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In this thesis, we explore how the human auditory system represents and
detects changes in a spectral profile. First, using profile analysis methods, we
measure listeners’ sensitivities to changes in spectral peak shapes and ripple
phases. More specifically, we measure thresholds to changes in peak symmetry
and bandwidth (which respectively are measures of the local evenness or oddness
of a peak and of the tuning or sharpness of a peak). The effects of several other
manipulations are also studied. It is found that the thresholds are constant for
almost all initial peak shapes. Second, these changes in symmetry and bandwidth
are interpreted as changes in the phase and magnitude of the profile’s Fourier
transform. In this light, the last set of experiments measured the sensitivity
to (ripple) phase changes in spectral sinusoids. We find that the thresholds

obtained are similar to the above-mentioned symmetry thresholds.



A fundamental conclusion arising from this analysis is that spectral peaks
are represented along two largely independent axes: the magnitude and phase
of their Fourier transforms. More specifically, it is argued that, along these two
dimensions, the auditory system analyzes an arbitrary spectral pattern in a lo-
calized Fourier transform domain. This is closely analogous to spatial frequency
transformations in the visual system. Within this general framework, we pro-
pose a model of profile analysis in which a spectral profile is represented by a
weighted sum of sinusoidally modulated spectra (ripples). The first part of the
analysis is perfoi‘med by a bank of bandpass filters, each tuned to a particular
ripple frequency and ripple phase. The parameters of the model are estimated
using data from several ripple discrimination experiments. The second part of
the model is a detection stage which operates on the the magnitude and phase
of the computed transform, and varies with the type of perceptual task. The
results of the detection operations are compared to experimental data from var-
ious profile analysis tasks. The model accounts well for the perceptual results
in these tests. We propose two types of psychoacoustical experiments involving
any arbitrary spectral pattern, which should further verify the predictions of the

model.
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Chapter 1

Introduction

1.1 Background and motivation

The understanding of speech is the most important auditory function for hu-
mans. Speech is remarkably robust to interference from other sounds, and its
intelligibility is impervious to a variety of physical transformations. While some
of the robustness is due to factors specific to speech (e.g., context), other reasons
are those shared with any arbitrary sound. Perception of a sound (natural, or
synthesized) is intrinsically linked to its internal representation at the auditory
cortex level. Perceptually relevant spectral features are encoded along the vari-
ous stages of the auditory pathway, and carried up to the auditory cortex level.
The primary auditory cortex (Al) is essential for the localization and processing
of complex sounds. Nevertheless, except for the recent set of psychoacoustical
experiments [2], studies of auditory perception have been largely unrelated to the
possibly relevant physiological results. The approach taken here was to relate
studying and modeling perception of various spectral shapes to new develop-

ments of relevant theories of spectral feature representations in Al



Until recently, only two general organizational principles of Al have been
identified, both of which are known to originate at much lower levels of the au-
ditory pathway. They are: the spatially ordered tonotopic axis, which originates
at the cochlea [3, 4, 5, 6]; and the alternating bands of the binaural response
properties that run parallel to the tonotopic axis [7, 8], which originates at the
inferior colliculus level. Recent series of physiological experiments have explored
the detailed organization of cortical cell responses in order to discover what as-
pects of the stimuli are mapped along the isofrequency plane. Cells along the
isofrequency axis are tuned to the same best frequency (BF). Best frequencies
are organized in a logarithmic fashion along the tonotopic axis (Fig. 1.1 (left)).

Experimental results reveal three basic types of responses along the isofre-
quency line, depending on the distribution of the inhibitory responses around
the BF (see Fig. 1.1(a) (right)). Such distribution of impulse responses suggests
several new organizational principles (besides the tonotopic map and binaural
columns). The one of immediate relevance to stationary (non-varying) stimuli is
the mapping of the locally averaged gradient of the acoustic spectrum along the
isofrequency planes (gradient map). More precisely, the symmetry of the Al unit
responses correlates well with the responses to spectrally shaped noise bursts [9]
(Fig. 1.1)(b). Since the response area symmetry is ordered along the Al, then
so is the local symmetry of the spectral envelope of the most effective stimulus.
Other maps are the selectivity to the direction of frequency modulated sweeps
[9] (Fig. 1.1)(b); and response area bandwidth and tuning maps [10].

The organizational similarity of visual and auditory cortices [11] suggests the
existence of similar mappings in both. Thus, the analogs in the visual cortex

to the tonotopic and binaural column maps are the retinotopic maps and the
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Figure 1.1: (a) A schematic organization of the primary auditory cortex (left).
Three types of response areas are shown on the right. At the center of Al,
units have symmetric response areas with a narrow excitation band, flanked by
the inhibitory side-bands. Away from the center, the response areas become
asymmetric, with the inhibitory side-bands becoming relatively stronger above
or bellow the cell’s BF, in two opposite directions (caudal and rostral). (b)
right: Organization of the response areas along the isofrequency line. center:
Neurons with inhibition to frequencies below (above) their best frequency (BF),
respond optimally to noise bursts with least spectral energy below (above) BF.
left: The Al unit response properties correlate well with the preferred direction

of frequency modulated sweeps.
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ocular dominance columns of the primary visual cortex. Similarly, the gradient
map can be viewed as a one-dimensional analog of the orientation columns of
the visual cortex, since the orientation of a two-dimensional edge amounts to
specifying its gradient in two directions.

The experimental results described above suggest that specific features of the
shape of the acoustic spectrum are being extracted and mapped in the cortex.
The existence of such ordered maps has certain perceptual implications. The
gradient map enhances and explicitly represents such perceptually important
features as the shape of spectral peaks, edges and spectral envelope. This, in
turn, suggests that in characterizing the perceptual quality of an arbitrary spec-
tral pattern (e.g., that of a speech vowel), one has to take into account not only
its peaks’ frequencies and levels, but also the local gradients around, and tuning
of, the peaks [12].

The first set of psychoacoustical experiments reported here was carried out
in order to explore further the implications of these findings [13]. The stimuli
used were spectral peaks, for which the local gradient is directly related to the
symmetry of the peak. Since the shape of a peak can be effectively described by
its symmetry and bandwidth, our goal was to examine the perceptual sensitiv-
ity of, and interdependence between, these features. The range of symmetries
and bandwidths tested was comparable to those of vowel formant peaks. These
experiments differ from previously published profile analysis experiments in the
choice of a non-flat standard (a spectral peak), and in the nature of the ma-
nipulations applied to it, i.e., changes in bandwidth and symmetry, rather than
amplitude. Neurophysiological experiments with the same stimuli reveal that

the responses to different peak symmetries correlate well with the cell’s specific



inhibition asymmetries [14].

The next set of experiments reported here tested the human subject’s sen-
sitivity to changes in the phase of ripple spectra (spectral sinusoids). These
experiments were motivated by: the results of symmetry changes in spectral
peaks which indicate that the detection is constant for almost all the condi-
tions; the mathematical relationship that exists between the symmetry and the
phase of the Fourier transform of the peak; and, again, by the newest findings
of neurophysiological recordings. These recordings, in both, visual and auditory
systems, suggest that spectral profiles are represented in the auditory system
by their Fourier transformation. The idea that the brain analyzes and perceives
its sensory patterns in this manner is relatively common in the vision literature,
where it has been variously called multi-resolution or multi-scale representation,
and spatial frequency analysis [15, 16]. Neurophysiological recordings in the au-
ditory cortex have confirmed that cortical cells are indeed tuned to specific ripple
frequencies and phases [17, 18]. Auditory cortical cells are able to perform the
necessary ripple analysis.

We next show that the two manipulations of peak profile shapes can be ex-
tended to any arbitrary spectrum. They can be precisely defined in the Fourier
transform domain of a profile: changing the symmetry is approximately analo-
gous to adding a constant phase angle to all components of the profile transform;
and changing the bandwidth is equivalent to dilating a profile, or, in the Fourier
transform domain, to shifting the profile’s transform along the logarithmic ripple
frequency axis.

Within this generalized framework, a computational model of profile analysis

is proposed in which a spectral profile is assumed to be represented by a weighted



sum of sinusoidally modulated spectra. The first part of the analysis is performed
by a bank of bandpass filters, each tuned to a particular ripple frequency and
ripple phase. The parameters of the model are estimated using data from several
ripple discrimination experiments. The second part of the model is a detection
stage which operates on the magnitude and phase of the computed transform,
and varies with the type of perceptual task. These detection operations are
applied to the filter outputs and the results compared to experimental data from
various profile analysis tasks. The model accounts well for the perceptual results
in these tests. Finally, two types of psychoacoustical experiments are proposed,
which involve any arbitrary spectral pattern, and which should further verify the

predictions of the model.

1.2 Psychoacoustics and profile analysis

Psychophysics. is the study of relationship between the perceptual and physi-
cal aspect of the stimulus. It deals with procedures employed in asking ques-
tions about the presented stimulus, in order to estimate subjects’ sensitivity (i.e.
threshold) to changes in the stimulus. Several paradigms and procedures are used
for collecting data, and estimating thresholds. In this dissertation, a common
“two-interval forced-choice” (2IFC) procedure (or paradigm), and a “two-down,
one-up” adaptive method was used to perform a variety of discrimination tests.
The discrimination task involves presenting two (or more) stimuli and estimating
the smallest difference in a particular parameter of a sound, which the subjects
can distinguish with a certain probability of correct responses. We briefly review

the paradigm and the method used in this work.



“Two-interval forced-choice” paradigm

A paradigm (also called procedure, or technique) is a sequence of events which
occur in presenting stimuli during a single trial. The main procedure in use today
is the “two-interval forced choice” (2IFC), although the “yes-no” paradigm is also
used especially for estimating absolute thresholds [19]. The 2IFC paradigm has
two intervals, one containing the same stimulus (called standard) over a block
of trials, and the other, containing the varying stimulus (signal) which is to be
distinguished. The signal and standard occur with the same a priori probability

in one of the two intervals.

Methods

Psychoacoustical methods are concerned with estimating a physical value of
the stimulus at threshold. There are several threshold tracking procedures (or
methods) for collecting data. The three classical methods are: the method of
limits, method of constant stimuli, and the adjustment method [20]. Common
to these methods is that they are prone to subject’s biases and require either
blank trials or feedbacks in order minimize the bias effect.

Newer methods are based on the signal detection theory which provides a way
for separating the relevant changes in subjects’ performance from the bias effects.
This involves computing the Receiver Operating Characteristic curves (ROC),
and, from them, some measure of listener’s performance. For example, the area
under a ROC depends solely on listener’s sensitivity, i.e., is a bias-free measure
of listener’s performance. Another measure often used is the probability of cor-
rect responses p(C). The area or p(C) plotted against the corresponding signal
presentation level, defines a psychometric function. Threshold is then estimated

from this function. A psychometric function in general, relates some measure of



listener’s performance (e.g., p(C)) to the physical value of the stimulus.
Although reliable, this method requires a large number of trials and is rarely
used for estimating thresholds. Prevalent methods in use today are the adaptive
procedures which combine the reliability of the methods based on signal detection
theory and the speed of classical methods. In particular, the adaptive “up-down”
methods, which use the percentage of correct responses as a measure of listener’s

performance, are highly efficient, small-sample reliable, and simple.

A “two-down, one-up” adaptive method

In adaptive methods, the stimulus level is adjusted based on listener’s re-
sponse. After an incorrect response, the detection is made easier by increasing
the difference between the two stimuli. Similarly, the difference is decreased after
a fixed number of correct responses in a raw. For instance, in a “two-down, one-
up” procedure, stimuli are made less distinguishable after two correct answers in
a row. After several reversals (i.e., presentation levels at which the stimulus is
changed in the opposite direction than in the previous case), the signal stabilizes
at the value for which the probability of decreasing and increasing the difference
between the stimuli becomes equal [21]. For the “two-down, one-up” case, this
estimates the threshold at the level which produces 70.7% correct answers [21].
An important practical problem is deciding on the size of the first step. Although
decreasing step sizes after each reversal maximizes the convergence rate to the
target thresholds value [22], this procedure is for practical reasons never used.
Instead, a good approximation is obtained by halving the step size once (after
the third run). Simple mid-run estimates are used for estimating the threshold,
i.e. the threshold is computed as aﬁ average of last even number of reversals,

excluding the first three. An even number is used in order to reduce estimation



bias.

d measure

In this section we briefly review the d' measure since it is used later in
Sec. 2.10.2, and throughout Chapter 3. In modeling a sensory system it is often
assumed that the internal representation of the stimulus is corrupted by some
internal noise, which is, for both theoretical and practical reasons, assumed to
have a Gaussian distribution. The separation between the means of the distri-
butions for two different signals normalized by their standard deviation defines
a discriminability index or sensitivity measure, d’. This measure parametrizes
the ROC curves, since each ROC corresponds to a given separation of the two
distributions [19]. For an ideal observer it is possible to relate the probability of
correct responses for a “two-interval forced-choice” procedure to the d' measure
(as ®(d'/v/2) = p(C), where ®(-) is the area under the normalized Gaussian
distribution) (values are given in Table II of Appendix 1 in [20}). The constancy

of d' for a given p(C) (0.71 here) is evaluated in Sec. 2.10.2.

Profile analysis

Profile analysis is a type of test in which a subject detects a change in spectral
shape rather than a change in just the overall presentation level [23]. The main
mechanism involved in performing such a task is the simultaneous comparison of
the energy levels of different frequency regions at the same time. Listeners can
also perform successive comparisons of the same frequency regions at different
times. In order to preclude the subject from making such comparisons in a profile
analysis task, the overall presentation level is randomized within and across the

trials (Appendix A in [23]).



1.3 Experimental setup

Two sets of equipments were used to synthesized the sound. First, the sounds
were generated at 25 kHz sampling rate, via a Data Acquisition/Control Unit
— HP3852A, and two 16 bit 2-Channel Arbitrary Waveform DAC — HP44726A.
They were low-pass filtered at 10 kHz and passed through an equalizer (IEQ
One/Third Octave Intelligent Programmable) for level adjustment.

Experiments were also conducted using a Measurement Hardware HP3565S.
The executable was downloaded from an application software through an Inter-
face/Signal Processor HP3565B1 module, and the sounds were generated via a
programmable 16 bit DAC HP35656 A module. The stimuli were low-pass filtered
at 10 kHz using KH3905A multichannel filter.

In both cases, before presentation to listeners, sounds were gated for a 110 ms
duration, including 10 ms rise and decay ramps. Sounds were delivered inside an
acoustic chamber through a speaker (ADS 1470), i.e., without headphones. After
hearing the stimuli, the listeners responded by pressing a key button (GraphOn
GO-140 terminal was used), after which a short visual feedback was provided

and a paradigm was repeated.

1.4 Organization

In Chapter 2, we describe all the psychoacoustical experiments carried out for
this dissertation. We start with the description of the stimuli and the general
procedure followed in the tests. Next we present and discuss the results of

subjects’ sensitivities to changes in the shape of spectral peaks and in the phase
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of spectral sinusoids. Results are briefly discussed within a general theoretical
framework. The threshold measurements for above-mentioned manipulations are
interpreted in the context of two existing profile analysis models [24, 25]. Based
on these results, and on further physiological and psychoacoustical evidence,
a new prediction model for profile analysis tasks, called “the ripple analysis
model”, is proposed and defined in Chapter 3. The model is used in Chapter 4
to predict the results of a wide range of profile analysis experiments which have
been performed here and elsewhere. Two predictions of the model applicable to
a wide range of stimuli are stated. In the last chapter we summarize the main

results of this work, and discuss further research direction.
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Chapter 2

Detection of spectral peak shapes and

ripple phases

2.1 Introduction

The shape of the acoustic spectrum is a fundamental cue in the perception
and recognition of complex sounds. It is largely uncertain, however, how this
spectrum is represented in the auditory system, and what specific features are
extracted and emphasized by such a representation. This issue was explored
in a recent series of physiological mappings in the primary auditory cortex, Al
[9]. The findings from these experiments revealed that the responses along the
isofrequency planes of Al potentially encode an explicit measure of the locally

averaged gradient of the acoustic spectrum.

The existence of such ordered maps has certain perceptual implications. For
instance, it is likely that the perception of a spectral peak (such as a vowel
formant) would be significantly affected by its symmetry and bandwidth. This,

in turn, suggests that in characterizing the perceptual quality of an arbitrary
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spectral pattern, one has to take into account not only its peaks’ frequencies
and levels, but also the local gradients around, and tuning of, the peaks. In
order to explore further this and other possibilities, psychoacoustical experiments
were carried out to test directly the sensitivity of human subjects to changes in
spectral peak shapes. Specifically, our aim was to measure the sensitivity to
symmetry and bandwidth changes in single spectral peaks under a variety of
conditions, such as different spectral compositions, peak levels, peak locations,

and peak frequency randomization.

