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Introduction
• Targeting lymphatics allows for therapeutic administration to the lymph nodes, where the

adaptive immune response is shaped.

• Immunotherapies rely on drug accumulation in the lymph nodes in order to elicit or

suppress an immune response (Fig 1).

• Lymphatic targeting allows for systemic delivery while also bypassing first-pass metabolism.

• Drug delivery vehicles can be designed to optimize drug accumulation in lymph nodes by

changing their properties1.

Methods
Artificial Neural Network

• A neural network with one hidden layer with 3 nodes

was used (Fig 3).

• The input layer has a single node since time is the

only independent variable.

• The output layer has two nodes for the concentration

in the upper and lower compartments.

• A backpropagation algorithm was used to fit the model

to observed data, minimizing error between observed

and expected results with each iteration.
Figure 3: Artificial Neural Network Schematic

• Size and surface chemistry of

nanoparticles can be altered to

improve transport.

• The mechanisms behind these results

are poorly understood.

• Conflicting data exists about optimal

properties.

• Computational models are a valuable

tool for elucidating the relationship

between nanoparticle properties and

transport.

• Models allow us to predict the effect of

changing properties of the drug

delivery vehicle on its transport.

• Here, we were able to correlate

nanoparticle surface chemistry with

improved lymphatic transport, and

identify mechanisms behind transport

across lymphatic endothelial cells.

Methods
Lymphatic Transport Model

• Experimental data for model development and

validation was obtained using an established in

vitro model for nanoparticle transport2 (Fig 2).

• Human primary LECs were seeded on transwell

inserts and cultured under transmural flow for 24

hours.

• For the experiments with transport inhibitors, 100

nM Adrenomedullin and 62.5 µM of Dynasore

were added to cell media.

• 100 nm polystyrene nanoparticles were

generated with 100%, 50%, 25%, and 10%

polyethylene glycol coverage.

• Mass-action laws were used to develop equations

1 and 2.

• nup and nlo represent nanoparticle concentrations

in the upper and lower compartment respectively.

• k1 and k-1 are rate constants for nanoparticle

transport through the cell3.

Results
Nanoparticle Surface Chemistry:

• To assess PEG density, we quantified the ratio of Flory radius (Rf) of the polymer to the measured

grafting distance (D) (Fig 4).

Figure 4: Nanoparticle Characterization

(A) Measured Rf/D values of differentially

PEGylated NP correlated to the molar ratio

of PEG to reactive carboxyl groups on the

surface of the NP (n = 3).

(B) PEG added at different density generate

nanoparticles with unique surface

characteristics. Rf=Flory radius, D = grafting

distance.

Results

Figure 5: Effect of Surface Chemistry on Transport: Average percent transport

over time is compared with neural network predictions for differentially pegylated

nanoparticles.

Conclusions
• A library of nanoparticles with different surface chemistries and PEG grafting densities

was generated.

• Neutral, hydrophilic surface chemistry achieved through coating of nanoparticles with

polyethylene glycol was found to improve lymphatic delivery.

• Highest transport rates across lymphatics resulted from fully pegylated nanoparticles

in a dense brush surface conformation.

• The mechanisms through which lymphatic transport occurs – paracellular transport

through tight junctions and endocytosis - were deciphered.

• An artificial neural network-based computational model was developed to allow for

comparison between different nanoparticle formulations.

• As a future step, the model will be used to quantify the precise effects of surface

chemistry on transport rates.

• The mass action laws will be expanded, with rate constants replaced by equations

representing different pathways for transport.

• Knowledge gained in this study will inform nanoparticle design, which will be vital to

improving the delivery, and therefore efficacy, of immunotherapies.

Nanoparticle Transport Efficiency

Transport Inhibitors

• The impact of various inhibitors on nanoparticle transport across lymphatic

endothelial cells was investigated (Fig 6).

• Adrenomedullin strengthens tight junctions, which inhibits paracellular transport.

• Dynasore blocks endocytosis by inhibiting dynamic motor proteins.

• Both caused lower percent transport over time compared to a control.

• Lymphatic endothelial cells likely use both routes for nanoparticle transport.

Figure 6: Effect of Transport Inhibitors Percent of PSPEG-100 NP transported after 24 hours under

different transport inhibitors.
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• The in vitro model was used

to assess transport efficacy of

nanoparticles with varying

surface chemistries.

• The artificial neural network

was used to fit the data and

extrapolate beyond measured

time points (Fig 5).

• Fully pegylated nanoparticles

(PSPEG-100) in a dense

brush conformation had the

highest transport rates.

• Intermediate brush

conformations (PSPEG-50

and PSPEG-25) had lower

transport rates.

• Intermediate-mushroom

conformation nanoparticles

(PSPEG-10) had the lowest

transport rates.
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