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Field emission ion sources are extremely important for producing high-resolution 

ion beams essential for several fields of research and especially for semiconductor 

manufacturing. Although most sources used are based on liquid metals they cannot 

produce beams of H, He or other noble gases, so that gas field ionization sources (GFIS) 

could have great utility for microscopy or applications sensitive to metal contamination 

(such as in-line processing). This dissertation explores the properties of the gas field 

ionization source with the goal of providing a resource to the ion column designer. For 

the first time a detailed treatment of the optics of the gas field ionization source is 

derived. Also, the first theoretical analysis of the current generation mechanism is 

presented that explains both the current-voltage characteristic and the total current of the 

GFIS with reasonable agreement with experiment. 

The optical properties in the emission diode region are derived from the ray 

equation. For the evaluation of the spherical and chromatic aberrations, two new 

aberration integrals are derived, which are applicable to the diode region and are 

appropriate for numerical calculations. The results show that, regarding the aberration 



 

coefficients, essential differences exist between the field ionization and field electron 

emission. 

The virtual source size is evaluated in two ways. First, by the algorithm of 

addition in quadrature (A.I.Q.) of the contributions from the Gaussian source size, the 

spherical and chromatic aberrations, and the diffraction effect. The dependence of the 

virtual source size on the emitter radius, the beam limiting aperture and the tip 

temperature are analyzed. As an alternative, the method of direct ray tracing is used, 

taking into account the energy distribution of ions. The results from these two methods 

are compared.  

The current emission process of GFIS is studied using a relatively simple model 

based on the mechanism of gas material supply into the ionization zone. Although a 

complete solution from the first principle was not possible due to the complexity of the 

gas-surface interactions, the results obtained agree reasonably well with experimental 

values both in magnitude and in the shape of the current-voltage characteristic. 
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Chapter 1 Introduction 

1.1 Review of The Thesis 

This thesis consists of the following four chapters. 

Chapter 1 Introduction 

The motivation is explained, followed by a brief introduction of the history of 

high resolution focused ion beam (FIB) that focuses on the development of the gas phase 

ionization source (GFIS) and the liquid metal ion source (LMIS). It explains why the 

GFIS was abandoned in favor of the LMIS over the past twenty years and how GFIS is 

regaining attention.  

Chapter 2 Theoretical Model of the GFIS 

The emission diode region is introduced where the ionization and particle 

acceleration processes occur. The electric potential distribution in the emission diode 

region is one of the most important source characteristics, therefore methods for 

calculating the potential distribution are reviewed. Among those analytical approaches, 

we choose the Sphere-on-Orthogonal-Cone (SOC) model as the representation of the 

emitter geometry. The optical properties of the source are then computed based on the 

SOC model. The virtual source size of GFIS is derived in two alternative ways: addition 

in quadrature and direct ray tracing. 

Chapter 3 Emission Current In GFIS 

The mechanism of gas material supply to the emitter is discussed, which results in 

a relatively simple model for the emission current calculation. The simulation results are 

then presented for various emitter geometric and physical parameters. 

Chapter 4 Conclusions 



2 

1.2 Motiva tion 

High resolution FIB technology began in the early 1970’s with the work on GFIS 

based instruments by Levi-Setti at the University of Chicago and by Orloff and Swanson 

at the Oregon Graduate Institute. The GFIS was abandoned in the late 1970’s in favor of 

the Ga LMIS because the LMIS provides a higher angular intensity and more current 

overall than the GFIS and because the LMIS was easier to usedifferential pumping and 

cryogenic environment were not required. Almost all FIB systems today are based on the 

Ga LMIS. In the 1980’s, FIB proved to be an extremely valuable technology and had a 

major effect on the way semiconductor devices were designed, through the direct editing 

of circuits. It also proved to be critically important for failure analysis and for 

lithographic mask repair. More recently FIB has been used in academic laboratories for a 

wide range of research topics mostly having to do with MEMS, materials science and 

nanotechnology (the adoption of the technology by universities was slowed by the high 

cost, $300,000–$1,000,000, of the instruments). 

The motivation for the present work is that the LMIS is limited to the production 

of metallic ions and there is a need for other ion species, in particular ions from noble 

gases, for applications such as EUV lithographic mask repair and applications that cannot 

risk contamination by Ga ions, such as in-line failure analysis in a semiconductor FAB. 

In addition, the imaging resolution of the FIB is limited by sample sputtering: a Ga based 

FIB is limited to ~5 nm imaging resolution even if the beam is focused to a smaller spot 

(the reason is that fine structure is destroyed before enough information can be gathered 

from the specimen to form a reliable image). For high resolution ion microscopy it would 

be useful to have light-weight ions, such as H or He ions, and a nanometer sized beam of 
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these ions can only be produced by a GFIS based FIB. This would be an interesting 

application to complement high resolution electron microscopy since the contrast 

mechanism of image formation is quite different for electrons and ions. 

In order to be able to design a GFIS based FIB effectively, it is necessary to 

understand the optical properties of the GFIS. While experimental studies of this source 

were made many years ago, this is the first systematic theoretical study of the source 

optical properties that has been undertaken. In addition, a fundamental property of the 

source, the current-voltage characteristic, has been calculated from first principles and for 

the first time an accurate prediction of this property has been made. The information in 

this thesis and the methods used are meant to be employed by an FIB optical designer. 

1.3 Review Of History Of High Resolution FIB 

High resolution FIB technology based on field ionization has allowed a 2~3 

orders of magnitude improvement in resolution and current density over conventional 

technologies and has had a major impact on the semiconductor industry. The success of 

FIB depends largely on the use of high brightness ion sources. The most widely used ion 

source in FIB is the LMIS; although the first source used in FIB, the GFIS is rarely used 

at present. Both are referred to as point ion sources. LMIS has the advantages of high 

current angular intensity (~20µA/sr at modest current), stability and ease of use. The FIB 

systems employing LMIS have found applications since the mid 80’s in extensive areas 

such as lithographic mask repair, TEM specimen preparation, failure analysis, secondary 

ion mass spectrometry and semiconductor device re-wiring (in the design stage). The 

GFIS, while not as popular in FIB as the LMIS, is invaluable for high-resolution 

microscopy. In addition, the unique properties of GFIS may prove to be of great 
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importance for specialized applications, e.g. non-metallic ion sputtering, proton-induced 

x-ray emission analysis (PIXE), high-resolution microscopy and applications where ion 

damage or sputtering must be minimized. 

1.3.1 The Gas Field Ionization Source 

Although it has long been realized that a hydrogen atom in an electric field has a 

finite probability to be ionized by tunneling[1], for many years this phenomenon was 

inaccessible experimentally due to the difficulty of generating and managing the 

extremely high electric field required. The observation of field ionization was first made 

by Müller[2, 3, 4] with his invention of field ion microscope (FIM). By admitting H2 at a 

low pressure (~10-3 torr) to a field emission apparatus (see Figure 1-1) and applying high 

positive voltage to a sharp metallic tip, he obtained a faint but highly resolved image of 

the tip surface. 

With the development of vacuum technology and cryogenic techniques, the FIM 

is capable of imaging the field emitter surface on the atomic level and has since become a 

powerful analytical tool for studying surface processes. Although field ionization is 

closely related to field electron emission, in which an electron is extracted from the metal 

surface by the applied high electric field, the intrinsic resolution of FIM (2–3Å) is about 

10 times higher than that of the field emission microscope (FEM, ~25Å) because the 

latter suffers from the lateral velocity spread of the emitted electrons[5] and, to a lesser 

extent, because the diffraction effect is more severe in FEM due to the longer wavelength 

of electrons than ions. 

In the most simplified form, a FIM consists of an anode which is basically a 

sharpened needle— called the field emitter— made from the metallic specimen to be 
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analyzed, and a closely placed grounded counter electrode. The field emitter typically has 

an end radius of ∼0.1µm. In practice, such a sharp emitter can be obtained from a thin 

wire through use of the electro-polishing technique[ 6] followed by thermal anneal and 

field evaporation[7]— a process in which a surface metal atom located above the average 

emitter surface is pulled out of the surface by high electric field (>5V/Å)— leaving an 

atomically smooth end-form. By applying high positive voltage (∼10kV) to the emitter 

relative to the ground, an electric field of around 2-5V/Å is obtained at the emitter apex. 

An electric field of this magnitude will appreciably deform and lower the ionization 

potential barrier of the gas molecules, such as H2 , N2 or He, introduced near the emitter 

so that an electron could tunnel through this barrier from the gas molecule into the 

emitter. The resulting ions are then directed toward the cathode in almost radial directions 

and thus form a highly magnified (~107) image of the emitter surface on the viewing 

screen (Figure 1-1). The magnification is approximately equal to the ratio between the 

emitter-to-viewing screen distance and the emitter apex radius. Figure 1-2 shows an 

emission pattern from a (111) oriented tungsten emitter[8], the individual surface atoms 

as well as the crystal structure of 3-fold symmetry at the emitter apex are clearly 

identified. 
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Figure 1-1 Schematic diagram of field ion microscope (not to scale) 

 

 

Figure 1-2 Emission pattern of a [111] oriented W emitter[8] 
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Figure 1-3 Potential diagram of an atom near a metal surface in electric field 

The ion generation mechanism of GFIS is a purely quantum process which may 

be briefly described as follows (Figure 1-3). 

A one-dimensional model of the electron potential of an atom near the metal 

surface in the presence of a uniform electric field E may be expressed as[3] 

 ( )
4 16 4 ( )i i

q q qV x Ex
x x x x xπε πε πε

= − + − +
− +

 (1.1) 

where x and xi represent the positions of the electron and the remaining ion core, 

respectively. The first term is the Coulomb interaction between the tunneling electron and 

the ion, the second term results from the applied electric field, and the last two terms 

represent the image effects of the electron and ion close to the metal surface. 
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Due to the external electric field E, the ionization potential barrier is deformed 

into a hump with finite height and width so that ionization may even occur at T = 0°K. 

When the atom moves closer to the metal surface, the potential barrier narrows. However, 

there exists a critical dis tance xc below which ionization can not occur since the tunneling 

electron would otherwise fall below the Fermi level of the metal, which is prohibited by 

the Pauli exclusion principle. We can get an expression for xc by neglecting the image 

effects that are usually quite small compared with the other terms 

 c

I
x

qE
φ−

=  (1.2) 

e.g. the ionization of helium (I = 24.5eV) before a tungsten surface (φ = 4.5eV) in the 

existence of E = 4.4V/Å (“best image field”) gives xc = 4.5Å. At this distance, the 

contribution of the image terms is only about 0.8eV. 

Under these conditions, the tunneling probability of the electron can be calculated 

via the WKB approximation[9] where the potential barrier is modeled as a triangle with 

base xc and height as determined by the superposition of the potential due to applied field 

and the original ionization potentia l. The tunneling probability depends exponentially on 

the electric field, which implies that the ionization occurs preferentially above the 

individual surface atoms where the local radius of curvature is small and the field is 

accordingly high. Further improvement of resolution can be accomplished by operating 

the FIM at cryogenic temperatures so as to reduce the lateral velocity spread of the 

imaging gas molecules. 

The first efforts to apply the gas field ionization source in the microprobe 

applications were made by Levi-Setti et al.[10] and by Orloff and Swanson[ 11, 12, 13] in 
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the early 1970’s. The motivation came from the fact that the GFIS is intrinsically a very 

bright ion source (~109A·sr-1⋅cm-2) with sub-nanometer source size. From the optical 

point of view, the emitted ions, when the tangents to their trajectories at the extraction 

electrode are projected back to the source, originate from a virtual image— called the 

virtual source— with typical size ∼1nm located somewhere behind the emitter surface 

(Figure 1-1). Therefore, a small probe size can be achieved without having to resort to 

complicated optical systems. 

Figure 1-4 shows a field ionization gun designed by Orloff and Swanson[ 14], 

where several important structures are worth noting: the two filament leads connecting 

power supply pass through a reservoir filled with liquid N2, and the gas material is 

supplied through a long central tube in this reservoir in the vacuum chamber. By this 

means, the cryogenic condition for both the emitter and the imaging gas was achieved. 

This is important because it can minimize the energy spread of the ions as well as 

increase the emission current. Another interesting feature is the counter electrode very 

close to the emitter with a small hole in it. While serving as the extraction electrode, this 

structure will limit the pumping speed so that different pressures can be maintained 

between the source region (up to 10-2–10-3torr) and the region below the limiting aperture 

(10-5–10-6torr). The pressure in the source region is usually kept as high as possible to 

increase the supply of gas material to the emitter apex region where the ionization occurs, 

but it is limited by vacuum discharge effects and the ion-neutral interactions that results 

in the broadening of beam energy distribution. On the other hand, as low a pressure as 

possible is preferred in the optical column part so as to protect the ion beam from 

disturbance by the neutrals. 



10 

 

 

 

 

Figure 1-4 Practical gas phase field ionization source[14] 
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Although the virtual source size of GFIS is very small ~0.5nm, the actual 

emission occurs over a large area (~100nm in diameter) around the surface and the 

current density is typically ~102A⋅cm-2. As a result, the space charge effects are 

negligible for GFIS and the energy spread is quite small ~1eV[15]. 

In practical FIB systems, the final probe size is often chosen to be on the order of 

0.1µm, which is much larger than the virtual source size of GFIS. Therefore, instead of 

the source brightness, a more convenient quantity to characterize GFIS is the angular 

current intensity. The highest angular intensity obtained from conventional GFIS is 

1µA/sr[16] with Ir emitter and H2 at 77°K. 

1.3.2 Liquid Metal Ion Source 

The use of liquid metal ion source (LMIS) was first applied in FIB systems 

beginning in the late 70’s [17, 18]. Now, it has become a most important and well-

established tool in FIB technology. 

The LMIS consists of a low melting point, low volatility metal film flowing via 

surface tension and electrostatic stress forces to the apex of a solid needle substrate with 

typical radius of several µm. Atoms are removed from the apex by field evaporation. The 

requirement of low melting temperature is to minimize the reaction between the liquid 

metal and the substrate, while low vapor pressure (typically <10-7torr) is preferred so as 

to conserve the film supply and ensure a long lifetime of the source[19]. In cases where 

elements of high melting points and/or high vapor pressures are desired, e.g. B, As, P, Be 

and Si which are of particular interest to the semiconductor technology, liquid alloy ion 

sources (LAIS’s) are used. Figure 1-5 shows a commercial LMIS emitter, where the 
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emitter substrate is connected to a spiral reservoir holding liquid Ga, which is spot-

welded on a hairpin holder. 

In order to understand the emission mechanism of the LMIS, it is advantageous to 

first review the electrostatic model of the LMIS, which was first studied by Sir G. 

Taylor[20]. He demonstrated that in a high electric field, under appropriate boundary 

conditions, there exists a unique surface geometry for the charged liquid. This geometry 

is an infinite cone— now known as a Taylor cone— with half angle of about 49.3°. He 

obtained this result by solving the equation that balances the electrostatic stress and the 

surface tension force over the cone surface, while neglecting the hydrostatic pressure 

difference across the curved surface: 

 2
0

1
2 cE ctg

r
γ

ε θ=  (1.3) 

where E is the applied electric field at the surface, γ is the surface tension, r is the radial 

distance measured from the apex of the Taylor cone and θc is the cone half angle. A 

special solution of (1.3) is given by 

 1/2
0 1

2
( , ) (cos )V r V A P rθ θ= + ⋅ ⋅  (1.4) 

where P1/2(cosθ) is the Legendre function of order ½, V0 is the potential of the cone 

surface and A is a constant to be determined by boundary conditions. The requirement 

that V(r,θ) is constant (=V0) over the cone surface implies that P1/2(cosθc) = 0 which 

gives θc = 49.3°. 
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Figure 1-5 A commercial Ga LMIS (courtesy FEI Company) 

 

Figure 1-6 a) LMIS substrate; b) AuGe forming a Taylor cone[22] 
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A LMIS in operation can never really form a Taylor cone, however, since field 

evaporation of surface atoms will set in when the electric field approaches ~1V/Å. As a 

result, the Taylor cone is rounded off to an apex of diameter ~5nm[21]. Nevertheless, the 

SEM photographs of the frozen-in emitter as well as those taken in-situ [22, 23, 24] 

illustrated that the shape of LMIS at low currents is close to the Taylor cone (Figure 1-6). 