The experiments reported here are similar in methodology to previously re-
ported profile analysis experiments [24, 26, 27, 28]. They also share the same
overall goals of the phonetic distance measure experiments described in [12] and
[29]. Our experiments, however, differ from previously published profile analysis
experiments in the choice of a non-flat standard (a spectral peak). They also
differ in the nature of the manipulations applied to it, i.e., changes in bandwidth

and symmetry, rather than amplitude.

These two deformations of the peak profile are somewhat more general than
would appear at first glance. Specifically, if one imagines the peak profile drawn
on a flat stretchable square sheet, then changing the bandwidth is equivalent to
dilating the profile or pulling apart the opposite sides of the sheet. Changing
the symmetry is approximately analogous to pulling apart opposite corners of
the sheet, thus causing the profile to appear skewed or tilted. Clearly, such
deformations of the spectral peak can be applied to, and thresholds measured
and compared for any arbitrary profile drawn on the sheet. Moreover, as we
shall elaborate in Sec. 2.7, these manipulations of the profile can be precisely

defined in another domain — the Fourier transform domain of the profile. This
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view, combined with the physiological evidence and the psychoacoustical data
presented here regarding subjects’ sensitivities to these manipulations, suggests
that it is the transform, and not the profile itself, that is represented in the
central auditory system.

In the following section, the acoustic stimuli and general experimental pro-
cedures are described in detail. Then, we present the results of subjects’ sensi-
tivities to changes in the symmetry (Sec. 2.3) and bandwidth (Sec. 2.4) of peak
profiles, for different peak shapes, levels, spectral densities, and peak locations.
Two control experiments are described in Sec. 2.6 in which the relevance of pitch
cues and peak energy changes in the above discrimination tasks are evaluated.
In Sec. 2.7, the results are briefly discussed within a general theoretical frame-
work and further experiments with rippled spectra are performed (Sec. 2.8). We
end with a general discussion of the results in relation to other profile analysis

models and experiments.

2.2 General procedure

2.2.1 Method

A two-alternative, two-interval forced choice adaptive procedure was used to
estimate the thresholds. Each trial consisted of two 110 ms long observation
intervals separated by 500 ms pause. After listener’s response, a short visual
feedback was provided and a new trial started until all 50 trials that comprise
one block were presented.

The discrimination task for spectral peak stimuli, was to distinguish between

14



the standard, which did not change over a block of trials, and the signal, which
resembled the standard except for an adaptive change in spectral peak shape in
each trial. The step size was defined in terms of changes in the right slope of
the peak in decibels, and it differed across the testing conditions. For spectral
sinusoidal stimuli, the discrimination task and stimulus parameters are described
in Sec. 2.8.

On the first trial the signal was three step sizes away from the standard. On
each subsequent trial the signal was changed according to the “two-down, one-
up” procedure in order to estimate the level that produces 70.7% correct answers
[21]. The step size was halved after 3 reversals and the threshold was estimated
as the average of the signal across the last even number of reversals excluding
the first three. Signal and standard occurred with equal a priori probability in
one of the two intervals.

The overall presentation level was randomized across trials and within a trial
over a 20 dB range in 1 dB resolution, in order to ensure that listeners base their
judgement on a change in spectral shape rather than on absolute level change in
a particular frequency band [23].

The results reported are based on data from two to five normal hearing
subjects, depending on the particular test. Subjects were trained for about a
week (four days a week, 60 — 90 minutes per day), before the actual recording
took place. In order to ensure a large enough sample collection, we collected
approximately sixteen threshold estimates per subject and per testing condition

[30].

2.2.2 Spectral peak stimulus parameters
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Figure 2.1: (a) Complex waveform consists of a flat base and a peak added to

it. Peak takes different symmetries (b) and bandwidths (c).
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Both of the multicomponent standard and signal peak profiles consist of two
portions, the base and the peak. The base components were all equal in ampli-
tude and they were added in phase to peak components of different symmetries
and bandwidths to form peak profiles as shown in Fig. 2.1. The peak profile
was defined against a logarithmic frequency axis (w) in octaves, w = log, (f/f,),
where f is the frequency in (kHz), and f, is the frequency of the largest peak

component. The peak profile is defined in terms of the following parameters

(Fig. 2.2(a)):

® w, is the location of the peak’s maximum. Since the peak is always located

at 1 kHz, w, = 0.

S is the slope of the profile near the peak’s maximum (in dB/octave). For

w < w,, S = L (the left slope), and for w > w,, S = R (the right slope).

b(w) = b is the flat base of the peak profile.

a(w) = Gmaz- 10%(“"“’0), is the amplitude of the peak portion of the profile.
Amaz 18 the maximum amplitude of the peak profile (at w = w,). It is also

defined in dB as Apqy = 20 log,o(2mez).

17



] S S e ]
v
Z 4t amax -
Q
!
2} b J’ .
olLLLTTTTTTTTTTT CITTTTTTTTTTT
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
w, octave
o2 ' " 5
Frequency, kHz
15F .
§ 10l L=60 dB/octave R= -60 dB/octave
S
Q.
| AN |
o L 1 L I i 1

2 15 -1 05 0 0.5 1 15 2
w, octave

Figure 2.2: (a) Peak profile plotted on a linear (top) and logarithmic (bottom)
amplitude scale. Peak level (A,q;) is 15 dB, and BWF = 0.1 and SF = 0.
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Therefore, the overall peak profile (on a linear scale) is given by:

P(w) = b(w) + a(®) = b+ Apar 105 4) = b (14 10 FH= ) (2.1)
and on the dB scale:
PaB(w) = 20 10g16(b + Amagl0BE )Y = 20 log,o(b (1 + 10°F=+is(wwe))),

For example, the peak in Fig. 2.2(a) (plotted on linear and dB scales) is 15 dB
in level (Apq.) with slopes L = 60 dB/octave and R = —60 dB/octave around

the peak. Note that around w,, the peak profile can be approximated by:
de(w) ~ 20 loglo(b : 10%1.*-2%((”—0)0)) =20 1Oglo b+ Aper + S(w - wo):

i.e., the peak has approximately a triangular profile as shown in Fig. 2.2(a).

From the above definitions, the amplitude of each component p; in the stim-

ulus can be computed from:
Pi = b+ Ao 10075 for i <1,

and

pi=b+ amaZIOT(i"iD), for ¢ > 1,

where ¢ is the component index, 7, is the index of the highest component lo-
cated at the peak’s maximum, ! = (L/20) - (M/N), r = (R/20) - (M/N), M is
the frequency range of the spectrum in octaves, and N is the (odd) number of
components. For our centered peaks ¢, = (N +1)/2.

In order to vary the shape of the peaks, the peak profile was parametrized

uniquely in terms of a symmetry factor (SF) and a bandwidth factor (BWF).

19



These parameters reflect the difference and the average, respectively, of the slopes
around the peak. They are defined as: (1) SF=(L+R)/ (L-R); (2) BWF =3
(1/L - 1/R) octave. Thus, the peak in Fig. 2.2(a) has SF = 0 and BWF = 0.1 oc-
tave. Peaks with various other SF’s and BWF’s are shown in Fig. 2.2(b) covering
the full range of profiles used in our experiments. Conversely, given any SF and
BWF, the slopes around the peak can be computed as: R = -6/(BWF (1 + SF))
dB/octave, and L = 6/(BWF (1 - SF)) dB/octave. Note that BWF is not
strictly the bandwidth of the peak, but rather is analogous to the inverse of
the Q-factor of the peak. A third parameter — the peak level (A,.) is also
required to define the peak completely with respect to the baseline.

To make the spectral peaks asymmetric, they were always tilted towards
higher frequencies (or to the right). This, together with choosing the peak
frequency at 1 kHz (except for the tests in Secs. 2.3.1 and 2.4.1) and limiting
the range of BWF values under 0.4, ensured that the spectral peaks were located
above 500 Hz where the cochlear frequency axis is assumed largely logarithmic.
This is an important consideration since the peak shapes used were explicitly
defined in terms of spectral slopes along such an axis. The range of SF and
BWTF values tested also correspond to those that might be computed from the
spectral envelope of speech sounds, as shown in Fig. 2.2(c).

In all experimental conditions, standard and signal consisted of N = 11,
21, or 41 zero phase spectral components equally spaced on a logarithmic scale
between 0.2-5 kHz, (w in the range £2.32 octaves), i.e., M = 4.64 octave. The
peak was always centered at 1 kHz (w = 0 octaves) (with exception of the tests
in Secs: 2.3.1 and 2.4.1). The waveform was turned on 10 ms following the

onset in order to suppress the large amplitudes due to zero phases. No other
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Figure 2.2: (b) Envelopes of various peak profiles plotted on a linear amplitude
axis. Columns share the same BWF’s, and rows share the same SF’s. Corre-

sponding left and right slope values (in dB/octave) are shown for each case.
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Figure 2.2: (c¢) SF’s and BWF’s for the spectral peaks of a naturally spoken

vowel “aw”,

phase conditions were tested since numerous previous experiments have shown

that phase effects on signal detection are minimal [31, 27].

2.2.3 Spectral peak threshold measures

Threshold measures reported here were derived from threshold estimates of the
signal given in terms of the right slope. This, together with the paradigm con-
ditions (a constant SF or BWF) defines uniquely the corresponding left slope,
and therefore the SF and BWF of the peak at threshold.

Two types of measures were defined and computed: (1) The first is in terms
of the amount of change in SF or BWF needed for detection, i.e., 6SF or BWF.

In the case of BWF change tests, thresholds are normalized by the peak’s BWF
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(i.e., SBWF/BWF). (2) The second measure is the root-mean-square of the
change in peak energy needed for detection (see Appendix A). It is referred to
as the rms—threshold.

The two types of threshold measures described above imply different de-
tection models. We shall emphasize in this dissertation the presentation and
interpretations of the first type of threshold. The rms-thresholds for all tests
are compiled in Appendix A, mostly to facilitate comparisons with results from

other profile analysis experiments previously reported.

2.3 Detection of changes in spectral peak sym-
metry

For all testing conditions in this section, peak bandwidth factor (BWF) was kept

constant over a set of trials, so that both standard and signal were of the same

BWF. This forced listeners to base the signal detection on a change in peak

symmetry factor (SF).

2.3.1 Results and discussion

Dependence on symmetry and bandwidth factors of the standard

A 41 component complex was used in this set of experiments. The peak am-
plitude was fixed at a level which allowed it to be heard clearly (15 dB above

the baseline). The detection threshold was measured for standard peaks of four
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different bandwidth factors (BWF = 0.1, 0.13, 0.2, 0.4), and five different sym-
metries (SF = 0, 0.1, 0.15, 0.2, 0.4), i.e., a total of 20 tests were run. The
averaged results for five subjects are presented in Figs. 2.3. In Fig. 2.3(a) the
data are averaged over the four BWF’s and plotted against SF. In Fig. 2.3(b),
they are averaged over the five SF’s and plotted as a function of BWF.

The fundamental result that emerges from these data is that, in the range
of SF’s and BWF’s tested, the detection of a change in peak symmetry (6SF) is
largely independent of the peak shape of the standard. Thus, §SF does not vary
as a function of SF (Fig. 2.3(a)). However, there is a slight consistent decrease
in threshold as a function of BWF (Fig. 2.3(b)). This is mostly evident for the
narrowest peaks as 6SF drops by 0.04 for the first 0.38 octave change in BWF
(from BWF = 0.1 to 0.13), and by 0.03 for the next 1.62 octaves (from BWF =
0.13 to 0.4). For all other conditions, the §SF at threshold is near 0.11.

Plots of the rms—thresholds of these tests are shown in Appendix A. They
are independent of SF and BWF, with average detection threshold at ~ -8.5 dB.

The subjects trained relatively quickly to distinguish signal from standard for
all test conditions above. To make the distinction, they reported that they were
listening for the “higher” sounding complex tone (signal). This pitch-like change
is intrinsic to the symmetry detection task as defined here, because the signal
was tilted to the right from the standard, i.e., towards the higher frequencies.

This “pitch” effect is further explored in Sec. 2.6.1.

Dependence on peak amplitudes

In order to determine how the detection threshold depended on peak levels,

the tests described in Sec. 2.3.1 were repeated at two other peak levels: 10 dB
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Figure 2.3: Symmetry change detection §SF thresholds for 41 component com-
plex and 15 dB peak amplitude, averaged over five subjects and: four BWF’s in

(a), and five SF’s in (b). The 6SF threshold measure is defined as the change in
SF between the signal at threshold and the standard. In (b), the 6SF increases

for the narrowest BWF. The error bars are the standard deviations of the means.
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and 20 dB above the baseline. To account for the fact that two new subjects
participated in this series of tests, experiments at 15 dB level were repeated as
well. A total of 9 different conditions were tested at each peak level: three SF’s
(0, 0.2, 0.4) and three BWF’s (0.1, 0.2, 0.4). The data obtained are presented in
Figs. 2.4. As in Figs. 2.3, data are averaged over the BWF’s in Fig. 2.4(a) and
over the SF’s in Fig. 2.4(b), for each of the levels.

Two conclusions can be derived from these data:

(1) The same trends described earlier hold regardless of peak levels. Thus,
except for the narrowest peak, all 6SF thresholds are the same regardless of peak
shapes studied. The rms-thresholds are independent of peak’s SF and BWF
(Appendix A). Note that on average, the two subjects here exhibited uniformly
higher thresholds than the earlier five in Sec. 2.3.1.

(2) 6SF thresholds as a function of BWF (Fig. 2.4(b)) deteriorate faster at
the narrowest peaks with decreasing peak level. This rise is largely responsible
for the upward shift in the mean of §SF’s in Fig. 2.4(a) with decreasing peak
levels. The overall slight rise in thresholds may reflect the masking of the peak

by the base, which presumably increases for lower peak levels.

Spectral density dependence

These experiments explored threshold dependence on the spectral density of the
complex while keeping total base bandwidth constant (0.2-5 kHz). The follow-
ing signal parameters were tested with four subjects: 41, 21, and 11 spectral
components, two SF’s (0, 0.4), and three BWF’s (0.1, 0.2, 0.4). For two of the
subjects, additional SF’s were tested: SF = 0.1, 0.15, and 0.2 in the 41 compo-

nent tests, and SF = 0.2 in the 21 component case. Peak level was always set at
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Figure 2.4: Symmetry change detection §SF thresholds for 41 component com-
plex and 3 peak amplitudes: 10 dB, 15 dB, and 20 dB, relative to baseline. The
data are averages of three subjects and: three BWF’s in (a), and three SF’s in

(b). The values along the ordinates are defined as in Fig. 2.3. The large error

bars in (a) are due to the 6SF threshold increase at the narrowest BWF seen in

(b). Points are slightly offset along the abscissa for clarity.
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15 dB above the baseline.

Once again, all §SF values and trends described earlier largely hold regardless
of spectral densities (Figs. 2.5). The most prominent change in §SF thresholds
occurs as a function of spectral density at the narrowest peak (Fig. 2.5(b)). The
threshold here deteriorates rapidly as the spectral density decreases and, as in
Figs. 2.4, it is largely this accelerated rise that is responsible for the upward
shifts in the mean 6SF in Fig. 2.5(a).

Note that the rms-threshold plots in Appendix A do not immediately present
a comparable picture since the rms-threshold directly reflects also the change in

overall peak energy as the density is varied.

Dependence on location of the largest peak component

This set of experiments explored the threshold dependence on the location of
the maximal peak component. A 21 component complex was used, with peaks
located at 7t*, 9** 10h (centered peak), 11, and 13" component. Four subjects
were tested for 6 different conditions (SF’s = 0, 0.4; and BWF’s=0.1, 0.2, 0.4),
at each peak location. The peak amplitude was 15 dB above the baseline. The
averaged results for four subjects are presented in Figs. 2.6. In Fig. 2.6(a) the
data are averaged over the three BWF’s and presented for SF=0 (left) and
SF=0.4 (right). In Fig. 2.6(b) they are averaged over the two SF’s and shown
for the three BWF’s.

Two conclusions can be derived from these data:

(1) Same trends described earlier for centered peaks (Sec. 2.3.1) hold re-
gardless of the peak location. Thus, the §SF thresholds are independent of the

SF’s over the range of the SF’s tested (Fig. 2.6(a)). They are also independent
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Figure 2.5: Symmetry change detection thresholds for 41, 21, and 11 component
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BWF’s in (a) (shown separately for two SF’s); and two SF’s in (b) (shown sep-
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of the BWEF’s for broader peaks (BWF’s=0.2, 0.4), while they increase for the
narrowest peak tested (BWF=0.1) (Fig. 2.6(b)).

