

ABSTRACT

Title of Document: DISTRIBUTED TWO-DIMENSIONAL

FOURIER TRANSFORMS ON DSPs: WITH
APPLICATIONS FOR PHASE RETRIEVAL

 Jeffrey Scott Smith, Master of Science, 2006

Directed By: Professor Bruce Jacob

Department of Electrical Engineering

Many applications of two-dimensional Fourier Transforms require fixed

timing as defined by system specifications. One example is image-based wavefront

sensing. The image-based approach has many benefits, yet it is a computational

intensive solution for adaptive optic correction, where optical adjustments are made

in real-time to correct for external (atmospheric turbulence) and internal (stability)

aberrations, which cause image degradation.

For phase retrieval, a type of image-based wavefront sensing, numerous two-

dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time

specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an

all-to-all communication among the computational nodes. The 1-D floating point

FFT is very efficient on a digital signal processor (DSP). For this study, several

architectures and analysis of such are presented which address the all-to-all

communication with DSPs. Emphasis of this research is on a 64-node cluster of

Analog Devices TigerSharc TS-101 DSPs.

DISTRIBUTED TWO-DIMENSIONAL FOURIER TRANSFORMS ON DSPs:
WITH AN APPLICATIONS FOR PHASE RETRIEVAL

By

Jeffrey Scott Smith

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:
Professor Bruce Jacob Chair
Professor Steven Tretter
Professor Donald Yeung

© Copyright by
Jeffrey Scott Smith

2006

 ii

Dedication

A special thank you to Heather, and Mr. Five Stars.

 iii

Acknowledgements

The author would like to thank Professors Bruce Jacob, Shuvra

Bhattacharyya, Steven Tretter, and Donald Yeung for their time and energies with

serving on the Graduate committee reviewing this thesis.

The author would like to thank the NASA Goddard Space Flight Center

generally and the members of the Optics Branch specifically for the support of this

work and use of facilities. Thank yous and acknowledgements are given to Bruce

Dean, David Aronstein, and Ron Shiri for the many useful technical insights and

discussions and moral support. Specific appreciation is given to Bruce Dean for his

original development of and support for the MGS algorithm. The author would like

to thank Semion Kizhner and Edward Lo for their assistance in the Analog Devices

21160M system, described in Chapter 2. The author thanks Lee Feinberg, Scott

Acton, Peter Maymon, Ray Bouracut, and Kim Mehalick for discussion and support

of this work.

The author would like to thank his parents and family, with specific mention

of Austin with his, “How’s Mars?” questions.

 iv

Forward

The author would like to point out the significance of this research. The

results from this research have become a critical component for NASA, with a

specific application for the James Webb Space Telescope (JWST), a space telescope

under development that is scheduled to launch no earlier than June 2013. The

Testbed Telescope (TBT), a 1/6th scale model of JWST, has been built to be a critical

scientific study to demonstrate TRL-6 (Technology Readiness Level) for JWST.[1]

The results from this research and a working prototype, as described in Chapter 4, are

integrated into the TBT and are considered by the JWST project management to be

essential to meeting the January 2007 deadline for this readiness level.

 v

Table of Contents

Dedication .. ii
Acknowledgements.. iii
Forward ... iv
Table of Contents.. v
List of Tables.. vii
List of Figures.. viii
List of Illustrations.. x
Chapter 1 : Introduction .. 1

Motivation .. 1
Application ... 3
Phase Retrieval Algorithm .. 6
Current Solutions ...11
Digital Signal Processors..13
Systems of Multiple DSPs..19
Graph Theory...23

Chapter 2 : Phase Retrieval on the ADSP-21160M...31
Algorithm Analysis..31
General Optimizations for CPU and DSPs..35
Methodology..38
Results ...39

Chapter 3 : Phase Retrieval on the TigerSharc 101...42
Methodology..42
Computational Precision and Accuracy ..43
TS-101: 1, 4, and 8-node..46
TS-101: 16-node Architectures...48
TS-101: 16-node Architectures Analysis ..54
TS-101: 32-node and 64-node Architecture..57

Chapter 4 : Phase Retrieval on the TigerSharc 201...60
Hybrid Diversity Algorithm ...60
TS-201: 4-node Architecture..61

Chapter 5 : Conclusions ..63
Summary ...63
Future Work...64

Acronyms ..66
References and Bibliography ...67

 vi

 vii

List of Tables

Tbl. 2.1: Timing for 1-D FFT and 2-D FFT for 256 and 512 image size on a single

21160M.
Tbl. 3.1: Scalability for image size on Fig. 3.6.
Tbl. 3.2: Timing for various image sizes on three architectures, with 4 Diversity-

Defocus images after convergence (seconds).

 viii

List of Figures

Fig. 1.1: Computation of the 2-D DFT using 1-D FFT building blocks.
Fig. 1.2: Various 2-D FFT Libraries: PowerPC 970, single-precision complex

input/output.[2]
Fig. 1.3: Wavefront sensing and Control Block Diagram.
Fig. 1.4: Block Diagram of focus diversity phase retrieval with two defocus images.[]
Fig. 1.5: Block Diagram of MGS using Iterative Transform (ITA) phase-retrieval.
Fig. 1.6: Block Diagram of the Analog Devices Sharc 21160M. [20]
Fig. 1.7: Block Diagram Analog Devices TigerSharc-TS-101.[20]
Fig. 1.8: Block Diagram Analog Devices TigerSharc-TS-201. [20]
Fig. 1.9: Block Diagram of 4 Node cluster of ADSP-21160M.
Fig. 1.10: Block Diagram of 4 Node cluster of TS-101.
Fig. 1.11: Block Diagram of 16 Node cluster of TS-101.
Fig. 1.12: Block Diagram of link port connection between cPCI and PMC daughter

card.
Fig. 1.13: Block Diagram of 64 Node system of TS-101 with host computer.
Fig. 1.14: Distributed Transpose on 4 DSPs: Columns represent local memory, and

colors represent data.
Fig. 1.15: Two graphs demonstrating graph diameter: (a) 6 Node Ring, graph

diameter is 3, (b) 8 Node hypercube, graph diameter is 3, distance from N0 to N6
is 3, (Node label Nid, d(0,id)).

Fig. 1.16: Steps for constructing a graph with minimum diameter: (a) 10 Node base
graph, with 3 edges per node and 6 leaves (b) Peterson Graph: graph diameter is
2.

Fig. 1.17: Base architectures for several cases: (a) Base architecture for 22 node, 3
branches per node, optimal diameter of 3 (b) Base architecture for 17 nodes, 4
branches per node, optimal diameter 2 (c) Base architecture of 46 node, 3
branches per node, with optimal diameter of 3.

Fig. 1.18: Levi graph, 30 nodes and diameter 4. [27]
Fig. 2.1: Timing for the phase retrieval algorithm in MATLAB: (a) Entire algorithm,

(b) details for step 2, with a single iteration.
Fig. 2.2: Measured defocus PSF data from the Wavefront Control Testbed (WCT) at

Goddard.
Fig. 2.3: Phase estimate from the MGS algorithm: (a) Mesh plot, and (b) colored

image plot.
Fig. 2.4: Recovered PSF data from the MGS algorithm.
Fig. 2.5: Timing for the phase retrieval algorithm in core iterative algorithm after

mathematical modification.
Fig. 2.6: Timing code for 2-D FFTW with and without the second transpose.
Fig. 2.7: Optimization of 2-D FFT for padding.
Fig. 2.8: Timing for MGS algorithm in MATLAB and on the 21160M DSP system.
Fig. 3.1: Phase estimate after single iteration, MATLAB (a), DSP (b), the subtraction

of the two (c), and the log stretch of the normalized subtraction of the two (d).

 ix

Fig. 3.2: Phase estimate after algorithm convergence, MATLAB (a) the DSP (b), the
subtraction of the two (c), and the log stretch of the normalized subtraction of
the two (d).

Fig. 3.3: Two 8 DSPs grid architectures, hypercube (a) and 1-Möbius cube (b).
Fig. 3.4: 16 DSP architecture, inefficient use of the PCI bus for all-to-all

communication.
Fig. 3.5: 16 DSP architecture, minimize graph diameter between all 16 DSPs.
Fig. 3.6: 16 DSP architecture: minimize graph diameter between clusters.
Fig. 3.7: 16 DSP architecture: use PMC cards, and create uni-directional link ports.
Fig. 3.8: Four images (a) on 64 DSPs (b) with 16 DSPs per image to produce a single

phase estimate (c).
Fig. 3.9: Four images (a) on 16 DSPs (b) with 16 DSPs per image to produce a single

phase estimate (c).
Fig. 3.10: 32 DSP architecture.
Fig. 3.11: 64 DSP architecture.
Fig. 4.1: Block diagram for the HDA.
Fig. 4.2: TS-201 4 DSP architecture.

 x

List of Illustrations

Ill. 1.1: Segmented primary aperture examples: (a) The Testbed Telescope (TBT) is a
1/6th scale model of the planned James Webb Space Telescope mirror with 18
segments in the primary (b) W.M.Keck 1 Observatory with 36 segments in the
primary.[4][5]

 1

Chapter 1: Introduction

Motivation

For many image-processing algorithms a two-dimensional (2-D) discrete

Fourier transform (DFT) is required. In all but a few rare cases, the Fourier transform

makes use of the Fast Fourier Transform (FFT). The 2-D DFT has a many-to-one

mapping, and thus for each element in the output, every element of the input is

required. The 1-D DFT and inverse 1-D DFT can be seen in (Eq. 1.1) and (Eq. 1.2).

Similarly, the 2-D DFT and inverse 2-D DFT can be seen in (Eq. 1.3) and (Eq. 1.4)

respectively.

!
" ####"

#=
1 2

][][
N

x

N

xui

exfuF

$

 (Eq. 1.1)

!

f [x] =
1

N
F[u] " e

2"# " i"u"x

N

u

N$1

% (Eq. 1.2)

! !
"

=

####
""

=

####
"

#$
$
%

&
'
'
(

)
=

1

0

21

0

2

],[],[
N

y

N

vyiN

x

N

uxi

eeyxfvuF

**

(Eq. 1.3)

!

f [x,y] =
1

N
2

F[u,v] " e
2"# " i"u"x

N

u

N$1

%
&

'
(

)

*
+ " e

2"# " i"v"y

N

v

N$1

% (Eq. 1.4)

 To compute the 2-D DFT, the function F[u, v] can be constructed by using the

building blocks of the 1-D FFT. For this, the 1-D FFT is performed on each row, i.e.

compute F[u, y]. Then, the 1-D FFT is performed on column of the result. This is

illustrated in Fig. 1.1.

 2

Fig. 1.1: Computation of the 2-D DFT using 1-D FFT building blocks.

