
 

 

Rising anthropogenic CO2 in the atmosphere and oceanic uptake of CO2 have led to a gradual 

decrease in seawater pH and ocean acidification, but pH changes in estuaries and coastal systems are 

more complicated due to a multitude of global and regional environmental drivers. Increasing global 

fertilizer use due to agricultural production has led to a doubling of riverine nutrient loading since the 

1950s, leading to widespread eutrophication in estuarine and coastal waters. Excessive nutrient 

loading stimulates primary production in the surface euphotic layer, which consumes CO2 and elevates 

pH, but unassimilated organic matter sinks and decomposes in bottom waters, producing CO2 and 

reducing pH. In the meantime, human-accelerated chemical weathering, such as acid rain and mining, 

has resulted in rising alkalinity in many rivers and basification in estuarine and coastal waters. To 

discern how these environmental drivers influence long-term pH trends in coastal waters, a coupled 

hydrodynamic-biogeochemical-carbonate chemistry model was used to conduct hindcast simulations 

of the Chesapeake Bay between 1951 and 2010. The model reproduced the observed chlorophyll 

increase and hypoxia expansion due to the increased nutrient loading. In contrast, low pH bottom 
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waters and acidic volume shrank from 1950 to 1980. GAM analysis of long-term pH trends in different 

regions of Chesapeake Bay revealed increasing pH in the upper Bay driven by the river alkalinization, 

a peak pH in the mid-Bay in the 1980s coincident with the peak nutrient loading and decreasing pH in 

the lower Bay driven by ocean acidification. Four scenario runs were performed to assess the 

individual effects of rising pCO2, river alkalinization, riverine nutrient loading, and climate change 

(warming and sea-level rise) on long-term pH changes in the Chesapeake Bay. The model results 

suggested that river alkalinization was more important than ocean acidification in driving the long-

term pH changes in the estuary.



 

 

 

 

DISCERNING THE ROLES OF OCEAN ACIDIFICATION, EUTROPHICATION AND 
RIVER ALKALINIZATION IN DRIVING LONG-TERM PH TRENDS IN THE 

CHESAPEAKE BAY 

 

By  

Yijun Guo 

 

Thesis submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2022 

 

 

 

 

 

Advisory Committee: 

Professor Ming Li, Chair 

Professor Weijun Cai 

Associate Professor Jeremy M. Testa 

 



 

 

 

 

 

 

© Copyright by 

Yijun Guo  

2022



 ii 

 

Acknowledgements 

I am extremely grateful to my advisor, Prof. Ming Li for his invaluable advice, continuous 

support, and patience during my master’s study. His immense knowledge and plentiful experience 

have encouraged me in all the time of my academic research and daily life. I would also like to 

thank my academic committee member Prof. Jeremy Testa from CBL and Prof. Weijun Cai from 

University of Delaware. This research would not have been possible without their direct help and 

support. 

And I am grateful to Wenfei Ni who provided the nutrient and wind data for the hindcast 

model and Chunqi Shen, who taught me a lot about the RCA-CC model. 

I also want to thank Renjan Li and Yuren Chen who gave me a lot of precious advice on 

my study and thesis research. They were the most enjoyable people to work with. And I want to 

send my special thanks to Sophia and Carol who lived with me since the covid pandemic. They 

offered me the strongest supports in both my life and research. And I also want to thank Pinky 

who gave me a lot of emotional support when I was in stress. 

And I really appreciate all the support and I received from my family and all the HPL staffs. 

Finally, I would like to thank NOAA for the financial support that allowed me to conduct this 

thesis. 

 

 

 



 iii 

 

Table of Contents 

Acknowledgements ii 

List of Figures iv 
List of Tables vii 

Chapter 1: Introduction 1 
1.1 Different impacts on coastal and estuarine pH 2 

1.2 Long term trend in coastal pH and its impact on coastal organisms 5 
1.3 Chesapeake Bay acidification 7 

1.4 Motivations and thesis structure 8 
Chapter 2: Long-term hindcast of carbonate chemistry in the Chesapeake Bay using a coupled 
hydrodynamic-biogeochemical model 10 

2.1 Introduction 10 

2.2 Method 11 
2.2.1 Statistical and analysis approaches 11 
2.2.2 Reconstruction of model boundary TA and DIC 14 
2.2.3 Coupled physical-biogeochemical model (ROMS-RCA-CC) 17 
2.2.4 Retrospective simulation set up from 1951 to 2010 18 

2.3 Results 19 
2.3.1 Model evaluation of bottom pH and dissolved oxygen 19 
2.3.2 Spatial and temporal distribution of carbonate chemistry 21 
2.3.3 Long-term pH trends in Chesapeake Bay 23 

2.4 Discussion and Conclusion 24 

Chapter 3: Scenario model runs to discern drivers of long-term pH trends in the Chesapeake Bay
 48 

3.1 Introduction 48 
3.2 Method 49 

3.3 Results 52 
3.3.1 long-term pH trend analysis under different model scenarios 52 
3.3.2 Acidic and hypoxic volumes under different model scenarios 55 

3.4 Conclusion and discussion 58 

Chapter 4: Conclusions 74 
Bibliography 76 
 



 iv 

List of Figures 

Figure 2.1 (a) Monthly freshwater discharge of Susquehanna River from 1950 to 2010. (b) Jan-
May and annual average river discharge/nitrate load of Susquehanna River. (c) 
Estimated monthly average nitrate concentration of Susquehanna River from 1950 to 
2010 from Zhang et al. (2013). (d) Monthly average phosphate concentration of 
Susquehanna River from 1950 to 2010. 

Figure 2.2 (a) Susquehanna River TA observation from USGS Danville station. (c) Susquehanna 
River TA observation from CBP CB1.0 station. (b) Monte Carlo trend analysis of 
USGS Danville TA. The average Sen’s slope of the 1000 TA timeseries is 9.9 
µmol/kg/year with 100% of the timeseries has a p value less than 0.001. (d) Monte 
Carlo trend analysis of CB1.0 TA. The average Sen’s slope of the 1000 TA timeseries 
is 10.56 µmol/kg/year with 100% of the timeseries has a p value less than 0.001. 

Figure 2.3 (a) Susquehanna River pH observation from USGS Danville station. (b) Susquehanna 
River pH observation from CBP CB1.0 station. (c)     Monte Carlo trend analysis of 
USGS Danville pH from 1951 to 1963. The average Sen’s slope of the 1000 pH 
timeseries during this period is -0.0057 unit/year with 70% of the timeseries has a p 
value less than 0.05. (d) Monte Carlo trend analysis of USGS Danville pH from 1964 
to 1983. The average Sen’s slope of the 1000 pH timeseries is 0.055 unit/year with 
100% of the timeseries has a p value less than 0.001 (e) Monte Carlo trend analysis of 
USGS Danville pH from 1984 to 1995. The average Sen’s slope of the 1000 pH 
timeseries is 0.0016 unit/year with 100% of the timeseries has a p value less than 
0.001 (f) Monte Carlo trend analysis of CB1.0 pH from 1990 to 2010. The average 
Sen’s slope of the 1000 pH timeseries is -0.0008 unit/year with 100% of the timeseries 
has a p value less than 0.001. 

Figure 2.4 (a) Reconstructed Susquehanna TA from 1951 to 2010. (b) Reconstructed 
Susquehanna pH from 1950 to 2010. (c) Calculated Susquehanna DIC from 1951 to 
2010. (d) Calculated DIC/TA ratio from 1951 to 2010. 

Figure 2.5 (a) Reconstructed sixty-years ocean boundary surface water fCO2. (b) Sixty-years 
climatology ocean boundary salinity from WOA 2013 V2. (c) Calculated sixty-years 
ocean boundary TA. (d) Calculated sixty-years ocean boundary DIC.  

Figure 2.6. (a) Chesapeake Bay bathymetry. The dashed red line marks the along channel section 
and stars represent the stations where carbonate chemistry parameters are analyzed 
(red stars represent the Chesapeake Bay Program stations (data cover 1984-presen); 
green stars represent Chesapeake Bay Institution stations (data cover 1949-1982)). (b) 
The grids for the ROMS-RCA-CC models used in this research. 



 v 

Figure 2.7. Model validation evaluation of bottom pH at CBP and CBI monitoring stations along 
central channel of main Chesapeake Bay (stations location see Figure 2.5). Red dots 
represent observation, black lines represent model results.  

Figure 2.8 Model validation evaluation of bottom O2 at CBP and CBI monitoring stations along 
central channel of main Chesapeake Bay (stations location see Figure 2.5). Red dots 
represent observation, black lines represent model results.  

Figure 2.9. (a) Modeled hypoxic volume (O2<2mg/L) in comparison with estimated hypoxic 
volume from observation data. (b) Modeled anoxic volume (O2<0.5mg/L). (c) 
modeled acidic volume (pH<7.5). Model results were averaged at bi-week interval. 
Solid lines are modeled results, red dots are observations. 

Figure 2.10. Modeled along-channel distribution of summer averaged salinity, TA, DIC, pH, 
Chlorophyll-a and O2 in six decades (1950s, 1960s, 1970s, 1980s, 1990s and 2000s) 

Figure 2.11 Modeled along-channel distribution of spring averaged salinity, TA, DIC, pH, 
Chlorophyll-a and O2 in six decades (1950s, 1960s, 1970s, 1980s, 1990s and 2000s) 

Figure 2.12 GAM fit on modeled surface and bottom pH at upper, mid and lower bay (upper 
panel). The long-term trend in GAM of modeled surface and bottom pH at three 
different sub-regions of Chesapeake Bay (lower panels). 

Figure 2.13 Spring averaged surface(left) and bottom(right) pH in upper, mid and lower bay. The 
Sen’s slope in bold indicated the slope is statistically significant (p value< 0.05).  

Figure 2.14. Summer averaged surface(left) and bottom(right) pH in upper, mid and lower bay. 
The Sen’s slope in bold indicated the slope is statistically significant (p value< 0.05).  

Figure 2.15. Modeled seasonal surface pH averaged in different subregion of the bay. Error bars 
represent 1 standard deviation. The dashed lines represent best linear fit. Symbol S 
represents slope of simulated values. 

Figure 3.1 (a) Time series of surface water fCO2 in hindcast run (b) annual averaged fCO2 (c) 
fCO2 seasonal variation (d) Detrended surface water fCO2 

Figure 3.2 Time series of monthly (black line) and GAM fitted (red line) Susquehanna (a) TA (b) 
pH. (b)(f) Long-term TA, pH residuals (black dots) and their linear trends (red 
line) (c)(g) TA and pH from hindcast run (d)(h) Detrended TA and pH in DtrBasi 
scenario run 

Figure 3.3 Time series of monthly (black line) and GAM fitted (red line) Susquehanna (a) Nitrate 
+ Nitrite (NO23) (b) Total phosphate (PO4) (b)(f) Long-term NO23, PO4 residuals 
(black dots) and their linear trends (red line) (c)(g) NO23 and PO4 from hindcast run 
(d)(h) Detrended NO23 and PO4 in DtrNut scenario run 



 vi 

Figure 3.4 (a)Time series of water level of Duck, North Carolina used to force the ROMS model. 
The blue line shows the hourly observations, the cyan line shows de-tided water-level, 
and the red line is the linear trend.  (b) Detrended time series of water level. 

Figure 3.5. The long-term trend in GAM of modeled surface (a)(b)(c) and bottom pH (a)(b)(c) at 
three different sub-regions of Chesapeake Bay from hindcast and four scenario runs.  

Figure 3.6. The spring averaged surface pH(a), bottom pH (b) and surface chlorophyll-a (c) and 
summer averaged surface pH(d), bottom pH (e) and surface chlorophyll-a (f) in the 
upper bay 

Figure 3.7. The spring averaged surface pH(a), bottom pH (b) and surface chlorophyll-a (c) and 
summer averaged surface pH(d), bottom pH (e) and surface chlorophyll-a (f) in the 
mid bay 

Figure 3.8. The spring averaged surface pH(a), bottom pH (b) and surface chlorophyll-a (c) and 
summer averaged surface pH(d), bottom pH (e) and surface chlorophyll-a (f) in the 
lower bay 

Figure 3.9. Acidic volume in Jun(a), July(b) and August(c); The difference between scenario run 
acidic volume and hindcast acidic volume in Jun (a), Jul(b) and August(c). 

