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Tobacco mosaic virus (TMV) is a model positive-strand RNA virus. TMV encodes 

two replicase proteins, both of which contain methyltransferase and helicase domains; 

the 183 kDa protein contains an additional RNA-dependent RNA polymerase 

domain. Using this virus, virus-host interactions important in the initial establishment 

of infection and formation of replicase complexes were investigated. Specifically, on 

the virus side, replicase proteins were examined for regions that may contribute to its 

localization to the endoplasmic reticulum (ER) during TMV infection. An ER 

localization domain was identified in a region between amino acids 599 and 701. 

Alanine substitutions were introduced into this region and examined for their effects 

on the virus. Several possible hypotheses are discussed as to how this domain may 

function during infection. 

 

Concerning the host, an interaction with a host protein, a Rab GDP Dissociation 

Inhibitor (Rab GDI), was examined. This interaction occurred with tomato and 



  

tobacco Rab GDIs as well as with the originally identified Arabidopsis thaliana Rab 

GDI (AtGDI2). Silencing of Rab GDI transcripts enhanced the number of infection 

sites in TMV:GFP-infected plants, but did not alter viral movement or overall 

accumulation, indicating a possible role in initial establishment of infection. Rab 

GDI-silenced Nicotiana benthamiana plants showed cellular morphologies similar to 

those of TMV-infected cells. Moreover, TMV infection results in Rab GDI proteins 

localizing to structures associated with viral replication. Taken together these data 

indicate a role for Rab GDI proteins in the initial establishment of infection. Two 

models of how Rab GDI proteins may contribute to TMV infection are discussed. 

 

These studies examine parts of the viral life cycle that are not very well understood, 

in particular the initiation and establishment of infection. Although vesicle trafficking 

has been shown to be important for several different pathogens, this is the first time 

that a Rab GDI protein has been identified as participating in viral replication. 

Understanding initiation of infection and susceptibility of a host to a pathogen are 

vital to elucidating pathogen-host interactions and developing disease resistance 

strategies. 
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Chapter 1: General Introduction 

The most exciting phrase to hear in science, the one that heralds the most discoveries, is 

not “Eureka!” but “That's funny...” – Isaac Asimov 

Rationale and significance 

Humans have been both fearing and using viruses since we developed agrarian lifestyles 

and became dependent on cultivated animals and plants for survival. Understanding of 

viruses and other pathogens has become essential to our continued survival on a planet 

with decreasing arable land and an increasing human population. Interactions between a 

virus and its host determine whether a virus can establish an infection, whether the host is 

able to detect and defend against the virus, whether symptoms will develop, and what 

their severity will be. These interactions determine the life and death of the host and the 

future propagation of the virus. It is in the balance of the virus infecting the cell and 

usurping but not killing the host that we learn more about the virus and the host alike. 

 

There are approximately 450 species of plant viruses that cause symptoms, which can 

range from the highly-valued petal colorations of Tulip breaking virus to the devastating 

outbreaks of cassava mosaic geminiviruses, which caused the loss of 19 million tons of 

cassava at a cost of $1.9 million in the 1990s [1]. (+)-strand RNA viruses are the largest 

subgroup, making up about 75% of all plant viruses. 

 

The goal of this study is to use a model virus, Tobacco mosaic virus (TMV), to examine 

interactions between a virus and its host that are important in establishing and 
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maintaining an infection. Studies focus on developing an understanding of how the 

replicase proteins interact with the viral host—in localization, host cell membrane 

rearrangements, and alterations to host cell functions. Domains within the replicase 

proteins responsible for localization during infection are identified and shown to function 

outside the context of the virus. Furthermore, changes to the host cell’s endomembrane 

system during infection are established. An interaction with an essential host protein, a 

Rab GDP Dissociation Inhibitor, is characterized and shown to be an essential part of 

initial establishment of viral infection. Results from these studies should better elucidate 

mechanisms of establishing and maintaining an efficient infection in a host, in addition to 

examining the role of membrane biology in infection, which is an emerging field in virus 

biology. 

Tobacco mosaic virus 

TMV is a model (+)-strand RNA virus that encodes two replicase proteins (126 kDa and 

183 kDa) as well as a coat protein and a movement protein [2, 3]. TMV infection can 

result in stunting, leaf curling, necrosis, chlorosis, ringspots, yellowing, and plant death. 

TMV infection may cause severe crop losses in species such as Lycopersicon esculentum 

(tomato) and Nicotiana tabacum (tobacco), causing significant problems for farmers and 

greenhouse growers. As with many replicase proteins, the TMV 126 kDa and 183 kDa 

proteins have methyltransferase, helicase, and RNA binding activities. The 183 kDa 

protein contains an extra RNA-dependent RNA-polymerase domain and is produced from 

a read-through of an amber stop codon ([4]; Figure 1).



MT      IR     HEL

MT      IR     HEL   RDRP

m7G 

MP

CP

126 kDa replicase

183 kDa replicase

Subgenomic RNA 1

Subgenomic RNA 2

30 kDa movement 
protein

17 kDa coat protein

Figure 1. Genome organization of TMV. TMV is a (+)-strand RNA virus that encodes at least 

four proteins.  The genome has a 5’ methyl cap and a 3’ tRNA-like end.  The two replicase 

proteins are translated first from genomic RNA and both contain methyltransferase (MT), 

helicase (HEL), and an intervening region (IR).  The 183 kDa protein contains an additional 

RNA-dependent RNA-polymerase domain (RDRP) which is produced from the readthough of 

an amber stop codon (UAG).  This readthrough occurs about 10% of the time and is influenced 

by upstream and downstream sequences [5, 6].  The movement and coat proteins are translated 

later in infection from subgenomic RNAs and share the same 3’ tRNA-like UTR with the 

genomic RNA.  

amber stop codon

3
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Although these activities have been demonstrated in vitro, new research suggests that 

these proteins may have a greater role in the viral life cycle, such as in viral movement 

and in suppressing host defense mechanisms [7, 8]. 

Viral life cycle  

In addition to TMV’s four known proteins, there are two other predicted open reading 

frames (ORFs) that may encode a 54 kDa protein and a 4.8 kDa protein, although these 

putative proteins have never been found in infected tissue [9, 10]. The RNA has a 5’ 

methyl cap and a 3’ tRNA-like end. The virion is a rigid, rod-like structure 300nm x 

18nm in size, with 2130 coat protein subunits surrounding one genomic RNA molecule 

[11]. The virus enters the host cell via mechanical wounding (Figure 2) [12]. Once inside 

the cell, the change in pH and Ca2+ concentration causes the coat protein subunits to 

begin to disassociate [13]. Free ribosomes in the cytoplasm of the cell attach to the 5’ 

untranslated region (UTR) of the viral RNA and undergo cotranslational disassembly, in 

which translation of the RNA facilitates disassociation of the coat protein from the RNA 

[14, 15]. 

 

The first proteins made are the replicase proteins. The 126 kDa protein is produced in 

tenfold greater amounts than the 183 kDa protein within the cell, due to the leaky amber 

stop codon [5]. (+)-strand RNA is transcribed to (-)-strand RNA and, from the (-) strand, 

genomic RNA and subgenomic (+)-strand RNA are produced. It is unknown whether 

negative-strand synthesis occurs in the cytoplasm of the cell or in other replication 

structures, possibly in association with biological membranes. The  
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Figure 2. The TMV life cycle. Adapted from [16]. Tobacco mosaic virus enters a host cell 

through mechanical wounding (1) Wounding of the plant cell allows for entry of TMV virions. 

(2) After entering the cell, the change in pH and calcium ion concentration causes the coat protein 

subunits to repel each other and exposes the 5’ end of the genomic RNA. Ribosomes bind to the 

5’ end and displace the coat protein subunits via a process termed cotranslational disassembly. (3) 

Replicase proteins are translated from genomic RNA. (4) Replicase proteins transcribe (-)-strand 

RNA from genomic RNA, possibly in the cytoplasm. (5) Viral (-)-strand RNA and replicase 

proteins form replication complexes that are most likely associated with the host cell’s 

endoplasmic reticulum. The model shown here, based on work by Paul Alhquist’s group on 

Brome mosaic virus, depicts replicase complexes forming invaginations in the ER [17]. Positive-

strand RNA, both genomic and subgenomic, would be transcribed and released into the 

cytoplasm. However, the exact mechanism of the formation of replicase complexes and their 

association with the ER is unknown. (6) Coat and movement proteins are translated from those 

subgenomic mRNAs in the cytoplasm. (7) Viral RNA and the protein complex moves cell-to-cell 

via cytoskeletal elements through the plasmodesmata. The movement protein allows for transfer 

of viral RNA and proteins through the plasmodesmata. (8) The viral RNA and coat protein 

assemble into mature virions. (9) The coat protein is required for long-distance movement 

through the phloem, where virions travel with the photosynthate to roots and developing 

meristematic tissue. 
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subgenomic RNA leads to production of the movement protein and the coat protein [18]. 

(-)-strand synthesis ceases six to eight hours post-inoculation (hpi) in tobacco protoplasts 

while (+)-strand synthesis continues for 16-18 hpi, suggesting that multiple (+)-strand 

RNAs are transcribed from one (-)-strand RNA [19]. 

 

The movement protein is required for cell-to-cell movement while the coat protein is 

required for long-distance movement through the plant phloem [20]. How the virus enters 

the phloem from companion cells is not well understood. After the virus enters the plant 

phloem, it travels as virions with the photosynthate to the newly developing meristematic 

tissue. At the cellular level, TMV replication occurs in close association with viroplasms 

in the cytoplasm. Both replicase proteins can be found in these viroplasms, as well as 

polyribosomes, tubule-like structures and endoplasmic reticulum (ER)-derived 

membranes [21, 22]. 

 

Movement protein 

The movement protein (MP) is one of the most studied proteins of TMV and has been 

exploited to understand basic cellular mechanisms involved in cell-to-cell communication 

[23]. The MP is produced from its own subgenomic RNA and is produced later in 

infection than the replicase proteins. It is not required for replication, but is essential for 

virus spread, and has long been thought to be a key protein in localization and movement 

of viral RNA [23]. It is an integral membrane protein. The N- and C-terminal ends of the 

protein protrude from the same side of the membrane, presumably into the cytoplasm, but 

this has not been directly demonstrated. Two hydrophobic domains and 70 amino acids 
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protrude into the other side of the membrane [23, 24]. There is evidence that the C-

terminal portions of adjacent MPs can associate with each other and dimerize into a 

structure that is now resistant to trypsin digestion [24]. This conformation leaves the N-

terminal region free to associate with other proteins or viral RNA [25]. Which membrane 

the MP may be associating with has not been yet been shown, but may possibly be the 

ER based on localization of replication complexes [26]. 

 

During TMV infection, the MP can be seen in several areas in the cell, depending on the 

time course of the infection. At early stages of infection (4-6 hpi), the MP and viral RNA 

colocalize around the host cell’s nucleus and in small aggregates near the plasma 

membrane. Later in infection, the MP can be seen associated with ER strands then large 

ER-derived aggregates [26]. Based on morphological changes to the ER and work done 

on another member of the alphavirus superfamily (Brome mosaic virus; BMV) the ER 

has long been accepted at the site of replication for TMV [21, 22, 27]. Interestingly, late 

in infection, the MP is no longer seen associated with ER-derived aggregates, but more 

predominantly with small aggregates in the cell membrane and cell wall which are 

indicative of plasmodesmata [26]. 

 

During infection, the MP has been shown to be phosphorylated and ubiquitinated [23, 

28]. What roles these modifications play in viral infection remains unclear. In the 

presence of MP, TMV RNA forms linear strands, possibly forcing the viral RNA into a 

form that allows it to travel more easily in the plasmodesmata [29]. During infection, the 

TMV MP can associate with microtubules [30, 31] and viral RNA [32], lending support 
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to the idea that the MP may play an important role in the distribution of viral RNA within 

a cell and within a host. Additionally, BY-2 protoplasts (made from BY-2 tobacco 

suspension cells) late in TMV infection form finger-like projections from the plasma 

membrane that contain both viral RNA and MP, possibly indicating a role of MP and 

microtubules in cell-to-cell transport [26]. 

 

The MP of TMV has been shown to interact with two other host proteins, a resident cell 

wall protein, pectin methylesterase, and the Ca2+ signaling molecule, calreticulin [33, 34]. 

When pectin methylesterase expression was reduced, systemic TMV movement was 

severely delayed, indicating a possible role in viral long distance movement through the 

phloem [35]. Calreticulin was localized to plasmodesmata and disrupted both TMV MP 

localization and TMV cell-to-cell movement in over-expression transgenic plants, 

indicating a possible role in MP plasmodesmatal localization and TMV infection [34]. 

 

One of the interesting and most exploited aspects of the TMV MP is its ability to 

associate with plasmodesmata. In both TMV infection and MP-GFP-expressing 

transgenic Nicotiana benthamiana plants, the MP can be seen associated with 

plasmodesmata. In the presence of the MP, the size exclusion limit (SEL) as tested by 

microinjected dye, was increased 10-15-fold [36]. Interestingly, when this same 

experiment was repeated using a less harsh method of microinjection—ionophoresis—

instead of increasing the SEL of cells, it decreased it [37]. The exact method of viral 

RNA and protein trafficking through the plasmodesmata and the nature of possible 

alterations to the plasmodesmata remain topics of active investigation. 
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Coat protein 

The coat protein (CP) of TMV is also produced from a subgenomic RNA and expressed 

after the replicase proteins. The CP is not required for replication [38] or cell-to-cell 

spread of the virus, but is required for long-distance movement through the phloem, and 

helps to protect mature virions in the environment [11, 39]. TMV virions are extremely 

stable and have been known to persist in dead plants in the soil, in contaminated seeds, 

and even in infected tobacco leaves in cigars and cigarettes for years [40]. 

 

There are approximately 2130 CP subunits per virion, which assemble with both C- and 

N-termini exposed to the outside of the virion, while an interior channel is formed around 

viral RNA. In the host cell, the CP exists as several aggregates—a 20S form, a 4S form, 

and smaller aggregates of monomers, dimers, and trimers. There has been some 

controversy over the form of the 20S aggregate, as to whether it is a flat disk or in a 

helical form [11, 41]. During virion assembly, the RNA origin of assembly, near the 3’ 

end, associates with the 20S aggregate and initiates assembly [42]. Once bound to the 

RNA, the 20S aggregate has been shown to be in the helix form, in what has been termed 

a lock washer formation [41, 43]. The virion assembles in both the 3’ and 5’ direction; 

assembly in the 5’ direction is rapid and consists of subsequent additions of 20S 

aggregates, while assembly in the 3’ direction is much slower and is thought to include 

incorporation of smaller CP aggregates [42]. 

 

Disassembly of the virion is triggered by both a change in Ca2+ concentration and a 

change in pH. Between adjacent CP subunits on the virion, negatively charged 
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carboxylate groups repulse each other in the absence of positively-charged ions [44, 45]. 

These interactions are stabilized by Ca2+ ions and protons outside of the cell, but which 

are sequestered out of the cytoplasm in a host cell. The absence of these ions causes the 

subunits to repulse each other, but not sufficiently to disassemble the virion. Rather, the 

weakest interaction with the viral RNA is at the 5’ RNA end and, during disassembly, 

this end becomes exposed to free ribosomes in the cytoplasm. The ribosomes bind and as 

they progress along the RNA, they push off the CP subunits. This process has been called 

cotranslational disassembly [13]. It has also been suggested that once the replicase 

proteins, the first to be translated, are present, they bind and assist in disassembly in the 

3’ to 5’ direction [15]. 

 

During the late 1980’s a phenomenon known as coat protein-mediated resistance (CP-

MR) was discovered. Tobacco plants stably transformed with the TMV CP were resistant 

to subsequent TMV infection [46]. Work focused on whether the mechanism was RNA- 

or protein-mediated. Earlier work from Jim Culver’s group and recent work from Roger 

Beachy’s group has shown a correlation between the ability of the CP to assemble into 

virions independent of RNA binding and the ability to protect against TMV infection [47-

49]. Based on mutation studies, the more able the CP is in assembling into virions, the 

greater the cross-protection becomes. Asurmendi et al. suggest that the mechanism of CP-

MR may be in creating such an excess of CP that can bind TMV RNA that disassembly 

becomes energetically unfavorable [48]. 
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During infection, the CP alters the formation of viral replication complexes, both in their 

composition and in their size during infection [50]. While CP is not required for cell-to-

cell movement, it contributes to it and is involved in symptom development [38]. Studies 

have shown that CP accumulation in chloroplasts correlates with chlorotic symptoms 

[51]. 

Replicase proteins 

The replicase proteins are the first viral proteins translated during infection and are multi-

domain, multi-function proteins [11]. They contain regions for methyltransferase and 

helicase activities; only the 183 kDa protein contains an extra RNA-dependent RNA-

polymerase domain. Both proteins display methyltransferase-derived 

guanylyltransferase-like activity that results in the capping of viral RNA. RNA 

polymerase activities have been shown from purified replication complexes that are 

template-dependent and template-specific [52]. 

 

Viral helicases have been divided into three superfamilies (SFs) based on seven 

conserved motifs (I, Ia, II, III, IV, V, VI). The TMV helicase belongs to helicase SF1, 

which is also known as the alphavirus-like supergroup [53, 54]. SF1 helicases contain all 

but the Ia and IV domains. Based on several mutational studies and x-ray 

crystallography, all seven helicase domains are involved to varying degrees in ATP 

binding and hydrolysis. The first two motifs, I and II are involved in NTP-binding and 

Mg+ ion chelation [53, 55]. Motifs Ia and III are the least characterized and have not been 

assigned a potential function. Motif V has been shown to have nucleic acid binding 

activity [55] and motif VI has been shown to have ATPase activity [53]. The TMV 
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helicase domain has been shown to unwind duplexed RNA and displays NTPase activity 

as well as RNA binding activity in vitro [56]. The helicase domain probably acts in two 

different steps of replication: the first is to unwind RNA duplexes that may form during 

RNA synthesis; the second is to unwind RNA secondary structure on (-)-strand that may 

inhibit (+)-RNA synthesis [54]. 