To access data in column format and row format on a shared memory requires

a transpose of the data. For high-level programming, the transpose of a matrix is

straightforward, i.e. f[x][y] = f[y][x]. Yet, for a general-purpose central

processing unit (CPU), an efficient transpose is non-trivial due to cache and memory

constraints. Given a large enough image data size Nsize×Nsize, a conventional cache

will not be able to efficiently access both cases of Nsize sequential elements and Nsize

elements that are strided by Nsize. For this reason, the FFT for 2-D has a non-linear

performance with respect to image size on a general purpose CPU, see Fig. 1.2.[2]

Specifically, the 2-D FFT sees a significant drop-off with respect to performance for

images of grid size 512×512 or larger. This decrease in performance is in addition to

the performance decrease for the larger image size.

 3

Fig. 1.2: Various 2-D FFT Libraries: PowerPC 970, single-precision complex input/output.[2]

Furthermore, the FFT is optimal in performance for data that is a power of

two. Yet, for the general purpose CPU, the set associative cache will miss frequently

when accessing data that is strided by large powers of two.[3] For this reason, the

configurable cache is desirable, such as seen in many DSPs, which is already an

optimal choice for a 1-D FFT.

Application

In this section, an overview of the optical problem is presented. This justifies

the motivation for this research without required a deep understanding of the details.

Many next-generation scientific optical systems have requirements that

necessitate adaptive optic control. The use of adaptive optics is an engineering

 4

technique where optical components are moved in a feedback loop to optimize

performance. The errors can be internal, such as optical figure error, jitter, and

thermal instability or external, such as atmospheric turbulence between the object and

the imaging system. These corrections can be made either with a deformable mirror,

where the mirror itself is deformable such as a thin membrane, or with as a segmented

primary mirror, where several rigid-bodied mirrors are pieced together to form a

larger surface mirror as seen in Ill. 1.1.[4][5] For optical simplicity and efficiency,

image-based wavefront sensing is preferable over a conventional interferometer-

based wavefront sensor.

(a) (b)
Ill. 1.1: Segmented primary aperture examples: (a) The Testbed Telescope (TBT) is a 1/6th scale model
of the planned James Webb Space Telescope mirror with 18 segments in the primary (b) W.M.Keck 1
Observatory with 36 segments in the primary.[4][5]

For a monochromatic point object that is imaged through an optical system,

the light observed in the image plane is called the point spread function (PSF) p(x,y).

The PSF is the modulus squared of the coherent system function h(x,y):

 5

2
),(),(yxhyxp = (Eq. 1.5)

The Fourier transform of h(x,y), using (Eq. 1.3) is H(u,v), the coherent system

function for the optical system function. The H(u,v) is a complex valued function

represented by the pupil function A(u,v) and the phase θ(u,v).

),(),(),(vui
evuAvuH

!"
"= (Eq. 1.6)

 phase in � REF _Ref150402835 \h � � (Eq. 1.6) is proportional to the

optical wavefront. For an ideal optical system, with an optimal PSF, the wavefront is

identically zero and thus θ(u,v) = 0. For real systems, the wavefront is nonzero and

the phase is measured with a wavefront sensor. Then, a correction to the wavefront

using the deformable mirror must be made that induces the negative of the current

wavefront, which attempts to drive the system wavefront to zero.[6][7]

The fundamental problem is that the wavefront cannot be directly measured

from the imaging system. This is because the detector, such as the CCD, observes the

PSF. Thus, the phase is lost when the modulus squared is taken, (Eq. 1.5). A simple

way to recognize the problem is to note that only intensity data is known for a Fourier

conjugate pair, and it is desired to know the phase data for one or both of the pairs.

One solution to the problem is adding additional optics to create an interferometer-

based wavefront sensor or a Shack-Hartmann sensor. Both of these solutions have

been used in practice but have known limitations.[8][9][10] Such solutions require a

wavefront reference, introduce non-common path errors, and generally put strong

demands on the number and quality of optical components used. For optical

simplicity and efficiency, image-based wavefront sensing is preferable over the

conventional optical solution. As a result, the image-based approach, while more

 6

demanding computationally, is generally less complex to implement in hardware and

more attractive from payload reliability and systems engineering perspectives.

Although the image-based approach is less complex in hardware than the

interferometer-based systems, the increased computational demand requires

significant floating-point performance along with high-speed data transfer and

communication rates.

A block diagram of wavefront sensing and control is shown in Fig. 1.3. It is

the goal of this research to address the specific issue of the computational demand for

image-based wavefront sensing, as outlined as the red block in Fig. 1.3. As a final

note, it is the science requirements of the optical system that necessitate high

precision optics; and adaptive optics driven by image-based wavefront sensing is an

engineering tool that provides high precision results, without the multi-million dollar

cost of high precision optics.

Fig. 1.3: Wavefront sensing and Control Block Diagram.

Phase Retrieval Algorithm

Phase-retrieval is an image-based wavefront sensing method that utilizes

point-source images (or other known objects) to recover optical phase information.

The fundamental component of phase-retrieval is an iterative transform algorithm

developed by Misell, Gercherberg, and Saxton; this will algorithm is referred as the

 7

MGS.[11][12][13] The NASA Goddard implementation of the MGS is thoroughly

discussed elsewhere [14] but will be summarized in this section. The MGS utilizes the

relationships between amplitude data in both Fourier domains as well as Fourier

transform relationship that connects the domains.

The algorithm estimates the phase),(ˆ yx! in the spatial domain that is

associated with the known amplitude data),(yxf in the spatial domain.

),(ˆ

1),(),(yxieyxfyxf !"
"= (Eq. 1.7)

The algorithm then Fourier transforms to the frequency domain to compute),(1 vuF .

Next, the amplitude data in the frequency domain is replaced with the known

amplitude data.

!
"

#
$
%

&
'=

),(

),(
),(),(

1

1
2

vuF

vuF
vuFvuF (Eq. 1.8)

Thus, F2(u,v) has the correct modulus and a phase that is derived from),(yxf . The

inverse Fourier Transform is then computed.

!
"

#
$
%

&
'=

),(

),(
),(),(

2

2
3

yxf

yxf
yxfyxf (Eq. 1.9)

The algorithm is repeated until a convergence criteria is met or a desired

number of iterations has been executed, at which point, the phase estimate),(ˆ yx! is

extracted from),(yxfn .

With certain data configurations and large array sizes, particularly for under-

sampled data sets, this core algorithm block can take from tens of minutes to several

 8

hours to reach full convergence. This is because two 2-D DFT are required for a

single iteration of the algorithm. Furthermore, the algorithm may iterate hundreds of

times for multiple images.

It is the goal of this research to document and explore several high

performance computing architectures that capitalize on the limitations of

implementing this algorithm on a general purpose CPU. As described, the MGS is an

iterative algorithm. To speed up the algorithm, there are two techniques that can be

utilized. First, the number of iterations can be decreased. Second, the time taken for

a single iteration can be decreased. Unfortunately, each iteration of MGS relies on

the answer to the previous iteration, thus the algorithm cannot be implemented in

parallel.

For the first technique, methods have been developed that increase the

convergence rate of the algorithm and thus decrease the number of iterations. Thus,

before the algorithm is ported to a distributed high-performance computing

architecture, it is critical to implement and consider all possible ways to maximize the

performance of the algorithm. One such technique is called phase diversity. The

details of why this helps convergence are beyond the scope of this thesis. The

diversity,),(vu! , is a known phase term that is added to the H(u,v), such that

(Eq. 1.6) becomes:

)),(),((),(),(vuvui
evuAvuH

!" +##= (Eq. 1.10)

 Another technique is utilizing of multiple images, where each image has a

different diversity. Then, each image will produce a phase estimate, and then the

individual phases can be combined (usually with a weighted average) into a single

 9

estimate for the system. An example of this technique can be seen in Fig. 1.4. For

this block diagram, two defocus images are used. The MGS algorithm will produce a

wavefront. The inverse of the wavefront is then applied to the optical system to

remove the estimated aberrations.

Fig. 1.4: Block Diagram of focus diversity phase retrieval with two defocus images.[15]

The basic MGS algorithm is illustrated in Fig. 1.5. The iterative transform

algorithm (ITA) is the core step that is taken in (Eq. 1.7) through (Eq. 1.9). The MGS

requires numerous iterations from the image plane to the pupil plane via the Fourier

transform relationship. For each “inner loop” of MGS and for each image, a single

iteration is completed as constraints in each Fourier domain are applied. Thus, a

single iteration results in a Fourier and Inverse Fourier transform pair; hence, the

number of 2-D FFTs is the product of the number of diversity-defocus images, the

number of outer loops, the number of inner loops, and a factor of 2 for the Fourier

and Inverse Fourier transforms of each iteration.

 10

Fig. 1.5: Block Diagram of MGS using Iterative Transform (ITA) phase-retrieval.

 An additional technique used for optimization is using the appropriate data

size. System specifications will necessitate the number of samples for the phase. For

optimal control, this is the Nyquist sampling relationship to the number of degrees of

freedom in the deformable mirror or the number of mirror segments. For this

application the number of samples in the wavefront should be twice the number of

degrees of freedom. This aspect of the data size will be fixed by the science

requirements, and thus cannot be changed to increase performance. As a system

engineering measuring and testing tool, intuitively, more samples in the pupil are

desired. There is an additional optimization with respect to data size. Due to rays of

light converging from the pupil to the image plane, the number of samples in both

planes are not the same. Given the number of samples in the pupil plane as defined

by the science and optical requirements, the image plane must have 2 times that

amount in both x and y directions. This is because data is collected in the image

plane, and must Nyquist sample the wavefront in the pupil plane. For this reference

to the Nyquist sample criteria, the number of samples in the PSF should be twice the

number of samples in the wavefront in both x and y. This optical relationship allows

 11

a further optimization of the MGS because the data reduction will decrease the

computational demands of the FFTs.

Current Solutions

Current desktop and server line general-purpose central processing units

(CPUs) have been optimized for performing multiple tasks and use principles of data

locality to increase performance, yet performance dramatically decreases when

executing large 2-D FFTs.[2][3] For example, a current general-purpose CPU can take

several seconds for a double precision 2-D FFT of size 2048×2048. This is mainly

due to the fact that the memory architecture is not optimized for such large data sets.

To perform the numerous large 2-D FFTs efficiently, several application-

specific architectures have been developed and are discussed further below. Many

1-D and 2-D FFT algorithms exist, yet for each element of the output, the algorithm

requires access to every element of the input.[2][16] Thus, as one naive approach to

parallelization, an image cannot be divided into sub-components that are processed

completely independent. Typically, the 2-D FFT is computed as a series of 1-D

FFTs. The total number of 1-D FFTs in the 2-D FFT is then the sum of the number of

the image size in both rows and columns. For example with the MGS, 4 diversity-

defocus images of size 512×512, with 50 outer loops and 10 inner loops result in

more than 4,000,000 1-D FFTs.