(2) 8SF threshold values are independent of the location of the (largest)
peak component. Thus, §SF = 0.15 for BWF’s=0.2, and 0.4, and 6SF =~ 0.3 for
BWF=0.1, for all peak locations. |

Two subject were tested at two additional off-centered peak locations (5t and
15" component). The thresholds are somewhat lower, presumably reflecting the

vicinity of the edges of the profiles.

2.4 Detection of changes in spectral peak band-

width factor

Experiments described in this section measured detectability of a change in spec-
tral peak shape due only to a change in its bandwidth factor (BWF), while hold-
ing the symmetry factor constant. In this sense, these experiments complement
those described earlier in Sec. 2.3. For each test, the detection threshold was

computed as the relative change in the BWF of the standard, i.e., i BWF/BWF.

2.4.1 Results and discussion

Dependence on symmetry and bandwidth factors of the standard

As in Sec. 2.3.1, a 41 component complex was used and the peak level was
kept at 15 dB level above the baseline. Standards of three different bandwidth

factors (BWF = 0.1, 0.2, 0.4) and five different symmetry factors (SF = 0, 0.1,
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0.15, 0.2, 0.4) were used, i.e., a total of 15 conditions. The average value of the
thresholds over three subjects are plotted in Figs. 2.7. The plot in Fig. 2.7(a) is
of the average S BWF/BWF as a function of SF. In Fig. 2.7(b), the thresholds
are plotted as a function of BWF.

The basic result that emerges from all these tests is that the detection thresh-
old for a BWF change is the same regardless of peak shape (6BWF/BWF =~
0.22), over the range of peak shapes studied. The corresponding unnormalized
rms—thresholds are shown in Appendix A.

Our subjects took longer to train for this task than for the symmetry change
detection task. Furthermore, the BWF rms-thresholds are in general higher
than the SF rms-thresholds. During the tests, subjects reported listening for
several different sound qualities, e.g., pitch and sharpness of sound, in order to
recognize the signal. Some of them reported changing their listening strategies

depending on the testing conditions.

Dependence on peak levels

The dependence of BWF thresholds on peak levels was examined in three sub-
jects over the following conditions: three SF’s (0, 0.2, 0.4), three BWF’s (0.1,
0.2, 0.4), and at three peak levels (10 dB, 15 dB, 20 dB). Tests at 15 dB peak
level were repeated to account for the fact that two new subjects participated
in this sequence of tests. The SBWF/BWF thresholds, first as a function of SF
and then as a function of BWF, are given in Figs. 2.8(a) and (b), respectively.
The plots confirm that, at a particular level, the SBWF/BWF threshold is
largely independent of peak shape. However, thresholds do vary as a function of

peak level, but mostly at lower peak levels. For instance, on average, the rate
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Figure 2.7: Bandwidth change detection SBWF/BWTF threshold for 41 frequency
components, and 15 dB peak level, averaged over three listeners, and three
BWF’s (0.1, 0.2, 0.4) in (a), and two SF’s (0 and 0.4) in (b). Data are slightly

offset along the abscissa for clarity.
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of threshold rise in going from the 20 dB to the 15 dB peaks is less than half of
that seen between 15 dB and 10 dB.

Spectral density dependence

Dependence of BWF thresholds on the spectral density was examined for the 15
dB peak level using 11, 21, and 41 component complexes. The average results of
three listeners, using two SF’s (0 and 0.4) and three BWF’s (0.1, 0.2, 0.4), are
presented in Figs. 2.9. In Fig. 2.9(a), they are given as a function of SF, and in
Fig. 2.9(b) as a function of BWF. The corresponding rms—thresholds are shown
in Appendix A.

Once again, S BWF/BWF thresholds remain constant for all conditions tested,
i.e., regardless of peak shape and spectral density. The one obvious exception is
at the broadest peak for the 11 component case, where the threshold is signifi-

cantly larger.

Dependence on location of the largest peak component

As in Sec. 2.3.1, a 21 component complex was used and the peak level was kept
at 15 dB level above the baseline. Standards of three different bandwidth factors
(BWF = 0.1, 0.2, 0.4) and two different symmetry factors (SF = 0, 0.4) were
used, i.e., a total of 6 conditions. The average threshold values of two subjects
are depicted in Figs. 2.10, as a function of the component number of the location
of the (largest) peak component. In Fig. 2.10(a) the thresholds are averaged over
two SF’s, and in (b) over three BWF’s.

The plots confirm the threshold trends established earlier for the centered

peaks (Sec. 2.4.1). Namely, the thresholds are, for a particular peak location,
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Figure 2.9: éBWF/BWF thresholds for 41, 21, and 11 component complexes,
and 15 dB peak level, averaged over three subjects and three BWF’s in (a)
and two SF’s (b). Threshold is independent of spectral density for all but the

broadest BWF, where it increases for the 11 component case.
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Figure 2.10: éBWF/BWF thresholds for 21 frequency components, and 15 dB
peak level, averaged over two listeners, and three BWF’s (0.1, 0.2, 0.4) in (a),

and two SF’s (0, 0.4) in (b).
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independent of peak shape (6BWF/BWF =~ 38%). Moreover, they are also
independent of the location of the peak component. Large error bars are due to
the large differences between the threshold values of the two subjects. Individual

results averaged over two SF’s are shown in Fig. 2.11 for three different BWE’s.
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Figure 2.11: Same as in Fig. 2.10(b), but plotted for two individual subjects.
Note the different BWF/BWF scales used.

38



2.5 Detection of simultaneous changes in both,

SF and BWF

In this set of experiments we change simultaneously the SF and BWF of peak
profiles, and compare the thresholds to those obtained for pure §SF and §BWF
tests. The SF and BWF were changed by decreasing the (absolute value of the)
right slope. This tilts the peak profile to the right, and increases, both its SF
and BWF. Three subject were tested for 21 and 41 spectral density complexes,
for 15 dB peak levels, and for different starting SF’s and BWF’s. Two out of the
three subjects participated also in §SF and éBWF tests reported in Secs. 2.3.1
and 2.4.1.

The threshold results are in Table 2.1(a) and 2.1(b) for the two density cases.

2.5.1 41 spectral sensity case

The 6SF thresholds are independent of the starting SF and BWF, except for the
increase towards the narrower peaks (Table 2.1(a) and Fig. 2.12(a)). Thus, for
BWPF’s between 0.1 — 0.13, 6SF = 0.14, while for broader peaks, BWF’s between
0.15 - 0.84, §SF ~ 0.11.

The BWF/BWF thresholds are independent of the starting SF and BWF,
for peaks with starting SF between 0 — 0.43 (Table 2.1(b) and Fig. 2.12(b)).
The average 6(BWF/BWF = 16.3%, while for highly tilted starting peaks (SF
> 0.43), SBWF/BWF = 38.4%.

Three conclusions follow from these data:

(1) The 6SF threshold trends are similar to those obtained for pure 8SF tests

39



Thresholds for éSF-6BWF test

(41 components)
Starting
SF BWF 6SF éBWF/BWF
(%)

0 0.10 0.13 15.3
0.14 0.12 0.14 195
0.33 0.15 0.11 199
0.60 0.25 0.11  38.7

0 0.13 0.14 158

0 0.20 0.12 14.0
0.11 0.22 0.11 145
0.25 0.27 0.12 195
0.43 0.35 0.09 194
0.67 0.60 0.09 39.7

0 0.40 0.12 139

(21 components)

0.10 0.14 16.7
0.13 015 17.1
0.20 0.13 155
0.40 015 172

oo oo

Table 2.1: 6SF-6BWF/BWF thresholds for various starting SF’s and BWEF’s,

for 41 and 21 spectral density cases.
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Figure 2.12: (a) 6SF and (b) BWF/BWF thresholds as a function of starting
SF’s and BWF’s. 41 component complexes with peaks at 15 dB peak level were

used. Data are averaged over three subjects.
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(Sec. 2.3.1). Namely, the thresholds are independent of SF and they increase
towards the narrower BWEF’s.

(2) The sBWF/BWF threshold trends are the same to those observed earlier
for pure changes in BWF (Sec. 2.4.1). Namely, the SBWF/BWF thresholds are
independent of the starting SF and BWF, for starting SF’s between 0 and 0.43.
Thresholds increase for larger SF’s.

(3) The average threshold values, §SF = 0.11 for broader peaks, are the same
to those obtained for pure 6SF test. The threshold increase for narrower peaks
is somewhat smaller here than for éSF case (0.14 versus 0.16). However, the
average BWF/BWF thresholds are significantly smaller than for pure §BWF
tests (16.3% versus 22%).

2.5.2 21 spectral density case

The tests were repeated for 21 spectral density case (Table 2.1(b)), over a limited
range of SF’s and BWF’s. The average SBWF/BWF = 16.6%, and is indepen-
dent of the starting BWF. The 6SF ~ 0.14 is also independent of the starting

BWF, i.e., it does not exhibit a characteristic increase at narrower BWE’s.

2.6 Two control experiments for SF and BWF

change detection

In this section, we present the results of two control experiments. In the first we

randomized the location (frequency) of the peak between signal and standard in
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order to minimize or abolish the “pitch” cues that may underlie the detection
of SF and BWF changes. In the second experiment we assessed the relative

contribution of the change in peak energy to the detection threshold.

2.6.1 Effects of peak frequency randomization

Numerous experimental results have suggested that the detection of spectral
shape changes may in some cases be effectively mediated by pitch cues associated
with these spectral changes [32, 33, 34, 35]. In order to assess the possible
contribution of such a pitch cue in our tests, we measured the effect on thresholds
of randomizing peak locations, a procedure which in effect destroys the pitch cue.
The change in thresholds was then compared to what would be predicted from
the theoretical strength of the pitch cue computed for each test using the so-

called Ewaif model (reviewed briefly in Appendix B).

Stimulus

The entire spectral content was randomly shifted in order to prevent listeners
from using standard’s and signal’s complex pitches for spectral shape change
detection. Frequency shift was achieved by randomly changing the sampling
time in a range of 40 us to 45 us, in steps of 0.5 us. This amounts to shifting
the central component from 1000 Hz to 889 Hz, and all the other components
accordingly to preserve the frequency spacing.

Two subjects participated in SF and three in BWF change detection se-
ries. They were tested at two SF’s (0, 0.4) and three BWF’s (0.1, 0.2, 0.4) for

the 41 spectral density signals, and 15 dB peak level. Thresholds measured are
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BWF

0.1 0.2 0.4
Sr
&ST test 0 0.4 0 0.4 0 0.4
NI 0.27 0.27 0.13 0.15 0.13 0.11
R 0.36 0.44 0.27 0.23 0.17 0.12
-(NR R) 0.09 0.17 0.14 0.08 0.04 0.01
J 1290.52 1327.40 1227.73  1329.10 1223.27 1430.59
Fig 1315.58 1345.59 1258.564 1369.30 129342 1495.99
AF=F,-Fyq -25.04  -18.19 -30.83  -40.25 -70.13  -65.39
ATF/F 4, - 100 -1.94 -1.37 -2.51 -3.03 -5.73 -4.57

Table 2.2: (a) Symmetry factor change detection threshold (6SF), for 41 compo-
nent complex for non-randomized (NR) and randomized (R) spectra. The first
two rows are the NR and R 4SF thresholds. The third row is the difference of
the first two. The forth and fifth rows are the computed Ewaif pitches of stan-
dard (F,:,) and signal (F,;,) at perceptual threshold levels for NR condition, for

zero-phase components. The AF row is AF = Fy,—F,;,. The last row is the

relative pitch difference, AF/F ...
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BWF

0.1 0.2 0.4
ST
éBWEF/BWT test 0 0.4 0 0.4 0 0.4
NR 0.30 0.31 0.32 0.25 0.23 0.23
R 0.43 0.42 0.62 0.53 0.37 0.36
-(NR R) 0.13 0.11 0.30 0.28 0.14 0.13
Fota 1290.52 1327.40 1227.73  1329.10 1223.27 1430.59
Fag 1243.44 1318.03 1216.00 1377.66 1255.29 1505.61
ATF=Ty,-Fy;g 38.65 9.66 11.69  -49.96 -26.78  -73.16
AF/F,, - 100 2.99 0.73 0.95 -3.76 -2.19 -5.11

Table 2.2: (b) Bandwidth factor change detection threshold (BWF/BWF), for

41 component complex for non-randomized (NR) and randomized (R) spectra.

The table is organized as Table 2.2(a).

Note a change in sign of AF across

various testing conditions, which may explain the change in strategies that our

subjects reported in performing this task.
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presented in Tables 2.2(a) and 2.2(b), for the SF and BWF change tests, respec-
tively. In eaqh table, the first and second rows contain the detection thresholds
for the non-randomized (NR) and randomized (R) peaks. The third row lists
their differences (NR-R). The next two rows are the computed Ewaif pitches of
standard (F,;,) and signal (F,;,) at NR thresholds. The AF row shows the differ-
ence of the previous two. The last row is the relative pitch difference AF/Fg,.
The Ewaif pitches were computed for zero phases, which corresponds to our

stimulus condition.

Assessing the data using the Ewaif model

In order to assess the amount of a pitch cue contribution to the detection of
changes in our stimulus, the following two arguments were used (see [35] for
details):

1) If the detection process relies primarily on a pitch cue (as defined by the
Ewaif model), then some minimal pitch difference, AF [36], or relative pitch
difference, AF/F,;, [35], is necessary for detection. Therefore, at perceptual
thresholds AF or AF/Fj;, should remain relatively constant.

2) If a threshold deterioration occurs due to the uncertainty in the randomized
signal, and not due to the pitch differences across the testing conditions, then it
should be uniform across all conditions. Otherwise, the deterioration probably
reflects the effective contribution of the pitch cue. This is evaluated by the

change in values of the NR-R in Tables 2.2.

Results and discussion

(i) Effects on detection of SF changes (Table 2.2(a))
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With respect to the first argument above, it is clear from the AF and AF/F,
values in Table 2.2(a) that not all pitch cues are equal at threshold, since both
increase approximately 4-fold over the SF’s and BWF’s tested. However, the
rise in 6SF for the narrowest peak might be due to decreasing pitch cue. This
is further supported by the data with respect to the second argument, namely
that the randomization affects only the 6SF thresholds of the narrower peaks.
Therefore, the evidence here suggest that the pitch cue may be effective only for

these peaks.

(i1) Effects on detection of BWF changes (Table 2.2(b))

The AF and AF/F;, values vary greatly (approximately 7-fold) across the
SF’s and BWF’s. Note also a change in sign of AF across various testing con-
ditions. This strongly suggests that the pitch cue plays a minimal role in this
discrimination task. Furthermore, a near uniform increase of the thresholds when
the signal is randomized, supports the notion that it is due to an uncertainty

effect rather than an abolishment of a pitch cue.

2.6.2 Detecting peak energy change compared to a BWF

change

In all the BWF change tests, the peak energy was not equalized as the peak width
was altered. So, it could be argued that the SBWF/BWF threshold reflects a
change in the energy of the peak, rather than in the BWF per se. One indirect
argument against this conclusion is that the rms-thresholds for BWF changes

were sometimes 7 dB worse than those for SF changes (e.g., in Appendix A,

compare data points at BWF = 0.4 in Figs. A.1(b) and Figs. A.4(b)). If the
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tasks were purely based on the total change in energy, then the two thresholds

should be comparable.
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Figure 2.13: (a) Effects of BWF changes in tests A and B (see text), and peak

level changes in test C are shown by dashed lines, for a standard peak with BWF
= 0.2, SF = 0, and A,,,, = 15dB.

A more direct rebuttal of this hypothesis is provided in Figs. 2.13, where the
rms—thresholds of three different tests are compared. In tests A and B, the BWF
of the peak was changed in one of two ways: either as usual through a change
in the width (Fig. 2.13(a), test A), or through a change in the height of the
peak (test B). (In test B, for each peak level of the signal, Asignai, the slopes are
computed as Rgignai = éjﬁ;’j“'stndard, and Lgignat = —Rsignat, where Rgtandard

and A,,,, are the right slope and the peak level of the standard.) In test C, the
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peak’s BWF was kept constant and the rms—threshold is measured for changes
in the peak size, and not its shape. In all three tests, 41 component stimuli were
used with a starting peak level of 15 dB. Three subjects were tested at two SF
(0 and 0.4) and three BWF’s (0.1, 0.2, 0.4).
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BWF
Figure 2.13: (b) The rms-thresholds for the three tests (A, B, and C).