The Taylor model did not take into account the fluid flow as is necessary to 

replace the loss of material from emission. In addition, due to the extremely small 

emission area of LMIS, the current density can be as high as 106A/cm2 , so space charge 

effects[25] play an important role, as opposed to the case of GFIS. At current I > 10µA, 

the space charge effects become such an important issue that it initially led to confusion 

in understanding the emission mechanism of LMIS[26, 27]— the field at the end of the 

rounded-off Taylor cone would not be high enough to allow field evaporation (FEV), yet 

field ionization (FI) was excluded from being a primary mechanism by careful analysis of 

electronic heating of emitter from the apex. In order to solve this problem, Kang and 

Swanson[ 28] postulated that a cylindrical protrusion (“jet”) existed at the end of the 

Taylor cone due to the fluid flow and space charge effects. Kingham and Swanson 

later[29] developed this idea by taking the liquid metal as irrotational and viscosity-free. 

They incorporated a hydrodynamic term ρυ2/2 in the balance equation, which represents 

the negative pressure in the flowing liquid, chose a likely shape for the emitter and 

calculated the field as was necessary to stabilize the LMIS. This field, which was 

obtained from the hydrodynamic perspective, was then compared with that obtained from 

the ion-emission point of view (taking into account the space charge). The procedure was 

continued iteratively until a self-consistent solution was found. The results, as were 
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confirmed by experiments[23, 29], demonstrated the existence of a jet-like protrusion at 

the end of Taylor cone, whose apex radius is several nm and whose length is tens of 

nanometers and increases with current. 

The primary emission mechanism of LMIS is FEV[30, 31, 27] as was mentioned 

before. The FEV can be described as a field -enhanced thermally activated evaporation of 

surface atoms and subsequent ionization at the critical distance (section 1.3.1 Eqn. (1.2)). 

Some LMIS’s also emit multiply charged ions through post-ionization— a field-

evaporated ion is further ionized near the emitter[32]. At higher currents, there is an 

increasing contribution from the gas phase field ionization of the thermally evaporated 

atoms, as the emitter is heated by electron bombardment[33]. In addition, at high currents 

(typically >50µA), evaporation and ionization of clusters and droplets become 

noticeable[34]. 

The most important features of the LMIS include the source size, energy 

distribution, angular current intensity, source stability and lifetime. 

As mentioned before, the emission area of LMIS is extremely small (~5nm) at 

modest current level. The strong space charge present at the emitter apex, however, 

dramatically increases the apparent source size to ~50nm at least. 

Besides beam broadening, the space charge is also responsible for the broadening 

of ion energy distribution. This is reflected by the dependence of energy spread on the 

total current as well as the charge-to-mass ratio of ions[35]. The energy spread has a 

lower limit of about 5eV at low currents[36], and increases rapidly with the total current 

(to the power of 2/3) and the increasing mass-to-charge ratio. The physical reason is 

believed to be mainly due to the potential relaxation[37, 38], or Boersch effect whereby 
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the potential energy stored between closely spaced ions is converted to the kinetic energy 

as they travel. Moreover, at high currents, the energy distribution is also affected by the 

charge-exchange reactions[ 39 ] and increasing contribution from gas phase field 

ionization. 

The angular current distribution is found to be quite broad, with typical width of 

25°–30°[40]. The remarkable features of it are the extreme uniformity and a sharp fall-off 

at the edge. From the application point of view, the former is favorable in that it eases the 

requirement of source alignment. 

The emission of the LMIS is very stable. The DC current level decreases but 

slowly with time as the result of the change of flow impedance. The physical processes 

affecting the flow impedance include the liquid-substrate reaction, the segregation of 

impurities on the surface, the material precipitates resulting from the change in source 

composition (for LAIS) and the sputtering of aperture material onto the LMIS[19, 41]. 

The latter process is the most important. The routine way to restore the normal condition 

of LMIS is to overvolt and heat the source so as to evaporate the impurities or remove 

them in the form of droplet emission. Moreover, the presence of space charge also helps 

to stabilize the current through potential relaxation and negative feedback on the local 

field[33]. 

The lifetime of various LMIS currently in use is ~2000µA⋅hr⋅cm-3[21]. The type 

shown in Figure 1-5 has a lifetime up to 6000µA⋅hrs. 

Current FIB systems employing LMIS are capable of focusing 5pA–30nA current 

into 5nm–1µm spot size, with current density of several A⋅cm-2. Typical applications 

include scanning ion microscopy (SIM) where the ion beam is raster-scanned over the 
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target surface and various secondary particles can be collected to either obtain a surface 

contrast image or analyze the target chemical composition through use of secondary ion 

mass spectrometry (SIMS[42, 43, 44, 45]); lithographic mask repair where excessive 

material can be removed through ion beam sputtering[46, 47, 48] and clear defect can be 

repaired by FIB enhanced deposition with the use of suitable chemical gases[49, 21]; IC 

circuit repair or editing where electrical connections can be broken or created on a 

micrometer scale by appropriate removal or addition of conducting or non-conducting 

materials; and maskless ion implantation which is particularly suitable for accurately 

controlled device tailoring[50]. 

1.3.3 Supertip GFIS 

From the perspective of FIB applications, the main impediment to the use of 

conventional GFIS is its small angular current intensity (~1µA/sr) compared with that of 

LMIS (20–40µA/sr). In order to improve this quantity, Hansen et.al[51, 52] developed a 

technique whereby ion bombardment with He+ creates a damage around the emitter apex 

when operating in FE mode, and subsequent surface atom migration at elevated 

temperatures to the damaged cite creates a small hump of typically 10nm in diameter and 

several nm in height. Since the electric field at this local protrusion is higher than its 

neighboring regions, the ion emission is highly confined to this microscopic 

protuberance— called a supertip[ 53]. Besides, the distribution of electric field in the 

vicinity of supertip on top of a larger substrate is such that the lines of force bend 

considerably toward the emission axis. Accordingly, the angular divergence of emission 

is reduced dramatically, from ~30° down to ~1°[54]. The reason behind this can be 

inferred by noting that the ion trajectory is largely determined by the field within a 
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distance on the order of the emitter radius (~5nm for supertip). As a rough estimation, 

take the field of a spherical emitter 
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where E0 and r0 are the surface field and emitter radius, respectively. The ratio of the 

kinetic energy of an ion relative to its full kinetic energy at the extraction electrode, is 

given by (1 – r0/r), i.e. the ion would gain 90% of its full kinetic energy within 10r0. 

The resulting angular ion current intensity from supertip GFIS can be as high as 

that obtained from LMIS, while maintaining the advantages of smaller source size and 

energy spread.  

The supertip GFIS is still a subject under active investigation, mainly by the 

group of Kalbitzer at the Max-Planck Institute in Heidelberg[ 54, 55, 56], however the 

main difficulty in practical employment of supertip GFIS is, in addition to the operational 

complexities related to conventional GFIS, that it is extremely difficult— if not 

impossible— to control the location of damage caused by the ion bombardment, hence the 

position of the growth of supertip. The protrusion locates in an angular interval of 4°–10° 

about the emitter apex[ 53], corresponding to a solid angle of 15–100msr, as compared 

with the limiting beam aperture of 0.05msr (for 1nA at 20µA/sr). This lack of control 

places a stringent requirement on the system alignment as well as the skill of operator. 

Moreover, the question of whether or not long term emission stability of supertip GFIS 

with various gases can be assured remains to be addressed.  



19 

1.4 Potential Advantages Of GFIS Compared To LMIS 

The GFIS was abandoned in FIB applications in favor of LMIS mainly due to its 

greater operational complexity and lower angular current intensity. However, compared 

with the LMIS, the GFIS has several exclusive properties that may be of critical 

importance for certain applications: a much smaller intrinsic source size is available, 

which is to be covered in more detail in Chapter 2; the energy spread can be as low as 

1eV, implying that the focused ion beam suffers less from the chromatic aberrations; and 

that noble gas ions can be generated as a supplement to the metallic ions from LMIS. 

Besides the employment in FIM as a surface analysis means, it is thus conceivable 

that the GFIS is inherently a superior source to be used in scanning ion microscopy 

because the sputtering of sample is minimized using light ions. 

It is known that the imaging resolution limit of SIM is determined by the 

destructive nature of ion beam[57, 58]. In order to resolve a structure on the sample with 

a given contrast, a human-eyes-discernible minimum signal-to-noise (S/N) ratio has to be 

achieved, which is S/N ~ 5[59].  Better images would require S/N ~ 20–25. In SIM, it is 

through collecting the induced secondary electrons (ISE) and/or ions (ISI) that the 

information about the sample is conveyed.  Meanwhile, the sputtering of sample by the 

imaging ion beam also occurs in the form of induced secondary atoms (ISA). If a 

structure on the sample is too small, it would be destroyed by ion bombardment before 

enough secondary charged particles could be collected, hence the resolution limit. The 

highest resolution available with LMIS at present is around 5nm at S/N = 20, and higher 

ones are possible only at the cost of reducing the S/N which results in poor image quality. 

This situation may be changed by employing GFIS using lightweight gases such as H2 or 
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He. Besides the fact that smaller beam spot is inherently available, it is also expected that 

the sputtering effect of light ions is smaller than the heavy metallic ones [60, 61]. In fact, 

theoretically[62], it is expected that the sputtering yield (atoms sputtered / incident ion) 

on Si by proton beam is only about 0.02–0.006 of that by Ga+ beam at 10–50keV. 

On the other hand, by changing to heavier gaseous ions such as Ar+ and Kr+, the 

GFIS might also be used for direct micromachining. But unlike the LMIS where  

contamination of the target by metallic ions is inevitable and undesirable for certain 

applications, this issue is minimized with GFIS where the noble elements can be easily 

annealed out. 

Other potential applications of GFIS involve high-resolution proton-induced x-

ray-emission or PIXE analysis, and particle -induced nuclear reactions. The PIXE is a 

multi-elemental, high sensitivity ( ∼1ppm) analytical method[63] based on the fact that an 

energetic proton (several MeV) impinging on a sample atom will eject an inner-shell 

electron from the target, leaving a vacancy there, and the following transition of an 

electron from the outer-shell to the vacancy will generate x-ray emission whose 

frequency is characteristic of the element. A great advantage of PIXE combined with 

high-resolution FIB is that it allows a two-dimensional trace element mapping with 

minimum detectable concentration requirement[64]. Similar to PIXE, an element can be 

identified through the energy of nuclear reaction induced by the impingement of an 

energetic particle. While PIXE is more efficient in detecting heavy elements (Z > 

11)[65], particle -induced nuclear reactions are more appropriate for identifying light ones 

(Z < 20)[64], and together they can provide analysis tools for a wide range of elements. 
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1.5 Technical Aspects Of GFIS Operation 

From the technical point of view, two critical issues are involved for practical use 

of GFIS in FIB systems. 

Firstly, before admit ting the imaging gas, it is necessary to pump the source 

chamber to high vacuum (<10-9torr) and in some cases (e.g. with W emitter) to bake the 

system so as to minimize the emitter surface corrosion by water vapor[66] and other 

active residual gas species[67, 68], especially when imaging gases, such as H2 , of low 

ionization potentials are to be used because the emitter surface field would not be high 

enough to prevent the approach of reactive molecules. The field-promoted etching of the 

emitter surface would result in surface defects as well as change in the tip shape, which 

accordingly would change the electric field and emission characteristics or even, under 

extreme circumstances, destroy the emitter. 

Secondly, source cooling is commonly required in order to achieve highest 

resolution and maximize the emission current. In general, this is accomplished by 

keeping a good thermal contact of the emitter filaments as well as the gas supply path 

with a cryostat filled with a cooling liquid with a low boiling point, such as liquid 

nitrogen, hydrogen and helium (Figure 1-4). 

On the other hand, the imaging gas pressure in the source region can be as high as 

10-2 torr, so that special care must be taken to prevent the tip from blowing out due to 

vacuum arc caused by degassing of the chamber walls, especially when non-bakable 

devices are installed (e.g. the viewing screen). The situation is worse with long-term 

source operation at cryogenic temperature because the gas density around the emitter 

depends exponentially on the reciprocal of temperature as a consequence of the dipole 
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attraction force on the gas molecule[2]. For long-term operation, periodic thermal-field 

processing technique[69] seems to be necessary whereby the tip is heated, in the presence 

of electric field, to a temperature below its melting point. In this way, surface roughness 

is smoothed by atom migration and surface contaminants are removed via desorption or 

field evaporation. 

1.6 Present Work And Its Significance 

In this thesis, the work is focused on the optical properties and current emission 

process of GFIS. 

The Gaussian optical properties, such as the linear magnification, and the 3rd order 

geometrical and 1st order chromatic aberrations are evaluated via the paraxial ray 

equation and the aberration integrals. There exist several forms of the aberration 

integrals[70], which either involve the 4th derivative of the potential or assume that the 

aperture plane is in field-free region. In this thesis, two alternative integrals for the 

spherical and chromatic aberration coefficients are presented based on the formula by 

Lencová et al.[71] for aberrations in both slope and position. 

Among the optical properties, the virtual source size of GFIS is important both 

theoretically and practically. In FIB applications, it is desirable to have knowledge about 

the source size, which is to be imaged on the target, especially its dependence on the 

emitter geometry and extraction voltage, in order to find the optimal design of the optical 

column. 

Wiesner and Everhart made a calculation of the virtual source size of the emitter 

in a field electron emission mode[ 72]. Their calculation was done by setting up and 

evaluating the equations of motion of the electrons to obtain the magnification, spherical 
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and chromatic aberrations, and then added these terms in quadrature to get the virtual 

source size, taking into account the diffraction effect. 

The change to the ion emission mode, however, is nontrivial. Besides the fact that 

the diffraction effect is negligible for ions, an essential difference is that electrons are 

emitted right from the tip surface while the ions are generated in a small region beyond 

the critical distance above the emitter surface, whose width and hence the ion energy 

spread depend on the gas species and increase with the extraction voltage. In addition, it 

is well known that the algorithm of addition in quadrature, although commonly used to 

estimate the overall effect from individual contributions, lacks solid mathematical 

support[73] except in special cases (e.g. for Gaussian distribution). 

In this thesis, besides the algorithm of addition in quadrature, the virtual source 

size of GFIS is obtained alternatively by numerically solving the equation of motion and 

calculating the trajectories of ions. The initial positions of the ions are set according to 

the energy distribution obtained with a one-dimensional model[74]. By assuming uniform 

current density in a small region around the emitter apex, we can then obtain the 

(relative) current density distribution in the virtual image plane. 

The advantage of this method is that higher order aberrations are inherently 

included and that the uncertainty in the addition of individual terms is avoided. 

The current emission process in GFIS is complicated in that it inevitably involves 

the interaction between the gas molecule and the emitter surface, which is not yet fully 

understood. It is well known that the supply of gas material into the ionization zone— a 

small region around the emitter apex where virtually all ionization events occur— plays 

the key role in current emission. Former attempts by Van Eekelen[ 75] and Iwasaki et 
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al.[76] made use of the supply function from the vacuum to the ionization zone to 

calculate the total current, while making explicit assumptions on the gas-surface 

interaction. Their calculations, however, neglected the effect of gas supply via the emitter 

shank, which is now believed to be the principal supply mechanism. Consequently, their 

results underestimated the total current, especially at large extraction voltages when the 

current emission is supply-limited.  

