Θ(·, ·, ·) represents the objective function being optimized. To prevent

registration methods from producing transformations that violate the intrinsic

topology of the image the objective or other basic constraints function Θ is usually

computed as a sum of two terms:

Θ(S(f(x)), T (x), f) = I(S(f(x)), T (x)) + C(f). (4.2)

The term C(f) is a ‘regularization’ term meant to prevent wild spatial oscillations

in the transformation f . Popular choices for regularization of registration meth-

ods include C(f) =
∫
|Df(x)|2dx and

∫
|det(J(f(x)))|−1dx, where det(J(f))

stands for the determinant of the Jacobian matrix of f and D stands for a dif-

ferential operator chosen based on arguments from continuum mechanics.

The function I represents some distance measure, or equivalently, the neg-

ative of a similarity measure between the images being registered. The choice

of I is usually determined by the requirements of the application. In instances

when images S and T are expected to be nearly identical under optimal align-

ment, L2-norms or the sum of squared differences are often employed. When the

relationship between the intensity values of S and T is unknown but expected
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to be linear I can be based on the correlation coefficient of their intensity val-

ues. In more complicated situations many researchers have shown the Mutual

Information [61] similarity measure to be a good choice for I.

Before an estimate for the similarity measure I(·, ·) can be computed for an

arbitrary f(x), however, a suitable strategy for computing S(f(x)) from a set

of discrete samples S(i), i ∈ Zd is necessary. Almost unanimously researchers

choose to make image S(i) continuous by modeling it as a linear combination of

symmetric basis functions [66, 107, 75] determined by interpolation or approx-

imation from the discrete data S(i). In recent years, several researchers have

reported that popular methods used to estimate Mutual Information, L2 and

correlation based similarity measures can behave unexpectedly with respect to

the spatial transformation f being applied [10, 85, 112]. Such artifacts have been

attributed to the interpolation or approximation strategies being used. In this

work we show that such interpolation artifacts occur in L2 and correlation-based

similarity measures whenever significant noise is present. We show that such ar-

tifacts stem from the fact that in estimating the value of the similarity measure

for an arbitrary spatial transformation f one is obliged to interpolate or approx-

imate noisy data. The causes of interpolation artifacts encountered in mutual

information registration curves are more complex in that system noise is not the

only factor. However, like in the L2 and correlation cases, artifacts in mutual

information registration curves can also be explained by loss of spatial frequency

information in the interpolated images. Naturally, the frequency content of in-

terpolated images is better preserved when using sinc-based interpolation. As

results show, interpolation artifacts in image similarity measures can be signifi-

cantly reduced, often completely eliminated, by using sinc-approximating basis
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functions.

The remaining is organized as follows. Using the theory of random processes

we first describe the effects of spatial transformations on the variance and co-

variance structure of the interpolated image. We explain that noise covariance

distortions can have undesired effects on measures of image similarity, such as

the L2 norm and correlation coefficient, and suggest ways through which these

effects can be minimized. We also show how similar strategies can be used to

alleviate so called ‘grid’ artifacts in mutual information curves. Finally, we test

our solutions using both simulated and real magnetic resonance imaging (MRI)

data.

4.2 Theory

4.2.1 Covariance properties of interpolated signals

Borrowing the approach described in [12] we use the following linear, stochastic,

image model in our analysis:

S(x) =

∫
W (p)Υ(x− p)dp + e(x) (4.3)

where x and p ∈ Rd, W (p) corresponds to the function describing the object

being imaged, and Υ(x) is the point spread function of the imaging system. Note

that throughout this paper all quantities will be assumed to be real valued. Unless

noted otherwise, all integrals shall be evaluated from −∞ to ∞. e(x) refers to a

zero mean stochastic process whose covariance structure will soon be described.

We shall consider the integral part of equation (4.3) to be deterministic. The

covariance function of the random process (4.3) is:
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RS(x1,x2) = Cov{S(x1), S(x2)}

= E{(S(x1)− S(x1))(S(x2)− S(x2))}

= E{e(x1)e(x2)}

= Cov{e(x1), e(x2)} = Re(x1,x2)

where

E{e(x)} = e(x) =

∫
e(x)pr[e(x)] de(x), (4.4)

and pr[e(x)] stands for the probability density function of the quantity e(x).

Thus, without loss of generality, for the purposes of analyzing the covariance of

interpolated signals we momentarily assume that S(x) is a zero-mean random

process (i.e. S(x) = e(x) through subtraction of the deterministic part of (4.3)).

As stated above, before a given similarity measure I(S(f(x)), T (x)) can be

evaluated for an arbitrary spatial transformation f , a continuous model for the

digital image S(i) is needed. Most often researchers choose to model S(i) as a

linear combination of symmetric basis functions h(x):

Sc(x) =
∑
i∈Zd

S(i)h(x− i). (4.5)

In this case we have chosen the coefficients of the linear combination to be the

sampled image values. Note that the summations above are carried from −∞

to +∞. In our analysis we assume that all image samples needed for computing

(4.5) are available. This is often true since most practitioners tend to use basis

functions with short support. Moreover, in most cases the computations of in-

terest are confined to an inner subset of the field of view of image S(x). Thus,
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in many cases, image values outside the field of view over which the image was

originally sampled are not needed. In situations where the support of h(x) is

sufficiently large, thus requiring image samples outside the field of view of the

image, the image can be extended by zero padding or by using periodic or mir-

ror boundary conditions. Note that when sampled signals are extended, either

by zero padding or by using reflections of the data, their covariance structure

RS(x1,x2) must be extended the same way.

If we would like Sc(i) = S(i), the basis function h(x) must obey the following:

h(i) = 0 ∀ i ∈ Zd 6= 0 and

h(0) = 1.

Note that when d > 1, the interpolation kernel is generally taken to be separable:

ĥ(x) =
d∏

j=1

h(xj). (4.6)

As shown in [4], expression (4.5) can be interpreted as a continuous filtering

operation of the initial sampled image values

Sc(x) =

∫
Sδ(q)h(x− q)dq = (h ∗ Sδ)(x), (4.7)

where the notation aδ represents the distribution consisting of the train of weighted

Dirac delta impulses

aδ(x) =
+∞∑

i=−∞

a(i)δ(x− i). (4.8)

We now compute the covariance structure of the continuous function (4.5)

RSc(x + ∆x,x) = Cov{Sc(x + ∆x), Sc(x)}:
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RSc(x + ∆x,x) = E{Sc(x + ∆x)Sc(x)}

= E{
∫
Sδ(q1)h(x + ∆x− q1)dq1

∫
Sδ(q2)h(x− q2)dq2}

=

∫ ∫
h(x + ∆x− q1)RSδ

(q1,q2)h(x− q2)dq1dq2,

where RSδ
(q1,q2) = E{Sδ(q1)Sδ(q2)}. If we assume that the correlations in the

random process Sδ(x) are of such short range that RSδ
(q1,q2) can be approxi-

mated by zδ(q1)δ(q1 − q2), where zδ(x) = Var{Sδ(x)}, then

RSc(x + ∆x,x) =

∫
zδ(q1)h(x + ∆x− q1)h(x− q1)dq1

=
+∞∑

i=−∞

z(i)h(x + ∆x− i)h(x− i).

Moreover, if we are dealing with a constant variance random process with variance

zδ(x) = σ2, the variance of the interpolated signal Sc(x) is given by:

Var{Sc(x)} = RSc(x,x) = σ2

+∞∑
i=−∞

[h(x− i)]2. (4.9)

The purpose of the exercise above is to characterize the effects of the signal

interpolation model (4.5) on the covariance structure of the signal. To illustrate

this effect we have plotted equation (4.9), with σ2 = 1, for several interpolating

basis functions currently used in medical imaging in figure 4.1. See appendix A

for the definition of the interpolators used. The truncated sinc basis function was

computed using window width W = 6, as described in appendix A. As shown in

figure 4.1, given a constant variance ‘white’ discrete random process, the continu-

ous model expressed in (4.5) produces a function whose variance at each point in

space is no longer uniform. This is especially true for low order interpolators such

56



Figure 4.1: Plot of equation (4.9), with σ2 = 1, for several interpolating basis

functions typically used in medical imaging.

as the linear ‘hat’ function, but in general it is also true for any kind of interpolat-

ing basis function other than sinc. To understand why sinc interpolation preserves

variance in this case it is enough to verify that
∑+∞

i=−∞[sinc(x− i)]2 = 1 ∀ x (see

appendix B). Thus the covariance structure of a digital image that undergoes a

geometric transformation via

Sc(f(x)) =
∑
i∈Zd

S(i)h(f(x)− i) (4.10)

is dependent on the function f :

RSc(f(x1), f(x2)) =

∫ ∫
h(f(x1)− q1)RSδ

(q1,q2)h(f(x2)− q2)dq1dq2. (4.11)

If we are dealing with an approximately ‘white’ random process the variance of

the interpolated signal is:

Var{Sc(f(x))} = σ2

+∞∑
i=−∞

[h(f(x)− i)]2. (4.12)
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To illustrate this concept we have computed the following simulation. A series

of 200 digital images was created using a random number generator such that the

mean of each pixel was zero and the variance one, while the correlation between

any two pixels was zero. The sample variance (in each pixel) is displayed on the

left panel of figure (4.2). As expected, this image is fairly uniform depicting a

constant-variance random process. Next, each of the 200 simulated images was

rotated about its center by 4 degrees counter clock-wise using bilinear interpo-

lation. The sample variance of the newly created series of rotated images was

computed for each pixel and is displayed in the center panel of figure (4.2). As can

be expected, the variance becomes non-uniform as a function of image coordinate

and acquires a certain ‘striped’ configuration. Lastly, the original series of 200

images of random noise was again rotated about its center counter clock-wise by

4 degrees. This time, however, truncated sinc interpolation (with W = 30) was

used. The sample variance of the rotated image series for each pixel is displayed

on the right panel of figure (4.2). As can be expected, the variance of the rotated

image series using truncated sinc interpolation is almost perfectly uniform.

4.2.2 Optimization of L2-based similarity measures

We have shown above how the covariance properties of digital images are modified

according to the spatial transformation f being used during registration. We now

show that this dependence can be detrimental to the image registration process for

commonly used similarity measures such as the L2 norm and the linear correlation

coefficient. In order to facilitate the analysis we use the following vector notation

for the source and target digital images. That is, S = {S0, S1, · · ·, SN}T , with

N = m× n where m,n are the dimensions of the two-dimensional image. Using
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Figure 4.2: Variance of a stationary random process before and after rotation

using different interpolators. The panel on the left shows the sample variance

of the random process prior to any transformation. The middle panel show the

variance of the random process after rotation of the images about their center

using bilinear interpolation. The panel on the right shows the variance of the

random process after the same rotation of the images this time computed using

sinc approximating basis functions.

(4.3) we can write S = W̃S + eS, with W̃S representing the deterministic part of

equation (4.3) and eS representing the noise vector. Similarly T = W̃T + eT .

In this example we will use rigid body spatial transformations defined by:

fθ,t(x) = Rθ(x− c) + c + t, (4.13)

where t ∈ Rd represents a translation vector, c represents the center coordinate

of the image, and

Rθ =

∣∣∣∣∣∣∣
cos(θ) sin(θ)

− sin(θ) cos(θ)

∣∣∣∣∣∣∣ , (4.14)

represents a rotation matrix, in the two dimensional case. For shorthand notation

we write Fθ,tS to mean the operation of applying a spatial transformation fθ,t to

digital image S(i) through (4.10). Note that since (4.10) is a linear operation on

the sampled image values, Fθ,t is a linear operator, though in general it is not
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shift invariant.

We look at the discrete L2-norm similarity measure, defined by ‖a‖2 = 〈a, a〉 =

1
N

∑N
i=1 a

2
i , of the difference between the source and target images being registered

as a function of the transformation parameters:

I(θ, t) = ‖Fθ,tS−T‖2 = 〈Fθ,tS−T,Fθ,tS−T〉

= 〈Fθ,t(W̃S + eS)−T,Fθ,t(W̃S + eS)−T〉.

Expanding all terms further we write:

I(θ, t) = Q1(θ, t) +Q2(θ, t), (4.15)

where

Q1(θ, t) = 〈Fθ,tW̃S,Fθ,tW̃S〉+ 2〈Fθ,tW̃S,Fθ,teS〉 (4.16)

−2〈Fθ,tW̃S,T〉 − 2〈Fθ,teS,T〉+ 〈T,T〉

and

Q2(θ, t) = 〈Fθ,teS,Fθ,teS〉. (4.17)

To illustrate the behavior of Q1(θ, t) and Q2(θ, t) in the presence of noise

we have computed the following simulation example. Normally distributed spa-

tially uncorrelated noise was added to a digitally manufactured ‘phantom’ image

(shown in figure 4.3) such that the signal to noise ratio, defined to be mean signal

divided by the standard deviation, was about 22. Two such images were gener-

ated with identical signal and different noise vectors with one considered as the

source image and the other the target image. Here optimal alignment is defined

to be at zero degrees of rotation and zero pixel translations.
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Figure 4.3: Synthetic digital phantom image used in simulations. Shown here is

only the deterministic part (no noise).

Q1(θ, t) and Q2(θ, t) were then computed first as a function of image rotation

(figure 4.4) and then with respect to translation along the x direction (figure

4.5) by using bilinear interpolation. Evidently Q1(θ, t) is able to determine the

transformation parameters that optimally align the images. Inspecting equa-

tion (4.16) more closely we see that 〈Fθ,tW̃S,Fθ,teS〉 ∼ 0 since, by definition,

E{eS(x)} = 0 ∀ x. By a similar argument 〈Fθ,teS,T〉 ∼ 0. The remaining terms

in Q1 can be written as ‖Fθ,tW̃S − W̃T‖2 + 〈eT , eT 〉, where E{eT (x)} = 0 ∀ x

is used again. Since no significant terms involving 〈Fθ,teS,Fθ,teS〉 appear, we

see why Q1 is, in theory, artifact free. Q2(θ, t), on the other hand, oscillates

with respect to the spatial transformation being applied. Because no terms con-

taining the signal part of the images is present the oscillations in Q2(θ, t) are

independent on the alignment of image signal, thus creating a confound in the

optimization of the objective function. As a consequence, L2-based similarity

measures I(θ, t) = ‖Fθ,tS−T‖2 = Q1(θ, t) +Q2(θ, t) are not able to determine

the transformation parameters that optimally align the images when significant

noise is present. Thus a computer program that registers images based on the

minimization of equation ‖Fθ,tS − T‖2 would not be able to produce accurate
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Figure 4.4: Results from simulation experiments. Sum of squared differences

similarity measure with respect to rotation angle (in degrees) computed using

bilinear image interpolation. The sum of squared differences (dotted line) is

computed as a sum of two terms: Q1(θ) and Q2(θ) (see text). Zero degrees ro-

tation defines optimal alignment. True optimal alignment and measured optimal

alignment are indicated with arrows. Magnitude of the error in the computed

registration parameter in this case is 0.5 degrees.

results. Figures 4.4 and 4.5 show the size of the error in the estimated registration

parameter such a program is likely to produce in this specific example. The error

in rotation would be about ±0.5 degrees while the error in translation would be

about ±0.25 pixels.

Looking at Q2(θ, t) more closely, we see that, when eS(x) has a normal dis-

tribution (other distributions may also apply), 〈Fθ,teS,Fθ,teS〉 is the maximum

likelihood estimator for the expectation E{(Fθ,teS)2}. For the case of image trans-
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Figure 4.5: Results from simulation experiments. Sum of squared differences

similarity measure with respect to translation (in pixels) computed using bilinear

image interpolation. The sum of squared differences (dotted line) is computed

as a sum of two terms: Q1(θ) and Q2(θ) (see text). Zero translation defines

optimal alignment. True optimal alignment and measured optimal alignment

are indicated with arrows. Magnitude of the error in the computed registration

parameter in this case is 0.25 pixels.

lation, it is easy to see that E{(Fθ,teS)2} ∼ Var{Sc(f(x))}, where Var{Sc(f(x))}

is given by equation (4.9). The oscillations in Q2(θ, t) shown in figure 4.5 are

thus equal (up to a scaling factor) to the oscillations shown in the linear portion

of figure 4.1. Note also that the oscillations shown in figure 4.5 are very similar

to the ‘grid’ effects discussed in [85, 112].

Finally, we note that the constant variance assumption is not strictly necessary

to explain the so called ‘grid’ artifacts in the sum of squared differences similarity
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measure, nor should it be expected that such artifacts will only occur in which

the constant variance assumption holds. To see this, consider the Q2 (equation

4.17) term in the expanded sum of squared differences similarity measure:

Q2(θ, t) = 〈Fθ,teS,Fθ,teS〉 =
1

N

N∑
i=1

(Fθ,teS)2
i . (4.18)

For noise that has an exponential type of distribution (Rayleigh, Gaussian, etc.),

and in the case of image translation specifically, the sum above can easily be

shown to be the maximum likelihood estimator of the variance at any given in-

terpolated pixel. Now, the sum above can be divided into sub-sums over regions

where it can be assumed that, at least locally, the constant variance assump-

tion holds. This is appropriate for the case of MRI for example, where several

researchers have shown that the noise distribution in the background satisfies a

Rayleigh-type distribution (assuming no significant ghosting contamination) of

constant variance [43, 100]. In the foreground, at signal to noise ratios greater

than 3 or so, the noise distribution approximates a Gaussian distribution, also of

constant variance [49, 43, 100]. Now the sum above can be split into sub-sums,

where the constant variance assumption holds. Thus

1

N

N∑
i=1

(Fθ,teS)2
i =

1

N

(∑
i∈Ω1

(Fθ,teS)2
i +

∑
i∈Ω2

(Fθ,teS)2
i

)
, (4.19)

where Ω1 and Ω2 represent two regions where the constant variance assumption

holds. Naturally, the same argument can be expanded for and arbitrary number of

regions. It is easy to see that each individual term
∑

i∈Ωj
(Fθ,teS)2

i is proportional

to the variance formula 4.9, which as explained earlier, oscillates with respect to

the spatial transformation being applied to the image.

64



4.2.3 Optimization of correlation-based similarity mea-

sures

In this section we look at the effects of system noise on correlation based sim-

ilarity measures. For convenience, we look at the cross correlation (zero-mean

correlation coefficient) between two N -dimensional vectors often used in image

registration:

I(θ, t) =
〈Fθ,tS,T〉
‖T‖‖Fθ,tS‖

. (4.20)

As done earlier, we use the linear stochastic image model S = W̃S + eS to

expand the term ‖Fθ,tS‖ into

‖Fθ,tS‖ =

√
〈Fθ,tW̃S + Fθ,teS,Fθ,tW̃S + Fθ,teS〉

=

√
〈Fθ,tW̃S,Fθ,tW̃S〉+ 2〈Fθ,tW̃S,Fθ,teS〉+ 〈Fθ,teS,Fθ,teS〉

where again we have the undesirable, though inevitable, term 〈Fθ,teS,Fθ,teS〉

which depends solely on the noise properties of the source image. The same

translation and rotation simulations reveal that correlation based cost functions

suffer from the same problems as L2 based ones: namely, the optimal value of

the cost function will not reveal the transformation parameters that optimally

align the images. The results of the simulation are shown in figure 4.6. Again,

the assumption of globally constant noise variance is not strictly necessary, since

the term 〈Fθ,teS,Fθ,teS〉 can be split over regions where it can be assumed the

variance is constant, by a similar argument to the one presented in the previous

section.
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Figure 4.6: Results from simulation experiments. Cross correlation similarity

measure as a function of image translation (dots) and rotation (solid).

4.2.4 Optimization of mutual information

The ’grid’ effects observed in mutual information-based optimization are slightly

different in nature from the effects demonstrated for the L2 and correlation ob-

jective functions in the sense that noise variance is not the only factor to be

considered. In this case, we have also to consider the intensity value distribution

of the object, in addition to the distribution of noise. Image registration via max-

imization of mutual information relies on measuring the statistical dependence

in the co-occurrence of intensity values of images S(f(x)) and T (x). Let prSf
[s]

and prT [t] represent the distribution of pixel intensity values s and t in images

S(f(x)) and T (x), respectively. Their joint probability is denoted prSf ,T [s, t].