Figure 3.10. Hypoxic volume in Jun(a), July(b) and August(c); The difference between scenario 
run hypoxic volume and hindcast hypoxic volume in Jun (a), Jul(b) and August(c). 

Figure 3.11 Acidification onset (a) and breakup (b) timing at CB4.3 from 1951 to 2010 by 
Hindcast run and four scenario runs. The difference of acidification onset (c) and 
breakup (d) timing between DtrpCO2, DtrBasi, DtrNut, Dtrtempslr and Hindcast run 
correspondingly. The gray and white bars indicate different months. 

Figure 3.12 Hypoxia onset (a) and breakup (b) timing at CB4.3 from 1951 to 2010 by hindcast 
run and four scenario runs. The difference of hypoxia onset (c) and breakup (d) timing 
between DtrpCO2, DtrBasi, DtrNut, Dtrtempslr and Hindcast run correspondingly. The 
gray and white bars indicate different months. 

 

 

 

 

 



 vii 

List of Tables 

Table 2.1. Averaged DIC/TA ratio in 1986-2010 in seven tributaries from USGS observations. 

Table 2.2. Average summer hypoxic volume, accumulative hypoxic volume days, timing of 
onset, end, and duration of hypoxia (threshold =0.5 km3)  

Table 2.3. Average summer acidic volume, accumulative acidic volume days, timing of onset, 
end and duration of acidification (threshold =0.5 km3)  

Table 2.4. M-K trend tests and Sen’s slope from seasonally averaged modeled surface and 
bottom pH. The statistically significant (p<0.5) slops are highlighted in bold. 

Table 3.1 Hindcast and scenario run experiments setting 



 1 

Chapter 1: Introduction 

 

Since the beginning of the industrial era in 1760, the atmospheric CO2 concentration has 

increased from 280 parts per million (ppm) to 400 ppm in 2019 (Friedlingstein et al. 2020). The 

oceans play an important role of absorbing CO2 and regulating the atmospheric CO2 concentration. 

Each year, nearly one third of the carbon emissions are absorbed into the upper ocean (Sabine et 

al. 2004). Consequently, the increase of anthropogenic carbon dioxide in atmosphere has led to 

the gradual decrease of pH in the surface ocean water, which is known as ocean acidification or 

referred as ‘the other CO2 problem’ (Doney et al. 2009). The mean surface ocean pH declined 

around 0.1 unit and the aragonite saturation horizon in the open ocean became shallower since the 

pre-industrial era, which could have negative impacts on wide range of marine organisms that 

build shells from calcium carbonate (Orr et al. 2005, Doney et al. 2009, Logan 2010). Ocean 

acidification in the open ocean is a predictable phenomenon which does not suffer from many 

uncertainties associated with climate change forecasts (Doney et al. 2009). According to 

the Intergovernmental Panel on Climate Change (IPCC) AR5 report, the decrease in surface ocean 

pH is projected to be in the range of 0.20 to 0.21 for RCP (Representative Concentration Pathway) 

6.0, and 0.30 to 0.32 for RCP8.5 between 1986–2005 and 2081–2100.  

Coastal and estuarine environments provide important resources to human beings and are 

highly influenced by human activities. Compared to open ocean, multiple factors can change the 

natural balance of carbonate chemistry and pH in coastal water system. Therefore, it is worth 

asking whether coastal and estuarine systems are experiencing similar trends of acidification as 

the oceans, and how the coastal pH responds to both global and local influences. To answer this 
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question, observations of pH and carbonate chemistry parameters were made around the world.  

Unlike the open ocean surface pH, which has relatively low pH variations with a decreasing rate 

at approximately 0.002 units per year and diel to seasonal fluctuation between 0.024 to 0.096 unit 

(Doney et al. 2009, Hofmann et al. 2011, Carstensen and Duarte 2019), coastal pH generally has 

diverse trends and high variability, with diel to seasonal fluctuation up to 0.5 unit due to 

community metabolism or seasonal upwelling (Borges and Gypens 2010, Provoost et al. 2010, Cai 

et al. 2011, Hofmann et al. 2011, Duarte et al. 2013, Carstensen and Duarte 2019) and a broad span 

of long-term trends from −0.023 to 0.023 per year in different coastal systems (Borges and Gypens 

2010, Provoost et al. 2010, Waldbusser et al. 2011, Carstensen and Duarte 2019). Therefore, there 

are other processes controlling the pH in coastal waters and ocean acidification is only one of many 

factors influencing pH changes in coastal areas. Based on the previous studies on coastal 

acidification, there are four main factors influencing the coastal and estuarine pH variability: (1) 

ecological metabolism and other redox reactions in water column; (2) river discharge (with high 

concentration of nutrients and organic matter); (3) hydrological mixing between the freshwater 

and ocean water; (4) climate change (such as ocean acidification and global warming)  

1.1 Different impacts on coastal and estuarine pH 

Net primary production in coastal system is generally one order of magnitude higher than 

that of open ocean (Gattuso et al. 1998, Duarte et al. 2013), and community metabolism is a big 

contributor to pH variations in coastal water systems (Borges and Gypens 2010, Provoost et al. 

2010, Wallace et al. 2014). The primary production in the water column would fixes aqueous CO2 

and increases pH, but the respiration of the organisms releases CO2 and decreases pH (Soetaert et 

al. 2007, Borges and Gypens 2010). The imbalance between the community production and 

respiration can lead to large diel to seasonal fluctuations in coastal water pH. For example, in 
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productive coastal systems with seagrass, coral reef, salt marsh or mangroves, the diel pH 

fluctuation can be up to 1.0 unit but the ecosystem is still CO2-neutral in general (Duarte et al. 

2013). During spring, more nutrients and organic matter are flushed into the estuarine water with 

increasing river discharge. The riverine nutrients and warm temperature in spring can stimulate 

phytoplankton bloom and increase pH, but lead to pH decreases in summer when water column 

respiration exceeds primary production. For example, in the southern bight of the North Sea 

(Brussaard et al. 1996) and Pearl River estuary (Dai et al. 2008) surface pH was found to increase 

approximately 0.5 in spring due to phytoplankton growth. 

The  decoupling of the production and respiration due to stratification or eutrophication 

can cause large pH changes in the coastal water (Borges and Gypens 2010, Cai et al. 2011). 

Increasing nutrient inputs from riverine water due to human activities like increasing application 

of chemical fertilizers can stimulate the growth of algae, increase the water turbidity and eventually 

lead to eutrophication (Boesch et al. 2001, Kemp et al. 2005a). During eutrophication, dissolved 

oxygen becomes depleted in the bottom water and CO2 is released when the organic matter from 

the blooms is respired by bacteria (Sunda and Cai 2012). In semi-closed and eutrophic estuaries 

where seasonal stratification enhances the summer hypoxia and organic matter degradation under 

euphotic layer, the estuarine water is more vulnerable to the eutrophication-induced acidification. 

For example, low pH (pH<7.5) or large decrease of pH (ΔpH>0.5) concurrent with DO decline in 

subsurface to bottom water were detected in many coastal systems during summer and fall months 

in US coast (like Long Island sound (Wallace et al. 2014), Chesapeake Bay (Kemp et al. 2005a, 

Brodeur et al. 2019)) and European coast (like Lake Grevelingen (Hagens et al. 2015) and Baltic 

sea (Sunda and Cai 2012)). But in shallow and well-mixed estuaries, CO2 produced in water is 

more easily to be exchanged with atmosphere, and O2 in the surface layer is better mixed down to 
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the deep water, and therefore,  less vulnerable to the eutrophication-induced acidification (Wallace 

et al. 2014). For example, in well-mixed Belgian coastal water (Borges and Gypens 2010) and 

Dutch coast water (Provoost et al. 2010) the increased primary production due to nutrient 

increasing and eutrophication can override and even counter the effect of ocean acidification. 

Except for the metabolism induced pH change discussed above, alkalinized water exported 

from rivers can also alter coastal and estuarine pH. For example, a long-term simulation of ocean 

acidification in the Northern Gulf of Mexico showed the coastal acidification progression was 

counteracted by the enhanced alkalinity from the Mississippi-Atchafalaya River System (Gomez 

et al. 2021). Also, an increase of surface water alkalinity was observed throughout the Baltic Sea 

from 1995 to 2014 which was attributed to terrestrial weathering process and internal alkalinity 

sources (Müller et al. 2016).  

Except for the pH drivers discussed above, seasonal upwelling on the US west coast (Feely 

et al. 2008, Hauri et al. 2013) and Australia east coast (Schulz et al. 2019) are observed to lower 

coastal pH by bringing cold DIC-enriched and low pH deep water to the surface water, making the 

coastal system particularly prone to the effects of ocean acidification (Hauri et al. 2013). 

Alternatively, the carbonate chemistry within fresh riverine water have been found to directly 

influence the estuarine pH. Salisbury et al. (2008) found the coastal ecosystem can be acidified by 

the introduction of acidic river water. Hu and Cai (2013) found that estuaries with low to moderate 

riverine weathering product inputs exhibit a maximum pH decrease in the mid-salinity region as a 

resultof anthropogenic CO2 intrusion and named the region ‘estuarian minimum buffer 

zone’(MBZ). Besides the factors mentioned above, there are more processes that can directly or 

indirectly affect the pH value in coastal and estuarine systems. For example, extreme weather 

events like storms can alter the water carbonate condition months after the storm event by 
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increasing riverine nutrient inputs, and further change the phytoplankton production (Johnson et 

al. 2013, Paerl et al. 2018, Osburn et al. 2019). Cai et al. (2017) found a pH minimum could exist 

in mid-depth estuarine water during summer when acid water produced through H2S oxidation is 

mixed upward from the anoxic deep water in Chesapeake Bay. Wind-driven lateral upwelling in 

the semi-closed estuary can enhance the release of respired CO2 from subsurface water to the 

surface and alter the air-sea CO2 flux (Huang et al. 2019). Thawing coastal permafrost and 

increasing river runoff due to melting ice can bring more DIC enriched water to the shelf water 

and amplify the impact of ocean acidification (Semiletov et al. 2016). 

1.2 Long term trend in coastal pH and its impact on coastal organisms 

With complex interactions in estuarine ecological system, Duarte et al. (2013) raised the 

question: is ocean acidification solely an open-ocean syndrome? Or in other words, are coastal and 

estuarine systems experiencing similar trends of acidification as the oceans? Baumann and Smith 

(2018) synthesized the diel to interannual variability of surface pH in 16 diverse, shallow-water 

habitats along the US coasts from 2002 to 2016.  They found the overall interannual pH trend in 

these systems are quite diverse, with little to no spatial consistency even within regions along the 

US Atlantic, Gulf of Mexico, and Pacific coasts. Both positive and negative trends were detected 

in eastern and western coast and were one order of magnitude larger than the interannual trend in 

open ocean acidification. DO, salinity and temperature were found to be the possible factors related 

to the interannual trend of surface pH by affecting community metabolism state in these systems. 

But the correlation coefficient between these factors and interannual surface pH change were 

smaller than pH change in shorter scales (daily to monthly). The correlations between Chla 

concentration and pH were mostly nonsignificant, which means eutrophication induced 



 6 

acidification in the shallow-water ecosystems can be less severe than that of the deep and stratified 

system. 

 Carstensen and Duarte (2019) summarized the long-term coastal pH trends over a wider 

range, including 11 coastal systems and 83 station observations from US, European and east Asian 

coasts between 1950s and 2010s. Well-mixed to stratified water systems, and weakly to strongly 

buffered water systems were included in the study. According to the results, long-term pH changes 

in coastal systems showed a broad span of range from −0.023 to 0.023 yr−1, with 65% of the 

ecosystems showing no monotonic trends, and 45% of the ecosystems studied showing positive 

trends, in contrast of the negative trends expected from CO2 emissions. Weakly buffered or the 

permanently stratified (even highly buffered) coastal water, like permanently stratified Mariager 

Fjord in the Danish Straits, tend to have larger seasonal variation (about 1 unit). But the long-term 

pH trend did not show great difference between weakly or strongly buffered coastal systems. The 

highly diverse long-term pH trends suggested by this research indicates the nearshore pH may 

respond stronger to local drivers than global atmosphere pCO2 rising and therefore, local 

management strategies can be more effective for maintaining healthy pH and DO levels in coastal 

habitats. However, none of the research investigated the long-term pH trend below the surface 

water, where are important habitats for bottom-dwelling, shell-forming organisms and more 

susceptible to eutrophication induced acidification, due to the lack of observations.  