The data in Fig. 2.13(b) reveal that the rms-thresholds (and éBWF/BWF
thresholds) are very close for BWF change detection tests (A and B). They are
also uniformly and significantly lower (approximately 6 dB) than those due to
a change in peak size alone (test C). The conclusions we draw are that (1) a
BWF change is a more effective feature to detect than just scaling the peak, and
that (2) the relatively small changes in peak energy associated with the BWF
tests (as in A and B) are unlikely to contribute significantly to the BWF change

detection thresholds.
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2.7 Broader interpretations of SF and BWF

changes

In all experiments so far, the changes in peak shapes were parameterized in terms
of SF and BWF changes. There is, however, an equivalent and more general
description of these two manipulations. For instance, a four-fold increase in
BWF (from BWF = 0.1 to 0.4) can be viewed as a stretching (or a dilation) of
the peak profile along the w axis, i.e., p(w) becomes p(a - w) with a = 1/4 (see
Fig. 2.14(a)). This change in p(w) can be equivalently described in the Fourier
transform domain of the profile. Namely, if P(Q) is the Fourier transform of
p(w), then dilating the profile by a factor a causes its transform to become
1/a- P(Q2/a) (Fig. 2.14(b)). The computations of the magnitude of the Fourier
transform of the peak profile are in Appendix C.1. The units of {2 in the profile
transform domain are in terms of the number of cycles per unit distance (octave)
along the w axis. (For instance, a sinusoidal profile with £, = 2 cycle/octave is
a profile whose peaks are separated by 1/2 octaves along the w axis.)

The change in the SF of a peak p(w) can be also expressed in terms of a cor-
responding (though somewhat less intuitive) modification of the peak transform
P(Q). Specifically, if a small constant phase angle 6, is added to the phases
of all components of the transform P({), then the corresponding profile p(w)
becomes tilted in a manner very similar to that caused by a SF change. This
is demonstrated in Figs. 2.14(c) and (d) for three SF’s and their corresponding
6, angles: SF = 0.05 (3°), 0.15 (9°), and 0.3 (18°). (The computations are in
Appendix C.2).

The above interpretations of the §BWF and §SF imply that these manipu-
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Figure 2.14: (a) Peak profiles with A, = 15 dB, BWF’s 0.1 and 0.4 (solid

lines), and BWF’s at 25% detection threshold (dashed lines). (b) Magnitude of

the profiles’ Fourier transformations, |P(f)|. The effect of the BWF change is a

shift in magnitude (and not a change in shape) along

51

the log Q1 axis.



p(w)
o N £ =N »

2 15 -1 05 0 05 1 15 2
w, octave

pd8(w)
o

2 -15 -1 05 O 05 1 156 2
, octave

Figure 2.14: (c) and (d) The effects on changes in the symmetries of a peak
profile (BWF = 0.4 and SF = 0) due to adding constant phases (3°, 9°, and 18°)

to its Fourier transform.
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lations can be readily applied to any arbitrary spectral profile. The sensitivity
measurements can then be directly compared across different profiles. Specifi-
cally, we shall be interested in comparing the dilation ({BWF/BWF') and phase-
shift (6SF) thresholds of the peaks to those of sinusoidally modulated spectra,
or ripples, which are the basis functions of the Fourier transform. Dilating a
rippled spectrum simply changes its ripple (or envelope) frequency, and shift-
ing the spectrum along the w axis changes its phase (Fig. 2.15). While ripple
frequenvcy—difference—limen thresholds were measured previously [37, 2], no ripple
phase sensitives have been reported in the literature. The experiments described

below provide these measurements.

amax

y @min

-1 -08 -06 04 -02 0 02 04 06 08 1

, octave

Figure 2.15: A sinusoidal ripple profile with ripple frequency of 2 cycle/octave,
and 15 dB peak-to-valley amplitude (computed as 201og;o(@maes/@min)). Its 16°

phase shifted version is shown in dashed lines.
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2.8 Phase difference limen experiments

Sensitivity to ripple phase changes was measured in sinusoidally modulated pro-
files on a dB amplitude scale (Fig. 2.15), and the thresholds, termed phase-

difference-limen (pdl), are reported in units of degrees.

2.8.1 Stimulus

For all testing conditions, the number of frequency components was 161 (34 per
octave), and the frequency components were equally spaced on a logarithmic
scale between 0.2-5 kHz. The starting ripple phase was kept constant at zero

degrees for the data reported here. Other starting phases were also tested, and

Qmagz

results were very similar. The peak-to-valley ratio was defined as 20log

Qnin ’

where @mqe and ami, are the peak and valley amplitudes of the sinusoid (see
Fig. 2.15). The ripple frequency () was fixed over a set of trials at 0.25, 0.5, 1,
2, or 4 cycle/octave, for 15 dB and 25 dB peak-to-valley ratios. One of the two
subjects also completed the test for 8 cycle/octave, and for 35 dB peak-to-valley
ratio, while the other was tested at 2 cycle/octave and 20 dB and 35 dB levels.

The overall intensity was varied across and within the trials over a 20 dB

range in 1 dB steps.

2.8.2 Results

The average data for two subjects are presented in Fig. 2.16(a) as a function
of ripple frequency, for two levels. The results show that thresholds are con-

stant below about 2 cycle/octave at both levels tested, achieving a minimum of
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about 6° for the larger level. Phase sensitivity decreases with increasing ripple

frequencies beyond 2 cycle/octave.
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Figure 2.16: (a) Phase difference limen threshold (pdl) as a function of ripple
frequency, for 15 dB and 25 dB peak-to-valley amplitudes (or ripple levels), av-
eraged over 2 subjects. (b) Individual pdl thresholds at three ripple frequencies
as a function of ripple level (subject 1 was tested at 0.25 and 8 cycle/octave, and

subject 2 at 2 cycle/octave).

Figure 2.16(b) depicts the data for individual subjects as a function of ripple

level. Thresholds saturate with increasing levels at all ripple frequencies tested.

33



2.8.3 Discussion

There are two important characteristics of the data in Fig. 2.16(a). The first
is that for lower ripple frequencies (), subjects detect a constant phase shift
and not a constant displacement of the peaks, as is probably the case for {2 > 2
cycle/octave. The second is that the lowest detectable phase shift (6°) is very
close to the phase shift implied by the éSF thresholds (= 0.11) measured for the
peaks (Figs. 2.3). The correspondence between these two thresholds confirms
the association made between them as explained in Sec. 2.7. It also suggests
that this threshold is independent of the particular spectral shape used. The

implications of this finding are discussed in more detail in Chapter 3.

2.9 Summary of results

The experiments described here measured subjects’ ability to detect changes in
the symmetry and bandwidth factors of spectral peaks under various conditions.
The choice of these spectral features was inspired by the physiological finding
that the primary auditory cortex encodes explicitly the locally averaged gradient
of the acoustic spectrum. In the case of spectral peaks, the local gradient is
directly related to the symmetry of the peak. Since the shape of a peak can be
effectively described by its symmetry and bandwidth, our goal was to examine

the perceptual sensitivity of, and interdependence between, these features.

The basic result that emerges is that thresholds to changes in SF and
BWF are (with one exception) approximately constant regardless of

peak shape parameters tested. Thus, for the detection of SF changes, 6SF
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thresholds are near 0.11 for all SF’s and almost all BWF’s (Figs. 2.3). The ex-
ception occurs towards the narrowest peak (BWF = 0.1) where (1) the detection
threshold increases gradually to 0.16 (Fig. 2.3(b)), and (2) pitch cues associated
with this detection task become more effective (Sec. 2.6.1(i), Table 2.2(a)). For
the detection of BWF changes, all éBWF/BWF thresholds remain constant at

around 0.22 regardless of the peak shape (Figs. 2.7).

Also measured were the effects of three additional manipulations that did not
change the shape of the peak: (1) change in the peak level; (2) spectral density
of the complex; and (3) location of the largest peak component. For the first,
all thresholds maintain the same trends regardless of peak level. Their absolute
values, however, slightly improve for higher peak levels (Figs. 2.4 and 2.8). For
lower peaks, the deterioration in BWF/BWF thresholds accelerates with de-
creasing peak levels. It is possible that the uniform rise in threshold is mediated
by increased masking effects of the base upon the smaller peak. For the second
manipulation, §SF thresholds increase gradually with decreasing densities only
at the narrowest peak (Fig. 2.5(b)), whereas S BWF/BWF thresholds deteriorate
only for the lowest density (11 components) at the broadest peak (Fig. 2.9(b)).
The thresholds are independent of the location of the maximal peak component

(Secs. 2.3.1 and 2.4.1).

The experiments reported in Sec. 2.5 investigated how simultaneous changes
in SF and BWF combine into a single detection cue. The trends in SF and
BWF changes are the same as for the pure 6SF and 6BWF tests, for the same
range of starting SF’s and BWF’s (from 0 to 0.4). However, the threshold values
are 6SF =~ 0.11 and éBWF/BWF = 16%, i.e., they are approximately the same

as those for pure 6SF tests and much smaller than those for pure BWF test.
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Although limited to only one way of changing both the SF and BWF, this set
of experiments indicates that the overall detection occurs when one of the cues,

in this case a change in SF, reaches its thresholds. The thresholds increase for

more tilted peaks (SF>0.4).

Finally, rms-threshold values for SF and BWF detection tasks are compa-
rable to other profile detection tasks (see Appendix A). Furthermore, they are
significantly lower than rms-thresholds of changes that do not affect peak shape
(Fig. 2.13(b)).

More generally, it is conjectured that for an arbitrary spectral profile, chang-
ing the SF and BWF, corresponds to changing the phase and the magnitude of
the Fourier transform of the profile (Sec. 2.7). A fundamental conclusion from
this analysis is that the detection of peak shape changes can be parametrized
along two sensitive and largely independent axes: peak SF and BWF. This result
lends support to the notion that the underlying physiological representation of
these two features of a peak may be separated along orthogonal dimensions. For
instance, one conjecture might be that the SF is mapped explicitly by the gradi-
ent map found in AI [9]. Then, this map is duplicated more than once, each at
a different scale of local averaging of bandwidth, in essence providing the BWF
dimension. While a physiological substrate for such a multiscale representation
is yet unavailable in AI, maps of gradually changing tuning in the response areas

of cells along the isofrequency planes in Al are in harmony with this view [10].
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2.10 Profile analysis models

The choice of a threshold measure implies an underlying profile analysis model.
Here we first apply to our data, two profile analysis models which have been
shown to perform well in a variety of detection tasks. Both models presume
that profile changes are conveyed by independent channels distributed across the
spectrum. The first is the channel model for discrimination of broadband spectra
proposed by [25], which basically combines information from all independent
channels. The other is the maximum difference model described in [24], which
is based on detecting the largest difference between any pair of components
in the signal, i.e., it uses only two channels in computing the thresholds. We
examine how these two models predict the detectability of peak shape changes by
monitoring the constancy of the index d' (see Sec. 1.2) computed at perceptual

thresholds at various SF and BWF combinations.

2.10.1 The channel model

This model is described in detail in [23, 25]. It consists of N noisy channels
whose variances (o) are assumed to be constant. Some interdependence be-
tween the channel outputs is introduced because of the level randomization in
the éxperiments. The uniform roving level distribution over a 20 dB range
(cr = 5.6dB) is approximated by a normal distribution of og = 5dB. Fur-
thermore, it is assumed that the channel variances are such that og - N > o.

‘th

The level difference between the standard’s and signal’s ¢** component is de-

fined as A; = 20 log((pi)signal/(pi)standard). These assumptions lead to d' =

\/(2 A? — (T A:)?)/o. The numerator (or d'c) was computed at perceptual
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thresholds for different testing conditions (Tables 2.3) and at the limits of the
error bars, in order to determine its sensitivity to threshold changes.

For 6SF tests, the stimuli are “balanced” (see [25]), in that 3" A; ~ 0, or at
least (3" A;)?> < ¥ A?. The channel model predicts reasonably well the average
thresholds as a function of peak’s starting symmetry (SF) (Table 2.3(a)). It
however fails to predict the éSF threshold trends as a function of BWF. For
instance, to maintain a constant d'c, the average éSF at BWF = 0.2 (21 com-
ponent stimulus) needs to be larger by 21% (= 0.20). A similar decrease in
threshold is necessary at BWF = 0.4 for the 41 component stimulus (27%, or to
0.08).

For 6BWF tests, all, with one exception, d'c’s are comparable when con-
sidering the significant overlap due to the error bars (Table 2.3(b)). The only
stimulus for which the model clearly fails is the broadest symmetric peak (SF =
0, BWF = 0.4) for both spectral densities.

The model also fails to account for the detection thresholds measured in the
control experiment (C) described in Sec. 2.6.2. Specifically, it predicts higher
than perceptual thresholds for the narrowest peaks (Table 2.3(c)).

Finally, the d'c for the phase data (Table 2.3(d)) increases with increasing
threshold values at higher ripple frequencies. This is true for both 15 dB and 25
dB levels. The model therefore predicts a constant pdl instead of the increasing
thresholds seen at higher ripple frequencies. For instance, a d'c = 10.51dB for 8
cycle/octave and 15 dB level stimulus, would predict a 9° threshold, compared
to the 49.58° perceptual value. Note that the stimuli here are “balanced” as in
the 6SF tests.

In summary, the channel model predicts reasonably well most of the threshold
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d'o for 6SF test (21 components)

BWF
SF 0.1 0.2 0.4 average

0 4.46 £0.13 3.15 +0.19 4.36 £0.52 3.99

0.4 3.68 +£0.07 3.58 +0.13 4.84 +0.30 4.03

average 4.07 3.37 4.60
8SF 0.34 £0.01 0.17 £0.01 0.17 £0.02
threshold
d'o for 8SF test (41 c01f1p011e11ts)
BWF
SF 0.1 0.2 0.4 average

0 2.96 £0.19 2.88 £0.13  3.97 £0.18 3.27

0.4 3.36 £0.22  3.22 £0.15  4.33 +0.20 3.64

average 3.16 3.05 4.15

6SF 0.16 £0.01 0.11 £0.005 0.11 £+0.005
threshold

Table 2.3: d'o values for the “independent channel model” (Sec. 2.10.1). (a) d'o
for 6SF tests for 21 and 41 component spectra, evaluated at threshold and error
bar limit values (in brackets) which are given at the bottom of each table. (For
example, for BWF = 0.1 and SF = 0, 6SF = 0.34 with error bar limit of &+ 0.01,
and the corresponding d'c = 4.46 £ 0.13.) Thresholds are from Figs. 2.5(b) and

2.3(b) for 21 and 41 density cases.
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d'o for SBWF test (21 components)

BWF
SF 0.1 0.2 0.4 average

0 3.04 £0.27 2.68 £0.46 1.98 £0.14 2.57

0.4 3.03 £0.27 2.80 £0.49 2.52 £0.17 2.78

average 3.03 2.74 2.25
§BWF/BWF 30 £3% 25 +5% 25 +2%
threshold

d'oc for SBWF test (41 components)

BWF
SF 0.1 0.2 0.4 average

0 3.11 £0.24  3.02 +£0.19 2.58 £0.21 2.90

0.4 3.12+£0.25 3.16 £0.20 3.27 £0.25 3.18

average 3.11 3.09 2.92

§BWF/BWF 21.5 £1.8% 20.0 +1.4% 23.6 +2.1%
threshold

Table 2.3: (b) d'c values for BWF tests. The table is organized as Table 2.3(a),

with threshold values from Figs. 2.9(b) and 2.7(b) for the two density tests.
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d'c for control experiment C

BWF
SF 0.1 0.2 04 average

0 4.22 +0.86 6.40 £1.86 5.46 +1.28 5.36

8Amar 2.79 +£0.55 3.49 +0.98 3.44 £0.81
threshold

0.4 4.41 £0.80 6.51 £1.02 6.62 £1.29 5.85

§Amar 2.91 £0.51 3.53 £0.53 3.63 +0.69
threshold

average 431 6.45 6.04

Table 2.3: (c) Similar to Table 2.3(a) for control experiment C (Fig. 2.13(b)).

Thresholds are given separately for the two SF’s.
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d'c for phase-ripple experiment

ripple frequency (cycle/octave)
0.25 0.5 1 2 4 8

do 9.59 10.44 8.89 947 19.0 4958

pdl, 15 dB 8.09° 9.08° 7.53° 8.1° 16.22° 43.47°

do 10.67 10.20 10.08 14.32 28.39

pdl, 25 dB 5.39° 531° 5.11° 7.34° 14.53°

Table 2.3: (d) d'o for pdl tests with spectral sinusoids, for 15 dB and 25 dB
peak levels and thresholds from Fig. 2.16(a).
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trends measured in our experiments. However, we can discern no simple pattern
to the failures since they occur at various BWF’s, and are apparently unrelated
to the number of stimulus components (for the two cases tested). It is possible
that some of the simplifying assumptions are invalid, for instance the constant

o over all channels or the actual number of independent channels used.

