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Abstract

Background: Correct annotation of function is essential if one is to take full advantage of the vast amounts of
genomic sequence data. The accuracy of sequence-based functional annotations is often variable, particularly if the
sequence homology to a known function is low. Indeed recent work has shown that even proteins with very high
sequence identity can have different folds and functions, and therefore caution is needed in assigning functions by
sequence homology in the absence of experimental validation. Experimental methods are therefore needed to
efficiently evaluate annotations in a way that complements current high throughput technologies. Here, we
describe the use of nuclear magnetic resonance (NMR)-based ligand screening as a tool for testing functional
assignments of putative enzymes that may be of variable reliability.

Results: The target genes for this study are putative enzymes from the methanogenic archaeon Methanosarcina
acetivorans (MA) that have been selected after manual genome re-annotation and demonstrate detectable in vivo
expression at the level of the transcriptome. The experimental approach begins with heterologous E. coli expression
and purification of individual MA gene products. An NMR-based ligand screen of the purified protein then identifies
possible substrates or products from a library of candidate compounds chosen from the putative pathway and other
related pathways. These data are used to determine if the current sequence-based annotation is likely to be correct.
For a number of case studies, additional experiments (such as in vivo genetic complementation) were performed to
determine function so that the reliability of the NMR screen could be independently assessed.

Conclusions: In all examples studied, the NMR screen was indicative of whether the functional annotation was
correct. Thus, the case studies described demonstrate that NMR-based ligand screening is an effective and rapid
tool for confirming or negating the annotated gene function of putative enzymes. In particular, no protein-specific
assay needs to be developed, which makes the approach broadly applicable for validating putative functions using
an automated pipeline strategy.

Background function is low. Indeed recent work has shown that even

Protein functions are annotated in genomic databases
using automated routines that search for sequence homol-
ogy to a gene product with an established function. The
accuracy of these sequence-based annotations is often
variable, particularly if the sequence identity to a known
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proteins with very high sequence identity can have differ-
ent folds and functions [1-3], and therefore caution is
needed in assigning functions simply by sequence homol-
ogy in the absence of experimental validation. Traditional
experimental approaches to determine function such as
enzyme assays are slow and painstaking and have not been
able to keep up with the ever-increasing large body of gen-
ome sequence data that contains many genes with uncon-
firmed and undetermined function. Clearly more efficient
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methods for accurate, experimental-based annotation and
validation of function are needed.

One area where there is a strong demand for func-
tional annotation is the large number of putative
enzymes identified from structural genomics and other
efforts (e.g. [4-7]). Methods for rapidly establishing
small molecule substrate or product specificity of puta-
tive enzymes are likely to be extremely useful on two
levels. Firstly, they would allow efficient testing of func-
tional assignments that may be of variable reliability.
Secondly, such approaches may be extended to the char-
acterization of partially assigned enzymatic functions
like those annotated from structural genomics efforts.
This article discusses a method that is applicable to the
first level of testing current sequence-based annotations
of enzymatic function. An NMR-based approach is
described for identifying potential substrates or products
of enzymes in vitro.

For the goal here of developing rapid approaches for
annotating putative enzymes, we adopted a ligand-based
NMR screening strategy [8]. In our hands, the most
consistent results were obtained using the waterLOGSY
(water-ligand observed via gradient spectroscopy) pulse
sequence [9]. This method was originally developed for
ligand screening of drug targets and is amenable to a
pipeline approach. The NMR experiment is based on
magnetization transfer between ligand and water mole-
cules. In the presence of a protein that binds to the
ligand, there are two competing flows of magnetization:
1) from water to the free ligand and 2) from bound
water (via the protein) to the bound ligand. These two
flows lead to opposite signs of the NOEs (nuclear Over-
hauser enhancements) between water and the ligand.
The stronger magnetization flow determines the sign of
the waterLOGSY peak. Compounds that bind the pro-
tein will give positive peaks whereas peaks generated
from non-binding compounds will be negative in the
waterLOGSY spectrum. Since exchangeable protons (e.g.
hydroxyl or amino group protons) also appear as posi-
tive peaks in waterLOGSY spectra, these need to be
identified and deconvoluted from the peaks due to pro-
tein-binding. This is readily achieved by recording a
reference spectrum of the sample in which the water
signal is saturated. Through chemical exchange, the
labile OH and NH protons are also saturated and their
peak intensities are greatly decreased allowing straight-
forward distinction of peaks due to binding.