Estuarine and coastal waters are valuable habitats for many organisms. The extreme 

carbonate chemistry events (e.g. low pH) in the coastal water are known to be detrimental to the 

coastal dwelling organisms, especially the shell forming organisms. For example, abrupt and 

persistent breeding failures of Pacific oysters in shellfish hatcheries of Washington State coast in 

2005-2009 are found to be related to coastal acidification partially induced by seasonal upwelling 
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of CO2-enriched water (Feely et al. 2012). Also, Bohai Sea, China experienced scallop-breeding 

failures in 2011 summer because of large pH decline (up to 0.29 units) in bottom water due to red 

tide (Zhai et al. 2012). Long term gradual increase of CO2 baseline can also influence the 

organisms by increasing extreme pH events in some coastal systems. For example, on the West 

Coast in California, a gradual increase in seawater pCO2 since the beginning of industrial era has 

increased the frequency and intensity of the aragonite undersaturation periods in the water (Harris 

et al. 2013). Therefore, understanding the long-term carbonate chemistry dynamic and 

acidification trend in estuarine and coastal waters is very important for coastal resources 

management like selecting the hatchery sites and protecting the organisms under future climate 

change.  

1.3 Chesapeake Bay acidification 

Chesapeake Bay is the largest estuary in the US and provides valuable habitats for abundant 

commercially important organisms like blue crabs and oysters. It is approximately 300 km long 

reaching from Susquehanna River flat in the north to Mid-Atlantic Bight in the south with average 

depth around 6.5m. Its central channel is relatively deep and narrow which is 20-30m deep and 1-

4 km wide (Kemp et al. 2005a). The Susquehanna River is the largest single contributor in the 

non-tidal watersheds feeding Chesapeake Bay in terms of river flow, nutrients and suspended 

sediment (Zhang et al. 2015). Chesapeake Bay is a partially mixed estuary affected by strong 

seasonal changes of the Susquehanna River discharge. The seasonal stratification in the bay starts 

to build up when Susquehanna River discharge is highest in winter and spring and reaches a 

maximum stratification during the summer. The lower layer estuarine return flow driven by the 

fresh and salt water mixing contributes to a longer residence times (90 to 180 d) for freshwater and 

nutrients (Kemp et al. 2005a). The high riverine nutrient input, seasonal stratification and long 
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residence time together make the Chesapeake Bay a productive system prone to eutrophication 

and hypoxia (Kemp et al. 2005a). As discussed in previous paragraphs, the process of hypoxia is 

usually coupled to the process of acidification in coastal and estuarine waters through the spatial 

decoupling of surface-layer primary production and deep water respiration. Therefore, Chesapeake 

Bay can also be vulnerable to the acidification driven by local stressors that drive eutrophication 

and hypoxia (Shen et al, 2019). Shen et al. (2020) did a 30-year simulation (1986-2015) using a 

coupled hydrodynamic-biogeochemical model to investigate anthropogenic impacts on long term 

pH trends in Chesaepeake Bay. The model results showed an overal increasing trend in upper bay 

pH that can be related to increasing alkalinization in Susquehanna River and a significant pH 

decline in lower bay associated with ocean acidification and lowered net ecosystem production. 

However, no modeling study was conducted during 1950-1985 when the riverine nutrient loading 

doubled and the riverine alkalinity increased from ~500 to ~900 µmol/kg. 

1.4 Motivations and thesis structure 

Increasing emissions of anthropogenic carbon into the atmosphere can lower open ocean 

pH. But the long-term pH trends in Chesapeake Bay are more complicated due to both global and 

regional drivers. The riverine nutrient export from Susquehanna River increased since 1950s due 

to the increasing use of fertilizer and detergent from land (Zhang et al. 2015). The increasing 

nutrients stimulated the development of eutrophication, which would elevate pH in the surface 

euphotic layer with increasing primary production and lower pH in the bottom layer with organic 

matter decomposition. On the other hand, long‐term observations of alkalinity and pH in 

Susquehanna River demonstrated robust basification signals (Raymond and Oh 2009, Kaushal et 

al. 2013, 2018). The alkalinized water exported from the rivers can buffer the acidification and 

increase the estuarine pH. Surface water temperature in the bay was also found to increase at the 
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rate of 0.05 to 0.10 °C year-1 over the past 30 years (Ding and Elmore 2015), and the relative sea 

level rise in bay also accelerated in last century and reached 4-10 mm year-1 in 2011 (Ezer and 

Corlett 2012). The warming temperature can alter the CO2 gas exchange with the atmosphere and 

influence the metabolism process in bay. Sea-level rise can increase water column stratification 

and contribute to the decoupling of production and respiration in estuarine water. However, due to 

the limited observation and complicated interactions within the system discussed above, the long-

term trend of Chesapeake Bay acidification back to 1950s are not well understood.  

In this study, we conducted a 60-year (1951-2010) retrospective simulation using a 3-D 

coupled hydrodynamic‐biogeochemical mode (ROMS-RCA-CC). Reconstructed long-term 

carbon chemistry timeseries based on available historical observations were used to drive the 60-

year simulation. Through the numerical experiments, we explored two main questions: (1) How 

did the long-term pH trends in Chesapeake Bay respond to local and global drivers over the sixty 

years? (2) How did the different global and regional environmental drivers impact the acidification 

in Chesapeake Bay? In Chapter 2, we introduced the methods used to reconstruct the historical 

carbon chemistry boundaries and analyzed the 60-year hindcast results that showed the long-term 

evolution of carbonate chemistry and other parameters in the estuary. In Chapter 3, we conducted 

four scenario runs to discern the impact of local and global stressors on long-term pH trends and 

compared the scenario model results with the hindcast results in Chapter 2. 

  



 10 

Chapter 2: Long-term hindcast of carbonate chemistry in the Chesapeake Bay using 

a coupled hydrodynamic-biogeochemical model  

 

2.1 Introduction 

Chesapeake Bay had a long history of eutrophication and hypoxia dating back to 1950s 

(Hagy et al. 2004, Kemp et al. 2005a). Previous research found that the declining water quality 

was closely related to the increasing nutrient loading from Susquehanna River, which is the largest 

fresh water source to the Bay. Total nitrate/phosphate inputs from Susquehanna River to 

Chesapeake Bay doubled from 1950 to 1990/1970 respectively, then they declined afterwards due 

to improved watershed land management (Sprague et al. 2000) (Figure 2.1). The associated 

development of eutrophication and hypoxia may also influence pH variability by regulating the 

metabolic processes. Long‐term observations of the major freshwater sources to Chesapeake Bay 

revealed robust basification signals, particularly in the Susquehanna River (Kaushal et al. 2013, 

2018) and it may increase pH and the buffer capacity of the Chesapeake Bay water. Besides these 

local pH drivers, global changes like ocean acidification and warming can also affect Chesapeake 

Bay pH in the long run. Therefore, pH trends in Chesapeake Bay are much more complicated when 

compared to the ocean acidification which is solely caused by the rising CO2 emission. 

Few papers have addressed the long-term changes in the carbonate chemistry in 

Chesapeake Bay until recent years. Waldbusser et al. (2011) analyzed surface pH observations in 

Chesaepeak Bay from 1985 to 2008, and found a generally increasing trend in the mesohaline 

region of the mainstem Bay during summer and a decreasing trend in polyhaline surface water in 

both spring and summer seasons. But the causes behind these trends were not clear.  To overcome 
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the constraint of limited observations, modelling was used as an approach to explore and explain 

the temporal and spatial changes in Chesapeake Bay pH. Shen et al. (2020) did a 30-year 

simulation (1986-2015) using coupled hydrodynamic-biogeochemical model to investigate 

anthropogenic impacts on longterm pH in Chesaepeake Bay. They found an overal increasing trend 

in upper bay pH that could be related to increasing alkalinization in Susquehanna River and a 

significant pH decline in lower bay associated with ocean acidification and lowered net ecosystem 

production. St-Laurent et al. (2020) used linked land–estuarine–ocean modeling system to 

understand the relative impacts of climate change and regional watershed changes on the carbon 

balance of the bay between the early 1900s and the early 2000s. They found the bay has turned 

from weak CO2 source in 1900s to a CO2 sink in 2000s. Although river basification and warming 

mitigated the CO2 ingassing, rising atmospheric CO2 and eutrophication still increased the total 

carbon intake over the century.  

Due to sparsity in pH measurements before the 1980s and the lack of sustained DIC and 

TA measurements in the Bay, retrospective data analysis is inadequate to explore pH changes back 

to the 1950s when eutrophication and hypoxia started to form in Chesapeke Bay. In this study, we 

overcame this limitation by reconstructing long-term carbon chemistry timeseries based on 

available historical observations and running a 60-year (1951-2010) retrospective simulation using 

a 3D coupled hydrodynamic‐biogeochemical model. 

2.2 Method 

2.2.1 Statistical and analysis approaches 

Water quality parameters such as pH and riverine nutrients have complicated trends 

consisting of non-linear seasonal and interannual fluctuations. To detect the long-term trends in 
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these parameters, we used Generalized Additive Model (GAM) (Hastie and Tibshirani 2017). 

GAM is a generalized linear model with a linear predictor containing a sum of smooth 

nonparametric functions of covariates. It is favored over the generalized linear regression model 

because it allows for flexible specification of response by defining the model in terms of smooth 

functions rather than the detailed parametric relationships on the covariates (Wood 2006, James et 

al. 2013). 

The GAM used in this research is shown as below: 

yt ~ yt-1 + s(dnum) + s(doy) + s(disc) + ti(dyear, doy) + ti(dyear, sal) + ti(dyear, doy, disc) 

(2.1)                                                          

where yt represents the response variables including pH, TA, DIC and riverine nutrients, yt-1 

represents the same variables at the preceding time step, dnum is the number of month relative to 

the reference time (e.g. 1 for Jan. 1951), doy is the number of month in a year (e.g. 1 for January), 

and disc is the monthly averaged river discharge representing the influence of river flow. For the 

functions in GAM, s() is a smooth function with thin plate regression splines. s(dnum) denotes the 

long-term residual, s(doy) denotes the seasonal cycle, and s(disc) denotes effects of river flows on 

the interannual variabtions. ti() is tensor product of two smooth functions and indicates the 

interaction between the two variates. The high-order term ti(dyear, doy) represents the seasonal 

cycle over time and ti(dyear, doy, disc) represents the changing of seasonal river flow over time. 

The objective of GAM is to minimize the generalized cross-validation (GCV) score and maximize 

the model R2 and percentage of deviation explained.  

The non-parametric Mann-Kendall trend test (M-K test) was applied to the time series to 

statistically assess whether there is a monotonic trend of a variable over time (Mann 1945, Kendall 
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1948, Gilbert 1987). A monotonic trend means that the variable consistently increases (decreases) 

through time, but the trend may or may not be linear. In M-K trend test, data points were assumed 

to be not serially correlated over time and did not have to be normally distributed. In this research, 

M-K test is applied to both the external forcing such as air temperature, solar radiation, off-shore 

water level, as well as the state variables such as TA, pH, DIC in Chesapeake Bay. TA, pH and 

DIC that exhibit large seasonal and interannual variations. Therefore, GAM model was used to 

remove the short term signals before applying M-K test to detect the longterm trends of these time 

series.  

To calculate the linear trends of the time series, we used the non-parametric Theil-Sen 

estimator (also called Sen’s slope estimator) (Theil 1950, Sen 1968, Wilcox 2001). This estimator 

is a method for robustly fitting a line to sample points in a plane by choosing the median of the 

slopes of all lines through pairs of points. The significance level a was set as 0.05 for tests. 

TA and pH in the Susquehanna river were found to be increasing over the past few decades 

but with large interannual variations (Raymond and Oh 2009, Kaushal et al. 2013). To estimate 

the linear trends of the riverine TA and pH we conducted Monte Carlo trend analysis. Monte Carlo 

trend analysis is a computational algorithm that relys on repeated random sampling to obtain the 

Sen’s slope estimator in a timeseries (Zhang et al. 2004). By using this method, we assumed that 

normally distributed errors existed in the Susquehanna TA and pH measurements. We first 

randomly sampled the normally distributed errors 1000 times (pH error standard deviation=0.1, 

TA error standard deviation=10). Then we computed the pH (TA) as the sum of measured pH (TA) 

and random errors, and got 1000 possible sets of pH (TA) values for each time it was messured. 