The process of performing the MGS on Nimg diversity-defocused images is

highly parallel for each image. This is because the weighted average for combining

the phases is significantly less computationally demanding than the 2-D FFTs. Recall

that the data size for the phase is one-fourth the size of the image plane data, and as

 12

such, the communication requirements for the phase averaging routine are smaller

than the communication requirements for the 2-D FFT. Furthermore, a weighted

averaging routine is a ni-to-ni communication problem among the Nnode clusters of

nodes, where only a given node, ni, in a cluster needs to communicate with the

corresponding node in all other clusters. As such, past approaches to increase

performance have used 1 to Nimg general-purpose CPUs as a cluster.[17]

Consequently, this provides a maximum factor of Nimg improvement, while having

the negative effect of increasing power requirements, footprint, and cooling

requirements by Nimg. The primary solution is to provide Nimg application specific,

highly optimized computational cores. All further discussion assumes a single

computational core, and thus, the MGS is being performed on a single diversity

defocus image. It should be noted that careful consideration must be made to the

interface between the multiple computational cores, because of the weighted average

of the phase estimates.

The computational cores used on each image can be further divided to

perform a distributed 2-D FFT. To perform the distributed 2-D FFT, the

computational requirements scale linearly with the number of sub-components up to

the size of the diversity-defocus image. Thus, the computational requirements of the

MGS on a 512×512 diversity-defocus image size scales linearly until one reaches 512

sub-components of a computational core, or 512 processing units. For

implementations of distributed 1-D FFTs, and thus, the scalability for an increase in

the number of sub-components larger than the diversity-defocus image size, various

 13

algorithms have been explored externally.[18],[19] All discussion in this thesis will

assume the 1-D FFT is the smallest component of division.

Digital Signal Processors

For this study, three types of digital signal processors were used: Analog

Devices (AD) ADSP-21160M, AD TigerSharc TS-101, and AD TigerSharc TS-201.

[20] With these types of DSPs, three systems were constructed of homogenous DSP

architectures. The first system consists of 8 of the ADSP-21160M DSPs, the second

system consists of 64 TS-101 DSPs, and the third system consisted of 24 TS-201

DSPs. The majority of the research in architectural designs was on the 64 node

TS-101 DSPs. Each of these systems are commercial-off-the-shelf (COTS) by

Bittware, Inc.

It is emphasized that the science requirements necessitate adaptive optic

control, and furthermore, the adaptive optics algorithm and performance requirements

necessitate these types of DSPs. Currently available COTS cameras are limited to 18

bits per pixel or fewer. A naive approach is to set the wavefront sensing algorithms

to this precision. Due to the iterative and feedback nature of the iterative transform

algorithm, errors can quickly propagate. In combination with the desired dynamic

range and resolution of the final phase estimate, it can be shown that a minimum of

32-bit floating point precision is required for all processing. An example of

wavefront sensing that requires this level of precision is terrestrial planet finding,

where the contrast between light directly from a star and reflected from a the planet

orbiting around it is 10-9.[21]

 14

All of the DSPs in this study have 32 bit floating point precision, with many

other specifications that are characteristic of a modern DSP, including: Harvard

Memory Architecture, lower power consumption and a modified instruction set

architecture (ISA), such as single instruction circular buffer support, single instruction

multiple data (SIMD), and fused multiply adds (FMA). It is the lower power rating

that allows multiple DSPs to exist on a single Peripheral Component Interconnect

(PCI) card. The block diagrams of a individual 21160M, TS-101, and TS-201

processors can be seen in, Fig. 1.6, Fig. 1.7, and Fig. 1.8 respectively. Items of

significant interest are dual computational cores, a link port communication channel,

and the direct inter connection between the two.

The characteristics of the ISA such as the FMA and the circular buffer

support, allow software developers to create a 1-D FFT with the minimal number of

instructions. Furthermore, because of the SRAM scratch-pad cache, instructions can

be accessed quickly, with a known timing, i.e. there are no cache misses.

Additionally, the circular buffer minimizes the branch miss prediction time. The

SIMD and specifically, the FMA instructions are frequently used in the 1-D FFT.

Recall the 1-D FFT in (Eq. 1.1). The 1-D FFT can be divided into two steps by

striding the data of size Nfft, and then performing the 1-D FFT on the even and odd

indices of the data, (Eq. 1.11). This division is repeated until Nfft is 2, known as

Base-2. Notice how this algorithm is a series of multiplications between the
n

! and

fftN

kni

e

!!!!" #2

, with a series of sums. If the fftN

kni

e

!!!!" #2

are precompiled as
n

W , then the FMA

allows the computations to be performed in one instruction. Cooley and Tukey were

the first to discuss this recursive algorithm, known as the FFT.[22] Alternative

 15

algorithms that use a Base-4 or Base-8 can be 20%-30% faster than the Base-2;

furthermore, factorization of Base-n, for n = 2, 3, 4, 5, 7, 8, 11, 13, 16 is possible with

the Winograd transform.[23] All of these approaches can utilize the FMA.

!!

!!!

"

=

####"###""

=

####"

"

=

#+####"

+#

"

=

#####"

#

"

=

####"

##+#=

#+#=#

12/

0

)2/(

2212/

0

)2/(

2

12/

0

)12(2

12

12/

0

)2(2

2

1

0

2

fft

fftfft

fft

fft

fft

fft

fft

fft

fft

fft

N

n

N

kni

odd

n

N

kiN

n

N

kni

even

n

N

n

N

kni

n

N

n

N

kni

n

N

n

N

kni

n

eee

eee

$$$

$$$

%%

%%%

(Eq. 1.11)

The link port is a direct communication channel from one DSP to another

DSP. It connects the output pins on two chips, and runs at the same clock speed as

the processor. Only the physical layer protocol is specified by the DSP, and the board

developer and the software developer specify the remaining protocols for the link

port. For the TS-101 DSPs, the link ports are single-channel bi-directional. The

TS-201 DSPs are dual-channel uni-directional. Both DSPs have 4 link ports per DSP.

As will be discussed, these details make a difference in the all-to-all communication.

The board vendor, Bittware, Inc., sets these specifications. For completeness, the

21160M DSP has 6 link port channels, but were not used in this study.

The ADSP-21160M is an 80 MHz DSP. The TS-101 and the TS-201 are

250 MHz and 500 MHz DSP. Thus, a single 8-bit link port has a potential bandwidth

of 250 Mbytes/sec and 500 Mbytes/sec, respectively. Therefore, the TigerSharcs

have a total of 1 GByte/sec and 2 GByte/sec of IO via the link ports, respectively.

 16

Fig. 1.6: Block Diagram of the Analog Devices Sharc 21160M. [20]

 17

 Fig. 1.7: Block Diagram Analog Devices TigerSharc-TS-101.[20]

 18

Fig. 1.8: Block Diagram Analog Devices TigerSharc-TS-201. [20]

 19

Systems of Multiple DSPs

The three types of DSPs listed above, the 21160M, TS-101, and the TS-201

are all part of three unique clusters of homogenous DSPs. The 21160M system is a

configuration of 8 DSPs. These 8 DSPs are arranged in two clusters of 4 DSPs, as

shown in Fig. 1.9. Each cluster is on a single PCI board. For some tests, the two

boards were in separate computers, but this is a subtlety that was used to minimize

PCI bus contention when multiple images were being processed in parallel.

Fig. 1.9: Block Diagram of 4 Node cluster of ADSP-21160M.

The TS-101s are similarly arranged in clusters of 4 DSPs, with the addition of

the utilization of the link ports, as seen in Fig. 1.10. The TS-101 system is a cluster

of 64 DSPs arranged in two groups. The first group is the cPCI form factor, and the

second group is a daughter card with a PMC form factor. The cPCI cards have two

clusters of 4 DSP, and 2 slots for a daughter card. The PMC cards have one cluster of

4 DSP. The entire populated board has a total of 16 DSPs, and can be seen in

Fig. 1.11. The total system is four of these boards, for a total of 64 DSPs, and can be

seen in Fig. 1.13. The four boards are connected via the cPCI bus, and are controlled

from a host computer. For software development purposes, the host computer is a

 20

general-purpose computer running Windows XP. In practice, after the development

cycle is complete, alternatives do exist, such as a real-time operating system that

capture images from the camera and feed them directly to the DSPs.

 As previously mentioned, the DSP has 4 link ports, and Bittware specifies the

layout of the link ports. For the TS-101 system, two of these link ports connect to

other DSPs in the cluster, and two are external; the internal link ports are seen in

Fig. 1.10 as bold lines. The two external link ports must run at half the clock speed

as the processor, which creates a non-homogenous network when connecting multiple

clusters. This is because the two internal link ports are on the printed circuit board,

which increases the SNR for these connections to the DSPs.

Furthermore, for the TS-101, the two external link ports are routed to different

types of ports. One of the ports is routed to the daughter card; this forms a cube, as

seen by the red link port in Fig. 1.12. The fourth link port is routed to the additional

cPCI pins that are traditionally reserved. The link ports that are routed to the cPCI

pins are then the one ‘free’ link port, which can be used to interconnect any two of the

cPCI DSPs in the entire system. The daughter card does not have a direct connection

to the cPCI pins, and thus cannot connect to this link port; yet, the daughter card has a

similar architecture for connecting to other daughter cards. The two link ports that

connect with-in the cluster, the one link port that connects to the cPCI cluster, and a

fourth link port that is another ‘free’ link port, that can connect to another daughter

card DSP, with one exception. Only two of the four DSPs (DSP 0 and DSP 1) utilize

the fourth link ports. This is because there is insufficient physical room for the

additional connection.

 21

Fig. 1.10: Block Diagram of 4 Node cluster of TS-101.

Fig. 1.11: Block Diagram of 16 Node cluster of TS-101.

 22

Fig. 1.12: Block Diagram of link port connection between cPCI and PMC daughter card.

Fig. 1.13: Block Diagram of 64 Node system of TS-101 with host computer.

 23

The TS-201 system is a cluster of 24 DSPs. These DSPs are arranged on six

PCI cards of the familiar 4 DSPs per cluster. There is a significant difference with

the link ports for the TS-201 compared to the TS-101. All of the TS-201 link ports

are routed to an onboard Virtex II Pro FPGA. From there, the link ports can be

routed back to the cluster or off the board. If they are routed back to the cluster, the

behavior is very similar to the TS-101, with the only difference being the freedom to

explore more graph architectures. The link ports that are routed off the board are

routed to a standard Infiniband cable, which can be connected to other TS-201

boards. This allows the developer much more freedom in the development of various

clusters.

The 21160M system is significantly less powerful computationally than the

other systems. The 21160M system is rated at 3.84 Gflops (or .480 Gflops per DSP).

On the other hand, the TS101 system is rated at theoretical maximum of 96 Gflops (or

1.5 Gflops per DSP for 64 DSPs) and the TS201 system is rated at 72 Gflops (or 3

Gflops per DSP for 24 DSPs). For funding purposes, a proof of concept was shown

on the 21160M system, and after success of the MGS algorithm, the TS-101 system

was acquired. Likewise, the TS-201 system was recently acquired based upon the

success of the TS-101 system. Most of the research in this thesis is for the TS-101

system.