The case studies below illustrate how this method can
be used to identify the chemical structures of potential
substrates or products for putative enzyme proteins.
The functional assignments were further supported by
additional experiments (e.g. genetic complementation,
NMR-based enzyme assays). In all of the examples
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studied, we find that the initial NMR screen is indicative
of whether the functional annotation is correct.

Results and discussion

Choice of organism and target selection

Genes from the metabolically diverse methanogenic
archaeon, Methanosarcina acetivorans, were chosen for
this study [10-12]. Methane producing organisms are of
interest because they provide an efficient and cost-effec-
tive biofuel which is self-harvesting and can be distribu-
ted readily using existing infrastructure. As with other
genomes, however, accurate functional annotation of
methanogens lags significantly behind the large body of
sequence data, representing a sizable gap in understand-
ing of the biology of these organisms. This project was
initiated by updating functional annotations for over 700
of the 4721 predicted genes in the MA genome. This
was done by transferring many of the recently revised
manual annotations in the closely related species M.
burtonii[13] to homologous genes in MA. In combina-
tion, a thorough literature search was conducted for
published data that experimentally confirms the func-
tionality of MA genes and closely related orthologs in
other species. A complete list of revised MA annotations
is provided in Additional file 1 (also available at http://
ibbr.umd.edu/g2f) with summary statistics in Additional
file 2.

By analogy with the M. burtonii re-annotation, confi-
dence levels were given to each re-annotation based on
current literature as follows: Level 1: An exact match in
the literature with an experimentally defined function.
Level 2: Gene product contains all domains needed for
enzymatic function with >35% sequence identity to a
gene product of known function. Level 3: Gene product
contains all domains needed for enzymatic function but
<35% sequence identity to a gene product of known
function. Level 4: Gene product has no experimental
match but some domain similarities to a known function
are recognizable. Level 5: Has no experimental match or
domain similarities — i.e. annotated as hypothetical. This
provided a list from which targets with varying confi-
dence levels were selected for experimental validation
using our pipeline approach.

The two main selection criteria were 1) the protein
should have a putative enzymatic activity on a small
molecule substrate and 2) the protein should be non-
membranous based on amino acid sequence analysis.
Additional characteristics that were preferable but not
absolutely required were that the gene product was
expressed in vivo in MA based on published reports
[14] and that an E. coli homolog exists for potential
genetic complementation studies. A total of 44 MA tar-
gets were cloned of which 27 were found to express
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soluble protein in E. coli. We describe here a number of
these as case studies to illustrate our generalized
approach.

Case study #1: MA4265

The MA4265 gene is annotated as a putative “isocitrate/
isopropylmalate dehydrogenase family protein” in the
DOE Integrated Microbial Genome (IMG) database
(http://img.jgi.doe.gov/). The re-annotation to a putative
isocitrate/isopropylmalate dehydrogenase, transferred
from the function re-assignment of the M. burtonii
homolog [13], is based on ~30-35% sequence identity to
homologs where the function has been verified experi-
mentally [15,16]. In our studies, the gene product of
MA4265 (342 aa) was heterologously expressed in
E. coli as a soluble protein at 25°C and was folded as
judged by 1D 'H NMR spectroscopy. The putative enzy-
matic annotations, isocitrate dehydrogenase and/or iso-
propylmalate dehydrogenase, placed this gene product
in the tricarboxylic acid (TCA) cycle and/or the leucine
biosynthesis pathway, respectively. These predicted func-
tional annotations were initially tested by waterLOGSY
NMR screening with relevant intermediates of the TCA
cycle and leucine biosynthesis pathways. NMR screening
indicates that MA4265 interacts with isocitrate but not
other intermediates in the TCA pathway (Figure 1)
while no interactions were detected with intermediates
of the leucine metabolic pathway (data not shown). The
NMR data therefore provides a rapid in vitro screen
supporting the assignment of the isocitrate dehydrogen-
ase function to MA4265.