In this thesis, a relatively simple model is presented based on the analysis of the 

supply mechanism. Although a complete solution from the first principle is absent, it is 

shown that the resulting I-V characteristic agrees reasonably well with the experiment, 

both in magnitude and in slope. 
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Chapter 2 Optical Properties Of The GFIS 

In this chapter, the theoretical aspects of the GF IS are investigated in more detail, 

beginning with the introduction of the emission diode region as the environment for the 

study of the optical and physical source characteristics. Detailed information about the 

electric potential distribution is critical to the source analysis, and various methods 

involved are reviewed in section 2.2. Among all analytical models, the sphere-on-

orthogonal-cone (SOC) model is found to well describe the geometry of thermally 

annealed emitters and is adopted in the following calculations. Section 2.3 is devoted to 

the problem of evaluating the source optical properties and leads to the calculation of 

virtual source size for various source configurations. A summary is presented in section 

2.4. 

2.1 Emission Diode Region 

In a FIB optical system, the emission diode region is referred to as the region 

between the source and the extraction electrode. Its importance is reflected in two 

aspects: 

i. The beam characteristic as determined by the diode region would set an upper 

limit for the whole system performance because, in an aberration-free system the 

brightness is an invariant[77], and the existence of lens aberrations would cause the 

brightness to decrease, therefore limiting the final probe size and current intensity 

obtainable.  

ii. It determines the electric field near the emitter and so critically influences the 

physical processes regarding ion generation, e.g. the supply of impinging gas material to 

the emitter apex region, the gas-emitter surface interaction and current generation, and 
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the initial trajectories of the ions. Study of these physical processes, while important 

theoretically, is of great value in determining the optimal system design. 

The research in all aforementioned areas, especially in evaluating the source 

optical properties, requires detailed information of electric field distribution. In GFIS, the 

difficulty of this problem comes mainly from two factors. The first one is due to the 

complicated geometric configuration of the diode region. In particular, a real emitter, as 

shown by various field ion micrographs, often exhibits facets around its apex, 

corresponding to the growth preference of certain crystallographic planes as a result of 

minimization of the surface free energy. Structures of this kind, plus the possible 

inclusion of a suppressor electrode, prevent us from getting an analytic solution of the 

potential distribution. 

On the other hand, typical emitters have apex radii of ~0.1µm while the distance 

from the emitter to the extraction electrode is ~1mm or larger. Such an extreme 

difference in scale (up to 105) adds to the difficulty of numerically solving the Poisson’s 

equation.  

The following section therefore goes to the problem of calculating the potential 

distribution in the emission diode region. 
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2.2 Calculation Of Electric Potential In The Diode Region 

2.2.1 Review Of Methods 

The methods of attacking the electrostatic potential distribution problem can be 

generally put into two categories— analytical approach and numerical calculation. 

Among the various analytical models, the spherical emitter model is certainly the 

simplest one where the field is proportional to r-2. The main problem with it is that the 

emitter shank has been neglected. From the optical point of view, the presence of a 

conical shaped shank acts as a suppre ssor electrode so that the trajectories of charged 

particles are driven toward the axial direction, which is advantageous from the 

perspective of increasing the angular current intensity. Besides its effect on the optical 

properties, the emitter shank plays a key role in the current emission process, as will be 

discussed in the next chapter. Nevertheless, the spherical model has been used in a point-

cathode study, at least in the immediate region around the emitter[78], so as to obtain an 

estimation of the source properties. 

Other models, which incorporate the emitter shank, include the paraboloidal, 

hyperboloidal and SOC emitters. Of these, the SOC model is considered the most 

successful in that it closely approximates the topography of thermally annealed emitters 

by adjusting a couple of parameters, and has been used in the study of field emission 

cathode[72] and in trajectory calculations in the LMIS[79]. It is thus the model adopted 

in this thesis. The paraboloidal and hyperboloidal models, though could be used alone, 

are often employed in combination with the spherical model to represent the region far 

away from the emitter, or serve as the substrate of supertips[56]. 
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There is no need to mention that the number of analytical solutions is highly 

limited. In addition, the space charge effect can sometime be important, e.g. in dealing 

with the LMIS, and must be included in the calculation. Since the advent of high speed 

computers, various numerical techniques have been developed, including the finite 

difference method (FDM)[70], the finite element method (FEM)[80, 81] and the charge 

density method (CDM). 

In FDM, the region of interest is covered with a regular grid (usually a rectangular 

mesh) of points. The Laplace’s equation is then put into a finite difference form which 

associates the potential on each grid point to its neighbors. The resulting set of equations 

is then solved to find the potential distribution. Kang et al.[82] proposed a spherical-

coordinate-with-increasing-mesh (SCWIM) model, which is a modified version of FDM, 

where the spherical coordinates are used and the radial mesh size increases with radius. 

In this way, it was shown that the difficulty from the extreme difference in scale can be 

effectively overcome. 

The FEM algorithm provides an alternative approach based on the use of finely 

divided mesh. In each mesh cell— called the finite element— the potential is assumed to 

be either a linear (in first-order FEM) or  quadratic function (in second-order FEM) of the 

grid points. The potential distribution is then obtained by minimizing a proper variational 

functional (commonly the field energy). 

The CDM is a special case of the general boundary element methods[70]. Instead 

of directly calculating the potential distribution, this method aims at finding the 

distribution of charge density on the involving electrodes, in correspondence to the 
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applied voltage configuration, and the potential in space can then be computed from 

Coulomb’s law by an integration of the charge density distribution on these electrodes. 

2.2.2 SOC Model 

If the emitter as well as the extraction electrode is chosen to coincide with 

equipotentials generated by a conducting Cone with an Orthogonal Sphere at the end—

called the core of the system, Laplace’s equation can be solved analytically in spherical 

coordinates to yield[83]: 
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where the emitter potential is taken as 0 for convenience; ra and zf are the distances from 

the core center to the emitter apex and the extraction electrode, respectively; Pn(cosθ) is 

the Legendre function; parameters n and γ are called the cone index and form factor, 

respectively[72], where n satisfies Pn(cosθ0) = 0 (θ0 is the exterior cone half angle) and γ 

is the ratio of ra to the core radius. 

V0 is related to the extraction voltage Vex by 
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because zf >> ra. Note that Vex < 0 in the ion emission mode. 

The SOC model is a good geometric representation of thermally annealed emitters 

as the surface roughness is smoothed by surface atom migration from the region of large 

curvature to the one of small curvature. It is of less value for field-buildup emitters[69] 
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where the emitter end-form is more polyhedral and the emission is highly non-uniform. 

In this latter case, one of the aforementioned numerical techniques has to be used. 

Figure 2-1 shows the SOC core and the equipotentials generated for the case of n 

= 0.15 (θ0 = 175.8°) and varied γ. It is seen that for fixed n that smaller γ leads to a more 

spherical-like end cap. If γ is fixed, then larger n (or smaller θ0) corresponds to a blunter 

emitter (Figure 2-2). Therefore different combinations of n and γ can be used to generate 

a variety of smooth emitter end-forms. 

Figure 2-3 shows n as the function of θ0 determined by Pn(cosθ0) = 0. As can be 

seen, n decreases monotonously with θ0 , and asymptotically goes to 0 as θ0 approaches 

180°. Typical field emitters have θ0 around 170°, corresponding to n ≈ 0.2. 

It should be noted that rigorously the radius of curvature of the tip apex rt is not 

equal to ra , rather, since the emitter surface is an equipotential, r t is determined by 
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From (2.3), it is seen that λ increases with n and γ, and 1 < λ < 2 for a wide range of 

emitter morphology. 

By differentiating eqn. (2.1), we get the electric field 



31 

 

1 2

2 1 1 2

1 2

1 2 1
2 1

1
( , )

( 1)

cos
( , )

( 1) sin

n n

a
r nn n

a a

n n

na n n
n

a a

E r n r
E r n P

n n r r

n E P Pr r
E r

n n r rθ

θ
γ γ

θ
θ γ

γ θ

− − −

− − +

− − −

− − −
− −

    + = ⋅ + ⋅    + +     

    ⋅ ⋅ − = ⋅ − ⋅    + +     

 (2.4) 

where Pn represents Pn(cosθ) and Ea = Er(ra, 0) is the emitter apex field 
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Especially, when n = 0.13, Ea ∝ rt
-0.87zf

-0.13 which might be compared with the empirical 

relationship of thermally anne aled emitters[84]. 
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γ = 1 θ0
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Figure 2-1 SOC equipotentials for fixed n and varied γ. γ = 1 corresponds to the core 

 

 

Figure 2-2 SOC equipotentials for fixed γ and varied n 

n = 0.1 

n = 0.15 

n = 0.2 
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Figure 2-3 Cone index n vs. the exterior cone half angle θ0 
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2.3 Optical Properties Of SOC Emitters 

Unless otherwise stated, all optical calculations are done for He gas and tungsten 

emitters with I = 24.5eV and φ = 4.5eV. 

2.3.1 Theory Of Electrostatic Lens 

2.3.1.1 Ray Equation And Paraxial Approximation 

In general, the optical properties of diode region can be analyzed by the 

electrostatic lens theory, as any axially symmetric field distribution acts as a lens. In the 

theory of charged particle optics, the behavior of the charged particle is often described 

by the ray equation which is most conveniently obtained from the well-known law of 

least action, whose general form for positive ions, in the presence of electric and 

magnetic fields, is given by[85] 

 ( )2 *

1
0

P

P
dsδ ηΦ + ⋅ =∫ A ds  (2.6) 

where ds is the elemental path of the particle under consideration; P1 and P2 are two 

fixed terminal points of the path; η = (q/2m)1/2, q is the charge of ion and m its mass; A is 

the magnetic vector potential; Φ* is the relativistically corrected electric potential with its 

origin and sign chosen such that qΦ* is equal to the kinetic energy of the charged particle  

 ( )* 1 εΦ = Φ ⋅ + ⋅ Φ  (2.7) 

where ε = q/(2mc2). 
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The variational principle of (2.6) states that the real path of the particle is such 

that the integral in (2.6) over this path assumes a stationary value, which is analogous to 

Fermat’s law in light optics. 

For systems with straight axis, (2.6) is turned into the following form 

 

2

1

*1/2 2 2 1/2

( , , ; , ) 0

( , , ; , ) (1 ) ( )

z

z

x y z

M x y z x y dz

M x y z x y x y A x A y A

δ

η

′ ′ =

′ ′ ′ ′ ′ ′= Φ + + + + +

∫
 (2.8) 

where M(x,y,z,x′ ,y′) is the refractive index. 

The ray equations are the Euler’s equations of this variational principle, which 

can be expressed as[70] (z is the optical axis) 

 

( )

( )

2 2 * 2
*

2 * *1/2

2 2 * 2
*

2 * *1/2

2

2

t y

x t

d x
x x y B B

dz x

d y
y y B x B

dz y

ρ ηρ
ρ

ρ ηρ
ρ

 ∂Φ ′′′ ′ ′≡ = − Φ + − Φ ∂ Φ 

 ∂Φ ′′′ ′ ′≡ = − Φ + − Φ ∂ Φ 

 (2.9) 

where ′ denotes the derivative with respect to z; ρ = (1+x'2 +y'2)1/2; B = (Bx, By, Bz) is the 

magnetic field and Bt = ( x'Bx +y'By+Bz )/ρ is the component tangential to the path. 

In all cases of interest to FIB, the relativistic effect can be safely neglected 

because of the large mass of ion. It can be easily verified that at 10MeV that the 

correction is only about 0.005 (ε⋅Φ  = 0.0053). Moreover, in the emission diode region, 

the magnetic field is absent. So that the ray equation is reduced to 
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2

2

2

2

x x
x

y y
y

ρ

ρ

∂Φ ′′′ ′= − Φ Φ ∂ 

 ∂Φ ′′′ ′= − Φ Φ ∂ 

 (2.10) 

The important near-axis properties of the lens can be obtained by making the 

paraxial approximation in eqn.(2.10) where only up to linear terms with respect to x, x′ , y 

and y′ are kept. In fact, assuming rotational symmetry that is the most important case in 

charged particle optics, the potential Φ(r,z) can be expanded around the axis as 

 
2 4

(4) 6( , ) ( ) ( ) ( ) ( )
4 64
r rr z z z z O rψ ψ ψ′′Φ = − + +  (2.11) 

with ψ(z) = Φ(0,z). And the paraxial ray equation becomes 

 ( ) ( ) 0
2 ( ) 4 ( )

z zw w w
z z

ψ ψ
ψ ψ

′ ′′
′′ ′+ + =  (2.12) 

where w = x + i⋅y is the complex notation of the ray. 

Eqn.(2.12) is a linear, second-order, homogenous ODE, so that any solution can 

be expressed as a combination of two linearly independent solutions. A convenient 

choice of these two canonical rays is 

 
0 0

0 0

( ) 0, ( ) 1

( ) 1, ( ) 0

h z h z

g z g z

′= =

′= =
 (2.13) 

so that by specifying the (complex) initial position w0 and slope w0′, a paraxial ray w(z) 

can be expressed as 
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 0 0( ) ( ) ( )w z w g z w h z′= +  (2.14) 

An important property of the paraxial ray equation is the existence of an invariant, 

the Wronskian 

 1/2
1 2 1 2( ) .u u u u constψ ′ ′− =  (2.15) 

where u1 and u2 are two linearly independent paraxial rays, as is easily verified by use of 

the paraxial ray equation. Specifically, let u1 = h and u2 = g, (2.15) becomes 

 
1 /2

0
1 /2h g g h

ψ
ψ

′ ′− =  (2.16) 

where ψ0 = ψ(z0). 

2.3.1.2 Gaussian Optical Properties Of Emission Diode Region 

With the aid of the paraxial rays, the Gaussian optical properties, such as the focal 

length f, the linear magnification M, and the angular magnification MA , of the diode 

region can be determined. 

 

1 / 2

0

1
( )

( )

1

f

A f

A f

f
g z

M h z

M
M

ψ
ψ

= −
′

′=

 
=   

 

 (2.17) 

where ψf = ψ(zf). 
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These quantities can only be calculated numerically for the emission diode region. 

For this purpose, it is more convenient to rewrite the paraxial ray equation by introducing 

the reduced ray representation[86] 

 
1 / 4

0

( )
( ) ( )

z
R z w z

ψ
ψ

 
=  

 
 (2.18) 

so that eqn. (2.12) takes the form 

 
2

3 0
16

R Rψ
ψ

′ 
′′ + = 

 
 (2.19) 

Corresponding to h(z) and g(z), we now have Rh(z) and Rg(z), satisfying the 

initial conditions 

 

0 0

0
0 0

0

( ) 0, ( ) 1

( ) 1, ( )
4

h h

g g

R z R z

R z R z
ψ
ψ

′= =

′
′= =

 (2.20) 

And (2.17) can be expressed in terms of Rh and Rg as 



39 

 

1/4

0

1/4

0

1/2 1/4

0 0

1

( ) ( )
4

( ) ( )
4

1 1

( ) ( )
4

f

f
g f g f

f

f
A h f h f

f f

A f ff
h f h f

f

f

R z R z

M R z R z

M
M

R z R z

ψ

ψψ

ψ

ψ ψ
ψ ψ

ψ ψ
ψ ψψ

ψ

 
= −  ′  ′ −

 ′  
′ = −       

   
= =      ′   ′ −

 (2.21) 

The axial potential distribution of the SOC diode region is obtained, from 

eqn.(2.1) and (2.5), as (note that ψ ≥ 0) 

 
1

2 1 2 1
2 1

( ) 1
( 1)

n n

n na a
n

a a

E r z zz
n n r r

ψ γ γ
γ

− −

− − − −
− −

    
 = − + −   + +      

 (2.22) 

If we simply substitute (2.22) into the ray equation, as is done when dealing with 

the FE cathode, we will get singularity at the emitter apex z = ra , in which case the 

emitter acts as a cathode lens. In field ionization, however, the ions are all generated 

beyond the critical distance xc above the emitter surface, where they have an average 

energy of 3kTt/2 (Tt is the tip temperature). Therefore, eqn. (2.22) should be modified as 

 

1

2 1 2 1
2 1

1

2 1 2 1
2 1

( ) 1
( 1)

3 2( )
       1

2 ( 1)

n n

n na a
i a c n

a a

n n

n nt a a
n

a a

E r z zz KE E x
n n r r

kT I E r z z
q n n r r

ψ γ γ
γ

φ
γ γ

γ

− −

− − − −
− −

− −

− − − −
− −

    
 = − + − + −   + +      

    − −
 = + − + −   + +      

 (2.23) 
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where KEi is the potential equivalent of the initia l kinetic energy; xc is defined in 

eqn.(1.2); Ea⋅xc is essentially the potential at the critical distance above the emitter 

surface by considering that xc << ra. 