2.10.2 The maximum difference model

This model is based on the detection of the maximum level difference between
only two spectral regions. The model was derived from experimental results
with flat standards, and was defined accordingly for such tests. It predicts well
the threéholds in a number of profile analysis tasks [24]. In order to apply
the model to the peak stimuli, the computational scheme was slightly modified.

th

For instance, we define the level difference between the i** and j** frequency

component as A; ; = 20 log((pi)signat/ (Pi)standard) — 20 108((P;)signat/ (P;)standard)-
Also, contrary to the assumption of the original model [24], we take the o’s to
be constant for all channels, and hence the largest d’ is defined by the largest
Aij, or A (i.e., d = max;; d:-,j, where d;-,j = A;;/0i;).

The computed A’s for the §SF tests are shown in Table 2.4(a). As a function
of a peak’s BWF, the trends are well predicted for the larger BWF’s (0.2 and
0.4). For the narrow peaks (BWF = 0.1), the model predicts smaller threshold
than is observed. It also predicts a slight dependence of the thresholds on SF
where none exists in the data. Note that including a variable o would probably
worsen the predictions. This is because for broader peaks A occurs closer to the

edges of the profile where o is larger. Consequently d' becomes smaller than

indicated by the table.
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A for 8SF test (21 components)

BWF
SF 01 02 04 average
0 5.12 2.53 2.58 3.41
0.4 435 329 331 3.65
average 473 291 2.94
8SF 0.34 0.17 0.17
threshold
A for 6SF test (41 components)
BWF
SF 01 02 04 average
0 2.39 165 1.66 1.90
0.4 3.07 2.04 2.09 2.40
average 273 1.84 187
é6SF 0.16 0.11 0.11
threshold

Table 2.4: Maximal difference levels, A (dB), for the “maximal difference model”

(Sec. 2.10.2). Tables are organized as Tables 2.3 (with the same threshold values

as in Tables 2.3). (a)
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For BWF tests, A is approximately constant for all SF’s and BWF’s except
for the narrowest peak for 21 component stimulus (Table 2.4(b)). Therefore, with
the assumption of constant o’s across all spectral regions, the model predicts well
the perceptual trends. However, increasing o’s towards the edges (as in [24])
would cause the d' to decrease with increasing BWF, predicting erroneously
higher thresholds for these conditions.

Predicted threshold trends for the control experiment are consistent (Ta-
ble 2.4(c)) with the experimental ones, since A values appear scattered around
2.7 dB for all conditions. They are, however, larger than those of the éBWF
tests, indicating that the model accounts well for the trends in the thresholds,
but not for their absolute values.

The maximal difference for the ripple-phase data is roughly constant at lower
ripple frequencies, and follows the threshold increase at higher ripple frequencies
(Table 2.4(d)). This is similar to the d'o trend in the channel model. Thus, the
maximal difference model predicts constant thresholds at all ripple frequencies
contrary to the observed data.

In summary, the picture that emerges from applying the maximum difference
model to our data is a mixed one. For instance, the model clearly accounts for
several of the observed trends in our data, especially the §BWF tests. Using
variable ¢’s may extend the applicability of the model to a bigger portion of
the tests, but it clearly destroys the good predictions of the 6BWF tests. The
pattern of prediction errors is somewhat more structured than for the channel
model, in that the model seems to fail mostly for the narrowest peaks. It also

fails to predict the 6SF independence of SF.
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A for BWF test (21 components)

BWF
SF 01 02 04 average
0 185 1.64 1.68 1.72
0.4 1.86 1.66 1.68 1.73
average 1.85 1.65 1.68
SBWF/BWF  30% 25% 25%
threshold
A for BWF test (41 components)
BWF
SF 0.1 0.2 0.4 average
0 143 137 1.59 1.46
0.4 1.45 1.37 1.59 1.47
average 144 137 159
§BWF/BWF  21.5% 20% 23.6%
threshold

Table 2.4: (b)
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A for control experiment C

BWF
SF 01 02 04 average

0 242 3.03 261 2.69

$Amaz 279 349 3.44
threshold

0.4 2.53 3.08 2.83 2.81

6 Amar 291 3.53 3.63
threshold

average 247 3.05 2.72

Table 2.4: (c)
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A for phase-tipple experiment

ripple frequency (cycle/octave)
025 0.5 1 2 4 8

pdl, 15 dB 8.09° 9.08° 7.53° 8.1° 16.22° 43.47°

A 235 232 223 3.16 6.32

pdl, 25 dB 5.39° 5.31° 5.11° 7.34° 14.53°

Table 2.4: (d)
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2.10.3 Discussion

Both the channel and the maximum difference models described above account
partially for the data. And it is possible that one or both of models can be
made to account fully for the data with enough parameter adjustments. So it is
difficult to pass judgement on these models on these grounds.

Both models, however, have been reported to raise fundamental questions
when applied to a different stimulus - the sinusoidal ripple [24, 37]. The maxi-
mum difference model predicts well the detectable “amplitude of the ripple” [24].-
The model also correctly predicts that thresholds are independent of the number
of ripple cycles since they are estimated from a single pair of channels. This,
however, runs directly counter to the premise of the channel model — that more
independent channels of information must lead to lower thresholds [37]. The
success of the maximum difference model with rippled (and alternating) profiles
therefore raises the question: Why is the additional information provided by
other independent channels not used?

One way to resolve this difficulty is to change the definition of the independent
channels. For instance, if one thinks of the maximum level difference (from
a pair of channels) as the amplitude of the ripple, then adding more ripple
cycles (and hence more channels) does not add new information. Thus, an
alternative definition (or model) of the channels is that they sense the amplitude
(and perhaps the phase) of ripples of different frequencies. Such a channel does
not measure the energy difference at one point in the spectrum, rather it conveys
information about a more structured spectral pattern (e.g., the ripple).

This “ripple analysis model” implies that the detection strategy of the spec-

tral profile is not applied to the profile directly, but instead to some transfor-
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mation of the profile. Such an approach is not unusual - afterall, the spectral
profile itself is a transformation from the time-domain of the signal, and the clas-
sical channel model is applied to a (Fourier) transformation of the signal (the

spectrum). An elaboration of this idea is presented in the next chapter.
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Chapter 3

A new ripple analysis model

3.1 Motivation

In characterizing the perception of spectral profiles, a basic objective is to select a
model representation upon which an appropriate metric can be defined. Several
such models have been proposed to account for data from a wide range of psy-
choacoustical tests, including profile analysis experiments and discriminations
of simultaneous vowels. Examples are the independent channel model [25], the
maximum difference model [24], the spectral slope model [29], and the spectral
peak model [12]. Despite their unique characteristics, all models share the same
fundamental starting point, that the spectral profile is represented by the acous-
tic spectrum on a logarithmic frequency axis. Relative to this profile, various

operations are then defined to predict the measured perceptual thresholds.

However, based on experiments with peak profiles, and analysis of the results
using two models [25, 24], it was suggested that a more parsimonious explanation

of the results emerges if the spectral profile is assumed to be represented in the
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auditory system by its Fourier transformation (Sec. 2.7). Specifically, such a rep-
resentation implies that an arbitrary complex profile is analyzed into a collection
of elementary sinusoidal profiles of different frequencies (called ripples). This is
accomplished via a bank of filters, each independently tuned to a different ripple
frequency (and possibly to a specific phase of the ripple). Detection thresholds

would then be computed from this representation of the profile.

The idea that the brain analyzes and perceives its sensory patterns in this
manner is relatively common, especially in the vision literature where it has
been variously called multi-resolution or multi-scale representation, and spatial
frequency analysis [15, 16]. It is, however, the elegant anatomical and physio-
logical work of [38] that has provided the most immediate inspiration to pursue

this type of model for the auditory system.

Recent neurophysiological recordings in the auditory cortex have confirmed
that cortical cells are indeed tuned to specific ripple frequencies and phases
[17, 18]. Furthermore, that the ordered mappings of response area bandwidths
and asymmetries along the isofrequency planes of Al [9, 10] are just a different
manifestation of these two ripple response properties. These findings support
the notion that auditory cortical cells are able to perform the necessary ripple

analysis.

Essential to the development of an auditory ripple analysis model, however,
are basic psychoacoustical sensitivity measures using simple rippled spectra. A
few such experiments have already been performed [37, 39, 2]. Using these
data, and the conceptual framework outlined above, an explicit computational
model is developed to interpret the results of various profile analysis experiments,

including the peak profiles described in Sec. 2.7.
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In the following sections, we first restate the results of the peak profile ex-
periments in the context of the ripple analysis view. The basic outlines of the
computational model are presented in Sec. 3.3. Its various parameters are esti-
mated in Sec. 3.4 using detection thresholds reported in [2, 37]. The model is

discussed in relation to auditory percepts such as timbre and pitch in Secs. 3.5.2

and 3.5.3.

3.1.1 Terminology and notation

Several terms will be frequently used in this paper to describe the ripple analysis

representation of profiles. These are:

Ripple: refers to a sinusoidal spectral profile (e.g., p(w) = sin(27Qw + 6)),
on the logarithmic frequency axis, w. A ripple has a ripple frequency Q (in

cycle/octave), and a ripple phase 6 (in radians or degrees).

Ripple spectrum, P(f): refers strictly to the Fourier transform of the
profile p(w).

Ripple analysis filter, H(Q;Q,, ®,): refers to a bandpass filter that is

tuned around a characteristic ripple frequency (£2,) and phase (®,).

Ripple transform, r(-): refers to the output of a bank of ripple analysis

filters.

3.2 Restatement of spectral peak results

As discussed earlier in Sec. 2.7, changing the bandwidth factor (BWF) and

symmetry factor (SF) of a peak profile is equivalent to a shift in the magnitude
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and the phase of its ripple spectrum. In this section, the §SF and éBWF/BWF

detection thresholds are restated in the context of the ripple analysis model.

3.2.1 6BWF as a shift in the magnitude of the peak’s

ripple spectrum

A BWF change represents a dilation of the profile p(w) along the w axis. Thus,
changing the BWF by a factor «, changes the profile to p(aw), and its ripple
spectrum from P(2) to 1/a P(f2/c). Therefore, on a logarithmic ) axis, the
dilation causes P({2) to translate by log, a octaves without changing its shape
(see Figs. 2.14(a) and (b)).

Consequently, the S BWF/BWF thresholds from Figs. 2.7 can be restated as
follows: Regardless of the shape of the peak, subjects detect approxi-
mately a 22% change in BWF, or a profile dilation factor o ~ 0.8. This
corresponds to 0.29 octave translation of the ripple spectrum.

For a single ripple profile, a dilation simply changes the frequency of the
ripple. Thus, a dilation threshold in this case measures sensitivity to ripple
frequency changes, or the so-called frequency-difference-limen (fdl). Such mea-
surements were recently reported in a Ph.D. Dissertation by [2]. These are

discussed in detail and related to our measurements later in Secs. 3.4.2 and 4.1.
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3.2.2 4SF as a shift in the phase of the peak’s ripple

spectrum

As discussed earlier (Sec. 2.7, Figs. 2.14(c) and (d)), small 6SF’s (or tilts) in
the peak profile p(w) can be equivalently produced by adding a constant phase
angle to all components of its ripple spectrum P(?), leaving the magnitude of
the ripple spectrum unaltered.

Therefore, §SF thresholds are in effect a measure of the subjects’ ripple phase
sensitivity, and as such, one may restate the results from Figs. 2.3 as follows:
For broad peak profiles (BWF > 0.2), subjects detect a §SF ~ 0.11,
which corresponds approximately to a 6° shift in the phase of the ripple
spectrum of the profile. Thresholds increase to about 0.16 or 10° for
the narrowest peak (BWF = 0.1). (See Appendix C for computational
details).

For single ripple profiles, this task is exactly equivalent to measuring the
sensitivity to ripple phase shifts, termed here phase-difference-limen (pdl). Such
measurements are reported in (Sec. 2.8), and will be discussed in relation to the

6SF thresholds later in Sec. 4.4.

3.3 General description of the ripple analysis

model

The ripple analysis model can be conceptually divided into two stages: (1) A
ripple transformation stage modeled as a filter bank which simply converts the

input spectral profile into its corresponding ripple transform; (2) A detection
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model which operates on the magnitude or phase of the ripple transform, or on

selected features of it such as its maxima and edges.

3.3.1 Computing the ripple transform of a spectral pro-
file

This stage consists of a bank of ripple selective filters analogous to the frequency
selective filters of the cochlea. Each filter H(,,) is assumed to be Gaussian

shaped and centered around a particular ripple frequency €, (Figs. 3.1(a) and
(c)). Therefore,

H(Q;Q,) = G — Q)+ G(Q+Q,), (3.1)

2
where, G(Q £ Q,) = €~ T3 , and o determines the width of the ripple filter

centered at ,. The inverse transform (impulse response) of G(Q£Q,) is g(w) =

2rwa)?

go(w) eF2ew  where go(w) = v2mo €™~ z . The inverse transform of the
H(Q;9Q,) filter, h(:) (Fig. 3.1(b)), is a Gaussian weighted sinusoid known as
the Gabor-like function [40] (they are also a subset of the so-called localized

trigonometric basis functions, [41]), given by:
h(w; Q) = 2 go(w) cos(27Npw).
In general, the weighted sinusoid can have an arbitrary phase, ®,, such that:
h(w; R, @,) = 2 go(w) cos(2rQow — B,). (3.2)

Therefore the output of any given filter can be computed by convolving its

impulse response h(w;$,,®,) with the input profile p(w):

r(wo, Qb, o) = / h{w, — w; N, ®,)p(w)dw
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= / H(;Q,, B, w,) P(Q) 2™ dQ). (3.3)

Note that each ripple filter is indexed by three parameters (Q,, ®,,w,) reflecting
the ripple frequency and phase selectivity of the filter, and the location along
the tonotopic axis around which the analysis is performed.

In the remainder of this paper, Eq. 3.3 will be simplified to focus on the
magnitude (rather than the phase) of the ripple filter outputs. This is justified
for profile manipulations which affect only the magnitude of the ripple transform,
e.g., changing the BWF of peak profiles. Another simplification of Eq. 3.3 is to
compute the filter outputs only around the center of the profile (w, = 0), i.e., to
suppress the index w,. The impulse response of a ripple filter centered at w, = 0

is given in Eq. 3.2, and its localized Fourier transform is:

H(QQ,,0,) = (G(Q-02,)+G(Q+9,)) cos(®,)—7 (G(2-Q,)—G(Q+£,)) sin(d,)
= H(;Q,) cos(P,) + I;T(Q, Q) sin(®, ),

where,

A

H(%9,) =HH(;Q,),

and H is a Hilbert transformer defined as H = —; sign(Q). Note that the filter
19:1:9022 .
is real, stable, and causal [42]. Since G(Q £+ Q,) =™ 222 | H({;,) is pure

real and H(Q;(Q,) is pure imaginary. Then:
H(;9,,0,) = H(;Q,) cos(D,) — 7 sign(Q)H(Q; Q,) sin(P,)

= H(Q;Q,) ¢™? *ion( D)%

The ripple transform response to an arbitrary (real) input profile with ripple

spectrum P(Q) = |P(Q)]e?® is:

o}

r(Q, ®,) = / > H(0;9,,0,)P(0)dQ = / H(Q; Q)| P(Q)]e(2ian(8)2o+0(2)) g0
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Figure 3.1: (a) Magnitude of three ripple filters centered at €}, = 1,3, and

8 cycle/octave. (b) Inverse Fourier transforms for the three filters in (a)
centered at w, = 0, with ®, = 0 The inverse is computed as h(w;Q,) =

rwo(Qo 2
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Figure 3.1: (c) Same as (a) but plotted on a logarithmic 2 axis. (d) Three input
representations of a symmetric peak profile with BWF = 0.2 and A,,,, = 15 dB
(left), and their corresponding ripple spectra (right). There are little differences
between the three representations or their ripple spectra. The solid line is the
normalized linear representation of the peak (right ordinate). The dotted line is
the same peak profile represented on a logarithmic amplitude scale. The dashed
line depicts the output of the excitation pattern model (no corrections were

applied in the model, and the base was 0 dB amplitude; see [1] for details).
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=2 /0 " H(0;9,)|P(Q)] cos(®, — 0(2))dS2.