With these quantities defined the mutual information between images S(f(x))

and T (x) is given by:
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I (S(f(x)), T (x)) =

∫ ∫
prSf ,T [s, t] log

(
prSf ,T [s, t]

prSf
[s]prT [t]

)
dsdt, (4.21)

or alternatively

I (S(f(x)), T (x)) = H(T ) +H(Sf )−H(T, Sf ), (4.22)

where

H(T ) = −E{log (prT [t])},

H(Sf ) = −E{log
(
prSf

[s]
)
},

and H(Sf , T ) = −E{log
(
prSf ,T [s, t]

)
}.

As an initial example, let prT [t] = 1
σ1

√
2π

exp
(
− (t−µ1)2

2σ2
1

)
and similarly prSf

[t] =

1
σ2

√
2π

exp
(
− (t−µ2)2

2σ2
2

)
, where σ2

1 and σ2
2 are the variances of the distribution of

intensity values of images S(f(x)) and T (x), respectively, and µ1, µ2 their means.

Then the mutual information between images S(f(x)) and T (x) is given by [61]:

I (S(f(x)), T (x)) = −1

2
log
(
1− ρ2

)
, (4.23)

where ρ is the linear correlation coefficient between the intensity values of the

images being registered. In this situation we would expect that any reasonably

accurate estimate of (4.21) as a function of spatial transformation f would also

contain the artifacts in the correlation coefficient similarity measure demonstrated

earlier. Naturally, tomographic images are seldom globally Gaussian distributed.

Locally, however, the normal distribution assumption may be more realistic. In

appendix C of this chapter we explain that such oscillations occur for a mixture
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model specific to MRI at high signal to noise ratios. While this is not an analytical

explanation for all possible distributions, for all possible types of images, we

believe it covers at least one realistic circumstance (that of MRI at high SNR) as

well as other similar cases.

To show the effects of low order interpolation on mutual information based

optimization of spatial transformations we have computed the same translation

simulation described earlier. We have used a Parzen windowing technique to

compute an estimate of the joint probability density function prSf ,T [s, t] based

on discretely sampled values of the images S(f(x)) and T (x). That is

prSf ,T [s, t] ∼
N∑

i=1

ψ (S(f(xi))− s)ψ (T (xi)− t) , (4.24)

where ψ(x) = 1
β
√

2π
exp

(
− x2

2β2

)
, and xi, i = 1, ···, N are the sampling coordinates

of the target image T (x). The results of the simulation are shown in figure

4.7. Evidently, even for this simple simulation, the mutual information similarity

measure as a function of image translation contains the multiple local optima

‘grid’ artifacts described earlier.

4.3 Methods

The theory presented above suggests that the interpolation artifacts seen in L2

and correlation-based cost functions are entirely due to the presence of noise in

the images being registered. One obvious strategy to mitigate such artifacts is to

reduce the variance Var{S(i)} in the original source image by performing local

averaging. This can be achieved via digital convolution of the image with a digital

filter G(i):
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Figure 4.7: Results from simulation experiments. Mutual information as a func-

tion of image translation computed using bilinear interpolation.

S̃(i) =
∑
w∈Zd

S(w)G(i−w). (4.25)

If we are concerned with a stationary random process, Var{S(i)} = σ2 ∀ i, using

G(x) =
1

9


1 1 1

1 1 1

1 1 1

 (4.26)

would reduce the variance of the image to Var{S̃(i)} = 0.11σ2. This would re-

duce the oscillatory behavior of the cost function due to the term 〈Fθ,teS,Fθ,teS〉

in computing L2 and correlation based cost functions, and may also reduce the

oscillatory behavior of mutual information curves [85] . This may not always be

an optimal strategy for excessive smoothing can blur image boundaries that are

important for guiding the registration process. As suggested earlier, an alterna-
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tive approach is to use higher order sinc approximating kernels instead of low

order kernels such as the hat function.

We will compare these interpolation and approximation methods for mea-

suring image similarity in real and simulated magnetic resonance images. The

simulated phantom image is shown in figure 4.3. Uncorrelated normally dis-

tributed noise was added in quadrature (in MRI time domain signals are usually

received in quadrature and the displayed image is usually the magnitude of the

inverse Fourier transform of the received signal [44]) such that the signal to noise

ratio was about 31. The real MR images shown in figure 4.8 were taken from

a standard single-shot spin-echo planar imaging (EPI) sequence acquisition on a

1.5 T GE Signa system. Because the images were reconstructed by taking the

magnitude of the Fourier transform of the time domain signals, they do not neces-

sarily constitute a stationary random process. In fact through the work described

in [49, 43] it is known that if Gaussian distributed noise is added to the receiver

coils, the variance of the magnitude reconstructed image in regions of zero signal

is (2−π/2)σ2 while the variance of the magnitude reconstructed image in regions

with relatively high signal approaches σ2. The variance in each of these domains

however, is usually assumed to be constant. In addition, because of several linear

filtering steps, performed during analog to digital conversion, to remove ‘ringing’

artifacts, the magnitude reconstructed is usually spatially correlated. However,

these correlations are usually small.

In addition to the echo-planar T2 images shown in figure 4.8, we have also

used images taken from a realistic MRI simulator [24]. The image pair consists

of noisy high resolution T2 and T1 weighted images. Computation with these

images are included to make explicit the fact that our theoretical predictions are
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Figure 4.8: Real T2 weighted echo planar images used for computing the perfor-

mance of different interpolation methods for image registration. The images were

acquired in rapid succession and are likely to be fairly well aligned.

Figure 4.9: Images used for computation of mutual information similarity mea-

sure.

not limited to the data set shown in figure 4.8.

As done in [85, 112] the registration curves were computed by rotating and

translating one image with respect to the other, much like in the previously dis-

cussed simulations. However, following the approach described in [117], in order

to amplify the interpolation artifacts we choose to vary the spatial transforma-

tion starting from a slightly misaligned state. That is, angle θ is varied after

translating the source image using a fixed translation vector t = {0, 3}T . Simi-

larly, translation in the x direction is computed after translating the source image
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using a fixed translation in the y direction t = {t, 3}T . The transformations are

combined so that only one image interpolation is necessary for each value in the

computed registration curves. Note that when real data was used, the exact

alignment parameters are unknown. However, because the images were acquired

in rapid succession they are likely to be closely aligned. This can be confirmed

by visual inspection of the images displayed in figure 4.8.

In order to show that the effects described above are general and not limited

to affine or ‘global’ transformations we have also conducted tests using spatially

varying transformations constructed with localized radial basis functions. In this

example we used the following parameterization for the spatial transformation:

fk(x) = x + kΦ(
‖x− q‖

r
), (4.27)

where k = {kx, ky}T are the basis functions coefficients, q defines the center of

the basis function, r its radius, and:

Φ(x) =
1

4
(1− x)4

+(4 + 16x+ 12x2 + 3x3). (4.28)

As in the example described earlier, we have plotted the variation of the cost

function with respect to the kx coefficient, using a fixed ky = 2 coefficient.

Finally, we point out that in many useful cases spatial transformations using

sinc-type basis functions can be computed efficiently using the FFT algorithm,

following the arguments highlighted in [31]. Let S(n), n = 0, · · · , N−1 represent

a one dimensional discrete vector, the same concepts can be easily generalized to

multiple dimensions. The Discrete Fourier Transform (DFT) of the signal is:

Ŝ(k) =
N−1∑
n=0

S(n)e−
2πkn

N (4.29)
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As shown in Eddy et al [31], a pure translation of the image vector by t ∈ R can

be obtained by multiplying Ŝ(k) with a complex exponential followed by inverse

discrete Fourier transformation:

S(n− t) = F−1
(
e−2πtkŜ(k)

)
. (4.30)

In image domain, the above operation is equivalent to performing a discrete con-

volution, with periodic boundaries, of the original image vector with the Dirichlet

kernel

h(x) =
sin(πx)

N sin (π/Nx)
exp (−πx(N − 1)/N) (4.31)

sampled at x = t− n, n = 0, · · · , N − 1. As N →∞ the kernel above converges

to the already mentioned sinc kernel. It is easy to see that signal translation

via the DFT algorithm described above is also optimal in the sense that it does

not corrupt the power spectral density of a stationary random process [13] since

|e−2πtk|2 = 1 ∀ tk. We have implemented such image translation algorithm to

compare to other translation methods based in linear and cubic interpolation.

4.4 Results

Figure 4.10 shows the sum of squared differences cost function with respect to

translation of the digital phantom image described above. The figure shows that

bilinear interpolation is not an appropriate interpolation procedure for performing

image registration when significant noise is present. In the location where a global

minimizer is expected, bilinear interpolation-based computation of the objective

function seems to produce a local maximizer. Sinc-based interpolation, here

the width of the windowing function was W = 6, however, seems to perform

well. Similar results are obtained using rotations, instead of translations. Similar
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Figure 4.10: Sum of squared differences as a function of image translation for

digital phantom image experiments. The dotted line curve was computed using

bilinear interpolation while the solid curve was computed using truncated sinc

interpolation.

results are obtained using correlation and mutual information similarity measures

[90]. For brevity these are omitted here, and we now focus on the experiments

using real MR images.

Figure 4.11 shows the sum of squared differences similarity measure (using the

real images displayed in figure 4.8) with respect to translation using the bilinear

and truncated sinc interpolation methods. The registration curve computed using

bilinear interpolation presents what is commonly refereed to as the grid artifact

while such artifacts are seemingly non existent in the registration curve computed

using the truncated sinc interpolation method. Figure 4.12 shows similar results

computed using image rotation instead of translation. Both figures 4.11 and

4.12 were computed using W = 6 for the truncated sinc basis function. Note
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Figure 4.11: Sum of squared differences as a function of image translation for

real MR data experiments. The dotted line curve was computed using bilinear

interpolation while the solid curve was computed using sinc approximating basis

functions.

that in both cases, bilinear interpolation produces different global optima with

respect to transformation parameters than truncated sinc interpolation. Figure

4.13 displays again the sum of squared differences similarity measure computed

with respect to image translation. In this example, however, the source image

was blurred by the convolution filter defined in equation (4.26). The grid artifact

is substantially reduced in comparison to figure 4.11, though it is not completely

eliminated.

Figures 4.14,4.15, and 4.16 display the results of the same experiments using

the cross correlation objective function. In this example truncated sinc interpola-

tion was computed using W = 12. Again the grid artifact is fairly evident in the

translation curves computed using bilinear interpolation (figure 4.14). The grid

artifacts are removed by using truncated sinc interpolation. The rotation exper-
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Figure 4.12: Sum if squared differences as a function of image rotation for real MR

data experiments. The dotted curve was computed using bilinear interpolation

while the solid curve was computed using truncated sinc basis functions.

Figure 4.13: Sum of squared differences similarity measure as a function of image

translation for real data experiments. In this experiment the image being rotated

was blurred prior to computation of the similarity measure.
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Figure 4.14: Cross correlation as a function of image translation for real data

experiments. Solid curve computed using truncated sinc basis functions while

the dotted curve was computed using bilinear interpolation.

iments reveal that one encounters a local minimum in the objective function at

zero degrees (figure 4.15). The local optimum disappears when using truncated

sinc. Once again, the grid effects seen to be reduced when using blurred images

(figure 4.16).

Figures 4.17,4.18,4.19 display the results of the experiments performed using

the mutual information similarity measure. Here the width of the truncated sinc

interpolation kernel was W = 50. Translation experiments reveal that linear

interpolation causes the aforementioned grid artifacts, while truncated sinc in-

terpolation seems to avoid them. The rotation experiments in this example were

less clear than others. However, the oscillatory behavior of the registration curve

is much reduced when using sinc approximating interpolation kernels. As with

the previous experiments, smoothing of the source image prior to interpolation

and similarity measure computation seems to ease grid artifacts.
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Figure 4.15: Cross correlation as a function of image rotation for real data ex-

periments. Solid curve computed using truncated sinc basis functions while the

dotted curve was computed using bilinear interpolation.

Figure 4.16: Cross correlation as a function of image translation. In this example

the source image was blurred prior to computation of the similarity measure.
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Figure 4.17: Mutual information as a function of image translation for real image

experiments. Solid curve computed using truncated sinc basis function while the

dotted curve was computed using bilinear interpolation.
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Figure 4.18: Mutual information as a function of image rotation (in degrees) for

real image experiments. Solid curve computed using truncated sinc basis function

while the dotted curve was computed using bilinear interpolation.
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Figure 4.19: Mutual information as a function of image translation for real image

experiments. Computed using bilinear interpolation after smoothing the source

image.
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Figure 4.20: Mutual information similarity measure with respect to image trans-

lation computed using linear, cubic, and fourier-based interpolation.

Figure 4.20 contains plots of the mutual information similarity measure with

respect to translation for the images shown in figure 4.9. In this specific example,

the pdf s used to estimate the mutual information were computed using the joint

histogram of the images, in a manner similar to the method described in [70].

Three registration curves were computed. One using linear interpolation, one us-

ing cubic interpolation, and the other using the FFT-based translation algorithm

described earlier. As evident from these plots, the FFT-based image translation

method seems to be the best choice for determining the translation parameters

that register the images. In addition, observe that the cubic interpolation ker-

nel seemed superior to the linear one in the sense that the oscillations in the

registration curve was greatly reduced.

Finally, the results of the nonrigid experiments using the L2-norm objective

function are displayed in figure 4.22. Here truncated sinc interpolation was com-
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Figure 4.21: Left: MR image used for local, nonrigid, deformation experiment.

The white cross close to the center of the image indicates the location of the basis

function. Right: local deformation computed using the compactly supported

basis function. The location coinciding with the center of the basis function is

moved one pixel to the right.

puted using W = 6. The location of the basis function is indicated by the bright

cross in the image shown in the left panel figure 4.21. The radius of the basis

function was chosen to be r = 20 pixels. The deformation produced by trans-

lating the center image location one pixel to the left is shown visually on the

right panel of the same figure. The curve computed using bilinear interpolation

again shows multiple local optima values. In contrast, the curve computed using

truncated sinc interpolation shows only one. In addition, the global optimum for

the cost function computed using truncated sinc basis functions and bilinear ones

differ.

4.5 Discussion

The experiments with real MR images discussed above depict the effects of low

order interpolation methods on popular registration cost functions such as the

sum of squared differences, the correlation coefficient, and mutual information.

Though the optimal alignment parameters for the real data experiments were not
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Figure 4.22: Sum of squared differences similarity measure as a function of local

deformation using a compactly supported radially symmetric basis function. The

solid curve was computed using truncated sinc interpolation while the dotted

curve was computed using bilinear interpolation.
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known, in all experiments tried, sinc approximating basis functions performed

visibly better than linear ones. Linear interpolation often produced registration

curves that contained the aforementioned grid (multiple local optima) artifacts.

Thus registration programs based on optimization of L2, linear correlation, or

mutual information-based cost functions using linear interpolation are likely to

converge slowly to the global optima solution, or in some cases, converge only

to a local optimum, significantly degrading the quality of the results. Image

interpolation using sinc approximating basis functions, on the other hand, did

not produce the artifacts mentioned.

Local parametric models for deformation fields are often used in nonrigid

registration methods [95, 64, 65, 87]. The results produced by using the local

nonrigid transformation model (4.27) show that the interpolation artifacts in

registration curves are general, and not necessarily restricted to affine or global

transformation models. Results also showed that sinc approximating kernels can

help increase the accuracy of such registration algorithms.

The FFT-based algorithm seems to be a good alternative for computing linear-

type spatial transformations of digital images. The algorithm explained earlier

in this chapter was specific for computing pure translations. However, it can be

generalized to affine transformations, as shown by Eddy et al. [31]. As explained

earlier, Fourier interpolation via the FFT is not only computationally efficient,

but also has the benefit of not distorting the stochastic properties (variance and

covariance) of the image being transformed. Thus similarity measures computed

using the FFT image transformation algorithm are more likely to be free of

the so called ‘grid’ artifacts (local optima). This is a powerful alternative to

truncated sinc kernel which, in order to approximate the properties of true sinc
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interpolation to the fidelity necessary to remove ‘grid’ artifacts, require extremely

long computation times.

We attribute the increase in performance gained by sinc approximating ker-

nels to the fact that their use in computing geometric image transformations

causes the least amount of changes in the covariance properties of the image

being interpolated. This was particularly evident when we compared sinc ap-

proximating basis functions with linear basis functions in our simulations. We

have experimented with different apodisation windows for truncating sinc basis

functions and found that the support W of the windowing function, and not nec-

essarily the form of the windowing function, was most significant in determining

the covariance properties of interpolated images [90].

Finally, it is worth pointing out that the theory and experimental results

presented here are in good agreement with the more empirical findings published

by many elsewhere. Blurring the data has been shown to reduce local optima

artifacts by Woods et al [122] and Ashburner et al [9], while W.F. Eddy et al [31]

and J.V. Hanjal et al [46] have described advantages of sinc type interpolation

methods in the context of image registration. Shift invariant image blurring was

apparently not used by Pluim et al [85], though a ”resampling” operation was

reported to reduce the severity of artifacts. Such resampling will reduce the

variance of each local sample. As pointed out in the paper, reduction in the

variance of the image will help reduce such artifacts. Finally Tsao [112] reported

that a sinc based kernel of width W = 3 was not effective in diminishing artifacts

in mutual information curves, something we also experienced. However, sinc type

interpolation using wider kernel widths was not reported in Tsao [112].

In fact, the only apparent contradiction is that Tsao [112] reported that higher
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order interpolation such as cubic or sinc did not present any apparent advantage

in the computation of MI curves. Our theory section, as well as some of the results

included clearly describes advantages of higher order interpolation methods such

cubic interpolation over linear type (as far as the stochastic properties of the

signal are concerned). However, taking a closer look at figure 7 of Tsao’s work

[112], it does seem that in that specific example the cubic-type interpolation

method and Hamming-sinc (even with the short support used) did reduce the

’grid’ oscillations as compared to the linear interpolation method. Why this was

not reflected in their quantitative measures of registration curve smoothness we

do not know, and can only speculate. It could be related to things such as their

preprocessing of the images, the construction of the smoothness measures, etc.

4.6 Summary and Conclusions

Image similarity measures based on the L2 norm, linear correlation, and mutual

information have been widely employed for rigid-body, affine, and elastic regis-

tration of medical and other types of images. We have shown that such similarity

measures contain systematic local optima artifacts when low order interpolators

such as the hat function are used for computing geometric transformations. These

artifacts present a significant confound to any program that seeks to align images

based on optimization of such objective functions. We showed that the interpo-

lation artifacts are entirely caused by the effects of the spatial transformations

being used as well as the basis functions used to make the images continuous.

Using a linear stochastic model for the image data we showed that in addition

to being functions of the spatial transformations being applied, L2 and correla-

tion based similarity measures are also functions of the covariance structure of
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the interpolated images. The covariance structure of geometrically transformed

images is described as follows. Because of inevitable system noise stemming from

thermal and other effects, the images being registered are viewed as random pro-

cesses. Since image interpolation, at each point in space, can be interpreted as

a linear filtering procedure we used the second order theory of random processes

to describe the effects of different interpolating basis functions on the covariance

structure of the images.

We showed that sinc approximating basis functions are optimal for generating

continuous approximations of image data in registration problems since they are

least likely to cause significant changes in the covariance structure of interpolated

images. Thus, in addition to the more traditional properties based on linear

approximation theory described in [108], we argue that the criterion
∑+∞

i=−∞[h(x−

i)]2 = 1 ∀ x should be kept in mind when choosing basis functions for computing

spatial transformations of images in registration problems.

Future work in this area could include investigating further which basis func-

tions best preserve the covariance properties of the images during image regis-

tration while keeping in mind their computational cost. Lastly, we note that

intensity based image registration is not the only application which requires con-

tinuous approximations of discretely sampled image data. Other important ap-

plications such as image segmentation using deformable models and sub-pixel

edge detection and target tracking also make use of continuous approximation

models based on noisy samples. Variational energy minimization methods are

commonly used to compute solutions for such problems and we postulate that

artifacts similar to those explained in this chapter could be encountered in these

applications as well. Future work could also include demonstrating the effects of
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low order interpolators in these applications.