 

Both replicase proteins have been shown to be required for efficient replication. When 

the amber stop codon in TMV is mutated to a hard stop codon, producing only the 126 

kDa protein, the virus is unable to replicate. When the amber stop codon is mutated to a 

tyrosine codon, producing only the 183 kDa protein, the virus replicates to 20% of wild-

type levels with protein production reduced and delayed, indicating that the 126 kDa 

protein is required for efficient viral replication [57]. Since the 183 kDa protein is able to 

cap viral RNAs without the 126 kDa protein and has all three functional domains, it 

suggests that there may be additional roles for the 126 kDa protein other than replication 

of genomic RNA. 

 

The 126 kDa protein is produced in tenfold excess over the 183 kDa protein, but in 

replication complex purification, the two proteins are found in equal proportions [58]. 

Recent work has indicated that the replicase proteins may assemble into large-molecular-

weight complexes such as hexamers in vitro, but it is unknown how replicase complexes 

assemble in vivo [56]. It is also unknown why the 126 kDa protein is produced in such 

excess compared to the 183 kDa protein, since some viruses, such as Potato virus X 

(PVX), produce only one replicase protein, which is the equivalent of the 183 kDa 
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protein [59]. One possible explanation has been provided by work indicating that the 126 

kDa protein is a suppressor of gene silencing [8]. Recent work has shown that the 

replicase proteins can bind small RNA duplexes of about 19-25 nucleotides in size, which 

are typically produced as part of a host defense response against viral pathogens [60]. 

Putative proteins 

There are two putative ORFs that may encode a 54 kDa protein and a 4.8 kDa protein, 

although these putative proteins have never been seen in infected tissue [9, 10]. The 54 

kDa protein has a possible ORF in the readthrough portion of the replicase ORF and has 

been expressed in vivo. When this protein was expressed via transgenic Nicotiana 

tabacum plants, the transformed plants were resistant to TMV infection [10]. 

 

The ORF for the putative 4.8 kDa protein lies between the movement and coat protein 

ORFs. When the 4.8 kDa protein is expressed via either PVX or Tobacco rattle virus 

(TRV) expression vectors, it localizes to the plasmodesmata and seems to enhance 

virulence when later infected with wt TMV [9]. 

 

Untranslated regions (UTRs) 

The UTRs of the TMV genome and subgenomic RNAs have been shown to be essential 

in replication and translation of the virus; both UTRs have been shown to be independent 

translational enhancers. The UTRs both act in a similar way to host cell 3’ poly A tail and 

5’ methyl cap and provide template specificity for the replication complex [61]. 
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The 3’ terminus contains a tRNA-like structure that contains pseudoknots, unlike a true 

tRNA, and can be aminoacylated by histadine aminoacyl-tRNA synthetases and 

adenylated by tRNA nucleotidyltransferases. After aminoacylation, the tRNA-like end 

can bind elongation factors more efficiently [54]. Interestingly, in chimera experiments, it 

was shown that TMV could replicate RNA containing the 3’ terminal region of a closely 

related virus, BMV, albeit less efficiently, but BMV could not replicate RNAs with the 

TMV 3’ terminal region [62]. However, BMV could replicate RNAs with 3’ terminal 

regions from Cucumber mosaic virus (CMV). Taken together, these data suggest that 

replicase complexes may recognize general 3’ terminal structures, but there are other 

determinates of template specificity [54]. 

 

The 5’ terminus of TMV contains a 7-methylguanosine cap and several highly conserved 

CAA repeats that serve as translational enhancers [61]. Large deletions (nucleotides 9-47 

or 25-71) within this region result in replication reduced to below detectable levels. 

Additional deletions showed that only a deletion of nucleotides 2-8 was required to 

abolish replication [63]. The heat shock protein (HSP) HSP101 has been shown to 

interact with, and be required for, the 5’ UTR-mediated translational enhancement. 

Additionally, the eukaryotic initiation factor eIF4F was specifically required for 5’ UTR 

translational enhancement [61]. 

Host-protein interactions 

As with all (+)-strand RNA viruses, TMV requires host membranes to replicate. Other 

related viruses also utilize and cause significant changes in the host’s membranes. For 

example, another member of the Alphavirus superfamily, Semliki forest virus, requires 
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cholesterol in host membranes for infection [64]. BMV, another member of the 

Alphavirus superfamily, replicates on the ER, has been seen in small, spherical 

invaginations in the membrane, and is also sensitive to changes in cellular cholesterol 

content [65]. Purification and functional assays of the TMV replicase proteins have 

indicated that template-dependent transcription is much more efficient while in 

association with a membrane than not, indicating that host membranes are required for 

efficient replication [52]. TMV has been shown to associate with the host cell’s ER and 

replicate in close association with the organelle, but more work is needed to examine the 

structures that are formed [21, 66]. It has been suggested that viral movement occurs 

through intact replicase complexes that traffic together from cell-to-cell [67]. 

 

Host proteins have been shown in complex with TMV replicase proteins; one specific 

host protein found is the EF1-α protein [68]. EF1-α assists ribosomes in binding new 

aminoacyl tRNAs. Also, translation initiation factor eIF3 was shown to copurify with 

replicase complexes [69]. Interestingly, it has been shown that the 126 kDa replicase 

protein interacts with microfilaments, which may provide a mechanism of replication 

complex movement [70]. Another host protein, TOM1 (tobamovirus multiplication 

protein), was identified through a yeast two-hybrid interaction and has seven 

transmembrane domains, although its normal cellular function is unknown. When TOM1 

and the related protein Tom-3 (also identified in a similar screen) were knocked out, 

TMV was no longer able to replicate in the host to detectable levels [71]. TOM1 is 

thought to act as a membrane tether for the replicase complex. An auxin-responsive 

protein, PAP1/IAA26, was identified in another yeast two-hybrid screen and was shown 
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to interact with the 126/183 kDa helicase domain and modulate symptom development, 

but TMV was still able to replicate and move at a rate close to wild-type levels when the 

interaction was severely reduced [72]. Recent evidence suggests that the PAP1/IAA26 

degradation in infected older tissues may help to make the cells more active and a better 

host for the virus [73]. 

 

The helicase domain also interacts with the host protein, P58ipk (an inhibitor of dsRNA-

activated protein kinase), in Arabidopsis and Nicotiana benthamiana plants. P58ipk 

inhibits double-stranded RNA-mediated defense responses in animals, but does not 

appear to have this function in plants. Intriguingly, in P58ipk-silenced or knocked-down 

plants, TMV infection causes host plant death. This interaction appears to be a virulence 

factor that allows the virus to replicate without triggering host death in a wild-type 

infection [74]. 

 

Abbink et al. found that the replicase proteins interact with two other proteins: a 33 kDa 

component of the oxygen-evolving complex of photosystem II and a member of the AAA 

family (ATPases associated with various activities). The authors found that when they 

silenced the 33 kDa protein, it resulted in a ten fold increase in TMV accumulation, while 

silencing the AAA protein resulted in a two-fold reduction in TMV accumulation [75]. 

The function of these proteins during infection is not well understood, but CP 

accumulation in chloroplasts has been associated with chlorosis and symptom 

development during infection [11]. 
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The helicase domain has also been shown to be important in eliciting a defense response 

in tobacco. The region between nucleotides 2082 and 3418, which includes the helicase 

domain and upstream sequences, produces a 50 kDa protein (p50) that was shown to be 

the elicitor in TMV of N-gene-mediated defense response in tobacco [76]. The N-gene is 

a defense gene isolated from tobacco that elicits a strong hypersensitive type response to 

TMV infection. The hypersensitive reponse and other defense responses are discussed in 

greater detail in the following sections. A direct protein-protein interaction was found 

between the helicase domain and the N gene which was ATP-dependent, and work is 

continuing in other labs to identify proteins that interact with both the N gene and p50 

[77, 78]. 
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TMV-host interactions 

Viral protein Host protein Host protein function Citation 

126 kDa replicase eIF3 Translation initiation factor [69] 

126 kDa replicase EF1-α Translation elongation 

factor 

[68] 

Helicase domain; 

replicase proteins 

N gene Defense gene against 

TMV; elicits HR 

[76] 

Helicase domain; 

replicase proteins 

P58ipk Inhibitor of dsRNA-

activated protein kinase 

[74] 

126 kDa replicase Actin (microfilaments) Cytoskeleton [70] 

126 kDa replicase TOM1, TOM2a Unknown [79] 

126 kDa replicase PAP1/IAA26 Auxin responsive factor [72] 

126 kDa replicase; 

helicase 

33k subunit of 

oxygen-evolving 

complex 

Part of photosystem II; 

water-splitting enzyme 

[75] 

126 kDa replicase; 

helicase 

GenBank #AF26837 AAA ATPase [75] 

5’ UTR HSP101 Heat shock protein [61] 

Movement protein Microtubules Cytoskeleton [32] 

Movement protein Plasmodesmal-

associated protein 

kinase (PAPK) 

casein kinase I family [80] 

Movement protein Pectinmethylesterase Cell wall; plant growth and 

development 

[33] 

Table 1. Known proteins that interact with Tobacco mosaic virus. 
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Pathogens and vesicle trafficking 

Vesicle trafficking has increasingly become an area of active research for plant 

pathologist in the past several years. One of the first discoveries to spark more interest in 

vesicle trafficking was the finding that members of the superfamily of N-ethylmaleimide-

sensitive factor adaptor protein receptor (SNARE) polypeptides limit entry by powdery 

mildew in both monocots and dicots. Later work showed that syntaxin proteins, or t-

SNARES, are involved in disease resistance. The syntaxin proteins, AtSYP122 and 

AtSYP132, are phosphorylated in response to bacterial elicitors of host defense responses 

and have been implicated in exocytosis of a subset of pathogenesis-related (PR) defense 

proteins in N. benthamiana [81]. The syntaxin AtSYP121, when mutated, showed 

enhanced invasion by grass powdery mildew fungus, Bumeria graminis [82]. AtSNAP-

33, another syntaxin, was shown to increase in expression when infected with bacterial 

pathogens, Plectosporium tabacinum, Peronospora parasitica, and Pseudomonas 

syringae pv tomato. This up-regulation was simultaneous with increased expression of 

pathogenesis-related protein 1 (PR1) [83]. Also, the rice small GTPase, rgp1, conferred 

resistance to TMV when expressed in tobacco plants, and has been implicated in the 

Hypersensitive Response [84]. The groundnut rosette virus movement complex 

(composed of viral movement proteins, viral RNA, and possibly host and viral proteins) 

has been found to associate with a Rab-like protein, and Cauliflower mosaic virus 

movement protein interacts with a Rab acceptor homologue [85]. 

 

Vesicle trafficking has also been shown to be important in animal defense responses as 

well as plants; Arf1 GTPase, which is an essential GTPase in vesicle trafficking, has been 



 

 21 
 

shown to interact with polio proteins 3A and 3CD. Its abundance increases four fold 

during infection and becomes mostly membrane-bound [86]. For the enveloped viruses—

Human immunodeficiency virus type I, Ebola, Marburg, and measles—Rab 9 which is 

involved in Golgi trafficking, is essential for replication [87]. Interestingly, the 

intracellular pathogen, Legionella pneumophila, produces a protein, DrrA, which acts 

both as a Rab guanosine exchange factor (GEF) and Rab guanosine dissociation factor 

(GDF) to recruit and activate Rab 1 to ER-derived vesicles [88]. 

Rab GDP Dissociation Inhibitors 

Rab GDP Dissociation Inhibitors (GDIs) regulate the activity of Rab proteins. Rab 

proteins belong to the family of Ras-like small GTPases and are essential regulators of 

vesicle trafficking within a cell. Rab proteins play a role in everything from secretion and 

endocytosis to signal transduction and development. Since they were first discovered in 

the 1980s, they have been shown to be important regulators of vesicle budding, cargo 

recruitment, and vesicle tethering and fusion in transport. Rabs have also been implicated 

in organizing functionally distinct subdomains within membranes, defining organelle 

identity, and functioning in mitogenesis [89, 90]. 

 

Rab proteins form the largest in the family of Ras-like small GTPases, with 11 proteins in 

yeast, over 60 different Rab proteins in humans, and 57 identified in Arabidopsis thaliana 

[91, 92]. Many of these proteins are specific to certain cell types. Rab proteins are 

peripheral membrane proteins due to two geranylgeranyl groups added post-

translationally, and spend the majority of their time oscillating from the inactive GDP-

bound form to the active GTP-bound form. Interestingly, defects in Rab prenylation in 
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mammals cause the degenerative disease choroideremia, which eventually results in 

complete blindness [91]. When activated on the donor membrane, Rab proteins will help 

to recruit cargo proteins and assist in vesicle formation [93]. During trafficking, Rabs 

may participate by interacting with motor proteins and later assist in vesicle docking and 

fusion [94]. During fusion, the Rab proteins with the help of Guanosine Activating 

Proteins (GAPs) will hydrolyze GTP to make GDP. Once in their GDP-bound state in the 

target membrane, they become a target for another set of proteins, Rab GDIs. Rab GDIs 

only have a high affinity for Rab proteins in their GDP-bound state. Rab GDI proteins 

stabilize the highly hydrophobic geranylgeranyl groups and allow Rab protein-mediated 

removal from membranes [93]. Rab GDIs seem to have very little specificity for 

particular Rab proteins; there are many fewer types of Rab GDIs (two in Arabidopsis) 

than Rabs (57 in Arabidopsis), and Rab GDIs have been shown to bind to and extract 

several different Rabs [95]. Once Rab GDIs have bound Rab proteins and are not 

membrane-associated, they become phosphorylated, possibly to prevent rebinding with 

the target membrane [96]. Rab GDIs deliver the Rab proteins back to the donor 

membrane where GDI displacement factors (GDFs) catalyze the dissociation of a Rab 

from its Rab GDI and promote recruitment onto membranes (Figure 3). Interestingly, 

Sivars et al. showed that in a mammalian system, Yip3 selectively acted as a GDF, 

selectively  
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Figure 3. The role of Rab GDI in vesicle trafficking. During normal vesicle trafficking, Rab 

GTP proteins assist with the formation of vesicles (1) and may help in movement via motor 

proteins to the target membrane (2). Once at the target membrane, the Rab GTP is hydrolyzed to 

GDP (3). In its GDP form, Rab proteins now become a target of Rab GDI proteins, which bind 

Rab GDP, extract them from membranes, and keep them in the inactive, GDP form (4). Rab GDIs 

are phosphorylated after binding to their target Rabs, possibly to keep from reassociating with the 

membrane target membrane. Interactions with other proteins, such as guanosine exchange factors 

(GEF) and guanosine activating proteins (GAP), may assist Rab GDP proteins in attaching to the 

correct donor membrane (5). Once in the correct donor membrane, GEF proteins exchange GDP 

for GTP and the Rab protein is able to start the cycle anew (6). 
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displacing Rab9 and Rab5 from their Rab GDI. It is possible that GDFs help to add 

specificity to Rab protein localization to promote vesicle formation [97]. After Rab 

proteins dissociate from their GDI, guanosine exchange factors (GEFs) exchange GDP 

for GTP and activate the Rab proteins again to start the cycle of vesicle formation and 

transport. This Rab-GEF interaction may give additional specificity for Rab protein 

localization since each GEF is specific for a particular Rab; however, seldom are GEFs 

themselves membrane proteins, rather requiring recruitment by other proteins [98]. 

Interestingly, Rab GDIs, themselves seem to be regulated by chaperone proteins; 

Sakisaka et al. report isolating Hsp90 from complexes containing Rab-αGDI in rat 

synaptosomes and suggest a role in regulating Rab-αGDI [99]. 

Plant defense responses 

Plants have developed ways of defending themselves from colonization by pathogens, 

some of which are derived from ancient defense mechanisms that persist in such 

evolutionarily distant organisms as humans and fruit flies. The first step in a defense 

response to pathogens is recognition of the pathogen. The plant can then respond using 

several different mechanisms, such as a hypersensitive response (HR), programmed cell 

death (PCD), activation of viral-induced gene silencing (VIGS), activating systemic 

acquired resistance (SAR), and general physiological mechanisms, including thickening 

of the cell wall, closing of plasmodesmata, and release of reactive oxygen species (ROS). 

 

There are two major hypotheses for how plants detect pathogens. The first is the gene-

for-gene hypothesis, which argues that for each pathogen that the host mounts a defense 

response, some pathogen-derived virulence (AVR) gene product interacts with a specific 
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receptor or other host resistance (R) protein. This interaction causes various physiological 

responses (discussed below) to try to contain or stop the infection [100]. The alternate 

hypothesis, or guard hypothesis, is that certain host proteins may be targets for pathogens 

or may be essential for pathogens. These host proteins are called “guards” whereby when 

altered, they or a target protein can trigger a defense reaction [101]. Since very few AVR 

proteins have been shown to interact directly with R proteins, current data suggest the 

role for other proteins or “guard” proteins. 

Resistance (R) genes 

R-genes in both monocots and dicots have a strong similarity in their basic structure. The 

most common type of R gene produces an intracellular protein with a nucleotide-binding 

leucine rich repeat (NB-LRR) with a variable N-terminal region. Other types of R 

proteins include a serine/threonine protein kinase group, and a transmembrane protein 

with an extracellular LRR and an intracellular C-terminal domain that may contain a 

kinase. The NB-LRR proteins contain an additional leucine zipper domain or a toll-like 

interleukin-1-like (TIR) domain. The Pto protein from tomato falls into its own category 

with no membrane-spanning region, but just contains a protein kinase domain. A few of 

the more recently discovered R proteins such as Arabidopsis RPW-8 (coil-coil domain 

and membrane domain) and HM1 (toxin reductase) of maize do not fall into any of the 

above categories, but are unique. 