The functional annotation of MA4265 was further
tested using genetic complementation studies. The E.
coli genome contains three homologs of MA4265: yeall,
a putative tartrate dehydrogenase (Bit score 164, E le-
41, 34% seq id); leuB, 3-isopropylmalate dehydrogenase
(Bit score 146, E 2e-36, 32% seq id); and icd, isocitrate
dehydrogenase (Bit score 130, E le-31, <32% seq id).
For each of these homologs, a gene knockout mutant
strain is available in the Keio collection [17] for comple-
mentation studies. E. coli mutant strains carrying knock-
out alleles in these three homologs show lethal growth
phenotypes when grown on minimal salt media with
glucose as the carbon source. Figure 2a shows that the
lethal growth phenotype of icd can be partially recov-
ered by expressing MA4265, while the expression of this
gene was insufficient to rescue the growth of the leuB
and yeal mutants (Figures 2b and 2c). To quantify the
capacity of MA4265 to complement the icd mutation,
growth in liquid medium was monitored (Figure 2d). In
liquid M9 minimal media with a glucose-carbon source,
no growth was observed in the icd-mutant strain trans-
formed with an empty vector. In contrast, the icd
mutants transformed with the plasmid expressing
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Figure 1 NMR-based ligand screening of MA4265, a putative
isocitrate/isopropylmalate dehydrogenase. Part of the metabolic
pathway involving isocitrate dehydrogenase functionality is shown
at the top of the figure. The relevant section of the one-
dimensional waterLOGSY 'H NMR spectrum is shown for each
metabolite (300 uM) in the presence of MA4265 (30 puM) as follows:
(a) citrate; (b) cis-aconitate; (c) isocitrate; (d) 2-ketoglutarate; (e)
control spectrum of MA4265 alone. Peaks due to each compound
are labeled with asterisks. Metabolite interaction with MA4265 is
represented as positive peaks whereas negative peaks indicate no
binding to the protein. The negative peak at 3.4 ppm in all spectra
is thought to be a contaminant from the protein concentration
process. Only isocitrate binds to MA4265 under the conditions used.

MA4265 displayed growth with a doubling time of 4.37
+0.09 hours, which is slightly slower than the doubling
time of 3.85+0.10 hours for the parental control E. coli
strain (BW25113) expressing the same MA4265 con-
struct. In both BW25113 and the icd mutant, expression
of MA4265 resulted in doubling times that were moder-
ately slower than BW25113 containing an empty pET-
21a vector with a doubling time of 1.96+0.02 hours.

Thus the NMR and gene complementation data are
both consistent with the isocitrate dehydrogenase func-
tion, but do not support the 3-isopropylmalate dehydro-
genase or tartrate dehydrogenase annotations.

Case study #2: MA0940

MA0940 is currently annotated as a hypothetical protein
in the IMG database. Our revised annotation of MA0940
as encoding alpha-ribazole-5’-phosphate phosphatase
(CobZ) is based on a literature search which identified
an experimental study of a Methanosarcina mazei homo-
log that is 91% identical to MA0940 [18]. Because there
are known instances in which proteins with high
sequence identity can adopt alternative folds and func-
tions [1-3], a rapid experimental test is needed that can
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Figure 2 Genetic complementation results for MA4265. Growth of isogenic £. coli strains in the BW25113 (WT) background carrying deletion
mutant alleles icd (a), leuB (b), and yeaU (c), and transformed with an empty control vector (EV=pET-21a) or a plasmid expressing MA4265. All
strains were grown on M9 minimal media with glucose (or malate in plate c) as the carbon source, and contained 100 pg/mL ampicillin. Plates
were incubated at 37°C for 48 hr. For panel (c), D-malate was substituted for glucose as the sole carbon source to examine the growth
phenotype of yeaU[23]. d) The icd mutant strain carrying either the empty control vector (icd+EV) or the MA4265-expressing vector (icd
+MA4265) and the parental strain (WT) empty control vector (WT+EV) or the MA4265-expressing vector (WT+MA4265) were grown in M9 liquid
media with glucose as the carbon source and 100 pug/mL ampicillin. Cultures were incubated at 37°C and ODggo Was monitored. Data from the

average of three replicates (+ standard error) are presented.