4.7 Appendix A

Here we give the definition of the several interpolating basis functions used

throughout this paper. The linear basis function, also known as the B-spline

of order 1 or hat function, is given by:

h(x) =

 1− |x| if |x| ≤ 1;

0 if |x| > 1.
(4.32)

The cubic cardinal spline function referred to above is given by:

h(x) =
−6α

(1− α2)

+∞∑
k=−∞

α|k|β3(x− k), (4.33)

where α = 0.2679, and β3(x) is the popular B-spline of order 3:

β3(x) =


2
3
− 1

2
|x|2(2− |x|) , 0 ≤ |x| < 1;

1
6
(2− |x|)3 , 1 ≤ |x| < 2 ;

0 , 2 ≤ |x| .

(4.34)

Finally, the popular sinc basis function is given by:

h(x) = sinc(x) =
sin(πx)

πx
. (4.35)

The truncated version of (4.35) is given by multiplication of (4.35) with a window

function w(x):

w(x) =

 v(x) if |x| < W ;

0 if W ≤ |x|.
(4.36)
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In this work we use the Hann function (sometimes referred to as Hanning) defined

as:

v(x) = 0.5 + 0.5 cos(
πx

W
). (4.37)

4.8 Appendix B

Here we show that

+∞∑
i=−∞

[sinc(x− i)]2 = 1 ∀ x. (4.38)

We proceed by showing the 1D version of (4.38). The Rd result follows naturally

by taking the limits in each dimension separately. We use the following definition

for the continuous Fourier transform of a continuous, integrable function s(x):

F{s}(u) =

∫
s(x)e2πxudx. (4.39)

Then we have:

F{sinc(x)}(u) =

 1 if |u| ≤1
2
;

0 elsewhere.
(4.40)

In addition:

F{[sinc(x)]2}(u) =

 1− |u| if |u| ≤ 1;

0 if |u| > 1.
(4.41)

The sum in (4.38) can be written as a continuous integral by:
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+∞∑
i=−∞

[sinc(x− i)]2 =

∫
[sinc(y)]2comb(x− y)dy (4.42)

where

comb(x) =
∞∑

i=−∞

δ(x− i) (4.43)

and δ is the Dirac Delta Function. Using Plancherel’s theorem the integral (4.42)

becomes:

∫
[sinc(y)]2comb(x− y)dy =

∫
F{[sinc(x)]2}(u)comb(u)e2πxudu. (4.44)

Evaluating the integral above, for any given x, we obtain 1.

4.9 Appendix C

Let the probability density function (pdf ) for the intensity values in an image be

defined as a mixture of Gaussians:

prS(s) =
N∑

i=1

αiprSi
(s), prSi

(s) ∼ N(µi, σ
2). (4.45)

A pictorial description of the mixture model above for a one dimensional

signal is given in figure 4.23. The goal here is to investigate the entropy of the

mixture model that describes a translated version of the image computed with

Sc(x + t) =
∑P

i=1 S(i)h(x + t − i). The variance of each component i of the

mixture model, in the case of an uncorrelated random process, is modified as

prSc
i
(s) ∼ N(µi, σ

2(t)), σ2(t) = σ2

∞∑
i=−∞

[h(t− i)]2 . (4.46)
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Figure 4.23: Pictorial representation of a mixture model pdf for a one dimensional

signal. This particular example contains two classes: background and foreground.

Note that if partition of unity is satisfied
∑∞

i=−∞ h(x−i) = 1,∀x, then µi(t) =

µi. So

prSc(s) =
N∑

i=1

αiprSc
i
(s), prSc

i
(s) ∼ N(µi, σ

2(t)). (4.47)

Note that σ2(t) 6 σ2, with equality when h =sinc, as well as other basis functions

such as Haar.

Again we wish to compare the entropy of two mixture modes: prS(s) refers

to the pdf of the original data, and prSc(s) refers to the pdf of the interpolated

(translated) continuous signal. Then, for a fixed translation t we can find a2 so

that:

σ2(t) + a2 = σ2. (4.48)

The pdf of the original data can be written as a function of the pdf of the

translated signal:

prS(s) = prSc(s) ∗N(0, a2), (4.49)

where ∗ refers to the one dimensional convolution operation. Let YS, YSc , and Ya

be random variables associated with pdf s prS(s), prSc(s), and N(0, a2), respec-

tively. Then:

YS = YSc + Ya, (4.50)
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and

H(YS) = H(YSc + Ya) > H(YSc). (4.51)

In words, the entropy of the pdf associated with the experiment of choosing

intensity values from an image translated using a continuous image model is

monotonic with respect to the variance of the signal: the more interpolation on

image values, the lower the variance of the signal, the lower the entropy. Since

the variance of any component in the mixture model defined in 4.45 oscillates

with respect to translation parameter t according to σ2
∑∞

i=−∞ [h(t− i)]2, the

entropy of a translated signal will also oscillate accordingly.

4.9.1 Joint entropy between two images

Mutual information-based registration of two images S and T also involves the

estimation of their joint entropy, which in turn requires knowledge of the joint pdf

of the images’ intensity values H(Sc, T ),: I(S, T ) = H(T )+H(Sc)−H(Sc, T ). A

very similar argument to the one made above can be made by extending the 1D

mixture model to a 2D mixture model for the joint distribution of the images:

prS,T =
N∑

i=1

αipr(S,T )i
(s, t), pr(S,T )i

(s, t) ∼ N(ui,Σ), (4.52)

where

Σ =

 σ2 0

0 λ2

 . (4.53)

Again the mixture model associated with the translated signal is:

prSc,T =
N∑

i=1

αipr(Sc,T )i
(s, t), pr(Sc,T )i

(s, t) ∼ N(ui,Σ
c), (4.54)

with σ2(t) 6 σ.
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Thus we find ourselves in the same situation as before, comparing the entropy

of the joint mixture model of a translated image with another image, and the

entropy of the joint mixture model of the original, unprocessed, images. Now the

joint pdf of the original data can also be written as a function of the pdf of the

translated data:

prS,T (s, t) = prSc,T (s, t) ∗N(0, a2)(s) (4.55)

where the convolution is only performed along the s variable. By identical argu-

ments:

H(S, T ) > H(Sc, T ). (4.56)

This means that H(Sc, T ) also oscillates as the image Sc is translated by t, just

as H(Sc) does.

4.9.2 Do oscillations in H(Sc) and −H(Sc, T ) cancel out?

If prSc,T (s, T ) = prSc(s)prT (t), for all translation values t, the oscillations in

H(Sc) and −H(Sc, T ) cancel out, since I(Sc, T ) = H(T ) + H(Sc) − H(Sc, T ).

However, this also means that as far as the mutual information is concerned, the

images do not align, since the marginal pdf of the images being registered are

independent from one another, no matter the translation value t. Consider the

translation interval t ∈ [0, 1] (the sub-pixel translation interval). For optimization

to be successful the similarity measure I(Sc, T ) along this interval should be void

of local optima. This requires that the derivative d(H(Sc)−H(Sc,T ))
dt

must not change

sign (unless it is an actual global optimum, of course). This means that

dH(Sc, T )

dt
<
dH(Sc)

dt
(4.57)
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on the ascending part of the curve, for example, must hold for all t in that interval.

The opposite should hold on the descending part of the curve. This means that

the changes in image translation value t must produce sufficient negative changes

in the joint entropy H(Sc, T ) to offset the systematic variations in both H(Sc, T )

and H(Sc).

In situations of low signal to noise ratios H(Sc, T ) may not change appreciably

with respect to changes in t since not enough signal may be present for detecting

significant statistical dependency, this causing the aforementioned ‘grid’ (local

optima) artifacts in mutual information similarity measure computations.

In the mixture models above we used the assumption that the variance for

each component of the mixture was the same. This allowed us to proceed with

the arguments in a straight forward manner. However, as explained earlier in

the chapter, the constant variance assumption does not hold for many important

imaging modalities such as MRI. Below we extend the mixture model used above

to include another component relating to the background of the image.

4.9.3 Mixture model for MRI

Thermal noise in MRI is commonly assumed to be Gaussian distributed [44],

zero mean, variance σ2, additive to both real and imaginary receiver channels.

In magnitude reconstructed images, A =
√
A2

real + A2
imaginary, the pdf of the

intensity value s at a particular voxel is given by a Rician distribution:

pr(s) =
s

σ2
e−

s2+A2

2σ2 β0

(
As

σ2

)
(4.58)

where β0 represents the zeror order Bessel function of the first kind.
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Figure 4.24: Multimodal distribution for a typical MR image.

In the low signal to noise (SNR) limit (SNR) A/σ2 → 0 and

pr(s) ∼ s

σ2
e−

s2

2σ2 , (4.59)

while at high SNR A/σ2 →∞ and

pr(s) ∼ 1√
2πσ2

e
(s−A)2

2σ2 . (4.60)

Note that it is commonly assumed that at SNR ratios A/σ > 3 [43] the

pdf for any class of tissue is given by the Normal distribution specified above.

Consequently, the pdf of intensity values in a typical MR image looks like the one

displayed in Figure 4.24. The relative heights of the two most prominent peaks

are given by the relative size of the foreground with respect to the background,

while the distance of separation between them is given by the SNR.

Thus, a good approximation for the intensity distribution of a typical MR

image, denoted here as image S, is the following mixure model:

prS(s) = τprbkg(s) + (1− τ)prfrg(s), (4.61)
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where prbkg is given by the pdf of the background (4.59), and prfrg(s) (the pdf

of the foreground part) is given by the mixture model in equation (4.46). Using

this model, the entropy of the pdf of the image is:

H(PS(s)) =

∫ (
τprbkg(s) + (1− τ)prfrg(s)

)
log
(
τprbkg(s) + (1− τ)prfrg(s)

)
ds.

(4.62)

At high SNR we can approximate the above integral with:

H(prS(s)) ∼ τH(prbkg(s)) + (1− τ)H(prfrg(s)). (4.63)

This means that, in MRI at high SNR, we can expect that our analysis for

entropy oscillations, as done above, will follow through. That is, each term in

the equation above should oscillate (it is easy to check that the entropy of the

pdf of the background values oscillates in the same manner), and so does their

sum. The same can be easily shown for the joint histogram part as well.
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Chapter 5

Comprehensive Approach for Correction of Motion and

Distortion in Diffusion Weighted MRI

5.1 Introduction

The MRI measurement of water diffusion provides important information about

compositional, structural, and organizational features of biological tissues. Most

clinical MRI diffusion studies are performed by acquiring single shot echo-planar

images (EPI) with diffusion sensitizing gradients of different strengths and ori-

entations. In diffusion tensor imaging (DTI) [17], at least seven images must be

acquired, one image with no diffusion sensitization, and six diffusion weighted

images (DWIs) with diffusion sensitization magnetic field gradients applied in

non-collinear directions, and possibly of different magnitude. In the DTI lit-

erature, the magnitude of the diffusion weighting gradient is normally denoted

by a so called ‘b-value’ of units s/mm2. Throughout this chapter we will also

refer to a so called ‘b-matrix’ associated with a particular diffusion sensitizing

magnetic field gradient, which is simply proportional to the outer product of

the magnetic field gradients. For more details, please refer to [17]. DTI analy-

sis, as well as other approaches to extract diffusion information from MRI data
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[113, 119, 57, 36], require the different DWIs to be spatially co-registered.

Unfortunately, eddy-current-induced image distortions and patient motion

during prolonged acquisitions cause misalignment of the diffusion weighted images

(DWIs). Eddy currents are significantly reduced, but not eliminated, by actively

shielded gradients [2] and pre-emphasis correction schemes [1] in modern magnets.

Methods proposed to reduce residual eddy-current-induced distortions in DWIs

are either field map or image based.

In a field-map-based correction scheme, such as that presented by Jezzard et

al [58], one measures the magnetic field produced by the eddy currents and then

corrects the distortion using the field map and theoretical models of how field

inhomogeneities distort the images. The major obstacle to implementation is the

difficulty of rapidly acquiring reliable field maps.

In an image-based registration scheme, one uses a cost function Q to measure

how well the images are spatially aligned. First, a target image is chosen as a

reference for all other images in the data set (source images). Because it is usually

less distorted and has a higher signal-to-noise ratio than the heavily diffusion-

weighted images, the image acquired with no diffusion sensitization (T2WI), is

usually used as the target image for registering DWIs. Next, using a spatial trans-

formation model, one aligns all other images to the target image by optimizing a

cost function. Image-based registration schemes differ from each other in: 1) the

definition of Q, 2) the types of transformations applied to the image in searching

for the maximum of Q, and 3) the numerical optimization method used in search-

ing for the maximum of Q. We chose to work with an image-based registration

scheme because a field map, which is usually not available for DWIs acquired

on a conventional clinical scanner, is not required. In addition, an image-based
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scheme allows for correction for misregistration produced by subject motion.

Haselgrove [47] proposed the first image-based registration method to correct

for eddy- current-induced distortions. He used the undistorted T2WI as a target

image for the registration of the DWIs. Q was based on the cross correlations

between source image and target image. Unfortunately, cross correlation performs

poorly as a measure of alignment when the contrast of source and target images

differs significantly. Experiments by Bastin et al. [20] indicate that this approach

does not perform well in registering T2WIs to DWIs acquired with b-values higher

than 300 s/mm2.

Cost functions based on mutual information are more robust than those based

on correlation for registering images with significantly different contrast. A mu-

tual information based method was presented by Horsfield [55]. He proposed to

measure the effect of eddy currents by registering DWIs acquired on a special

phantom having low diffusivity and non-uniform relaxation properties. The cor-

rection parameters computed from the phantom can in turn be used to correct

anatomical DWIs acquired in the same scanner with the same sequence provided

that 1) the subjects position in the scanner is sufficiently well known, and 2)

gradient performance is stable over time.

Andersson and Skare recently proposed a scheme that uses the goodness-of-fit

of the apparent diffusion tensor (D) calculation for guiding the image registration

process [8]. They define Q using the goodness-of-fit χ2 of the DWI signal to the

b-matrix [17]. This interesting approach has the advantage of correcting for both

eddy-current-induced distortions and subject motion. As the authors point out,

however, this method cannot be used to register DWIs to T2WIs when a single

level of diffusion weighting is sampled because, in this case, the T2WIs do not
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contribute to χ2.

Surprisingly, until recently [8] misregistration from patient motion has been

neglected as a potential source of artifacts in diffusion MRI studies, although it

has been long recognized as such in functional MRI studies.

The goal of this work was to design a robust image registration approach

that would correct the spatial misregistration of DWI volumes originating from

both subject motion and eddy-current-induced distortions. Our post-processing

method can also be used to position the dataset in a standardized orientation.

The b-matrix and the signal magnitude of each DWI volume are recalculated to

take into account the effects of the spatial transformation applied. The method

requires only one image interpolation step, thus avoiding unnecessary blurring

of the images, and without requiring additional measurements on phantoms or

additional scans to map the magnetic field produced by the eddy currents. Note

that most of the work presented in this chapter was previously published, with

some modifications, in Rohde et al. [91].

5.2 Materials and Methods

In this section, we first describe the pulse sequence and the acquisition param-

eters we used. We then present a mathematical formulation of the registration

problem. We describe the spatial transformation f , the cost function Q, the nu-

merical method for finding the model parameters that maximize Q, and the post-

registration processing necessary to correct the image brightness and to rotate

the b-matrices. Finally, we describe the experimental design and data analysis

approach for the tests we performed to validate our results.
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Figure 5.1: Block diagram description of the volume acquisition procedure.

5.2.1 Pulse sequence and MRI parameters

We designed our correction scheme to reduce artifacts in data sets acquired with

a standard single-shot multi-slice spin-echo EPI sequence (i.e.: fat suppression

pulse, 90 degree pulse, first diffusion gradient, 180 degree pulse, second diffusion

gradient, EPI readout). The acquisition order is shown in Figure 5.1. We begin

with a dummy scan, acquired with no radio frequency (RF) excitation, which

would permit us to correct for the direct current offset of the RF amplifier. Next

we acquire an EPI reference scan for each slice. Finally we collect the image data

looping through all slices and the different diffusion weightings. The slice loop is

the innermost loop, so we acquire all slices composing a volume before proceeding

to the next diffusion weighting.

Scans were performed on a 1.5 T GE Signa system equipped with a whole-

body gradient coil able to produce gradient pulses up to 50 mT/m (GE Medical

Systems, Milwaukee, WI). We scanned a cylindrical silicone oil phantom and

the brains of healthy subjects. The pre-emphasis correction for eddy currents
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provided by the system manufacturer was disabled in some scans to obtain images

with severe geometric distortions. Some imaging parameters, such as resolution,

repetition time, total number of images, etc., varied slightly for the different tests

we performed. For brevity we report the imaging parameters of the brain study

shown in Figures 5.7, 5.8, 5.9, 5.10. The imaged volume was composed of 80

contiguous slices with 2 mm slice thickness and 2 mm in-plane resolution. The

echo-time was 82.7 ms, the read-out time 50 ms, and the repetition time was

greater than 10 s with cardiac gating (4 acquisitions per heart beat starting with

a 150 ms delay after the rise of the sphygmic wave as measured with a peripheral

pulse oxymeter). The gradient strength was 49 mT/m, yielding a b value (i.e.,

trace of the b-matrix) of 1,120 s/mm2. A total of 56 3D images were acquired by

repeating 8 times a diffusion sampling scheme described previously (23) which

includes one volume with no diffusion weighting followed by the same volume six

times, acquired with diffusion gradients applied in different directions. The total

imaging time was approximately 20 minutes. Replicate volumes were acquired

for signal to noise considerations in order to improve the quality of the estimated

diffusion tensor parameters.

5.2.2 Formulation of the spatial transformation model

A data set from a diffusion MR study consists of multiple volumes acquired

with different strengths and orientation of the diffusion sensitizing gradients. To

register a set of images or 3D volumes, we first define a target coordinate system x.

We then define a source coordinate system xα for each volume α. The registration

problem consists of finding the coordinate transformation fα(x) for each volume

α that transforms the target coordinates x into the source coordinates xα. We
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describe the transformations with a set of parameters pα = {p1
α, p

2
α, · · · , pm

α },

where m is the total number of parameters:

xα = fα(x) = fα(x;pα). (5.1)

We then define a cost function Q that depends upon the image values and the

parameters. We then find f by finding pα for which Q is an extremum.

The first T2-weighted volume acquired is extracted from the DWI dataset and

rigidly registered to a standard template. Subsequent registrations of each DWI

to the normalized T2-weighted target volume will then cause then entire DWI

dataset to be positioned in a standardized orientation. All human brain images

displayed in this paper were spatially normalized using this method. Although

this volume is free from eddy-current-induced distortions, it contains geometrical

distortions due to B0 inhomogeneity caused by the magnetic susceptibility of the

object. These distortions are generally accompanied by localized changes in the

brightness of the image. As opposed to eddy currents caused by the diffusion

weighting magnetic gradients, which can vary with the different gradients being

applied, the amount of B0 inhomogeneity is likely to remain constant, since it does

not vary with any acquisition parameters. Since distortions due to B0 inhomo-

geneity are the same in both T2WIs and DWIs, they do not cause misregistration

artifacts in the computed diffusion parameters. However, if large corrections of

the shape of the object (in particular magnification) are required to correct the

DWIs for eddy-current distortion, one should also correct their brightness (signal

magnitude) appropriately to account for changes in size of the object. Neglecting

to correct the brightness of the DWIs following distortion correction will result

in errors in the computed diffusion parameters.
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Each volume α consists of a 3D array of pixel values, Iα[p, q, r] where p, q,

and r are the array indices. We define the image coordinates for volume α as

xα = (x1α, x2α, x3α) = (s1p, s2q, s3r) (5.2)

where s1 and s2 are the nominal in-plane pixel sizes and s3 is the slice separation.

Each volume Iα[p, q, r] is only defined for integer values of the indices p, q, and

r. We use tri-linear interpolation [86] to define a continuous function Iα(xα) in

terms of the measured values.

Call the coordinate system of the target image x. For each volume α we seek

the properly registered and brightness-corrected image Ir
α. As shown in equation

[8], Ir
α is related to the measured image Iα by the equation

Ir
α(x) = Iα (fα(x)) Γ (fα(x)) , (5.3)

where fα is a coordinate transformation and Γα(x) is a brighness correction func-

tion. We propose a parameterized form for fα that can correct for patient motion

and eddy-current- induced distortion. We find the best values of the parame-

ters by maximizing the cost function Q as described below. Since the brightness

correction is a function of the spatial transformation necessary to correct for

eddy-current-induced distortions, we can express the brightness correction Γα(x)

in terms of parameters we used to model the eddy current field (See: Effects of

eddy currents section below).