Accordingly, we have 

 
1 2

2 1
2 1

( ) ( 1)
( 1)

n n

na
n

a a

E z zz n n
n n r r

ψ γ
γ

− − −

− −
− −

    
 ′ = + +    + +     

 (2.24) 

The first step in solving the paraxial ray eqn. (2.19) is to transform it into two 1st 

order differential equations by introducing proper auxiliary variables 

 0 1,   y R y R′= =  (2.25) 

so that 

 

0 1

2

1 0

3
16

y y

y y
ψ
ψ

′ =

′ ′ = −  
 

 (2.26) 

A C routine is written where the integration of ODE is done by the Bulirsch-Stoer 

extrapolation method with adaptive step size control[87]. Compared with the common 

Runge-Kutta algorithm, the extrapolation method has the advantage that fewer steps and 

less stringent error control are needed to obtain a given accuracy for problems involving 

smooth functions. Indeed, in the accuracy check for both spherical and SOC emitters, 

given identical internal local truncation errors, the relative energy errors by the 

extrapolation method are found to be about one order of magnitude smaller than the 
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Runge-Kutta method, while the latter needs 1.5–16 times more intermediate steps than 

the former, depending on the truncation error specified. 

The accuracy check procedure goes as follows. 

For a spherical emitter with radius ra and surface field Ea , assume an electron is 

emitted tangential to the surface with initial kinetic energy KEe. By solving the equation 

of motion for this electron, the following trajectory can be obtained[78] 

 
2 2

2 2

2
1

cos
2

1

e

a

e

a a

KE

E r zz
KEr z

E r

θ

+
+

≡ =
+ +

 (2.27) 

where (r,z) are the cylindrical coordinates and θ is the polar angle. With (2.27), the 

relative error ∆θ of cosθ is evaluated by 

 
2

2 /cos cos
1

cos 1 ( / ) 2 /
a e a

a e

E KE r

E r z KE z
θ

θ θ
θ

+−
∆ = = −

+ +

%
% % %

 (2.28) 

where ( r, z% % ) represent the numerical solutions. 

Likewise, the relative error in energy ∆e is given by 

 

2 21
( / 1) ( )

2a a a e
e

e
e

E r r r r z KE

KE
η

− + + −
∆ =

& &% % %
 (2.29) 

where “dot” denotes the derivative with respect to time; ηe = 1.76×1011C/kg is the 

electron charge to mass ratio.  
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The results are given in Table 2-1 where ra = 10nm, Ea = 2V/Å and KEe = 0.1eV. 

The flight time is adjusted to yield z%  = 0.1mm, 1mm and 1cm, whose relative error is 

controlled under 10-10. For the purpose of comparison, the results of two local truncation 

errors, 10-8 and 10-10, are listed. 

For the SOC model, there is no independent check on the trajectory without an 

analytical solution, but the relative energy error can be calculated in a similar way. And 

by adjusting the local truncation error, relative energy errors of ≤ 10-7 can be routinely 

achieved. From the results of the spherical emitter, we then expect the relative error in the 

ratio of z/r to be about 10-13 or smaller. 

Table 2-2 lists the geometric parameters of the SOC emitter and the applied 

surface electric field, for which the optical properties are calculated. The tip temperature 

is taken to be 78°K (KEi = 0.01eV). The value of zf is set to 1mm, which agrees with 

typical settings in FIB systems. It should be noted that, from the ray equation, by 

changing the dimensions of the diode region by a common factor, the optical properties 

(including aberrations) all change by the same factor. On the other hand, changing the 

potential by a common factor does not affect the optical properties. 

The magnifications per unit dis tance M/zf and MA /zf are listed in Table 2-3 for 

each configuration in Table 2-2. 
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Table 2-1 Accuracy check of the B-S extrapolation algorithm for spherical emitter 

ra = 10nm, Ea = 2×1010V/m, KEe = 0.1eV, local truncation error = 10-8 

z% (mm) r% (µm) z&% (m/sec) r&% (m/sec) ∆θ ∆e 

0.1 4.473 8.381×106 3.749×105 -3.86×10-13 1.80×10-6 

1 44.732 8.381×106 3.749×105 -3.84×10-13 1.52×10-5 

10 447.325 8.381×106 3.749×105 -3.84×10-13 1.66×10-5 

ra = 10nm, Ea = 2×1010V/m, KEe = 0.1eV, local truncation error = 10-10 

z% (mm) r% (µm) z&% (m/sec) r&% (m/sec) ∆θ ∆e 

0.1 4.473 8.381×106 3.749×105 -2.89×10-15 2.16×10-7 

1 44.732 8.381×106 3.749×105 -2.89×10-15 2.52×10-7 

10 447.325 8.381×106 3.749×105 -2.66×10-15 2.63×10-7 
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Table 2-2 Emitter and gas parameters (marked by ‘×’) for the optical calculation. 

zf = 1mm; KEi = 0.01eV 

γ  

1.5 2 2.5 3 

n = 0.12  × × × 

0.14  × × × 

0.16  × × × 

0.18  × × × 

0.2 × × × × 

Ea (108V/cm)  

2 3 4 

ra=0.01µm × × × 

0.05 × × × 

0.1 × × × 

0.5 × × × 

1 × × × 
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Table 2-3 Magnifications per unit distance M/zf and MA/zf for SOC emitters 

Ea = 2×108V/cm 

zf / ra M/zf (mm-1) 
MA/zf (mm-1) 105 2×104 104 2×103 103 

(n, γ) = (0.12, 2) 
0.370 

8.05×10-3 
0.390 

3.80×10-3 
0.399 

2.76×10-3 
0.422 

1.32×10-3 
0.433 

9.62×10-4 

(0.12, 2.5) 
0.363 

7.47×10-3 
0.383 

3.55×10-3 
0.393 

2.58×10-3 
0.416 

1.24×10-3 
0.427 

9.03×10-4 

(0.12, 3) 
0.358 

7.04×10-3 
0.379 

3.35×10-3 
0.388 

2.44×10-3 
0.412 

1.17×10-3 
0.424 

8.56×10-4 

(0.14, 2) 0.359 
7.36×10-3 

0.380 
3.52×10-3 

0.390 
2.57×10-3 

0.415 
1.24×10-3 

0.427 
9.06×10-4 

(0.14, 2.5) 
0.353 

6.81×10-3 
0.374 

3.27×10-3 
0.384 

2.39×10-3 
0.409 

1.15×10-3 
0.422 

8.46×10-4 

(0.14, 3) 
0.349 

6.39×10-3 
0.370 

3.08×10-3 
0.380 

2.25×10-3 
0.406 

1.09×10-3 
0.418 

7.99×10-4 

(0.16, 2) 
0.349 

6.74×10-3 
0.372 

3.26×10-3 
0.382 

2.39×10-3 
0.409 

1.16×10-3 
0.421 

8.53×10-4 

(0.16, 2.5) 0.344 
6.20×10-3 

0.366 
3.01×10-3 

0.377 
2.21×10-3 

0.404 
1.08×10-3 

0.417 
7.93×10-4 

(0.16. 3) 0.341 
5.81×10-3 

0.363 
2.83×10-3 

0.374 
2.08×10-3 

0.401 
1.02×10-3 

0.414 
7.47×10-4 

(0.18, 2) 
0.340 

6.17×10-3 
0.364 

3.01×10-3 
0.375 

2.22×10-3 
0.403 

1.09×10-3 
0.416 

8.04×10-4 

(0.18, 2.5) 
0.336 

5.66×10-3 
0.359 

2.78×10-3 
0.370 

2.04×10-3 
0.399 

1.01×10-3 
0.413 

7.44×10-4 

(0.18, 3) 
0.334 

5.29×10-3 
0.357 

2.60×10-3 
0.368 

1.92×10-3 
0.397 

0.947×10-3 
0.411 

7.00×10-4 

(0.2, 1.5) 0.339 
6.35×10-3 

0.364 
3.12×10-3 

0.376 
2.30×10-3 

0.405 
1.14×10-3 

0.418 
8.42×10-4 

(0.2, 2) 0.332 
5.64×10-3 

0.357 
2.79×10-3 

0.369 
2.06×10-3 

0.398 
1.02×10-3 

0.412 
7.57×10-4 

(0.2, 2.5) 
0.329 

5.16×10-3 
0.353 

2.56×10-3 
0.365 

1.89×10-3 
0.395 

0.942×10-3 
0.409 

6.99×10-4 

(0.2, 3) 
0.328 

4.82×10-3 
0.352 

2.39×10-3 
0.363 

1.77×10-3 
0.394 

0.883×10-3 
0.408 

6.56×10-4 

Ea = 3×108V/cm 

zf / ra M/zf (mm-1) 
MA/zf (mm-1) 105 2×104 104 2×103 103 

(n, γ) = (0.12, 2) 
0.370 

6.55×10-3 
0.390 

3.11×10-3 
0.399 

2.26×10-3 
0.422 

1.08×10-3 
0.433 

7.85×10-4 
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(0.12, 2.5) 0.363 
6.09×10-3 

0.383 
2.90×10-3 

0.392 
2.11×10-3 

0.416 
1.01×10-3 

0.427 
7.37×10-4 

(0.12, 3) 0.358 
5.74×10-3 

0.378 
2.74×10-3 

0.388 
1.99×10-3 

0.412 
9.57×10-4 

0.424 
6.99×10-4 

(0.14, 2) 
0.359 

6.00×10-3 
0.380 

2.87×10-3 
0.390 

2.10×10-3 
0.415 

1.01×10-3 
0.427 

7.40×10-4 

(0.14, 2.5) 
0.353 

5.55×10-3 
0.374 

2.67×10-3 
0.384 

1.95×10-3 
0.409 

9.42×10-4 
0.422 

6.90×10-4 

(0.14, 3) 
0.349 

5.21×10-3 
0.370 

2.51×10-3 
0.380 

1.84×10-3 
0.406 

8.90×10-4 
0.418 

6.53×10-4 

(0.16, 2) 0.349 
5.49×10-3 

0.371 
2.66×10-3 

0.382 
1.95×10-3 

0.408 
9.49×10-4 

0.421 
6.97×10-4 

(0.16, 2.5) 0.344 
5.06×10-3 

0.366 
2.46×10-3 

0.377 
1.80×10-3 

0.404 
8.80×10-4 

0.417 
6.47×10-4 

(0.16. 3) 
0.340 

4.75×10-3 
0.363 

2.31×10-3 
0.374 

1.69×10-3 
0.401 

8.29×10-4 
0.414 

6.10×10-4 

(0.18, 2) 
0.340 

5.03×10-3 
0.364 

2.46×10-3 
0.375 

1.81×10-3 
0.403 

8.90×10-4 
0.416 

6.57×10-4 

(0.18, 2.5) 
0.336 

4.62×10-3 
0.359 

2.27×10-3 
0.370 

1.67×10-3 
0.399 

8.23×10-4 
0.413 

6.08×10-4 

(0.18, 3) 0.333 
4.42×10-3 

0.357 
2.12×10-3 

0.368 
1.57×10-3 

0.397 
7.73×10-3 

0.411 
5.71×10-4 

(0.2, 1.5) 
0.339 

5.18×10-3 
0.364 

2.55×10-3 
0.376 

1.88×10-3 
0.405 

9.31×10-4 
0.418 

6.88×10-4 

(0.2, 2) 
0.332 

4.60×10-3 
0.357 

2.28×10-3 
0.368 

1.68×10-3 
0.398 

8.35×10-4 
0.412 

6.19×10-4 

(0.2, 2.5) 
0.329 

4.22×10-3 
0.353 

2.09×10-3 
0.365 

1.55×10-3 
0.395 

7.69×10-4 
0.409 

5.70×10-4 

(0.2, 3) 
0.327 

3.94×10-3 
0.351 

1.96×10-3 
0.363 

1.45×10-3 
0.394 

7.21×10-4 
0.408 

5.35×10-4 

Ea = 4×108V/cm 

zf / ra M/zf (mm-1) 
MA/zf (mm-1) 105 2×104 104 2×103 103 

(n, γ) = (0.12, 2) 
0.370 

5.67×10-3 
0.390 

2.69×10-3 
0.399 

1.95×10-3 
0.422 

9.34×10-4 
0.433 

6.80×10-4 

(0.12, 2.5) 
0.363 

5.27×10-3 
0.383 

2.51×10-3 
0.392 

1.83×10-3 
0.416 

8.75×10-4 
0.427 

6.38×10-4 

(0.12, 3) 0.358 
4.96×10-3 

0.378 
2.37×10-3 

0.388 
1.73×10-3 

0.412 
8.29×10-4 

0.424 
6.05×10-4 

(0.14, 2) 
0.359 

5.19×10-3 
0.380 

2.49×10-3 
0.390 

1.82×10-3 
0.415 

8.76×10-4 
0.427 

6.40×10-4 

(0.14, 2.5) 
0.353 

4.80×10-3 
0.374 

2.31×10-3 
0.384 

1.69×10-3 
0.409 

8.16×10-4 
0.422 

5.98×10-4 



47 

(0.14, 3) 0.349 
4.51×10-3 

0.370 
2.17×10-3 

0.380 
1.59×10-3 

0.406 
7.71×10-4 

0.418 
5.65×10-4 

(0.16, 2) 0.349 
4.76×10-3 

0.371 
2.30×10-3 

0.382 
1.69×10-3 

0.408 
8.22×10-4 

0.421 
6.03×10-4 

(0.16, 2.5) 
0.343 

4.38×10-3 
0.366 

2.13×10-3 
0.377 

1.56×10-3 
0.404 

7.62×10-4 
0.417 

5.61×10-4 

(0.16. 3) 
0.340 

4.11×10-3 
0.363 

2.00×10-3 
0.373 

1.47×10-3 
0.401 

7.18×10-4 
0.414 

5.29×10-4 

(0.18, 2) 
0.340 

4.36×10-3 
0.364 

2.13×10-3 
0.375 

1.57×10-3 
0.403 

7.71×10-4 
0.416 

5.69×10-4 

(0.18, 2.5) 0.335 
4.00×10-3 

0.359 
1.96×10-3 

0.370 
1.45×10-3 

0.399 
7.12×10-4 

0.413 
5.26×10-4 

(0.18, 3) 0.333 
3.75×10-3 

0.357 
1.84×10-3 

0.368 
1.36×10-3 

0.397 
6.69×10-3 

0.411 
4.95×10-4 

(0.2, 1.5) 
0.339 

4.48×10-3 
0.364 

2.21×10-3 
0.376 

1.63×10-3 
0.405 

8.06×10-4 
0.418 

5.96×10-4 

(0.2, 2) 
0.332 

3.99×10-3 
0.357 

1.97×10-3 
0.368 

1.46×10-3 
0.398 

7.23×10-4 
0.412 

5.36×10-4 

(0.2, 2.5) 
0.328 

3.65×10-3 
0.353 

1.81×10-3 
0.365 

1.34×10-3 
0.395 

6.66×10-4 
0.409 

4.94×10-4 

(0.2, 3) 0.327 
3.41×10-3 

0.351 
1.69×10-3 

0.363 
1.25×10-3 

0.393 
6.25×10-4 

0.408 
4.64×10-4 
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We will find that another relation is useful in estimating the source size. This 

relation associates the initial polar angle θ of an ion emitted in normal direction with its 

divergence angle α at the extraction electrode[72](Figure 2-4). 