Responses to R gene activation 

One of the first responses to R gene activation is an increase in cytosolic Ca2+ activation 

which results in the phosphorylation of NADPH oxidase, leading to the production of 
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reactive oxygen species (ROS) such as 02
- and H202. This oxidative burst leads to the 

cross-linking of cell walls, the triggering of the cell death pathway, and the production of 

defense-related genes. This cellular response that results in cell death and necrotic lesions 

is known as a hypersensitive response (HR) [102, 103]. 

 

The increased Ca2+ concentration and ROS can also activate a signaling cascade that 

activates salicylic acid (SA). SA is involved in disease resistance both at the site of 

infection and in SAR. SAR is a broad-spectrum resistance to pathogens that is seen in the 

parts of the plant that have not been inoculated with the pathogen. SA results in the up-

regulation of PR proteins and promotion of ROS production, both of which help to 

establish a strong defense response to pathogens. It has long been thought that SA acts as 

a signal in SAR to the rest of the plant and triggers the systemic resistance [104]. Recent 

evidence suggests this is not the case, but rather SA is converted to methylsalicylate in 

un-inoculated tissues, giving methylsalicylate the role of a mobile SAR signal [105]. 

Based on work with DIR1, a lipid transfer-like protein, and SFD1, which is involved in 

lipid metabolism, there is also a lipid based molecule that also acts with or upstream of 

the methylsalicylate signal [106, 107]. 

Viral induced gene silencing (VIGS) 

Viral induced gene silencing (VIGS), or post-transcriptional gene silencing, is a general 

and specific defense response against viral pathogens. This mechanism is widely 

conserved with pathways discovered in humans, Caenorhabditis elegans, and fungi. 

During VIGS, dsRNA structures trigger a response by the RNase, Dicer, which cuts 

dsRNA into 21-25 nt segments. These small RNA segments are called small interfering 
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RNAs (siRNAs). These RNAs are then incorporated into a multi-protein RNA-induced 

silencing complex (RISC). The RISC complex uses the siRNA to target viral RNAs for 

degradation. An additional mobile silencing signal is produced, which results in systemic 

resistance to the inoculating virus. This silencing signal has not yet been identified, but 

due to the continued resistance specificity for the inoculating virus, the siRNAs must still 

be involved to direct degradative enzymes to the viral RNA [108]. 

 

Gene silencing has been shown to be an important defense target of viruses. Numerous 

viruses, including TMV (see below), encode proteins that act as suppressors of gene 

silencing. The suppressors act in several different steps of VIGS. P1/HC-Pro protein of 

potyviruses was one of the first silencing suppressors discovered and experiments suggest 

that it affects the assembly, or targeting, of the RISC complex. The p19 protein of 

tombusviruses have been shown to directly interact with siRNAs and possibly prevent 

their incorporation into the RISC complex. The 2b protein of cucumoviruses prevents the 

systemic spread of RNA silencing as does p25 of Potato virus X (PVX). The coat protein 

of carmoviruses acts to interfere with the processing of dsRNA, and large complex 

viruses such as Citrus tristeza virus appear to encode several suppressors of gene 

silencing that act in different steps of the pathway [109]. The 126 kDa replicase protein 

of TMV has been shown to bind siRNAs and prevent their incorporation into the RISC 

complex [60]. 

Defense responses to TMV 

The N gene is a NB-LRR R protein that is specifically activated in response to TMV 

infection. The helicase domain of TMV replicase proteins is the elicitor of N gene 
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activation. The N gene from Nicotiana glutinosa confers resistance to all known 

tobamoviruses except Ob [76, 110]. In the absence of the N gene, the virus spreads 

throughout the plant, causing the classic dark green-light green mosaic pattern. However, 

in the presence of the N gene, the hypersensitive response (HR) is triggered within 48 

hours of infection and the virus is restricted to the region immediately surrounding the 

necrotic lesion [76]. In the presence of the N gene, systemic acquired resistance (SAR) is 

also triggered via salicylic acid (SA). When TMV-infected tissue was exposed to 

exogenous SA, TMV was restricted to inoculated tissues, which was not seen when the 

same assay was used with Cucumber mosaic virus (CMV) [111]. Additionally, the 

restriction of TMV movement was a mechanism independent of plasmodesmal 

restriction. siRNAs are produced during TMV infection, though as mentioned above, it 

was recently shown that TMV replicase proteins bind duplexed 21-25 nt RNAs and can 

possibly prevent their incorporation into the RISC complex [60]. 

Research objectives 

The primary objective of this work was to develop an understanding of the role of virus-

host interactions during infection specifically using the TMV replicase proteins. My first 

objective was to determine what domain, or domains, within the replicase proteins might 

be responsible for their localization within the host cell during infection. The replicase 

proteins contain an N-terminal nuclear localization signal (NLS), but viral replication 

occurs in close association with the host’s ER [112]. A domain in the intervening region 

(IR) of the replicase proteins was identified that was able to localize the replicase proteins 

to the ER. This localization was conferred to another protein when it was fused to the C-

terminal end. Point mutations were created to determine if an established intramolecular 
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interaction within replicase proteins might also contribute to localization and viral 

replication, but no direct correlation between localization and replication could be 

established by the point mutations. 

 

My second objective was to investigate an interaction between a host protein Rab GDI 

and the replication proteins. This interaction was confirmed with tobacco, Arabidopsis, 

and tomato Rab GDI proteins and was shown to be important in establishing viral 

infection in a host and may provide a mechanism for host protein synthesis shutdown 

which is characteristic of many viral infections. The replicase proteins were shown to 

interact with a Rab GDI in vivo and to alter its expression and localization. Work towards 

my second objective has also established changes to a host cell’s endomembrane system 

during infection, some of which can be mimicked by knocking-down Rab GDI protein 

expression. This work is currently being prepared for publication. 



 

 31 
 

Chapter 2: Characterization of a domain required for ER 

localization of TMV replicase proteins 

Abstract 

Tobacco mosaic virus is a (+)-strand RNA virus and the type member of the tobamovirus 

family. While the TMV replicase proteins contain a functional N-terminal nuclear 

localization signal, replication occurs in close association with membranes derived from 

the endoplasmic reticulum (ER) [26]. A possible ER localization motif between amino 

acids 388 and 781 was previously identified within the replicase proteins [112]. The 

following studies narrow and characterize this region involved in the replicase proteins’ 

localization. 

 

A region between amino acids 599 and 701 was found to be necessary and sufficient for 

ER localization of the replicase proteins. Addition of this domain to the β-glucoronidase 

(GUS) protein allows for localization outside of the nucleus in transient expression 

assays. To characterize the effects of this ER localization domain on virus infection, nine 

mutations were introduced into this region that changed the amino acid translated to 

alanine. These mutants were tested for localization with transient expression assays, for 

an intramolecular interaction via a yeast two-hybrid assay, for replication in protoplast 

assays, and for replication and movement in local lesion assays. 

 

All of the mutants showed a decrease in intramolecular interaction and several mutants 

show a reduction in replication and movement; however, only V696A lost its localization 
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outside the nucleus. This change in localization does not correlate with an effect on viral 

replication and movement. In contrast, the L605A mutant shows a severe decrease in 

replication and movement, but very little alteration in protein localization. Several 

possible mechanisms for this localization domain are discussed; further work is necessary 

to characterize fully the function of this domain. 

Introduction 

Replicase complexes, or “viral factories,” are composed of host proteins, viral proteins, 

viral RNA, and typically host membranes. Formation of these complexes and the nature 

of their localization are poorly understood because biological membranes and replicase 

proteins have proven difficult to manipulate. The role of membranes has become a topic 

of interest as evidence has shown that lipids and membrane proteins are important in 

replicase complex formation [17, 65, 113]. For (+)-strand RNA viruses, biological 

membranes are required for efficient replication; the mechanism of replicase complex 

association and formation represents an avenue to characterize viral replication and 

develop possible targets for disease resistance. 

 

TMV is a model (+)-strand RNA virus and the type member of the tobamovirus family. 

The genome encodes two replicase proteins, a 126 kDa protein and a 183 kDa protein. 

Both proteins contain methyltransferase and helicase regions, while the 183 kDa protein 

contains an additional RNA-dependent RNA polymerase domain. Both proteins also 

contain an intervening region (IR) of unknown function between the methyltransferase 

and helicase domains. The TMV replicase proteins have been shown to be important in 
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not only genome duplication but cell-to-cell movement [114], cytoskeletal association 

[70], and as suppressors of gene silencing [8]. 

 

During TMV infection, endoplasmic reticulum (ER)-derived membranes have been 

shown to be involved in and severely modified during replication. Positive-strand viral 

RNA, (-)-strand viral RNA, and replicase proteins have been shown to associate with ER 

derived membranes [26]. Late in infection, large structures known as viroplasms, or x-

bodies, are seen that contain host proteins, viral proteins, and viral RNA [21]. The 

replicase proteins have been shown to localize to the endoplasmic reticulum of host cells 

independently of the rest of the virus, but also to contain a functional N-terminal nuclear 

localization signal (NLS). Initial deletion experiments have identified a possible ER 

localization motif in the IR region [112]. The following study further narrows the ER 

localization domain and examines the effect this domain has on replication, localization, 

an intramolecular interaction, and viral movement. 

Results 

Identification of an ER localization domain 

To identify this ER localization motif more closely, a series of sequential deletions of this 

region were created and transiently expressed in onion epidermal cells via gene 

bombardment. The protein localization switches from outside the nucleus to localizing 

inside the nucleus in the deletions between aa 599 and 701 (Figure 4). Further deletions 

of this region were made, but were inconclusive in their localization (deletions 623, 651 

and 676). When all of these amino acids (599-701) were deleted  
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Figure 4. Identification of sequences important in ER localization. C-terminal Green 

Fluorescent Protein fusion constructs were made using the pCMC1100 vector [112] which 

contains a single 35S promoter and a NOS terminator sequence. Fusion proteins were transiently 

expressed in onion epidermal cells via gene bombardment and observed 12-16 hours post-

bombardment. Images were visualized using a Zeiss LSM510 laser scanning confocal microscope 

system with a 63x NA 1.2 water-immersion lens (Carl Zeiss Inc., Thornwood, NY). Enhanced 

GFP (eGFP), a GFP variant, constructs were excited at 488 nm and emissions were collected at 

543 nm. Bars indicate 10 μm. Shown are representative images of several independent 

experiments. Onion cell nuclei are shown with bright-light images on the right and the 

corresponding emissions at 543 nm on the left. To the far right are diagrams of the constructs 

used in those images. Numbers indicate the amino acid number deleted from the 126 kDa 

replicase protein. Sequential deletions from the 126 kDa protein were made to identify a possible 

ER localization domain. Note that the localization changes from the 599 to the 701 construct. 
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from the full-length 126 kDa replicase protein, localization changed from small 

aggregates which were previously shown to associate with the ER [112], to a dispersed 

localization inside the nucleus (Figure 5a). When this same domain was added to the β-

glucoronidase (GUS) protein with the TMV NLS at the N-terminus, the protein was 

retained outside of the nucleus (Figure 5b). 

Creation of mutations 

To determine the mechanism of the newly narrowed ER localization domain, nine point 

mutations were introduced into this region of the replicase proteins. One double mutant 

was created, for a total of ten mutants. Amino acids 604, 605, 606, 607, 619, 696, 697, 

699 were mutated based on strong similarity to other related tobamoviruses with similar 

host ranges (Figure 6 and 7). Amino acid 650 was mutated because it lacked strong 

similarity to related tobamoviruses. A tenth mutant had mutations at both amino acids 

696 and 699. All mutations converted the original amino acid to alanine, either by single 

or double point mutations. 

Local lesion assays 

To determine the biological effect of these point mutations, they were introduced into 

viral cDNA. Infectious RNA was transcribed and rub-inoculated onto a local lesion host, 

Nicotiana tabacum cv xanthi NN. This cultivar contains a functioning N gene and 

produces a hypersensitive response at the site of infection. The size of the lesions 

produced is indicative of replication and movement of the virus. Local lesion assays are 

similar to plaque assays in mammalian cell lines. Half of the leaf was inoculated with 

infectious RNA from a mutant virus and the other half was inoculated  
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Figure 5. The ER localization signal is required for 126kDa localization and acts 

dominantly over the NLS. C-terminal Green Fluorescent Protein fusion constructs were made as 

previously described in Figure 4. Fusion proteins were transiently expressed in onion epidermal 

cells and imaged 12-16 hours post-bombardment. Bars indicate 10 μm. 

 

a) Full-length 126 kDa replicase protein fused to eGFP as well as the 126 kDa protein with an 

internal deletion fused to GFP. The region deleted (amino acids 599-701) corresponds to the 

range identified by Figure 4. The wt protein localizes to small aggregates outside the nucleus 

while in the absence of the 102-amino-acid sequence, the full-length construct localizes to the 

nucleus. 

 

b) Fusion constructs were made to determine if the ER localization domain could act dominantly 

over the NLS. GUS, GUS with the NLS from TMV, and GUS with the NLS and the putative ER 

localization domain were transiently expressed. In the presence of the NLS, the fusion protein 

localizes to the nucleus while with the addition of the ER localization domain the fusion protein 

stays outside the nucleus. 
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Figure 6. Alignment of replicase protein intervening regions. Shown is an alignment of the 

tobamovirus replicase proteins in the region between the methyltransferase and helicase domains. 

Abbreviations: TGMMV, Tobacco green mild mottle virus; ToMV, Tomato mosaic virus; TMV, 

Tobacco mosaic virus; PeMMV, Pepper mild mosaic virus; PaMMV, Paprika mild mosaic virus. 

Residues shown in white with a black background are identical. Residues shown in black with a 

grey background are similar. Boxes indicate amino acids chosen to mutate. Numbers indicate the 

amino acid numbers that correspond to the TMV replicase protein and are positioned directly 

above the amino acid. 



 

 40 
 

 

     60
4 

60
5 

60
6 

60
7 

            61
9 

 

TGMMV  E N R S G L T L T F D K P T E E N V A K A L 
ToMV  S N E S G L T L T F E Q P T E A N V A L A L 
TMV  S N E S G L T L T F E R P T E A N V A L A L 
PeMMV  S N E S G L T L T F E R P T E A N V A L A L 
PaMMV  - N E S G V T L P F K E P T E G N I A E A L 
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TGMMV V Y T G S L K V Q Q M K N Y V D S      
ToMV  V Y T G P L K V Q Q M K N F I - -      
TMV  V Y T G P I - - - - - - - - - - -      
PeMMV  V Y T G P L K - - - - - - - - - -      
PaMMV  V Y S G P L - - - - - - - - - - -      
ORSV  V Y T G P L K V Q Q M - - - - - -      



653

Helicase PolymeraseMT

SNESGLTLTFERPTEANVALALQDQEKASEGALVVTSREVEEPSMKGSMARGEL
QLAGLAGDHPESSYSKNEEIESLEQFHMATADSLIRKQMSSIVYTGPI

600

701

Amber stop codon

183 kDa
126 kDa

654

Figure 7.  Location of mutation in putative ER retention domain. Shown is the location 

and amino acid sequence of amino acids 600 to 701 of the replicase protein.  The region lies 

in the intervening region (IR) which is directly upstream of the helicase domain.  Nine point 

mutations were made by PCR-mediated sited directed mutagenesis.  All amino acids were 

mutated to alanine and were chosen based on conserved regions of tobamoviruses with 

similar host ranges.  Amino acids highlighted in red text are those that were mutated to 

alanine.
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with wt infectious RNA. In Figure 8a, the images of the lesion assays are shown and are 

quantified in Figure 8b. The diameter of each lesion was measured and compared to wt 

infectious RNA inoculated on the same leaf. 

 

Mutations at amino acids 605, 607, 619, 650, 696, and 697 exhibited lesions similar to 

that of wt viral RNA. Mutations at 604, 606, 699, and 696/699 showed decreased lesion 

size, indicating either an effect on either movement or replication. Note that the mutation 

at amino acid 650 was chosen because it was predicted not to have a strong effect on the 

virus, based on lack of sequence similarity to other tobamoviruses. Results confirmed that 

the mutant moves and replicates similarly to wt. 

Replication assays 

To determine the effect of these mutations solely on replication, a protoplast replication 

system was employed. N. tabacum cv xanthi suspension cells were used to make 

protoplasts and electroporated with wt or mutant infectious viral RNA. The protoplasts 

were collected about 20 hours after electroporation and RNA was extracted. The RNA 

was analyzed using a Northern blot with cDNA derived from viral RNA labeled with 32P. 

The band intensities were measured and compared to wild type for each blot. The 

percentage of wt replication was averaged for all blots and each mutation was tested at 

least twice (Figure 9).
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Figure 8. Local lesion assays. Nicotiana tabacum cv xanthi NN was used as a local lesion host to 

examine infectivity and cell-to-cell movement. Size of lesions indicates relative levels of 

replication and spread of the virus. Half-leaf assays were used so that each mutant could be 

compared to the wt virus on the same leaf. 

 

a) Half-leaf assays were performed, inoculating one half of the leaf with RNA transcribed from a 

plasmid containing the viral wt cDNA. The other half of the leaf was inoculated with RNA 

transcribed from cDNA containing the indicated mutation. WT indicates wild-type RNA 

inoculation. The brown-to-translucent spots are lesions; the numbers indicate the mutation tested. 

The lower right leaf had two point mutations. 

 

b) The average difference between wild-type TMV lesions and mutant lesions on the same leaf. 

The diameter of each lesion was measured in centimeters and recorded, then averaged for each 

leaf. Zero indicates that the lesions were the same size as wild type. Negative numbers indicate 

that the mutant virus had lesions smaller than wild type, while positive numbers indicate lesion 

sizes larger than wild type. Error bars indicate the range of these averages over several 

experiments. 
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Figure 9. Viral replication assays. cDNA clones of either wt or mutant viral RNA were 

transcribed using T7 RNA polymerase to produce infectious RNA. The viral RNA was 

electroporated into protoplasts derived from N. tabacum cv xanthi suspension cells. Protoplasts 

were incubated for about 20 hours post-electroporation and collected for RNA extraction. Whole-

cell RNA extract was loaded onto a formaldehyde denaturing agarose gel and electrophoresed. 