We decompose the spatial transformation f into two steps. The first step

describes the change in location and orientation of the object between acquisition

times of the two volumes and the second step describes the distortion introduced

by the acquisition process.

105



We model the patients brain as a rigid body and describe its displacement

and change in orientation by the equation

yα = Rx + a (5.4)

where R is a rotation matrix, a is a displacement vector, and yα is an intermediate

set of coordinates that describes the orientation of the patients head at the time

of the acquisition of volume α. Equation (5.4) contains six parameters, the three

components of the displacement vector a and three parameters, typically Euler

angles ϕ, θ, and ψ that define the rotation R [40]. No changes in the image

brightness are associated with this transformation.

Subject motion between the start of the excitation pulse and the end of the

data acquisition can potentially affect the data in a significant way. For a single

shot EPI acquisition, this period lasts about 1.5 TE, or about 120ms in our case.

Head motion during this period has two effects on the data. 1) The component

of velocity parallel to the diffusion sensitizing gradients causes a phase shift in

the reconstructed image. This phase shift does not cause any artifact in EPI

single shot magnitude images. 2) Motion during the readout (the integration

process during image formation, such as in equation 5.23, for example) of can

cause blurring. An image registration algorithm is clearly not appropriate for

correcting image blurring.

5.2.3 Effects of eddy currents

The image distortion due to eddy currents depends on the time and space de-

pendence of beddy(yα, t), the component parallel to B0 of the magnetic field

generated by the eddy currents. The shifts in the readout, phase encode, and
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slice select directions are

δread =
beddy

greadouts1

∼=
beddy

7gauss
(5.5)

δphase =
beddyτecho

Gblips2

∼=
beddy

0.7gauss
(5.6)

δslice =
beddy

gslices3

∼=
beddy

2.5gauss
(5.7)

where δread and δphase are in pixels, δslice is in multiples of the slice thickness,

Gblip is the area of the phase encode blips, τecho is the time between consecutive

echoes in the readout echo train, s1, s2, and s3 are defined in equation (5.2), and

the numerical values are typical of the scans we perform. We can safely ignore the

shifts in the readout and slice select directions, as they are almost two orders of

magnitude smaller than the shifts in the phase encode direction. If beddy(yα, t)

were to change appreciably during the readout phase of image acquisition, the

image would suffer blurring that cannot be corrected by a simple coordinate

transformation.

As shown in appendix A, if we assume that beddy(yα, t) is approximately

constant during the readout and that eddy current fields from the acquisition of

one slice do not interfere with the next, the pixel values for volume α are

Iα[m, l, q] = W̃α

(
ms1, ls2 − βbeddy(ms1, ls2, qs3), qs3

)(
1 +

∂(βbeddy)

∂y2

)
(5.8)

where W̃α is the undistorted image of volume α smoothed by the point spread

function of the imaging system, and β is given in equation 5.25. Comparing

equations (5.8) and (5.3) we conclude that the transformation and brightness
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correction associated with eddy currents are

xα = yα − βbeddye2 (5.9)

with e2 = (0, 1, 0) representing the phase encode direction and

Γ(xα) =

(
1 +

∂(βbeddy)

∂y2

)
xα=yα

(5.10)

We now have to model beddy. Since we can neglect the fields due to eddy

currents induced in the patients head, beddy(yα, t) in the imaging volume obeys

Laplaces equation [102]

∇2beddy = 0 (5.11)

Expanding the solution of Laplaces equation in Cartesian coordinates up to sec-

ond order, we approximate beddy by

w(x) =
c0 + c1yα1 + c2yα2 + c3yα3 + c4yα1yα2 + c5yα1yα3+

c6yα2yα3 + c7(y
2
α1 − y2

α2) + c8(2y
2
α3 − y2

α1 − y2
α2)

(5.12)

where c0-c8 are parameters to be determined from the optimization procedure.

We can use equation (5.12) to write the brightness correction function in terms

of the fit parameters:

Γα = 1 + c2 + c4yα1 + c6yα3 + 2(c7 + c8)yα2 (5.13)

Equations (5.4),(5.9), and (5.12) define the transformation fα from target

coordinates x to the source coordinates xα. This transformation is not unique,

however, because the c0 and t2 are not independent. We therefore set c0 = 0

without loss of generality, and are left with 14 parameters: eight (c1-c8) that

describe the eddy current distortion and six (a1, a2, a3, ϕ, θ, and ψ) that describe

the rigid body displacement of the object.
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As mentioned previously, very short time constant eddy currents (i.e., eddy

currents with significant variation during the read-out period) do not produce

image distortion but rather image blurring that cannot be corrected by image

registration. Our approach will correct for the effect of eddy currents that have

relatively long time constants with negligible decay during the read-out period.

However, our 3D correction model assumes that the eddy-current field is the

same for all the slices in a particular volume. This assumption requires either

that the eddy currents from the previous excitation have died away during the

time interval between consecutive excitations or that a steady state is reached.

In the latter case, the first few slices acquired in each volume after the gradient

direction has changed will be collected before the steady state is reached and will

have an amount of distortion inconsistent with that accounted for by our model.

We performed a set of 2D registration experiments on a silicone oil phantom in

order to investigate this effect on our magnet.

5.2.4 Cost function

In image registration problems, the goal of the cost function Q is to measure how

well two images are aligned. It is common to assume that the images are optimally

aligned when the statistical dependence between their intensity values is high-

est. As mentioned earlier, the correlation coefficient is a poor measure of image

alignment when the intensities in the images are not linearly related (see results

section). A more robust way of measuring spatial alignment in medical images

is to use the mutual information, a special case of the Kullback-Leibler measure

[62], between the intensity values of the images to be registered [118, 56, 70].

The mutual information similarity measure has been shown to be significantly
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more robust than the correlation coefficient and some other measures of similar-

ity, when registering images of different modalities [105]. In practice, we elected

to use the normalized mutual information [104] in our registration program as it

has been shown to avoid any dependency on the amount of image overlap.

Consider two volumes S and T . The normalized mutual information is defined

in terms of three quantities: the normalized histogram pS(n) of pixel values

in volume S, the normalized histogram pT (m) of pixel values of image T , and

the normalized joint histogram pST (nm) of pixel values in volume T and the

corresponding pixel in image S. Let vmin and vmax be the minimum and maximum

pixel values in volume S and wmin and wmax be the minimum and maximum pixel

values in image T . We divide the range of pixel values of volume S into N bins of

equal width and the range of pixel values in image T into M bins of equal width.

The limits of bin l for volume S are vl and vl+1 given by

vl = vmin + l
vmax − vmin

N
(5.14)

and the limits of bin m for image T are wm and wm+1 given by

wm = wmin +m
wmax − wmin

M
(5.15)

Let nSl be the number of pixels in volume S with value h in the range vl 6 h <

vl+1, nTm the number of pixels in image T with value d in the range wl 6 d < wl+1,

nSlTm the number of voxels for which the value h in volume S lies in the range

vl 6 h < vl+1 and the value of the corresponding voxel in image T lies in the

range wl 6 d < wl+1, and let ntot be the total number of voxels in volume S (=

the total number of voxels in image T ). The normalized histogram of volume S

is then

pS(n) =
nSl

ntot

(5.16)
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the normalized histogram of image T is

pT (m) =
mTm

ntot

(5.17)

and the normalized joint histogram of volumes T and S is

pST (l,m) =
nSlTm

ntot

. (5.18)

Our cost function Q is defined in terms of the above histograms by the formula

Q(S, T ) =

∑
l pS(l) ln(pS(l)) +

∑
m pT (m) ln(pT (m))∑

m

∑
l pST (l,m) ln(pST (l,m))

. (5.19)

Lastly, note that often the images reconstructed from an MRI experiment con-

tain intensity spikes, due to the possibility of artifacts which can arise during

many stages of the image acquisition and reconstruction process. That is why,

in practice, we do not choose vmax and wmax to be the maximum of images T

and S, respectively. Instead, we sort the pixels of T by increasing intensity, and

choose wmax to be some ith (with i some low integer) value from the last element

in the sorted list. The same operation is performed to compute vmax.

5.2.5 Optimization

To register a source volume α to the target volume T we have to find the values of

the 14 parameters pα = (c1, c2, c3, c4, c5, c6, c7, c8, a1, a2, a3, ϕ, θ, and ψ) for which

in equation (5.19) is a maximum when we use the target volume for volume T

and equations (5.3), (5.4), (5.9), and (5.12) to compute the volume S from the

measured volume α. To speed up the registration, we do not apply the brightness

correction Γα during the optimization process. We use a simple gradient ascent

optimization procedure coupled with a golden section line optimization method
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to maximize Q [86]. That is, the registration parameters are searched iteratively

according to the equation

pk+1
α = pk

α + ζ∇pαQ(pk
α), (5.20)

where ζ is determined via the golden section line optimization method (note the

change in notation Q(S(f(x;pα)), T (x))).

We evaluate the gradient of the cost function with respect to registration pa-

rameters pα numerically using finite differences, and several step sizes are used

throughout the registration procedure. Note that because different sets of pa-

rameters in pα have different units, thus affecting the value of Q(pα) differently,

we use equation (5.20) to determine different sets of parameters in pα sepa-

rately. That is, equation (5.20) is used to update the translation parameters

first, then rotation parameters, followed by the linear deformation parameters,

with the quadratic deformation parameters last. The loop is repeated until the

improvements in the cost function value fall bellow a chosen tolerance (typically

ε = 0.0001). The algorithm also works in multiple resolutions, in a coarse to

fine fashion, in order to avoid local optima and decrease computation time. A

flowchart describing the optimization loop is given in Figure 5.2.

5.2.6 Post-registration processing

Intensity correction

After registering the volume to the target we apply the brightness correction Γα.

An example demonstrating the benefit of the brightness correction is shown in

the results section.

112



Figure 5.2: Flowchart description of source code implementation of optimization

loop.

B-matrix reorientation

Each DWI volume is accompanied by a b-matrix that describes its diffusion

weighting. In principle, both patient motion and eddy currents can cause errors in

calculation of parameters that describe diffusion in each voxel of a DWI dataset.

We use dimensional analysis to estimate the change in the b-matrix due to the

eddy currents and to demonstrate that it is very small in normal conditions. The

elements of the b-matrix scale as

b ∝ γ2g2
diffτ

3 (5.21)

where γ2 is the gyro-magnetic ratio, gdiff is the strength of the diffusion gradi-

ents, and τ is the characteristic time for the experiments. The presence of an

eddy current beddy would change the b-value to γ2
∣∣∣gdiff +

beddy

L

∣∣∣ τ 3, resulting in a

fractional change in b of
2beddy

gdiff L
, where L is a characteristic length scale over which

beddy varies. For the MRI scanner used throughout this chapter, with pixel shifts

of the order of 1-2 pixels, over a 22cm field of view, beddy ≈ 0.1 gauss, L ≈ 20 cm,

and gdiff ≈ 4 gauss/cm, resulting in a fractional change in the b-value of about
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0.25 percent, which we can safely neglect.

We do correct for patient motion, however. The b-matrix is calculated with

respect to the yα-coordinates, which are fixed with respect to the scanner. We

have to rotate the b-matrix to target coordinates x using the results of the fitting

procedure:

b′ = R−1bαR (5.22)

where b′ is the rotated b-matrix in target coordinates, bα is the computed b-

matrix, and R is the rotation matrix defined by the Euler angles ϕ, θ, and ψ

obtained from the fitting procedure.

5.2.7 Validation methods

A common problem encountered in validating results from image registration

algorithms, particularly nonrigid ones, is the lack of a gold standard. Therefore

we are limited to using indirect measures to establish the reliability of our spatial

normalization approach. In this section we describe several approaches we used

to establish the reliability of the results produced by our registration algorithm.

Visual assessment of DWIs and computed diffusion tensor images

As an initial check, we confirm through visual inspection that DWIs and their

corresponding T2-weighted images are well aligned after registration. Then we

check for artifacts in the maps of the computed tensor parameters that could

originate from image misalignment in DWI datasets used to generate them. Often

such artifacts are large enough to be detected at visual inspection of the data. An

assumption often used [58, 47, 55] is that high anisotropy index values around the
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edges of the brain are associated with image misalignment because anisotropy in

those regions is inconsistent with known anatomy. Following the same approach,

we use anisotropy index images, as well as images of the off-diagonal tensor

elements, to assess the amount of anisotropic diffusion at the periphery of the

brain.

Improved fitting to the tensor model

Andersson and Skare [8] proposed an image registration approach that uses the

goodness-of-fit of the apparent diffusion tensor (D) calculation for guiding the

image registration process. Here we use their approach to test the results of our

registration algorithm. This scheme relies on the assumption that the DWI data

is well described by the tensor model of Basser et al. [17]. At the b-values we

used, this assumption is probably satisfied, although it may not hold true when

very large b-values are used. Moreover, as mentioned in the introduction, this

approach can only be used to test the registration of different DWI volumes; it

does not provide information about the degree of registration of DWI volumes to

T2WI volumes.

PCA analysis of the data

Several factors contribute to the signal amplitude in each particular voxel of

the volumes a diffusion MRI dataset. These factors include: relaxation and

diffusion properties of the tissue, as well as noise. Misregistration artifacts caused

by motion and image distortion will affect the signal amplitude by changing

the tissue that is imaged at a particular location during different acquisitions.

The n volumes of a diffusion MRI dataset can be viewed as a random vector
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X of n components and m elements, where m is the number of voxels in the

imaged volume. We use the principal component analysis (PCA) described in

[7] to describe the DWI dataset in terms of a new set of n uncorrelated volumes

(principal components). These principal components are computed as a linear

combination of the n components of X that have special properties in terms

of variances of their m elements, and they are ordered by decreasing variance.

For example, the first principal component is the normalized linear combination

(the sum of squares of the coefficients being one) with maximum variance. The

second component is the normalized linear combination that is uncorrelated with

the first component and whose variance is maximal, and so on. It turns out that

the coefficients of such linear combinations are given by the characteristic vectors

of the covariance matrix of X [7]. As shown in the results section, principal

components analysis is a powerful tool that can be used to detect interesting

features present in a DWI sequence, including artifacts such as image distortion

and patient motion.

5.3 Results

5.3.1 Cost function

Figures 5.3 and 5.4 show that correlation type similarity measures are not ap-

propriate for registering T2WIs and DWIs. Correlation type similarity measures

require signals in the target and source image to be linearly related. Figure 5.3,

which displays the joint histogram of a DWI and a T2-weighted image, show that

the intensity values of the images are not linearly related. This happens because

cerebrospinal fluid (CSF) has low intensity in the DWIs, but not in the T2WIs.
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Figure 5.3: Joint histogram showing the relationship between T2 and DWI inten-

sities. The highly nonlinear nature of this relationship demonstrates why correla-

tion type similarity measures are not appropriate for this application. Intensities

are in arbitrary units.

Consequently, background values in the DWIs map to both background and CSF

values in the T2WI. In addition, DWIs contain signal affected by anisotropic dif-

fusion, while the T2WIs do not. As a consequence, white matter has a relatively

narrow range of values in the T2WIs but a large range of values in the DWIs.

Figure 5.4 shows representative results for registration of a DWI to a corre-

sponding T2WI using the correlation coefficient as well as the normalized mutual

information as the similarity measure. The first (middle image) result was ob-

tained using the normalized mutual information cost function. The image on

the right was obtained using the correlation coefficient as a similarity measure.

As evident from the picture, the result obtained using the mutual information

cost function is superior to the result obtained using the correlation coefficient.

We note that the original DWI images were acquired with gradient pre-emphasis

turned off. Thus the original images contained significant geometric distortions.
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Figure 5.4: Example image registrations performed using mutual information and

correlation coefficient similarity measures. Left image: the reference T2 image.

Middle image: DW image registered to the reference image using normalized

mutual information. Right image: DW image registered to the reference using

the correlation coefficient similarity measure.

For brevity, the original distorted images are not shown here. Close visual inspec-

tion reveals that the edges of the brain shown in the images are well matched only

when the normalized mutual information cost function is used. The use of the

correlation coefficient causes the gray matter in the DWI to be matched to the

CSF in the T2WI. Visual inspections such as these were performed as an initial

accuracy check of our correction approach and revealed that the image distortion

model described above seems appropriate for correcting relatively large distor-

tions in images acquired with b-values of about 1100 mm2/s, which are typically

used in clinical studies.

5.3.2 Adequacy of the eddy current-induced distortion

model

We tested whether the terms included in equation (5.12) are sufficient to ap-

proximate the distortions encountered in the image volume. We measured the

distortion produced by x, y, and z oriented diffusion gradients in each slice of
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the phantom using a 2D affine registration algorithm. The resulting correction

coefficient for translation, magnification, and shear are plotted against slice posi-

tion in Figure 5.5. The translation coefficient has dimensions of length and it is

measured in pixels; the magnification coefficient is unitless, representing the ratio

between the size of the original and the corrected image; and the shear coefficient

is expressed in pixels per column. Slice position zero denotes the isocenter of the

magnet and each slice is indexed in terms of its slice position, in millimeters. The

gradient pre-emphasis scheme provided by the magnet manufacturer was turned

off during the acquisition of these images and consequently large corrections are

necessary to register the DWIs to the undistorted T2WI. With the exception of

the first few slices, a quadratic function describes well the required correction as

a function of slice position for all gradients, indicating that the terms included

in equation (5.12) are sufficient to approximate the correction for distortions en-

countered in the image volume. Values of the correction coefficients for the first

few slices differ significantly from those of the remaining slices. This suggests

that the eddy-current field is not constant during the acquisition of the first few

slices of a new DWI volume. In a separate experiment we performed a single

slice measurement on a phantom in order to characterize the time course of the

achievement of the steady state of the eddy current field for the x, y, and z gra-

dient. This experiment showed that, in our magnet for all gradients, reaching

a steady state in the eddy-current field requires about 500 to 750 ms when im-

ages are acquired with a TR of 250 ms. This result is in line with the findings

of the multi slice experiment described in Figure 5.5. We add that identical

experiments were performed using an image acquisition sequence in which the

gradient pre-emphasis scheme was turned on. The results for these experiments
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Figure 5.5: Study of image distortions using phantoms. Registration of DWIs

and a target T2 image was performed slice-by-slice using an affine transforma-

tion. The registration parameters (translation, shear, and scaling) for the DWIs

acquired with sensitizing gradients in the x, y, and z directions are shown above.

were qualitatively equal to the ones shown, though the distortions measured were

significantly smaller. For brevity, we do not report them.

5.3.3 Intensity correction

The effect of omitting the intensity correction step when significant distortions

are present is shown in Figure 5.6. Here a set of DWIs with severe distortion was

acquired by turning off the gradient pre-emphasis eddy current compensation.

These DWIs were co-registered and aligned to the T2WI and D was computed

from two sets of images, one with brightness correction and one without. Figure

5.6 shows the fiber orientation color maps [81] computed from diffusion tensors

obtained from these two sets of images. In the color map computed from images

that had no brightness correction (left image) a red background in isotropic re-
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Figure 5.6: Demonstration of artifacts introduced when the intensity values of

the DWI are not recomputed after warping. Left image: color representation of

tensor maps computed from DWI whose intensity values were not recomputed

after registration. Right image: the same, but with DWI intensity values prop-

erly recomputed. The background bias (red in color image) seen on the left

image seems to indicate preferential diffusion in the x-direction. The background

artifacts disappear when appropriate correction is used.

gions is evident, indicating anisotropic diffusion in the left-right orientation. This

artifact is completely removed in images whose signal magnitude was appropri-

ately corrected for the amount of non-rigid body distortion applied during image

warping.

5.3.4 Subject motion

In order to test the ability of our algorithm to correct for subject motion, we

acquired a dataset in which the subject was asked to move his head deliberately

three times: about 10 degrees rotation to the left, about 10 degree rotation to

the right, and an extension of about 10 degrees. The resulting DWI images in
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this dataset were significantly misaligned due to patient motion. Gradient pre-

emphasis was turned on during this acquisition. Figure 5.7 contains maps of the

relative anisotropy [19] computed in three representative slices from uncorrected

images (top row) and images that were coregistered using our algorithm (bottom

row). The relative anisotropy is a diffusion anisotropy index that corresponds

to the coefficient of variation of the three eigenvalues of the diffusion tensor in

each voxel [19]. In the anisotropy maps computed from the uncorrected images

several white-matter structures that are clearly visible in the anisotropy maps

computed from the registered images cannot be identified. This is most evident

in frontal regions where motion was most severe. In addition, the anisotropy

maps computed from the uncorrected images show an artifactual rim of increased

anisotropy around the periphery of the brain.

