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Oxidative stress markers may be novel factors contributing to cardiovascular 

(CVD) risk.  The purpose of this study was to examine the effects of long-term 

exercise, age, and their interaction on the plasma levels of the oxidative stress 

markers oxidized LDL (ox-LDL), nitrotyrosine, and myeloperoxidase (MPO), and to 

investigate whether these levels correlated with plasma NOx levels.  Older (62 ± 2 yr) 

active (n=12) men who had exercised regularly for over 30 years and young (25 ± 4 

yr) active (n=7) men who had exercised regularly for over 3 years were matched to 

older (n=11) and young (n=8) inactive males.  Young subjects showed lower plasma 

nitrotyrosine levels than older subjects (P = 0.047).  Young inactive subjects had 

higher ox-LDL levels than either the young active (P = 0.042) or the older active (P = 

0.041) subjects.  In addition, plasma oxidative stress levels, particularly ox-LDL, 

were correlated with various conventional CVD risk factors, and in older subjects 

were associated with Framingham risk score (r = 0.49, P = 0.015).  The study found 

no relationships between plasma markers of oxidative stress and plasma NOx levels.  

The findings suggest that a sedentary lifestyle may be associated with higher ox-LDL 

levels and that the levels of oxidative stress markers may contribute to CVD risk.
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Introduction 

 

Blood lipid profiles, blood pressure, smoking status, and other conventional 

risk factors have long been considered in estimating an individual’s cardiovascular 

disease (CVD) risk.  However, in the late 1990s, evidence suggested that these 

conventional CVD risk factors might only be explaining half of CVD cases (16).  In 

addition, only about 60% of the reduction in CVD risk through regular exercise could 

be attributed to training-induced improvements in conventional CVD risk factors 

(44).  Thus, the search began for novel risk factors that might help provide a more 

complete picture of a person’s CVD risk.  Among the most promising novel risk 

factors recently linked to CVD are oxidative stress markers. 

Reactive oxygen species (ROS) are produced as intermediates in a variety of 

metabolic reactions in the body.  In healthy tissues, any increase in ROS is 

accompanied by an increase in antioxidant capacity, preventing the buildup of excess 

ROS.  When this delicate balance is disrupted and excess ROS results, the body 

experiences “oxidative stress” as the highly reactive ROS interact with lipids, 

proteins, and nucleic acids to cause cellular damage.  In addition to cell damage, 

research suggests that oxidative stress can contribute to the development of various 

pathologies including aging, dementia, and atherosclerosis (47). 

 The proposed role of oxidative stress in atherosclerosis has been termed the 

oxidative modification hypothesis (64).  According to this hypothesis, oxidized 

molecules play an important role in atherosclerosis both by embedding in the vascular 
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wall and promoting plaque formation and by interacting with inflammatory and 

endothelial dysfunction pathways which negatively affect vascular function.  Because 

of their involvement in the atherosclerotic disease process, various biomarkers of 

oxidative stress may have predictive value for CVD.  Particularly attractive to 

primary care practitioners are potential systemic markers of oxidative stress that 

could be measured in a minimally invasive manner, such as plasma levels of oxidized 

LDL (ox-LDL), nitrotyrosine, and myeloperoxidase (MPO). 

Early research has linked plasma levels of ox-LDL, nitrotyrosine, and MPO to 

CVD (21, 32, 61).  Ox-LDL is linked to atherosclerosis because unlike native LDL, 

ox-LDL migrates into the subendothelial space, is taken up by macrophages, and 

promotes foam cell formation (51).  Ox-LDL also seems to promote endothelial 

dysfunction, vascular remodeling, plaque rupture, and thrombosis (64).  Plasma levels 

of ox-LDL have been shown to be predictive of future CVD events (39). 

Serving as a marker of protein nitration, nitrotyrosine has been associated with 

inflammation and endothelial dysfunction (7).  Elevated nitrotyrosine levels have 

been found in atherosclerotic lesions, and increased nitrotyrosine levels are associated 

with various CV disease states (63). 

The enzyme MPO plays a role in many of the oxidative modifications 

associated with atherosclerosis and the resulting endothelial dysfunction by 

catalyzing the formation of several oxidants (48).  Elevated plasma levels of MPO 

have been associated with CVD (71). 

The role of physical activity in reducing CVD risk by improving conventional 

risk factors and the age-related increase in CVD risk is well-established.  However, 
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less is known about the effect of long-term physical activity and the interaction of 

exercise training and age on many of the novel risk factors.  Previous studies indicate 

that short-term exercise training interventions reduce plasma levels of oxidative stress 

(45), but studies have not investigated the effects of long-term exercise training or age 

on oxidative stress markers.  In addition, while endothelial dysfunction resulting from 

elevated oxidative stress levels has been implicated in CVD (64), no studies have 

examined whether the effects of training or age on oxidative stress levels are related 

to changes in endothelial health or NO bioavailability. 

The present study is an important initial step in understanding oxidative stress 

as an emerging CVD risk factor because it seeks to examine how long-term physical 

activity and age may affect plasma levels of ox-LDL, nitrotyrosine, and MPO.  The 

findings could justify further research into the changes in oxidative stress levels 

induced by short-term exercise training interventions, the mechanisms underlying 

these modifications, and their clinical consequences.  In addition, the study attempts 

to link the effects of training and age on oxidative stress levels to changes in NO 

bioavailability by measuring plasma levels of the final products of nitric oxide (NO) 

metabolism, collectively called NOx.  The finding of a negative relationship between 

plasma levels of NOx and plasma levels of ox-LDL, nitrotyrosine, or MPO would 

lend support to the theory that elevations in oxidative stress levels increase CVD risk 

by reducing NO bioavailability, which in turn causes endothelial dysfunction. 