Northern blots were performed to determine viral RNA concentration. The blots were probed 

with dCTPγ32P-labeled viral cDNA encoding the coat protein and upstream sequences. 

 

Graph of mutant viral accumulation from Northern blot analysis is shown. Bands were quantified 

using ImageJ software (National Institutes of Health). Each band was measured and the 

background subtracted, then compared to the wild-type control for that blot. Data represent an 

average of at least two independent assays and are displayed in the same order as previous figures 

for comparison. 
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Interestingly, R650A, which was mutated because it was part of a region within this 

domain with lower sequence similarity to other tobamoviruses, replicated similarly to 

V696A and Y697A, which were chosen in regions of high similarity. Other mutants 

replicated to 50% or less of wild type and the double mutant replicated to levels equal or 

just below the G699A single mutant. Replication for G604A was not detected above 

background levels. 

Localization 

To understand more fully how the ER localization domain functions in protein localization, the 

full length 126 kDa replicase protein was expressed either as wild-type or mutant, and transiently 

expressed in onion epidermal cells via gene bombardment (Figure 10). The wt replicase protein 

forms small aggregates that appear around the periphery of the nucleus in an area previously 

identified as ER [112]. In the V696A mutant, ER localization is entirely lost and the protein is 

seen inside the nucleus. For mutants L605A, R650A, G699A, and V696A;G699A, the amount of 

aggregated protein decreased and the protein still localizes outside of the nucleus. With mutation 

697, images looked very similar to wt replicase protein. For mutation G604A, no expression was 

detected. 

Contributions of an intramolecular interaction 

Since the 126 kDa replicase protein forms aggregates when transiently expressed and this 

association may be important in replicase formation and movement, a helicase-helicase 

interaction was investigated [7, 112, 115]. Previously, an intramolecular interaction was 

identified between two different, overlapping regions of the replicase  proteins (aa 549-868 and 

aa 814-1211; Figure 11a). This interaction may contribute to forming dimer or high-order 

oligomers of the replicase proteins during infection [115]. Aggregate formation seemed to be 

impaired in the localization assays for certain mutants, suggesting that this interaction may 
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Figure 10. Localization of mutant replicase proteins in onion epidermal cells. The full-length 

126 kDa replicase protein, either mutant or wild type (WT), was transiently expressed with a C-

terminal eGFP tag. C-terminal Green Fluorescent Protein (GFP) fusion constructs were made 

using the pCMC1100 vector [112] which contains a single 35S promoter and NOS terminator 

sequence. Fusion proteins were transiently expressed in onion epidermal cells via gene 

bombardment and observed 12-16 hours post-bombardment. Images were visualized as 

previously described. Shown are representative images of several independent experiments. Bars 

indicate 10 μm. Seen in the left column are images of onion cell nuclei and the fusion proteins 

tagged with eGFP. The right column is the bright-light image of the same cell. The numbers 

indicate the location of the mutation in the IR region of the replicase protein; WT indicates wild 

type. Note that in WT cells, the replicase protein aggregates at the periphery of the nucleus. This 

localization is changed with the V696A mutant, which localizes inside the cell nucleus. Mutations 

L605A, G699A, and R650A, although localizing outside the nucleus, show a lack of the 

aggregates seen with the WT protein. 
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contribute to that aggregation and possible localization. The same yeast two-hybrid 

system used to identify this interaction was used, with the same overlapping regions used 

as “bait” and “prey.” The same nine mutations were introduced into the region between 

amino acids 549 and 868 (Figure 11a) and expressed in the yeast two-hybrid system. 

Quantitative β-galactosidase assays were performed at 25º C, the temperature at which 

the host plants are grown. 

 

All of the mutations except T606A in the ER localization domain reduced the strength of 

the intramolecular interaction below that of the wild-type viral sequence (Figure 11b). 

Mutations at amino acids 697, 699;696, and 699 were severely reduced in their 

interactions with the “prey” and the double mutation was barely detectable above the 

negative control, which, interestingly, was greater than either of the two individual 

mutations. The T606A mutation in the local lesion assay, showed a decrease in 

replication and movement; in this assay, it shows only a minor decrease in its 

intramolecular interaction from wt. It is possible that changes in the IR and helicase 

regions that destroy the ability to dimerize or form higher-order structures are not directly 

correlated with replication and movement. In addition, although all mutations decreased 

the interaction, regions of the ER localization motif that were more C-terminal and closer 

to the overlapping region in this assay seemed to have a greater affect than other 

mutations. 
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Figure 11. Disruption of an intracellular interaction. An intracellular interaction between the 

helicase domain and upstream sequences has been reported [115] and implicated as being 

important in cell-to-cell movement [7]. Based on that information, we examined whether these 

point mutations may have disrupted this interaction. 

 

a) Diagram of the 126 kDa protein showing the regions used to evaluate the intracellular 

interaction using a yeast two-hybrid system. Numbers indicate amino acid, and the arrow 

indicates the area of the protein where the point mutations occur. 

 

b) Graph of yeast two-hybrid interaction data measured using a quantitative β-galactosidase assay 

and reported in Miller units. Sequences between amino acids 814 and 1211 were used as “bait” 

and were cloned into the pLexA yeast vector. Sequences between amino acids 549 and 868 were 

used as “prey” and cloned into the pGAD (Clontech) yeast vector. The assay was done at 25º C, 

the temperature at which the normal hosts grow. The negative control was an empty pLexA 

vector without a TMV sequence. WT indicates the “bait” was the wild-type TMV sequence. 
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Methods and materials 

Transient expression assays: Either full-length or altered proteins (as indicated by 

figures 4 and 5) were expressed with a C-terminal eGFP (Clontech) fusion using the 

CMC 1100 expression vector as described in [112]. Expression and visualization of 

constructs in onion epidermal peels were as described in with the following 

modifications: 1 cm thick sections of white onion (Allium cepa) epidermal tissue were cut 

from the bulb and shot with DNA precipitated on tungsten particles. The whole section 

was incubated overnight at room temperature in a moist environment to prevent 

dehydration. 

 

Confocal imaging: Bombarded onion epidermal tissue was carefully peeled from the 

lower layers of tissue. Epidermal tissue was mounted using water and imaged using a 

Zeiss LSM510 laser scanning confocal microscope system with 10x NA 0.8 dry and 63x 

NA 1.2 water-immersion lenses (Carl Zeiss Inc., Thornwood, NY). Excitation sources 

were 488 nm for GFP. Images were modified in Zeiss LSM Imager Examiner and 

processed for printing in Adobe Photoshop CS (Grand Prairie, TX). 

 

Introduction of point mutations: Single- or double-point mutations were introduced into 

the intervening region of replicase proteins using PCR-based mutagenesis and cloned 

back into the cDNA using preexisting Stu I and Sac II restriction endonuclease sites. The 

TMV expression construct was derived from the wt TMV cDNA construct of [116]. 

 



 

 54 
 

Replication assays: Assays were based on [117] with the following modifications. 

Nicotiana tabacum cv xanthi suspension cells were maintained at 32 ºC in suspension 

culture media and subcultured every seven days. Protoplasts were isolated using the 

following enzyme solution: 0.75g Cellulysin, 0.075g Pectinase, 0.05g Macerase dissolved 

in a 50 mL solution of 0.5M D-mannitol, 10 mM MES (C6H13NO4S), and 10 mM CaCl2 

(pH 5.6) and filter-sterilized. 

 

There were 7x106 cells per electroporation with 22μl of viral RNA from a T7 in vitro 

transcription reaction. The cells and reaction mixture were electroporated with 250 volts, 

125 microFaraday, and 100 ohms in 0.4 cm gap cuvettes. Cells were incubated at 25ºC in 

the dark for 20 hours and collected for Northern blot analysis. 

 

Xanthi suspension cell culture media: Murashige and Skoog Basal Salt with Minimal 

Organics Medium supplemented with the following per liter of media: 30g sucrose, 1g 

MES, 1.5 mM KH2PO4, 200 μg 2,4-Dichlorophenoxy acetic acid (C8H5Cl2NaO3 · H2O), 

100 μg Kinetin (C10H9N5O), 1ml 1000x Gamborg’s Vitamin Solution, with a pH adjusted 

with KOH to 5.8. 

 

Northern blot: Protoplast samples were collected and RNA was extracted using the 

Qiagen Plant RNeasy protocol. The Northern blot was performed as per [118]. Viral 

RNA isolated from virions was used as an RNA ladder. cDNA encoding the TMV coat 

protein and upstream sequences (bp 5460-6394) was used to create a labeled probe using 

the Prime-a-Gene Labeling Kit (Promega) with dCTPγ32P. Probe labeling was performed 
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as per manufacturer protocols. Samples were run on a 1% agarose/formaldehyde gel, 

blotted overnight, and probed the next day. 

 

Yeast two-hybrid: Saccharomyces cerevisiae strain L40 was transformed with both 

pGAD (Clontech) containing the “prey” and pLexA containing the “bait” construct. Filter 

lift assay: Yeast transformed with both bait and prey constructs were grown on 

appropriately selective yeast minimal media plates at 30 ºC. A nitrocellulose membrane 

was used in the filter lift. The yeast was incubated at 30º C in the presence of X-gal for 

one hour. 

 

Quantitative assay: Yeast containing both bait and prey constructs were grown in liquid 

media to an OD at 600nm of 0.6. One mL of culture was pelleted and resuspended in 100 

µL of Z buffer. Added to the culture were 10 µL of 0.1% SDS, 20μL of chloroform, and 

200 μL of ONPG (ortho-Nitrophenyl-β-galactoside). Samples were incubated for 30 

minutes at 25º C. The reaction was stopped by adding 500μL 1M Na2CO3. The OD was 

measured at both 420 nm and 550 nm and Miller units were calculated. 

 

X-gal solution: 5 μL Triton X 100, 100 μL X-gal (5-methyl-4-chloro-3-indoly-B-D-

galactosidase) (20mg/mL), 5 mL Z-buffer 

 

Z buffer (1L): 16.1g Na2HPO4, 5.5g NaH2PO4, 0.7g KCl, 0.25g MgSO4 2.7 mL β-

mercaptoethanol 
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Local lesion assay: An in vitro T7 transcription reaction with either wild type or mutant 

TMV cDNA templates (as described above) were mixed with 50 μL FES and rub-

inoculated onto Nicotiana tabacum cv xanthi NN. Each inoculated leaf was rub-

inoculated half with wt TMV RNA and half with mutant TMV RNA. Lesions were 

measured and imaged six days post-inoculation. 

 

FES: 0.1M glycine (HO2CCH2NH2), 0.6 M potassium phosphate (KH2P04), 1% sodium 

phosphate (NaH2PO4), 1% macaloid, 1% cealite, pH 8.5-9.0 

 

Virus strains: The U1 strain of TMV was used for all assays and is referred to as the wild 

type sequence. The strain is maintained in tobacco and all cDNA clones are originally 

based off work from [116]. 
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Discussion 

Replicase complex formation is a poorly understood but essential step in the life of a 

virus. For another member of the alphavirus superfamily, BMV, the replicase proteins 

form and shape invaginations in the ER [119]. Replicase proteins play an important role 

in replication complex formation and host protein and ribosome recruitment. For TMV, 

both replication proteins and membranes are required for efficient replication. 

Localization plays an important role in viral replication and protection from host 

defenses, suggesting that this 102-amino-acid region of the replicase protein, previously 

implicated in localization, is important in replication and replicase complex formation. 

 

As previously stated, efforts to narrow this localization domain identified the region 

between amino acids 599 and 701 to be necessary and sufficient to retain the replicase 

protein outside the nucleus of plant cells and to retain another tested protein outside as 

well. Mutations were introduced into this region to reveal its mechanism of action and 

biological relevance. These studies are summarized in Table 2. Mutations at both ends of 

this region (G604A, L605A, G699A, and V696A; G699A) were the most affected in 

replication, movement, and protein localization. Interestingly, the V696A mutation 

seemed to have no effect on replication and movement, but was severely altered in its 

cellular localization. The fusion protein localized to the nucleus and no longer formed 

aggregates as with the wt protein, suggesting that helicase-helicase interaction may be 

important in localization. 
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Mutant β-gal Assay Replication 
Assay 

Local Lesion 
Assay 

Localization 

WT +++ +++ +++ Cytoplasmic; aggregates 

G604A ++ - + No expression 

L605A + - +++ Cytoplasmic 

T606A +++ + + No data 

L607A No data + +++ No data 

L619A ++ ++ +++ No data 

R650A ++ +++ +++ Nuclear and Cytoplasmic 

V696A ++ +++ +++ Nuclear 

Y697A - +++ ++ Cytoplasmic; aggregates 

G699A + + + Cytoplasmic 

V696A;G699A - + + Cytoplasmic 

Table 2. Summary of data from mutational analysis. 

For each assay, shown are relative levels as measured. For the β-galactosidase assay, the levels 

are based on Miller units. For the replication assay, levels are based on relative levels of viral 

RNA as measured by ImageJ software (National Institutes of Health). For the local lesion assay, 

levels are measured by average diameter of lesions in centimeters. Localization was determined 

to be nuclear or cytoplasmic based on transient expression assays in onion epidermal cells. 
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Based on replication, GFP expression and local lesion assays, the G604A mutation seems 

to impair the expression of the replicase proteins. The R650A mutation, which was 

created because it lacked similarity with related viruses with similar host ranges, 

performed close to wt in most assays except localization. 

 

For many of the mutant viruses created, replication was severely reduced due to these 

mutations. This was predicted because this region contributed to ER localization of the 

protein, which is important for viral replication. Surprisingly, this impairment in 

replication did not always correlate to alteration in local lesion assays or even protein 

localization. 

 

There are several possible explanations for these conflicting results. Discrepancies in 

replication levels and local lesion assays may be due to reversions of the mutant virus 

back to wild type or some other compensatory mutation. Inoculated transcripts were not 

later screened for the viral RNA that was being incorporated into virions. Also, in the 

case of protein localization, by expressing the replicase protein outside the context of the 

virus, observed results may not be truly indicative of the processes occurring during a 

viral infection. This may explain the discrepancies between replication, movement, and 

localization. In addition, the mechanism by which the replicase proteins localize to the 

ER has not been directly demonstrated. The proteins do not contain a membrane-

spanning region, a region of hydrophobic side groups, or fatty acid modifications that 

would allow it to anchor directly to membranes. Although the TMV movement protein 

has been shown to be membrane-spanning, no direct interaction between the movement 
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protein and replicase proteins has been found. Therefore, an interaction with a host 

protein is a very plausible mechanism for localization. A host protein, AtTOM1 from 

Arabidopsis thaliana and related proteins have been shown to be membrane bound, 

essential to viral replication, and may possibly represent a membrane anchor that the 

replicase proteins utilize during infection. However, efforts to replicate the interaction 

between the full-length 126 kDa replicase protein and AtTOM1 using a yeast two-hybrid 

system was unsuccessful. Also, the ER localization domain, when expressed outside the 

context of the replicase proteins, localized to cellular membranes without the assistance 

of TOM1, which made it impossible to determine the effect of these mutations on the 

TOM1 interaction (data not shown). 

 

Another possible explanation is that the ER localization domain could be in a part of the 

replicase protein that is exposed to the cytoplasm, and would then allow for direct 

binding with a host protein or set of host proteins. Mutations to this region would have 

varying effects based on its interface with the host protein, which could produce 

incomplete localization and loss of aggregation. The effect on replication and movement 

would also be mixed depending on how important replicase localization is in secondary 

infection sites. Additionally, there are both cytosolic and membrane bound populations of 

126 kDa replicase proteins found during infection. A mutation that alters a host protein 

interaction may change the ratio of cytosolic to membrane bound protein and thus alter 

replication and spread. Also, replicase proteins and their interactions with the movement 

protein have been shown to be important in viral movement [7]. A mutation that affects 
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replication may or may not affect interactions with the movement protein and viral 

spread. 

 

Alternatively, the ER localization domain may be part of an internal region of the protein 

that does not directly interact with any host protein, but contributes to a particular tertiary 

structure that makes it available to bind to a host protein or subset of proteins. Thus, 

mutations in this region may not have a direct correlation to localization, replication and 

movement. Additionally, the intracellular interaction, although shown in vitro, has not 

been shown in vivo to be the active complex [115]. Replicase extraction assays have 

shown that the replicase proteins are found in a 1:1 ratio, but the structure of this complex 

has not been demonstrated [52]. The protein aggregation of the 126 kDa protein may not 

be biologically active and may not be a good measure of how the mutants affect the virus. 

 

The ER localization motif may not directly contribute to replication, but may act to 

enhance replication or increase the half-life of the protein. When the ER localization 

domain was deleted from the 126 kDa protein and expressed as a GFP fusion protein, the 

fusion protein proved very difficult to express in the gene bombardment system. When 

this domain was fused to a protein that is rapidly degraded by the host cell, Pap1/IAA26, 

protein expression increased as measured visually in the gene bombardment system. 

However, there was no significant increase in protein accumulation, as measured by 

Western blot in an Agrobacterium tumefaciens infiltration system (not shown). 
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No crystal structure has been determined for the TMV replicase proteins because of the 

difficulty of their purification. Therefore, these data may support both models for the 

mechanism for the identified ER localization domain. What host proteins may be 

involved in replicase localization also remains an important question. More work on both 

these fronts is necessary to characterize more fully the localization domain and what role 

the intervening region of the replicase proteins plays in protein function. 
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Chapter 3: Identification and characterization of an interaction 

between Rab GDP Dissociation Inhibitor (Rab GDI) proteins and 

the Tobacco mosaic virus 126 kDa replicase protein 

Abstract 

The Tobacco mosaic virus (TMV) is a (+)-strand RNA virus that encodes a 126 kDa 

replicase protein with a C-terminal helicase domain that has been shown to be important 

in virus-host interactions. To determine host factors involved in TMV replication, this 

domain and upstream sequences were used in a yeast two-hybrid screen against an 

Arabidopsis thaliana cDNA library. Ten proteins were identified by this screen; one, the 

Rab GDP Dissociation Inhibitor AtGDI2, was chosen for further study because of its 

potential role in vesicle trafficking. 