There are two important observations to make here:

1) The ripple transform is a (sinusoidal) function of the characteristic phase
of the filter. Thus, there is a particular ®, for which the response will be a
maximum. Its value depends on the () of the input profile.

2) If the input profile is dilated by factor a, i.e., P(Q) — 1/aP(02/a), then
r(Q,, ®,) becomes:

r(Qo, ®,) = 2/ H(2;9,)|P(Q/a)]| cos(®, — 0(Q/a))d/a.
Evaluating r(-) at Q,/a (= ), and letting Q/a = V', we get:
=2 / H(QY; Q)| P(Y)] cos(@, — B(SY))deY, (3.4)
which is identical to r(Q,,®,) prior to dilation. Therefore, a dilation simply
translates the filter outputs by log, o octaves, preserving their shape against a
log, §2, axis. Furthermore, the response as a function of ®, remains unaltered.
Depending on the input profile and the type of manipulations applied to
it, it is possible to simplify the above expression for r(-). Majority of profiles
considered here will be even or odd symmetric around their center, so that

their ripple spectra P(2) have constant phase as a function of . In this case,

0(2) = sign(2)0,, and the response becomes:
r(Q, B,) = cos(®, — 6,) / " H(%;9,)[P(Q)]d0.

Depending on the phase (asymmetry) of the input profile 6,, the maximal re-

sponse is at ®, = 0,:

() = [~ H®:0.)IPQ)] do. (3.5)
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This is the expression used in computing the ripple transforms of various input
profiles.

Once again, for a pure dilation manipulation of an input profile (e.g., BWF
test), the ripple filter response r(§,) translates along the log §), axis, but remains
unchanged along the @, axis (i.e., it is largest at ®, = 0, as before).

The two profile experiments that do not satisfy the above assumptions are
the detection of ripple phase shifts, and detection of SF changes of the peak
profiles. Both tasks are discussed separately in Sec. 4.4.

Finally, the filter bank depicted in Figs. 3.1(a) and (c) is assumed to be a con-
stant @) bank, i.e., its filters have constant widths on a log ) axis, or equivalently
have linearly increasing widths (o’s) with ©,. This choice is primarily justified
by adaptation experiments (both with ripples [2] and visual gratings [38]), and
neurophysiological experiments [43] in which filter tuning was estimated around
various {),’s to be approximately 1 octave (measured at the half amplitude point).

This corresponds approximately to choosing ¢’s as o(£,) = 0.3 €.

The representation of the input spectral profile

Another important issue to consider here is how the auditory system represents
the input spectral profile. For example, is the profile represented on a linear
or logarithmic (dB) amplitude scale? There are only a few psychoacoustical
studies that explicitly contrast these two representations, and their results are
somewhat contradictory [2], [44]. The logarithmic amplitude spectrum has been
the most widely assumed representation in profile analysis experiments. It is a
scale-normalized spectrum in that it preserves only level-independent features of

the spectrum. A linear, but similarly level-tolerant representation, would result
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if the amplitude spectrum is normalized by the total energy or average power or
some other level-sensitive quantity such as the height of the base profile. Other
representations can be used that range from a simple scale-normalized power
spectrum, to more complicated biologically and psychoacoustically inspired rep-
resentations such as the excitation pattern model [1], and the auditory filter
models of [45, 2, 46, 47, 48].

In general, an inappropriate profile representation distorts its intended ripple
spectrum P(Q). In some cases, the distortions are rather small, as with low am-
plitude ripples where linear and logarithmic ripples look very similar, and their
perceptual thresholds are closely matched [39, 37, 2]. Similarly, peak profiles
exhibit similar ripple spectra regardless of whether they are represented on a
logarithmic or linear scale, or via a more complicated model (Fig. 3.1(d)). In
other cases, the distortion is large but inconsequential in the context of the ripple
analysis model as will be discussed in more detail in Sec. 3.5.1.

In summary, for most profiles considered here, the choice of the input rep-
resentation does not alter the basic conclusions. Therefore, p(w) is taken to be
the linear amplitude spectrum of the stimulus, normalized by the amplitude of
the base, i.e., p(w) is the profile amplitude relative to its base. For the case
of spectral peaks, where the whole amplitude is denoted by p(w) (Eq. 2.1), the

input representation is actually p(w)/b.

3.3.2 Different types of detection procedures

Figures 3.2 illustrate the output of the filter bank (according to Eq. 3.5) for a
two ripple profile. The input ripple spectrum P(1) is a pair of impulses, and

r(-) therefore reflects the filter shapes. Since the model is linear, the output
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amplitude is proportional to the amplitude of the ripple. For a ripple that is
just detectable against a flat base (e.g., at ), one can define a critical level
(K) of the output pattern at perceptual threshold. Therefore, for a loud ripple
(e.g., at Q) r(-) exceeds K significantly.

In order to account for perceptual data based on such outputs, two types
of tests will be distinguished. The first are those in which the profile is to
be detected against a flat standard, i.e., the task is to detect the existence of
the profile. In this case, a small portion near the maximum of r(-) exceeds K at
threshold, and hence other details of r(-) do not play a role in the detection. The
second type of experiments are those for which the standard is not flat. Instead,
the subject is to detect a change in some parameter of an audible profile, for
instance in the phase or frequency of a ripple. In this case, r(-) is well above
K and a change in the profile affects a global change in r(-). Consequently, the
change in shape or some feature of the r(-) pattern must be taken into account.

Almost all previously reported profile detection experiments fall in the first
category. They include those described by [24, 27], and the ripple detection
experiments (called here ripple intensity-difference-limen experiments, or ripple-
idl) by [2, 37].

Examples of the second category are: The pedestal-type of experiments, such
as increments on a single component pedestal [23] or on a peak profile pedestal
(Sec. 2.6.2); The 6SF and ripple-pdl detection (Secs. 2.3 and 2.8); The éBWF
and ripple-fdl tests (Sec. 2.4 and [2]).

The detection procedures for these two types of experiments are slightly

different:
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Figure 3.2: (a) Two single ripple profiles with ripple frequencies ; = 2 and
Qs = 4 cycle/octave, and amplitudes 0.1 and 0.3, respectively. The Q; ripple
is at its just detectable level [2]. (b) Ripple spectrum of the two ripples. (c)
Ripple transform for the profiles in (a) (according to Eq. 3.5). The K = 0.05

value corresponds to the detection threshold of the £2; ripple at the output r(-).
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Detection of profiles with flat standards

We first use the results of the ripple-idl thresholds [2] to determine K (Sec. 3.4.1).
For other profiles with flat standards, the r(-) at perceptual thresholds are

computed and are compared to K in order to evaluate the model performance

(Sec. 4.2).

Detection of profiles with non—flat standards

The procedure is slightly more elaborate for the second type of experiments. It
is best illustrated by the ripple-fdl example in Fig. 3.3. Here, the filter outputs
are well above K. A change of the ripple frequency (from §; to ; + 6Q) simply
translates or shifts r(-) along the logarithmic (2, axis. In such an experiment, it
is presumed that the subject detects the amount of shift in r(-) (Sec. 2.7). Since
all r(-) points translate the same amount, the shift can be measured anywhere
on the pattern, e.g., at its maximum, or at its right or left edges. We shall always
detect and measure the shift in the steepest lowpass edge in r(-). These points
are marked by the two dashed lines in r(-) of Fig. 3.3. While other features of r(-)
are theoretically equivalent, our choice is motivated by the fact that the ripple
transforms of arbitrary complex profiles are necessarily bandlimited (i.e., have
lowpass edges), but may not always exhibit clear maxima. Therefore, to estimate
detection thresholds in non-flat standard tasks, the shift in r(-) is measured and
compared to a just detectable change A which is determined from the ripple-fdl
measurements in [2] (Fig. 3.3 and Sec. 3.4.2).

The filter output, r(:), as computed from Eq. 3.5 above, reflects only the
magnitude of ripple transform as a function of { (see Sec. 3.3.1). Therefore, it is

insensitive to the ripple phase and cannot be used to predict 6SF and ripple-pdl
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Figure 3.3: A two ripple spectrum and its ripple transform. The ripple frequen-
cies are 6§ = 20% apart (fdl-threshold, [2]), with Q; = 2 and Q; + 6Q = 24
cycle/octave. The amplitudes are well above K. The (vertical) dashed lines

mark the locations of the steepest lowpass edges of r(-).
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thresholds. Instead, these are briefly related to the model in Sec. 4.4 (and can
be explicitly computed as in Sec. 3.3.1).

Finally, in the pedestal-type experiments mentioned above, an audible profile
is increased in amplitude until the change is detected. In the linear model, the
corresponding r(-) output becomes proportionately larger. Threshold is simply
taken to be the percentage increase in r(-) needed for detection. In Sec. 4.3, the
model predictions for the two pedestal-type experiments mentioned above will

be discussed.

Stochastic detection procedures

The filter bank of the ripple analysis model can be viewed as a set of independent
channels conveying information about the ripple spectrum of the profile (P((2)).
In this sense, it is analogous to the classical view of the critical band channels
operating upon the spectral profile. Hence, the independent channel model of
[25] and the more specific model of [24] can be formally adapted and applied to
the outputs of the ripple filter bank. This strategy is not pursued here because of
the lack of sufficient data on such parameters of the channels as their variances.
While one may postulate various hypotheses to explain threshold changes with
level or ripple frequency, it is best at present to adopt simpler approaches as

discussed below in Sec. 3.4.
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3.4 Determining the perceptual threshold pa-

rameters of the ripple analysis model

In this section, the results of the ripple-idl and -fdl experiments by [37, 2]
are used to compute the model’s perceptual thresholds K and A. The model
consists of a bank of equal amplitude constant @ filters H(Q, 2,) with parameter
() = 0.3 ©,, implying a constant width along the logarithmic Q axis (=~ 1

octave). The filter outputs r(-) are computed as in Eq. 3.5.

3.4.1 Ripple idl’s

Figure 3.4(a) illustrates r(-) for two just detectable ripples ; and €. The
amplitudes of the ripples (0.05) are derived from the idl curve reported in [2}
and reproduced in Fig. 3.4(b). Since the two ripples are simple dilations of each
other, their ripple spectra are related by a translation, and the constant () filter
bank preserves this relationship in r(-). To detect them, it is assumed that r(:)
must exceed K. In a stochastic detection procedure, d’ index is defined as K/o,,
where o2 is the variance of the noisy channel located at the maximum of r(-).
To obtain the same idl results from the model, the simplest approach is to
assume that K directly reflects the idl curve, i.e., K(Q,) = idl(f),). Alterna-
tively, one may assume K to be constant and instead weight the input profile or
the filter heights by the inverse of the idl bowl. While all these assumptions are
equivalent with respect to the single ripple idl’s, they generally have different
consequences for arbitrary input profiles. In the absence of additional support-

ing data, we shall adopt the simplest approach, taking K to be a function of €},
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Figure 3.4: (a) A two ripple spectrum and (b) its ripple transform. Both ripples
are at their idl-threshold values. The dashed line is a polynomial approximation
to the measured data points (denoted by circles) reproduced from Fig. 3.27 in [2].
The detection threshold K(£2,) reflects the shape of the perceptual threshold,
id1(Q,).
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as shown in Fig. 3.4(b). Note that this is equivalent to assuming a variable oy,

analogous to the model of [24].

3.4.2 Ripple fdl’s

In fdl tests, input ripples are large enough such that r(-) is well above the
perceptual threshold K (-). As demonstrated earlier (Sec. 3.3.2, Fig. 3.3), a shift
in the ripple frequency from Q; to Q; + 60 causes the corresponding r(-) to
translate by the same amount along the log §), axis. This is a direct consequence
of the dilation relation among the filters, i.e., the choice of the filter widths (o)
to be a linear function of 2,. No other parameters in the model affect this shift.

Measured fdl’s are reproduced from [2] in Fig. 3.5. To obtain the same
results from the model, the minimal detectable shifts along the £, axis, A(£,),
are assumed to be equal to the fdl curve (the ordinate on the right in Fig. 3.5),
ie.

A(Q,) = log,(1 + fdl(R2,)) (octave). (3.6)

In the intermediate range of ripple frequencies (0.7-6 cycle/octave), the fdl’s are
constant at approximately 20%, or A(f,) ~ log,(1.2) = 0.26 octave. The fdl’s
rise outside of this range.

More elaborate schemes can be used to incorporate the fdl curve into the
model. For instance, it can be partially encoded into the observed shifts of the
output patterns by adding a constant to the o, e.g., o(f2,) = 0.3 Q, + 0.05.
This increases the filter widths substantially only in the low €, region (< 1
cycle/octave), in effect increasing the fdl’s in this range as observed in the data.

Similarly, the fdl increase in the high §2, region (> 6 cycle/octave) may be related
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Figure 3.5: Interpolated fdl-thresholds (denoted by circles) reproduced from
Fig. 3.30 in [2]. The corresponding A((Q,) values (Eq. 3.6) are shown on the

right scale.

to the increasing idl’s there, and hence can be accounted for by introducing level-
sensitive procedures for the detection of shifts in r(-).
In the absence of further definitive data in favor of any of the above ap-

proaches, we shall adopt the simplest and assume A (in octaves) to be a function

of Q, in the shape of the fdl curve as in Fig. 3.5 (Eq. 3.6).

3.4.3 Summary of the computational steps

The ripple analysis model consists of the following computational steps:

(1) Compute P(2), the ripple spectrum of the input profile p(w): P(Q) =
[ p(w)e 3 gy,

(2) Compute r(£,), the output of the filter bank using Eq. 3.5. The width
of the filter H(f,Q,) centered at ), is determined from o (£2,) = 0.3 ,.

(3) For flat standard profile experiments, compare r({),) to the perceptual
threshold curve K(2,) as given in Fig. 3.4(b).
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(4) For fdl-type tests, compute r(f),) and compare its shifts (at the location
of the maximal lowpass slope) to A(f,) (defined by Eq. 3.6 and Fig. 3.5). For
pedestal-type experiments, thresholds are computed from the percentage scale

change of r(-).

3.5 Discussion

3.5.1 Summary of the ripple analysis model and under-

lying assumptions

A simplified ripple analysis model is presented to integrate findings from vari-
ous profile analysis experiments. The basic operation implied by the model is a
transformation of the profile into its ripple transform domain. Various manip-
ulations on the profile are then interpreted and detected in this domain. Two
sets of assumptions underlie the model: the nature and linearity of the input

representation, and the parameters of the ripple analysis filters.

The representation and linearity of the input profiles

It is assumed in this model that the auditory system analyzes the amplitude
spectrum on a linear, rather than on a logarithmic, scale. Neither is known to
be the true auditory representation, and other representations such as the power
spectrum or some output of a cochlear filter model might be more appropriate.
The effects of using a distorted representatién are minimal in the cases exam-

ined in this paper, because it usually creates distortion components of smaller
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amplitudes that, for idl tests, are effectively sub-threshold at their correspond-
ing filters. For fdl-type tests where the input is large, the pattern is dilated as
a whole, and hence all distortion components are shifted consistently with the
fundamental.

The exact nature of the input profile is more consequential in cases where
metrics between different complex profiles are considered (see discussion later)
or when profiles are added linearly. This brings up a fundamental assumption
of the ripple analysis model, that the auditory system analyzes linearly a profile
in terms of ripples. How does the cochlea with all of its nonlinearities preserve
the principle of superposition of spectral ripples? And if not, in what form is
the linearity preserved so as to permit this type of ripple analysis? Hillier ([2],
Sec. 4.4) attempted to address this issue using adaptive experiments. Recent
models of cochlear processing have also tackled this question [49]. However, the
validation of linearity hypothesis must await direct tests from psychoacoustical
and neurophysiological experiments in search of systematic interactions among

a small number of simultaneously presented ripples.

The parameters of the ripple analysis filters

The filters determine the shape of the ripple transform r(f),), and hence the
interpretation of the results. The choices made here regarding the parameters
and shape of these filters satisfy two basic experimental findings, reported in [2]
(Secs. 4.4 and 4.5) and in psychophysical experiments in vision using analogous
stimuli (summarized in [38]). These are: (1) the filters are roughly of a constant
@ factor, and (2) their width is approximately 1 octave (i.e., o(£2,) = 0.3 Q,). It

might be argued that other details of the filter shapes (such as their heights and
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form) can be inferred from the idl and fdl measurements. Such an inference,
however, as discussed in Sec. 3.4, is uncertain since other parameters can be
readily adjusted with similar effects on the model outputs. To avoid making
such specific commitments in the model, the filters are defined in as general a

form as possible.