verify or increase confidence in the annotation of
MAO0940 as encoding a CobZ ortholog. In this example
the putative substrate and product were not commer-
cially available but the use of suitable structural or sub-
structural analogs in NMR screening provided insights
into substrate recognition by MA0940 [6]. NMR-based
ligand screening of the nucleobase substructure of alpha-

ribazole, 5,6-dimethylbenzimidazole, which is commer-
cially available, indicated that this compound does inter-
act with MA0940. In contrast, similar compounds
containing bicyclic aromatic rings such as adenine and
guanine derivatives do not bind to MA0940, indicating
that this gene product has a binding preference for the
dimethylbenzimidazole moiety (Figure 3) and supporting
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Figure 3 Ligand screening of selected purine-type nucleobase
derivatives against the MA0940 gene product. Compounds
screened are (a) guanosine, (b) adenosine, () 5,6-
dimethylbenzimidazole, and (d) 6-chloropurine riboside. The peaks
labeled NH, in (a) and (b) are exchangeable purine amino groups
that are manifested as positively phased peaks in the waterLOGSY
experiment.

the assignment of its function as alpha-ribazole-5’-phos-
phate phosphatase. The earlier study on the M. mazei
homolog, Mm2058, was done using gene complementa-
tion experiments which can be quite time consuming.
The revised MA0940 functional assignment, while not as
definitive as the M. mazei study, is supported through a
rapid in vitro screening process that does not require
any specialized reagents (substrates, products, organism-
specific gene knockouts) or pathway-specific knowledge.

Case study #3: MA3706

MA3706 is annotated as a putative Ham1 protein in the
IMG database and our re-annotation process does not
change this annotation. Ham1 proteins are nucleoside
triphosphatases that are hypothesized to catalyze the
hydrolysis of non-standard nucleoside triphosphates
(NTPs) to nucleoside monophosphates as a mechanism
for preventing their incorporation into DNA and RNA
[19]. In particular, they are thought to target the oxida-
tively modified inosine and xanthosine triphosphates.
Our annotation of MA3706 is based on homology with
M;j0226 from Methanococcus jannaschii[20,21]. MA3706
and Mj0226 share 47% sequence identity and the latter
has been shown to preferentially hydrolyze xanthosine
triphosphate (XTP) and deoxyinosine triphosphate
(dITP) over other canonical nucleoside triphosphates.
We therefore tested whether MA3706 interacts with
nucleotides in a similar way by screening a series of
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standard and modified NTPs from our small molecule
library for binding with MA3706.

Standard NTPs do not bind to MA3706 based on the
negative peaks due to nucleotide observed in waterLOGSY
spectra (e.g. ATP and GTP, Figures 4a and 4b). However,
positive peaks indicative of a binding interaction are
detected when MA3706 is mixed with the non-canonical
nucleotides ITP (Figure 4c) and XTP (Figure 4d). Binding
of MA3706 to ITP was also characterized using isothermal
titration calorimetry and a dissociation constant of 7.8 uM
was obtained for this interaction (Figure 5). Because diva-
lent cations are known to be essential for the enzymatic
activity of many hydrolytic enzymes, magnesium chloride
was added to the NMR samples to see if any chemical
change in the nucleotides could be detected using 1D "H
NMR spectroscopy. Indeed, the NMR spectra of both free
ITP and XTP differed substantially from their spectra in
the presence of MA3706 and magnesium chloride (Figure
6). The largest changes occurred in the ribose proton
region between 3.8-4.5 ppm, indicating that ITP and XTP
had been chemically transformed. Comparison with NMR
spectra of reference compounds (data not shown) showed
that the new species generated in this reaction matched
exactly with the corresponding nucleoside monopho-
sphates IMP and XMP. No signals due to any residual
nucleoside triphosphates or diphosphates were evident.