 

As with all (+)-strand RNA viruses, TMV replicates in close association with host 

membranes during infection, forming vesicle-like viral replication complexes. Rab GDI 

proteins regulate the activity of Rab proteins, which are essential in the docking and 

transport of vesicles. Full-length Rab GDI proteins from Nicotiana tabacum (GDI1), 

Nicotiana benthamiana (NbGDI), Lycopersicon esculentum (TC162880), and 

Arabidopsis thaliana (AtGDI2) were shown to interact with the helicase domain of the 

126 kDa TMV replicase protein in a yeast two-hybrid assay. This interaction was 

confirmed using an in vivo pull-down assay with infiltration of AtGDI2 with a C-terminal 

HA epitope tag (derived from the influenza hemagglutinin protein) in TMV-infected N. 

benthamiana tissue. 
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Using the Tobacco rattle virus VIGS system, Rab GDIs were knocked down in N. 

benthamiana and in L. esculentum cultivars Tiny Tim and Pilgrim. Both tomato varieties 

showed necrotic regions in silenced tissue, but there was no visible phenotype in N. 

benthamiana. When inoculated with the GFP-expressing virus TMV:GFP, NbGDI-

silenced tissue showed an increase in the number of infection sites when compared to 

control plants. Additionally, in NbGDI-silenced plants, the vacuolar membrane showed a 

phenotype similar to those seen in TMV-infected tissue. Taken together, these data 

indicate a role for Rab GDI proteins in TMV infection. 

Introduction 

Viruses are obligate parasites and, as such, are dependent on their host for energy and 

machinery required for continued propagation. Virus-host interactions affect every part of 

a viral life cycle, from the virus usurping the host cell’s machinery to the triggering of 

defense responses. Tobacco mosaic virus (TMV) is a (+)-strand RNA virus and the type 

member of the tobamovirus superfamily. TMV encodes two replicase proteins (126 kDa 

and 183 kDa), one movement protein, and one coat protein[2, 3]. A yeast two-hybrid 

screen of an Arabidopsis cDNA library identified an interaction between the TMV 126 

kDa replicase protein and a Rab GDP Dissociation Inhibitor (Rab GDI), AtGDI2 [120]. 

 

Rab GDI proteins regulate the activity of Rab proteins, which are essential components of 

vesicle trafficking within their host cells. Rab proteins, in combination with other 

proteins, direct vesicles from their donor to their target membrane, where cargo proteins 

are deposited. Rabs have been shown to be important regulators of vesicle budding, cargo 

recruitment, and vesicle tethering and fusion in transport [89, 90]. Rab proteins are 
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members of the family of small GTPases. Rab GDI proteins bind to Rab proteins in their 

inactive, GDP bound state and return them to their donor membrane for use in further 

vesicle trafficking (Figure 3). 

 

TMV replicates in close association with the host cell’s endoplasmic reticulum (ER) and 

requires membranes for replication [26]. Because Rab GDIs play such an essential role in 

vesicle trafficking and because TMV requires membranes for replication, the interaction 

between AtGDI2 and the TMV replicase proteins were further investigated and 

characterized. 

Results 

Rab GDIs interact with the TMV 126 kDa protein in vitro and in vivo. 

AtGDI2 of Arabidopsis thaliana was originally identified from a cDNA library screen in 

a yeast two-hybrid assay using the TMV replicase protein’s helicase domain and 

upstream sequences [bp 814 to 1211] as bait. To confirm this interaction and determine if 

it is unique to Arabidopsis, Rab GDIs were amplified from other TMV hosts: 

Lycopersicon esculentum (tomato; TIGR gene index TC162880), Nicotiana tabacum 

(Turkish tobacco, NtGDI1), Nicotiana benthamiana, and Arabidopsis thaliana (AtGDI2) 

ecotype shahdara. The N. benthamiana Rab GDI has not been previously identified and 

will be called NbGDI henceforth. The Rab GDIs were sequenced (the alignment can be 

seen in Figure 12). The four Rab GDI proteins are greater than 81% identical and 89% 

similar at the amino acid level. 

 



 

 66 
 

Because these proteins are so highly similar, we reasoned that they might represent a 

conserved viral-host interaction. The Rab GDI proteins identified were tested in a yeast 

two-hybrid assay. All of these Rab GDI proteins interact with the TMV helicase domain 

in this assay; AtGDI2 shows the strongest interaction (Figure 13). Pull-down assays were 

performed to test whether this interaction occurs in vivo as well as in vitro. Using an 

Agrobacterium tumefaciens infiltration system, HA:AtGDI2 was transiently expressed in 

TMV-inoculated tissues, two days post-inoculation; samples were collected at four days 

post-inoculation. In these samples, anti-HA antibodies where able to pull-down 

complexes containing both 126 kDa replicase protein and HA:AtGDI2, indicating that 

these two proteins interact during TMV infection (Figure 14). 

Silencing of NbGDI enhances TMV infection 

To understand how Rab GDIs are involved in TMV infection, NbGDI was silenced using 

a Tobacco rattle virus (TRV) gene silencing system. TRV produces mild symptoms in 

tobacco and tomato, and this system takes advantage of viral induced gene silencing 

(VIGS) to knock down expression of endogenous genes. Plants were inoculated with 

constructs containing either NbGDI, Phytoene desaturase (PDS), which is an early 

enzyme of the carotenoid biosynthetic pathway, or TRV itself. PDS was used as a visual 

indicator of successful silencing since it produces a white, bleached phenotype. Silencing 

was confirmed with RT-PCR (Figure 15c). When NbGDI-silenced plants were infected 

with TMV expressing eGFP (TMV:GFP), there was about a three-fold increase in the 

number of infection foci per inoculated leaf when compared to the TRV vector control. 

Using a paired, two-tailed t-test, this difference in the number of infection foci was found 

to be statistically significant (Figure 15b). These results indicate that not only do Rab  
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NtGDI     1 MDEEYDVIVLGTGLKECILSGLLSVDGLKVLHMDRNDYYGGESTSLNLVQLWKR 
NbGDI     1 MDEEYDVIVLGTGLKECILSGLLSVDGLKVLHMDRNDYYGGESTSLNLVQLWKR 
LeGDI     1 MDEEYDVIVLGTGLKECILSGLLSVDGLKVLHMDRNDYYGGESTSLNLVQLWKR 
AtGDI2    1 MDEEYEVIVLGTGLKECILSGLLSVDGVKVLHMDRNDYYGGESTSLNLNQLWKK 
 
NtGDI    55 FRGSDKPPAELGSSRDFNVDMIPKFIMANGALVRVLIHTDVTKYLYFKAVDGSF 
NbGDI    55 FRGSDKPPAELGSSRDFNVDMIPKFIMANGALVRVLIHTDVTKYLYFKAVDGSF 
LeGDI    55 FKGSDKPPAELGSSRDYNVDMIPKFIMANGALVRVLIHTDVTKYLYFKAVDGSF 
AtGDI2   55 FRGEEKAPEHLGASRDYNVDMMPKFMMGNGKLVRTLIHTDVTKYLSFKAVDGSY 
 
NtGDI   109 VYNKGKVHKVPATDMEALKSPLMGIFEKRRARKFFIYVQDYNESDPKTHEGMDL 
NbGDI   109 VYNKGKVRKVPATDMEALKSPLMGIFEKRRARKFFIYVQDYNESDPKTHEGMDL 
LeGDI   109 VYNKGKVHKVPATDMEALKSPLMGIFEKRRARKFFIYVQDYKESDPKTHEGMDL 
AtGDI2  109 VFVKGKVQKVPATPMEALKSSLMGIFEKRRAGKFFSFVQEYDEKDPKTHDGMDL 
 
NtGDI   163 TRVTTRELIAKYGLDDNTVDFIGHALALHRDDRYLDEPAQDTVKRMKLYAESLA 
NbGDI   163 TRVTTRELIAKYGLDDNTVDFIGHALALHRDDRYLDEPAQDTVKRMKLYAESLA 
LeGDI   163 TKVTTRELIAKYGLDDNTVDFIGHALALHRDDRYLDEPALDTVKRMKLYAESLA 
AtGDI2  163 TRVTTKELIAKYGLDGNTIDFIGHAVALHTNDQHLDQPAFDTVMRMKLYAESLA 
 
NtGDI   217 RFQGGSPYIYPLYGLGELPQAFARLSAVYGGTYMLNKPECKVEFDEEGKVCGVT 
NbGDI   217 RFQGGSPYIYPLYGLGELPQAFARLSAVYGGTYMLNKPECKVEFDEEGKVCGVT 
LeGDI   217 RFQGGSPYIYPLYGLGELPQAFARLSAVYGGTYMLNKPECKVEFDAEGKVCGVT 
AtGDI2  217 RFQGTSPYIYPLYGLGELPQAFARLSAVYGGTYMLNKPECKVEFDEGGKVIGVT 
 
NtGDI   271 SEGETAKCKKVVCDPSYLPNKVRKVGKVARAIAIMSHPIPNTNDSHSVQIILPQ 
NbGDI   271 SEGETAKCKKVVCDPSYLPSKVRKVGKVARAIAIMSHPIPNTNDSHSVQIILPQ 
LeGDI   271 SEGETAKCKKVVCDPSYLPSKVRKVSKVARAIAIMSHPIPNTSESHSVQIILPQ 
AtGDI2  271 SEGETAKCKKIVCDPSYLPNKVRKIGRVARAIAIMSHPIPNTNDSHSVQVIIPQ 
 
NtGDI   325 KQLGRKSDMYLFCCSYTHNVAPKGKFIAFVSTEAETDNPESELKQGVNLLGPVD 
NbGDI   325 KQLGRKSDMYLFCCSYTHNVAPKGKFIAFVSTEAETDNPESELEQGVNLLGPVD 
LeGDI   325 KQLGRKSDMYLFCCSYTHNVAPKGKFIAFVSTEAETDNPENELKPGVSLLGPVD 
AtGDI2  325 KQLARKSDMYVFCCSYSHNVAPKGKFIAFVSTDAETDNPQTELKPGTDLLGPVD 
 
NtGDI   319 EIFYENYDRSEPVNEPSLDKCFISTSYDATTQFESTVDDVLNLYTKITGKVLDL 
NbGDI   319 EIFYETYDRSEPVNEPSLDNCFISTSYDATTHFESTVDDVLNLYTKITGKVLDL 
LeGDI   319 EIVYETYDRSEPVNECTLDNCFVSTSYDATTHFESTVDDVLNLYTKITGKVLDL 
AtGDI2  319 EIFFDMYDRYEPVNEPELDNCFISTSYDATTHFETTVADVLNMYTLITGKQLDL 
 
NtGDI   333 NVDLSAASAAEE 444 
NbGDI   333 NVDLSAASAAEE 444 
LeGDI   333 NVDLSAASAAEE 444 
AtGDI2  333 SVDLSAASAAEE 444 

Figure 12. Multiple sequence alignment of Rab GDI proteins. Nicotiana tabacum, NtGDI 

(TC3480),  Lycopersicon esculentum, LeGDI (TC162880), Arabidopsis thaliana, AtGDI2 

(At3g59920), Nicotiana benthamiana, NbGDI sequence obtained from sequenced N. 

benthamiana cDNA. Identical amino acids are shown with a black background and similar 

residues are shown with yellow text on a grey background. 
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Figure 13. Rab GDI proteins interact with the helicase domain of the 126 kDa replicase 

protein in a yeast two-hybrid assay. Shown is a graph of a quantitative β-galactosidase assay. 

All four Rab GDI proteins were expressed using full-length cDNA derived from Lycopersicon 

esculentum cv pilgrim, Arabidopsis thaliana ecotype shahdara, Nicotiana tabacum cv xanthi 

suspension cells or Nicotiana benthamiana. In all four assays, the Rab GDI protein was used as 

“prey” while either the wt helicase domain or empty pLexA vector was used as “bait.” The 

helicase domain expressed is composed of aa 814 to 1211 of the 126 TMV replicase protein. The 

full-length replicase protein was not used due to its poor solubility and expression in yeast and 

bacterial systems (data not shown). The empty vector or the pLexA vector containing the ETR1 

open reading frame were used as negative controls. ETR1 is an ethylene receptor and is used here 

as a non-interacting protein. Yeast were grown to an OD600 of 0.6 at 25ºC and incubated with a 

solution of X-gluc (5-bromo-4-chloro-3-indoxyl-beta-D-glucuronide) for one hour. OD was then 

taken at 420nm and 550nm to determine Miller units. Each bar represents the average of three 

reactions; error bars indicate the range. All Rab GDI proteins interact above the negative controls 

(Lex A empty and ETR1). 
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Figure 14. Co-immunoprecipitation of AtGDI2 and 126 kDa replicase protein 

in leaf tissue. Shown is a co-immunoprecipitations of the AtGDI2 protein and the 

126 kDa replicase protein. N. benthamiana tissue was inoculated with TMV and 

infiltrated at two days post-inoculation with pBIN expressing AtGDI2 with an 

epitope tag from the influenza hemagglutinin protein. Samples were taken at four 

days-post-inoculation. The precipitation was performed using Agarose A bead and 

anti-HA antibodies. Washed samples are shown above in Western blots with 

primary antibodies as indicated. The replicase protein can be seen as a distinct band 

only in the sample with both proteins and the precipitating antibody.  The anti-HA 

blot is shown here to indicate expression of the AtGDI2 protein in the samples. 
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Figure 15. Silencing of NbGDI enhances TMV:GFP infection. N. benthamiana plants were 

inoculated with wt TRV or TRV-containing sequences from either NbGDI or Phytoene 

desaturase (PDS). PDS is used as a visual marker of successful silencing as it produces a 

white, bleached phenotype. Plants were then inoculated with TMV:GFP virions (20 μL of 

0.1 mg/mL per leaf). Foci were counted six days post-inoculation. Silencing was 

confirmed using semi-quantitative RT-PCR. 

 

a) Silenced N. benthamiana tissue seven days post-inoculation with TMV:GFP taken using a long 

wavelength UV lamp and a Tiffen™ 58 mm Yellow2 wavelength filter on a Cannon EOSD60 

digital camera with a tripod. 

 

b) Descriptive statistics of the number and size of TMV:GFP lesions seen six days post-

inoculation. Data represents two independent experiments with six leaves per experiment. The 

size of the foci were measured for 40 lesions in the same experiment. T-test values were 

calculated based on a two-tailed, equal variance, un-paired t-test. Based on the calculated T-

value, there was a significant difference between the number of foci on the TRV vector control 

leaves and the NbGDI-silenced leaves; there was not a significant difference in lesion size. 

 

c) Seen is a 1% agarose gel of RT-PCR products from Rab GDI-silenced, or wild-type, 

uninfected tobacco plants. Samples were taken at 27, 30, and 33 cycles of the PCR machine. 

eEIF1A primers were used to determine total RNA used. RNA was extracted using the Trizol™ 

reagent (Invitrogen) and cDNA was created using the SuperScript™ First-Strand Synthesis 

System (Invitrogen). One microgram of RNA for each sample was used to create the cDNA. 

Primers were used to amplify either a 300 bp fragment of eEF1A cDNA or part of the Rab GDI 

cDNA (bp 300-700).
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GDI proteins interact with the replicase proteins during infection, but also they modulate 

the susceptibility of the cell to initial infection. In contrast, there was no statistically 

significant increase in the size of the infection sites (Figure 15a and b). Interestingly, total 

wt TMV accumulation in inoculated leaves was the same between NbGDI-silenced and 

TRV vector control plants (Figure 16). The absence of change in TMV accumulation and 

size of local lesions indicates that the viral movement (cell-to-cell and systemic) is not 

affected by the absence of Rab GDI proteins. 

 

Silencing of LeGDI induces cell death 

To determine if similar effects are seen in other TMV hosts, tomato plants, L. esculentum 

cv Tiny Tim and cv Pilgrim were silenced for LeGDI. Unlike NbGDI-silenced tobacco 

plants, a phenotype was seen on silenced leaves (Figure 17b). Small necrotic lesions 

appeared on the leaves. Trypan blue staining confirmed that these regions were composed 

of dead cells (Figure 17a). Since TMV:GFP does not maintain consistent GFP expression 

in tomato plants, wt TMV was used to test for an effect on TMV infection. There was no 

difference in total viral accumulation in silenced, inoculated tissues (Figure 18). Because 

Rab GDI proteins are so similar to each other, silencing one Rab GDI gene may also 

silence all the other Rab GDI genes as well. LeGDI is highly similar (greater than 95%) 

to another tomato protein (TC174162), possibly another Rab GDI protein. The cell death  

seen here may be indicative of both Rab GDIs being silenced, which tomato plants may 

be less tolerant of than N. benthamiana plants. Similarly, when Salk t-DNA knock-out 

line of the two Arabidopsis Rab GDIs (AtGDI1 and AtGDI2) were crossed, no seed was 

ever recovered from three different attempts, confirming that these proteins are essential 
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Figure 16. No clear difference in TMV coat protein accumulation in NbGDI-silenced 

Nicotiana benthamiana tissues. NbGDI-silenced and TRV vector control tobacco leaf tissues 

were manually inoculated with 20μl of 0.01mg/mL wt TMV. Inoculated tissues were collected 

two and four days post-inoculation. The tissue was ground in phosphate buffer (pH 7.0). Total 

protein concentration was determined using a Bradford assay. Five micrograms of protein were 

loaded for each sample onto an SDS polyacrylamide gel and blotted with anti-CP antibody. 