 

Figure 2-4 Schematic diagram of the ion trajectory in the emission diode region. ω is the 

aperture half angle. 

Define Kθ as 

 
tan
tan

Kθ

α
θ

=  (2.30) 

Table 2-4 lists the average values of Kθ and their relative errors for 0 ≤ θ ≤ 20° 

and various source parameters as given in Table 2-2. 
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Table 2-4 Average Kθ and its error 

Ea = 2×108V/cm 

zf / ra Kθ 
105 2×104 104 2×103 103 

(n, γ) = (0.12, 2) 0.51±2.4% 0.56±2.3% 0.58±2.2% 0.62±2.1% 0.64±2.0% 
(0.12, 2.5) 0.47±2.6% 0.51±2.5% 0.53±2.4% 0.57±2.3% 0.59±2.2% 
(0.12, 3) 0.43±2.7% 0.48±2.6% 0.49±2.6% 0.53±2.5% 0.55±2.4% 
(0.14, 2) 0.47±2.6% 0.52±2.5% 0.53±2.4% 0.58±2.3% 0.60±2.2% 

(0.14, 2.5) 0.42±2.8% 0.47±2.6% 0.48±2.6% 0.53±2.5% 0.54±2.4% 
(0.14, 3) 0.39±2.9% 0.43±2.8% 0.45±2.7% 0.48±2.6% 0.50±2.6% 
(0.16, 2) 0.42±2.8% 0.47±2.6% 0.49±2.6% 0.54±2.4% 0.56±2.4% 

(0.16, 2.5) 0.38±2.9% 0.42±2.8% 0.44±2.8% 0.48±2.7% 0.50±2.6% 
(0.16. 3) 0.35±3.0% 0.39±2.9% 0.40±2.9% 0.44±2.8% 0.46±2.8% 
(0.18, 2) 0.38±2.9% 0.43±2.8% 0.45±2.7% 0.50±2.6% 0.52±2.5% 

(0.18, 2.5) 0.34±3.1% 0.39±3.0% 0.40±2.9% 0.45±2.8% 0.47±2.8% 
(0.18, 3) 0.31±3.2% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 1.5) 0.40±2.8% 0.46±2.7% 0.48±2.6% 0.54±2.5% 0.56±2.4% 
(0.2, 2) 0.34±3.0% 0.40±2.9% 0.41±2.9% 0.46±2.8% 0.48±2.7% 

(0.2, 2.5) 0.31±3.2% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 3) 0.28±3.3% 0.32±3.2% 0.33±3.2% 0.37±3.1% 0.39±3.0% 

Ea = 3×108V/cm 

zf / ra Kθ 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 0.52±2.4% 0.56±2.2% 0.58±2.2% 0.62±2.0% 0.64±2.0% 

(0.12, 2.5) 0.47±2.6% 0.52±2.5% 0.53±2.4% 0.57±2.3% 0.59±2.2% 
(0.12, 3) 0.44±2.7% 0.48±2.6% 0.49±2.6% 0.53±2.5% 0.55±2.4% 
(0.14, 2) 0.47±2.6% 0.52±2.5% 0.53±2.4% 0.58±2.3% 0.60±2.2% 

(0.14, 2.5) 0.43±2.8% 0.47±2.6% 0.48±2.6% 0.53±2.5% 0.54±2.4% 
(0.14, 3) 0.39±2.9% 0.43±2.8% 0.45±2.7% 0.48±2.6% 0.50±2.6% 
(0.16, 2) 0.43±2.8% 0.47±2.6% 0.49±2.6% 0.54±2.4% 0.56±2.4% 

(0.16, 2.5) 0.38±2.9% 0.43±2.8% 0.44±2.8% 0.48±2.7% 0.50±2.6% 
(0.16. 3) 0.35±3.0% 0.39±2.9% 0.40±2.9% 0.44±2.8% 0.46±2.8% 
(0.18, 2) 0.39±2.9% 0.43±2.8% 0.45±2.7% 0.50±2.6% 0.52±2.5% 

(0.18, 2.5) 0.34±3.0% 0.39±3.0% 0.40±2.9% 0.45±2.8% 0.47±2.8% 
(0.18, 3) 0.31±3.2% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 1.5) 0.41±2.8% 0.46±2.7% 0.48±2.6% 0.54±2.5% 0.56±2.4% 
(0.2, 2) 0.35±3.0% 0.40±2.9% 0.42±2.9% 0.46±2.8% 0.48±2.7% 

(0.2, 2.5) 0.31±3.2% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 3) 0.28±3.3% 0.32±3.2% 0.33±3.2% 0.37±3.1% 0.39±3.0% 
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Ea = 4×108V/cm 

zf / ra Kθ 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 0.52±2.4% 0.56±2.3% 0.58±2.2% 0.62±2.1% 0.64±2.0% 

(0.12, 2.5) 0.48±2.6% 0.52±2.5% 0.53±2.4% 0.57±2.3% 0.59±2.2% 
(0.12, 3) 0.44±2.7% 0.48±2.6% 0.49±2.6% 0.53±2.5% 0.55±2.4% 
(0.14, 2) 0.47±2.6% 0.52±2.5% 0.54±2.4% 0.58±2.3% 0.60±2.2% 

(0.14, 2.5) 0.43±2.8% 0.47±2.6% 0.49±2.6% 0.53±2.5% 0.54±2.4% 
(0.14, 3) 0.39±2.9% 0.43±2.8% 0.45±2.7% 0.49±2.6% 0.50±2.6% 
(0.16, 2) 0.43±2.7% 0.47±2.6% 0.49±2.6% 0.54±2.4% 0.56±2.4% 

(0.16, 2.5) 0.39±2.9% 0.43±2.8% 0.44±2.8% 0.48±2.7% 0.50±2.6% 
(0.16. 3) 0.35±3.0% 0.39±2.9% 0.41±2.9% 0.44±2.8% 0.46±2.8% 
(0.18, 2) 0.39±2.9% 0.43±2.8% 0.45±2.7% 0.50±2.6% 0.52±2.5% 

(0.18, 2.5) 0.35±3.0% 0.39±2.9% 0.40±2.9% 0.45±2.8% 0.47±2.8% 
(0.18, 3) 0.32±3.1% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 1.5) 0.41±2.8% 0.46±2.7% 0.48±2.6% 0.54±2.5% 0.56±2.4% 
(0.2, 2) 0.35±3.0% 0.40±2.9% 0.42±2.9% 0.46±2.8% 0.48±2.7% 

(0.2, 2.5) 0.31±3.2% 0.35±3.1% 0.37±3.0% 0.41±3.0% 0.43±2.9% 
(0.2, 3) 0.28±3.3% 0.32±3.2% 0.33±3.2% 0.37±3.1% 0.339±3.0% 
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From Table 2-3 and Table 2-4, we can see that both M and Kθ are nearly 

independent of the electric field Ea. Also, they are both smaller for blunter emitters (i.e. 

larger n and γ) as well as smaller tip radius. 

From the data, it is seen that the variation in M is quite small considering the 

range of emitter radius and shape covered. Actually, if we set M = 0.38 regardless of n, γ 

and ra , the maximum error is only about 14%. 

2.3.1.3 Chromatic and Spherical Aberrations of Emission Diode Region 

The paraxial ray equation and the Gaussian optical properties hold only for the 

imaging of points close to the axis with extremely small beam limiting aperture, which is 

rarely satisfied in practical systems. Thus deviations from the Gaussian image almost 

always need to be taken into account. For electrostatic lenses, the aberrations originate 

from the change in the focusing power of the field distribution as the off axis distance 

changes as well as on charged particles with different energies. 

In order to include aberrations in the image, one is prompted to solve the ray 

equation as given in (2.10), relaxing the paraxial condition. In many cases, however, the 

deviation is not much. In these cases, for monochromatic beam, it is adequate and more 

convenient to expand the ray equation in terms of the powers of the ray coordinates and 

slopes, and keeping only the lowest order terms next to the paraxial ones. In addition, 

these geometric aberrations are often separated into different types by their dependencies 

on the ray coordinates and slopes. In rotationally symmetric, electrostatic lenses, there are 

altogether five 3rd order geometric aberrations[ 88 ]: distortion, curvature of field, 

astigmatism, coma, and spherical aberration. 
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Similarly, in the presence of beam energy spread, the ray equation can be 

expanded in terms of the energy of the charged particle, and the so-called 1st order 

chromatic aberrations are resulted by keeping only the linear terms with respect to the 

energy. 

The most important aberrations in the source region, when the beam aperture is 

small (< 1msr), are the spherical and chromatic aberrations as they don’t vanish even for 

object on axis. 

These aberrations are commonly evaluated in the form of integrals of the paraxial 

ray, the axial potential distribution and their derivatives with respect to the optical 

axis[70, 88]. It should be noted that the commonly used aberration integrals either 

involve 4th order derivative of the potential for spherical aberration (and are hence not 

convenient for numerical calculation, especially for general emitter topography) or 

assume that the aperture plane is in field-free region. In the diode region, however, the ψ′  

does not vanish at the extraction electrode. As a result, in order to derive the aberrations 

in the image plane, we need to know the aberrations not only in position, but also in slope 

at the aperture plane. 
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Figure 2-5 Schematic diagram of lens aberration 

The lens aberration in the image plane is given by (Figure 2-5) 

 a
i a a

a

h
w w w

h
′∆ = ∆ − ⋅ ∆

′
 (2.31) 

where w(z) is given in (2.14), ∆wa and ∆wa’ are the aberrations in position and in slope at 

the aperture plane, respectively. 

We will be using the set of expressions derived by Lencová and Lenc[71] to find 

∆wa and ∆wa′ in order to evaluate ∆wi. First, the ray equation (2.10) is expanded in power 

series of the beam energy spread and the ray coordinates. And by keeping up to the 1st 

order term of the energy spread and 3rd order terms of the ray coordinates, we will get[71] 

 3( ) ( )
2 4 cw w w R z R z
ψ ψ
ψ ψ

′ ′′
′′ ′∆ + ∆ + ∆ = +  (2.32) 

where 
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(4) 2
1/2 2 2

3 1 / 2 1 / 2 2

1 1( )
2 8 8 32

( )
2 4c

dR z w w w w w w w w w w
dz

R z w w

ψ ψ ψ ψψ
ψ ψ ψ ψ ψ

ψ ψ ψ
ψ ψ ψ

′′ ′′ ′′  ′ ′ ′ ′ ′= + ⋅ ⋅ − ⋅ ⋅ + −  
   

′ ′′ ∆ ′= + 
 

 (2.33) 

represent the effects of 3rd order geometrical deviation and 1st order energy deviation, 

respectively, and ∆ψ is the energy spread. 

From eqn.(2.32) and (2.33), the various aberration terms can be obtained by the 

method of variation of parameters with the aid of the paraxial rays. 

Specifically, the chromatic aberration in the image plane is given as 

 
1/2 1 / 2

0 0 0 0 0 0
1/2 1 / 2

0 2 2ci cf f f Df f f
f f f fa f

w ww C h h C h g
h h

ψ ψ ψ ψψ
ψ ψ ψ ψ ψ

 ′   ∆ ′ ′ ∆ = ⋅ + ⋅ + ⋅ + ⋅ ⋅       ′ ′    
 (2.34) 

where the subscript f represents the value evaluated at the extraction electrode z = zf, CCf 

and CDf are related to the aberrations in image position and in magnification, respectively, 

and are given by 

0

0

1 / 2
2 20

1 / 2

1 / 2
0

1 / 2

1
2 2

1
2 2

f

f

z

Cf z

z

Df z

C h h dz

C h g h g dz

ψ ψ
ψ ψ

ψ ψ
ψ ψ

′′ ′= − + 
 

′′ ′ ′= − ⋅ + ⋅ 
 

∫

∫
 

Let w0 = 0, eqn.(2.34) can be expressed in terms of the slope at the aperture plane 

 

0

1 / 2
2 2

1 / 22

1
42 2

f

ci f ch
f

zf f
ch z

f f

w w C

h
C h h dz

h h

ψ
ψ

ψ ψ
ψ ψ

∆ ′∆ = −

′′ ′= − + + ′ ′  
∫

 (2.35) 
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where Cch represents the chromatic aberration coefficient, applicable to the emission 

diode region, referred to the image plane. 

Note that in the case ψf′ = 0, we have constant h′ and ψ in the image region, and 

Cch can be verified to reduce to the familiar form 

 
0

1/2 2
2

5 / 22

3

8

iz
i

ch z
i

C h dz
h

ψ ψ
ψ

′
=

′ ∫  (2.36) 

To evaluate the spherical aberration, suppose that this is the only aberration 

existing or dominating, eqn.(2.32) can be solved to yield 

 
2

0 0

2
0 0

s

s

w S w w

w S w w

′∆ = ⋅

′′ ′∆ = ⋅
 (2.37) 

where 

 

2
0 0

3
2 3

0 0 2

1
16 2

1
16 2 2 32 64

S S g h K h

h
S S g h K h h

ψ
ψ

ψ ψ ψ ψ
ψ ψ ψ

′′ 
= ⋅ − − + 

 

′′′ ′′′ ′ ′′   ′ ′′ = ⋅ − − + + + +   
   

 (2.38) 

and 
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From (2.31), (2.37) and (2.38), we can get 
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0
024 4
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32 642

si si f f

f f f f f
si f

f f ff f f

w C w w

h h
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 (2.40) 

The integrand in eqn.(2.40) involves only up to the 2nd order derivative of ψ, which thus 

eases numerical calculation of potential distribution for general emitter topography.  

In the case ψf′ = 0, Csi can be verified to reduce to 

 
0

4 2 4 3 2 2

4 1/2 3 /2 2 2

1 5 5 14 3
16 4 24 3 2

iz

si z
i i

h h hC dz
h h h

ψ ψ ψ ψ
ψ ψ ψ ψ

′′ ′ ′ ′ ′ ′ 
= + + − ′  

∫  (2.41) 

For the emitter configuration in Table 2-2, the spherical and chromatic aberration 

coefficients are listed in Table 2-5 and Table 2-6. 
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The results show that Csi and Cch are affected in a complex manner by the emitter 

shape parameters n and γ, the electric field Ea, and the ratio zf / ra. A general trend is that 

both Csi and Cch increase with the electric field and the emitter radius. They are also 

greater for blunter emitters. 

For any given Ea and ra listed, Csi increases approximately linearly while Cch 

logarithmically with γ. They both have exponential dependence on the cone index n. 