NH,
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Figure 4 NMR waterLOGSY spectra for a series of standard and
modified nucleotide triphosphates with MA3706 protein.
Nucleotides screened are (a) adenosine triphosphate, (b) guanosine
triphosphate, (c) inosine triphosphate, and (d) xanthosine
triphosphate. A control spectrum of MA3706 is shown in (e). Peaks
due to nucleotide protons are labeled with an asterisk in each
spectrum. The exchangeable amino groups of ATP and GTP are
labeled in (a) and (b).
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Figure 5 Isothermal titration calorimetric data for the binding
interaction between ITP and MA3706.
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Figure 6 Conventional 1D 'H NMR spectra showing enzymatic
activity of MA3706 in the presence of magnesium chloride. (a)
[TP alone at 500 uM concentration; (b) 500 uM ITP mixed with 50
UM MA3706 in the presence of 1 mM magnesium chloride; (c) XTP
alone at 500 uM concentration; (d) 500 uM XTP mixed with 50 pM
MA3706 in the presence of 1 mM magnesium chloride.
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Control experiments with the standard nucleotides ATP
and GTP did not show any changes in their NMR spectra
in the presence of MA3706 and magnesium ions. These
results indicate unambiguously that MA3706 has both an
inosine triphosphate pyrophosphatase and xanthosine
triphosphate pyrophosphatase biochemical function, con-
sistent with the annotation of Mj0226.

Thus the NMR ligand screening approach provides a
very efficient means for identifying the nucleotide bind-
ing preferences of MA3706. Further, once binding speci-
ficity was established, the enzymatic activity was
detected directly in the NMR sample without the need
for involved assays.

Other examples

Using the approach described, a number of other MA
gene product annotations were also investigated. Table
1 summarizes the genes that were studied. The experi-
mental data can be put into 3 categories. In several
examples (MA0940, MA2498, MA3520, MA3706) the
data are consistent with the putative biochemical func-
tion and therefore provide increased confidence in the
existing annotation. This sometimes occurs even when
the sequence homology to an ortholog of known func-
tion is not very high (e.g. MA2498). Other examples
such as MA4265 show that the existing annotations are
only partially correct. Here, the experimental data sug-
gest that the function assignment needs to be narrowed.
A third category contains genes where the present func-
tional assignment is not supported by our experimental
screening procedure. For example MA0154 is currently
annotated as biotin synthase in the IMG database, but
our NMR-based ligand screening of the gene product
did not detect binding to the putative substrate, product,
or any other compounds in the biotin pathway (data not
shown). A report published subsequent to our testing
showed that this gene is in fact involved in pyrrolysine
biosynthesis [22]. This highlights another general pro-
blem with regard to assignment of function where data-
base entries are sometimes not updated after the initial
annotation. Nevertheless, NMR screening was quickly
able to detect that the ligand binding results were not
consistent with the IMG annotation, indicating that this
function assignment was likely to be incorrect.

Conclusions

Correct annotation of function is essential if one is to
take full advantage of the vast amounts of genomic
sequence data. Incorrect assignment of function is pro-
pagated by comparative annotation with mis-annotated
genes and can potentially lead to mis-placed experimen-
tal efforts. Conversely, a corrected annotation in one
organism can provide tremendous leverage in re-annota-
tion of orthologs from a diverse phylogeny of organisms.
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Experimental methods are therefore needed to efficiently
evaluate annotations in a way that complements current
high throughput sequence homology-based techniques.

We describe here an NMR-based approach for rapidly
and reliably testing functional assignments of putative
enzymes. Most importantly, no protein-specific assay
that involves a chemical conversion needs to be devel-
oped for the initial screening, which makes the approach
broadly applicable for validating putative functions using
an automated pipeline strategy. Thus the ligand screen
provides guidance about which small molecules may
serve as suitable substrates for an enzyme assay that can
be developed subsequently. The case studies described
here, as well as other examples summarized in Table 1,
demonstrate that the NMR screen provides a quick indi-
cation of whether the putative function assignment is
likely to be correct. This is done by identifying small
molecule ligands that can act as either substrates or pro-
ducts, or their structural analogs. Notably it was even
possible to directly detect an enzymatic activity in the
NMR tube for some examples (MA3706, MA2498)
when the necessary cofactors are present.