Shown are blots of the same plants at two (a) and four days post inoculation (b). The bands were 

measured and the average for each blot is seen in (c). These data are representative of at least 

three independent samples and each set of data showed no distinct difference in coat protein 

accumulation between the two groups, indicating that affect of Rab GDI silencing are only on 

initial establishment of infection rather than maintenance or movement of infection. 
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Figure 17. L. esculentum tissue silenced for Rab GDI (TC 162880) exhibits a cell death 

phenotype. L. esculentum plants were silenced using the Tobacco rattle virus (TRV) gene 

silencing system. The system takes advantage of Viral Induced Gene Silencing (VIGS) to target 

host mRNAs for destruction by expressing a small (300-500 bp) piece of target cDNA from RNA 

2 of the TRV. 

 

a) Sections of L. esculentum cv Tiny Tim silenced for Rab GDI show trypan blue staining. 

Sections of TRV-inoculated or Rab GDI-silenced L. esculentum cv Tiny Tim were stained with 

trypan blue and then destained with chloral hydrate. Positive staining indicates dead cells, as seen 

in the Rab GDI silenced tissue. Each bar indicates 100 μm. 

 

b) Phytoene desaturase (PDS)-silenced, Rab GDI (TC162880)-silenced, or empty TRV 

inoculated L. esculentum plants cv Pilgrim and cv Tiny Tim. PDS is an early enzyme of the 

carotenoid biosynthetic pathway that when silenced, produces a white, bleached phenotype, 

visible in the leaf in the middle of each picture. Because PDS produces such a visible phenotype, 

it was used to verify that the silencing system is working in the tomato plants. Plants were 

infiltrated with Agrobacterium tumefaciens carrying the TRV RNAs, and observed here 3.5 

weeks post-infiltration. Necrotic lesions were observed on the leaves of the Rab GDI-silenced 

plants, visible in the leaf in right side of the picture. 

 

c) RT-PCR of silenced L. esculentum cv Tiny Tim and cv Pilgrim. Seen is a 1% agarose gel of 

RT-PCR products from PDS-silenced, Rab GDI-silenced, or wild-type, uninfected tomato plants. 

There are comparable levels of eEF1A product among the three samples, with slightly lower 

levels in the Rab GDI-silenced plant. RNA was extracted using the Trizol™ reagent (Invitrogen) 

and cDNA was created using the SuperScript™ First-Strand Synthesis System (Invitrogen). One 

microgram of RNA for each sample was used to create the cDNA. PCR products are seen here 
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after 35 cycles in a PCR machine. Primers were used to amplify either a 300 bp fragment of 

eEF1A cDNA or part of the Rab GDI cDNA (bp 300-700). 
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Figure 18. No clear difference in TMV Coat protein accumulation in LeGDI-silenced L. 

esculentum tissues. LeGDI-silenced and TRV vector control tomato leaf tissues were manually 

inoculated with 20μl of 0.5mg/mL wt TMV. Inoculated tissues were collected two and four days 

post-inoculation. The tissue was ground in phosphate buffer (pH 7.0). Total protein concentration 

was determined using a Bradford assay. Five micrograms of protein was loaded for each sample 

onto an SDS polyacrylamide gel, blotted, and detected with anti-CP antibody. Shown are blots of 

the same plants at two (a) and four days post-inoculation (b). The bands were measured and the 

average for each blot is seen in (c). These data are representative of at least three independent 

samples. Each set of data showed no distinct difference in coat protein accumulation between the 

two groups of plants. 

 



TRV
vector

LeGDI-
silenced

TRV
vector

LeGDI-
silenced

2 dpi

4 dpi

a)

b)

c)
Average coat protein accumulation in silenced, inoculated L. esculentum 

tissues

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2dpi 4dpi

Pi
xe

ls TRV vector
LeGDI-silenced

Coat protein accumulation in Rab GDI-silenced L. esculentum tissue 

125 kDa

37 kDa

17 kDa

125 kDa

37 kDa

17 kDa

80



 

 81 
 

and their absence may be lethal. The absence of a change in viral accumulation in the 

LeGDI-silenced tomato plants may to due to cells actively silencing Rab GDIs, and then 

dying. Since protein samples are equilibrated on total protein levels, silenced, dead cells 

would have no effect on viral accumulation as seen by a Western blot.  

Silencing NbGDI produces endomembrane changes similar to TMV infection 

Since Rab GDI proteins regulate the activity of essential proteins in vesicle trafficking 

and because TMV replicates on and alters host membranes, changes to the 

endomembrane system were examined in Rab GDI-silenced and TMV infected cells. To 

monitor changes to the endomembrane system, several membrane marker proteins were 

chosen based on their localization and expressed as GFP fusion proteins (see Appendix I 

for more information on these proteins). Each protein targets a different intracellular 

membrane and has been previously characterized. Transgenic plants constitutively 

expressing the marker protein from a 35S promoter were created and stably transformed 

lines were selected based on GFP expression. As depicted in Figure 19, the proteins 

localize to parts of the cell as previously characterized, although the GFP:HDEL 

localized to the nucleus of the cell as well as the ER, possibly due to the small size of the 

protein (~26 kDa). 

 

Each of these transgenic plants was examined for changes due to TMV infection and 

NbGDI silencing. During TMV infection, there were clear changes to the vacuolar 

membrane and the endoplasmic reticulum. Plants were inoculated with a TMV:dsRed 

virus that expresses dsRed express (a red fluorescent marker protein) from a CP 

promoter. On the leaves that have been inoculated with the TMV:dsRed virus, infection 
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Figure 19. Marker proteins developed for intracellular organelles. Seen on the right are 

confocal microscopy images of GFP fusion proteins transiently expressed in N. benthamiana leaf 

epidermal tissue. Each fusion protein was expressed from the pBI121 vector with a single 35S 

promoter. Leaf tissue was infiltrated with Agrobacterium tumefaciens carrying the modified 

pBI121 vector and images were monitored 40-46 hours later. GFP is expressed as either N- or C-

terminal fusions, as indicated to the left of each image. In the middle-left column is the organelle 

to which each protein has been shown to localize. The middle-right column is the GFP fusion 

proteins and the right column is the same cells imaged using bright light microscopy. Bars 

indicate 10 μm. 
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foci develop. These foci are areas where a one or two cells are initially infected with the 

virus. The virus establishes an infection and then moves cell-to-cell towards neighboring 

cells from those initial cells in a circle-like pattern. What develops is an area of infection 

where the cells in the center have been infected by the virus for a longer time than those 

on the periphery, which is in this case marked by the dsRed express protein (Figure 20a). 

Cells in the middle of the foci at six to ten days post-inoculation are shown in Figures 20 

and 22. Previously, it has been shown that TMV replication occurs in close association 

with the host cell’s ER and alters the morphology of ER [26, 121]. Late in infection, large 

bodies known as x-bodies appear, composed of TMV RNA, proteins, host proteins, and 

ER-derived membranes [21]. Therefore, the changes to the GFP:HDEL transgenic plants 

are consistent with previous reports. Large bodies (average 13 μm), sometimes larger 

than the cell nucleus (average 11 μm) and composed of ER membrane, were seen within 

the cells (Figures 20b, c, and d). Also, cells that had been infected later and were on the 

outer edge of the infection foci exhibited small GFP:HDEL punctates at the periphery of 

the cell, which is consistent with the literature describing plasmodesmata (Figure 21) 

[67]. Since plasmodesmata are the main route of virus to travel from one cell to another, 

as had been suggested by previous work, the alterations seen to the ER are possibly to 

allow viral cell-to-cell spread [26, 66, 67, 122]. 

 

Changes to the vacuole during TMV infection have not been previously described. In 

mock-infected cells, an invaginated vacuolar membrane is seen with the GFP:AtVam3 

construct, which is consistent with previous reports of plant vacuoles (Figures 19, 22b, 

and 22d) [123]. The fusion protein is also seen surrounding small mobile spheres,  
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 Figure 20. The ER is altered by TMV infection. 

 

a) TMV:dsRed infection foci. Shown is a single TMV infection area in N. benthamiana leaf 

epidermal tissue. Cells were imaged using the 10x dry lens and the 543nm and 488nm 

wavelengths to image GFP fusion proteins and dsRed express. The image is combined from 

dsRed, GFP, and bright light images. The dsRed is being expressed from the TMV genome 

inoculated into a transgenic N. benthamiana plant expressing GFP:HDEL constitutively. The box 

indicates where in the foci the images in b) were taken; the closer to the middle of the area, the 

older the TMV infection. 

 

b, c, and d) Infected GFP:HDEL plants from center of infection area. Shown are three 

images of cells taken from the center of an infection area as indicated by a). Arrows indicate 

formations that only appear in infected plants and are reminiscent of previously described x-

bodies [21, 121]. N indicates the nucleus of the cell and the bar indicates 10 μm. 
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Figure 21. ER vesicles appear at the cell periphery during initial stages of infection. At the 

top is an image of a TMV:dsRed area in GFP:HDEL N. benthamiana plants. The image is 

combined from dsRed, GFP, and bright light images. The box indicates where the lower image 

was in relation to the foci. Since the cell is at the periphery of the infected area, the infection is at 

an earlier stage than those seen in the previous figure. The lower image depicts the GFP:HDEL 

protein in small aggregates, possibly vesicles, at the periphery of the imaged cell. The paired 

aggregates at the edge of the cell are similar to images identified as labeling the plasmodesmata 

of the cell [124]. 
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Figure 22. TMV infection alters vacuolar morphology. Seen are confocal images of 

TMV:dsRed or mock infected GFP:AtVam-3 transgenic N. benthamiana plants. Cells were 

imaged as previously described. 

 

a) and c) are TMV-infected plants. AtVam-3 localizes to the vacuolar membrane, or tonoplast of 

the cell. Arrows indicate aggregates of spheres with vacuolar membrane that, although present in 

both mock (b and d) and TMV-infected (a and c) tissue, appears to aggregate only in TMV-

infected tissue. The vacuolar membrane has not been previously shown to be altered during TMV 

infection. In e) an image of a TMV:dsRed infection area is shown with a box to indicate the 

location of the images taken. Bars indicate 10 μm. 
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possibly vesicles. During TMV infection, the small vesicle-like bodies appear to 

accumulate to a greater extent than in mock-infected cells (Figure 22). Preliminary data 

of three independent sets of confocal images indicates that there is about a four-fold 

increase in the number of vesicle-like structures in TMV- versus mock-infected cells.  

 

Interestingly, when NbGDI was silenced in these marker plants, there was no noticeable 

effect on either the GFP:HDEL or the Sar-1:GFP transgenic plants which target the ER 

(data not shown). However, in the GFP:AtVam3 plants there was about a two-fold 

increase in vesicle-like body accumulation based on preliminary data of five different sets 

of confocal images, which is similar to what was seen with the TMV-infected plants, 

indicating a possible role for Rab GDI proteins in membrane rearrangement during TMV 

infection (Figures 22 and 23). 

TMV infection alters NbGDI:GFP expression and localization 

Since the absence of Rab GDI proteins seems to induce morphological changes to the cell 

similar to TMV infection, the next question was whether TMV affects Rab GDI proteins, 

possibly reducing their levels. To directly determine the effects of TMV on Rab GDIs 

during infection, NbGDI:GFP transgenic plants were created. NbGDI:GFP was expressed 

from a double 35S promoter with a NOS terminator. During TMV infection, NbGDI:GFP 

expression was altered as compared to the mock-inoculated plant, when measured by 

confocal microscopy and by Western blot (Figure 24). Reduction of Rab GDI proteins 

during infection is consistent with the previous observation that silencing of this protein 

produced changes similar to infection. 
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Figure 23. NbGDI-silenced plants have a vacuolar morphology similar to TMV infection. 

 

a) Shown are confocal images of transgenic GFP:AtVam-3 N. benthamiana plants. The cells 

were imaged as previously described. Shown are TMV-or mock-infected cells on the bottom and 

NbGDI-silenced or TRV vector on the top. Both the NbGDI-silenced and the TMV infected cells 

show aggregation of vacuolar membrane spheres, possibly vesicles (white arrows), which are 

absent in the mock and vector controls. Bars indicate 10 µm. 

 

b) Seen are samples from a semiquantitative RT-PCR of GFP:AtVam-3 tissue either silenced for 

NbGDI or with the TRV vector alone. PCR reactions were performed with 1µg of cDNA from 

leaf tissue and samples were taken at several cycles. PCR products were run on a 1% agarose gel, 

stained with ethidium bromide, and imaged with AlphaImager transilluminator and camera 

(Alpha Innotech Corp.). Primers for ef1A were used as a control for total RNA concentration. 

Levels of NbGDI were reduced in NbGDI silenced tissue as compared to the vector control. 
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Figure 24. AtGDI2:GFP is altered by TMV infection. 

 

a) Confocal images of transgenic AtGDI2:GFP N. benthamiana plants show altered 

expression in infected cells. Cells were imaged as previously described using a 10x dry lens. 

AtGDI2:GFP plants were rub inoculated with either 20μl of 0.1 mg/mL of TMV:dsRed or 20μl 

phosphate buffer (pH 7.0). On the left is mock-inoculated tissue and on the right is TMV:dsRed-

inoculated tissue six days post-inoculation. The dsRed is not shown here to visualize the change 

in AtGDI2:GFP expression. The same detection settings were used in both images to show the 

changes in expression. 

 

b) Western blot of wt TMV-infected transgenic AtGDI2:GFP N. benthamiana plants. Tissue 

was collected at six days post-inoculation, ground in Laemmli loading buffer (1mg tissue/1µL 

buffer), and loaded onto a polyacrylamide gel. The gel was blotted onto nitrocellulose; bands 

were detected using anti-GFP antibodies. The far right lane is the protein ladder (Biorad). Protein 

sizes are indicated to the right of the ladder. Note that protein AtGDI2:GFP protein accumulation 

is lower in infected tissues. 
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To characterize further how NbGDI:GFP might be altered during TMV infection, further 

confocal microscopy was performed to determine if protein localization is also altered 

(Figure 25). Since initial experiments on TMV-infected tissue showed NbGDI:GFP 

localizing to large aggregate bodies similar to what was observed for the ER, 

NbGDI:GFP TMV- and mock-inoculated samples were stained with a rhodamine ER 

stain (rhodamine B hexyl ester). In mock-infected cells, there is incomplete 

colocalization between NbGDI:GFP and the ER stain. NbGDI:GFP appears around small 

vesicle-like structures and at the periphery of the cell. Rab GDI proteins are involved in 

vesicle trafficking throughout the host cell, not just with the ER, so this localization is 

consistent with its function. In infected cells, large bodies form which contain 

NbGDI:GFP and fluoresces with the ER stain. As seen with the TMV-infected 

GFP:HDEL plants, these bodies are similar to x-bodies that have been previously 

described, indicating a possible role for Rab GDIs in replication or replicase complex 

formation [21, 121]. 
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Figure 25. TMV infection alters AtGDI2 localization. Shown are confocal images of mock- 

and TMV-infected transgenic AtGDI2:GFP N. benthamiana plants. Images were taken ten days 

post-inoculation. The two TMV-infected images were from two independent samples. The 

samples were stained with rhodamine B hexyl ester by vacuum infiltration of a 1μg/mL solution; 

rhodamine B hexyl ester localizes to the ER and mitochondria of cells. The confocal images were 

taken as previously described. The left column shows the samples that were excited with a 543nm 

laser. The right column shows samples excited with a 488 nm laser and the middle column is the 

combined images. The top row of images is of mock-infected cells. Note that there is partial 

colocalization of the ER stain and the AtGDI2:GFP protein. The lower two rows are of TMV-

infected cells. White arrows indicate formations not seen in mock-infected cells and which shows 

both the ER stain and the presence of the AtGDI2:GFP protein. As seen in the GFP:HDEL 

transgenic plants, these formations occur only in infected cells and are reminiscent of x-bodies 

which have been previously reported [21, 121]. 
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Methods and materials 

Yeast two-hybrid: Saccharomyces cerevisiae strain L40 was transformed with both 

pGAD (Clontech) containing the “prey” and pLexA containing the “bait” construct. 

Quantitative assay: Yeast containing both bait and prey constructs were grown in liquid 

media to an OD600 of 0.6. One mL of culture was pelleted and resuspended in 100µL of 

Z-buffer. Added to the culture was 10µL of 0.1% SDS, 20μL of chloroform, and 200μL 

of ONPG (ortho-nitrophenyl-β-galactoside). Samples were incubated for 30 minutes at 

25º C. The reaction was stopped by adding 500μL 1M Na2CO3. The OD was measured at 

both 420 nm and 550 nm and Miller units were calculated. X-gal solution: 5μL Triton X 

100, 100 μL X-gal (5-methyl-4-chloro-3-indoly-B-D-galactosidase) (20mg/mL), 5mL Z-

buffer; Z buffer (1L): 16.1g Na2HPO4, 5.5g NaH2PO4, 0.7g KCl, 0.25g MgSO4, 2.7 mL 

β-mercaptoethanol 

 

RT-PCRs: RNA was extracted as per manufacturer’s protocols using the Trizol reagent. 

One microgram of RNA was pretreated with RQ1 DNase (Promega) and then reverse-

transcribed using the SuperScript® First-Strand Synthesis System (Invitrogen). Four 

microliters of the reaction were used for PCR analysis. For semiquantitative analysis, a 

50-μL PCR reaction was used to amplify fragments of the gene as indicated. Four 

microliters of sample were removed at the end of 27, 30, and 34 cycles. These cycles 

were used based on previous semiquantitative PCRs, which used a range of between 18 

and 36 cycles. Samples were visualized via agarose gel electrophoresis and photographed 

using AlphaImager (Alpha Innotech). For a list of primer sequences used to amplify gene 

segments, please refer to Appendix I. 
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Pull-down assays: Fifty-mL cultures of A. tumefaciens containing individual pBIN 

vector alone, or the 126 kDa helicase with an HA tag, or AtGDI2 with a GFP or HA tag 

were grown overnight at 30°C in LB media containing antibiotics, 10 mM MES and 20 

μM acetosyringone. Agrobacterium cells were pelleted and resuspended in infiltration 

media (10 mM MgCl2, 10 mM MES, 200 μM acetosyringone) at an O.D. of 0.5. For 

coinfiltration, equal volumes of Agrobacterium cultures were used and infiltrated into 

three-week-old N. benthamiana seedlings. For infiltration of infected tissue, N. 

benthamiana plants at two days post-inoculation were infiltrated with Agrobacterium 

culture containing pBIN AtGDI2:GFP on inoculated leaves. Leaf samples were taken 40-

48 hours post-infiltration. 