For the same dataset, Figure 5.8 shows representative slices of the χ2 maps

produced by the tensor fitting procedure. The top row contains the χ2 maps of

the original data prior to correction. The bottom row shows the χ2 maps after

correction. For display purposes, in order to increase the dynamic range of the

displayed image and reveal more inner structure, the square root of χ2 is shown.

In this experiment, the mean χ2 of the image was reduced by about 80 percent

after correction with our approach. One can note that the χ2 maps corrected

datasets still contain slight bands of increased χ2 in some regions of the brain.

One possible explanation for the origin of these bands is that we did not remove

the volumes acquired during the voluntary motion. In these volumes there is

significant intra-volume misregistration that our program does not correct for

and which could account for these residual artifacts.

For the same dataset, Figure 5.9 shows the coefficients for the first 16 prin-
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Figure 5.7: Axial views of the relative anisotropy index for three representative

slices. Top row: anisotropy indexes computed from DWIs without alignment.

Bottom row: anisotropy indexes computed from DWIs corrected for alignment.

Apparent anisotropy around the top edges of the images seems to be significantly

reduced in the corrected images.
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Figure 5.8: Axial views of the fit of the diffusion tensor for three representative

slices. Top row: fit without alignment. Bottom row: fit from DWIs corrected for

alignment. The chi squared error between the ADT model and the DWI data

is significantly reduced after motion and distortion correction, indicating better

image alignment.
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cipal components in each voxel for a DWI dataset corrected for misalignment.

The coefficients of the components are displayed in order of decreasing variance,

starting from the top left. The coefficients of the first two components shown

in Figure 5.9 appear to be related to T2-weighted contrast from the different

tissues and to signal attenuation due to isotropic diffusion. The coefficients of

components 4 to 8 clearly show effects related to anisotropic diffusion in white

matter. Components 9 and higher show mostly noise. Figure 5.10 shows the same

decomposition for DWIs that have not been co-registered. Not only do the first

few components appear blurred, but most components higher than eight contain

significant coefficient variability. For the PCA analysis of both registered and un-

registered data, the volumes acquired when the voluntary motion occurred have

been removed and striations such as those observed in Figure 5.8 are not visible.

An interesting observation from the uncorrected dataset shown in Figure 5.10 is

that the features related to diffusion anisotropy and motion induced artifacts do

not separate into distinct components.

Figure 5.11 contains the plot of the relative variance of the coefficients of

components 3 to 16 for the corrected and uncorrected datasets. Total variance

(sum of the variances of each component) for a dataset was normalized to 1 for

both datasets. The first two components account for 82 % and 91 % of the

variance in the uncorrected and the corrected DWI dataset, respectively. The

plot shows that fewer principal components are required to describe the intensity

signal in the DWI dataset after motion and distortion correction. This confirms

that fewer sources of signal are present in the data after correction. Given that

no qualitative loss in signal anisotropy was detected after correction, we conclude

that the effects of sources related to image misalignment have been reduced after
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Figure 5.9: PCA decomposition of the registered DWI dataset (first 16 compo-

nents). Images are displayed in order of decreasing variance, starting from the

top left. Image variance around the edges of the brain, and in CSF-white matter

interfaces, seems to be reduced in the third and fourth components.
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Figure 5.10: PCA decomposition of an unregistered DWI dataset (first 16 com-

ponents). Images are displayed in order of decreasing variance, starting from the

top left. Data variance around the edges of the images and CSF-white matter

interfaces is apparent in nearly all components.
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Figure 5.11: Relative variance of principal components, starting from the third

component, for both registered and unregistered DWI datasets. The relative

variances of the third and fourth components are reduced in the corrected dataset.

image registration.

5.4 Discussion

We have presented a novel method for correcting image distortion and for pa-

tient motion in DWI datasets. We use a mutual information-based registration

algorithm to align each DWI volume in a dataset to a target volume chosen from

the same DWI dataset. The registration is performed in 3D, with the warping

function allowing for rigid body patient motion as well as eddy-current-induced

distortion. All parameters are optimized simultaneously so that the final regis-

tration result represents an optimal correction of both patient motion and image

distortion. After registration, the image intensity of each DWI volume is adjusted

according to the spatial transformation applied to it. This prevents eddy-current-
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induced distortions from introducing directional bias in the computed tensors.

Similarly, each b-matrix is properly rotated using the same rotation applied to

the corresponding DWI.

Amongst the novel aspects of our approach are using a model for eddy-current-

induced fields based on Laplaces equation. A derivation of the image distortion

caused by such fields as well as the brightness correction term necessary for ad-

justing the intensity values of the images is also provided. Lastly, if desired, the

target volume for the DWI dataset can first be registered to a template. Subse-

quent registration of the DWI to the target T2-weighted volume will then cause

the whole DWI dataset to be registered to a normalized template without addi-

tional computational cost, and with only one interpolation of the images. Thus

our correction framework not only removes motion and distortion artifacts, but

also positions the dataset in a standardized orientation using a single interpola-

tion step. Note that, although we have designed our method with the purpose

of spatially aligning DWIs of the human brain, it can be easily adapted to work

with other types of images. The method is relatively fast. Our code written in

IDL (Research Systems Inc.) aligns each 3D volume of size 128x128x72 in about

3 minutes on a Linux machine equipped with a 2 GHz Xeon processor. Imple-

menting the method in a more efficient computer language, such as C, would

certainly reduce the computation time for each image.

Results show a significant increase in data quality. Validation included visual

inspection of the data as well as more quantitative measures such as the study of

the L2 error of the fitting of the data to the D model. In addition, PCA decompo-

sitions were used to study the data variance introduced by image misalignment.

All results presented show that the quality of the DWIs datasets is significantly
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improved after alignment. When large distortions are present, it is necessary to

remap the intensity values of the aligned DWI according to the Jacobian matrix

of the transformation to avoid directional bias artifacts. When relatively small

distortions are present, such artifacts are difficult to detect visually, though the

directional bias in the tensor field may still be present. The same can be expected

for the b-matrix rotation step. If significant patient motion is present, rotating

the b-matrix is essential to avoid erroneous computation of diffusion parameters.

Patient motion and eddy-current-induced image distortion are a common

problem in clinical DWI acquisitions. Gradient pre-emphasis schemes that are

now implemented in most MRI scanners are very effective in reducing the impact

of eddy currents. In our scanner, eddy- current-induced distortions rarely exceed

one or two pixels when pre-emphasis correction is applied. However, gradient

pre-emphasis needs to be calibrated periodically. Datasets acquired immediately

after calibration will have fewer artifacts than those acquired when a long period

of time has elapsed since calibration. This temporal inconsistency in the quality

of DWI data may be problematic in longitudinal studies and in general when

the possibility of comparing scans acquired over time is desired. In our clinical

studies the systematic use of our correction scheme has significantly increased the

reproducibility of our clinical diffusion studies. In our experience, misalignment

artifacts caused by patient motion are more problematic, especially in lengthy

acquisitions where several DWIs are needed, or even in short scans with unco-

operative patients or with unsedated pediatric subjects. Our results show that

datasets containing significant motion can be successfully corrected.

Our DWI normalization method is still unable to correct some motion artifacts

that can be present in DWI acquisitions. We perform a 3D registration between
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brain volumes rather than a 2D registration between individual slices. Given

that the 3D volumes are assembled from separate slice acquisitions there may

be patient motion from one slice acquisition to another that will be uncorrected

by our approach. We chose to perform a 3D registration because it is generally

more robust than a 2D registration. Moreover, with a 2D registration, correcting

for in-plane motion is feasible but correcting for out-of-plane motion is much

more difficult. With our approach we can correct for some types of out-of-plane

motion; for example, in axial images we can correct for translations in the z axis

and rotations about the x and y axis. We also tested the possibility of performing

the 3D registration first, followed by a 2D registration to correct for in-plane

motion between slices, but we did not find that this strategy led to a significant

improvement in the alignment of the images. Clearly the order of data acquisition

is very important for a 3D approach to be effective: all slices composing a volume

should be acquired in the shortest possible time. One additional problem is that

the human brain is not strictly a rigid structure and cardiac induced motion may

also deform the brain in ways that we are not currently able to account for with

our model. Future work in the area could include characterizing the amount

of image misalignment due to cardiac pulsation so that appropriate correction

methods can be devised.

Finally, we anticipate that the algorithm presented here may not be able to

register properly images acquired with diffusion weighting much higher than that

used in this paper (b = 1100 s/mm2). At very high b-values, the image signal in

the brain parenchyma is significantly attenuated so that it may be confounded

with signal from the air, nearly eliminating tissue/air boundaries that are some

of the main features that guide the image registration process. Under these cir-
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cumstances, the probability density functions (intrinsic contrast) of T2WI and

DWIs is too dissimilar and even a mutual information-based registration algo-

rithm would fail. One possible solution to this problem could be to perform

image registration in a sequential or hierarchical manner. Rather than register-

ing each heavily weighted DWI volume to a reference T2WI volume, one can

obtain intermediate images that have more similar probability density functions

and, therefore, are easier to register. For example, replicate volumes acquired

with the same strength and orientation of the diffusion gradients can first be

registered among themselves (with a rigid body transformation) and averaged to

increase signal to noise. The next step would be to obtain trace-weighted volumes

with improved signal to noise and anisotropy information removed. Compared to

the original DWI volumes, trace-weighted volumes will have a probability density

function more similar to that of T2 weighted volumes. Trace-weighted volumes

can be obtained by computing the geometric average of a set of volumes acquired

using b-matrices that must have certain properties (see [16] for more details on

how to compute a trace-weighted DWI). Volumes obtained from the first aver-

aging step can be registered among themselves and geometrically averaged. The

resulting trace-weighted volume with the lowest b-value can in turn be registered

to the T2WI volume, becoming the reference image for the trace weighted volume

with the second lowest b-value. This process can be repeated to register all trace

weighted volumes up to the highest b-value, achieving the goal of always regis-

tering volumes with similar contrast. The various transformations involved in

this process can be combined and applied to each original DWI volume, avoiding

artifacts originating from sequential interpolations. We are currently testing this

approach and we hope that it will extend the ability of our method to register
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heavily diffusion weighted images.

5.5 Appendix

5.5.1 Derivation of equation 5.8

Assuming that beddy(yα, t) is approximately constant during the readout and in

steady state for the acquisition of different slices, the pixel values for volume α

are

Iα(m, l, q) =

n=N
2
−1∑

n=−N
2

exp

(
−ı2πmn

N

) p=P
2
−1∑

p=−P
2

exp

(
−ı2πlp

P

)
(5.23)

×
∫ ∞

−∞
dyα1

∫ ∞

−∞
dyα2W (yα1, yα2, qsα3) exp (ı(φ1 + φ2))

where W the magnetization density of the object, φ1 = γG1yα1, φ2 = γ(G2yα2 +

beddy(yα)τecho), G1 is the product of the readout gradient and the sample time,

and G2 is the area of the phase encode blip. The value of the double integral

in equation (5.23) is the measurement raw data in slice q for readout point n

and phase-encode p, and the double sum is the discrete Fourier transform in

the reconstruction. Exchanging the order of the sums and the integrals and

regrouping, equation (5.23) becomes

Iα(m, l, q) =

∫ ∞

−∞
dyα1

∫ ∞

−∞
dyα2W (yα1, yα2, qsα3) (5.24)

n=N
2
−1∑

n=−N
2

exp (−ınΦ1)

p=P
2
−1∑

p=−P
2

exp (−ıpΦ2)

where Φ1 = γG1(yα1 − ms1), s1 = 2π
NγG1

is the pixel size in the y1 direction,

Φ2 = γG2(yα2 + βbeddy(yα)− ls2), s2 = 2π
PγG2

is the pixel size in the y2 direction
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and

β =
τecho
G2

(5.25)

The sums in equation (5.24) can be evaluated analytically [3], transforming (5.24)

into

Iα(m, l, q) =

∫ ∞

−∞
dyα1

∫ ∞

−∞
dyα2W (yα1, yα2, qsα3)HN (Φ1)HP (Φ2) (5.26)

where

HN(Φ) = exp

(
ı
Φ

2

)
sin(N Φ

2
)

sin(Φ
2
)

(5.27)

H(Φ), the point spread function of the acquisition, is large only close to the

points where the denominator vanishes. The contribution to the integral from

the lines centered at Φ 6= 0 is wrap-around due to aliasing and vanishes if the field

of view is large enough. To evaluate the integrals in equation (5.26) we perform

the change of variables

xα1 = yα1 −ms1 (5.28)

xα2 = yα2 + βbeddy(yα)− ls2 (5.29)

which transforms equation (5.26) into

Iα(m, l, q) =

∫ ∞

−∞
dyα1

∫ ∞

−∞
dyα2W (xα1 +ms1, yα2, qsα3)J(xα) (5.30)

×HN (γG1xα1)HP (γG2xα2)

where J(xα) =
∣∣∣ ∂(yα1,yα2)
∂(xα1,xα2)

∣∣∣ is the Jacobian determinant of the inverse of trans-

formation (5.28,5.29), and yα2(xα) is computed from equation (5.30). If we view

H(Φ) as an approximation of a Dirac delta function, equation (5.30) tells us that

the measured image Iα(m, l, q) is the true image shifted in the x2-direction and

weighted by the Jacobian determinant. If the distortion is small compared to the
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distance over which beddy changes appreciably, the inverse of equation (5.29) can

be approximated as

yα2 = xα2 − βbeddy(xα) + ls2 (5.31)

with

beddy(xα) ∼= beddy(yα). (5.32)

The Jacobian then becomes

J = 1 +
∂(βbeddy)

∂x2

∼= 1 +
∂(βbeddy)

∂y2

(5.33)

and equation (5.30) can be written as

Iα(m, l, q) = W̃α

(
ms1, ls2 − βbeddy(ms1, ls2, qs3), qs3

)
(5.34)

where the function W̃α is the undistorted image of the volume smoothed by the

point spread function.
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Chapter 6

Correction of Motion Artifact in Cardiac Optical

Mapping Using Image Registration

6.1 Introduction

Optical recording techniques have been widely employed in cardiac electrophys-

iology for studies of electrodynamics. Optical mapping is based on the propor-

tional change of the induced fluorescence intensity resulting from the change in

the transmembrane potentials in dye-stained tissue. The most significant con-

straint in cardiac optical recording is muscle contraction, which alters the flu-

orescence intensity and deforms the shape of the optical potentials. When the

tissue moves during the recording, its relative location to the sensor and the light

source changes, resulting in an artificial variation of fluorescence intensity inter-

mingled with the desired signal. Most significantly, quantification of intensity

variation is not meaningful if the fluorescence is recorded from different sites on

the tissue in the same recording episode. Tissue contraction starts immediately

after the upstroke of action potential. Therefore motion artifacts are more pro-

nounced during action potential plateau when contraction is maximal and during

repolarization phase when relaxation occurs. As a consequence, the correct mea-
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surements of many interesting electrophysiological phenomena, such as action

potential duration (APD) and repolarization, become impossible.

Common approaches to dealing with motion artifacts in fluorescence record-

ing include mechanical constraining and chemical immobilization methods [32,

63, 41, 67] which are applied prior to imaging. In this work, we instead propose

a retrospective motion correction approach that is based on a post-processing

software technique known as image registration to spatially align the sequence

of digital images taken from the optical recorder such that each location in the

images acquired represents an intensity measurement of the same tissue location

throughout the recording episode. We have adapted an existing registration tech-

nique used in medical imaging (see Maintz et al. [72] for an overview of medical

image registration) so as to suit the epicardial fluorescence imaging data. Note

that the work presented in this chapter was published, with modifications, in

Rohde et al. [93].

6.2 Materials and Methods

6.2.1 Epifluorescence mapping

The experimental procedure was similar to that of a previous study [67]. In brief,

New Zealand white rabbits weighing 4.4-5.5 kg were injected with 1000 units

of heparin and 70 mg/kg sodium pentobarbital to induce deep general anesthe-

sia. The heart was excised and the ascending aorta cannulated and secured for

retrograde perfusion of the coronaries with a modified HEPES perfusate. The

potential-sensitive dye di-4-ANEPPS (Molecular Probes, OR) at a concentration

of 0.5 µM was added to the perfusate for approximately 15 minutes to stain the
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heart. Fluorescence from the heart surface was elicited by a solid-state, frequency-

doubled laser (Verdi V5, Coherent, Santa Clara, CA) at a wavelength of 532 nm.

Laser light was delivered to the heart using multiple 1-mm optical fibers (SP-SF-

960, FIS Inc., Oriskany, NY). The root-mean-square variation of laser intensity

was 0.02 percent. The emitting fluorescence was imaged with a high-speed CCD

camera (Model CA-D1-0128T, Dalsa Inc., Waterloo, ON, Canada) through a

color glass filter with a cut-off wavelength of 600 nm (R60, Nikon).

6.2.2 Motion Correction via Image Registration

Given a series of N digital frames from the experimental setup described above

{I1(x), I2(x), · · · , IN(x)} reference frame for all other images. We call this refer-

ence frame T (x). We then proceed to align each frame k in the original image

sequence to the reference frame using the image registration algorithm proposed

in [70], which finds the optimal alignment by solving numerically the following

optimization problem:

arg max
fk

Q (Ik(fk(x)), T (x)) (6.1)

where Q(·, ·) is the Mutual Information image similarity measure and fk(x) =

Akx + tk is a 2D affine spatial transformation containing six independent pa-

rameters capable of performing rotation, scaling, shear and translation, with

tk = {(tx)k, (ty)k}. Maximization of mutual information was first proposed in

medical image registration problems in [70, 56] and has been shown to be robust

in matching images whose intensity values are not linearly related [105, 121].

The mutual information similarity measure is given by

Q (Ik(fk(x)), T (x)) =
∑
i,t

pIk,T (i, t) log

(
pIk,T (i, t)

pIk
(i)pT (i)

)
(6.2)
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where pIk
(i) and pT (t) are the marginal probability density functions (pdf ) of

Ik(fk(x)) and T (x), respectively, and pIk,T (i, t) is their joint pdf. The joint pdf

pIk,T (i, t) is computed from the normalized joint histogram of the images Ik(fk(x))

and T (x) which is a matrix. The (i, t) entry of this matrix stores the number

of pixels that have intensity i in image one and intensity t in image two. When

divided by the total number of pixels, it is an estimate of the joint probability

function of the intensity values of the two images. Marginal distributions are

obtained by summing along the lines and columns of this matrix. In this work,

we have used 64 bins (i.e., we have divided the intensity range into 64 intervals)

to create the joint histograms. Note that indexes i, t, for which pIk
(i), pT (t) or

pIk,T (i, t) is zero are not included in the computation of (6.2). Given a transfor-

mation fk(x) the image Ik(fk(x)) is computed using bilinear interpolation.

As in [70], we use Powells direction set method to compute the affine parame-

ters that solve equation (6.1) [86]. Powells direction set method requires only the

evaluation of function values for optimizing a cost function. It goes about finding

a minimum by using a set of conjugate, or non-interfering, directions that are

updated iteratively. For a quadratic cost function, it can be shown that Powells

method finds the minimum of the function in M(M+1) line minimizations, where

M is the number of parameters the cost function is dependent upon. The opti-

mization is initialized with an identity transformation: all translation, rotation,

and shear parameters set to zero, while the scaling parameters are set to 1. This

ensures that fk(x) = x. The tolerance value is 1.0 × 10−4. Failure to increase

the value of the similarity measure by more than 1.0× 10−4 in one optimization

iteration signals completeness.