Finally we calculated the Sen’s slope on each set of the values and computed the fraction of the 

1000 timeseries that had a significant trend (a<0.05).  
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2.2.2 Reconstruction of model boundary TA and DIC 

Since the measurement of carbonate parameters was insufficient and discontinuous before 

the 1980s, the reconstruction of historical riverine and oceanic carbon boundaries was the first step 

to conducting the retrospective simulation. 

River boundary TA and pH from 1986 to 2010 in the Susquehanna River were obained 

from Chesapeake Bay Program (CBP) station CB1.0 and the other seven tributaries were obtained 

at nearby USGS stations according to  Shen et al. (2019b). The Susquehanna River is the river 

with the longest TA and pH observation record. Susquehanna monthly TA and pH observations at 

the river boundary before the 1980s were obtained from USGS site 01540500 at Danville, PA, 

according to  Raymond and Oh (2009).  

To ensure the consistency of the TA and pH observations between Danville and CB1.0 

stations, we compared the slopes of the time series using Monte Carlo analysis (Figure 2.2 and 

Figure 2.3). TA from Danville and CB1.0 shows an increasing rate of 9.9 µmol/kg per year and 

10.56 µmol/kg per year, respectively. The two slopes had a difference of 0.57 µmol/kg per year, 

which can accumulate to 34.2 µmol/kg of difference for 60 years. And the slope of reconstructed 

TA was 10.01 µmol/kg per year (Figure 2.4(a)). Since three slopes were close to each other and 

the difference between two stations took up around only 6% of the total TA change from 1951 to 

2010, we assumed the TA from Danville and CB1.0 were consistent despite the different locations. 

This long-term increase trend observed in Susquehanna TA time series was consistant with 

previous studies on river basification, which is considered to be caused by the decreased acid mine 

drainage, intense mineral weathering and mining activies since the 1940s (Raymond and Oh 2009, 

Kaushal et al. 2013). 
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For Susquehanna pH observations, we used the same method to examine the data 

consistency between the two stations (Figure 2.3). Observations of pH from Danville experienced 

three main steps of change. (1) From 1951 to the early 1960s, pH remained stable around the 

annual mean level of 7.00. (2) From mid 1960s to early 1980s, pH gradually increased from 6.71 

to 7.71 at a rate around 0.055 per year. This riverine pH increase in later twentieth centuary was 

observed in many other main rivers in the eastern and midwestern US where the most population 

is located (Raymond and Oh 2009, Kaushal et al. 2018). While in wet years such as mid 1960s and 

1970, pH dropped down to 6 because the stored acidity in the form of sulfate salts dissolved into 

water during flooding (Raymond and Oh, 2009). (3) After 1980s, pH was stable again around 7.76 

with a small changing rate of -0.0016 per year. CB1.0 observation started from 1985 and the 

observation remained at the level around 7.63 with a small decreasing rate of -0.0008 per year. In 

the reconstructed pH time series (Figure 2.4(b), pH also showed a small changing rate at  0.0004 

per year from 1980 to 2010 including the overlap time period between Danville and CB1.0 

observations. From 1951 to 2010, the reconstructed pH increased at a rate of 0.014 unit per year 

(Figure 2.4(d)). 

Riverine DIC concentrations during 1951-2010 were not measured, so we calculated DIC 

through CO2SYS program based upon available TA, pH, temperature and salinity etc. (Lewis and 

Wallace 1998). The calculated DIC also showed an overal increasing trend at 8.43 µmol/kg per 

year (Figure 2.4(c)). DIC to TA ratio is an important indicator of water acidity, higher ratio 

indicates higher CO2 in the DIC pool and the system is more acidified and less bufferred against 

CO2 change (Egleston et al. 2010).  DIC to TA ratio decreased over the sixty years (Figure 2.4(d)), 

in agreement with the reported increaes of pH and acid buffer capacity in Susquehanna river since 

the 1950s (Kaushal et al. 2018). 
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TA in other seven tributaries before 1985 were calculated from empirical relationships 

between riverine TA and river discharge developed by Shen et al. (2019). And their corresponding 

DIC before 1985 were calculated based on the averaged DIC/TA ratio in each tributary from 1985 

to 2010 when DIC and TA observations were avaliable (Table 2.1).  

TA at the offhore ocean boundary was calculated from an empirical linear relationship (TA 

= 47.69*Sal + 640.77, r2 = 95%) fitted with cruise data from the East Coast Program (Brodeur et 

al. 2019). The corresponding salinity at the ocean boundary was a depth-averaged climatology 

salinity  from WOA (2013 V2) database. Ocean boundary DIC was calculated using the available 

oceanic boundary TA, salinity, seawater fCO2 and SST using CO2SYS (Figure 2.5(d)). SST at the 

oceanic boundary was decadally averaged surfarce temperature from WOA (2013 V2). Seawater 

fCO2 from 1982 to 2010 at the ocean boundary was obtained from Xu et al. (2020), who 

reconstructed Mid-Atlantic-Bight (MAB) surface water fCO2 data using Bayesian‐neural‐network 

approach with 1° × 1° resolution in space and a monthly resolution in time. Seawater fCO2 before 

1982 was converted from seawater pCO2 using CO2 coefficients from Weiss (1974), where for 

surface waters fCO2 ≈ 0.996 pCO2 (Figure 2.5 (a)). To obtain the seawater pCO2 before 1982, it 

was assumed that seawater pCO2 before 1982 equals to atmosphere pCO2 before 1982 plus 

averaged air-sea pCO2 difference in 1982-2010: 

sw_pCO21950-1982 =atm_pCO21950-1982 +∆pCO2_sw-air 1982-2010                                               (2.2) 

Ocean boundary atmospheric pCO2 was calculated from atmosphere CO2 (atmospheric dry air 

mole fraction of CO2), seawater temperature, and salinity according to Xu and Cai (2020):  

atm_pCO2= CO2*(1-pw),                                                                                          (2.3) 
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where pw stands for water vapor pressure at the equilibrium temperature and salinity (Weiss and 

Price, 1980): 

pw=exp(24.4543 – 67.4509 × (100/T) − 4.8489 × ln (T/100) – 0.000554×S)          (2.4) 

Atmospheric CO2 data from 2000 to 2010 came from Carbon Tracker, version CT2017 

(http://carbontracker.noaa.gov), which is a data assimilation system built by the National Oceanic 

and Atmospheric Administration's (NOAA) Earth System Research Laboratory. To extend the 

temporal coverage back to 1950, we first calculated the average monthly difference between 

CarbonTracker data and the Mauna Loa CO2 data (https://www. 

esrl.noaa.gov/gmd/ccgg/trends/data.html) for each grid point using data in the overlap period 

(2000–2015). And we applied this difference, which ranges from−2.8 to 8.5 uatm, to early years 

(1950–1999) when the CarbonTracker data were not available. Then the full set of atmospheric 

CO2 data at the ocean boundary were obtained for the 6-decades from 1951 to 2010. 

2.2.3 Coupled physical-biogeochemical model (ROMS-RCA-CC) 

In this study, a coupled physical-biogeochemical model (ROMS-RCA-CC) was used to 

conduct the sixty-year retrospective simulation from 1951 to 2010 with constructed historical 

carbon boundary. Regional Ocean Modeling System (ROMS) model provided the simulations of 

hydrodynamics in Chesapeake Bay, which has been described and validated against the 

observations in previous studies (Li et al. 2005, Zhong and Li 2006). North American Regional 

Reanalysis (NARR) dataset was utilized to provide the essential atmosphere variables for the 

ROMS model in the period of 1984-2010. Twentieth Century Reanalysis (20CR) project dataset 

from NOAA-CIRES-DOE (National Oceanic and Atmospheric Administration-Cooperative 

Institute for Research in Environmental Sciences-Department of Energy) 
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(https://www.esrl.noaa.gov/psd/data/20thC_Rean/) was used to provide atmospheric variables in 

1951-1983 when NARR data was not avaliable in the study area and wind speed was bias-corrected 

and scaled by month to NARR as a reference according to Ni and Li (In prep).  

 The Row Column Aesop (RCA) model is the biogeochemical model that simulates two 

phytoplankton groups, particulate and dissolved organic carbon, nitrogen, phosphorus, dissolved 

inorganic nitrogen, phosphorus, silica, and O2. It also includes a two‐layer sediment diagenesis 

module which simulates the cycling of carbon, nitrogen, phosphorus, silica, sulfur, and O2 (Brady 

et al. 2013, Testa et al. 2013). The carbonate chemistry (CC) module was later coupled to RCA by 

Shen et al. (2019) to simulated the cycling of dissolved inorganic carbon (DIC), total alkalinity(TA) 

and aragonite CaCO3 in Chesapeake Bay. Riverine nutrient inputs in Cheseapeke Bay from 1951 

to 2010  were obtained from reconstructed data from Ni and Li (In prep). The ocean boundary 

nutrient concentrations were acquired from WOA (2013) decadal average and from Filippino et al. 

(2011).  

2.2.4 Retrospective simulation set up from 1951 to 2010 

The model simulation was implemented for the years 1951 to 2010. The ROMS model was 

initiated in year 1950 as spin-up, then run continuously in the following 60 years with output at 

hourly intervals. The model has 120×80 horizontal grids (~1-2 km resolution) and 20 layers in 

vertical sigma-coordinate (Figure 2.6 (b)). The RCA model was run on the same grid as ROMS 

model at computational time-step of 450 seconds and the output was saved at 4-hourly interval. 

Since most of the organic matter generated in Chesapeake Bay is consumed within annual cycle 

(Cowan and Boynton 1996), RCA model was initiated every year with the spatial-interpolated 

condition of pervious December from the CBP observation during 1985-2010. The averaged 

nutrients initial condition for of 1985-1989 was set as the initial condition for 1970-1984 when the 
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river nutrient and organic matter input was at high level; it was scaled by 0.5 for 1950-1969 when 

the river input was at relatively low level (Ni and Li, in prep).  

Model output of bottom pH and acidic volume were calculated and compared with limited 

measurements at Chesapeake Bay Institute and Chesapeake Bay Program monitoring 

stations(Figure 2.6 (a)). The along-channel and cross-channel developments of acidification over 

each decade during 1951-2010 were investigated. The statistical GAM model was utilized to 

identify the spatial and temporal changes of the modeled pH.  

2.3 Results 

2.3.1 Model evaluation of bottom pH and dissolved oxygen  

Bottom pH and DO were calculated from retrospective model outputs and compared with 

historical observations made along the center axis of the Chesapeake Bay. The Chesapeake Bay 

Program (CPB) dataset provides bi-weekly water quality data observations in the main stem and 

nearby tributaries from 1984 to present. From 1949 to 1982, water quality data was measured less 

than once a month by the Chesapeake Bay Institute (CBI) . To cover the entire time period from 

1951 to 2010, we chose four stations from CBP and four stations from CBI. Each pair of the two 

stations is close to each other (Figure 2.6 (a)). 

The comparison between the monthly averaged model results and observation data showed 

that the model was able to reproduce the seasonal and interannual changes in bottom DO (Figure 

2.8) and pH (Figure 2.7) along the central Chesapeake Bay over the sixty years. The correlation 

coefficients between the modeled and observed DO in three subregions varied from 0.8 to 0.95 

(p<0.05) and the Root-Mean-Square-Error (RMSE) was small compared to the bottom DO 

variations. The pH correlation coefficients varied from 0.6 to 0.73 (p<0.05) in the upper and mid 
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bay. In the lower bay, the correlation coefficient in pH was around 0.2 (p<0.05). But since the pH 

observations in the lower bay were highly scattered, this mismatch between the model simulation 

and observational data may have resulted from the scarce data in both time and space. 

Both the pH and DO time series showed large seasonal variations, with the highest value 

in winter and the lowest value in summer. Due to lower temperatures and higher wind speeds, 

stronger air-sea gas exchange and water column vertical mixing led to higher DO and pH in winter. 