Graph Theory

A single DSP provides a very fast floating-point precision 1-D FFT. Many of

the features of the chip and ISA support the necessary subtleties of the 1-D FFT, and

have been optimized as such. For these systems as described above, it is now the

 24

focus of this research to maintain that level of optimization for the 2-D FFT. As a

simple approach, if we are performing a 2-D FFT on a 64x64 image size,we could use

64 DSPs. This would require each DSP performing 1-D FFT on a single column,

then perform the distributed transpose, and finally, each DSP would perform a 1-D

FFT on a single row. This is illustrated in Fig. 1.14. The vertical columns represent

the local memory of each processor, and the various colors represent the data values

of the image. For the 2-D FFT, each processor is performing the 1-D FFT on its own

colored column.

Fig. 1.14: Distributed Transpose on 4 DSPs: Columns represent local memory, and colors represent
data.

There are several graph architecture and mathematical concepts that address

the issue of an all-to-all communication.

To effectively solve the all-to-all communication problem without sacrificing

performance, an intuitive choice for scalability is a graph. A bus architecture would

not scale with the number of processors. To achieve true linear scalability in

performance for an all-to-all communication, one must have an architecture that

provides a direct connection of all processing units to all other processing units, such

as the crossbar switch architecture[24] or the complete-graph of type
nodeN

K (i.e. Nnode

branches for Nnode nodes).[25] In practice, this is possible only for small Nnode, because

 25

the number of interconnects per node grows as Nnode-1, and thus, total number of

interconnects I for the complete-graph of type
nodeN

K grows as O(Nnode
 2), as seen in

(Eq. 1.12).

2

)1(1

1

!
== "

!

=

nodenode

N

i

NN
iI

node

 (Eq. 1.12)

Similarly, the crossbar switch architecture grows as O(Nnode

 2) with the total number

of switches.

To further explore the possible graphs while avoiding the problems with the

complete-graph, some assumptions can be made:

• The graph nodes are homogenous.

• There is the constraint to fix the number of branches per node. For

the TS-101 and TS-201, this is 4 branches per DSP.

• The transmit and receive data size is the same for all communication

blocks.

• The edge speeds can be treated as homogenous. This is true for the

TS-201 system.

The constraint for the number of branches per node is 4, but does not take into

account the additional physical board constraints as outlined for the TS-101 system.

Each DSP must transmit a block of equal size to every other DSP. This block size is

the (Image size per DSP) / (Total number of DSPs). Furthermore, the longest time, or

worst-case, to transmit and deliver a single block is the total time for the transpose.

Thus, the average-case is of little interest. Furthermore, assume the graph is not

distributed homogenously, and some DSPs received all of the data before others.

 26

This would equate to a faster transpose for some DSPs, but due to the iterative nature

of the phase retrieval algorithm, the next iteration would correct for this unbalanced

timing. Thus, there is no free lunch from the worst-case timing of the communication

from DSPj to DSPi.

To address this problem, several solutions such as the n-dimensional

hypercube, ring-torus, and grid architecture are used in practice. These architectures

are not the optimal choice under the constraint of number of nodes and the number of

branches per node. The optimal homogenous architecture for the all-to-all

communication would minimize the graph diameter, (Eq. 1.13), under the constraint

of degree of each node. Thus, the optimal graph would restrict the number of

branches per node, while minimizing the maximum of all of the “shortest paths”.

Thus, the logical next step is to minimize the worst-case timing of transferring

data between any two nodes. Hence, the goal is to minimize the longest shortest-path

between any two graph vertices; or, to minimize the graph diameter. Two examples

of the graph diameter can be seen in Fig. 1.15. For the first example, this is the

worst-case of graph diameter of Nnode nodes, a ring. Yet, for the constraint of two

branches per node, it is the only solution for the all-to-all communication.

!

Graph Diameter "maxu,v d(u,v) (Eq. 1.13)

The second graph is a bit more interesting; it is an 8-node hypercube of

dimension 3. The graph, represented as Nid,d(0,id), is of interest because the diameter

for this graph is 3, since the path between N0 and N6 is 3. The hypercube is

inefficient because there are multiple paths to several nodes that are below the graph

diameter. For example, there are two paths of distance 2 from N0 to N5, both {N0, N1,

 27

N5} and {N0, N4, N5}. Similarly, there are multiple paths to nodes N2 and N7. The

fundamental flaw is that the number of paths that can be 2 away from N0 are wasted

to nodes that are already 2 away.

(a) (b)

Fig. 1.15: Two graphs demonstrating graph diameter: (a) 6 Node Ring, graph diameter is 3, (b) 8 Node
hypercube, graph diameter is 3, distance from N0 to N6 is 3, (Node label Nid, d(0,id)).

An example of a solution to this problem is the Peterson Graph, as seen in

Fig. 1.16 (b). Furthermore, the Moore’s bound for a p-node undirected graph

provides a methodology for placing a bound on the diameter, (Eq. 1.14), as seen in

Fig. 1.17. [26]

2

1)1(
1

!

!!
+"

d

d
dp

D

 or !"

#
$%

&
+

''
(' 1

)2)(1(
log 1

d

dp
D d (Eq. 1.14)

The alternative way to view this problem is to consider how many paths exist

from a starting node that can maintain the minimum graph diameter, and this can be

seen in Fig. 1.16 (a). First, starting with a single node, branch outward adding the

fixed number of edges, this will allow one to construct the base. At this point, the

distance from the center node to the leaf edges is homogenous and known. This is the

optimal-case for the base node. Now, it is desired to add edges such that the overall

 28

graph diameter is maintained at a minimum. The added edges to the base case can be

seen in Fig. 1.16 (b).

(a) (b)

Fig. 1.16: Steps for constructing a graph with minimum diameter: (a) 10 Node base graph, with 3
edges per node and 6 leaves (b) Peterson Graph: graph diameter is 2.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13 14

 15

 16

 17

 18

 19 20

 21

 22

 1

 2 3

 4 5

 6

 7

 8 9

 10

 11

 12

 13

 14 15

 16

 17

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13 14

 15

 16

 17

 18

 19 20

 21

 22

 23

 24

 25

 26

 27
 28 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40 41

 42

 43

 44

 45

 46

(a) (b) (c)

Fig. 1.17: Base architectures for several cases: (a) Base architecture for 22 node, 3 branches per node,
optimal diameter of 3 (b) Base architecture for 17 nodes, 4 branches per node, optimal diameter 2 (c)

Base architecture of 46 node, 3 branches per node, with optimal diameter of 3.

For the base graphs in Fig. 1.17, the leaf nodes need additional branches

added to be a complete d-degree graph, and it is proposed that such a graph does not

exist.[26] In practice, leaf nodes of the base architectures are removed, and thus, for

significantly large graphs, only optimum solutions exist. For example, the Levi

Graph in Fig. 1.18, with 30 nodes and diameter 4, is an optimum solution for the 46-

node 3-degree diameter 4 graph in Fig. 1.17 (c). [27]

 29

Fig. 1.18: Levi graph, 30 nodes and diameter 4. [27]

Another mathematical concept is the property of the transpose in (Eq. 1.15).

For (Eq. 1.15), A, B, C, and D are all square matrices. These can be seen as 4 sub-

blocks of a matrix of image. Furthermore, to follow the concept presented in

Fig. 1.14, sub-blocks A and B are on one processor, and C and D are on another

processor. This property allows the transpose to be performed over sub-blocks, and

then to perform the transpose on sub-blocks. This iterative algorithm allows for the

further development of architectures, by adaptively supporting the increase in the

number of processing units.

!
"

#
$
%

&
=!

"

#
$
%

&
TT

TT
T

DB

CA

DC

BA (Eq. 1.15)

It is this mathematical concept of a recursive algorithm that allows for a

balance for the optimal graph of the number of processors. The largest drawback of

the optimal architectures such as the Peterson graph is the lack of scalability. To add

one node to the Peterson graph requires the entire graph to be redesigned. This is not

too difficult for the 10 to 11 node, but for the 32-node to 33-node graph, this is

non-trivial. Furthermore, it allows the transpose to be divided into stages that can be

solved iteratively with multiple graphs. For example, assume a cluseter of DSPs for

 30

the matrix A and B rather than a single DSP. Now, the cluster can be an optimal

architecture for computing the AT and BT, then, this graph only needs to be an optimal

architecture with the corresponding DSPs that are processing the C and D matrices.

For example, the cluster for A and B can be a Peterson graph, and the cluster for C

and D can be a Peterson graph. Then, the graphs only need to be connected such that

the B and C sub-blocks can be transferred. This approach is presented in Chapter 3

on the TS-101 system. This method could then be repeated, for very large Nnode.

 31

Chapter 2: Phase Retrieval on the ADSP-21160M

This chapter discusses the first generation of the phase retrieval algorithm on a

cluster of DSPs. The hardware for this system was only accessible for 10 weeks. The

focus of the research in this stage was to determine the feasibility of the algorithm for

a DSP and a distributed system, and to determine bottlenecks for the next hardware

generation. At this stage of the research, it was unknown that the transpose of the

2-D FFT would be a bottleneck for scalability of the algorithm.[28]

Algorithm Analysis

This section will outline some of the early decisions about which parts of the

algorithm should be implemented on the DSP, and why those decisions where made.

Dr. Bruce Dean provided a MATLAB script of a working phase retrieval code. The

first step was to identify the bottlenecks of the algorithm, and implement those steps

on the DSP. The initial timing for the MATLAB script is given in Fig. 2.1 (a), on a

logarithmic scale. The algorithm was divided into 4 steps, where step 2 is the core

MGS iterative algorithm outlined on page 6. Steps 1, 3, and 4 are pre-processing and

post-processing. It should be noted that even though step 2 is significantly larger than

the other steps, that steps 3 and 4 are 3.4 and 11.9 seconds respectively; both of these

times are unacceptable for a closed loop adaptive optics control system in a

frequently changing environment, as outlined in Chapter 1.

 32

Matlab time for Phaser algorithm with 25

iternations, and 10 loops.

500 Mhz Pentium III

1.000

10.000

100.000

1000.000

10000.000

Step 1 Step 2 Step 3 Step 4

T
im

e
 (

s
e
c
)

Phaser Alg.

Time for each line of Step 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Line 1 Line 2 Line 3 Line 4 Line 5

T
im

e
 (

s
e
c
)

512x512

219x219

(a) (b)

Fig. 2.1: Timing for the phase retrieval algorithm in MATLAB: (a) Entire algorithm, (b) details for
step 2, with a single iteration.