139



6.2.3 Data Analysis

Preliminary analysis of the data was done visually, focusing on regions of inter-

est in which heart motion was evident. We analyzed the effect of our registra-

tion method on tissue activation quantitative measures such as action potential

duration (ADP), activation isochrones, as well as abnormal or excessive depo-

larization and repolarization extracted from the movie sequences. The tissue

activation timing of each pixel is detected by the peak of the first derivative of

the time variation of the recorded fluorescence intensity. Activation isochrones

were constructed from all the activation timing in the entire image. The frame

of tissue at diastole (Frest) was defined as the frame right before the activation

wavefront entered the field of view, whereas the frame with peak transmembrane

potential (Fpeak) was selected when the entire field was depolarized. Because the

fluorescence intensity is negatively proportional to the amplitude of transmem-

brane potential, −(Fpeak − Frest) represents the peak amplitude of the optical

transmembrane potential (Famp). For every pixel in the image sequence, the ”ex-

cessive depolarization” was calculated from the maximum deviation from Fpeak

in the depolarized direction. Similarly, the ”excessive repolarization” was calcu-

lated from the maximum deviation from Frest in the repolarized direction. These

two quantities were represented as a percentage of (Famp) for all the pixels. The

action potential duration (APD50) was measured from the activation to the time

when the amplitude fall below 50 percent of Famp in the repolarizing phase.

Lastly, positive and negative deflection artifacts are also visible in the individual

traces (image intensity of a fixed pixel location over time) of the movies. We also

include sample traces obtained before and after correction with our method.
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6.3 Results

Figure 6.1 displays representative registration results produced by the method

described herein. Sequences of frames before (part a) and after (part b) registra-

tions are shown. To help elucidate the motion present in the original sequence and

the improvements in the corrected sequence we have placed a marker at the same

pixel location for all frames. The reduced relative displacements between anatom-

ical features and the marker after our motion correction approach indicate good

overall alignment between the different movie frames. Figure 6.2 shows the mea-

sured excessive repolarization (negative deflection) and excessive depolarization

(positive deflection) before (row a) and after motion correction (row b). These

effects have been greatly reduced after correction. The pattern of the activation

potential wavefront propagation, as displayed by the movies isochrones, remains

intact. In addition, the APDs become significantly more evenly distributed after

registration. Note that in this mode of motion, the tissue did not move out of

the imaging field significantly. Figure 6.3 shows two pairs of the original (top)

and the corrected (bottom) traces. Pair A shows an upward deflection after the

activation due to the motion, whereas pair B shows a downward deflection. Both

these deflections are corrected using the image registration algorithm. Note that

figures 1-3 show representative analyses results. The same experiment was con-

ducted on a set of 11 movies. The results generated on these were similar to those

presented here.
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Figure 6.1: Images from a movie sequence: (A) reference frame; (B) maximum

displacement before motion correction; (C) maximum displacement after motion

correction. The relative displacement between the marker (white dot), which is

placed at the same exact coordinate in all images, and image features (pointed

by black arrow) is visibly reduced after motion correction.

Figure 6.2: Activation isochrones, negative and positive deflection, and activa-

tion potential duration before (A) and after (B) correction. Activation isochrones

remain relatively intact after motion correction while positive and negative de-

flection artifacts are reduced. Activation potential duration measurements are

also more uniform after motion correction.
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Figure 6.3: Two examples of trace extracted from original and corrected movies.

Deflection artifacts are visibly reduced after motion correction.

6.4 Discussion and Conclusions

We have presented a simple method to correct for global motion present in epi-

cardial fluorescence imaging experiments. Results showed that our approach

significantly reduces motion artifacts of such image sequences. The algorithm

is capable of reducing excessive depolarization and repolarization artifacts while

preserving activation potential propagation. Activation potential duration is also

more evenly distributed after correction with our approach. Our software was

implemented in the IDL language (Research Systems, Inc.). The registration of

each movie frame (128x128 pixels) takes about 5 seconds on a Pentium system

running at 1.3 MHz. Implementing the software in a more efficient computer

language such as C would certainly decrease computation time.
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Note that the motion correction scheme presented here is one of many options.

That is, instead of registering each movie frame to a single reference frame it is

also possible to register each frame to the previous one. The advantage of the

second approach is that the two consecutive frames should be more similar to each

other. We have tried this option and, in our experience, this strategy is less stable

than our current option. We have observed that while some corrections are good,

some experiments generated results that were noticeably incorrect. We believe

that the cause for this is the accumulation of successive registration errors. That

is, the error for the registration of say frames 0 and 1 may be small, and so may

be the error in the registration of frames 1 and 2. The error for the registration of

frames 0 and 2, however, should in theory be larger than the error between 0 and

1 or the error between 1 and 2. Since the movie sequences we are using contain

hundreds of frames, it is easy to see how this strategy can potentially generate

highly inaccurate results. Yet another option is to use a single reference frame

and initialize the optimization procedure using the result of the registration of

the previous frame.

It is important to clarify the limitations of our approach. Firstly, all motions

are assumed to be in plane. Thus out of plane motions cannot be corrected and

in some instances may confound our correction approach. Furthermore, pixels

that moved out of the imaging field due to motion cannot be recovered. Possible

solutions to both problems include imaging the surface of the heart in stereo with

multiple cameras or mirrors. This would allow collection of three-dimensional in-

formation that could be used to correct for motion artifacts out of the imaging

plane. In addition, we only corrected for global motions (rotations, translations,

shear and scaling) in this initial attempt to use image registration to correct for
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motion artifacts. Local motions can be further corrected using nonrigid (nonlin-

ear) registration methods. Preliminary results indicate that this is a promising

direction, though technical implementation details can be complicated. In our

experience we have found that the method presented above works best with im-

ages that have a small field of view focused on the surface of the heart. This

could be related to the fact that while the affine spatial transformation model

we use may be appropriate to describe local movement, it is not an appropriate

model to simultaneously describe movement of several regions of the heart. The

images presented in this paper have a field of view of about 20x20 millimeters,

with resolution of about 200x200 microns.

In addition, it should also be noted that the method described above may

fail to correct for motion in image sequences that have a large activation signal

to noise ratio. In such cases, the algorithm may confound image features with

activation signal, making motion correction difficult. The activation signal to

noise ratio for our images falls typically in the 5 to 10 range. Initial experiments

show that the algorithm works well for such images. At this point, however, we

have not performed experiments to determine exactly at which activation signal

to noise the algorithm starts failing.
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Chapter 7

Estimating Intensity Variance Due to Noise in Registered

Images: Applications to Diffusion Tensor MRI

7.1 Introduction

Post-acquisition image alignment (registration) is routinely performed in biomed-

ical research and clinical practice [72, 84]. Applications using image registration

techniques include motion and distortion correction in functional MRI (fMRI),

diffusion tensor MRI (DT-MRI), and MR relaxometry experiments. In addi-

tion, image registration procedures are increasingly being used in computational

based studies of neuroanatomy. This involves understanding the variability of

tissue properties, including shape, across specific populations. An example is

voxel-based morphometry, described in [11].

In general, many of the current post-processing methodologies can be sum-

marized as follows. A set of medical images is acquired and reconstructed using

standard methodologies. This step may include: filtering to avoid ringing ar-

tifacts, denoising, intensity corrections, etc. Next, using one of many available

algorithms, images are registered to ensure, as much as possible, that a fixed im-

age coordinate corresponds to the same structure, or anatomical coordinate, in
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all images acquired. This step is necessary because the subject being imaged may

move during data acquisition. In addition, images may contain geometric distor-

tions with respect to each other. In echo planar (EPI) MRI these distortions

can be caused by magnetic field susceptibility related artifacts. In EPI-based

diffusion weighted imaging, significant geometric distortions may also occur due

to eddy-currents induced by the rapidly switched diffusion weighting magnetic

field gradients applied during imaging. Corrections to account for such misregis-

tration artifacts are absolutely necessary to ensure the data analysis is reliable.

In addition to correcting for motion and geometric distortions, the entire image

sequence may also be aligned to a standard template image, using stereotaxic

normalization techniques, for example, so that the data analysis results can be

more conveniently interpreted. Data analysis consists of extracting or estimating

some physically meaningful parameters from the sequence of medical images. In

DT-MRI a 3x3 symmetric diffusion tensor is estimated, based on which several

other quantities such as measures of diffusion anisotropy and depictions of fiber

tracts can be generated. In fMRI, these may be statistical parametric maps [37],

for example.

In many of these applications the analysis of the registered images involves

fitting or estimating model parameters from the intensity values of the images.

For such tasks it is crucial to know the correct signal variance of the registered im-

ages so that least-squares procedures, for example, can be properly implemented.

Though significant research has been devoted to estimating signal variance in

medical images–some examples in MRI include [49, 43, 100] among others–it is

important to recognize that the signal variances in the registered and the original

unregistered images differ. This is because the image interpolation or approxi-
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mation step generally required in image registration can, as will be shown later,

significantly change the noise properties of the image. We will show how a sim-

ple formula can be used to compute the appropriate signal variance in registered

images. The analysis of diffusion weighted MRI data using the diffusion tensor

model will be used as a case study. That is, given a set of diffusion weighted MR

images (DWI) we use an existing software to register the DWIs to remove rigid

body motion and eddy-current related distortions prior to tensor computation.

We then show that noise variance in the registered images differs from the noise

variance in the original images. However, even though DT-MRI is the only ap-

plication discussed in detail in this chapter, we believe that the general approach

described in this chapter should be considered whenever registered images are

being analyzed using procedures that require knowledge of the variance in the

image intensity values.

At the time of writing not much related work can be found in the biomedical

imaging literature. Friston et al. [38] address the problem of removing movement-

related artifacts, such as those caused by intensity fluctuations due to the change

in position of the imaged object with respect to the reference frame of the scan-

ner. In [106] and [42] the authors investigate the error in the intensity values

produced by interpolation procedures applied on the registered images. Maas

and Renshaw [69] discuss artifacts related to high frequency losses on registered

(interpolated) data. Pluim et al. report that interpolation methods may cause

undesirable artifacts when estimating the Mutual Information similarity measure

[85]. Nickerson et al. [79] describe a method through which the local intensity

variance in positron emission tomography (PET) can be estimated from the op-

erations performed during image reconstruction. None of these works, however,
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detail the importance of, and methods for obtaining correct estimates of the signal

variance at each coordinate of each registered image.

In the field of diffusion weighted imaging and diffusion tensor MRI, several

researchers have investigated methods for performing post-acquisition motion

and distortion correction of data [47, 20, 55, 8, 73, 91]. Though the registration

methods differ, most of these works use linear interpolation to produce the series

of DWIs. This series is then used to estimate one diffusion tensor for each voxel

via least- squares fitting procedures similar to the χ2 minimization procedure

described in [17]. We show in this chapter that least-squares fitting procedures

that extract diffusion tensor estimates from registered data can be affected by the

changes in image noise properties due to interpolation. We also provide a simple

method for obtaining correct variance estimates for the registered images. The

work presented in this chapter was previously published, with some modifications,

in Rohde et al. [92].

7.2 Theory

In practice, the process of registering two images is usually approached within an

optimization framework in which the goal is to find a spatial transformation f(x),

where f : R2 → R2 , or f : R3 → R3 for volumetric images, that maximizes some

similarity measure I between the digitized target T (x) and source S(x) images:

max
f

I (S(f(x), T (x)) (7.1)

The function f(x) may be a rigid body, affine, or higher order transformation,

depending on the application. The function I usually measures the similarity

between the images being registered by computing some form of statistical de-
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Figure 7.1: Illustration of an interpolation or approximation procedure for image

registration. First, a coordinate x in the target image space is transferred to a

coordinate in the source image space via f(x). The value of the source image at

f(x) is computed using neighboring values of the source image at that coordinate,

s(w1), s(w2), etc.

pendency between the intensity values of the images. In the processing pipeline

described above, the problem defined by equation (7.1) is usually solved for K

images in the image sequence {S1(x), · · · , SK(x)}, so it is clear that the sequence

of images {S1(f1(x)), Sk(fk(x)), , SK(fK(x))} is properly aligned. Note that in

cases where fk(x) is used to correct for geometric distortions caused by imperfect

magnetic field gradients in MRI, for example, the intensity value of the corrected

images may also have to be multiplied by a correction factor [103, 91]:

S̃k(fk(x)) = Sk(fk(x)) det |Jac(fk(x))| (7.2)

where det |Jac(fk(x))| stands for the determinant of the Jacobian matrix of the

transformation fk(x).
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Independently of how the solution to equation (7.1) is actually computed

for each image in the sequence, many imaging applications require knowing the

value of the registered images {S1(f1(xi)), · · · , SK(fK(xi))} for some arbitrary

coordinate xi. Since in general the point fk(x) will not coincide with a sampling

coordinate of image Sk, an interpolation or approximation strategy must be used

to produce the image value Sk(fk(x)). Many approximation and interpolation

methods can be chosen to perform such tasks [75]. Most estimate the value of

Sk(fk(x)) based on a linear combination of the intensity values of image Sk around

the point fk(x). Figure 7.1 illustrates this process. Note that w refers to grid

coordinates of the image Sk. Mathematically, this interpolation or approximation

procedure can be expressed as:

Sk(fk(x)) =
∑
wi∈Ω

αiSk(wi) (7.3)

where Θ defines a set of sampling coordinates that surround f(x) (see Figure

7.2). The coefficients αi of the linear combination (7.3), as well as the size of

Θ are determined solely by the choice of interpolation or approximation kernel.

For the linear interpolation method, one of the most popular image interpolation

methods, the value of the image S at coordinate f(x) is given by:

S(f(x)) =
2∑

i=1

2∑
j=1

2∑
k=1

(1− Vi)(1− Pj)(1−Qk)S(xi, yj, zk) (7.4)

where Vi = |f(xx)− xi|, Pj = |f(xy)− yj|, Qk = |f(xz)− zk|, and {xi, yj, zk} are

image grid coordinates for which |f(x)x − xi| < 1, |f(x)y − yi| < 1, |f(x)z − zi| <

1. Thus the coefficients of the linear combination (7.3) are given by:

αi,j,k = (1− Vi)(1− Pj)(1−Qk) (7.5)

The set Θ, in this case, are the coordinates wi for which |f(x) −wi| 6 1 holds.
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Figure 7.2: Ordering of voxels used to compute the correlation matrix 7.9.

Corr(1,3), for example, corresponds to the correlation coefficient between the

image value at location with index 1, and the image value at location with index

3.

Note that formulas (7.4), and (7.5) represent the three dimensional case, while fig-

ure 7.1 depicts a 2 dimensional situation. Naturally, when different interpolation

or approximation methods are used, different formulas are needed for estimating

the variance of any given interpolated image value. Refer to appendix A for the

general formula for the variance of an interpolated image value given a general

(separable) basis function.

Because of random variability introduced at several steps during image ac-

quisition, the measurement Sk(wi) should be considered a random variable with

a variance Var (Sk(wi)). For MR images it is customary to assume that noise

variance, denoted by λ2, is uniform throughout the imaging volume. Note that,
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though it can be assumed that Sk(wi) and Sk(wj), where i 6= j, have equal

variances, in general they are not independent measurements because several

image reconstruction steps effectively correlate measurements from different im-

age coordinates. Correlation in the data due to the reconstruction procedure

can arise from filtering during analog to digital conversion, filtering to remove

ringing artifacts, filtering to remove noise, correcting for ghosting artifacts (par-

ticularly salient in EPI reconstructions), and others. Correlation between values

in different image coordinates occurs not only in MRI, but X-ray based computed

tomography and positron emission tomography (PET) also. This is because most

reconstruction algorithms use filtering operations that correlate intensity values

of different image coordinates. A simple method for estimating this correlation

in MRI will be described in the next section.

In short, because of the noise variability introduced during image acquisi-

tion and processing, the measurements Sk(wi) and Sk(wj) are random vari-

ables with variance Var (Sk(wi)) and Var (Sk(wj)), respectively, and covariance

Cov (Sk(wi), Sk(wj)). Thus, Sk(fk(x)), as defined by equation (7.3), is also a

random variable with variance [53]:

Var (Sk(fk(s))) =

(∑
wi∈Θ

α2
i Var (Sk(wi))

)
+ (7.6)

2

 ∑
{wi,wj∈Θ,i<j}

αiαjCov (Sk(wi), Sk(wj))


If it can be assumed that Var (Sk(wi)) is approximately constant for all values of
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the image (7.6) simplifies to,

Var (Sk(fk(s))) = λ2

(∑
wi∈Θ

α2
i

)
+ (7.7)

2

 ∑
{wi,wj∈Θ,i<j}

αiαjCov (Sk(wi), Sk(wj))


In cases when the intensity correction function defined in (7.2) needs to be applied

to the registered image Sk(fk(x)) to obtain intensity corrected value S̄(fk(x)), it

is easy to show that the correct formula for the variance becomes:

Var (Sk(fk(s))) = (det |Jac(fk(x))|)2 λ2

(∑
wi∈Θ

α2
i

)
+ (7.8)

2 (det |Jac(fk(x))|)2

 ∑
{wi,wj∈Θ,i<j}

αiαjCov (Sk(wi), Sk(wj))


Note that if nearest neighbor interpolation is used, the variance of each value in

the interpolated image would be equal to the variance of the nearest neighbor

voxel, multiplied by the Jacobian correction term when appropriate. The for-

mula (7.8), using the linear interpolation method, was implemented in a typical

DTI processing pipeline and it is shown next that, because the fitting procedure

includes estimates of the noise variance in each image, formula (7.8) should be

used to re-estimate the variance of the signal in each voxel in each image that

has been registered.

7.3 Methods

7.3.1 MRI data acquisition

The data sets in the demonstrations used throughout this paper were acquired

with a standard single-shot multi-slice spin-echo EPI sequence (i.e.: fat sup-
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pression pulse, 90 degree pulse, first diffusion gradient, 180 degree pulse, second

diffusion gradient, EPI readout). Scans were performed on a 1.5 T GE Signa

system equipped with a whole-body gradient coil able to produce gradient pulses

up to 50 mT/m (GE Medical Systems, Milwaukee, WI). The imaged volume was

composed of 80 contiguous slices with 2 mm slice thickness and 2 mm in-plane

resolution. The echo-time was 82.7 ms, the read-out time 50 ms, and the repeti-

tion time was greater than 10 s with cardiac gating (4 acquisitions per heart beat

starting with a 150 ms delay after the rise of the sphygmic wave as measured with

a peripheral pulse oxymeter). The gradient strength was 49 mT/m, yielding a b

value (i.e., trace of the b-matrix) of 1,120 s/mm2. A total of 56 3D images were

acquired by repeating 8 times a diffusion sampling scheme described previously

[83] which includes one volume with no diffusion weighting followed by the same

volume six times, acquired with diffusion gradients applied in different directions.

The total imaging time was approximately 20 minutes. Replicate volumes were

acquired for signal to noise considerations in order to improve the quality of the

estimated diffusion tensor parameters. The signal to noise ratio, as measured by

the mean signal in the region of the thalamus divided by the estimated standard

deviation of the signal (see section below), was about 13 for the T2-weighted

images and about 7 for the diffusion weighted images.

7.3.2 MRI noise estimation

The sources that introduce uncertainty in each voxel intensity are many and are

generally put into one of two categories: thermal noise, and physiological noise.

Other sources may also exist in the electronics of the acquisition system, such as

digitization etc., but these can be minimized in an ideal experiment. Thermal
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noise is usually considered as white noise because it is expected that its power

should be equal for all frequencies within the readout bandwidth. Because the

images are reconstructed using the Fourier transform, the variance that charac-

terizes the uncertainty due to thermal noise is constant throughout the imaging

volume [44]. Naturally, the same cannot be said about physiological noise.

In our experiments we are only able to estimate the variance that characterizes

the uncertainty of the MR measurement due to thermal noise. We do so by

computing the variance of magnitude reconstructed intensity values in an artifact-

free background region and propagating it to regions with strong signal from the

brain through the method described in [49, 43]. The correction factor described

in [49, 43] uses the assumption that Gaussian distributed noise is added to the

real and imaginary channels of the receiver system. If possible, we would also

like to estimate the variance component due to physiological noise such as flow,

MR spin history errors, etc. To do so, however, would require many repeated

acquisitions. It would also be difficult to isolate the variance due to patient

motion in such repeated measurements (which is something the registration step

is actually trying to diminish). Because of these difficulties, we are not able

to estimate the variance introduced by physiological effects. Thus the variance

estimate we are able to compute for each voxel intensity value is a biased lower

bound estimate of the variance when all sources of uncertainty are included. We

would like to note, however, that if the total variance, and covariance, in the

signal (from all sources) does somehow become available in the future, the same

formulas described in the theory section can be used to propagate the known

variance beyond the interpolation step.

The correlation matrix used in our experiments was estimated empirically.
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Though theoretically possible, it could be very cumbersome to account for all

of the filtering steps applied to the data before it becomes a magnitude image.