The larger river discharge in spring set up the stratified structure of the esturiane water in summer, 

and the phytoplankton bloom in spring provided more organic matter in summer, which enhanced 

the respiration in bottom waters and further lowered DO and pH. A decreasing trend in the DO 

time series was found over the sixty years, and the reduction was larger in the early 1980s. But the 

bottom pH did not show an obvious long-term trend like the bottom DO from 1951 to 2010. 

We also calculated the acidic (pH<7.5), hypoxic (DO<2 mg L-1) and anoxic (DO<0.2 mg 

L-1) volumes over the Cheseapeake Bay main stem from 1951 to 2010. There were no long-term 

bay-wide pH observations to estimate the acidic volume. But hypoxic and anoxic volumes were 

compared with measurement-based interpolations in July from Hagy et al. (2004) (Figure 2.9 

(a)(b)). The lack of observations in both time and space may cause some of the mismatches 

between the model simulation and observation. Both the hypoxic and anoxic volumes showed an 

increasing trend around the 1970s. Hypoxia in Chesapeake Bay is sensitive to riverine nutrient 

increases (Hagy et al. 2004), but the acidification is the result of combined influences from both 

local and global drivers. Therefore, the acidic volume decreased from 1950s to 1980s and stablized 

afterwards. It also featured large interannual variations.  

The summer (June-August averaged ) hypoxia expanded from the 1950s to the 1980s, and 

the total volume increased from 2.9 km3 to 6.3 km3 (Table 2.2). Then the hypoxia volume slightly 



 21 

decreased by around 8% to 5.8 km3 in the 2000s. The alternative metrics cumulative hypoxia days 

(CHD, km3days) followed similar pattern as the summer average hypoxic volume. The summer 

hypoxia usually started to develop in June and terminates in August. From 1950s to 1980s, the 

onset of hypoxia shifted earlier to May meanwhile the termination was delayed until early 

September. After the 1980s, the onset of hypoxia shifted a bit earlier while termination remained 

stable. The overall duration of hypoxia was prolonged by around 2 months from 1950s to 1980 but 

then it was shortened by around 10 days in 2000s. 

The total acidic volume change had the opposite trend as compared to the hypoxic volume. 

From the 1950s to the 1970s, it first decreased from 9.22 km3 to 7.95 km3 (Table 2.3). Then the 

summer acidic volume increased by 30% to 10.17 km3 in the 2000s. The alternative metrics 

cumulative acidification days (CHD, km3days) decreased by 30% to 1128 km3days from the 1950s 

to the 1980s and then it increased to 1272 km3 days in the 2000s. Summer acidification initiated in 

March and terminated around August. From the 1950s to the 1980s, the initiation delayed from 

mid-March to early April. Then it shifted slightly ealier to late March in the 2000s. The termination 

shifted from late September to early October from the 1950s to the 1970s and then it stayed stable 

around early September after the 1970s. The overall duration of acidification fluctuated over the 

six decades and shortened by around one month from the 1950s to the 2000s. 

2.3.2 Spatial and temporal distribution of carbonate chemistry 

In this section, carbonate chemistry related variables in Chesapeake Bay are described by 

decadal averages (1950-1959, 1960-1969, 1970–1979, 1980–1989, 1991–1990, and 2001-2010) 

to facilitate our analysis of the spatial distribution of these variables. Both spring and summer 

averages were calculated to explore the seasonal changes. Spring season includes March, April, 

and May while summer season includes June, July, and August.  
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The along-channel distributions of carbonte chemistry related variables in summer and 

spring were plotted to better understand the pH change described in previous sections (Figure 2.10 

2.11). In general, the salinity distribution represents the physical mixing between fresh and oceanic 

water in the along-channel direction. Seawater with higher salinity intruded from the bottom of 

the estuary’s mouth and the salt intrusion penetrated further landward from 1951 to 2010 due to 

the sealevel rise. TA is a relatively conservative variable because CO2 from air-sea exchange or 

biological respiration does not directly influence its concentration in the water. So the overall 

distribution of TA was similar to the salinity distribution. The increase of TA in the esturine head 

agreed with the basification trend obeserved in the Susquehanna River (Raymond and Oh 2009). 

The distribution of DIC was also influenced by the fresh-salt water mixing with high DIC seawater 

in the lower layer. But the vertical gradient of DIC was larger than that of TA due to the 

phytoplankton production in surface water and the organic matter decomposition in deep water. 

From the 1950s to the 1980s, the DIC vertical gradient increased due to the increasing 

phytoplankton biomass as represented by chlorophyll-a (CHLA). Both TA and DIC had lower 

vertical gradients and lower concentration in spring. 

Low pH water (pH<0.5) expanded seaward from the upper bay bottom water due to low 

DIC and TA concentration river flow combined with high rates of terrestrial organic matter 

respiration (Shen et al. 2019). And the low pH water volume stayed in the location between 37.7oN 

and 39.5oN over the sixty years. The minimum pH (pH as low as 7.0) existed during summer in 

the bottom water around 39oN in the summer hypoxic zone of the main stem related to bottom 

organic matter respiration. Minimum pH volume fluctuated with time with the highest volume in 

1970s and lowest volume in the 1980s. The pH in the lower bay was high (pH up to 8.0) and had 
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smaller vertical gradients because of the highly buffered seawater intrusion and strong mixing. But 

the overal lower bay pH decreased over the six decades due to the ocean acidification.  

In general, surface DO was higher than bottom DO, and spring bottom DO was higher than 

summer bottom DO. In summer, the water colume with low DO (DO<2 mg/L ) was around 39oN 

to 38.5oN. And the summer hypoxic water volume had an overall incresing trend with the increase 

of eutrophication from 1950s to 1980s. The largest hypoxic volume was in the 1980s when 

phytoplankton biomass reached its maximum in the sixty years. 

2.3.3 Long-term pH trends in Chesapeake Bay 

In this section, we further inspected the longterm trend of pH change in Chesapeake Bay 

over the sixty years. We first calculated the decadal average acidification timing and duration 

change. Then we analyzed the sub-regional average pH long term trend by using the GAM fit 

model and the M-K trend test. 

The long-term residual in the GAM fit to the regionally averaged pH, namely s(dnum) in 

equation 2.1, is shown in Figure 2.12. The surface and bottom pH showed similar trends in 

different sections of the bay. In the upper bay, pH showed an overall increasing trend with some 

fluactuation over the last sixty years. From 1951 to 2010, surface pH increased by around 0.1. But 

bottom pH was more fluctuated with an increase from the 1950s to 1980s by around 0.1 then a 

slight decrease of 0.05 after 1980. Mid-bay pH first increased from the 1950s to the 1980s by 0.15, 

then slightly decreased by 0.08 after the 1980s. The peak pH in 1980s coincided with peak 

phytoplankton biomass when the nutrient loading was largest In the lower bay, surface pH 

increased by around 0.8 from 1951 to 1980, then decreased back to the 1950s level at the end of 
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the 2000s. Lower bay bottom pH showed a more obvious decreasing trend, and pH decreases by 

around 0.05 over sixty years. 

We also calculated the spring and summer average pH in different sections of the bay to 

better understand the long-term trend of pH over the sixty years (Figures 2.13, 2.14). The result 

revealed an overall increasing trend in the upper bay and a decreasing trend in the lower bay. While 

in the mid bay, pH was relatively stable over the sixty years. The M-K trend test was applied to 

the seasonal time series to detect long-term trends (Table 2.4). Statistically significant declining 

rates were found in the lower bay pH in both spring and summer. And the decline rates in summer 

were generally larger than in spring. In summer, surface and bottom pH in the lower bay decreased 

at the rate of -0.017 and -0.033 units per decade, respectively. In spring, bottom pH decreased at a 

rate of -0.025 units per decade, while surface pH in the lower bay did not have a significant trend. 

In the upper bay, a basification signal was detected in both surface and bottom water during spring. 

Upper bay pH increased at a rate of 0.078 units per decade in surface water and 0.057 units per 

decade in bottom water. While in summer, the basification trend was not statistically significant. 

It suggests that the pH trend in the upper bay may be influenced by the river basification signal 

observed in nearby main tributaries  (Kaushal et al. 2018) and this signal was strongest during the 

spring when the river flow was highest. Although no statistically significant linear trends were 

found in the mid-bay over the sixty years, we noticed the mid bay pH trend consisted of an 

increasing trend from the 1950s to 1980s and a decreasing trend after the 1980s. Other factors like 

phytoplankton biomass which peaked in 1980s may affect pH changes in the mid-bay. 

2.4 Discussion and Conclusion  

 In this study, we investigated Chesapeake Bay acidification over a long-term period (1951–

2010) using a coupled hydrodynamic‐biogeochemical model. This long-term retrospective 
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simulation successfully captured the seasonal and interannual variations of bottom pH along the 

central bay from 1951 to 2010, and it also reproduced the larger phytoplankton biomass and 

hypoxia expansion with increasing nutrient loading between 1950s and1980s. The modeled 

temporal and spatial distribution of carbonate chemistry displayed the signals of basification, 

eutrophication, ocean acidification, and sea-level rise in different sections of the bay over the sixty 

years. These local and global drivers can together influence the long-term pH variation in 

Chesapeake Bay.  

 The model revealed an overall increasing pH trend in the upper bay and a decreasing pH 

trend in the lower bay, while the mid-bay pH was relatively more stable over the sixty years. Upper 

bay pH had a stronger basification signal in spring than in summer. And it increased at a rate of 

0.057 to 0.078 units per decade during spring, which could be related to the river basification signal 

observed in nearby main tributaries  (Kaushal et al. 2018). Lower bay bottom pH had bigger 

decreasing rate in summer than spring. In summer, the lower bay bottom pH decreased at a rate of 

-0.033 units per decade and surface water pH decreased at a rate of -0.017 units per decade. The 

lower bay surface pH decrease rate was close to the Mid-Atlantic-Bight surface pH decadal change 

(−0.016 ± 0.002 units per decade) from 1985 to 2015 (Xu et al. 2020). It may indicate that the 

lower bay pH decrease can be mostly attributed to ocean acidification from increasing atmospheric 

CO2. The mid-bay pH showed large fluctuations over the sixty years, and it can be a reflection of 

the combined impact of local and global pH divers.  

To better compare our modeled results with previous research, we calculated the seasonally 

averaged surface water pH trends from 1985 to 2010 (Figure 2.15). The modeled pH showed an 

overall increasing trend in the upper bay with 0.0063 unit per year in spring and 0.0024 unit per 

year in summer. A decreasing trend was found in both mid and lower bay. The mid-bay spring 
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surface pH showed an decrease of -0.0039 unit per year and summer surface pH showed an bigger 

decrease of -0.0049 unit per year. And the lower bay show pH showed an decreasing slope of -

0.0043 unit per year in spring and  -0.0040 unit per year in summer. These seasonal trends agree 

with the 30-year (1985-2015) hindcast pH trends from Shen et al. (2020). The latter results came 

from the same hydrodynamic-biogeochemical-carbonate chemistry model, grids and similar 

boundary forcing as this research. The difference between the two set of trends ranges from 0.0001 

to 0.002 which indicates the consistency of the two experiments. This difference may contribute 

to the additional 5 years (2011-2015) from Shen et al. (2020) that is not covered in this research. 

Waldbusser et al. (2011) also did similar trend analysis on seasonal daytime surface pH based on 

the Chesapeake Bay Program observations from 1985 to 2008. Their results revealed an decline in 

polyhaline (lower part of the bay) surface water pH with a slope of 0.012 unit per year in spring 

and 0.006 unit per year in summer. While an increase in mesohaline water (upper and mid part of 

the bay) during summer was detected with a slope of 0.005 unit per year. The differences between 

our modeled seasonal pH trends and observational trends from Waldbusser et al. (2011) could be 

resulted from the mismatch in space and time. Waldbusser et al. (2011) focused the daytime pH 

trends but our study calculated the daily averaged pH value. And the pH in the Chesapeake Bay 

can vary in the range of 0.2 to 0.5 unit in a day (Shen et al. 2019). Also, we calculated the spatially 

avergaed pH based on our model grids in the main stem of the bay which is not the same as the 

observational stations used by Waldbusser et al. (2011) that are closed to the tributaires. Besides, 

our modeled pH were calculated from the CO2SYS program based on TA and DIC which can also 

leads to some error compared to the observations. 