 33

The first problem to solve is the computational demands of step 2. This

specific procedure can be divided into 5 distinct sub-steps:

1. Generate the estmate of the wavefront from a prior value or from the

feedback of the previous iteration

2. 2-D FFT

3. Amplitude substitution in focal plane

4. Inverse 2-D FFT

5. Amplitude substitution in pupil plane.

These substeps are performed using the procedures and equations outlined in

(Eq. 1.7) through (Eq. 1.9), and their timings are shown in Fig. 2.1 (b). Notice that

substeps 1 and 5 are on a smaller data size. For this script and data set, the wavefront

size is 219×219, and the PSF image size is 512×512, due to optical constraints of less

importance to this research, the PSF image plane data has been up-sampled from

256×256. This data was collected on the Wavefront Control Testbed (WCT) at

Goddard.

The PSF data used as input, the resulting estimated wavefront, and the

recovered PSFs from the phase estimate are shown in Fig. 2.2, Fig. 2.3, and Fig. 2.4

respectively. In Fig. 2.3, the actuators that command the deformable mirror can be

seen as small dimples in the phase.

 34

Measured PSF 1

50 100 150 200 250

50

100

150

200

250

Recovered PSF 1

100 200 300 400 500

100

200

300

400

500

Measured PSF 2

50 100 150 200 250

50

100

150

200

250

Recovered PSF 2

100 200 300 400 500

100

200

300

400

500

Measured PSF 3

50 100 150 200 250

50

100

150

200

250

Recovered PSF 3

100 200 300 400 500

100

200

300

400

500

Measured PSF 4

50 100 150 200 250

50

100

150

200

250

Recovered PSF 4

100 200 300 400 500

100

200

300

400

500

Fig. 2.2: Measured defocus PSF data from the Wavefront Control Testbed (WCT) at Goddard.

(a)

RMS of data = 0.078992 PV of data = 0.777224
 Min of data = -0.437959 Max of data=0.339265

Phase Retrieval: Waves

50 100 150 200

20

40

60

80

100

120

140

160

180

200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

Fig. 2.3: Phase estimate from the MGS algorithm: (a) Mesh plot, and (b) colored image plot.

Measured PSF 1

50 100 150 200 250

50

100

150

200

250

Recovered PSF 1

100 200 300 400 500

100

200

300

400

500

Measured PSF 2

50 100 150 200 250

50

100

150

200

250

Recovered PSF 2

100 200 300 400 500

100

200

300

400

500

Measured PSF 3

50 100 150 200 250

50

100

150

200

250

Recovered PSF 3

100 200 300 400 500

100

200

300

400

500

Measured PSF 4

50 100 150 200 250

50

100

150

200

250

Recovered PSF 4

100 200 300 400 500

100

200

300

400

500

Fig. 2.4: Recovered PSF data from the MGS algorithm.

 35

General Optimizations for CPU and DSPs

The next section outlines four performance driven optimizations that were

tested on the general purpose CPU and implemented on the DSP. The techniques are

algorithm implementation characteristics, and do not sacrifice computational

accuracy; the only sacrifice is an optical engineer’s intuition for the understanding of

the algorithm. All four optimizations were compared on the general purpose CPU,

but were not compared on the DSP. It is a trivial exercise to show that these

optimizations are traceable to the DSP. All timings are presented using MATLAB,

using a technique that is outlined in Fig. 2.6. It should be noted that MATLAB uses

the “Fastest Fourier Transform in the West” (FFTW) algorithm. The FFTW is one of

the fastest Fourier transform for a desktop machine, often only being out performed

by proprietary chip vendor specific software packages.[2] Furthermore, the API for

the FFTW in MATLAB has minimal overhead, and the timing results for a FFT in

optimized C with gcc versus the FFT in MATLAB had a negligible difference.

Early on, many steps of the algorithm were identified that were ideal for an

optical designer, but were not optimal for a general purpose CPU or a DSP. The first

example is the amplitude substitution for substep 3. This was traditionally computed

as outlined in (Eq. 2.1). For optical reasons, it provides an intuitive understanding of

the underpinnings to represent the algorithm with the complex exponential. From a

computer engineering view, this requires the computations of two geometric sums,

for the complex exponential and the arctangent. This can be reduced, using Euler’s

identity and trig properties as shown (Eq. 2.2). This mathematical conversion was

 36

able to drastically reduce the computational demand of the third substep, and the new

timing result can be seen in Fig. 2.5. Ironically, this is identical to (Eq. 1.9).

)),((tan

1
0

1

),(),(
yxfi

eyxfyxf
!

"
"= (Eq. 2.1)

!

e
i" tan

#1
(f0 (x,y))

= cos(tan
#1

(f0(x,y))) +

 + i " sin(tan
#1

(f0(x,y)))

 =
f0(x,y)

f0(x,y)

 (Eq. 2.2)

Time for each line of Step 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Line 1 Line 2 Line 3 Line 4 Line 5

T
im

e
 (

s
e
c
)

512x512

219x219

Fig. 2.5: Timing for the phase retrieval algorithm in core iterative algorithm after mathematical

modification.

The second optimization of the algorithm discussed is shifting the FFT. A

by-product of the 1-D and 2-D FFT is to have the DC component at the edge,

!

f (0) ,

rather than the center. Images acquired on the CCD have the DC component at the

center of the image. Thus, as an intuitive way to understand the algorithm, the

computed FFTs shift the DC component to the center before replacing the estimated

magnitude data with the measured magnitude data. This approach will require two

shifts for the FFT and inverse FFT for each iteration of the algorithm. The solution to

this problem is shifting the measured data before the first iteration, and never shift

 37

anything again. This technique resulted in an overall time saving in MATLAB of

5.2%.

The third technique in this discussion is the second transpose of the 2-D FFT.

In (Eq. 2.3), the]},[{ yxfrows! represents the 1-D Fourier transform of],[yxf

along the rows. For the 2-D FFT to produce output that is identical to the output of

(Eq. 1.3), one must transpose the data twice. This is not necessary if care is given to

the algorithm, specifically at the step defined in (Eq. 1.8). Again, the measured data

can be pre-processed such that one does not need to transpose the data with every

iteration. This can be seen in (Eq. 2.4), where the multiplication is an element-by-

element multiplication. To effectively utilize this technique, one must transpose the

input data. Then, the estimated PSF is not transposed the second time, and the

measured PSF data will then correspond element by element to the calculated PSF.

Finally, to ensure the wavefront is oriented correctly with respect to the pupil,

diversity, and initial phase estimate, one does not execute the second transpose for the

inverse 2-D FFT. This technique reduces the number of transposes in a single

iteration from four to two. This will reduce the runtime with the 2-D FFT by 54%.

The test script for this case is shown in Fig. 2.6, and similar code was generated for

the other cases.

TT

rowsrows yxfvuF }]},[{{],[!!= (Eq. 2.3)

!

(A " B)T = A
T
" B

T ; " # element multiplication (Eq. 2.4)

 38

Fig. 2.6: Timing code for 2-D FFTW with and without the second transpose.

The fourth optimization makes use of zero-padding that occurs between the

phase (pupil plane) the PSF (image plane). Padding is simply adding zeros around an

image. Padding in the spatial domain is analogous to up-sampling in the frequency

domain. As shown in Fig. 2.7, one can reduce the number of 1-D FFTs by 25% just

by not computing the results where the input is zero.

Fig. 2.7: Optimization of 2-D FFT for padding.

Methodology

The MGS algorithm was implemented and tested on the 21160M in three

different ways. For this implementation, a single input data file of four

diversity-defocus images were used, as seen in Fig. 2.2. The first test method was to

have the MGS algorithm run on a single DSP, and utilize four DSPs on a single

cluster. The largest bottleneck for this method was the access to the SDRAM for

 39

each DSP. Since each image can be run in parallel, the second method utilized four

DSPs, but on two boards. Each board used two DSPs, and thus minimized the I/O to

the SDRAM.

The third test was the first attempt to parallelize the algorithm at the core,

which is beyond the parallelization of multiple images. In this test, two DSPs were

used per image, for a total of all 8 DSPs on both boards.

Results

The MGS algorithm in MATLAB is a serial process for multiple images.

Thus, the runtime for four images is four times longer than a single image; the

runtime for MATLAB is the magenta line in Fig. 2.8, and the timing for MGS on a

single image is 1.9 seconds.

The first method as described above is 1 DSP per image on the same board;

this is represented as the blue line in Fig. 2.8. The second method as described above

is 1 DSP per image on multiple boards; this is represented as the yellow line. The

MGS with 1 image per DSP in both cases is the same runtime as MATLAB for 1

image, 1.9 seconds. The difference between the two cases can be seen in the second

and fourth images. The 512×512 32-bit floating-point precision images are 1 MB,

and thus, too large for the internal memory of a single 21160M DSP. Therefore, for a

single DSP to perform the MGS on an image of this size, it must make use of the

SDRAM. The cost for this is a slower memory access, which is a shared 64 bit 40

MHz bus. Two images for the first case result in bus contention for the SDRAM, and

one can see from Fig. 2.8 that two images on two boards do not have the bus

 40

contention. There is a small overhead with downloading a second image to the

second DSP board, as is shown in the yellow line.

Fig. 2.8: Timing for MGS algorithm in MATLAB and on the 21160M DSP system.

Input Output Time (sec)

FFT 512x1 Real 512x1 Complex 223e-6

FFT 512x1 Complex 512x1 Complex 292e-6

FFT_2D 512x512 Complex 512x512 Complex 606e-3

FFT 256x1 Real 256x1 Complex 105e-6

FFT 256x1 Complex 256x1 Complex 134e-6

FFT_2D 256x256 Complex 256x256 Complex 148e-3
Tbl. 2.1: Timing for 1-D FFT and 2-D FFT for 256 and 512 image size on a single 21160M.

In addition to timing for the MGS on the 21160M, timing for a 1-D and 2-D

FFTs alone were explored and are presented in Tbl. 2.1. Analog Device provided the

1-D FFT, and the author used this as a building block to the 2-D FFT. For the 2-D

FFT, a single row was moved from the shared external memory to the internal

memory before the 1-D FFT was called. The interesting point is the additional time

taken for the 2-D FFT in addition to performing the extra computations. The data for

the 1-D FFT was in internal memory, yet, the 2-D FFT was too large for the internal

memory. To compute the additional time that was spent on I/O and the transpose,

 41

one only needs to compute the number of 1-D FFTs in the 2-D FFT and calculate the

runtime for these, then, subtract this from the runtime of the 2-D FFT.

For the 512×512 case, the 2-D FFT calls 1024 1-D FFTs, this is 512 for the

columns and 512 for the rows. Thus, the computational runtime for the 2-D is 299e-3

seconds and the I/O runtime is 305e-3. These findings indicated that research in the

transpose was necessary since the I/O and transpose of the 2-D FFT account for 50%

of the runtime on a single DSP. Although desired, further tests that separated I/O

versus transpose were not performed due to the short time of availability of the

21160M system. In later systems, Direct Memory Access (DMA) was used to

minimize the I/O time, but this can not solve the distributed transpose problem.