In addition, some steps taken during analog to digital conversion of the free

induction decay signals may be proprietary and thus inaccessible. Instead, we

acquired and reconstructed several 3D images of pure noise. Using this pure noise

image data we computed the correlation coefficient between the original volumes

and the same volumes shifted by one pixel in the x, y, and z directions. Note that

because we are using linear interpolation, it is only necessary to include 1 voxel

shift in the computation (7.8). When bases functions of wider support are used

in the interpolation or approximation procedure, the correlations of larger shifts

may be required. Using this method, we computed the following 8x8 correlation

matrix:

Corr(i, j) =



1 0.35 0.40 0.25 0 0 0 0

0.35 1 0.25 0.40 0 0 0 0

0.40 0.25 1 0.35 0 0 0 0

0.25 0.40 0.35 1 0 0 0 0

0 0 0 0 1 0.35 0.40 0.25

0 0 0 0 0.35 1 0.25 0.40

0 0 0 0 0.40 0.25 1 0.35

0 0 0 0 0.25 0.40 0.35 1



(7.9)

Figure 7.2–which defines the ordering of the voxel coordinates–helps explain the

correlation matrix expressed in (7.9). Because we are assuming that most of the

correlation is caused by linear filtering operations applied on the image data,

the noise correlation matrix (7.9) should be approximately constant throughout

the domain of the original magnitude reconstructed images. Note that since our
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acquisition is based on a 2D EPI pulse sequence, measurements between one slice

and the next show no significant correlation. Also note that the correlations in

the x, and y directions are not equal, since additional operations are performed in

the phase encode (y in this case) direction to minimize ghosting artifacts. Lastly,

since we are also assuming that the noise variance in the original magnitude

reconstructed image is constant, the covariance matrix used in (7.9) is given by:

Cov(i, j) = Corr(i, j)λ2. (7.10)

7.3.3 Diffusion tensor estimation

The diffusion tensor model was estimated in each voxel x from the diffusion

weighted data by minimizing the following equation:

χ2 (D(x), A(x)) =
1

K − 7

K∑
k=1

(
A(x)e−D(x):bk − S̃k(fk(x))

)2

Var
(
S̃k(fk(x))

) (7.11)

where D(x) is a 3x3 symmetric matrix, A(x) is the amplitude term, and bk is

the b-matrix for image k, and D : b stands for the matrix dot product ([17].

The minimization was performed using the Levenberg-Marquardt least-squares

method.

7.3.4 Simulated data experiments

As an initial test of our variance estimation software we performed simulation

experiments using artificially constructed data. In this experiment, one thousand

2D images of Gaussian distributed random noise with mean zero and variance

one were rotated about their centers by 5 degrees using bilinear interpolation. In
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this simulation, the correlation matrix used was approximately:

Corr(i, j) =



1 0.25 0.25 0.23

0.25 1 0.23 0.25

0.25 0.23 1 0.25

0.23 0.25 0.25 1


For a fixed pixel coordinate x the variance across all of the rotated images was

computed and displayed. The purpose of this experiment is to show that the

variance in the images acquires a particular striped structure. The origin of

the striped structure shown stems from the fact that each intensity value in the

rotated image was computed by interpolating the original image on a particular

non-grid-point coordinate. This estimate comes from a linear combination of

the intensity values from around the transformed sampling coordinate (see fig.

1). The coefficients of the linear combination are computed from the distance

of the transformed coordinates to its nearest neighbors. For a specific degree of

rotation, this distance will repeat itself every so often throughout the rotated

image domain. Since the variance of the rotated image is determined by the

coefficients of the linear combination, the variance value of the rotated image

will also repeat itself every so often throughout the rotated image domain. We

show that by using equation (7.8), the variance in the interpolated images can

be predicted exactly.

7.3.5 Experimental data

The diffusion weighted data used in the examples in this paper were registered to

account for patient motion and eddy-current induced geometric distortions using

the methodology described in [91]. When using this method, first a non diffusion
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weighted image is chosen from the same DWI dataset to be the reference image

to which all remaining images are aligned. The registration of each image is

done in series, and independently from the registration of the other images in the

same set. This approach uses a mutual information-based registration technique

and a spatial transformation model containing parameters that correct for eddy-

current-induced image distortion and rigid body motion in three dimensions.

Each registration consists of estimating 14 parameters in total: 6 for rigid body

motion, and 8 for the model of eddy-current induced distortions which consists of

a spherical harmonics series expansion in Cartesian coordinates, up to quadratic

terms. All 14 parameters for each image in the set are estimated simultane-

ously. Optimization is performed using a gradient-ascent-type technique within

a multi-resolution framework. Initial estimates of the registration parameters are

obtained using low-resolution approximations of the images. These estimates are

then used to initialize the optimization using higher-resolution representations of

the data. The images can also be registered to an arbitrary template with a sin-

gle interpolation step without additional significant computational cost, though

this feature was turned off in all of the experiments shown here. The registered

images are created using trilinear interpolation. Following registration, the signal

amplitude of each DWI volume is corrected to account for size variations of the

object produced by the distortion correction, and the b-matrices are properly

recalculated to account for any rotation applied during registration.

The diffusion tensor at each voxel was computed using the registered images

by solving equation (7.11) as described above. For comparison purposes, we also

estimate the diffusion tensor from the registered images using equation (7.11),

but using a constant term for the noise variance Var(S̃k(fk(x))) = λ2. The χ2
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Figure 7.3: Simulation showing how the interpolation necessary to relate mea-

surements in two images can significantly affect the noise properties of the inter-

polated image. Part (a): an image of simulated noise. Part (b) is the image in

part (a) rotated by 5 degrees. Part (c) is the variance of image (b) computed

by repeating the rotation experiment 1000 times. Part (d) shows the variance of

image (b) predicted by formula (7.8).

measure at each voxel is compared for both methods. In addition to χ2 we also

compare the estimated tensor parameters to investigate whether or not they are

significantly affected when the incorrect noise variance is used.

7.4 Results

The results of the simulation experiments are shown in Figure 7.3. Part (a)

shows a sample noisy image computed as described above. Part (b) shows the

same image rotated by 5 degrees about its center. Values outside the original

image were assumed to be zero. Part (c) shows an image of the variance of

the one thousand rotated images computed at each pixel. Clearly the variance

became non-uniform and acquired a striped pattern throughout the domain of

the image. This variance image was computed analytically using formula (7.7),

and the result is shown in part (d).
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A similar effect can be seen in real data experiments using diffusion weighted

images. Though these striped artifacts are practically invisible in the interpo-

lated DWI volumes, they become evident in the χ2 maps computed using equa-

tion (7.11). Some results are shown in Figure 7.4. In this experiment a set of

DWI volumes was rotated about its horizontal axis by about 7.5 degrees, thus

causing interpolation to be performed between values of different slices, as well

as between values of different lines in the logical y direction. For this experi-

ment, the same rotation transformation was applied to each DWI volume, that

is: f1(x) = fk(x) · · · = fK(x). Part (a) of Figure 7.4 shows the χ2 map computed

using a single value, λ2, for the variance of each voxel in each image. Horizontal

stripes are visible along the vertical axis of the image, reflecting the different

amounts of interpolation performed at each voxel location. Part (b) shows the

variance predicted using eq. (7.8). Part (c) shows the χ2 map computed using

the variance given by eq. (7.8). The striping patterns become negligible when

compared to those shown in part (a) of the same figure. Note that the dynamic

ranges of both χ2 maps in this example were auto-scaled to obtain maximum

contrast.

Figure 7.5 displays an additional comparison of χ2 maps computed on unreg-

istered and registered data, with and without the estimation of intensity variance

method we propose above. Unlike the example above, the dynamic range of all χ2

maps was set to [0,5]. Note that the original image data used in this experiment

was significantly misregistered due to relatively large subject motion. Part (a)

shows the χ2 computed from the original, unregistered images using a single vari-

ance value estimated from the background of the images. Figure 7.5(b) shows the

χ2 map computed from the registered DW images with the same variance value
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Figure 7.4: Demonstration of bias in χ2 between the DT model and registered

DWI data. Part (a) show the χ2 map computed using a single value for the

variance in the data. Part (b) shows the non-uniform variance estimated using

formula (7.8). Part (c) shows the same χ2 map, however, this time computed

using the variance values displayed in part (b).

used in part (a). Note that the χ2 values of the registered images are generally

lower than the chi squared values of unregistered images. Finally, figure 7.5(c)

shows the χ2 maps computed from the registered DW images using the variance

values produced by eq. (7.8). Note also that the chi squared values for part (c)

are generally higher than those of part (b).

We also compared some of the most well known parameters derived from

the diffusion tensor computed from the fitting of eq. (7.11). For reference, the

amplitude, trace, and fractional anisotropy index [14, 19] are shown in figure 7.6,

parts (a) through (c), respectively. Figure 7.7(a) shows the relative error between

the trace parameter computed with and without the variance correction scheme

proposed above. The relative error was computed using the following formula:

|vcorrected − vuncorrected|/vcorrected, where v stands for the voxels specific value for
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Figure 7.5: Part (a): χ2 images computed from the raw (unregistered) data. χ2

images computed from registered images with (part c) and without (part b) the

noise variance formula given in eq. (7.8). The χ2 values computed using the cor-

rect noise variance values are generally higher than the values computed using a

single noise variance estimated on the original (unregistered) images. The actual

noise variance in registered images is generally lower than the original noise vari-

ance because of the linear combinations performed during image interpolation.
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Figure 7.6: Tensor derived quantities computed after registration with correct

variance estimates. Part (a): amplitude image. Part (b): trace of the diffusion

tensor. Part (c): fractional anisotropy image.

the trace of the diffusion tensor. The absolute value of the difference between the

fractional anisotropy values computed with and without the variance correction

described above is shown in part (b) of figure 7.7.

7.5 Discussion

The rotation experiments performed with the simulated noisy images demonstrate

qualitatively and quantitatively the effect that image interpolation can have on

the noise variance in registered or interpolated imagesthe variance becomes non-

uniform. The experiment also shows that formula (7.8) can be used to estimate

the variance in the interpolated images.

Experiments using real DWIs showed that the change of image noise proper-

ties caused by the registration (interpolation) procedure can significantly affect

parameter estimation procedure in DT-MRI. First, the alignment of the entire

DWI dataset to a standard template can cause χ2 maps to acquire a striped
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Figure 7.7: Part (a): relative error (absolute value of the difference divided by

the correct value) between the trace of the diffusion tensor computed with and

without the variance estimate given by formula (7.8). Part (b): absolute value of

the difference between fractional anisotropy values computed with and without

the variance estimated by formula (7.8).
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pattern if a single value for the image intensity variance is used during tensor

estimation. The pattern can be explained by the non-uniform intensity variance

introduced by the image interpolation step. The patterns disappear when the

correct noise variance in each voxel of each image, given by equation (E8), is

used to compute the diffusion tensor. The striped pattern in the χ2 values is

negligible if the DWI dataset was not aligned to a standard template, in addi-

tion to being corrected for motion and distortion, even if a single value for the

intensity variance is used in estimating the tensor model. Nonetheless, formula

(7.8) should be used in this case–because the images have suffered interpolation–

to ensure an estimation of the correct variance values. Our results showed that

in general the χ2 computed from registered images is lower than the χ2 com-

puted from unregistered images when significant misregistration due to motion

was present. However, the χ2 values computed using a single variance value es-

timated from the original (unregistered) images were lower than the χ2 values

computed using equation (7.8) to estimate the correct intensity variance. This is

to be expected since the variance of registered images at any given voxel location

is less than or equal to the variance of the original (unregistered) images because

of the interpolations necessary for registration. Thus, if a single variance value

estimated from original (unregistered) images is used for the tensor computation,

the overall effect will be an artificial decrease in the χ2 maps derived from the

tensor fitting.

We have also shown that the estimation of the trace and fractional anisotropy

parameters of the diffusion tensor can be affected by incorrect noise variance es-

timates. In the experiment shown, the error between the parameters estimated

with and without the variance correction to account for image registration was
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small: a few relative percentage points for the trace of the diffusion tensor and

a few absolute percentage points for the fractional anisotropy index. We expect

that the error caused by inappropriate weights in computing the actual parame-

ters of the diffusion tensor model will be largest when the data being fit differs

substantially from the model being used. To understand this, one only has to

think of the extreme case in which the model fits the data without error. In this

case, the weights being used become irrelevant since the numerator of the chi-

squared equation becomes zero. The error between the data and the model arises

from normally distributed thermal noise, physiological noise, as well as regions

where it is known that the DT model poorly describes the underlying diffusion

process, e.g. regions of crossing fibers. When considering only thermal, normally

distributed additive noise, as we do throughout this paper, errors caused by in-

correct variance estimates are not expected to be large and may diminish as the

number of diffusion weighted images increases. As shown in the results section,

however, these errors are expected to be in the order of a few percent.

The precise effect that changed image noise properties due to interpolation or

approximation will have on DT estimation procedures cannot be determined a

priori and will depend on several aspects of the registration and data processing

procedures. Some of these are: the spatial transformations used to register the

images, the interpolation or approximation kernel used, the noise variance and

covariance in the original images, and the anatomical content of the images.

However, it is worth noting that a translation of 0.5 pixels in all three dimensions

can cause the variance of the signal to be reduced to 0.125 of the original variance

of the signal when the linear interpolation method is used and if the data are

spatially uncorrelated. If the correct noise variance value is not used, the resultant
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χ2 measure will be underestimated by 8 times. Using the correlation matrix stated

in equation (7.9) a translation of 0.5 pixels in all three dimensions would cause

the variance in the interpolated image to be 0.25 of the variance in the original

data. This would cause the χ2 measure to be underestimated by 4 times if all

images in the dataset suffered similar interpolation.

Note that, although noise variance, and thus covariance, may vary even be-

tween datasets acquired using the same magnet and reconstructed using the same

procedure, because of receive coil temperature or amplification settings for ex-

ample, the noise correlation should not vary greatly. This is because the most

significant correlations are introduced almost entirely by data-independent post-

processing operations performed during magnitude image reconstruction. Thus,

we expect that the method we propose to estimate the noise correlations in the

images to be well suited when the MR images are reconstructed using the same

procedure.

By inspecting images (a) and (c) displayed in figure 7.4 closely the reader

may notice a slight vertical dark band running through the center of the images.

We believe that this is due to non-uniformity in noise variance through the field

of view caused by noise aliasing in the frequency encode direction (logical x

direction) during Fourier transform-based image reconstruction. The magnet

receiver chain includes an analog filter, A/D converter, and a digital decimation

filter. The filters reduce the response to higher frequencies. If the filters are not

properly chosen, high frequency noise will be aliased into the Nyquist band. The

observed pattern reflects the shape of the filter. There is no modulation of the

brightness of an object in the field because the object fits into the FOV, so no

aliasing takes place. There is no modulation of the noise in the phase encode
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direction due to its low bandwidth, 100x lower than in the frequency-encode

direction. We are in the process of determining the exact causes and remedies

for the problems outlined above, but we do not believe that the slight (though

noticeable) pattern in the noise materially affects our results.

7.5.1 Implications for analysis of variance of DT parame-

ters

Knowledge of the uncertainty in the estimated diffusion tensor model parameters

is important for assessing the significance of results of inter-subject or inter-

acquisition comparisons. It is worth also noting that thermal noise variance

not only plays a role in estimating the parameters of the model but also their

uncertainty. From [17] it is known that when multivariate log-linear regression

is used to compute the diffusion tensor parameters, the error variances of the

estimated diffusion parameters are given by the diagonal elements of the matrix(
BT Σ−1

e B
)−1

(see appendix B), where B is the design matrix for the experiment,

computed from the vectors that define the diffusion weighting gradients being

used, and the diagonal values of Σ−1
e given by S̃2

k/Var(S̃k), where S̃k represents the

intensity value of the kth image (for a fixed spatial coordinate) in the experiment.

As shown in appendix B, if incorrect values of Var(S̃k) are used the variance of

the estimated parameters is no longer
(
BT Σ−1

e B
)−1

and is given by equation

(7.26). Methods for estimating the uncertainty in parameters computed through

nonlinear models usually rely on Monte Carlo-type simulations for which it is

necessary to know the variance that characterizes the uncertainty of each image

intensity value [21].

170



7.5.2 Implications for DT-MRI-based tractography

One application which may be particularly affected by incorrect estimates in-

tensity variance due to random thermal noise is DT-MRI-based tractography.

Intensity variations due to thermal noise cause uncertainty in the orientation of

greatest diffusivity measured in a DTI experiment. This uncertainty is normally

computed using bootstrap [59] or Monte Carlo methods [21]. Such approaches

are general in the sense that they can be used with both linear and nonlinear

regression methods. On the down side, they are computationally intensive. In

addition, bootstrap methods such as the one discussed in [59] require the acquisi-

tion of an additional amount of data. In both cases, testing the effect of different

experimental setups (diffusion weighted directions, diffusion weighting strength,

number of image replicates, etc.) can be cumbersome.

Alternatively, given a specific set of B-matrices and a diffusion tensor, a root

mean square estimate of the uncertainty in orientation as a function of ther-

mal noise variance can be derived using the theory of linear regression (see

appendix B). This result can be used to calculate the approximate effect that

incorrect intensity variance estimates can have on the variability of the prin-

cipal diffusivity direction. We use a set of 22 b-matrices derived using the

scheme described in [60], and an anisotropic diffusion tensor specified by the

eigenvectors g1 = {1, 0, 0},g2 = {0, 1, 0},g3 = {0, 0, 1}, and eigenvalues d1 =

1, 685× 10−6, d2 = 287× 10−6, d3 = 109× 10−6mm2/s, and SNR = 15 to demon-

strate the following example. When correct variance values are used in the es-

timation process the covariance matrix of the estimated DT parameters is given

by equation (7.27) and the root mean square estimate in angle deviation when

using the correct variance values is about 2.5 degrees. If the entire set of im-
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ages is translated by 0.5 pixels in all three dimensions, using linear interpolation

and using the covariance matrix stated in equation (7.9) for example, and the

variance of each intensity value is not recomputed using the method described

above, the covariance matrix of the estimated parameters is given by equation

(7.26). The root mean square estimate of angle deviation in this case increases

to about 10 degrees. This result seems counter intuitive since data interpolation

should reduce the intensity variance of image values. This, in turn, should reduce

the variability of the measurement of principal direction. We point out, however,

that this is only caused by neglecting to account for the variance reduction due

to image interpolation. If the variances of the image intensity values are appro-

priately re-calculated, the root mean square of the angle variation is reduced to

about 1.3 degrees. We point out that these results are only approximations since

they were obtained using first order expansion methods. Moreover, only variabil-

ity due to thermal noise was included. However, it seems clear that tractography

methods that rely on information about the variability of diffusivity orientation

should be directly and adversely affected by neglecting to recomputed intensity

variance estimates after image registration.

Moreover, we point out that probabilistic tractography is not the only ap-

proach that could be affected by intensity variance modifications due to inter-

polation. The deterministic methods presented in [27, 18] rely on estimating

a continuous version of the diffusion tensor field for numerically computing the

continuous path of presumed fiber tracts. In the approach described by Basser

et al. [18] the continuous tensor field is estimated using an approximate fit to

the discretely sampled diffusion tensor data using cubic b-splines. Conturo et

al. [27] obtain a continuous version of the diffusion tensor field by interpolating
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the diffusion weighted images where needed and fitting the DT model using the

interpolated values. In both cases, the continuous approximation of diffusion ten-

sor data produces diffusion tensors with different variance properties at different

locations in the domain of the images. The variance of the interpolated diffusion

tensors can be computed using the formulas given in appendix A. Thus such

deterministic tract following approaches effectively integrate tracts by using esti-

mated principal diffusivity directions that have different orientation uncertainty

across different parts of the images, whether or not the raw DW images used for

computing each diffusion tensor have been registered. At this point it is unclear

what are the effects of non-uniform variance for such deterministic tract following

methods. However, we believe that further investigation in the area is merited.