The spatial and temporal distributions of carbonate chemistry demonstrated the impact of 

eutrophication development on Chesapeake Bay pH. A significant increase of spring surface 



 27 

chlorophyll-a concentration from 1950s to 1980s was detected (Figure 2.11). The increased spring 

phytoplankton bloom is a reflection of the development of eutrophication from 1950s to 1980s 

which is consistent with the increased riverine nutrient export from the Susquehanna River (Figure 

2.1)(Kemp et al. 2005). At the same time summer hypxia expanded with the development of 

eutrophication (Figure2.10). Previous research found eutrophication can exacerbate 

acidificatiotion in mutiple esturiane and coastal systems including northern Gulf of Mexico and 

East China Sea (Feely et al. 2010, Cai et al. 2011, Wallace et al. 2014, Laurent et al. 2017). The 

unassimilated organic matter from the spring bloom sinks and decomposes in bottom waters during 

summer which further produce CO2 and lower bottom pH. But our study shows the summer bottom 

pH increased from 1960s to 1970s. paralleling with the increase of riverine pH from 1960 to 1980. 

It may indicate that the significant river alkalinization signal from Susquehanna River during the 

1960s and 1970s had a bigger influence on mid bay pH than eutrophication. 

As for the acidic and hypoxic volumes, acidification in Chesapeake Bay did not show a 

clear expansion over the sixty year unlike the obvious hypoxia expansion from eutrophication. The 

total acidic volume first decreased from 9.22 km3 to 7.95 km3 by 16% from the 1950s to 1970s 

then increased by 30% to 10.17 km3 in the 2000s. The overall duration of acidification fluctuated 

over the six decades and shortened by around one month from the1950s to 2000s with both later 

onset and earlier termination of about two weeks.  

Since limited observation data were available before the 1980s, this study relied on 

numerical model simulation instead of observation data to reconstruct the development of 

acidification in Chesapeake Bay. Although a numerical model is never perfect at reproducing 

reality, with proper validation, it can still represent the general response of the system when the 
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external forcing changes with high-resolution data in both time and space. Thus, model simulation 

was less sensitive to the sampling bias than observation, as described in Section 2.3.1. 
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Figure 2.1 (a) Monthly freshwater discharge of Susquehanna River from 1950 to 2010. (b) Jan-

May and annual average river discharge/nitrate load of Susquehanna River. (c) Estimated 

monthly average nitrate concentration of Susquehanna River from 1950 to 2010 from Zhang et 

al. (2013). (d) Monthly average phosphate concentration of Susquehanna River from 1950 to 

2010. 
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Figure 2.2 (a) Susquehanna River TA observation from USGS Danville station. (c) Susquehanna 

River TA observation from CBP CB1.0 station. (b) Monte Carlo trend analysis of USGS 

Danville TA. The average Sen’s slope of the 1000 TA timeseries is 9.9 µmol/kg/year with 100% 

of the timeseries has a p value less than 0.001. (d) Monte Carlo trend analysis of CB1.0 TA. The 

average Sen’s slope of the 1000 TA timeseries is 10.56 µmol/kg/year with 100% of the 

timeseries has a p value less than 0.001. 
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Figure 2.3 (a) Susquehanna River pH observation from USGS Danville station. (b) Susquehanna 

River pH observation from CBP CB1.0 station. (c)     Monte Carlo trend analysis of USGS 

Danville pH from 1951 to 1963. The average Sen’s slope of the 1000 pH timeseries during this 

period is -0.0057 unit/year with 70% of the timeseries has a p value less than 0.05. (d) Monte 

Carlo trend analysis of USGS Danville pH from 1964 to 1983. The average Sen’s slope of the 

1000 pH timeseries is 0.055 unit/year with 100% of the timeseries has a p value less than 0.001 

(e) Monte Carlo trend analysis of USGS Danville pH from 1984 to 1995. The average Sen’s 

slope of the 1000 pH timeseries is 0.0016 unit/year with 100% of the timeseries has a p value 

less than 0.001 (f) Monte Carlo trend analysis of CB1.0 pH from 1990 to 2010. The average 

Sen’s slope of the 1000 pH timeseries is -0.0008 unit/year with 100% of the timeseries has a p 

value less than 0.001  
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Figure 2.4 (a) Reconstructed Susquehanna TA from 1951 to 2010. (b) Reconstructed 

Susquehanna pH from 1950 to 2010. (c) Calculated Susquehanna DIC from 1951 to 2010. (d) 

Calculated DIC/TA ratio from 1951 to 2010. 
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Figure 2.5 (a) Reconstructed sixty-years ocean boundary surface water fCO2. (b) Sixty-years 

climatology ocean boundary salinity from WOA 2013 V2. (c) Calculated sixty-years ocean 

boundary TA. (d) Calculated sixty-years ocean boundary DIC. 
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Figure 2.6. (a) Chesapeake Bay bathymetry. The dashed red line marks the along channel 

section and stars represent the stations where carbonate chemistry parameters are analyzed (red 

stars represent the Chesapeake Bay Program stations (data covering 1984-present); green stars 

represent Chesapeake Bay Institution stations (data covering 1949-1982). (b) The grids for the 

ROMS-RCA-CC models used in this research. 
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Figure 2.7. Model validation evaluation of bottom pH at CBP and CBI monitoring stations along 

central channel of main Chesapeake Bay (stations location see Figure 2.5). Red dots represent 

observation, black lines represent model results.  

  



 37 

 

Figure 2.8 Model validation evaluation of bottom O2 at CBP and CBI monitoring stations along 

central channel of main Chesapeake Bay (stations location see Figure 2.5). Red dots represent 

observation, black lines represent model results.  
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Figure 2.9. (a) Modeled hypoxic volume (O2<2mg/L) in comparison with estimated hypoxic 

volume from observation data. (b) Modeled anoxic volume (O2<0.5mg/L). (c) modeled acidic 

volume (pH<7.5). Model results were averaged at bi-week interval. Solid lines are modeled 

results, red dots are observations. 
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Figure 2.10. Modeled along-channel distribution of summer averaged salinity, TA, DIC, pH, 

Chlorophyll-a and O2 in six decades (1950s, 1960s, 1970s, 1980s, 1990s and 2000s) 
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Figure 2.11. Modeled along-channel distribution of spring averaged salinity, TA, DIC, pH, 

Chlorophyll-a and O2 in six decades (1950s, 1960s, 1970s, 1980s, 1990s and 2000s) 
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Figure 2.12 GAM fit on modeled surface and bottom pH at upper, mid and lower bay (upper 

panel). The long-term trend in GAM of modeled surface and bottom pH at three different sub-

regions of Chesapeake Bay (lower panels). 
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Figure 2.13 Spring averaged surface(left) and bottom(right) pH in upper, mid and lower 

bay. The Sen’s slope in bold indicated the slope is statistically significant (p value< 

0.05).   
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Figure 2.14.  Summer averaged surface(left) and bottom(right) pH in upper, mid and lower bay. 

The Sen’s slope in bold indicated the slope is statistically significant (p value< 0.05).   
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Figure 2.15. Modeled seasonal surface pH averaged in different subregion of the bay. Error bars 

represent 1 standard deviation. The dashed lines represent best linear fit. Symbol S represents 

slope of simulated values.  
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Table 2.1. Averaged DIC/TA ratio in 1986-2010 in seven tributaries from USGS observations. 
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Table 2.2. Average summer hypoxic volume, accumulative hypoxic volume days, timing of 

onset, end and duration of hypoxia (threshold =0.5 km3)  
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Table 2.3. Average summer acidic volume, accumulative acidic volume days, timing of onset, 

end and duration of acidification (threshold =0.5 km3)  
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Chapter 3: Scenario model runs to discern drivers of long-term pH trends in the 

Chesapeake Bay  

3.1 Introduction 

Ocean acidification due to the increasing emission of anthropogenic carbon into the 

atmosphere can cause open ocean pH to decrease at a rate of around 0.002 units per year (Doney 

et al. 2009, Hofmann et al. 2011, Carstensen and Duarte 2019). But the coastal and estuarine pH 

can have a much larger decreasing trend due to many local drivers (Borges and Gypens 2010, 

Provoost et al. 2010, Waldbusser et al. 2011, Carstensen and Duarte 2019). On the other hand, the 

water with high alkalinity exported from rivers (also called ‘river Alkalinization’) can increase the 

pH and aragonite saturation level in receiving estuarine and coastal waters.  Kaushal et al. (2013) 

found 62 of the 97 sites in eastern US rivers had a significant long-term trend of increasing 

alkalinity. Both mining activities and chemical weathering could be attributed to this river 

alkalinization trend (Raymond and Oh 2009). Therefore, to understand the long-term pH trend in 

an estuarine system it is important to understand the trend of these local drivers and how they exert 

influence on pH. 

Chesapeake Bay is the largest estuary in US and  has long been suffered from 

eutrophication and hypoxia since 1950s (Hagy et al. 2004, Kemp et al. 2005a). But not only the 

hypoxia is sensitive to the changes in nutrient loading in Chesapeake Bay (Hagy et al. 2004), the 

elevated nutrients from riverine flow can also fuel the development of acidification in Chesapeake 

Bay by increaseing esturiane respiration (Shen et al., 2019). Long‐term observations of alkalinity 

and pH in Susquehanna River, the major freshwater sources to Chesapeake Bay, revealed robust 

basification signals (Raymond and Oh 2009, Kaushal et al. 2013). These alkalinized waters from 



 49 

tributaries can buffer the acidic oceanic water and increase the estuarine pH. Besides the riverine 

nutrients loads and river basification, climate change was also observed to affect Chesapeake Bay. 

The surface water temperature in the bay increased at the rate of 0.05 to 0.10 °C per year over the 

past 30 years (Ding and Elmore 2015), and the relative sea level rise in bay also accelerated in last 

century and reached 4-10 mm year-1 in 2011 (Ezer and Corlett 2012). The warming temperature 

can alter the CO2 gas exchange with the atmosphere and influence the metabolism process in bay. 

Sea-level rise can increase water column stratification and contribute to the decoupling of 

production and respiration in estuarine water.  In summary, all these factors can have a different 

impact on Chesapeake Bay acidification. But how the individual factors can influence the long-

term pH trend in bay is not well understood due to the limited observation coverage and the 

complexity of the estuarine ecosystem. 

In this chapter, we analyzed long-term trends of the four main pH drivers in Chesapeake 

Bay (river basification, nutrient loading change, atmosphere CO2 rising, warming and sea-level 

rise) using the GAM model and M-K trend analysis. Then based on the retrospective simulation 

in chapter 2, we removed these trends one-by-one in each of the scenario model runs to explore 

their individual impacts on long-term pH variations in Chesapeake Bay.  

3.2 Method 

Ocean acidification, river basification, riverine nutrient loading and climate change 

(warming and sea-level rise) are the four main drivers of the historical change in Chesapeake Bay 

acidification. To find out how these factors individually affected Chesapeake Bay acidification 

from 1951 to 2010, four scenario runs were conducted in which long-term trends in atmospheric 

pCO2 (DtrpCO2 run), riverine TA and pH (DtrBasi run), riverine nutrients (DtrNut run), 

temperature and off-shore water level (DtrTempslr run) were removed, respectively (Table 3.1). 
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The pCO2 in the Mid Atlantic Bight (MAB) had an increasing rate of around 1.8 ppm per 

year from 1982 to 2015 due to anthropogenic CO2 uptake (Xu et al. 2020). According to Equations 

(2.2) - (2.4), seawater fCO2 increased 1.22 ppm per year (M-K p<0.05) from 1950 to 2010. To 

remove the long-term trend in seawater fCO2, the increase rate of 1.22 ppm per year was subtracted 

from the annual average of the original time series. The new detrended fCO2 equals to the sum of 

seasonal variation from the original fCO2 and detrended annual averaged fCO2 (Figure 3.1). M-K 

test was conducted and Theil-Sen slope was calculated from the detrended fCO2 to ensure there 

was no statistically significant trend left. With the detrended fCO2 and original off-shore TA, new 

ocean boundary DIC was calculated using CO2SYS code. And atmospheric CO2 over the sixty 

year was also kept at the same level as 1951 in the ocean acidification detrend run. 