 42

Chapter 3: Phase Retrieval on the TigerSharc 101

This chapter focuses on the 64-node TigerSharc TS-101 system. The majority

of the research in this thesis was performed on this system. The short but successful

research of the MGS algorithm on the 21160M system allowed funding and resources

to be allocated for the TS-101 system. Thus, the MGS on the TS-101 system has

gone through a thorough and comprehensive study of performance optimization and

other algorithm and architecture analysis.[29][30]

Methodology

Several architectures are presented, with results and analysis for most of the

architectures, specifically: 1-node, 4-node, multiple types of 16-node, 32-node, and

64-node DSPs per image. As mentioned, the TS-101 DSP has 6 Mbits of internal

memory, with 2 Mbits for program and 4 Mbits for data; furthermore, the 4 Mbits is

divided into 2 banks of equal size, see Fig. 1.7. A 512×512 complex valued 32-bit

floating-point precision image is 2 MB. This translates to 1 Mbit per DSP in a

16-node architecture, which is able to fit into one of the banks of the internal memory

of the TS-101. A 512×512 complex valued image is the intermediate result after the

second 1-D FFT, or (Eq. 1.8) of the MGS algorithm, and it is the largest image used

in the entire algorithm for a 512×512 PSF data set. Thus, the majority of the study is

for various types of 16-node architectures. Other image sizes are possible, and results

for them are presented below. In every architecture, the transpose happens serially

with the processing for the 1-D FFTs. This levels the playing field between

 43

architectures. It is left for future research to determine the optimal approach to

performing a transpose in parallel with the 1-D FFT computations.

Computational Precision and Accuracy

An important aspect of this research is to ensure that the DSPs produce a

phase estimate that is computationally precise (minimal mean of the error) and

accurate (minimal standard deviation of the error) to the phase estimate that

MATLAB produces. The MGS algorithm was developed in MATLAB, and the

algorithm has been rigorously tested in that environment under many conditions with

real and simulated data.

Understanding the computational accuracy limitations of the DSP is an

important aspect; when one solely relies on the results from the DSPs to make optical

decisions and corrections, the limitations must be well understood. If the DSPs

produce small errors after a single iteration of the algorithm, then multiple iterations

could propagate significant errors; note the feedback of the phase estimate in Fig. 1.5.

In the end, computational accuracy is a particular system specification, and one

cannot state that X significant figures are needed. Yet, the TS-101 DSP performs all

calculations in 32-bit floating-point precision, which is between 7 and 8 significant

figures in base-10. If the DSP implementation does not maintain the 7-8 significant

figures of accuracy, it should be noted, and careful consideration should be given

before trusting results that the DSPs produce.

In addition, any optimization should not sacrifice the accuracy of the result.

There are several possible sources for computational accuracy differences between

the DSP and MATLAB. As stated, the TS-101 DSP is single-precision floating point

 44

and MATLAB uses double-precision by default. Another source of error is the

different FFT and mathematical implementations; it is known that different FFT

implementations can produce different results.[2] Another mathematical

implementation detail is the methodology for trigonometric functions. The complex

exponential requires a cos and sin function, which can be computed a number of

ways, such as a Talyor series using “Horner’s Rules”.[31] One must ensure that these

errors do not propagate with the iterative algorithm.

(a) (b)

(c) (d)

Fig. 3.1: Phase estimate after single iteration, MATLAB (a), DSP (b), the subtraction of the two (c),
and the log stretch of the normalized subtraction of the two (d).

Fig. 3.1 shows the methodology that was taken to ensure computational

accuracy and precision. With every optimization and technique, a comparison was

made to a known phase retrieval estimate for the same input. In Fig. 3.1, the results

 45

are shown for a single iteration of the MGS algorithm. In Fig. 3.1, the phase estimate

from MATLAB and the phase estimate from the DSPs are shown in (a) and (b)

respectively. The subtraction of the two phase estimates and the log stretch of

subtracted phases are shown in (c) and (d) respectively. The RMS value is in

millimeters, or 57.0 nanometers RMS for the MATLAB phase estimate. The

difference between the two phase estimates is 10 femtometers RMS after a single

iteration; this is well within specification for any optical system. For the single

iteration, the subtraction of the two images is Gaussian white noise.

(a) (b)

(c) (d)

Fig. 3.2: Phase estimate after algorithm convergence, MATLAB (a) the DSP (b), the subtraction of the
two (c), and the log stretch of the normalized subtraction of the two (d).

The Fig. 3.2 shows the same information with one exception --- the algorithm

has iterated 100 times total to reach convergence; this includes the inner and outer

 46

iterations. First note that the difference image has increased from 10 femtometers to

360 femtometers RMS; this is still within the bounds of any optical system. Another

interesting difference is the patterns that appear in the difference image. This pattern

comes from the single-precision versus double-precision problem, and specifically as

the Fourier transform pairs are used to propagate the values based on aliasing high

frequency white noise round-off error.

TS-101: 1, 4, and 8-node

As a similar approach to the 21160M system, the first approach was to test the

MGS algorithm using a single TS-101 DSP per image. For the 1-D FFT of size

512×1 and 2048×1 takes 23.3 microseconds and 106.9 microseconds respectively.

This is ×2.5 and ×3.9 faster, respectively, than a Pentium 4 at 2.4 GHz. Using the

similar model as before for the 21160M, the TS-101 is ×7.6 and ×10.2 faster for the

512×512 and 2048×2048 case. This is sufficient in certain applications such as small

simulations or stable laboratory environments.

For other applications, specifically closed-loop control, more computational

performance is needed, and thus multiple DSPs must be used. The fundamental

problem to be solved is scaling the system architecture to minimize bottlenecks. The

second architecture considered is the 4-node cluster shown in Fig. 1.10, which utilizes

a shared bus to the external memory, SDRAM. The communication requirements of

the all-to-all transmission of the 2-D FFT sub-components showed diminishing

returns on performance as the number of DSPs were increased. The improvement

from 1 DSP to 4 DSPs was only by a factor of ×2.1, with 4 DSPs only increasing

 47

performance by 10% over 3 DSPs. To expand beyond 4 DSPs, various grid

architectures have been explored.

To utilize an 8-node system, the graph diameter was solely used to

characterize optimal graph architectures. Two architectures studied are shown in Fig.

3.3. For the hypercube graph in Fig. 3.3 (a), the graph diameter is 3, as was shown in

Fig. 1.15. As demonstrated earlier, the hypercube is not optimal with respect to graph

diameter, because multiple paths that are less than the graph diameter are used for the

same node pair. If one modifies the hypercube to construct graph (b), a 1-Möbius

cube, one can reduce the graph diameter to 2.[32][33] For both of these graphs, the 2-D

FFT was explored. For graph (b), the overall runtime of the 2-D FFT on a 512×512 is

10% faster than graph (a). This translates to a reduction in I/O of 21%, since the

computation runtimes are the same for both architectures. For this system, the

bandwidth of the graph is 125 Mbytes/sec for each link port. The data size for each

DSP is 512×64, and the sub-block transmitted in the transpose is 64×64, or 32

KBytes. For each DSP, 7 sub-blocks are transmitted during the transpose.

(a) (b)

Fig. 3.3: Two 8 DSPs grid architectures, hypercube (a) and 1-Möbius cube (b).

For the example of Node-0, with the 1-Möbius cube, the sub-blocks for nodes

{1, 3, 4} are delivered in the first iteration of the transpose, and sub-blocks for nodes

{2, 5, 6, 7} are delivered in the second iteration of the transpose. This is analogous to

 48

the number of hops a node is from Node-0. Yet for the hypercube, the sub-block for

node {6} is not delivered until the third iteration. For the total image to be

transposed, a total of Nnode×(Nnode-1) sub-blocks must be transmitted, where Nnode is

the number of nodes, i.e. the diagonal is not transposed. Since the link ports are

single channel bi-directional, the additional iteration in the hypercube requires two

steps for both the send and receive among all of the nodes. Assuming in each

iteration the maximum number of link ports are utilized, the hypercube requires the

transmission of 3, 1, and 1 sub-blocks in each iteration. The 1-Möbius cube only

requires the transmission of 3 and 1 sub-blocks in its two iterations. Thus, for both

the send and receive, the total number of sub-blocks transmitted are 10 and 8 for the

hypercube and the 1-Möbius cube respectively. This equates the transpose to being

20% faster than in the 1-Möbius cube than the hypercube. In practice, this was 21%

faster because of the overhead of the third iteration. The 10% improvement, as stated

above is realized after including the 1-D FFTs, which is fixed for both graphs.

TS-101: 16-node Architectures

Several 16-node architectures were studied in this research and are presented

below. As mentioned, the 16-node architecture is of special interest because of the

optimal use of the internal memory that occurs for the 512×512 PSF image size.

Furthermore, the standard baseline for processing the MGS was 4 diversity-defocus

PSF images, which for 64 DSPs translates to 16 DSPs per image.

The first architecture presented for implementing the MGS algorithm on a

16-node cluster is shown in Fig. 3.4. This architecture utilizes the PCI bus to transfer

data between nodes. The PCI bus for the TS-101 system was the cPCI standard

 49

64-bit at 66 MHz, and thus, operated at a speed of 538 MBytes/sec. As the

theoretical maximum for the single 512×512 PSF image, this means 4 milliseconds

for the transpose. As already stated, the 1-D FFT is 23 microseconds, or for the

512×512 image on 16 DSPs this is 1 millisecond including the optimal padding as

previously discussed for the 21160M system. This means, as a theoretical maximum,

the transpose would be 75% of the runtime for the 2-D FFT. In actuality, the PCI bus

added significant overhead for small packet size, and thus the actual runtime for the

2-D FFT was over 8 milliseconds, and thus the transpose was 88% of the runtime for

the 2-D FFT. Before the PCI based transpose was constructed, it was known to be

inefficient, but it was developed as a baseline for comparison with other architectures.

Fig. 3.4: 16 DSP architecture, inefficient use of the PCI bus for all-to-all communication.

Now that the baseline 16-node PCI bus architecture is set, we will explore the

graph architecture of the distributed system. The transition from 8 to 16 DSPs per

image reduced the sub-component block size for the all-to-all communication by 4,

yet, still requires the same total data transfer. For example, a 512×512 image on 8

DSPs results in each DSP performing 1-D FFTs on a 512×64 block. Each block is

 50

then divided into 8 sub-blocks of 64×64, where each sub-block is transmitted to the

corresponding DSP. The 64×64 sub-block has 4096 elements, but for the 16 DSP

case, the sub-block is 32×32 and has 1024 elements.