For the examples described here, where there is some
pre-existing annotation of putative function, the ligand
screening is targeted and generally involves fewer than 20
compounds per protein. Where even less is known about
gene function (e.g. a “putative methyltransferase” annota-
tion), a larger number of compounds will need to be
screened. However, it is possible to develop a suite of
compounds for screening in an automated fashion. We
use a 24-sample robot for most screening applications,
with automated sample change, shimming, acquisition
and processing. Typically we use 1-5 compounds per pro-
tein sample depending on how many compounds need to

Table 1 Summary of MA genes studied
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be screened. Pooled compounds need to have at least
one resolvable '"H NMR signal and be structurally as
diverse as possible to minimize the chance of competition
for binding. One limitation of this approach is that the
most relevant compounds for testing may sometimes not
be commercially available. Nevertheless, as demonstrated
in this report, structural analogs can often be used to
gain insights into the types of small molecules recognized
by the gene product even when the exact substrate or
product is not readily available (e.g. MA0940).

In principle, the approach described here is applicable
to putative enzymes with completely undefined substrate
specificity. Further studies coupling NMR-screening
with other methods such as mass spectrometry-based
metabolite profiling will be needed to determine func-
tions for the large numbers of such putative enzymes
that are currently poorly defined.

Methods

Cloning of target genes

Target genes were PCR-amplified from isolated MA
genomic DNA using primer sets listed in Additional file
3. Invitrogen’s Platinum®Pfx DNA Polymerase protocol
was followed. Several of the PCR products were treated
with Taq DNA polymerase (PE Applied Biosystems) and
2.5 pmol dATP (Roche) for cloning into the Invitrogen
pCR4-TOPO vector. TOPO ligations were transformed
into DH50. competent E. coli cells (Invitrogen), selected
on LB-ampicillin, and sequenced. These clones were
then used for subsequent cloning into the pET-21a vec-
tor (Novagen). For other clones, the PCR products were
cloned directly into the pET vector and sequenced. All
constructs contained a C- or N-terminal Hiss-tag, intro-
duced via the PCR primers.

MA IMG Annotation’ Experimental data consistent Comment?
Gene with IMG annotation?
MAO154 Biotin synthase No Revised annotation is to pyrrolysine biosynthesis protein
(350 aa)
MAO0246 4-Hydroxybenzoate No Revised annotation is 3-octaprenyl-4-hydroxybenzoate carboxylyase
(422 aa) decarboxylase
MA0940 Conserved hypothetical Revised annotation is alpha-ribazole-5-phosphate phosphatase and
(183 aa) experimental data is consistent with this
MA2498 Fumarate hydratase Yes Revised annotation is fumarate hydratase/tartrate dehydratase but
(196 aa) experimental data is only consistent with the former
MA3520 Glycine hydroxymethyl- Yes No change in annotation
(412 aa) transferase
MA3706 Ham1 protein/nucleotide Yes No change in annotation
(184 aa) triphosphatase
MA4265 Isocitrate/ isopropylmalate Partially Revised annotation is isocitrate/ isopropylmalate dehydrogenase but
(342 aa)  dehydrogenase family protein the experimental data is only consistent with the former

' Obtained from the DOE Integrated Microbial Genomes database (http://img.jgi.doe.gov/); > Revised annotations were based on comparison with the updated

annotations in M. burtonii[13] as described in the text.
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Protein expression and purification

MA proteins were over-expressed in E. coli BL21(DE3)
Rosetta cells (Invitrogen) transformed with the plasmid
constructs containing the target MA genes. Optimal
temperatures for expression were determined using
small-scale (10 mL) trial LB cultures at 16°C, 25°C or
37°C in the presence of antibiotic. If soluble expression
could not be obtained at any of these temperatures,
expression at 10-13°C with ArcticExpress cells (Strata-
gene) for 24 hours was also attempted. In a number of
cases this produced soluble protein.

For NMR studies, a 1 L culture was incubated at 37°C
until the ODgg reached 0.4-0.8. The temperature was
then adjusted to the pre-determined optimum and
expression was induced with 1 mM IPTG. Typical
expression times ranged from 5-24 hours. Cells were
harvested by centrifugation (3500g, 30 min) and the pel-
let was re-suspended in binding buffer (10 mM imida-
zole, 300 mM sodium chloride, 50 mM sodium
phosphate, pH 8.0). The cells were then lysed by sonica-
tion and centrifuged (35000g, 1 hr). The supernatant
was loaded on a Ni-NTA-Agarose column (Qiagen) and
purified with an imidazole gradient using standard pro-
cedures. Pure fractions were combined and dialysed
against a standard buffer for NMR samples (50 mM
sodium phosphate, 100 mM sodium chloride, pH 7.0).