Susquehanna TA and pH time series showed both large interannual and seasonal variation 

related to mining activities, mineral weathering and change of river discharge (Kaushal et al. 2018) 

(Figure 3.2). The long-term trend of TA and pH were calculated from the GAM fit model followed 

equation (2.1). Detrended TA and pH equals the original time series minus non-linear long-term 

trend detected through GAM fit model. New Susquehanna DIC was also calculated using CO2SYS 

using detrended TA and pH. M-K test was applied to both TA and pH to make sure no trend 

remained in the newly generated data.  

The long-term trend of Susquehanna nutrients not only reflected the interannual changes 

of river flow but also nutrient management practices (Sprague et al. 2000, Zhang et al. 2015). 

Therefore, we used GAM fit model to extract non-linear long-term trend in Susquehanna nutrient 

time series. Since one of the major drivers of the acidification change in Chesapeake Bay is 

decoupling of primary production and respiration fueled by riverine inorganic nutrients, only the 

nitrate+nitrite (NO23) and phosphate (PO4) concentration from the Susquehanna River were 
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detrended (Figure 3.3). Detrended NO23 and PO4 equal to the original time series minus non-linear 

long-term trend detected through GAM fit model. And no remaining increasing trend was detected 

through the M-K test. 

Both temperature and ocean boundary sea level were detrended in climate change detrend 

scenario run (DtrTempslr). Air temperature over Chesapeake Bay and the riverine temperature in 

the tributaries have increased over the past several decades (Rice and Jastram 2015, Ding and 

Elmore 2015). The riverine temperature influences the estuarine temperature through river inflows 

while the air temperature affects it through the air-sea heat fluxes. To remove the long-term trends 

in temperature forcing, Mann-Kendall trend test (M-K test) was applied to the temperature time 

series at the upstream boundary of the eight major tributaries as well as the heat flux-related 

variables (air temperature, humidity, solar radiations) at NARR grids over Chesapeake Bay:  

T!"#$"%! = T&$'('%)* − Slope+ × (Time − 	1/1/1951)																																						(3.1) 

where Toriginal represents the original time series of each variable (including river temperature, 

surface air temperature, humidity, downwelling long-wave radiation and net short wave radiation), 

Tdetrend represents the detrended variables. SlopeT is the Theil-Sen slope calculated from the 

original data. Equation (3.1) was only applied to the grids or tributaries when the p-value of M-K 

test was less than 0.4.  

To remove the sea level rise, we removed the linear trend of the observed de-tided sea level 

time series at Duck, North Carolina. The detrended non-tidal sea level component was then added 

to the tidal sea level to produce the sea level time series at the offshore boundary:   

SL!"#$"%! = H,-./ − Slope0 × (Time − 	1/1/1951) 	+	SL#'!"																							(3.2) 
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where HDuck represents the de-tided sea level time series at Duck, SlopeH is the Theil-Sen slope 

obtained from the de-tided time series at Duck, SLtide is the tidal sea level and SLdetrend represents 

the detrended sea level (Figure 3.4).  And no remaining increasing trend was detected through M-

K test. 

3.3 Results  

3.3.1 long-term pH trend analysis under different model scenarios 

To discern the roles of rising atmosphere CO2, river basification, river nutrient loading 

change and climate change (warming and sea-level rise) in driving the long-term trends in 

acidification in Chesapeake Bay, we analyzed the four scenario runs DtrpCO2, DtrBasi, DtrNut 

and DtrTempslr and compared them with the hindcast run.   

The long-term residual (s(dnum) from equation 2.1) in the GAM fit model to regionally 

averaged pH under different scenarios is shown in Figure 3.5. In general, surface and bottom pH 

showed overall similar trend over the sixty years. But different pH trends were detected in different 

regions. 

In the upper bay, hindcast model results show surface water pH increased by around 0.1 

with little fluctuation over the sixty years. (1) The DtrBasi run had the largest difference from other 

runs. This suggests if we had removed the river basification signal from the Susquehanna River, 

upper bay pH would have decreased around 0.3 in both surface and bottom pH. In other words, 

increasing riverine TA and pH observed in the Susquehanna River may be the largest driver that 

increased upper bay pH for both surface and bottom water. (2) The long-term pH trends among 

DtrpCO2, DtrNut and Dtrtempslr scenario runs were similar. Their pH also increased by around 

0.1 over the sixty years like the hindcast pH but experienced more fluctuations. It indicates that, 
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atmospheric pCO2 rising, riverine nutrient loading or global climate change had relatively small 

influence on upper bay pH compared to river basification. But without their influences, upper bay 

pH would have larger increasing rate before 1985.  

In the mid bay, hindcast model results show pH first increased from 1950s to 1980s then 

slightly decreased after 1980s in both surface and bottom water. The overall pH increased around 

0.05 in surface water and increased around 0.01 in bottom water in the sixty years. (1) Like the 

upper bay, the DtrBasi run also had the largest pH difference from other runs in mid bay water. 

The DtrBasi result shows river basification had big influence in increasing surface and bottom pH. 

Without the river basification, mid bay pH would decrease around 0.1 for surface water and 0.18 

for bottom water. (2) DtrpCO2 pH had the second largest difference from other runs. Without the 

atmospheric pCO2 rising, surface and bottom pH would have larger increase rate in the sixty years. 

(3) Riverine nutrient loading and global climate change had the smallest influence on mid bay pH 

compared to previous two drivers. 

In the lower bay, hindcast pH showed an overall decrease of 0.03 in the surface water and 

a decrease of 0.08 in the bottom water from 1951 to 2010. Both DtrBasi and DtrpCO2 had large 

pH difference compared to other scenario runs. (1) The DtrpCO2 run result shows without 

atmospheric pCO2 rising, surface and bottom pH would both increase but surface pH would have 

bigger increase rate. (2) DtrBasi run result shows river basification still had big impact increasing 

the pH even in the lower bay. Without river basification, lower bay surface and bottom pH would 

both decrease. (3) Nutrient loading from rivers and climate change had small impact on lower bay 

pH change. 

Then we took a closer look at the seasonal average pH in different subregions of the bay 

under different scenarios and compared the trends with the hindcast results. To do this, we 
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calculated the summer and spring average pH and chlorophyll-a because acidification in the 

Chesapeake Bay usually starts in spring and ends in late summer (Table 2.3). Chlorophyll-a is a 

commonly used estimator for the phytoplankton biomass amount. The spring phytoplankton bloom 

can increase the surface pH by consuming CO2 from water. But after the spring bloom, more 

organic matter sinks to the bottom of the water, and the increased organic matter respiration can 

further lower the bottom pH during summer. We calculated the seasonal averaged surface 

chlorophyll-a to help us find out whether the surface pH change closely relates to surface 

phytoplankton growth from 1951 to 2010. 

The overall seasonal pH trend differences in different scenario runs agree with what we get 

from the GAM fit residuals in Figure 3.5. In the upper bay (Figure 3.6), river basification was the 

largest driver that controls and increases both surface and bottom pH. Climate change including 

warming and sea-level rise would decrease upper bay chlorophyll-a concentration during summer 

after the 1980s. But this decrease did not have detectable influence on upper bay summer pH. In 

the mid bay (Figure 3.7), river basification was still the largest driver increasing mid bay pH but 

the rising pCO2 started to have bigger impact decreasing the pH. It is worth noticing that the 

increasing riverine nutrient loading in the 1970s and 1980s played an important role in increasing 

the mid bay spring chlorophyll-a which agrees with the development of eutrophication in 

Chesapeake Bay observed in previous studies (Kemp et al. 2005a). But this change in 

phytoplankton biomass had relatively smaller impact on pH compared to atmospheric pCO2 rising 

and river basification. In the lower bay (Figure 3.7), atmospheric CO2 rising had a bigger influence 

in decreasing surface and bottom pH compared to mid and upper bay. River basification and rising 

atmospheric pCO2 became equally important in controlling lower bay water pH. 
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3.3.2 Acidic and hypoxic volumes under different model scenarios 

Another way to analyze how these drivers changed the Chesapeake Bay acidification is by 

comparing the decadal averaged acid volumes and the onset (break up) timing of the acidification 

events under different scenarios. Hypoxic volume was also calculated during the analysis.  

In Figure 3.9, the decadal average acidic volumes in hindcast run showed different trends 

in different months. The acidic volume in August showed an overall increasing trend, but the acidic 

volumes in June and July showed more fluctuations. Acidic volume in the DtrBasi scenario run 

showed the largest difference with the hindcast run compared to other scenario runs. The result 

shows river basification would decrease the summer acidic volume by an average of 44.5% by the 

2000s. The second largest driver of acidic volume change was the rising atmospheric pCO2, which 

would increase the summer acidic volume by an average of 14.2% by the 2010s. What is worth 

mentioning is that warming and sea-level rise had the opposite influence on acidic volume in early 

and late summer. In June, climate change decreased the acidic volume by around 16.9% by the 

end of the 2000s. But in August, climate change increased the acidic volume by around 19.4% by 

2010. The fourth main driver is riverine nutrient loading, which would decrease 6.8% of the total 

acidic volume change during summer by the 2000s. 

Hypoxic volume showed a more obvious increasing trend in all three months, especially 

from the 1950s to 1980s, compared to the acidic volume, then it stabilized after 1990, which agrees 

with the observation from Haggy et al. (2004) (Figure 3.10). Detrend of atmospheric pCO2 or river 

basification cannot have influence on hypoxic volume. But detrending riverine nutrient loading 

and climate change can decrease the summer hypoxic volume by 9.7% and 26.0% respectively. 
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Then we used the mid-Bay station CB4.3 as an example to calculate onset and break up 

timing of the acidification and hypoxia in Chesapeake Bay under different scenarios. For 

acidification, we calculated the day of a year when CB4.3 bottom pH first fell below 7.5 (Tacid_ini) 

in spring and the day of a year when pH rose above 7.5 (Tacid_end) in late summer. For hypoxia, we 

calculated the day of a year when O2 first fell below 2 mg/L (Thyp_ini) in spring and the day of a 

year when O2 rose above 2 mg/L (Thyp_end) in fall (Figure 3.13). M-K test and Sen’s slope were 

also calculated to detect the long-term trend of the onset and break up timings.  

For acidification, the onset timing mostly occurred in April, but it has a large variation 

spanning from early March to late May (Figure 3.11). The M-K test showed that there was no 

significant long-term trend in the hindcast run. And there was no long-term trend in DtrBasi, 

DtrNut or Dtrtempslr either. But in DtrpCO2, an upward trend with Sen’s slope of 6.7 days/decade 

is detected. It suggests that Tacid_ini would have been delayed by around 40 days without rising 

atmospheric pCO2 over the past six decades. We also calculated the difference in the acidification 

initiation day ∆Tacid_ini between the four scenario runs and the hindcast run (Figure3.11 (c)).  

∆Tacid_ini was nearly zero in DtrNut run, indicative of no influence from nutrient loading change. 

∆Tacid_ini was slightly positive in Dtrtempslr run in most of years (up to 20 days in 1977 and 2002) 

but with an outlier of -50 days in 1976, suggesting that warming and sea-level rise could in general 

make acidification initiation earlier over the sixty years. Rising atmospheric pCO2 did not have 

big impact on acidification initiation day until 1990s. After 1990s, DTacid_ini in DtrpCO2 increased 

and reached 50 days in mid 2000s with a maximum of 75 days in 2009. The averaged DTacid_ini in 

DtrBasi run was biggest among all the scenario runs. The largest DTacid_ini in DtrBasi reached up 

to -50 days in early 1950s, mid 1970s and 2000s when Susquehanna river flow was larger than 
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normal years (Kemp et al. 2005a). It suggests that river basification can delay the acidification by 

50 days in wet years.   

The termination of acidification mostly happened in August. The M-K test shows that 

Tacid_end shifted later in hindcast run and all the scenario runs. In hindcast run, Tacid_end delayed 15 

days from 1951 to 2010 at a rate of 2.5 days/decade. Among all the upward Tacid_end trends detected 

in different scenario runs, DtrBasi and Dtrtempslr had the largest slope of 4.0 days/decade and 3.2 

days/decade. It means Tacid_end would have been delayed by around 24 days or 19 days without 

river basification or climate change (warming and sea-level rise) over the past six decades. The 

results can be clearly shown in ∆Tacid_end plot (Figure3.11 (d)). The Tacid_end in both DtrpCO2 and 

DtrNut were nearly zero before 1970s, indicative of no influence from nutrient loading change and 

pCO2 rising before 1970s. Since mid 1970s, ∆Tacid_end in DtrNut and DtrpCO2 turned negative. 