The first distributed graph architecture presented is shown in Fig. 3.5. The

goal of this architecture was to minimize the graph diameter treating all nodes

equally. To construct this graph, the black inter-connects are fixed, based on the DSP

board, with the design freedom for the red link ports. An algorithm was developed

that brute force treated the red link ports as variables, and solved for the graph

diameter for each case. The algorithm minimized computational complexity by

trimming some repetitive graphs due to symmetry. Ideally, this graph would be

similar to the Levi graph in Fig. 1.18 but have a diameter of 3. Due to the constraint

of how the clusters are arranged, the graph diameter for Fig. 3.5 is actually worse,

having a diameter of 4. Furthermore, this approach did not take into account that the

local black link ports operate at 250 Mbytes/sec and the red link ports operate at 125

Mbytes/sec.

 51

Fig. 3.5: 16 DSP architecture, minimize graph diameter between all 16 DSPs.

The architecture in Fig. 3.5 used a packet technique to route the sub-blocks to

the various nodes. The sub-blocks for each DSP were treated the same, and header

information was added to each sub-block. Then, each sub-block was routed around

the cluster until the transpose was complete. This approach resulted in a transpose

that took 55% of the total runtime, or 1.22 milliseconds for the 512×512 case. This is

a significant improvement over the PCI baseline.

There are many shortcomings of the architecture in Fig. 3.5, including the

necessary packet overhead for routing, the reduced sub-block size, the heterogeneous

link port speeds, and the turn-around time for data flow on the physical layer of the

link ports. The second architecture, shown in Fig. 3.6, addresses most of these issues

and increases the performance of the transpose in practice by 24% This architecture

treated the cluster as a single node in the graph, and minimized the graph-diameter

between each cluster. Thus, the distance between any two clusters is 1. Furthermore,

by increasing the sub-block size transmitted on the red link ports, the edge-routing

 52

DSP reduces the overhead associated with the turn-around time between sending and

receiving.

Fig. 3.6: 16 DSP architecture: minimize graph diameter between clusters.

An additional advantage, and method for understanding this performance

increase, is to relate the structure of the transpose to (Eq. 1.15). This equation

illustrates the recursive nature of the transpose, and thus, why the hierarchy of a

low-diameter architecture is efficient. The hierarchy can be visualized if each cluster

of four DSPs, rather than the individual DSP, is seen as sub-component

computational core. Thus, the transpose must occur within the cluster, and then

between the clusters of DSPs. This approach maximizes the bandwidth between the

clusters by minimizing the administrative overhead incurred for the first 16 DSP

cluster explored in Fig. 3.5.

 53

Fig. 3.7: 16 DSP architecture: use PMC cards, and create uni-directional link ports.

The final architecture presented is based on the knowledge acquired in the

previous two studies. For the graph shown in Fig. 3.7, the use of PMC cards proves

to be both a constraint and a distinct advantage. Although the PMC cards allow all 64

DSPs to be used for the 16 DSPs per image with four images, the PMC cards further

restricted implementing the optimal architecture. That is, the PMC cards restrict the

red link ports from connecting on the PMC card to the cPCI card. Furthermore, the

connection between the cPCI cluster and the PMC cluster is constrained to the

hypercube. In practice, the second and third implementations are very similar in

performance. This is because the third implementation utilized the fourth link port,

and thus increased the overall bandwidth of the graph; the fourth link port is shown in

green in Fig. 3.7. Furthermore, to minimize the overhead of the turn-around time on

the bi-directional link ports, the link ports were programmed at the application level

to be uni-directional between the clusters. Because of the stalls necessary between

transmitting and receiving, it is faster to have 1 DSP designated for sending and 1

 54

DSP designated for receiving, and then utilize the faster 250 MBytes/sec interconnect

between the two.

TS-101: 16-node Architectures Analysis

In this section, all the results are presented for the Fig. 3.7 architecture.

Diversity Defocus Image

Size (NxN)
16 DSP timing

4.17

x

x

x

x

x

x

2.83

9.56

2.68

0.00117

Timing of the MGS algorithm, :

1 Diversity-Defocus Images, 1 iterations (seconds)

Timing Increase

between images

32 0.000179

0.000435

2.48

2.43

64

2048

0.00290

0.00819

0.0783

0.3265

256

512

1024

128

Tbl. 3.1: Scalability for image size on Fig. 3.6.

The first variable explored is the image size for the MGS algorithm. These

timing results are shown in Tbl. 3.1. First, note that the difference between a

512×512 image and a 1024×1024 is four times the amount of data. Thus, the 1024

case should be 4 times longer if run time scales linearly with data size. The

computational aspect, the numerous 1-D FFTs, scale linearly with image size, and the

distributed transpose scales near linear. Thus, the difference in performance among

various image sizes for the TS-101 architecture can be seen in Tbl. 3.1 and averages

2.5 between images of size less than 512×512, where smaller numbers signify an

independence between image size and performance time. With each iteration, there is

 55

a certain amount of overhead. This comes from setting up the link ports to transmit

data, setting up the DMA to read in the data from external memory, or other

synchronization routines. As the data size increases, these latencies contribute less to

the overall runtime, and the computation and I/O bandwidth make the significant

contribution to the overall runtime.

For the larger image sizes, there is a performance hit between the 512 and the

1024 case because the external SDRAM must be used more heavily. As mentioned

earlier, the 512 case can fit into the internal cache of 16 DSPs. Note that as expected,

the 2048 case is 4 times longer than the 1024 case.

The next case is the number of images processed on the 16 DSPs per image

architecture. As mentioned earlier, combining the phase estimates after an iteration

on a single image is negligible to the overall runtime. The difference in runtime for

four images versus one image is only 2%; thus, the four images on 64 DSPs with 16

DSPs per image is 3.95 times faster, than four images on 16 DSPs with 16 DSPs per

image. This is represented graphically in Fig. 3.8 and Fig. 3.9.

 56

(a) (b) (c)
Fig. 3.8: Four images (a) on 64 DSPs (b) with 16 DSPs per image to produce a single

phase estimate (c).

 57

(a) (b) (c)
Fig. 3.9: Four images (a) on 16 DSPs (b) with 16 DSPs per image to produce a single

phase estimate (c).

TS-101: 32-node and 64-node Architecture

For the 16 to 32 DSPs per image, only the sub-clustered routing architecture

was explored, shown in Fig. 3.10. For computations, i.e. 1-D FFT and other

mathematical routines, the improvement between 16 and 32 DSPs is nearly linear.

Thus, the computational routines provided ×2 improvement. In addition to the

scalability of the computational routines, one must explore the scalability of the data

transfer. For a bus architecture, increasing the number of nodes will result in a

decrease in the bandwidth per node. For the TS-101 systems, increasing the number

of nodes also increases the total amount of network bandwidth. For example, a single

TS-101 has 4 link ports at 250 MB/sec, and thus for the 16 node cluster, this network

has a theoretical maximum bandwidth of 8 GB/sec (16 nodes × 250 MB/sec × 4

link ports / 2 for interconnection = 8 GB/sec). Similarly, the 32 TS101 system has an

over network bandwidth of 16 GB/sec. The 32 DSP architecture presented in Fig.

3.10, was ×1.2 faster than the transpose on the 16 DSPs architecture, Fig. 3.6 and Fig.

3.7, for an overall improvement for the 2-D FFT of 1.7 for the 512×512.

 58

Fig. 3.10: 32 DSP architecture.

Several timings for various image sizes are presented in Tbl. 3.2.

Image size Pentium 4
2.4 GHz

TS-101
16 DSP per image

TS-101
32 DSP per image

64×64 20.5 .0561 .0322
512×512 219. .491 .288

2048×2048 8890 19.6 12.2
Tbl. 3.2: Timing for various image sizes on three architectures, with 4 Diversity-Defocus images after

convergence (seconds).

Although for most applications of the MGS, multiple diversity-defocus

images are used, some applications only make use of a single image. For the single-

image case, an architecture for 64 DSPs per image was constructed, Fig. 3.11. This

builds upon the proven methodology from the 16 and 32 DSPs per image. This

architecture has been designed but not implemented, and results of this graph will be

presented in future research. The routing algorithm would treat each cluster of 16 as

a cluster in a similar method used in Fig. 3.6 and Fig. 3.10.

 59

Fig. 3.11: 64 DSP architecture.

 60

Chapter 4: Phase Retrieval on the TigerSharc 201

The final system presented in this thesis is the 24-node TS-201 system. This

system was recently procured, and there has not been time to fully explore the design

space of this system. As described in the Forward, this system has already been

deployed in the Testbed Telescope (TBT), which is a 1/6th scale model of NASA’s

James Webb Space Telescope (JWST). The TBT is a segmented primary telescope as

seen in, Ill. 1.1 (a). The TS-201 system is providing real-time processing on 100

images.

Hybrid Diversity Algorithm

The goal for this research was to prepare the TS-201 system for the TBT.

Additionally, a more complicated phase-retrieval algorithm, adding a process called

adaptation to the core MGS algorithm and now called the Hybrid Diversity Algorithm

(HDA), was implemented with the DSP architecture. The HDA is outlined in

Fig. 4.1.

Fig. 4.1: Block diagram for the HDA.

 61

The HDA is similar to the MGS, with the iterative transform algorithm at the

core, shown in the orange block. Thus, like the MGS, the HDA must have an

efficient 2-D FFT. The third feedback control loop of the HAD, shown as the faint

green line, is of particular interest to performance of the algorithm implementation.

This feedback is iterated between 5 and 20 times, and thus, the HDA is 5 to 20 times

more computationally demanding. More details about the HDA are provided

elsewhere.[14]

TS-201: 4-node Architecture

The goal of the TS-201 system was to process 100 diversity defocus images in

less than 4 minutes using the new HDA algorithm on 512×512 images. The TS-201

DSP has 24 Mbits of internal memory, and thus, a 512×512 image is able to fit into

the internal cache of 4 TS-201 DSPs, allowing 6 images to be processed in parallel on

the 24 node cluster. If fewer than 4 DSPs per images where used, then the image

data, and any temporary values would have to be stored in external memory. This

would cause the same problems as were seen with the 21160M and TS-101 system,

where the 4th DSP in a cluster only increased performance by only 10% when only

the cluster bus alone is used for the I/O.

Fig. 4.2: TS-201 4 DSP architecture.

 62

The TS-201 system used a complete-graph of type K4. This can be seen in

Fig. 4.2, where the red lines are the link ports. As mentioned, each link port is dual

channel uni-directional, and thus, there is minimal overhead for this architecture

when compared to a similar architecture from the TS-101 system.

The HDA algorithm required adaptation, which is a fitting routine for the

phase estimate. The fit is performed to a set of basis functions that are pre-computed

before the first algorithm starts. In Fig. 4.1, it is labeled as a Zernikie Fit. The

number of basis functions is a system specification, and for the TBT, 285 basis

functions where used. This is 15 global basis functions and 15 basis functions per

segment. These two sets of basis functions where orthogonal to improve the fitting

routine and reduce computational demand (cross-correlation matrix is a diagonal

matrix). This fitting required 15% of the runtime of the algorithm for a single

iteration.