 

Leaf samples were ground in extraction buffer on ice using a mortar and pestle. Samples 

were then centrifuged at full speed for ten minutes. Supernatant was removed. One mL of 

supernatant was placed in a 1.5mL tube and preincubated with 30 μL of pre-washed 

Agarose A beads. Samples were incubated with beads, shaking at 4º C for 2-3 hours. 

Samples were centrifuged at 4,000 G for one minute and the supernatant was removed 

and placed in new 1.5 mL tube. The sample was incubated with or without the 

appropriate antibody, shaking at 4º C overnight. The next day, beads were collected by 

centrifugation at 4,000 G for one minute and the supernatant was discarded. The samples 

were washed twice with wash buffer and resuspended in Laemmli sample buffer for 

Western blot analysis. 
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Wash buffer: 25mM Tris (pH 7.5), 250mM NaCl, 2mM EDTA, 0.05% Triton x-100, 

1mM Phenylmethanesulfonyl fluoride (C7H7FO2S). 

 

Extraction buffer: 50mM Tris (pH 8.0), 150mM NaCl, 0.5% Triton x-100, 0.2% β-

mercaptoethanol, 5% glycerol, 10 µL/mL protease inhibitor cocktail (Sigma-Aldrich), 

1mM Phenylmethanesulfonyl fluoride (C7H7FO2S). 

 

Imaging of whole leaves: Whole leaves were removed from the plant and imaged using a 

long wavelength UV lamp and a Tiffen™ 58mm Yellow2 wavelength filter on a Canon 

EOSD60 digital camera with a tripod. Images were taken ten days post-inoculation with 

TMV:GFP. 

 

Confocal imaging: Epidermal tissue was mounted using water and imaged using a Zeiss 

LSM510 laser scanning confocal microscope system with 10x NA 0.8 dry and 63x NA 

1.2 water-immersion lenses (Carl Zeiss Inc., Thornwood, NY). Excitation sources were 

488 nm for GFP and 543nm for dsRed. Images were modified in Zeiss LSM Imager 

Examiner and processed for printing in Adobe Photoshop (Grand Prairie, TX). 

 

Trypan blue staining: Tomato leaf tissue was placed in a 20mL capped glass tube. Three 

milliliters of trypan blue solution (0.67 mg/mL trypan blue in 1:1:1:1:6 

(water:glycerol:lactic acid:phenol:ethanol; vol:vol)) were added. Samples were incubated 

in boiling water for two minutes. After cooling, the trypan blue solution was removed and 

replaced with 5mL of chloral hydrate (1 kg /400 mL of water) and destained for 24 hours. 



 

 102 
 

The solution was then replaced with fresh chloral hydrate and destained for an additional 

one to two days. Cells were imaged using a light microscope attached to a digital camera. 

 

TMV infection: Leaves from either Rab GDI-silenced plants or TRV vector control 

plants were dusted with carborundum and mechanically inoculated with 20μL of 0.1 

mg/mL wt TMV for tomato or 20μL of 0.05 mg/mL wt TMV for tobacco plants. For 

TMV:GFP, 20 μL of 0.5 mg/mL of purified virus was used for manual inoculation. Each 

virus assay sample represented leaf tissue taken from two independently inoculated 

leaves. Samples were ground either in 0.1 M Sodium phosphate buffer (pH 7.0) or 

directly in Laemmli sample buffer.  

 

Coat protein Western blots: Protein levels loaded onto denaturing PAGE gels were 

equalized by determining total protein levels via Bradford assay. Five micrograms of 

protein were loaded per well and were separated by PAGE. Polyacrylamide gels were 

blotted to nitrocellulose membranes. Blotted proteins were probed with anti-TMV-CP 

antibody as previously described. TMV CP levels were quantified using ImageJ software 

(National Institutes of Health). 

 

Marker proteins: Marker proteins were created as either C-terminal or N-terminal fusion 

proteins as indicated (Appendix I) and cloned into the pBI121 binary expression vector. 

pBI 121 was modified to replace the β-glucoronidase gene with a short linker sequence 

that contained several restriction endonuclease sites (Appendix I). pBI 121 contains a 

single 35S promoter and NOS terminator. 
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Transgenic tobacco plants: Protocol to make transgenic plants was adapted from [125]. 

Agrobacterium tumefaciens, strain GV 3101, carrying the modified pBI 121 plasmid with 

the marker protein was grown up in a 5mL culture of LB containing 25μg/mL 

gentamycin, 50μg/mL rifampicin, and 50μg/mL kanamycin. Surface-sterilized leaf tissue 

was incubated with the Agrobacterium and incubated on regeneration plates. Two days 

later, the leaf tissue was transferred to new plates containing 400μg/mL cefotaxime. Two 

days later the leaf tissue was transferred to new plates containing 400μg/mL cefotaxime 

and 50μg/mL kanamycin. Leaf tissue was transferred to new plates with 400μg/mL 

cefotaxime and 50µg/mL kanamycin and monitored for callus formation. After calluses 

were formed and had established at least two small leaves, the calluses were cut from the 

original leaf tissue and moved into magenta boxes containing rooting media. Once roots 

had been established, the plants were removed from the rooting media and placed in soil. 

Plants were maintained in planter flats with domes to increase humidity for two weeks 

and gradually introduced to the humidity of the growth chambers. All chambers were 

maintained at 23ºC with a 12-hour photoperiod at 55% humidity. 

 

Regeneration media: Murashige and Skoog Basal Salt Mixture (1x), 1.16mg/mL 6-

benzylaminopurine (C12H11N5), 0.1mg/mL 3-indoleacetic acid (C10H9NO2), 30g/L 

sucrose, Gamborg’s Vitamin Solution (1x), and 8g/L agar (pH 6.0). 

 

Rooting media: Murashige and Skoog Basal Salt Mixture (1/2x), 10g/L sucrose, 

0.2mg/mL 3-indoleacetic acid (C10H9NO2), 8g/L agar (pH 5.7). 
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Virus strains: The U1 strain of TMV was used for all assays and is referred to as the wild 

type sequence. The strain is maintained in tobacco and all cDNA clones are originally 

based on work from [116]. Inoculation of wt virus was performed with purified virions; 

20 μL of 0.05mg/mL was inoculated onto tomato leaf tissue and 20 μL of 0.005 mg/mL 

was inoculated onto in N. benthamiana tissue. 

 

TMV:GFP and TMV:dsRed: GFP or dsRed express was expressed from the TMV30B 

plasmid with the fluorophore PCR-modified to contain Pac-1 and Xho-1 enzyme sites. 

The plasmids were transcribed using a T7 RNA polymerase reaction and inoculated into 

N. benthamiana plants. The plants were monitored for fluorescence and later virions were 

purified as previously described [126]. Infection with these viruses was performed via 

rub inoculation of 20 μL of 0.5mg/mL of purified virions. 

 

Tobacco rattle virus (TRV) system: The Tobacco rattle virus VIGS vectors (pTRV1 and 

pTRV2) were kindly provided by Dr. S. P. Dinesh-Kumar, Yale University. The LeGDI 

ORF, NbGDI ORF, NtGDI ORF, and AtGDI2 ORF were PCR-modified to contain 5’ 

EcoR1 and 3’KpnI sites, inserted into a similarly-digested pTRV2 plasmid and 

transformed into A. tumefaciens strain GV3101. For VIGS assays, 50 mL cultures of A. 

tumefaciens containing individual TRV vectors were grown overnight at 30°C in LB 

media containing antibiotics, 10mM MES and 20μM acetosyringone. Agrobacterium 

cells were pelleted and resuspended in infiltration media (10 mM MgCl2, 10 mM MES, 

200μM acetosyringone) at an OD600 of 0.5. A. tumefaciens containing pTRV2-Rab GDI 

or the unmodified empty pTRV2 vector were mixed with an equal volume of cells 
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containing the pTRV1 vector and syringe-infiltrated into the cotyledons of two-week-old 

tomato seedlings or two-week-old N. benthamiana seedlings. 
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Discussion 

Interactions between a virus and its host can determine the establishment and course of an 

infection. Here, I have investigated one particular interaction between AtGDI2 and the 

126 kDa replicase protein. The two proteins interact in vitro in a yeast two-hybrid assay 

and in vivo in infected tissue. This interaction is not unique to Arabidopsis, but is also 

present in other TMV hosts, such as tobacco and tomato. Using the TRV-based gene 

silencing system, silencing of N. benthamiana Rab GDI resulted in an enhancement in 

the number of TMV infection sites, but no corresponding increase in viral spread and 

accumulation. Because TMV:GFP is used as a visual marker of infection areas and 

spread, it is important to note that because this virus carries the extra GFP gene on its 

genome, it requires a higher concentration of virions to infect plants and moves slower in 

systemic leaves than wt TMV. This means that TMV:GFP is an impaired virus compared 

to wt. It is possible that the increase in infection sites on NbGDI-silenced plants makes a 

more noticeable difference with impaired viruses. However, the data still suggest that 

Rab GDI proteins play a role in TMV infection in initial establishment of infection sites, 

but not in viral spread. This effect is unique in that most host proteins identified affect 

multiple stages of infection, not just the initial establishment of infection. 

 

In tomato plants, on the other hand, silencing of LeGDI resulted in necrotic lesions. 

Because Rab GDI transcripts have such a high similarity to each other, silencing of one 

Rab GDI may silence all of the Rab GDI transcripts in a host. The necrotic lesions seen in 

tomatoes may be a result of silencing multiple Rab GDI genes, which tomato plants may 

be less tolerant of than tobacco plants. Studies using GFP- or dsRed-expressing TMV 
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could not be done in tomato plants because the virus very quickly reverts to wt and loses 

its fluorescent marker. However, wt virus accumulation in LeGDI-silenced plants was the 

same as the vector control. One possible reason that there was no effect on TMV 

accumulation is that the silenced cells had already gone through cell death and thus there 

was no effect on the virus. 

 

Because Rab GDI proteins are essential to vesicle trafficking and because TMV 

replicates in close association with biological membranes, marker proteins were created 

both to examine the effects of TMV on the host cell’s endomembrane system and to 

determine the effect that Rab GDI proteins have on that same system. Predictably, TMV 

alters ER morphology during infection, producing large structures that consist of ER-

derived membranes, possibly indicative of x-bodies. Also, ER-derived vesicles appeared 

at the periphery of the cell earlier in infection, which is indicative of plasmodesmata. A 

cell’s ER traverses the plasmodesmata and connects neighboring cells. TMV is known to 

travel cell-to-cell via the plasmodesmata and the TMV movement protein has been shown 

to interact with components of the plasmodesmata [23]. Therefore, changes to the ER 

near plasmodesmata may be indicative of a role for the ER in TMV movement. 

Significantly, the vacuolar membrane was affected by TMV infection, which has not 

been previously reported. In infected cells the vacuole, which is very active with vesicle-

like structures moving throughout the cell, appears deficient in the fusion of these 

vesicles to their target membranes, which leads to the accumulation of these vesicle-like 

structures. There was no effect on the Golgi, which is surprising since work has shown 

that the Golgi contributes to ER remodeling and is physically in contact with the ER at 
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times [127]. There was also no apparent affect on the proteasome, nor on the early 

autophagy marker. 

 

When NbGDI was silenced in these marker plants, there was no apparent effect on the 

ER, which is significantly altered during TMV infection; however, in NbGDI-silenced 

GFP:AtVam3 plants, the vacuole exhibited a similar phenotype to TMV infection. In both 

cases, vesicle-like bodies accumulated and appeared to be impaired in their ability to fuse 

to target membranes. Additionally, TMV infection alters AtGDI2:GFP expression and 

localization. Protein expression is reduced in TMV-infected versus mock-infected cells. 

Late in infection, AtGDI2:GFP is seen in large bodies that colocalize with the rhodamine 

ER dye and are similar to the same structures seen in the GFP:HDEL-infected tissue. 

These structures are most likely viral replication complexes or their precursors that have 

been previously described. Because AtGDI2:GFP localizes to structures during infection 

that are most likely the sites of viral replication, and because silencing of this transcript 

alters the endomembrane system in a similar way to that seen in TMV infection, Rab GDI 

proteins may be playing a role in endomembrane rearrangement during infection and 

possibly in replication or replicase complex formation. 

 

Taken together, these data suggest a role for Rab GDI proteins in the establishment and 

possibly the cytological effects of TMV infection. Very few host proteins have been 

found, and none that interact with TMV, that only affect initial stages of infection. There 

are several proteins that are required for either replication or movement of TMV, but very 

little work has been done to understand what makes a particular cell more susceptible 
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than another to infection, even in the same host. Therefore, this interaction represents a 

unique opportunity to examine how viruses establish an infection and what makes one 

cell more susceptible than another. Below are two possible models for how this 

interaction may play a role in virus infection. In both models, TMV interacts with Rab 

GDI proteins to create an environment that is more favorable for the establishment of 

infection. 

 

First, the replicase proteins may be interacting with Rab GDI proteins to induce structures 

that are advantageous to TMV replication. Membranes are required for TMV replication 

and host membranes are altered during TMV infection. Also, a host protein, TOM1, is a 

transmembrane protein that localizes to the vacuole and interacts with the TMV replicase 

proteins [128, 129]. TOM-1 and its homologue, TOM-3, are required for TMV infection 

[71]. However, since TMV replicates in close association with the ER, there has been no 

evidence to indicate how a vacuolar protein contributes to replication in the ER. These 

vacuolar structures formed during infection, and NbGDI silencing may allow the TMV 

replicase proteins to interact with TOM-1 at a point before it reaches its final destination 

in the vacuole as it progresses through the secretory pathway. 

 

Another possibility is that the TMV replicase proteins may be interacting with Rab GDI 

proteins to slow down host protein synthesis. Reduction of host protein synthesis during 

viral infection is a common strategy of viruses, including TMV [130]. Reduction of host 

protein synthesis diminishes the production of defense proteins and reduces competition 

for host protein synthesis components, such as ribosomes and tRNAs. Because Rab GDIs 
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regulate vesicle trafficking, without them, Rab proteins would not be returned to their 

donor membrane, slowing down the entire secretory pathway. If the replicase proteins 

compete with host proteins (such as Rabs) for binding to Rab GDIs, there would be a 

significant reduction, but not elimination of Rab GDIs for use in the secretory pathway. 

This reduced pool of Rab GDI proteins would slow down the secretory pathway, 

including the production of many defense proteins, but not induce cell death, which could 

result from ER stress. The silencing of Rab GDIs through the VIGS system may reduce 

their protein to a level much lower than what is seen during TMV infection and tomato 

plants may be more sensitive to a loss in Rab GDIs than N. benthamiana plants, which 

results in necrotic lesions. Therefore, interaction with Rab GDI proteins may provide a 

way for the virus to out-compete the host for host cell components, slow down defense 

protein production, and avoid inducing cell death. 

 

Whatever the effect of the Rab GDI-replicase interaction, it is clear that it affects 

susceptibility to infection; however, many questions remain. Silencing of Rab GDI genes 

enhances TMV infection, which is different from most proteins that interact with TMV. 

This effect of Rab GDI silencing is quite curious. If turning this gene off enhances 

infection, why does the virus not do so to a greater extent? If Rab GDI proteins are so 

well conserved, is there a difference in this interaction with non-host species of TMV? If 

this interaction is important in susceptibility, could it help determine resistant versus 

susceptible hosts? The models presented above are not mutually exclusive and further 

work is necessary to identify and understand more completely the mechanism behind Rab 

GDIs’ involvement in establishment of TMV infection. Taken together, these data 
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indicate that this interaction represents an important part of how a virus can initially 

establish an infection in the first cells, change the host to be advantageous for replication, 

and possibly provide a competitive advantage to the virus. Exactly why some cells or 

some hosts are more susceptible to infection remains an area of active research and an 

important target for disease resistance strategies. 
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Chapter 4: Summary and Future Directions 

There are several steps to a viral infection: 1) entry, 2) disassembly, 3) translation and 

replication, 4) viral assembly, and 5) viral movement out of the cell. For the positive-

strand RNA virus TMV, entry is through mechanical wounding and changes in ion 

concentrations cause disassembly of the viral RNA from the coat protein subunits [11]. It 

has been shown that the replicase proteins are the first proteins translated and that 

efficient viral replication requires biological membranes [52]. The ER of the host cell 

becomes severely altered during the course of TMV infection [21, 121]. The infection 

process in an initial cell, and that of subsequent cells, is different with different 

constraints [67].  

 

There has been significant work devoted to understanding TMV viral entry and 

disassembly. However, how a single, or even a few, uncoated viral RNA molecules form 

into a replication complex, and how TMV takes advantage of biological membranes, are 

not understood. It is a big step from a few naked RNA molecules to a fully functioning 

viral replication complex.  

 

When leaf tissue is manually inoculated with TMV, not all cells inoculated will become 

infected. We do not fully understand why one cell is more susceptible than another to 

infection, even on the same plant. Understanding the initial establishment of infection and 

the question of susceptibility of a host cell to infection are integral parts to characterizing 

any viral infection and may represent an essential path to developing disease resistance 

strategies. This study strives to begin to answer a few of those questions.  
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In the first part of this study, TMV was altered in order to understand more fully how the 

replicase proteins localize to particular parts of the host cell during infection, and how 

that may contribute to viral infection. In the second part of this study, the host was 

manipulated in order to understand the role of a host protein involved in establishing 

TMV infection. 