NMR-based ligand screening
NMR experiments were acquired at 5°C and 25°C on a
Bruker DMX-600 spectrometer equipped with either a Z-
axis gradient cryoprobe or a conventional 3-axis gradient
probe. The typical protein concentration used for NMR
experiments was in the 10-50 uM range. Initial test com-
pound concentrations were set at ten times the protein
concentration. This allowed detection of binding in the
0.1 micromolar to hundreds of micromolar range. If
higher compound to protein ratios (e.g. 100:1) are used
then only the tightest micromolar binders are detected.
Thus the stringency of the experiment can be controlled
by the compound-to-protein ratio. Test compounds were
generally prepared as 50 or 100 mM stock solutions in
d6-DMSO or water and diluted appropriately into NMR
samples. Compounds were obtained from Sigma-Aldrich.
One-dimensional "H NMR waterLOGSY experiments
were acquired using established protocols [9]. A refer-
ence experiment was collected followed by the water-
LOGSY magnetization transfer spectrum. Typical
acquisition parameters for the waterLOGSY spectra
were 256-512 transients with a mixing time of 1.5 s and
a 2 s relaxation delay. Using these parameters each
experiment took 15-30 minutes to acquire. NMR spectra
were processed using Bruker Topspin software (version
1.3) and analyzed by electronically overlaying reference
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and waterLOGSY spectra in dual display mode. A
Bruker NMRCase sample changer robot controlled by
ICON-NMR software was used for automated sample
change, shimming, data acquisition (reference and
waterLOGSY), and processing.

Gene complementation

Genetic complementation of E. coli mutants by the MA
genes was performed with E. coli deletion mutants gen-
erated in the BW25113 background [17]. The specific
mutant strains used in this study were: JW1122 (icd),
JW5807 (leuB), and JW1789 (yeall). All mutant strains
and the isogenic wild-type control strain were lysogen-
ized with lambda-DE3 (lambda-DE3 lysogenization kit;
Novagen). Each strain was transformed with a non-
recombinant control pET-21a plasmid (Novagen) and a
recombinant pET-21a plasmid carrying a cloned MA
gene. Transformants were selected by the ability to grow
on a medium containing 100 pug/mL ampicillin, and this
medium also contained 50 pg/mL kanamycin, for main-
taining selection of the deletion mutant allele.

Complementation was demonstrated on 1.5% agar
plates by streaking selected transformants from LB med-
ium to M9 minimal agar media containing 100 pg/mL
ampicillin in the presence or absence of 0.1 mM IPTG,
and grown at 37°C. Glucose was used as the carbon
source with the exception of the experiment shown in
Figure 2c where the wild type control and yeall mutants
were plated on 2g/L D-malate as the sole carbon source
[23].

Growth curves were produced by growing strains in
liquid cultures in 48-well culture plates that were incu-
bated at a constant temperature of 37°C. The medium
consisted of M9 minimal media with glucose as the car-
bon source, containing 100 pg/mL ampicillin in the pre-
sence or absence of 0.1 mM IPTG. The liquid cultures
were inoculated to an ODgyg of ~0.05 from an inoculum
culture grown overnight in LB with the appropriate anti-
biotics. Cells were collected by centrifugation, washed,
and re-suspended with M9 media prior to inoculation.
A Multi-Detection Microplate Reader Synergy HT (Bio-
Tech) was used to simultaneously measure the ODgg, at
30-minute intervals.

Isothermal titration calorimetry

The binding interaction between ITP and MA3706 was
quantified using a Microcal VP Titration Calorimeter.
The protein was dialyzed into buffer containing 50 mM
sodium chloride, 100 mM sodium phosphate (pH 7.0).
ITP (Sigma) was dissolved in the protein dialysis buffer
at a concentration of 1.0 mM. Five microliters of ITP
were injected into a 50 uM solution of MA3706 every
5 min until MA3706 was saturated.
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