Moreover, the emitter radius has a remarkable effect on Csi and Cch. On one hand, for 

given n, γ and Ea, Csi and Cch increase with ra more rapidly than linearly but less rapidly 

than exponentially. On the other hand, there is an interesting feature that differentiates the 

field ionization from field emission— the critical distance xc plays an important role, 

especially at large field and emitter radius (small ratios of zf / ra), as shown in Figure 2-6 

and Figure 2-7. It is found that although xc is only on the order of several angstroms, the 

Csi as obtained by taking xc into account can be more than 10 times higher than when 

setting xc = 0. As for Cch, the effect is opposite, i.e. the presence of xc reduces Cch 

dramatically as compared with FE where xc = 0. 
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Table 2-5 Spherical aberration coefficient Csi referred to the virtual image plane in the 

diode region 

Ea = 2×108V/cm 

zf / ra Csi (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 43.4 112.2 238.2 1.977e3 5.177e3 

(0.12, 2.5) 48.8 140.4 306.0 2.560e3 6.667e3 
(0.12, 3) 53.6 169.0 376.0 3.171e3 8.230e3 
(0.14, 2) 51.3 134.9 285.9 2.330e3 6.040e3 

(0.14, 2.5) 57.5 170.8 373.0 3.078e3 7.944e3 
(0.14, 3) 63.1 207.3 463.3 3.862e3 9.943e3 
(0.16, 2) 60.1 161.8 342.8 2.747e3 7.053e3 

(0.16, 2.5) 67.4 207.1 453.7 3.693e3 9.447e3 
(0.16. 3) 74.1 253.5 568.8 4.685e3 1.196e4 
(0.18, 2) 70.2 193.9 411.4 3.242e3 8.244e3 

(0.18, 2.5) 78.8 251.1 551.6 4.426e3 1.122e4 
(0.18, 3) 87.0 309.9 697.4 5.666e3 1.433e4 
(0.2, 1.5) 70.6 165.4 332.5 2.500e3 6.324e3 
(0.2, 2) 81.7 232.8 494.5 3.833e3 9.651e3 

(0.2, 2.5) 92.2 304.9 671.2 5.305e3 1.332e4 
(0.2, 3) 102.4 379.1 854.6 6.840e3 1.715e4 

Ea = 3×108V/cm 

zf / ra Csi (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 44.6 128.6 282.6 2.410e3 6.327e3 

(0.12, 2.5) 50.6 162.1 364.3 3.122e3 8.149e3 
(0.12, 3) 55.9 196.3 449.0 3.868e3 1.006e4 
(0.14, 2) 52.9 154.8 339.3 2.840e3 7.382e3 

(0.14, 2.5) 59.8 197.6 444.5 3.753e3 9.711e3 
(0.14, 3) 66.2 241.5 554.0 4.713e3 1.215e4 
(0.16, 2) 62.2 186.1 407.2 3.348e3 8.620e3 

(0.16, 2.5) 70.4 240.4 541.4 4.504e3 1.155e4 
(0.16. 3) 78.1 296.3 681.2 5.717e3 1.462e4 
(0.18, 2) 72.8 223.6 489.1 3.952e3 1.008e4 

(0.18, 2.5) 82.7 292.4 659.2 5.399e3 1.372e4 
(0.18, 3) 92.2 363.3 836.3 6.915e3 1.753e4 
(0.2, 1.5) 72.5 188.5 392.7 3.045e3 7.727e3 
(0.2, 2) 85.1 269.1 588.8 4.674e3 1.180e4 

(0.2, 2.5) 97.2 356.0 803.3 6.472e3 1.629e4 
(0.2, 3) 109.0 445.8 1.026e3 8.349e3 2.097e4 
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Ea = 4×108V/cm 

zf / ra Csi (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 45.7 142.6 320.1 2.776e3 7.297e3 

(0.12, 2.5) 52.2 180.6 413.5 3.596e3 9.399e3 
(0.12, 3) 58.0 219.4 510.6 4.456e3 1.160e4 
(0.14, 2) 54.4 171.8 384.4 3.270e3 8.514e3 

(0.14, 2.5) 61.9 220.5 505.0 4.323e3 1.120e4 
(0.14, 3) 68.9 270.5 630.6 5.429e3 1.402e4 
(0.16, 2) 64.1 206.7 461.6 3.855e3 9.941e3 

(0.16, 2.5) 73.1 268.6 615.6 5.188e3 1.332e4 
(0.16. 3) 81.7 332.6 776.3 6.587e3 1.686e4 
(0.18, 2) 75.2 248.8 554.9 4.551e3 1.162e4 

(0.18, 2.5) 86.2 327.4 750.1 6.220e3 1.582e4 
(0.18, 3) 96.8 408.6 953.8 7.968e3 2.022e4 
(0.2, 1.5) 74.4 208.1 443.7 3.505e3 8.910e3 
(0.2, 2) 88.2 299.9 668.4 5.383e3 1.360e4 

(0.2, 2.5) 101.6 399.3 914.9 7.457e3 1.879e4 
(0.2, 3) 115.0 502.2 1.171e3 9.622e3 2.419e4 
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Table 2-6 Chromatic aberration coeff. Cch referred to the virtual image plane in the diode 

region 

Ea = 2×108V/cm 

zf / ra Cch (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 50.0 54.9 60.6 117.8 210.7 

(0.12, 2.5) 51.1 56.8 63.3 128.6 234.0 
(0.12, 3) 51.8 58.3 65.6 138.3 255.2 
(0.14, 2) 58.7 64.9 72.0 143.2 256.8 

(0.14, 2.5) 59.8 67.0 75.3 157.2 287.4 
(0.14, 3) 60.5 68.5 77.8 169.5 315.1 
(0.16, 2) 68.2 75.7 84.7 172.8 311.2 

(0.16, 2.5) 69.3 78.1 88.4 190.7 350.6 
(0.16. 3) 70.0 79.8 91.4 206.5 386.3 
(0.18, 2) 78.6 87.7 98.8 207.5 375.5 

(0.18, 2.5) 79.6 90.3 103.3 230.3 426.0 
(0.18, 3) 80.4 92.3 106.9 250.3 471.2 
(0.2, 1.5) 88.2 97.0 108.0 215.6 380.5 
(0.2, 2) 89.9 101.1 114.9 248.5 451.9 

(0.2, 2.5) 91.0 104.1 120.2 277.2 516.0 
(0.2, 3) 91.8 106.4 124.6 302.7 573.0 

Ea = 3×108V/cm 

zf / ra Cch (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 49.8 55.4 62.1 131.2 244.6 

(0.12, 2.5) 51.0 57.4 65.1 143.9 272.5 
(0.12, 3) 51.7 59.0 67.5 155.3 298.0 
(0.14, 2) 58.6 65.6 74.0 160.1 298.8 

(0.14, 2.5) 59.7 67.8 77.6 176.6 335.4 
(0.14, 3) 60.5 69.5 80.3 191.3 368.8 
(0.16, 2) 68.1 76.7 87.3 193.9 362.8 

(0.16, 2.5) 69.2 79.2 91.4 215.1 410.5 
(0.16. 3) 70.0 81.1 94.8 234.0 453.5 
(0.18, 2) 78.5 89.1 102.1 233.8 438.8 

(0.18, 2.5) 79.6 91.8 107.1 261.0 499.8 
(0.18, 3) 80.4 94.0 111.3 285.1 554.8 
(0.2, 1.5) 88.0 98.3 111.3 241.8 443.2 
(0.2, 2) 89.9 102.8 119.1 281.1 529.5 

(0.2, 2.5) 91.0 106.1 125.2 315.7 607.1 
(0.2, 3) 91.8 108.7 130.3 346.3 676.5 
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Ea = 4×108V/cm 

zf / ra Cch (µm) 105 2×104 104 2×103 103 
(n, γ) = (0.12, 2) 49.8 55.9 63.4 142.6 273.2 

(0.12, 2.5) 50.9 58.0 66.6 156.9 305.0 
(0.12, 3) 51.7 59.6 69.2 169.7 334.1 
(0.14, 2) 58.6 66.3 75.7 174.3 334.1 

(0.14, 2.5) 59.7 68.6 79.5 193.0 376.0 
(0.14, 3) 60.5 70.3 82.5 209.7 414.3 
(0.16, 2) 68.1 77.6 89.4 211.7 406.2 

(0.16, 2.5) 69.2 80.2 94.0 235.9 460.7 
(0.16. 3) 70.1 82.2 97.7 257.4 510.1 
(0.18, 2) 78.5 90.2 104.9 255.9 492.3 

(0.18, 2.5) 79.6 93.2 110.4 286.8 562.2 
(0.18, 3) 80.5 95.6 115.0 314.4 625.3 
(0.2, 1.5) 88.0 99.5 114.3 264.1 496.1 
(0.2, 2) 90.0 104.2 122.6 308.6 594.9 

(0.2, 2.5) 91.1 107.8 129.5 348.2 684.2 
(0.2, 3) 92.0 110.7 135.2 383.2 763.9 
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Figure 2-6 Comparison of Cs for FI (xc = (I-φ)/Ea) and FE (xc  = 0). Parameters: Ea = 

2V/Å, n = 0.12, γ = 2 
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Figure 2-7 Comparison of Cch for FI (xc = (I-φ)/Ea) and FE (xc = 0). Parameters: Ea = 

2V/Å, n = 0.12, γ = 2 
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2.3.2 Calculation Of Virtua l Source Size By Addition In Quadrature 

When the beam limiting aperture is small (<1msr), a convenient and commonly 

used method to evaluate the virtual source size of GFIS is by adding in quadrature the 

contributions from the Gaussian source size, spherical and chromatic aberrations, and 

diffraction effect (but see section 2.3.3 below) 
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 (2.42) 

where the last term represents the diffraction effect (for He ion). θ is the half angle of the 

beam-limiting aperture (Figure 2-4), and ∆V is the beam energy spread, which is about 

1eV for GFIS. In (2.42), ra , Csi and Cch are in µm, and ∆ψ and ψf in volt. 

Note that the diffraction effect for ion is usually negligible due to its large mass as 

compared with electrons. The diffraction effect of He ions is noticeable only when angle 

θ is so small such that 
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And from Figure 2-4, this corresponds to a beam aperture Ω of 
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where the second expression derives since M ≈ Kθ (see Table 2-3 and Table 2-4) and zg   

<< zf. For a typical case, let ra = 0.1µm and extraction voltage of 15kV, we have  

 0.002msrΩ ≤  (2.45) 

Since M, Kθ and Csi, Cch are not sensitive functions of the emitter form factor γ, 

we may calculate their average values for γ = 2, 2.5 and 3, for each individual n, ra and 

Ea. The resulting rs for beam aperture of 0.1msr is listed in Table 2-7. 
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Table 2-7 Virtual source size rs obtained by addition in quadrature at beam limiting 

aperture of 0.1msr 

Ea = 2×108V/cm 

zf / ra rs (nm) 105 2×104 104 2×103 103 
n = 0.12 0.21 0.21 0.40 2.01 4.03 

0.14 0.19 0.22 0.43 2.12 4.27 
0.16 0.18 0.24 0.46 2.26 4.56 
0.18 0.17 0.25 0.49 2.43 4.91 
0.2 0.15 0.27 0.53 2.66 5.34 

Ea = 3×108V/cm 

zf / ra rs (nm) 105 2×104 104 2×103 103 
n = 0.12 0.15 0.21 0.41 2.03 4.10 

0.14 0.14 0.22 0.43 2.15 4.35 
0.16 0.13 0.23 0.47 2.30 4.66 
0.18 0.12 0.25 0.49 2.48 5.04 
0.2 0.11 0.27 0.53 2.70 5.51 

Ea = 4×108V/cm 

zf / ra rs (nm) 105 2×104 104 2×103 103 
n = 0.12 0.11 0.20 0.41 2.05 4.16 

0.14 0.11 0.22 0.43 2.17 4.43 
0.16 0.10 0.23 0.47 2.33 4.77 
0.18 0.10 0.25 0.49 2.52 5.17 
0.2 0.09 0.27 0.54 2.75 5.67 
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It is found that for emitter radius less than 0.1µm (zf/ra > 104), the chromatic 

aberration dominates in the aberration terms, while for emitter radius greater than 0.1µm, 

the spherical aberration dominates. 

An interesting feature of Table 2-7 is that rs is virtually independent of the emitter 

shape, i.e. n and γ, as well as the extraction voltage in the range listed, and that it is 

largely determined by the emitter radius. By setting n = 0.16 and Ea = 3V/Å, the 

maximum error induced for emitters with n in 0.12–0.2 and Ea in 2V/Å–4V/Å is found to 

be within 20%, except at the smallest emitter radius ra = 10nm where the chromatic 

aberration dominates and the diffraction effect is the most appreciable and rs is hence 

more field sensitive (with relative error of 62%). This conclusion is true even for a beam-

limiting aperture as large as 1msr— with relative error less than 54%— where the 

aberrations become large. 

It is therefore not unreasonable to study the dependence of rs on the emitter radius 

(for a given emitter to electrode distance) and the beam limiting aperture, regardless of 

the extraction voltage and detailed emitter shape within a fairly large range— note that the 

current emission characteristic changes dras tically as the field changes from 2V/Å–4V/Å 

for He gas, as will be shown in Chapter 3. 

Figure 2-8 (semi log plot) shows the calculated virtual source size of GFIS of He 

gas and W emitter at 78°K, as a function of the beam limiting aperture for different 

emitter radii, which is applicable for Ea in the range 2V/Å–4V/Å. 

Additional information is exposed by the dependence of source size on the tip 

temperature. In order to study this effect, a typical emitter with ra = 0.1µm is selected, as 

the tip temperature is changed from 20°K–100°K, the source size rs is plotted in Figure 
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2-9 as a function of the beam limiting aperture. It is interesting to see that as the tip 

temperature reduces, the virtual source size increases, which may seem to be against 

one’s intuition. This effect, however, demonstrates that the chromatic aberration in GFIS 

is usually dominated by the spherical aberration (except for very sma ll emitters ~10nm), 

and is the result of the fact that as the initial kinetic energy of ion is reduced, the spherical 

aberration coefficient is increased (Table 2-8) through the decreasing ray slope h′f 

(eqn.(2.40)). From this figure, it is also seen that for a 0.1µm emitter, the minimum 

virtual source size is 0.1nm or 1Å as set by the diffraction effect. In general, the minimal 

virtual source size can be inferred from eqn.(2.42) by neglecting the spherical aberration 

term, so that 
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where ra is in µm, Vex in volt and rsmin in Å. 

For emitters with ra = 0.1µm, the chromatic aberration is negligible, so that (2.46) 

is reduced to 
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Figure 2-8 rs as a function of the beam limiting aperture for different emitter radii 
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Figure 2-9 Dependence of virtual source size on the tip temperature for a 0.1µm W 

emitter with He gas 
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Table 2-8 The spherical and chromatic aberration coefficients for different tip 

temperatures (emitter: 0.1µm, n = 0.16, γ = 2.5, Ea = 3V/Å) 

Tt (K) 
 

20 40 60 80 100 

Csi (µm) 1922 989 678 523 429.3 

Cch (µm) 94 92.6 91.9 91.3 90.9 
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2.3.3 Calculation Of Virtual Source Size By Direct Ray Tracing 

The algorithm of addition in quadrature (hereinafter referred to as A.I.Q) in last 

section, although commonly accepted and used to estimate the overall effect from 

individual contributions, lacks solid mathematical support[73] except in special cases 

(e.g. for Gaussian distribution). It turns out that the current density distribution in the 

(virtual) Gaussian image plane is highly non-Gaussian. Consequently, the validity of 

A.I.Q for the virtual source size needs to be clarified. 

On the other hand, higher order (5th rank and above) aberrations need to be 

considered when the characteristic at large beam-limiting aperture is to be studied, which 

is obviously the case for the diode region. Let θ be the initial half polar angle (Figure 

2-4), the Gaussian image size is 

 sinG ar Mr θ=  (2.48) 

while the spherical aberration at the Gaussian image plane is 

 ( )3 3 3tan tansp s b sr C C Kθα θ= ⋅ = ⋅  (2.49) 

Clearly, the spherical aberration increases more rapidly with θ, we then expect 

that higher rank aberrations become significant when rsp becomes comparable to rG, i.e., 

when 

 2
3

a

s

Mr
C Kθ

θ ≤  (2.50) 

And from (2.44), this corresponds to a beam-limiting aperture Ω of 
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r
C
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Substituting ra = 0.1 µm and Csi = 540 µm in (2.51), we have 

 0.6msrΩ ≤  (2.52) 

In the emission diode region, even with the extraction electrode placed at zf = 1cm 

and aperture radius rf = 1mm, the aperture will subtend a solid angle of 31msr at the 

emitter, so that indeed higher rank aberrations are significant. 