3.5.2 The complete model and its relevance to timbre

perception

The simplified ripple analysis model ignores the explicit depiction of two axes of
the complete model: The tonotopic axis (w) and the ripple phase axis (®). In
its full version (Egs. 3.1, 3.2, and 3.3), a profile would be analyzed by a bank
of filters at each point along the profile. Similarly, each filter of the bank would
be repeated many times, each selective to one phase of the ripple. As such, a
spectral profile would be expanded into a three-dimensional representation.

An important aspect of the complete representation is that it is local with
respect to the profile. This is emphasized by the preservation of the tonotopic
axis in the output, i.e., the filter outputs change as a function of location along
the tonotopic axis. The above statements are exactly analogous to the locality in
time of a spectrogram of running speech. They simply indicate that the profile
is (in effect) first windowed prior to the application of the ripple transformation.
Computationally, the locality of the ripple analysis is implied by the relatively
broad bandwidths of the ripple filters, or equivalently, the limited extent of the
impulse response of the filters (Fig. 3.1(b)).

Since changes along any of the three axes are perceptually detectable, com-
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paring two arbitrary profiles must be done along all three dimensions of the
ripple representation. Such a metric might be considerably simpler in this do-
main (e.g., simple Eucledian distance), than metrics based on the profiles in
the usual spectral domain, since the model transformations imply many of the
“conditioning” operations often required in these metrics. For example, the met-
ric suggested by [12] applies (among other things) a second derivative upon the
profile, effectively de-emphasizing the slow variations (or equivalently, the low
frequency ripples) of the profile. Such an operation is implied in the model by

the highpass edge of the idl curve.

3.5.3 Relation to rippled noise stimuli and the pitch of

complex sounds

A different rippled spectrum stimulus that has been widely used in studies of
pitch perception is the so-called rippled noise [50]. It has a sinusoidal spectral
envelope defined against a linear, rather than a logarithmic, frequency axis, i.e.,
is similar to a harmonic spectrum. On a logarithmic frequency axis, however, a
harmonic spectrum appears to have an exponentially increasing ripple frequency.

The representation of harmonic spectra in the ripple analysis model leads
to many interesting hypotheses regarding the encoding of complex pitch in the
auditory system. Of immediate relevance to the focus of this paper, however, is
the interpretation of the “dominance region” in pitch models. Specifically, it has
long been known that the 27¢,3"%, and 4** harmonics in a series are dominant
in conveying the pitch of the complex [51]. From a computational point of

view, pitch models have taken this phenomenon into account by emphasizing (or
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weighting more heavily) these regions of the spectral profile prior to estimating
the pitch strength and value [52].

The dominance region can be viewed in the context of the ripple analysis
model as a correlate of the ripple idl sensitivity curve (Fig. 3.4(b)), which has
its lowest thresholds for ripples around 2 cycle/octave. In a harmonic spectrum
defined against a logarithmic axis, the spectral profile around the 2"¢ — 4t har-
monics has this same ripple frequency. Thus, the emergence of the ripple idl
curve may share the same origins as those responsible for the dominance re-
gion, namely a combination of suppressive and other interactions at relatively

peripheral stages of the auditory system [53, 52].

3.5.4 Relation to visual processing

An appealing aspect of the ripple analysis model is that it shares identically the
conceptual framework of spatial frequency analysis that has long been preva-
lent in visual processing. While having its critics (see reviews in [38]), this ap-
proach has been supported by substantial anatomical, neurophysiological, and
psychophysical evidence, elegantly detailed in [38]. Interestingly, in the vision
community, the idea that the brain performs a local Fourier transformation is
motivated by its similarity to the cochlear transformations of the auditory sys-

tem!

From the perspective of the auditory system, however, the cochlea simply
transforms sound into an input spectral profile. The auditory nervous system
then treats this profile the same way the visual system treats its retinal image.

The notion of a Fourier transformation of a spectrum is common in engineering

98



speech applications, and is known as convolutional homomorphic processing.
It involves computing Fourier-like coefficients of the spectral profile, known as
cepstral coefficients [54]. While quite different in details, the cepstral coefficients
encode roughly similar types of information about the shape of the spectrum as
the ripple transform, and have been found especially useful in automatic speech
- recognition systems.

Finally, the correspondence between auditory ripple analysis and visual spa-
tial frequency analysis goes deeper than a mere analogy. As evidence to this
claim, consider the closely matched values of the filter parameters and detec-
tion thresholds measured in the visual system, e.g., roughly constant @ and 1
octave wide filters, with constant 6° phase sensitivity increasing at higher ripple
frequencies (Table 6.1, and Figs. 6.11 and 8.3 in [38]). These remarkable equiv-
alences may simply reflect modality-independent limitations imposed by identi-
cally structured sensory areas in the central nervous system. For instance, the
resolution of the analysis filters may simply be dictated by developmental rules
limiting the minimum divergence or convergence of dendritic fields along the sen-
sory epithelium (be it auditory or visual). Clearly, exploring further equivalences
(and differences) between similarly defined psychophysical measures, e.g., fdl’s
for ripples versus gratings (which apparently have not been reported in the liter-
ature), would shed considerable light on the underlying functional organization

of both systems.
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Chapter 4

Predictions of the ripple analysis

model for various input profiles

In the first part of this chapter, the ripple analysis model developed in Chapter
3, is used to account for the perceptual thresholds measured in a wide range of
profile analysis experiments. Prediction thresholds are computed from the filter
outputs and compared with thresholds measured perceptually.

First, the §BWF/BWF thresholds of spectral peaks are considered. Then,
detection thresholds for three profiles against a flat standard: the alternating,
the step, and the single component increment profiles; are computed and com-
pared to the perceptual thresholds reported in [35]. Finally, two pedestal-type
experiments are compared. In Sec. 4.4 we discuss the results of the ripple phase
sensitivity for pdl and §SF experiments.

Based on these results a prediction model applicable to a wide range of stimuli

is proposed in Sec. 4.5.
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4.1 Predicting the {BWF/BWTF thresholds for

peak profiles

As explained earlier in Sec. 3.2.1, a change in the BWF of a spectral peak is
equivalent to a dilation of the peak, which in turn causes its ripple transform
r(-) to translate laterally. This is similar to a change in the frequency of a
ripple profile, i.e., an fdl-type experiment. In Figs. 4.1 the ripple profile and
corresponding r(-) for peaks with BWF = 0.1 and 0.4 are shown (solid lines)
together with their 20% (or a = 0.8) dilated versions (dashed lines). Since the
location of the maximal lowpass slopes for these profiles fall within the range
0.7 — 6 cycle/octave, then the model predicts approximately constant dilation
thresholds of 0.8 (20%), or A(€,) &~ 1/4 octave shift. Note that if 7(-) in 0.7 —6
cycle/octave region is well above K(-), then thresholds will be determined by
r(-) shifts in this (most sensitive) range. These estimates compare well with the
SBWF/BWF thresholds measured at approximately 0.22 (Sec. 3.2.1). Finally,
the model also predicts that §BWF/BWF thresholds are independent of SF
(Fig. 2.7(a)), since the symmetry (SF) of a peak does not affect the magnitude
of its ripple transform.

Two conclusions can be drawn from the above analysis. First, the constancy
of the BWF/BWTF thresholds in the peak profiles is directly related to the con-
stancy of the fdl’s in the 0.7—6 cycle/octave range. If broader or narrower peaks
are used such that their r(-) lie outside of this range, then the model predicts
that SBWF/BWF thresholds would also rise reflecting the fdl increase. The sec-
ond conclusion is that the above trends in dilation thresholds hold regardless

of the exact details of the profile shape since it is the shift in the profile
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Figure 4.1: (a) Ripple spectra of symmetric peak profiles with BWF’s = 0.1
and 0.4 (solid lines), and the corresponding profiles at SBWF/BWF = 20%
perceptual thresholds (dashed lines). (b) The ripple transforms of the peak

profiles in (a). The locations of the steepest lowpass edges are, for both cases,

1/4 octaves apart.
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that is being detected. Clearly, this only holds if r(-) is well above the perceptual
threshold K (-).

4.2 Predicting detection thresholds for profiles

with flat standards

4.2.1 Alternating profile

The alternating profile [24] consists of 21 uniformly distributed components (0.2~
5 kHz) that alternate above and below a flat (unit) base (Figs. 4.2).
Thresholds for detection of such a profile are reported at —21.7 dB (= 20log(éa) =

201log 0.08), where da is the amplitude of an alternating component relative

to the unit base. Such a profile can be considered approximately a ripple at
the highest possible frequency representable by this complex, i.e., at 10 cycles
per 4.64 octaves, or approximately 2.15 cycle/octave. The amplitude da of the
just detectable ripple at this frequency can be predicted from the idl curve as

da = 2K(2.15 cycle/octave) = 0.1 (or -20.0 dB), which is close to the measured
amplitude (Fig. 4.2(c)).

4.2.2 Step profile

The task in this experiment is to detect the presence of a (linear) step in a 21
component flat standard [24] (Fig. 4.3(a)).
For a step-up that is centralized (located at 1 kHz), threshold is reached at

-23.1 dB (= 20 108 Sa = 20 los 0.07)7 where éa 1s the height of the step (relative
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Figure 4.2: (a) The alternating profile at threshold amplitude (0.08, or -21.7
dB). (b) Ripple spectrum of the alternating profile in (a). (c) Ripple transform
of the ripple spectrum in (b). The detection threshold K(f,) in (c) is reached

near 2.2 cycle/octave.
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Figure 4.3: (a) Profile of a step function (solid line) at threshold amplitude (0.07,
or -23.1 dB), and its smoothed version (dashed line). (The smoothed version is
obtained by convolving the step with the narrow symmetric peak profile of BWF
= 0.1 and A, = —30 dB). The ripple spectra and ripple transforms are in (b)
and (c), respectively. The ripple transform of the profile is above the detection
threshold, K(,), between 1.3 - 4.4 cycle/octave, while its smoothed version

reaches the threshold near 2 cycle/octave.
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to the unit base). Figure 4.3(b) illustrates the ripple spectrum of this (idealized)
profile (P(Q)). The corresponding model output () is a constant because of the
dilation relation of the filters (Fig. 4.3(c), solid line). Namely, for a constant @
factor filter ((Qo) = ore1 o, and in particular o, = 0.3), and for a step profile
input (with magnitude of ripple spectrum |P(Q2)| = 1/|9|), filter outputs r(-)
are independent of (),, and for nonzero ripple frequencies ({2 larger than some

Ql > 0)'

© 1 _(n-00)? 0 _(1-0/90)? 0o _(-ah?
7'() =92 / —e %2(_937({9 =92 —1"6 L—ﬂ'-é:LdQ ) —1—8 gTui:ll_dQl’
Q1 Q Ql Q Q] Q’

where, ) = Q/Q,, and r(-) is a function of o, only. The predicted threshold is
smaller than measured (0.05 versus 0.07, or —26 dB versus —23.1 dB). However, a
more realistic representation of the step is with a gradual (or ramped) transition
because of cochlear filter smoothing (dashed lines in Figs. 4.3). The smoothing
of the ideal profile lowers the P(Q) (Fig. 4.3(b)), and the corresponding r(-) is
more lowpass filtered (Fig. 4.3(c)) and just detectable near 2 cycle/octave, or at
-24.8 dB.

Since the phase of the ripple spectrum does not play a role here, predicted
thresholds remain the same for the reversed (step-down) profile, as is indeed
measured. Finally, the simplified model cannot account for the rise in thresholds
as the step is moved towards the edges of the spectrum [24]. It may be possible,
however, to account for this trend by including the effects of the base edge in

p(w), and using the complete model (i.e., Eq. 3.3).
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4.2.3 Single component increment profile

In this experiment, a single component in the profile is incremented relative to the
base [23] (Fig. 4.4(a)). The threshold is approximately -20.1 dB (= 20log §a =
201og 0.09), where da is the height of component relative to the (unit) base. In
order to apply this profile to the ripple analysis model, it is assumed that the
finite bandwidth of the cochlear filters broadens the impulse-like profile, making
it appear as a narrow peak profile (e.g., with BWF = 0.1 and SF = 0) with
same height as before (= 0.09). Figure 4.4(c) illustrates that for such a peak
the corresponding output r(-) reaches perceptual threshold K({,) near Q, = 2.3
cycle/octave, or at -25.5 dB. Note that approximating the increment by a peak
with slightly different BWF’s causes correspondingly small shifts in the broad

r(-), without affecting the estimated thresholds significantly.

4.3 Comparing detection thresholds for two

pedestal experiments

A clearly audible profile serves as the standard (the pedestal) in these experi-
ments. The profile is then increased in amplitude until the change is detected.
Results from two such profile experiments are compared here: The first is the
control experiment C reported in Sec. 2.6.2 (Fig. 2.13(a)) in which the pedestal
is a peak profile. The second employs a single component, pedestal (Fig. 5.4 in
[23]). In both cases, the pedestal profiles produce r(f,) outputs that are far
above the perceptual threshold curve K(§,). Threshold is defined here as the

relative change (i.e., in dB or percentage) of the model outputs r(-) needed for
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Figure 4.4: (a) Profile of a single increment on a flat base is at its perceptual
threshold (0.09, or -20.1 dB). The ripple spectrum and ripple transform are
shown in (b) and (c), respectively. The single increment is approximated with
the BWF = 0.1 symmetric peak of —20.1 dB amplitude (see text). The detection

threshold is reached approximately at 2.3 cycle/octave.
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detection. Because of the linearity of the model, this relative change is directly
related to the relative change in the input profiles, and hence thresholds can be
directly compared without reference to the model.

Threshold for the narrowest symmetric peak profile (BWF = 0.1 and SF
= 0), expressed as a peak level difference between the signal and standard,
is 2.8 dB (Fig. 2.13(b) and Table 2.3(c)). This is equivalently expressed as
20log(ba/a) = 20log0.26 ~ —12 dB where a is the pedestal (or peak) height
and da is the detectable increment. Comparable detection thresholds (=~ —14
dB) were obtained for a single component pedestal of roughly an equivalent
height (16 dB) and a complex of similar density (Fig. 5.4. in [23]).

Therefore, the model predicts that regardless of the exact shape of the pro-
file, pedestal experiments with “loud” standard profiles, and reasonably dense
complexs should exhibit similar thresholds as computed above. What is not
accounted for here is the dependence of thresholds on such parameters as the
density of the complex and the height of the pedestal at low levels. Such vari-
abilities presumably involve considering the effects of masking and adjusting

detection strategies for r(-) near perceptual threshold levels.

4.4 Sensitivity to ripple phase shifts

So far, only the magnitude of the outputs of the ripple analysis model has been
considered. The other major representational axis is the phase axis. Two sets of
data are relevant to this issue: (1) pdl thresholds for single ripple stimuli, and

(2) 6SF thresholds for peak profiles.

Ripple phase is explicitly included in the model in Eqs. 3.2 and 3.3, and
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Sec. 3.3.1, where each ripple filter is assumed to be selective both to a ripple
frequency and phase (2, and ®,). In all profiles discussed in the previous section,
profile manipulations were such that the phase of its ripple spectrum was not
affected, hence it was justifyably ignored in the analysis. In the following, no
explicit computations of the response phase are carried out. Instead, we compare
the phase thresholds obtained from two experiments, in which the magnitude of
the ripple spectrum is held constant while its phase is changed.

The most direct measurement of the phase sensitivity is provided by the
ripple-pdl measurements in Sec. 2.8 (Figs. 2.16 and Table 2.3(d)). Results from
these experiments reveal that, for low ripple frequencies (< 2 cycle/octave) sub-
jects detect a constant phase shift of approximately 6°. The amount of positional
shift (which occurs along the tonotopic axis) decreases with increasing frequen-
cies of the ripple. Eventually, at some high ripple frequency (above about 2
cycle/octave), the subjects switch from a constant phase detection mode to a
constant positional shift of the ripple peaks along the tonotopic axis. The con-
stant positional shift can be estimated from the slope of the detection thresh-
old curves for ripples > 2 cycle/octave (Fig. 2.16(a) and Table 2.3(d)) to be
3.8%ctave, or approximately 0.73% in Hz (which corresponds to 0.011 octaves).
Viewed in the context of the ripple analysis model, these data suggest that only
the lower ripple frequency filters exhibit fine ripple phase selectivity. Thresholds
also increase for low amplitude ripples.