Replicase proteins and their localization 

If a virus does not have the correct proteins and nucleic acids in the correct place at the 

correct time during infection, its ability to establish an infection and evade host defense 

systems can be severely compromised. It has been established that TMV replicates in 

close association with the ER, but its localization to the ER is not well understood. The 

current study identified a region essential in TMV localization (an ER localization 

domain) and examined several properties of the replicase proteins to understand what 

effect their localization has on viral infection. Three models have emerged from this 

work: 1) the ER localization domain identified in these studies may lie in an area of the 

replicase protein that is involved in interactions with host proteins; 2) the ER localization 

domain may not directly contribute to replication, but instead may act to enhance 

replication or increase the half-life of the replicase protein; 3) the ER localization domain 

may be part of an internal region of the replicase protein that does not directly interact 

with any host protein, but contributes to a favorable tertiary structure. 

 

One way to determine if the ER localization domain is involved in host protein binding 

would be to investigate interactions with known host proteins. TOM1 is the best-known 

candidate host protein to investigate, and the ER localization domain overlaps with a 
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region originally identified to bind to TOM1. Work has already been done to study this 

interaction in the context of a yeast two-hybrid system. Since both TOM1 and the 

replicase proteins may localize to membranes, a yeast two-hybrid system, which relies on 

nuclear translocation, is not the best system to study this protein-protein interaction. 

Instead, a split yellow fluorescent protein (YFP) system, or bimolecular fluorescent 

complementation assay (BMFC), would allow for in vivo detection of an interaction and 

allow for both proteins to localize normally [131]. In this system, the C-terminal and N-

terminal portions of YFP are fused, one to either protein, and coexpressed in the same 

cell. When the two portions of YFP are in close proximity to each other, the YFP emits 

light when excited. Each of the previously described mutations could be tested for 

decreased interaction with TOM1. 

 

Also, in this study, Rab GDI proteins were determined to be important for establishment 

of initial infection. The same split YFP system could be used to determine if alterations to 

the ER localization domain alter these host-protein interactions. If a loss of interaction 

between the replicase and either host protein corresponds to decreased replication or 

movement, it would support the hypothesis that the ER localization domain acts by 

interacting with host proteins. To this end, a set of split YFP expression vectors has been 

developed with multiple cloning sites to allow for both N- and C-terminal fusions of 

either part of the YFP to both proteins tested. Cloning for these constructs is ongoing. 

 

To determine if the ER localization domain acts to increase half-life or decrease 

degradation of the replicase proteins, proteins with different half-lives within the cell 
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could be expressed as GFP fusion proteins with the ER localization domain fused in 

between the GFP tag and the protein. If expression levels increase with the addition of the 

ER localization domain, it may be acting as a translational enhancer. To determine if the 

half-life of the protein is affected, the same GFP fusion proteins could be expressed in 

transgenic plants and half-lives determined. 

 

Because of the difficulty of expressing and purifying the TMV replicase proteins, there is 

no resolved structure for the proteins. Therefore, determining if the ER localization 

domain is part of an internal region of the replicase proteins is problematic. Problems 

arose in these studies because, although point mutations to alanine are a proven way to 

test the function of those amino acids in the context of the protein or to test the function 

of the domain, without structural data, it is harder to predict which amino acids to mutate 

and how. Mutating amino acids to change their charge or polarity might have produced 

data that better clarifies the mechanism of function for the ER localization domain.  

 

In the future, more careful consideration of what charges or polarities would be most 

appropriate to investigate the function of this ER localization domain would be a more 

effective strategy. Also, sequencing mutant viruses after they have infected the plants 

would yield better insight into those mutants by determining possible compensatory 

mutations or reversions. In all of the localization assays, the transient expression in onion 

epidermal cells provided good visual data, but there were not high enough expression 

levels to confirm the constructs using a Western blot. Another method of transient 

expression might be better for confirming that the fusion proteins were still attached to 
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the GFP tag. However, the replicase protein is difficult to express in any system outside 

of the virus, so it is unclear if methods such as Agrobacterium infiltration would yield 

better results. 

 

There are many questions left to be answered about how the ER localization domain acts 

and how that affects TMV replication, infection ,and subsequent symptom development. 

Replicase proteins are complex proteins with multiple domains that seem to function at 

several different stages during infection, from silencing suppression to membrane 

remodeling and cell-to-cell movement. Previous work on Tomato mosaic virus has even 

shown that two different populations of replicase proteins may exist within a host cell—a 

membrane-bound and a cytosolic population. Altering the ratio of these populations 

impairs viral replication [132]. The current studies have attempted to dissect the function 

of the replicase proteins in the context of the whole virus. As more data are gathered 

about the structure of the replicase proteins, more accurate predictions can be made as to 

the role of this domain and, consequently, better-targeted modifications can be made. 

 

Characterization of a virus-host interaction: Rab GDI proteins and the TMV replicase 

On the host side, Rab GDI proteins were examined for their role in TMV infection. An 

interaction between the TMV replicase proteins and Rab GDIs was established. Yeast 

two-hybrid data indicate that this interaction is not unique to Arabidopsis thaliana but 

also occurs in tobacco and tomato species. A model of this interaction can be seen in 

Figure 26.  
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Rab GDI proteins are essential regulators of vesicle trafficking (Figure 3) and when their 

transcripts are silenced in tomato plants, necrotic lesions form. In tobacco, silencing Rab 

GDI enhances TMV infection sites compared to the control, but there is no change in 

viral accumulation or movement, indicating that Rab GDI may be affecting TMV 

infection only at an early stage. Rab GDI-silenced cells showed a cellular phenotype 

similar to that of TMV-infected cells. Also, during infection, Rab GDI proteins localize 

to ER-derived structures similar to those described as sites of viral accumulation (x-

bodies), indicating a possible role in viral replication or replicase complex formation [21, 

122]. Taken together, these data suggest that TMV may alter Rab GDI proteins to make 

the host cell a better environment for TMV infection. There are several hypotheses, 

which are not mutually exclusive, as to how Rab GDI proteins may play a role during 

infection: 1) The virus may bind to Rab GDI proteins and alter host membranes to be 

more favorable for replication, and possibly use Rab GDIs to help localize to membranes 

(Figure 27); 2) binding to Rab  
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Figure 26. Model of 126 kDa replicase protein’s interaction with Rab GDIs during infection. 

Seen is a modification of Figure 3 to show how the 126 kDa replicase protein might be 

interacting with the Rab GDI proteins. Instead of binding to Rab (GDP) proteins to ferry them 

back to their donor membranes, Rab GDI proteins bind the 126 kDa protein. The implications of 

this interaction are discussed in the text; however, in all models there is a decrease in the 

cytosolic Rab (GDP) population and an increase in the membrane-bound Rab (GDP) population. 
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 Figure 27. Model of Rab GDI involvement in host cell membrane rearrangement during 

TMV infection. Shown is a model of how Rab GDI proteins may be involved in 

membrane rearrangement during TMV infection. The 126 replicase protein (red spheres) 

binds to Rab GDI proteins (green arcs) and prevents them from recycling Rab GDP 

proteins (blue octagons). There is a build-up of Rab proteins in host membranes and Rab 

proteins may activate (purple octagon) in the incorrect membrane. The decrease in 

available Rab GTP proteins in the correct membrane may result in membrane structures 

that do not fully form or that form without a correct Rab protein. These membrane 

formations would allow an increase in surface area for TMV replication and might allow 

the TMV replicase proteins to bind to a host membrane anchor protein such as TOM1 

(green curved line). Viral replication complexes would then be able to form on 

membranes. Also, the Rab GDI proteins may be providing a way for the TMV replicase 

proteins to travel to host membranes. 
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GDI proteins decreases host protein synthesis, including that of defense genes, and 

improves the virus’ competition for host components (Figure 28).  

The changes seen to the tonoplast during TMV infection and NbGDI silencing, as well as 

the colocalization of AtGDI2:GFP with ER-derived membrane structures in the cell 

during TMV infection, indicate a possible role of Rab GDI proteins in TMV-induced 

membrane alterations. TMV may bind Rab GDI proteins to increase vesiculation and 

possibly allow more surface area for viral replication on membranes. Also, the increased 

vesiculation may allow the replicase proteins to bind to the host protein TOM1 during 

infection (Figure 27). Work is ongoing to determine if there is an increase in total 

vacuolar membrane during TMV infection by isolation and quantification of 

GFP:AtVam3 plant membranes. One way to determine if this vacuolar phenotype allows 

for an interaction of TOM1 and the replicase proteins would be to create TOM1:GFP- 

and TOM1:dsRed-expressing N. benthamiana plants. These plants could be either 

infected with TMV or silenced for Rab GDI and probed with fluorescently conjugated 

anti-replicase antibodies. If these proteins interact at the site of active replication in 

infected and Rab GDI-silenced tissue, it would provide an as-yet-missing connection 

between these two proteins.  

 

For a closely related tobamovirus, Tomato mosaic virus, the situation is similar. There are 

two populations of replicase proteins: the membrane-bound population, which 

participates in replication, and the cytoplasmic population [132]. It is possible that Rab 

GDI proteins help to modulate membrane-bound versus cytoplasmic populations 
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 Figure 28. Possible effects of reduced Rab GDI availability on the host’s endocytic 

pathway. Shown are some possible effects of reduced available Rab GDI within the host cell. 1) 

TMV replicase proteins bind to Rab GDI proteins and prevent them from recycling Rab proteins 

to their donor membrane (Figure 3 depicts the normal function of Rab GDI proteins). A lack of 

active Rab proteins in the correct membrane would significantly reduce formation of vesicles and 

movement of proteins at several different stages in the endocytic pathway, such as ER to Golgi 

(2), and Golgi to other organelles (3) [133]. The slowdown of the endocytic pathway would cause 

a reduction in host protein production, including that of pathogenesis-related (PR) proteins. The 

reduction in host synthesis would give TMV a competitive advantage in using host components 

such as ribosomes and tRNAs. Also, the reduction in PR protein production would reduce defense 

responses to the virus [134]. 
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of replicase proteins. However, when AtGDI2:GFP plants were infected with wt TMV, 

there seemed to be no difference in symptoms, either systemically or locally, and no 

change in coat protein accumulation. It is possible, though, that these effects on 

membrane-bound versus cytoplasmic populations are only essential in initial infection. 

One way to test this possibility would be to evaluate tissue from TMV-infected TRV or 

NbGDI-silenced inoculated leaves for changes in membrane versus 

 cytoplasmic populations of 126 kDa replicase proteins. If Rab GDI proteins are 

modulating cytoplasmic versus membrane-bound replicase proteins, there should be a 

difference in the relative replicase protein levels in the different cellular fractions 

between the TMV-infected NbGDI-silenced and TRV control plants. 

 

An alternative hypothesis is that the TMV replicase proteins may be binding to and 

possibly degrading Rab GDI proteins, which would slow host protein synthesis, including 

that of host defense proteins [134]. The replicase proteins may compete with host 

proteins for binding of Rab GDIs, which would reduce, but not eliminate, the pool of 

available Rab GDI proteins to fulfill their normal function. This reduction would slow 

protein synthesis by reducing the amount of Rab GDI proteins available, which in turn 

would reduce the amount of active Rab proteins in the correct membrane, and thus slow 

down the endocytic pathway (Figure 28). Increasing viral protein synthesis and 

decreasing host protein synthesis is a common tactic that many viruses, including TMV, 

are known to employ [130]. 
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Many defense genes contain post-translational modifications that require progression 

through the ER and Golgi or exocytosis to be excreted [82, 134]. To test this hypothesis, 

two Rab proteins, AtRab6 and AtRab8, have been cloned from A. thaliana ecotype 

shahdara cDNA and placed in an Agrobacterium binary vector. Work is ongoing to 

express these proteins in plant tissue via Agrobacterium tumefaciens infiltration. There 

should be two populations of Rab proteins—those bound to membranes, either in the 

target or donor membrane, and those in the cytoplasm, bound to Rab GDI proteins 

(Figure 3). A reduction in Rab GDI proteins should result in an increase in membrane-

bound Rabs and a decrease in the cytoplasmic population of Rab proteins. TMV-infected, 

mock-infected, NbGDI-silenced, and TRV control plants will be examined for relative 

levels of AtRab6 and AtRab8 in cytosolic and membrane portions of the cell. Similar 

changes in Rab populations in both the NbGDI-silenced and TMV-infected cells would 

indicate that Rab populations, and possibly the endocytic pathway, are affected by a loss 

of Rab GDI proteins. 

 

During the course of these studies, AtGDI2:GFP has been expressed via gene 

bombardment, Agrobacterium infiltration, and transgenic plants. In all three cases, there 

was an effect due to viral infection, but it was only when expressed in the context of a 

transgenic plant that the uninfected localization was close to what might be predicted 

based on its function and studies of other related proteins. The reason for the difference 

between expression from the host genome vs. plasmids is unclear, but for future studies, 

transgenic plants seem to be the best way to examine over-expression of this protein. 
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These studies have identified and characterized an interaction between a host protein and 

the TMV replicase proteins. This interaction is unique in that silencing of a host gene 

enhances infection rather than reducing it. The mechanism of how this interaction 

functions during infection is still being investigated and more work is needed. 

Nonetheless, these data indicate that this interaction is important in an area in which very 

little work has been done—initial establishment of infection. Little is known as to why 

any particular cell is more susceptible than another cell, even in the same host. It is 

possible that the intricate interactions that lead to a successful infection are even more 

complicated than they appear. Therefore, these studies have begun to characterize the 

how and why of susceptibility in a given host. Specifically, these studies have provided 

insight into how the replicase proteins may produce some of the cytological 

morphologies seen during infection, how TMV RNAs may be out-competing the host 

mRNAs, and one possible way TMV might be escaping host defense mechanisms. 

 

The interactions between pathogen and host are a complex, elaborate process; the host 

tries to detect and restrict the virus, and the virus attempts to take over parts of the 

cellular machinery without killing the cell, while eluding host defense responses. The 

more we understand how the virus is able to use the host cell, the more we come to 

understand how the host itself works. These studies have examined both the virus and the 

host, allowing us a glimpse at how these two entities interact with and compete with each 

other for limited resources. 
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Pathogen-host interactions remain a large proverbial black box. We have much left to 

discover about why certain interactions are favorable and how exactly complexes form 

and traffic in the host. These studies have attempted to address just a few of those 

questions, and have left many more questions left to be tested. As we face a world where 

diseases threaten both life and livelihood, answers to these questions may help us better 

succeed in such a world. 
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Appendix 

Protein Function Localization TAIR index Citation 
GFP:HDEL ER signal tag ER and nucleus  [135] 
GFP:AtVam3 t-SNARE Tonoplast (vacuole) AT5G46860 [123] 
AtSar-1:GFP ARF-like 

GTPase 
family 
member 

ER exit sites (ERES) AT1G56330 [127] 

AtPad-1:GFP 20S 
proteasome 
alpha subunit 
D1 

20S proteasome 
complex 

AT3G51260 [136] 

AtERD2:GFP KDEL 
receptor 

Golgi AT1G29330 [127, 
137] 

GFP:Atg8a Early 
component of 
autophagy 
complex 

Cytoplasm and 
autophagic bodies 

AT4G21980 [138] 

A1. Table of marker proteins created. Host proteins were RT-PCR amplified from 

Arabidopsis thaliana ecotype shahdara cDNA and expressed as a GFP fusion protein as 

indicated. Marker proteins were created to examine endomembrane changes during 

infection and silencing of Rab GDI proteins. Gene function, localization, and index as 

well as citation are indicated for each construct. 
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Protein Host TAIR/TIGR gene index 
AtGDI2 Arabidopsis thaliana 

ecotype shahdara 
AT3G59920 

LeGDI Lycopersicon esculentum 
cv Pilgrim 

TC162880 

NbGDI Nicotiana benthamiana To be submitted 

NtGDI Nicotiana tabacum cv 
xanthi 

TC3480 

A2. Table of Rab GDI proteins. Listed are the Rab GDI proteins, their host organism and their 

gene index. Indices starting with TC refer to TIGR plant gene indices while indices starting with 

AT indicate Arabidopsis thaliana gene location as per the TAIR database. 
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Gene Salk tDNA stock number Location of tDNA insertion 

AtGDI1 (At2g44100) 117972C within 300 bases of the 5’ end 

AtGDI2  (At3g59920) 064619 inside an annotated exon 

A3. Table of Salk tDNA insertion seed stocks crossed. Stocks were crossed three times without 

producing viable seeds. The genotype of each stock was verified via RT-PCR, and crossed plants 

were homozygous for the tDNA insertion. 
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A4. Tobacco rattle virus (TRV) Viral Induced Gene Silencing system (VIGS) . Above is a 

diagram of the TRV vectors used in the gene silencing of Rab GDI proteins. TRV cDNA clones 

were placed between the duplicated CaMV 35S promoter (2x35S) and the nopaline synthase 

terminator (NOSt) in a T-DNA vector. LB and RB refer to left and right borders of T-DNA. RZ, 

self-cleaving ribozyme. MCS, multiple cloning site. Both T-DNAs were placed in binary vectors 

and were maintained in Escherichia coli. The plasmids were expressed from Agrobacterium 

tumefaciens in the host plant. The gene accession number for TRV1 is AF406990 and TRV2 is 

AF406991 [139]. TRV system was a gift from Dr. Dinesh-Kumar. 
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A5. Agrobacterium tumefaciens binary cloning vector information. The above image of the 

pPily cloning vector (accession number AY720433) that contains an intron in frame to ensure 

only expression in the infiltrated plant and not in the bacterial vector [140]. The entire expression 

cassette including the gene of interest was cut out of pPily using the restriction endonuclease, 

KpnI, and inserted into the binary vector pBIN 19 plus (accession number X77672) [141]. Both 

vectors were a gift from Dr. Shunyuan Xiao, University of Maryland Biotechnology Institute. 
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