The entire runtime for the algorithm for a single iteration on a single 512×512

image was 0.00859 seconds. This is analogous to the data in Tbl. 3.2 for the 16 DSP

TS-101 system; recall that the single iteration for the 512 case is 0.00819 seconds.

After removing the 15% for the adaptation, the 4 TS-201 DSP system is faster than

the 16 TS-101 DSP system. This is for three reasons: (1) the TS-201 DSP is 2× clock

speed and 2× the link port speed of the TS-101 DSP, (2) the complete graph K4

allows the transpose to occur in a single iteration, where every DSP is on hop away,

and (3) the larger data size per DSP reduced the latency and overhead as was seen for

the TS-101 system in Tbl. 3.2.

 63

Chapter 5: Conclusions

In summary, the HDA and MGS algorithms require the evaluation of

numerous 2-D FFTs. The transpose of the 2-D FFT is the bottleneck for scalability

on a distributed system. It has been shown that a distributed computational grid

architecture, processing on each image, is the optimal architecture in terms of

performance, with further details specified by various requirements depending on the

desired footprint, power consumption, and operating environment. These details

imply the specification of the sub-components.

Summary

In this research, three unique homogenous DSP systems were studied: a

16-node system of the AD 21160M, a 64-node system of the AD TS-101, and 24-

node system of the AD TS-201. Several architectures for each system were explored,

presenting optimal solutions to meet various optical system requirements.

Assuming a perfectly homogenous network, with entire design freedom for

the interconnection, to minimize graph-diameter results in the optimal architecture for

the transpose, this was shown in Fig. 3.3 (b) and Fig. 4.2. In practice, for the TS-101

system specifically, different edges have different transfer speeds and some edges are

not adjustable. Thus, the optimal architecture is a hybrid graph, where clusters of

nodes are treated as a single node, as seen in Fig. 3.6, Fig. 3.10, and Fig. 3.11. Then,

the clusters of nodes are constructed in the optimal low graph diameter architectures.

Data size for the various architectures are optimal for the largest data size that

can completely fit into the cumulative internal cache of the distributed system, which

 64

is the summed internal cache of every DSP in the architecture. The 512×512 image

size fits into the architecture of 16 TS-101 DSPs, and thus is the optimal number of

DSP in terms of performance. The TS-201 DSPs have a larger internal cache, and the

optimal size is 4 DSPs.

Future Work

Future work will entail other wavefront sensing algorithms that require

numerous 2-D FFTs. Algorithms based on the core MGS procedure constitute one

class of wavefront sensing, but other classes of algorithms exist. Current work is

underway to develop a phase diversity algorithm, which uses 2-D FFTs to connect

data n conjugate Fourier domains, but otherwise is very different than the MGS.

The development and testing of the 64 DSP architecture in Fig. 3.11 is of

interest and may be the topic of future studies. To date, it has only been of theoretical

interest to study the 64 DSPs architecture, because most closed loop control systems

will use multiple images in the MGS. Additionally, as a motivation, the 1024×1024

image would fit into the internal cache for this architecture.

All of this research performs the transpose in serial with the computation of

the 1-D FFT. To perform these two steps in parallel is a non-trivial task, but possible.

The DSP could compute the 1-D FFT on K rows, a subset of all the rows this DSP

will process. Then, the DSP could transpose these K rows, while it processing the

next K rows. Currently, the DSP uses DMA to move data from external memory to

internal memory and to move data on the link ports. The DMA on both the link ports

and shared external memory, and the computation of the 1-D FFT can be run in

 65

parallel, and a future study that determines the performance increases for such an

architectures is of interest.

In addition to space optics wavefront sensing and control, additional

application areas that can benefit from the application of digital signal processors

include ground-based wavefront sensing, telescope image processing, laboratory

optical processing, system design and tolerancing, Monte-Carlo simulations, and

finite element modeling. To date, there are no radiation-hard implementations of high

performance DSPs as required for autonomous space optics control. However, the

FPGA (field programmable gate array) or ASIC (applications specific integrated

circuit) technologies can lead to a high-performance solution in a radiation-saturated

environment. Currently, NASA Goddard Space Flight Center is exploring several

possibilities, including reconfigurable computing, to develop systems of FPGAs to

meet the requirements of high-speed space-based image-processing as well as

wavefront sensing and control. [34][35]

 66

Acronyms

AD Analog Devices

cPCI Compact Peripheral Component Interconnect

DMA Direct Memory Access

DSP Digital Signal Processor

FFT Fast Fourier Transform

ITA Iterative Transform Algorithm

JWST James Webb Space Telescope

MGS Misell-Gerchberg-Saxton

PCI Peripheral Component Interconnect

SNR Signal to Noise Ratio

TBT Testbed Telescope

WCT Wavefront Control Testbed

WFS Wavefront Sensing

WFS&C Wavefront Sensing and Control

 67

References and Bibliography

[1] J. C. Hankins, "Technology Readiness Levels: A White Paper," NASA, Office of

Space Access and Technology, Advanced Concepts Office, April 6 (1995).

[2] M. Frigo and S. G. Johnson. “FFTW: An Adaptive Software Architecture for the
FFT,” http://www.fftw.org.

[3] J. L Hennessy and D.A. Patterson (2003) Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publisher, San Francisco, CA.

[4] Photograph courtesy of NASA, http://www.jwst.nasa.gov/.

[5] Photograph courtesy of W.M. Keck Observatory,
http://www.keckobservatory.org/.

[6] R. A. Gonsalves and P. Considine, “Phase-Retrieval from Modulus Data,” J. Opt.
Soc. Am., 66, 961-964 (1976).

[7] R. A. Gonsolves, “Phase Retrieval and Diversity in Adaptive Optics,” Optical
Engineering, Vol. 21 No. 5 page 829 (Sept./Oct. 1982).

[8] R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W J. Lange, A. C.
Slavin, W J. Wild, D. M. Winker,' and J. M. Wynia, “Two generations of
laser-guide-star adaptive-optics experiments at the Starfire Optical Range”
0740-3232/94/010310-15$06.00, Optical Society of America (1994).

[9] F. J. Rigaut, B. L. and Ellerbroek, R. Flicker, “Principles, Limitations and
Performance of Multi-Conjugate Adaptive Optics”,
http://citeseer.ist.psu.edu/305244.html.

[10] J. Wenhan, and L. Huagui, “Hartmann-Shack wavefront sensing and wavefront
control algorithm”, SPIE Adaptive Optics and Optical Structures. A91-29476
16-74, (Mar. 1990).

[11] R.W. Gerchberg and W.O. Saxton, “Phase Determination from Image and
Diffraction Plane Pictures in an Electron Microscope”, OPTIK, 34, 275
(1971).

[12] R.W. Gerchberg and W.O. Saxton, “A Practical Algorithm for the Determination
of Phase from Image and Diffraction Plane Pictures”, OPTIK, 35, 237-246
(1972).

 68

[13] W.O. Saxton, “Computer Techniques for Image Processing in Electron

Microscopy”, in Advances in Electronics and Electron Physics, Supplement
10, L Marton and C. Marton, eds. (Academic Press, New York, NY, 1978).

[14] B. Dean, D. Aronstein, S. Smith, R. Shiri, and S. Acton, “Phase-Retrieval
Algorithm for JWST Flight and Testbed Telescope”, Proc. of SPIE Vol 6265
626511, 2006.

[15] Bruce Dean, “Introduction to Image-Based WFS&C”, NASA Goddard Space
Flight Center, Optics Branch Technical Noon Talk (10/20/2005).

[16] R.C. Gonzalez & R.E. Woods Digital Image Processing. Prentice Hall, Upper
Saddle River, N.J. (2002).

[17] W. Hayden, L. Boyce, K. Rehm, D. Redding, and C. Ohara, “Analysis of
Wavefront Sensing and Control Onboard Resource Requirements – 1 & 2”,
Computer Science Corporation, Technical Memorandum, Apr-2002.

[18] R.C. Agarwal, F.G. Gustavson, and M. Zubair, “A high performance parallel
algorithm for 1-D FFT”, IEEE Supercomputing '94. Proceedings, pages: 34-
40, Nov 1994.

[19] D. Takahashi and Y. Kanada, “High-Performance Radix-2, 3 and 5 Parallel 1-D
Complex FFT Algorithms for Distributed-Memory Parallel Computers”,
Springer Netherlands, pages 207-208, February 2000.

[20] Photograph(s) and specification courtesy of Analog Devices,
http://www.analog.com/.

[21] P. J. Borde and W. A. Traub, “High-contrast Imaging for Space: Speckle Nulling
in a Low Aberration Regime”, The Astrophysical Journal, Volume 638, Issue
1, Feb-2006.

[22] J. W. Cooley and O. W. Tukey, "An Algorithm for the Machine Calculation of
Complex Fourier Series." Math. Comput. 19, 297-301, 1965.

[23] W. H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Fast Fourier
Transform." Ch. 12 in Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp.
490-529, 1992.

[24] A. S. Tanenbaum and M. van Steen Distributed Systems: Principles and
Paradigms. Prentice-Hall, Upper Saddle River, N. J. (2002).

 69

[25] E. W. Weisstein. "Moore Graph." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/MooreGraph.html.

[26] B. Parhami, Introduction to Parallel Processing: Algorithms and Architectures.
Plenum Press, New York, NY. (1999).

[27] E. W. Weisstein. "Levi Graph." From MathWorld -- A Wolfram Web Resource.
http://mathworld.wolfram.com/LeviGraph.html.

[28] Scott Smith and Edward Lo, “Hardware Implementation of a Phase-Retrieval
Algorithm”, NASA GSFC Summer Student Presentations, July 2003.

[29] B. H. Dean, J. S. Smith, J.G. Budinoff, and L. Feinberg, “Wavefront Sensing and
Control Architecture for SPOT (Spherical Primary Optical Telescope)”, Proc.
of SPIE Vol. 6265 62654F-1, June 2006.

[30] J. S. Smith, B. Dean, and S. Haghani, “Distributed computing architectures for
image-based wavefront sensing and 2-D FFTs”, Proc. of SPIE Vol. 6274
627421, June 2006.

[31] W. Cheney and D. Kincaid, Numerical mathematics and Computing, Kinciad.
Brooks/Cole Publishing Company.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms 2ndEd. MIT Press, Cambridge, MA, 2001.

[33] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms. Prentice Hall, Upper Saddle River, N.J., 2002.

[34] S. Kizhner, D. J. Petrick, T. P. Flatley, P Hestnes, M. J. Nilsen, and K. Blank,
Pre-Hardware Optimization of Spacecraft Image Processing Software
Algorithms and Hardware Implementation, 2002 IEEE Aerospace Conference
Proceedings Big Sky Montana, March 9-16, 2002.

[35] S. Smith. “Radiation Tolerant Hardware Analysis”, NASA Goddard Space Flight
Center / Technology Transfer, Sept 2005.