Thresholds measured with single ripple stimuli are supported well by é6SF
measurements in peak profiles (Sec. 2.3 and Appendix C.2). As discussed earlier
(Sec. 3.2.2), 6SF changes in the peak profiles can be equivalently described as

constant phase shifts in the ripple spectrum of the peaks. Thus, consistent
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with single ripple data, subjects detect a 0.11 change in SF, which is equivalent
to a 6° phase shift, the same threshold obtained from lower frequency ripples.
Furthermore, this threshold increases to 10° for the narrowest peak (BWF =
0.1), reflecting its higher ripple frequency spectrum.

These results suggest a general prediction of the model: For arbitrary input
profiles with strong components at lower ripple frequencies, subjects should ex-
hibit similar ripple phase sensitivities as those observed for broader peaks and
single lower frequency ripples. For instance skewing the profile of a vowel or a
musical note by adding a constant phase shift to their ripple transforms would

be detectable at approximately 6°.

4.5 Predictions of the model for any arbitrary

profile

The computations outlined in this paper served to illustrate the competence
of the ripple analysis model in accounting for many previous profile analysis
measurements. However, other models such as the maximum difference model
[24] and the independent channel models can account for a significant portion
of the same data [25]. It is, therefore, important to come up with specific tests
that can distinguish these models. Two such tests follow from the fundamental

predictions which emerge from the ripple analysis model:

Given any arbitrary spectral profile whose ripple transform (r(£,))
is large relative to the perceptual threshold K(f,), then:

(1) the dilation threshold is constant, and is due to the most sen-
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sitive ripple component in the transform (e.g., 20-30% if it contains
ripples in the range 0.7-6 cycle/octave).

(2) the ripple phase threshold for the profile is constant at approx-
imately 6°, if r({),) contains at least some large low frequency ripples

(< 2 cycle/octave).

Both of these predictions are unintuitive and hence their future confirmation
reflects well on the model. Both tests, however, are not of the idl-type the
maximum difference model was developed to predict. A more direct idl-type
test might be to measure the detection threshold of a profile composed of several
ripples that do not appreciably interact within the same filter (e.g., separated
by more than an octave). For different phases of the ripples, the shape of the
profile changes and so too the predicted thresholds of the maximum difference
model. In contrast, the ripple analysis model predicts that detection thresholds
are independent of the relative phases of the ripples. A specific example of such
a profile is the square wave, which is composed of a large fundamental ripple and
smaller odd harmonics. The maximum difference model predicts the threshold
based on the amplitude of the square wave, whereas the ripple analysis model
predicts it based on the amplitude of the fundamental (largest) ripple component.

The two amplitudes differ by a small (hopefully measurable) factor of 4 /.
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Chapter 5

Conclusion and further research

5.1 Summary and conclusions

First part of this dissertation discusses the results of psychoacoustical exper-
iments on human subjects (Chapter 1). The experiments were motivated by
the recent findings in physiological experiments in the ferret primary auditory
cortex [9]. These indicate the existence of a systematic variation of inhibitory
response patterns along the isofrequency plane. Responses to spectrally shaped
noise bursts, show that neurons with inhibition to frequencies below (above)
their best frequency (BF) respond optimally to noise bursts with least spectral
energy below (above) BF.

Psychoacoustical measurements were carried out in order to explore the per-
ceptual implications of these findings. The complex stimuli used were multi-
component spectral peaks of different symmetries (SF) and bandwidths (BWF).
Sensitivity to changes in spectral peak shape was tested for a number of differ-
ent conditions: various starting peak shapes, different peak amplitudes, spectral

densities, and peak locations. The effect of profile frequency randomization is
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also discussed.

The main results indicate that the detection of SF and BWF changes is
largely independent of the initial spectral shape (Sec. 2.9A). Moreover, the de-
tection threshold for simultaneous changes in SF and BWF is the same as for
the pure change in SF (Sec. 2.5). More generally, it is conjectured that for an
arbitrary spectral profile, these two manipulations perceptually correspond to
changes in the phase and the magnitude of the Fourier transform of the profile
(Sec. 2.7). As such, the human auditory system independently detects changes
in the SF and BWF of the peak profiles (Sec. 3.2.2). Moreover, the experiments
in which we changed both the SF and BWF, indicate the detection occurs when
the detection os reached in ne of the two cues. The thresholds obtained for
pdl-experiments with single ripple stimuli are similar in value (and trends) to
the thresholds for changes in the symmetry factor (Sec. 2.8).

Within this general framework, a model of profile analysis is proposed. The
first stage of the model presents the transfer function of the auditory cortex as a
bank of bandpass filters, each tuned to a particular ripple frequency and ripple
phase. The filters convert the input spectral profile into its corresponding ripple
transform, basically performing a windowed Fourier transformation (Sec. 3.3).

The second part is the detection model, which operates on the magnitude
or phase of the ripple transform (Sec. 3.3.2). Two different types of detection
models are derived for two types of profile analysis experiments. In one, where
the task is to detect the existence of the profile against a flat standard, the ripple
transform of the profile is compared to detection thresholds obtained from the
modulation transfer function, i.e. from the idl-experiments (with single ripple

stimuli). The model accounts well for the perceptual thresholds in all three
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profiles considered: with (centered) step, (centered) single component increment,
and the alternating profiles (Sec. 4.2). In order to account for the increase in
perceptual thresholds as the step is moved towards the edges of the spectrum, a
complete model (possibly with the effects of the base edges in the input profile)
should be used.

Another detection model is defined for experiments with non-flat standards,
for which the task is to detect a change in some parameter of an audible profile.
Depending on the parameter in question, the change in the ripple transform
is compared to detection thresholds obtained, either from fdl-experiments for
SBWF test (Sec. 4.1), or from pdl-experiments for §SF test (Sec. 4.4). The
model predicts well the perceptual thresholds in these tests.

For pedestal-type experiments (e.g., with increments on a single component
pedestal or on a peak profile pedestal) the detection thresholds are defined as the
relative change in the input profile (i.e., without computing the ripple transform)
(Sec. 4.3).

Finally, two fundamental predictions are hypothesized for any arbitrary spec-
tral profile whose ripple transform is large relative to the perceptual threshold
(4.5). They are:

(1) the dilation threshold is constant, and is due to the most sensitive ripple
component in the transform (e.g., 20-30% if it contains ripples in the range 0.7-6
cycle/octave).

(2) the ripple phase threshold for the profile is constant at approximately 6°,

if r(Q,) contains at least some large low frequency ripples (< 2 cycle/octave).
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5.2 Further research

It is of the immediate importance to this work to verify the predictions of the
two hypotheses from above, for any arbitrary profile. This requires extensive
experimental work since it involves testing subject’s sensitivity to dilation or
phase addition manipulations of several profiles (e.g., vowels) (Secs. 4.4 and 3.5).
Preliminary results with double peaks in which the SF or BWF was changed in
either one of them indicate similar threshold trends as observed for single peaks.
To complete these studies, measurements need to be collected with double peak
spectra in which the whole spectrum is dilated or tilted. Next would be to
test the constancy of pdl-thresholds for various starting phases in two or more
ripples, as outlined in Sec. 3.5.

The fundamental question, however, is how simultaneous variations of both
magnitude and phase are combined in the perception of the spectrum. Pre-
liminary results based on analogous experiments with single peaks (Sec. 2.5),
indicate that the detection occurs when the threshold is reached independently
in either one of the two parameters. Work is currently under way to design such
tests with single ripples, in which both the ripple frequency and phase are varied
simultaneously.

Based on new neurophysiological evidence it will be possible to modify the
filters and detection criteria to reflect in a greater manner their biological nature
(Secs. 3.3.2 and 3.4). This in turn might help to extend the applicability of the
model to account for such perceptual dependencies as dependence on amplitude
and spectral density.

The ultimate goal, however, is to define a perceptual metric which would be
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used to compare any arbitrary profiles. Such a metric would be based on the
three-dimensional representation of the profile at the auditory cortex level (i.e.,

along the frequency, ripple-frequency, and ripple-phase axes).
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Appendix A

Detection thresholds measured in

root-mean-square units

We have collected in this Appendix all rms-thresholds obtained in the peak SF
and BWF change detection tasks. The rms-threshold is derived from SF and
BWF changes based on the assumptions that all changes in the spectral com-

ponents (which are largest around the peak) contribute equally to the detection

process. The rms—threshold is defined as 20 log \/ o (Api/pi)?, where Ap; is
the change in the amplitude of the :** component at threshold, p; is the amplitude
of the i** component in the standard, and n is the number of components.
This measure is closely related to that used in most profile analysis experi-
ments previously reported. Specifically, for the case of a flat standard of ampli-
tude p, the measure usually used is: 20 log(gs';‘-""—‘”). This measure converts to
our units if we add a constant 10 logn, which accounts for the number of sig-
nal components n. Thus, the threshold for the single increment detection task
(n = 1) is the same under both units. For other commonly studied detection

tasks in profile analysis: 21 components step function at 1 kHz, alternating am-
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plitudes spectrum, and ripple signals; the threshold values reported are: —23.33
dB, -23.07 dB, and -21.58 dB, respectively (see [35, 37]). Computed in our unit,
the thresholds are: —10.11 dB, -10.06 dB, and -8.36 dB, respectively.

A.1 Detection of changes in spectral peak sym-

metry

Stimuli and testing conditions are described in Secs. 2.2.2 and 2.3.

(i) Dependence on symmetry and bandwidth factors of the standard

Threshold trends are as described earlier in Sec. 2.3.1 in that detection of
a change in peak symmetry is independent of the peak shape of the standard
(Figs. A.1). The average detection threshold was &~ —8.5 dB. This value is com-

parable to that measured in other profile analysis experiments.

(ii) Dependence on peak amplitudes

Data are averaged and presented as in Sec. 2.3.1. The same trends established
earlier for the 15 dB case hold also for the other two levels. However, unlike the
6SF thresholds (Figs. 2.4), the average rms—-threshold monotonically increases
with peak levels (Figs. A.2). The increase is small, being of the order 0.25 dB

per 1 dB change in peak level.

(iii) Dependence on spectral density

rms—Threshold increases with increasing spectral density, from 41 to 11 com-
ponents tests (Figs. A.3). Note that the 11 component thresholds are lower than
those for the 41 component signal. Some of this difference is probably due to

masking effects among the 41 closely spaced components ([24]). Another possi-
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Figure A.l:

BWF’s in (a), and five SF’s and (b).
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complex and 15 dB peak amplitude, averaged over five subjects and: four

20 log \/Z,Tb:l(Ap,-/pi)z, where Ap; is the change in the amplitude of the 5%
component at threshold, p; is the amplitude of the i** component in the stan-

dard, and n = 41. rms-Threshold is independent of SF and BWF. The error

bars are the standard deviations of the means.
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Figure A.2: Symmetry change detection rms-thresholds for 41 component com-
plex and 3 peak amplitudes: 10 dB, 15 dB, and 20 dB, relative to baseline. The
data are averages of three subjects and: three BWF’s in (a), and three SF’s and
(b). The values along the ordinates are defined as in Fig. A.1. Points are slightly

offset for clarity reason.
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ble source is the large frequency spacing among the 11 components which may
cause the task to be perceived as amplitude changes in several smaller peaks

rather than the detection of symmetry in a single (broader) peak.

A.2 Detection of changes in spectral peak band-

width factor

Stimuli and tests are described in Secs. 2.2.2 and 2.4 of the text.

(1) Dependence on symmetry and bandwidth factors of the standard

The data are averaged and presented as described in Sec. 2.4.1. Detec-
tion thresholds are independent of SF for all BWF’s. However, they increase
monotonically with standard’s BWF. This trend is more clearly depicted in
Fig. A.4(b), where the rms-thresholds are averaged over the five SF’s and then
plotted against BWF. The functional form of this dependence, which best ap-

proximates the experimental data points in the least square error sense, is:

threshold(dB)= - 6.85(dB) + 3.3(dB/octave) log,(10 BWF) (octave).

(ii)) Dependence on peak amplitudes

Data are averaged and presented as in Sec. 2.4.1. Mean rms-thresholds tend
to increase with peak level in a manner similar to that seen earlier in the SF

change detection task.

(iii) Dependence on spectral density

The rms—thresholds increase monotonically with BWF, and with spectral

density (Fig. A.6).
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(b). rms—Threshold increases with increasing spectral density, from 41 to 11

-15

i

]
]

| S
I—' 11

0 005 01 015 02 025 03 035 04

SF

10}

component tests,

123




BWF rms--threshold, dB

-15( | , , . , . , , ,
0 005 01 015 02 025 03 035 04

SF
5 T T T T T T T T T

BWF rms--threshold, dB
n

-15 2 Il Il 1 L 1 1 1 L
0.1 0.2 0.4

BWF

Figure A.4: (a) Bandwidth change detection rms—threshold for 41 frequency
components, 15 dB peak level, and three BWF’s: 0.1, 0.2, and 0.4, averaged for
three listeners. Thresholds monotonically increase with BWF, and the form of
this dependence, averaged over five SF’s, is depicted in (b). The dotted line in
(b) is the least square error linear approximation of this dependences: threshold

(dB) = -6.85 + 3.3 log, (10 BWF). Data are slightly offset for clarity.
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Figure A.6: Bandwidth change detection thresholds for 41, 21, and 11 component
complexes, averaged over three subjects and three BWF’s (a) and two SF’s (b).

rms—Thresholds are in general higher for 41 than for 21 and 11 component cases.
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Appendix B

Brief review of the Ewaif model

An analytic function m(t) with envelope e(t) and phase #(t) is related to a real

waveform p(t) with Hilbert transform p(t) = p(t) * % ([54, 55, 56]), as:

m(t) = e(t) e = p(t) + 15(t),

where
e(t) = /p*(t) + (1),
and
= arctan M
#t) = arct p(t)

The equivalent pitch of a complex sound is defined by the Ewaif model (Envelope

Weighted Average Instantaneous Frequency) [57] as:

Ewaif = o e(;) instf(t)dta
Jo e(t) dt

where T is a stimulus duration, and instf(¢) is an instantaneous frequency of

p(t), defined as instf(t) = 1 d¢

T 2mdt”

For our n component stimulus:

i=n

p(t) = Y picos(2m fi + i),

=1
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the instantaneous envelope and frequency are:

n-1 n

e*(t) ZP, +23 3 pipjcos(2n(fi — fit + @i —

1=1 1=1 j=i+41
and
-1

fz'l‘ Z Z pi p](fl+f]) COS(QW(JC@

i=1 j=i+l

inst f(t)
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Appendix C

On the transform of the peak profile

C.1 Fourier transform of the peak profile

The Fourier transform of the peak profile is for 2 > 0 cycle/octave, computed

as:

_ jo_ Gmas 20 BWF
P@) =P = == 5077
1

(1+7 270 20/(31n10) SF BWF + (0 20/(31n 10) BWF)%(1 — SF2))’

and P(0) =1+ Qﬂgﬂ?hﬁyvj‘f.

(C.1)

Define the gain as G = lﬁﬂzgh]?y;, and let ¢ = 207/(3In10) = 9.1. The

magnitude and phase of P({2) are:

IP(@)] = ¢
V(L + Q2 (c BWF)2(1 — SF?))2 + 02(2c SF BWF)?

2 Q ¢ BWF SF
1+ Q%(c BWF)*(1 — SF?)’

6(Q)) = — arctan
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The 6BWF task corresponds to shifting the ripple spectrum and ripple trans-
form of the profile along the log €2, axis (Eq. 3.4). The ripple transform remains

unchanged along the phase axis, as explained in Sec. 3.3.1.

C.2 Adding a constant phase to the Fourier

transform of the profile

Consider the profile p(w) whose Fourier transform is P(Q):

1
T or

p(w) /_o:o P(Q)ei ™ (27 Q).

Adding a constant phase angle 8, to all the transform components changes the

profile to:

Y . . o0 . )
Po,(w). = / P(Q)el% ™ 40 4 / P(Q)e™i%ei2m 40y
e 0

where the integral is split to emphasize that the phase function (added to neg-
ative frequencies and subtracted from positive frequencies) must be odd as a
function of ) in order for pg, to remain real. This expression can be simplified

further by substituting e*’% = cos(,) & j sin(6,), and collecting terms:

oo

po.(w) = cos(6,) /_ * P(Q)e?™dQ — sin(9,) / FP(Q) - sign(€) - €27 Q).

Therefore,

pa.(w) = cos(8o)p(w) + sin(6,)H(p(w)),
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where H(p(w)) is the so-called Hilbert transform of p(w). A simpler expression

can be used for the case of small 8, (cos(d,) ~ 1 and sin(,) ~ 6,):

pe,(w) = p(w) + 6. H(p(w)).

This is the expression used in computing the profiles in Figs. 2.14 (c) and (d).
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