Moreover, it should be noted that a fundamental difference exists between field 

electron emission (FE) and field ion (FI) emission with respect to the source optical 

properties, including the virtual source size. In the former case, the electron is emitted 

right out of the tip surface, and its energy spread is thus dependent only on the tip 

temperature. In the latter case, however, the ions are all generated in a small region 

beyond the local critical distance (several Å, typically) above the emitter surface (we 

have already seen the significance of xc in determining the aberration coefficients), which 

is called the ionization zone. The ionization zone is extremely narrow. For He ions from 

W emitter, at the “best image field” Ea = 4.4V/Å and tip temperature 21°K, the half width 

of the ionization zone obtained from experiment is only about 0.18Å[15]. So small as it 

may be, the ion energy spread in this case is 0.8eV due to the large electric field, as 

compared with the thermal energy of about 3meV. Furthermore, the width of the 

ionization zone changes with the electric field and tip temperature. As a consequence, the 

energy spread in GFIS depends on the extraction voltage, tip temperature as well as the 

imaging gas species. 
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In this section, the calculation of the GFIS virtual source size is done by the 

method of direct ray tracing. The advantage of this method is that higher order 

aberrations are inherently included and that the uncertainty in the addition of individual 

terms is avoided. While A.I.Q may be valid for small emitters and beam apertures where 

the aberrations are small and diffraction effect comes into play, the method of direct ray 

tracing is more appropriate for larger emitters with larger beam apertures. In addition, the 

method of direct ray tracing can be used to examine the applicability of A.I.Q to large 

apertures. 

In direct ray tracing, the equation of motion for an individual charged particle in 

the meridianal plane is solved numerically in order to obtain its coordinates and slope at 

the beam limiting aperture, which can then be used to calculate the virtual image 

coordinates in arbitrary image plane (such as the Gaussian image plane). 

First of all, the ion’s initial emission position and direction need to be generated 

according to appropriate distribution functions. 

2.3.3.1 One Dimensional Model of Energy Distribution In GFIS 

Tsong and Müller[15] developed a one-dimensional theory for the energy 

distribution in GFIS, which yields the following distribution function 
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 (2.53) 
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where fE(x) represents the (unnormalized) pdf function of ionization at the height x above 

the emitter surface; xc is the critical distance evaluated by eqn.(1.2), which is repeated 

here 

 c
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I
x

qE
φ−

=  (2.54) 

xm is the maximum hopping height of a gas molecule rebounding from surface, given by 

 2

3
2

t
m t

f g a

kTx r
n Eα

=  (2.55) 

with rt the emitter apex radius, αg the gas polarizability and Tt the tip temperature; nf is an 

empirical parameter describing the field distribution close to the emitter, i.e. the field 

strength E near the emitter surface is approximated by 
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 (2.56) 

For a spherical emitter, nf = 2. And in the original theory, nf = 4/3 is assumed to account 

for the effect of emitter shank. For the SOC emitters, it is found that choosing nf between 

1.7–1.8 fits a wide range of emitter geometries. In eqn. (2.53), Ea is in V/Å, xc and xm are 

in Å. 

The half width as obtained from eqn.(2.53) at Ea = 4.4V/Å and Tt = 21°K is about 

65% wider than the experimental value (taking I = 24.5eV, φ = 4.5eV, rt = 900Å, nf = 

4/3). 
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One problem with eqn. (2.53) is that the image effect has been neglected. Due to 

the extremely small width of  the ionization zone, this effect, small as it may be, can be of 

some significance. By including an image potential term of the tunneling electron, we 

have 
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solving (2.57) to get 
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Accordingly, eqn.(2.53) is modified as 
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 (2.59) 

with xc given by (2.58). 

With eqn.(2.59), the resulting ionization zone width better fits the experimental 

data. Actually, for the aforementioned case, the error in the calculated half width of the 

ionization zone is reduced to 10%. 

Figure 2-10 shows the distribution function fE(x) at three different emitter apex 

fields 2V/Å, 3V/Å and 4V/Å, for the case of He gas and W emitter at Tt = 78°K. It is 

seen that at higher electric field, the critical distance becomes smaller and the ionization 

zone moves closer to the emitter surface. Also, as the field increases, the half width of the 
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ionization zone reduces but more slowly than linearly, so the energy spread actually 

increases with the field.  

The corresponding energy distribution is shown in Figure 2-11, where the 

collector voltage represents the voltage applied on the collector in a retarding potential 

experiment so as to let the ion generated at height x stop just before the collector surface, 

which is given by[15] 
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Figure 2-10 Distribution of the height above the emitter surface where ions are generated 

at different fields. I = 24.5eV, αg = 0.2Å3 , φ = 4.5eV, rt = 0.1µm, Tt = 78°K. 
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Figure 2-11 Distribution of collector voltage at different fields 
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2.3.3.2 Setting Up Initial Conditions 

With eqn. (2.59), the initial height of emission above the emitter surface can be 

generated randomly by the following standard procedure. 

First we need to get the cumulative distribution function (cdf) PE for the 

distribution fE, which is 

 
( )

( )      ( )
( )

c

mm

c

x

Ex
E c mmx

Ex

f q dq
P X x x x x

f q dq
< = ≤ ≤

∫
∫

 (2.61) 

where the initial height is treated as a random variable X. And the upper limit xmm in 

(2.61) is chosen to be the smaller one between the maximum hopping height xm and the 

root of the equation I – qEax + 3.6/x = 0, i.e., 

 2 2

3
min , 1 1 14.4

2 2
t a

mm t
f g a a

kT qEI
x r

n E qE Iα

  
= + +      

 (2.62) 

Let PE
-1 be the inverse of function PE, X can be generated through a random variable U 

which is uniformly distributed in (0, 1), by 

 1( )EX P U−=  (2.63) 

Actually, since PE
-1 is not available analytically, X is obtained by feeding U to 

and numerically solving 

 ( )EP X U=  (2.64) 
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This procedure is illustrated in Figure 2-12 for an emitter with ra  = 0.1µm, Ea = 

4.4V/Å and at Tt = 78°K. 

The initial kinetic energy of each ion is  taken to be 3kTt/2 and the thermal energy 

spread is negligible (0.04eV at 300°K) compared with the spread in the ionization zone. 

We assume that ions are emitted in random directions due to their thermal 

motions. The emission direction is thus taken to be uniform in (-π/2, π/2) with respect to 

the normal direction to the surface. 

The initial polar angle about the emitter axis is generated from the surface current 

density distribution J(θ). The cdf function for the random polar angle Θ is 

 ( )
0

2

0
0

2

0

( ) sin
(0 )      0

( ) sin

J u r u du
P

J u r u du

θ

θθ θ θΘ

⋅ ⋅
< Θ < = < <

⋅ ⋅

∫
∫

 (2.65) 

where θ0 is the maximum polar angle of the surface region to be imaged. 

If we assume that J(θ) is uniform within a small region around the emitter apex, 

(2.65) becomes 

 
0

1 cos
(0 )

1 cos
P

θ
θ

θΘ

−
< Θ < =

−
 (2.66) 

Accordingly, 

 ( )( )1
0cos 1 1 cosU θ−Θ = − −  (2.67) 
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Figure 2-12 cdf function of the energy distribution at Ea = 4.4V/Å, Tt = 78°K, rt = 0.1µm 
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2.3.3.3 Equation Of Motion 

The equation of motion of ions in the meridianal plane, when expressed in the 

cylindrical coordinates, is given by 

 
i

i z

r E

z E

ρη

η

=

=

&&
&&

 (2.68) 

where 

 
sin cos

cos sin

r

z r

E E E

E E E

ρ θ

θ

θ θ

θ θ

= +

= −
 (2.69) 

and Er, Eθ are given in (2.4). 

2.3.3.4 Simulation And Results 

For direct ray tracing, we assume that ion emission is limited to the portion of 

emitter surface around the apex with half angle θ0. For the following calculation, θ0 is 

chosen to be ≤ 10°. Note that the contribution of ions from high polar angle region is not 

significant for beam apertures up to several tens of milli-steradian, anyway, which is 

demonstrated by the simulation. A certain number N random initial polar angles are 

generated according to (2.67). With each initial angle, 10 ions are created whose initial 

heights are generated randomly according to (2.61)–(2.63) and whose emission directions 

are picked randomly in (-π/2, π /2) with respect to the local surface normal direction. So 

altogether 10N ions are processed. The initial kinetic energy of each ion is taken to be 

3kTt/2. 
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The current distribution at the virtual image plane is first examined. Figure 2-13 

shows the current profile for the case of ra = 0.1µm, Tt = 78°K and beam aperture of 1msr 

(setting θ0 = 5°, 172,255 out of 919,419 ions calculated are found to pass through this 

aperture)— again, it is found that the variation in rs is small for electric field in the range 

2V/Å–4V/Å, and that it is virtually independent of the detailed emitter geometry. 

The corresponding current density distribution is shown in Figure  2-14. One can 

see that J(r) is highly non-Gaussian— it is fairly flat over a wide region, followed by a 

sharp drop. The ripple in the curve is due to the noise in the data, as a consequence of the 

stochastic nature of ion generation. Also note that the maximum is not on the axis (r = 0) 

but located slightly outward.  

With the current density distribution, we can also calculate its spatial frequency 

response (note that J(r) is an even function of r) 

 0

0

( )cos(2 )
( )

( )

R

R

J r rf dr
F f

J r dr

π
= ∫

∫
 (2.70) 

where F(f) is the (normalized) amplitude of the spatial frequency response, R denotes the 

physical radius of the image. 

For the distribution in Figure 2-14, F(f) is plotted in Figure 2-15. The frequency 

f0.1 at which the relative amplitude drops to 0.1 is about 0.27nm-1 , corresponding to about 

3.7nm, which may be taken as the source size by Rayleigh’s criterion[77]. 

Figure 2-16 shows the comparison of the physical radius of the image as obtained 

from the direct ray tracing with rs by A.I.Q, as a check on the consistency of these two 

methods. Parameters used in the calculation are θ0 = 10° and N = 20000. 
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It can be seen that at apertures below 0.8msr, A.I.Q can be applied fairly well 

with max. relative error of about 30%, which is consistent with the criterion in eqn.(2.52). 

For apertures larger than 1msr, A.I.Q largely overestimates the source size. The source 

size by direct ray tracing changes with the aperture almost (or slightly less than) linearly, 

which is slower than the quadratic changing rate predicted by A.I.Q. 
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Figure 2-13 Current profile at the Gaussian image plane 
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Figure 2-14 Current density distribution at the Gaussian image plane  
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Figure 2-15 Spatial frequency response at the Gaussian image position 
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Figure 2-16 Comparison of the virtua l source size obtained by direct ray tracing with that 

from A.I.Q 
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2.4 Summary 

In this chapter, the GFIS source optical properties are studied based on the SOC 

model which well represents the thermally annealed emitter geometry. 

The Gaussian optical properties— linear and angular magnifications— are computed 

by numerically solving the paraxial ray equations through the Bulirsch-Stoer 

extrapolation method, which has the advantage of higher precision and less intermediate 

steps than the well-known Runge-Kutta method. 

In the emission diode region, the dominating aberrations at small apertures are 

spherical and chromatic aberrations. Commonly used aberration integrals either involve 

4th order derivative of the potential for spherical aberration and hence are not conve nient 

for numerical calculation or assume that the aperture plane is in field-free region, which 

is not satisfied in the diode region. This thesis presents two alternative spherical and 

chromatic aberration integrals. They are shown to reduce to the usual forms under special 

circumstance. In addition, the derived spherical aberration involves in the integrand only 

up to the 2nd order derivative of the potential, which thus eases numerical calculation of 

potential distribution for general emitter topography. One noticeable feature of field 

ionization is that the critical distance, though very small in magnitude, plays an important 

role in determining the aberration coefficients, so that one can not simply borrow the 

results of field electron emission in deriving source optical properties. 

Two methods to evaluate the GFIS virtual source size are explored. The first one 

is by the algorithm of A.I.Q, which is supposed to work at small apertures and emitter 

radii. The result shows that the source size is largely determined by the emitter radii for 

given emitter to electrode distance, and that it is roughly independent of the field strength 
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as well as the detailed emitter geometry within a fairly wide range. The dependence of rs 

on the tip temperature shows that rs increases as the tip temperature decreases, which 

demonstrates that the GFIS is dominated by spherical aberration (except for very small 

emitters zf/ra ~ 105). 

The second method is through direct ray tracing whereby the ions are all 

generated within an extremely narrow region beyond the critical distance above the 

emitter surface. By randomly generating initial conditions according to appropriate 

distribution functions and solving the equation of motion, the individual ion trajectory 

can be traced and the projected coordinates at the image plane can be calculated. The 

simulation result shows that the current density distribution at the Gaussian image plane 

is fairly flat over a wide range, followed by a sharp drop. Moreover, it is seen that A.I.Q 

is approximately valid at small apertures, while at large apertures, it predicts too fast the 

growth of source size with the aperture. 
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Chapter 3 Emission Current In GFIS 

We next proceed to an analysis of the ion generation process in GFIS, focusing on 

the gas supply mechanism under various tip conditions. It is shown that a relatively 

simple model solely based on the gas supply mechanism, regardless of the complication 

due to the dynamical behavior of gas molecules and gas–surface interactions, would 

come up with emission currents in reasonable agreement with experiments. And this 

model gives better results than previous attempts to explain GFIS behavior[75, 76]. 

3.1 Gas Supply In GFIS 

Field ionization depends strongly on the electric field. On one hand, the 

penetration probability of the tunneling electron into the emitter depends exponentially 

on the field strength, which, in the form derived by Müller[74], is 

 1/2( ) exp 0.455 7.6c
ID x I E

E
φ− = − − 

 
 (3.1) 

where I and φ are in eV and E is in V/Å. Due to the strong curvature of the emitter apex, 

the ionization of gas molecules is confined to a small region around the emitter apex, i.e. 

the ionization zone, where virtually all ions are generated. 

On the other hand, measurement of the emission current demonstrated that the 

supply functionthe total number of particles per unit surface per unit time hitting on the 

emitterin GFIS is larger by a factor of ~10 than that in the field-free case[2]. The 

reason is that in an inhomogeneous electric field as that around the tip, the gas molecules 

are attracted toward the emitter apex (where the field is the largest) due to the dipole 

force that originates from the dipole moment of the molecule intrinsic or induced by the 
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strong field. Study of the current -voltage characteristic of GFIS exposes two distinctive 

regimes[ 89]. In the field-limited regime where the field is relatively low, the gas 

distribution in the ionization zone is approximately in equilibrium and the emission 

current rises steeply with the electric field. As the field becomes so high that nearly all 

molecules into the ionization zone are ionized before they could escape the current is 

limited by the gas supply into the ionization zone, which rises mildly with the field.  

Southon[90] calculated the supply functions for spherical and cylindrical emitters, 

whose results are given below 

spherical emitter: 
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 (3.2) 

cylindrical emitter: 
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 (3.3) 

where Pg and Tg are the gas pressure and temperature, respectively. 

A real emitter, however, has a conical shank with an approximately spherical cap 

at the end. As a result, gas molecules can be supplied both from space and along the 

shank[91, 92], and the latter dominates when operating at cryogenic temperatures[93] or 
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in supply-limited regime. To demonstrate this last point, we examine the emission current 

as limited by the supply function for a spherical emitter 

 24 ai r qYπ≈  (3.4) 

substituting eqn.(3.2) into (3.4), and taking Ar as an example with ra = 0.1µm, Ea = 

2.2V/Å (best image field for Ar), Pg = 5×10-3torr, Tg = 300°K, we will get i ≈ 1.8×10-9A 

which is lower by a factor of 30~40 than the experimental result[13]. Considering that 

eqn.(3.4) is an upper limit, this indicates that in the imaging region, the supply from 

shank dominates in the supply function. 

Under collisions with the emitter a large part of impinging gas molecules lose 

their energies and are trapped in the vicinity of the emitter, since their kinetic energies are 

less than the local polarization potential energy αgE2/2. When the field is relatively low 

so that ionization is negligible, the gas distribution is in equilibrium and the gas density 

increases along the shank toward the emitter apex due to the dipole attraction effect. As 

the field increases to where the ionization becomes important, the gas deviates from the 

equilibrium distribution, mainly in the ionization zone, until the source enters supply 

limited regime and the gas density in the ionization zone is reduced to a magnitude 

comparable to that in an area remote from the tip[75]. Meanwhile, the region along the 

shank beyond the ionization zone does not suffer from as severe an ionization loss, due to 

the strong dependence of ionization rate on the field strength, and the gas may keep at 

quasi-equilibrium through particle-surface interactions with the emitter. Under the dipole 

attraction force, the flow of these gas molecules constitutes the major part of gas supply 

into the ionization zone (Figure 3-1). 
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Figure 3-1 Schematic diagram of gas supply to the ionization zone 



96 

Consider a molecule moving with velocity v in the ionization zone.  If v is very 

large such that the displacement between consecutive collisions with the emitter surface 

∆z >> ra, then this molecule is not likely to be one of the trapped molecules (with low 

kinetic energies) drifting slowly along the shank. In other words, those high velocity 

molecules in the ionization zone are essentially fed there from free space through direct 

dipole attraction. On the other hand, a molecule with low velocity is much more likely 

supplied via the shank than from free space, because the latter would require rather 

precise initial conditions due to the small area of the ionization zone. 