7.5.3 Implications for functional MRI and voxel based

morphometry

Note that though we used diffusion tensor imaging as a case study, we believe

that the same methodology could be used whenever data analysis requiring noise

variance estimates is performed on registered or interpolated data. Some applica-

tion examples in biomedical imaging include fMRI data analysis, studies of tissue

shape and composition using statistical analysis of image data, MR relaxometry

experiments, etc. In all such applications the goal is to detect image intensity

changes that are the result of some biologically relevant phenomena. In fMRI

this may be BOLD activation correlated with some type of brain activity, while

in voxel based morphometry, for example, this may be information related to

diseased tissue. Both fMRI data analysis and voxel based morphometry methods

often rely on a generalized linear model for identifying the presence, absence,
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and quantification, of biologically relevant phenomena. In this framework the

measured image data (at a fixed voxel coordinate), defined by an N dimensional

vector y, is modeled as a linear combination of explanatory coefficients arranged

in an NxM matrix M and unknown parameters defined by an M dimensional

vector a: y = Ma + e, where e represents an N dimensional error vector whose

entries are usually assumed to be independent, equally and normally distributed.

If the error values are indeed normally distributed the maximum likelihood esti-

mate for the model parameters is given by a =
(
MTM

)−1
MTy, while the covari-

ance matrix of the estimates is given by Sa = LSyL
T , with L =

(
MTM

)−1
MT

and Sa,Sy representing the covariance matrix of the estimated parameters and

original data, respectively. Since the measurements y are usually assumed to be

independently and identically distributed, the covariance matrix of the estimated

parameters reduces to Sa = λ2
(
MTM

)−1
, with λ2 being the assumed noise vari-

ance. Note that this analysis is usually performed on registered images in order

to account for patient motion and geometric distortions. As shown in this paper,

since different images will have different spatial transformations (and thus differ-

ent interpolation) applied on them, the constant noise variance assumption is no

longer appropriate. That is, the variance due to noise of an image value that has

suffered interpolation is expected to be different from the variance of an image

value that has suffered no interpolation at all. At this point it is unclear what

effect this will have on image analysis results obtained using the general linear

model, though it is an issue that should be investigated further.

7.6 Summary and conclusions
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As fitting and estimating procedures from registered image data become increas-

ingly more elaborate and quantitative, knowledge of the intensity variance due

to noise will become more important for increasing the accuracy and scientific

value of the results obtained from them. A method for estimating the variance

in registered images is presented. The general approach can be summarized as

follows. The output of the registration procedure is computed using an image

interpolation or approximation procedure. The interpolation or approximation

procedure can be written as a linear combination of the values of the image be-

ing registered. The coefficients of the linear combination are determined by the

choice of interpolation or approximation kernel. Since the values of the image

being registered are typically corrupted by noise, this operation can be viewed as

a linear combination of random variables. The variance of the linear combination

is given by well known statistical formulas.

The image interpolation or approximation generally required by image reg-

istration procedures will inevitably affect the noise variance properties of the

images. We have shown that incorrect variance estimates can have a significant

effect on diffusion tensor estimation procedures. The method we proposed for

estimating the noise variance in registered images was shown to be successful in

both simulated and real data experiments. Since χ2 measures and noise variance

estimates are used more and more frequently in diffusion data analysis–examples

include image registration [8], diffusion model selection [5, 99], robust tensor esti-

mation [25], and brain tumor pathology detection [71]–correct variance estimates

from registered image data will become increasingly important.

The methods described here could also be useful in other biomedical imaging

applications such as MR relaxometry, fMRI data analysis, voxel based morphom-
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etry, etc. However, the effects of the technique in each of these applications

are not discussed in detail here and could be the subject of future study. The

techniques described here could also find applications in other image processing

and data analysis fields such as automatic target recognition and segmentation of

registered data obtained from satellite or other remote sensing machinery. Statis-

tical approaches are often used to fuse information gathered from several sensors

and extract possible target matches.

7.7 Appendix A

We expect that different interpolation or approximation kernels will modify the

variance in the registered images differently. The precise manner in which the

choice of interpolator will affect the variance of an image is currently being in-

vestigated [90]. Here we give a general formula for the variance of the image

intensity value produced using any kernel-based interpolation method due to a

spatial transformation being applied during registration. Let s(k), where k ∈ Zd,

with d being the dimension of the images, be the discretely sampled image pro-

duced by the acquisition system. A continuous approximation to s(k) is given

by:

s̃(x) =
∑
k∈Zd

s(k)h(x− k) (7.12)

Note that the summations are carried from −∞ to ∞ by making the images

periodic. Naturally, if we would like the values s̃(x) to be equal to the values of

s(k) at coordinates x = k, then h(x) must have the following properties:

h(k) = 0 ∀k 6= 0 (7.13)
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and

h(0) = 1. (7.14)

Examples of such kernels are the linear hat function (also known as B-spline of

order 1), and the popular sinc kernel given by:

h(x) =

 1− |x| if |x| ≤ 1;

0 if |x| > 1.
(7.15)

and

h(x) =
sin(πx)

πx
(7.16)

respectively. Note that true sinc interpolation is almost never used in the field

of medical imaging because of the enormous computational cost associated with

it. Since the support of sinc is infinite, in theory, the sum in (7.12) should be

evaluated from −∞ to∞. Because of such computational costs and other reasons

(i.e. ringing artifacts) researchers in the field prefer to use truncated and apodized

versions of (7.16) [46, 66, 108, 75]. Note also that in the cases where d > 1, the

interpolation kernel is replaced by

ĥ(x) =
d∏

i=1

h(xi). (7.17)

If the basis function being used does not satisfy the properties stated in equa-

tions (7.13) and (7.14), examples include the popular B-splines of order 2 or

greater, equation (7.12) needs to be adjusted. Let b(x) be a basis function such

that properties (7.13) and (7.14) do not hold. The interpolation equation then

becomes:

s̃(x) =
∑
k∈Zd

c(k)b(x− k). (7.18)

The coefficients c(k) are given by:

c(k) =
(
b−1 ∗ s

)
(k), (7.19)
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where b−1 is the uniquely defined convolution-inverse [114, 115]. As shown in

[114, 115], we can substitute (7.19) into (7.18) to see that

s̃(x) =
∑
k∈Zd

(
b−1 ∗ s

)
(k)b(x− k)

=
∑

k1∈Zd

∑
k2∈Zd

b−1(k2)s(k1 − k2)b(x− k1) (7.20)

=
∑
k∈Zd

s(k)h(x− k)

where the new interpolation kernel is given by:

h(x) =
∑
k∈Zd

b−1(k)b(x− k). (7.21)

Thus, the variance of the interpolated image intensity value due to spatial trans-

formation f(x) is given by:

Var (S(f(x))) =
∑
k∈Zd

Var (S(k)) (h(f(x)− k))2 + (7.22)∑
i∈Zd

∑
j∈Zd,j 6=i

h(f(x)− j)h(f(x)− i)Cov (s(i), s(j))

Applications such as geometrical distortion correction due to imperfect magnetic

fields in MRI require the formula above to be multiplied by the square of the

determinant of the Jacobian matrix of f , as in equation (7.8):

Var (S(f(x))) = γ
∑
k∈Zd

Var (S(k)) (h(f(x)− k))2 + (7.23)

γ
∑
i∈Zd

∑
j∈Zd,j 6=i

h(f(x)− j)h(f(x)− i)Cov (s(i), s(j)) .

with γ = (det |Jac(f(x))|)2.

7.8 Appendix B

Using the log-linear diffusion tensor model for the diffusion weighted image data

we analyze the error distribution of the estimated diffusion tensor parameters.
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Let y = {ln(S1), , ln(SN)}T , where Si represents the ith measurement in a typical

DTI acquisition, and a = {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(A0)}T represent the

diffusion tensor model parameters. To first order, the log linear model can be

written as

y = Ba + e (7.24)

where the jth row of B is composed of the b-matrix entries of the jth diffusion

weighted acquisition parameters {−bxxj,−byyj,−bzzj,−2bxyj,−2bxzj,−2byzj, 1},

and e represents the error vector. The covariance matrix of e is denoted (Σe)ii =

σ2
i /〈Si〉2, where 〈u〉 denotes the expectation of random variable u. Since each

measured data point in y was taken independently at different times (Σe)ij =

0 ∀i 6= j. All terms in equation (7.24) are considered deterministic, with excep-

tion of e which represents error due to noise in the imaging acquisition system.

Therefore Σy = Σe. In practice however, one can only estimate Σe. This is usu-

ally done based on measurements from background intensity values. As shown in

this paper, the estimates of the variance in each image intensity value need to be

re-calculated after registration or interpolation is performed on the images. We

will differentiate the true covariance matrix of the data Σe from the estimated

one Σ̃e. The weighted least squares solution to equation (7.24) is given by:

a =
(
BT Σ̃−1

e B
)−1 (

BT Σ̃−1
e

)
y (7.25)

while the covariance matrix of the estimated parameters is given by:

Σa =
(
BT Σ̃−1

e B
)−1

BT Σ̃−1
e ΣeΣ̃−1

e B
(
BT Σ̃−1

e B
)−1

(7.26)

If our estimate of the covariance matrix of the measured data is precise and

accurate, Σ̃e ≈ Σe, then equation (7.26) reduces to:

Σa =
(
BT Σ̃−1

e B
)−1

. (7.27)
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If, on the other hand, errors are made in calculating Σ̃e, such as neglecting to

account for the interpolation applied to the data during image registration, the

covariance of the estimated parameters is given by equation (7.26).

The uncertainty in the principal direction orientation in a diffusion tensor

D̃ calculated using (7.25) can be estimated by studying the effects of random

perturbations 4D on a deterministic tensor D0 [15]:

D̃ = D0 +4D. (7.28)

Let d1, d2, d3, and g1,g2,g3, represent the eigenvalues (arranged in decreasing

order) and eigenvectors, respectively, of the three dimensional positive definite

symmetric tensor D0. We are interested in computing the perturbation g̃1 =

g1 + 4g1. We will assume that D0 comes from biological tissue with high dif-

fusion anisotropy so that sorting bias in the computed eigenvalues can be safely

neglected. It can be shown [39] that, to first order, the perturbation of the

eigenvector associated with greatest diffusivity is:

4g1 =
3∑

i=2

(
gT

1 4Dgi

d1 − di

)
gi. (7.29)

The perturbation angle θ between g̃1 and g1 is thus θ = tan−1 (‖4g1‖) (Basser

1997). Noting that the eigenvectors g form an orthonormal basis for the 3D

Euclidean space and using the small angle approximation for tan θ:

θ ≈ ‖4 g1‖ =

√√√√ 3∑
i=2

(
gT

1 4Dgi

d1 − di

)2

. (7.30)

Now

〈θ2〉 ≈ 〈‖ 4 g1‖2〉 =

〈
3∑

i=2

(
gT

1 4Dgi

d1 − di

)2
〉

=
3∑

i=2

〈
(gT

14Dgi)
2
〉

(d1 − di)2
(7.31)
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while, as shown in [6],

〈
(4Dii)

2
〉

=
〈
(D̃ii − (D0)ii)

2
〉

= (Σa)i,i (7.32)

and similarly

〈
(4Dij)

2
〉

=
〈
(D̃ij − (D0)ij)

2
〉

= (Σa)i+j+1,i+j+1. (7.33)

Looking at the principal axis case, gT
i 4Dgj = 4Dij. In general, the covariance

matrix can be rotated so that
〈
(gT

i 4Dgj)
〉

= (RΣaR
T )i+j+1,i+j+1 = Ξi+j+1,i+j+1

[6], where R is a rotation matrix. Therefore (7.31) can be written as

〈
‖4g1‖2

〉
=

3∑
i=2

〈
(gT

14Dgi)
2
〉

(d1 − di)2
=

3∑
i=2

(Ξ)2+i,2+i

(d1 − di)2
. (7.34)

Thus the root mean square angle estimate of the deviation from the principal

direction is:

θRMS =

√√√√ 3∑
i=2

(Ξ)2+i,2+i

(d1 − di)2
, (7.35)

where the covariance matrix of the estimated parameters Σa in RΣaR
T = Ξ is

given in equation (7.26).
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Chapter 8

Summary and Conclusions

Misregistration artifacts typically stem from patient (object) or camera motion,

as well as device dependent geometric distortions. As shown with real experimen-

tal data in chapters 5 and 6, misregistration-related artifacts can pose significant

difficulties to the automated measurement of quantitative parameters such as dif-

fusion coefficients in diffusion weighted MRI experiments, or activation potential

duration in epicardial optical imaging experiments. Such artifacts are not limited

to the two imaging experiments mentioned in detail but also occur in functional

MRI experiments, or any time data from images taken at different times or by

different sensors are used to estimate some kind of physical quantity.

In typical quantitative imaging experiments a sequence of processing steps is

employed to translate the measured data into the desired quantitative informa-

tion. This sequence of steps can include a tomographic reconstruction step to

transform the measured data into images, as well as several post processing steps

employed to remove misalignment artifacts, in addition to other artifacts such

as intensity inhomogeneities and system noise. Once the undesirable effects of

motion, distortion, and noise in the image data have been been accounted for, the

series of image data is then used in a data analysis step whose goal is to extract
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interesting quantitative parameters usually via model fitting and other statistical

methods. The extracted parameters are then used for a variety of important

tasks. In the biomedical world, these results are used for medical diagnosis, sur-

gical planning, treatment monitoring, image guided treatment, as well as basic

science research. In robotics and military applications, the processed data can

be used for automated tracking, target recognition and classification, as well as

surveillance purposes.

Presented in this work were several novel ideas related to the measurement

and removal of undesirable misalignment artifacts in typical imaging experiments.

The novel contributions presented throughout this dissertation were the fruit of

an overall philosophy taken towards the problem at hand: that in order to achieve

a specific measurement obtained from an imaging experiment it is best to consider

explicitly all steps taken in a typical image processing pipeline. This is due to

the fact that the output from any given processing procedure can have severe

impact on the next step in the processing pipeline. Even though a great amount

of research on image processing methods for several aspects of typical imaging

experiments has been performed over the past two or so decades (over 180 journal

publications solely devoted to biomedical image registration were published just

in 2004) the majority of these works, however, give minimal consideration to the

relation between the particular methodology being explored and other processing

steps in a typical image processing pipeline. Too often researchers are willing to

accept important steps such as image acquisition, reconstruction, denoising, etc.,

as ‘black boxes’ in the process of developing the latest registration or segmentation

algorithm. This is understandable since quantitative imaging efforts typically

involve scientists with a variety of backgrounds. On the data acquisition side
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there are imaging physicists and engineers who are concerned with many technical

issues relating to the physics of the data measurement process. Their goal is to try

to expand the capability of present systems by improving sampling rates as well as

minimizing system noise and other artifacts. At the other end of the spectrum (in

the biomedical fields) there are neuroscientists and physicians who wish to use the

results from quantitative experiments to better understand biological phenomena,

maximize treatment success, etc. In between there are data processors whose

background include a variety of fields such as applied mathematics, statistics,

electrical engineering, as well as scientific computation. Their goal is try to

remove artifacts which cannot be controlled at the time of data acquisition and

to design and conduct computations that will provide the desired quantitative

outputs. Given their varied background and expertise, communication between

researchers at different stages of the imaging experiment can be less than optimal.

This, combined with the ever increasing urge to publish results as quickly as

possible, can cause many disconnects which may delay progress in many fields

of experimental sciences. As we saw in chapters 4 and 7, the common disregard

for the stochastic nature of the imaging acquisition process, for example, caused

researchers to perform sub-optimal computations for many years.

The specific scientific contributions presented in this work included both ana-

lytical and computational advances and can be summarized as follows. A linear,

shift-invariant, stochastic image model was used to better understand the lim-

itations of current methodology used for registering multiple images as well as

for computation of quantitative parameters of interest. Methods for improving

on such limitations were also described. In chapter 4 we described the effect of

system noise on the computations necessary for registering multiple images. It
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was shown that system noise will inevitably introduce systematic local optima

artifacts in intensity-based automatic registration methods. Such artifacts will

prevent optimization methods from finding the global optimum for any particular

problem. In addition, even when approximate locations for the global optimum

are known, the computation methods normally used will still give biased answers:

the solution to the registration problem will be biased towards the most ‘blurred’

image. This is due to the fact that common energy functionals used for guiding

the registration process are sensitive to the stochastic properties of the input im-

ages. These, in turn, are sensitive to the spatial transformations being applied

as well as the continuous image model chosen. Solutions for mitigating such arti-

facts, such as prior data ‘blurring’ and the use of sinc-based basis functions, were

presented and discussed.

Next, in chapter 5, a comprehensive solution to the motion and distortion ar-

tifacts encountered when processing diffusion weighted MRI of the human brain

was presented. The computational solution employed the data ‘blurring’ strategy

to minimize local optima artifacts. In addition, the linear shift-invariant imaging

model was used to derive the effects of both patient motion and eddy current-

induced distortions explicitly so that computation of parameters of interest (in

this case the diffusion tensor) can be done properly. The approach was tested

using real data from various experiments and it was found that it is capable of

removing even severe motion and distortion related artifacts. A similar technique

was used in chapter 6 to remove artifacts related to cardiac motion in 2D epi-

cardial fluorescence optical imaging experiments. Because of the effects motion

and distortion in linear, shift-invariant, imaging systems described in chapter 3,

intensity corrections were not used even though cardiac tissue motion is tech-
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nically non-rigid. Results showed that the techniques used are not limited to

MRI-type instruments but can also be applied in cases where data comes from

optical sensors.

Finally, in chapter 7 methods for computing quantitative parameters of in-

terest once the transformations that align the images are known were presented.

Until now the effects of image resampling and interpolation on the stochastic

properties of the images, and how these affect popular data analysis methods

such as the maximum likelihood method, were missing. These were discussed in

chapter 7 and it was concluded that neglecting the effects of the data process-

ing can cause errors of large magnitude in the computation of the quantities of

interest, as well as their associated uncertainty.

By investigating the effects of specific processing steps such as image registra-

tion on simple models for the image formation process one can better understand

the limitations of current image processing methodology. Naturally, conclusions

have to be limited to situations in which the image formation model chosen is

deemed appropriate. For example, it is not clear that the work presented here

will be valid for other types of system noise such as multiplicative noise, or for

nonlinear image formation processes. It should also be understood that none

of the work presented herein validates, in any strict sense, the image formation

models used to explain the different phenomena in the specific imaging modalities

mentioned (MRI and CCD). At most it can be concluded that some of the ex-

perimental results obtained are consistent with some of the aspects derived using

the linear stochastic image formation model.

However, the idea of using specific image formation models to understand

the limitations of several processing steps in an imaging experiment seems to
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be a powerful alternative to many experimental studies whose goal is to make

generalizations based on empirical evidence. For example, several researchers

had attempted to understand the so called ‘grid’ artifacts in mutual information-

based registration curves [70, 85, 112, 117]. These studies, to a large extent, were

based on the attempt to investigate the effects of different images and image in-

terpolation methods, experimentally, on mutual information registration curves.

While some knowledge can be obtained from such studies, the extent to which

conclusions from them obtained hold will be unclear. It is hoped that the use

of image models to investigate the performance of image processing techniques

such as registration, denoising, and segmentation, to name a few, will become an

increasingly popular trend. More generally, researchers in quantitative imaging

fields may benefit from viewing tasks related to artifact removal and parameter

estimation within the context of ‘image science’ rather than ‘image processing.’
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[108] P. Thévenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE Trans-

actions on Medical Imaging, 19(7):739–758, July 2000.

[109] J.-P Thirion. Image matching as a diffusion process: an analogy with

maxwell’s demons. Medical Image Analysis, 2:79–98, 1998.

201



[110] P. Thompson and A. Toga. A surface-based technique for warping 3-

dimensional images of the brain. IEEE Transactions on Medical Imaging,

15:402–417, 1996.

[111] A. N. Tikhonov and V. A. Arsenin. Solutions of Ill-Posed Problems. Win-

ston, Washington, DC, 1978.

[112] J. Tsao. Interpolation artifacts in multimodality image registration based

on maximization of mutual information. IEEE Transactions on Medical

Imaging, 22:854–964, 2003.

[113] D.S. Tuch, R.M. Weisskoff, J.W. Belliveau, and V.J. Wedeen. High angular

resolution diffusion imaging of the human brain. In Proceedings of the 7th

Annual Meeting of ISMRM, page 321, 1999.

[114] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part

I-theory. IEEE Transactions on Signal Processing, 41:821–833, 1993.

[115] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part II-

efficient design and applications. IEEE Transactions on Signal Processing,

41:834–848, 1993.

[116] M. Unser, A. Aldroubi, and M. Eden. Enlargement or reduction of digital

images with minimum loss of information. IEEE Transactions on Image

Processing, 4:247–257, 1995.
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