∆Tacid_end in DtrpCO2 varied around -10 days. ∆Tacid_end in DtrNut was in general under -10 days 

but with outliers of -35 and -28 in 1975 and 2003.  It suggests nutrient loading change had less 

influence on acidification termination than rising atmospheric pCO2 although both drove a later 

termination by several days.  ∆Tacid_end in DtrBasi and Dtrtempslr was positive, and their absolute 

values were larger than other two scenario runs. The maximum ∆Tacid_end in DtrBasi and Dtrtempslr 

reached up to 19 days and 25 days respectively after 1990. It suggests river basification and climate 

change can both bring acidification termination earlier in late summer and they had bigger 

influence on acidification termination than pCO2 rising or nutrient loading change. 

For hypoxia, the initiation time (Thyp_ini) mostly occurred in June. It first decreased from 

1950 to 1980 then gradually increased after 1980 (Figure 3.12). The M-K trend test shows that the 

overall hindcast Thyp_ini has a decreasing trend of -3.1 days/decade. From 1950 to 2010, the hindcast 

hypoxia initiation time got earlier by around 18 days. Thyp_ini in DtrNut and Dtrtempslr has 
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relatively smaller decreasing trend than hindcast run. The result indicates Thyp_ini would have been 

earlier by around 15 days or 14 days without nutrient loading change or climate change over the 

past six decades. The overall hypoxia termination time (Thyp_end) was increasing. The M-K test 

showed hindcast Thyp_end delayed around 23 days at the rate of 3.9 days/decade from 1951 to 2010. 

Without nutrient loading or climate change, Thyp_end increase can have slowed down to 3.8 

days/decade or 3.6 days/decade respectively. The ∆Thyp_end  plot shows climate change had overall 

larger impact on delaying Thyp_end than nutrient loading change. River basification and atmospheric 

pCO2 rising had no influence on hypoxia initiation or termination.  

3.4 Conclusion and discussion 

In this chapter, we used the coupled hydrodynamic-biogeochemical-carbonate chemistry 

(ROMS-RCA-CC) model to conducted additional numerical experiments in which we removed 

trends in each long-term driver to discern the separate effects of river basification, atmospheric 

pCO2 rising, riverine nutrient loading change, and climate change (sea level rise and warming).  

Surprisingly, we found river basification to be the dominant forcing driving the long-term 

change of pH in the Chesapeake Bay in upper, mid, and even lower bay. Through the Monte Carlo 

trend analysis on Susquehanna River TA and pH historical observations, we detected an increasing 

rate of 10.43 µmol/kg per year and 0.014 units per year in TA and pH respectively which is 

consistent with previous observations (Raymond and Oh 2009, Kaushal et al. 2013). After 

removing this trend in DtrBasi, we found upper bay surface and bottom pH would decrease by 

roughly 0.3 units from 1951 to 2010 while the hindcast shows an increase by 0.1 units. In the mid 

bay, river basification was still the largest pH driver compared with other forcings. The surface 

water would have decreased by 0.1 unit and bottom water decreased by 0.18 unit if without its 
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signal. In the lower bay, river basification had smaller control on pH variation, but its impact was 

still obvious even compared to ocean acidification through riverine water export. By analyzing the 

acid volume and its initiation and termination time under different scenarios, we found river 

basification would decrease the summer acidic volume by an average of 44.5% by the 2000s and 

shorten the acidification duration by one and half month with both later onset and earlier 

termination of about three weeks. 

Ocean acidification seems to be the second dominant forcing that controlled the long-term 

acidification in the Chesapeake Bay. We found ocean acidification had relatively small influence 

on upper bay pH compared to river basification, but it had bigger impact decreasing pH in mid and 

lower bay. The rising atmospheric CO2 can increase the summer acidic volume by roughly 14.2%. 

And by the end of 2000s, it can prolong the acidification duration by around two months with 

earlier initiation of 50 days and later termination of 10 days. 

Nutrient loading change and climate change (sea level rise and warming) had relatively 

smaller impact on Chesapeake Bay acidification compared to the previous two factors. The DtrNut 

and DtrTempslr show that, without their influences, upper bay pH would have larger increasing 

rate before 1985. The increasing riverine nutrient loading in the 1970s and 1980s played an 

important role in increasing the mid bay spring chlorophyll-a which agrees with the development 

of eutrophication in Chesapeake Bay observed in previous studies (Kemp et al. 2005a). But this 

change in phytoplankton biomass had relatively smaller impact on pH compared to atmospheric 

pCO2 rising and river basification. Both nutrient loading and climate change had nearly no impact 

on initiation time. But they had different impacts on acidification termination. Nutrient loading 

change can drive a later termination by less than 10 days (with outliers of -35 and -28 in 1975 and 

2003). Warming and sea-level rise can bring acidification termination earlier up to 25 days in late 
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summer after 1990. However, in the DtrNut run the detrended nutrient loading still had large 

interannual variation (Figure 3.2 and Figure 3.3) which probably led to the fluctuation remained 

in the mid bay pH.  

The main finding in this section is that river basification and rising atmospheric pCO2 are 

the two largest drivers that control bay-wide acidification. And the increasing alkalinized water 

export from the Susquehanna River not only compensated CO2-induced acidification but also 

decreased Chesapeake Bay acidification in terms of total acidic volume and duration. Previous 

studies found similar basification trend in other coastal systems. For example, research found an 

increasing export of alkalinized water from the Mississippi River which could be related to the 

increasing water discharge and agricultural land cover change (Raymond and Cole 2003, Raymond 

et al. 2008, Kaushal et al. 2018). And the basification trend was also observed in the Central Baltic 

Sea and Gulf of Bothnia which has compensated local CO2-induced acidification by almost 50% 

and 100%, respectively (Müller et al. 2016). 

This chapter is a general estimation of local and global impacts on Chesapeake Bay 

acidification from 1951 to 2010. The results highlight the great impact of riverine basification on 

bay-wide pH trends and the complex interactions among the local and global drivers on long-term 

pH trend over the sixty years. More work is necessary to investigate the detailed mechanisms of 

the individual impact from different pH drivers.   
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Figure 3.1 (a) Time series of surface water fCO2 in hindcast run (b) annual averaged fCO2 (c) 

fCO2 seasonal variation (d) Detrended surface water fCO2 
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Figure 3.2 Time series of monthly (black line) and GAM fitted (red line) Susquehanna (a) TA 

(b) pH. (b)(f) Long-term TA, pH residuals (black dots) and their linear trends (red line) (c)(g) TA 

and pH from hindcast run (d)(h) Detrended TA and pH in DtrBasi scenario run  
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Figure 3.3 Time series of monthly (black line) and GAM fitted (red line) Susquehanna (a) 

Nitrate+Nitrite (NO23) (b) Total phosphate (PO4) (b)(f) Long-term NO23, PO4 residuals (black 

dots) and their linear trends (red line) (c)(g) NO23 and PO4 from hindcast run (d)(h) Detrended 

NO23 and PO4  in DtrNut scenario run 
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Figure 3.4 (a)Time series of water level of Duck, North Carolina used to force the ROMS 

model. The blue line shows the hourly observations, the cyan line shows de-tided water-level and 

the red line is the linear trend.  (b) Detrended time series of water level. 
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Figure 3.5. The long-term trend in GAM of modeled surface (a)(b)(c) and bottom pH (a)(b)(c) at 

three different sub-regions of Chesapeake Bay from hindcast and four scenario runs.  
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Figure 3.6. The spring averaged surface pH (a), bottom pH (b) and surface chlorophyll-a (c) and 

summer averaged surface pH (d), bottom pH (e) and surface chlorophyll-a (f) in the upper bay. 
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Figure 3.7. The spring averaged surface pH (a), bottom pH (b) and surface chlorophyll-a (c) and 

summer averaged surface pH (d), bottom pH (e) and surface chlorophyll-a (f) in the mid bay. 
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Figure 3.8. The spring averaged surface pH (a), bottom pH (b) and surface chlorophyll-a (c) and 

summer averaged surface pH( d), bottom pH (e) and surface chlorophyll-a (f) in the lower bay 
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Figure 3.9. Acidic volume in Jun(a), July(b) and August(c); The difference between scenario run 

acidic volume and hindcast acidic volume in Jun (a), Jul(b) and August(c). 
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Figure 3.10. Hypoxic volume in Jun(a), July(b) and August(c); The difference between scenario 

run hypoxic volume and hindcast hypoxic volume in Jun (a), Jul(b) and August(c). 

  



 71 

 

Figure 3.11 Acidification onset (a) and breakup (b) timing at CB4.3 from 1951 to 2010 by 

Hindcast run and four scenario runs. The difference of acidification onset (c) and breakup (d) 

timing between DtrpCO2, DtrBasi, DtrNut, Dtrtempslr and Hindcast run correspondingly. The 

gray and white bars indicate different months. 
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Figure 3.12 Hypoxia onset (a) and breakup (b) timing at CB4.3 from 1951 to 2010 by hindcast 

run and four scenario runs. The difference of hypoxia onset (c) and breakup (d) timing between 

DtrpCO2, DtrBasi, DtrNut, Dtrtempslr and Hindcast run correspondingly. The gray and white 

bars indicate different months. 
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   Table 3.1 Hindcast and scenario run experiments setting  
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Chapter 4: Conclusions 

 

In this study, we investigated Chesapeake Bay acidification over a long-term period 

(1951–2010) using a coupled hydrodynamic‐biogeochemical model ROMS-RCA-CC. This long-

term retrospective simulation successfully captured seasonal and interannual variations of bottom 

pH along the central bay from 1951 to 2010, and it also reproduced the expansion of hypoxia 

with increasing nutrient loading since the 1950s.  

 The model revealed an overall increasing pH in upper bay and a decreasing pH in lower 

bay, while the mid-bay pH is relatively more stable over the sixty years. Upper bay pH had a 

stronger basification signal in spring than in summer. And it increased at a rate of 0.057 to 0.078 

units per decade during spring, which could be related to the river basification signal observed in 

incoming tributaries  (Kaushal et al. 2018). Lower bay bottom pH had bigger decreasing rate in 

summer than spring. In summer, lower bay bottom pH decreased at a rate of -0.033 units per decade 

and surface water pH decreased at a rate of -0.017 units per decade. Midbay pH showed large 

fluctuations over the sixty years, and it can be a reflection of the combined impact of local and 

global pH divers. 

 Unlike the obvious hypoxia expansion from eutrophication, acidification in Chesapeake 

Bay did not show a clear expansion over the sixty year. The total acidic volume first decreased 

from 9.22 km3 to 7.95 km3 by 16% from the 1950s to 1970s then increased by 30% to 10.17 km3 

in the 2000s. The overall duration of acidification fluctuated over the six decades and shortened 

by around one month from the1950s to 2000s with both later onset and earlier termination of about 

two weeks.  
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The four senario runs (DtrBais, DtrpCO2, DtrNut and Dtrtempslr) showed river basification 

and rising atmospheric pCO2  were the two largest drivers that control bay-wide acidification. The 

increasing alkalinized water export from the Susquehanna River not only compensated CO2-

induced acidification but also decrease Chesapeake Bay acidification in terms of total acidic 

volume and duration. DtrBasi run showed river basification would decrease the summer acidic 

volume by an average of 44.5% by the 2000s and shorten the acidification duration by one and 

half month with both later onset and earlier termination of about three weeks. DtrpCO2 run shows 

ocean acidification had relatively small influence on upper bay pH as compared to river 

basification, but it had larger impact decreasing pH in mid and lower bay. The rising atmospheric 

CO2 can increase the summer acidic volume by roughly 14.2% and prolong the acidification 

duration by around two months with earlier initiation of 50 days and later termination of 10 days 

in end of 2000s.  

Both nutrient loading and climate change had nearly no impact on initiation time. But they 

had different impact on acidification termination. Nutrient loading change can drive a later 

termination by less than 10 days (with outliers of -35 and -28 in 1975 and 2003). Warming and 

sea-level rise can bring acidification termination earlier up to 25 days in late summer after 1990. 

The scenario runs highlighted the importance of riverine basification on Chesapeake Bay 

acidification and the complex interactions among the local and global drivers on long-term pH 

trend over the sixty years. 
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