Applying the above argument, we could then estimate the drift flux along the 

shank into the ionization zone. 

Note that at the edge of the ionization zone, those low velocity molecules are 

located within the height of ra above the emitter surface, the flux of these molecules into 

the ionization zone is the n given by 

 
2

222
g

t

E
kT

sh a d gZ r n e
α

π υ= ⋅ ⋅  (3.5) 

where ng is the gas density in the remote area, E is the local electric field at the edge of 

the ionization zone and υd̄  is the mean drift velocity of molecules along the shank. In 

deriving (3.5), we have assumed complete thermal accommodation, i.e. the gas 

distribution along the shank beyond the ionization zone is in equilibrium with the emitter. 

To see how υd̄  depends on the exterior half angle of the shank, we assume a 

conical emitter shank structure(Figure 3-2). 
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Figure 3-2 Conical emitter shank with exterior half angle θ0 

By choosing appropriate boundary conditions, the potential of a conical emitter 

with exterior half angle θ0 can be expressed as 

 ( , ) (cos )n
nV r Ar Pθ θ= − ⋅  (3.6) 

where A > 0 is a constant determined by the boundary condition. The cone index n 

satisfies Pn(cosθ0) = 0. 

The dipole force on the molecule is 
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 (3.7) 

By expanding the potential (3.6) into the polynomial of ∆θ = θ-θ0 and substituting in 

(3.7), keeping only the linear terms, we have  
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The equation of motion in the X-Y plane is: 
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Let x = x0+∆x, r = r0+∆r, noting that r0 = x0 and assuming ∆x << x0 , y << x0 and ∆θ << 1, 

(3.9) can be simplified as 
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 (3.10) 

The lowest order approximation can be obtained by keeping only the constant terms in 

(3.10), which yields 
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where υ0 is the initial velocity, ϕ is the angle between υ0 and the normal direction to the 

shank. The flight time between two consecutive collisions is determined by setting y(t)=0 
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The corresponding drift velocity for this particular molecule (υ0, ϕ) is defined as 
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To get the mean drift velocity, assuming uniform angular M-B distribution for the 

rebound molecules, 
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we then get 
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Note that υd̄  is negative (cosθ0 < 0), meaning the molecules are drifting towards the 

emitter apex.  Also note that the ratio of υd̄  with the mean thermal velocity υth is 
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By substituting (3.15) into (3.5), we will get the drift flux for a conical shank as 
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For common emitters, θ0 ~ 170° (n ≈ 0.2) and 
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For He gas, let Pg = 10-3torr, rt = 0.1um, Tt = 78K and E = 300MV/cm, we get Zsh ≈ 

3.3×1012sec-1, corresponding to an emission current of 0.5uA. 

3.2 Emission Current Calculation For SOC GFIS 

We next calculate the emission current of GFIS for SOC emitters. The following 

assumptions are made. 

• The tip temperature is not so low as to make a liquid film of the imaging gas 

molecules to form on the emitter surface. (For He gas, it requires Tt = 4°K) 

• In the supply-limited regime, the gas distribution along the shank beyond the 

ionization zone is in equilibrium with the emitter because of the exponential 

dependence of the ionization rate on field strength. 

• Imaging gas and emitter are at the same temperature. 
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The second assumption is the most critical and its validity implies that the drift 

velocity υd̄  << the thermal velocity υth. From (3.16), we can see that for n ≈ 0.2, υd̄  is 

only about 7% of υth. 

3.2.1 Gas Flux Along The Emitter Shank 

The equation of motion of gas molecules in the meridianal plane under the dipole 

attraction force is 
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where (r, θ) is the polar coordinate with the origin at the SOC core center. Defining z1 ≡ 

r/ra, z2 ≡ dz1/dt, z3 ≡ θ, z4 ≡ dz3/dt and substituting the SOC field (2.4), eqn.(3.19) can be 

transformed into a set of first -order differential equations 
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where 
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and the initial conditions are (Figure 3-3) 
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 (3.21) 

where t = 0 refers to the moment a rebound molecule just leaves the emitter surface. 



103 

E r

E θ

υ0

E

ϕ

θ

E: local field
Er: r component
Eθ: angular component
υ0 : initial velocity

r

 

Figure 3-3 Schematic diagram of polar coordinates and initial conditions in SOC model 

In order to get the drift velocity, we will need to calculate the drift distance 

between two consecutive collisions, so that the evaluation of eqn.(3.20) must terminate 

when the molecule hits the surface again. By noting that the emitter is an equipotential 

surface, we see that during the flight time td, z1 and z2 must satisfy 

 ( ) ( )1 1 1
1 1 3cosn n n n n n

nz z P zγ γ γ γ− − − − − −− ⋅ ≥ −  (3.22) 

By solving eqn. (3.20) numerically subject to (3.22), we can get the axial drift 

velocity υd,z 

 ( ), 1 3 1 3( ) cos ( ) (0) cos (0)a
d z d d

d d

rz
z t z t z z

t t
υ

∆
≡ = ⋅ − ⋅  (3.23) 
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where ∆z denotes the axial displacement between two consecutive collisions with the 

emitter. 

Note that υd,z as obtained is a function of the molecule’s initial velocity and φ. 

Averaging υd,z over the distribution (3.14), we can get the mean axial drift velocity d,z?  

as 

 2
, ,02

1
( , ) x

d z d zd x e dx
π

π
υ φ υ φ

π
∞ −

−
= ⋅∫ ∫  (3.24) 

We then define the mean drift velocity dυ  along the shank as 
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 (3.25) 

where ρ′ is the local tangential (with respect to z) of the emitter surface. 

Next, we calculate the average hopping height hc of molecules. In doing so, 

eqn.(2.56) is used, i.e. the field distribution in the vicinity of the emitter is approximated 

by E(r) ∝ 
1

fnr
. The hopping height h(KE) of a molecule with kinetic energy KE at the 

surface is then given by 

 2
( ) t

f g

KEh KE r
n Eα

=  (3.26) 

where rt is the radius of curvature as given in eqn.(2.3). 

Averaging h(KE) over KE using the distribution (3.14) to yield 
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The gas flux along the shank is then given by 
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where χ = (r⋅sinθ) / ra ≈ 1 is determined by the position along the shank where the flux 

occurs. 

Eqn.(3.28) may be further modified by noting that only molecules with hopping 

heights greater than the critical distance xc can be ionized. The effective gas density is 

then given by 
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 (3.29) 

where KEc is the kinetic energy on the emitter surface of a gas molecule that has the 

maximum hopping height equal to xc, i.e. 

 f g
c

t

n EI
KE

q r

αφ−
= ⋅  (3.30) 

therefore we have 
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 (3.31) 

It should be pointed out that in deriving eqn.(3.28) and (3.29), the diffusion flux, 

due to the non-uniform gas distribution along the shank, has been neglected. In the supply 

limited regime, however, the diffusion flux— denoted as Zdi— is much smaller than the 

drift flux Zdr. Note that Zdi ∝ dn/dx and Zdr ∝ n, if no ionization occurred, we would have 

n = ngexp(αgE2/2kTt) and Zdi = Zdr. However, as mentioned before, in the supply-limited 

regime, due to strong ionization, the gas density in the ionization zone reduces so much 

that it becomes comparable to that in the remote area[75]. On the other hand, the gas 

density beyond the ionization zone is not affected as much due to the strong dependence 

of ionization rate on the field. Consequently, we expect that the real drift flux Zdr does not 

change much compared to the case without ionization. But the diffusion flux becomes 
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 (3.33) 

For He gas, taking Ea = 400MV/cm, E = 300V/cm and Tt = 100K, we find 
Zdi

Zdr
  ≈ 0.003. 
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3.2.2 Emission Current of GFIS 

At very low fields, the gas distribution in the ionization zone is approximately in 

equilibrium. By taking into account the variation of field in the ionization zone, the 

emission current is given by 
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0

( )
2 ( ) ( , )exp sin( )

2
cg g

c c
t t

P E
i q x r D x d

kT kT
θ α θ

π ν θ θ θ θ
 

= ∆   
 

∫  (3.34) 

where ∆xc ≈ 0.5Å is the half width of the ionization zone at low fields, ν is the orbital 

frequency of the tunneling electron and D(xc) is the penetration probability at the critical 

distance xc. The integration is done over the emitter surface up to an appropriate angle θc 

where ionization becomes negligible. 

At high fields, we need to consider the total gas supply Z into the ionization zone, 

which consists of two parts, one from the molecules directly attracted from space and the 

other from the flux along the shank, i.e. 

 sp shZ Z Z= +  (3.35) 

where Zsp = Ysp⋅Aion, Aion is the area of the ionization zone and Ysp is given by (3.2). 

The total emission current may then be obtained following Gomer’s 

procedure[94] 

 ( )i i
sp sh

d i d i

qk qk
i Z Z Z

k k k k
= = +

+ +
 (3.36) 

where kd and ki are respectively the diffusion and ionization rate constants in the 

ionization zone, given by 



108 

 

3 / 2

1 /2 2

5 /2 3 /2 1 / 2

1 / 2

4 2( )

( )exp
( )

t
d

f t g a

f g a c f g a
i c

t t t t

kT
k

n m r E

n E x q n E Ik D x
kTr I rkT q

α

α α φν
φ

=

∆  −≈ − ⋅ −  

 (3.37) 

Eqn.(3.36) is only valid when the ratio ki / (ki+kd), which represents the ionization 

probability, is close to unity since we have neglected gas diffusion. For the other extreme 

case where the ionization probability << 1, eqn.(3.34) should be used. 

Figure 3-4 plots the ionization probability ki / (ki+kd) vs. emitter apex field at 

different tip temperatures. It is seen that the curve shifts toward low field region as the tip 

temperature decreases, implying that the GFIS enters supply limited regime at lower 

fields when Tt is reduced. 



109 

 

Figure 3-4 Ionization probability 
ki

ki+kd
  vs. emitter apex field at different tip temperature 

(He gas, W tip, ra = 0.1µm) 
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3.3 Result 

The calculation is done for He gas and W emitter. The following parameters are 

chosen: Pg = 10-3torr, ra = 0.1µm. Moreover, set n = 0.16 (θ0 = 174.8°) and γ = 2.5 in the 

SOC model, and nf  is found to be 1.74.  

Figure 3-5 plots log(i) vs. log(Ea) of GFIS at 78°K. The ionization zone  boundary 

is chosen where the ionization probability is 0.5, corresponding to E = 2.8V/Å. The slope 

in the field-limited regime is about 30, and in the high field region it is about 4, which 

can be compared with the measured value 3–5[89]. 

Figure 3-6 shows the I-V curve at 300°K. Besides the fact that the total current 

drops dramatically compared with 78°K, we can also see that there is no well-defined 

transition region in this case, which agrees with the results obtained by Tsong and 

Müller[91]. 

The ratio i(78°K)/i(300°K) is plotted in Figure 6, which shows that both the ratio 

and the slope (absolute value) of the curve decrease as the field increases in the region 

near the best imaging field, and that at 78°K the emission current is 1–2 order of 

magnitudes higher than at 300°K. 

Figure 3-8 shows the comparison of the calculated I-V characteristic for H2–Ir 

GFIS (Tt = 300°K, Pg = 10-3torr and ra = 0.1µm) with the experimental data by Orloff and 

Swanson[95]. The experimental data has been recalibrated assuming that the total current 

is emitted within a half aperture angle of 20°–30°, corresponding to a solid angle ~ 0.5sr; 

the experimental data were taken using a detector with a 9msr solid angle. The agreement 

is fairly satisfactory. 
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Figure 3-5 I-V characteristic of GFIS at 78°K 
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Figure 3-6 I-V characteristic at 300°K 



113 

4.0 4.5 5.0 5.5

50

60

70

80

90

100

110

o

i (
78

o K
)/

i (
30

0o K
)

Ea (V/A)
 

Figure 3-7 Ratio of currents at 78°K and 300°K 
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Figure 3-8 Comparison of the experimental[95] and calculated I-V characteristic of H2–Ir 

GFIS at 300°K (ra is taken to be 0.1µm). Experimental data were scaled to take into 

account the small solid angle of the detector (see text). 
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Chapter 4 Conclusion 

This thesis studies the optical properties and current emission process in the diode 

region of GFIS. 

The Gaussian optical properties are derived by solving the paraxial ray equation 

and the spherical and chromatic aberrations are evaluated through two alternative 

integrals which are appropriate for the case where the aperture is located in a field -

present region (such as the diode region). It is found that the existence of critical distance 

plays an important role in determining the aberration coefficients, in contrast with the 

case of field emission cathode. 

The virtual source size is derived in two alternative ways. The first one is by the 

well-known algorithm of addition in quadrature, which is shown to be a well 

approximation at small apertures where higher order aberrations can be neglected. 

Alternatively, the source size can be evaluated through direct ray tracing, which is 

applicable to all but extremely small apertures where the diffraction effect sets in. The 

result shows that the source size is largely determined by the emitter radius and is 

virtually independent of the electric field and detailed emitter geometry. In addition, as 

the tip temperature decreases, the source size increases due to the fact that the GFIS is 

dominated by the spherical aberration. 

The supply mechanism is most important in understanding the current emission 

process. In GFIS, the gas material can be supplied in two ways, either directly from space 

or along the emitter shank. And the latter one dominates at high fields. This thesis 

presents a relatively simple model based on the gas drifting flux along the shank, 

irrespective of the detailed gas-surface interactions. Although a complete solution from 
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the first principle is absent, it is shown that the resulting I-V characteristic of He gas 

agrees reasonably well with the experiment. 

This thesis has dealt primarily with the physics of the gas field ionization source.  

We believe that this source should be re-considered for FIB applications and that the 

work done here will be useful for that purpose. From the system designer’s point of view, 

several factors are worth noting. The emission current depends in a complex way on the 

emitter area, electric field and temperature. One must note that as the electric field 

increases, the energy spread goes up (Figure 2-11). Moreover, charge -exchange reactions 

will set in and result in a longer beam tail at high field. Also, for gas species such as H2, 

the energy spread is much larger than that of singly charged ions due to the mixture of 

singly and doubly charged states. This means there must be a limit to the electric field 

and therefore to the current for a given emitter radius and temperature. 

As shown in Figure 3-7, the current decreases dramatically as the tip temperature 

increases, so that the GFIS should be operated at low, preferably cryogenic temperatures. 

This implies that the designer must worry about how to cool the emitter and gas to 

cryogenic temperature without introducing vibration. Vibration is important because with 

a “point source” emitter the de-magnification is usually not much (~ 0.5×), so vibration 

will be seen even at the few nanometer or few tens of nanometer levels. 

The emission current increases approximately linearly with the emitter area 

(eqn.(3.34) and (3.36)) for given electric field and tip temperature. The source aberrations 

and virtual source size, however, also increase with the emitter radius as shown in Figure 

2-8 (for He GFIS at beam-limiting aperture of 0.2msr and T = 78°K, the source size goes 

from 0.5nm to 4nm as the emitter radius increases from 0.1µm to 0.5µm). Besides, larger 



117 

emitter radius requires larger extraction voltage for a given apex field, so that there exists 

a trade-off between the available current vs. spot size of the ion beam under certain 

vacuum conditions. 
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