Specific Aims and Hypotheses 

The first aim of this study is to examine the effects of long-term exercise 

training, age, and their interaction on the plasma levels of ox-LDL, nitrotyrosine, 
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MPO, and NOx.  It is hypothesized that plasma levels of ox-LDL, nitrotyrosine, and 

MPO will be lower, and NOx levels higher, in active individuals compared to their 

inactive peers.  In addition, plasma levels of ox-LDL, nitrotyrosine, and MPO will be 

higher, and NOx levels lower, in older groups compared to their corresponding young 

group. 

 The second aim of the study is to determine whether NOx levels are correlated 

with the plasma levels of ox-LDL, nitrotyrosine, and MPO.  It is hypothesized that 

NOx levels will be inversely related to plasma levels of ox-LDL, nitrotyrosine, and 

MPO. 
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Methods 

 

Study Design 

To study the impact of long-term exercise training and age on oxidative stress, 

the study used a cross-sectional approach with four groups and 38 total subjects.  All 

subjects were originally recruited, screened, and tested as described in three previous 

studies (26, 27, 70).  All participants were men who provided written informed 

consent as part of their participation in the Long Term Exercise and Vascular Health 

Study.  In addition, all procedures were approved by the Institutional Review Board 

at the University of Maryland. 

Subjects 

Older (62 ± 2 yr) active (n=12) men who had performed moderate- to high-

intensity endurance exercise for over four hours per week for over thirty years were 

BMI- and age-matched to inactive (n=11) males.  The older subjects were from 55 to 

77 years of age. 

Young (25 ± 4 yr) active (n=7) men who had performed moderate- to high-

intensity endurance exercise for over four hours per week for over three years were 

matched on the basis of BMI, age, body composition, and conventional CV risk factor 

profile to inactive (n=8) males.  The young subjects were from 18 to 30 years of age. 

All subjects were healthy, nonsmoking, and currently free of and with no 

history of CVD or diabetes.  Subjects were excluded if they had Stage 1 or greater 
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hypertension, or if they were taking cholesterol-lowering, antihypertensive, or 

antihyperglycemic agents.   

The active subjects were located with the help of recruitment flyers posted in 

local running and cycling stores, on their websites, and in their newsletters.  In 

addition, Department of Kinesiology faculty members who participated in local 

running clubs talked with fellow members who met the subject qualifications, and 

other Department of Kinesiology studies with subjects qualified for this study were 

approached. 

 The inactive groups consisted of lean, healthy individuals who for at least five 

years had participated in physical activity less than twice per week for less than 20 

minutes per session with a sedentary occupation or retired.  The inactive subjects 

were recruited as matches for the active group on an individual basis.  To be 

considered a match, the inactive male had to be of the same ethnicity, have an age 

within five years, and a BMI within 1 kg/m2 of the active male.  Many of the inactive 

subjects were recruited from subject pools of other studies going on in the 

Department of Kinesiology. 

Outcomes 

Venous blood samples were drawn and stored so that the plasma levels of ox-

LDL, nitrotyrosine, MPO, and NOx could be compared in the four groups of men: 

older active, young active, older inactive, and young inactive.  In addition to blood 

sampling, subjects also underwent VO2 max and body composition testing. 



 

 7 
 

Procedures 

The study was completed in two visits, with VO2 max and body composition 

testing done on the first visit.  On the second visit, venous blood samples were drawn 

in the morning following a 12- to 16-hour fast and stored at -80°C. 

Prior to any testing in older subjects, a physician performed a physical 

examination to screen for CVD and to identify contraindications to exercise testing.  

All testing occurred the morning after an overnight fast.  All subjects had avoided 

alcohol, vitamins, caffeine, and medications for 24 hours before testing.  For active 

subjects the visits occurred 16 to 24 hours after one of the subject’s usual physical 

activity sessions. 

Instrumentation 

Maximal Graded Exercise Testing 
 

Participants performed a maximal treadmill exercise test to screen for CVD 

and assess VO2 max.  A constant-speed treadmill protocol was used with the grade 

increasing 2% with each successive 2 minute stage until exhaustion.  The treadmill 

speed was selected by the investigator based on subject experience, typical run/walk 

speed, and heart rate such that VO2 max would be achieved in 6-12 minutes.  In the 

older subjects, ECG was used during the test to measure heart rate.  Heart rate in the 

young subjects was measured during testing with heart rate monitors (Polar Electro, 

Woodbury, NY).  Open-circuit spirometry was used to measure maximal oxygen 

consumption, with the subject’s pulmonary ventilation measured and fractions of 

expired oxygen and carbon dioxide collected.  Expired gases were analyzed using an 
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automated indirect calorimetry system (Oxycon Pro, Viasys).  By comparing the 

amount of oxygen inspired to the amount expired, the amount of oxygen consumed 

was calculated.  For the older subjects, a valid VO2 max required that at least three of 

the following criteria were met: a respiratory exchange ratio ≥ 1.15, a heart rate that 

was equivalent to the age-predicted max, a plateau in oxygen uptake with increases in 

workload, or the subject indicated exhaustion.  For the young subjects, a valid VO2 

max required a plateau in oxygen uptake with increasing workload and at least two of 

the following criteria were met: a respiratory exchange ratio ≥ 1.10, a rating of 

perceived exertion ≥ 19, or a peak heart rate within ten beats of the age-predicted 

max. 

Body Composition Testing 
 

For all subjects, height, weight, and blood pressure were measured and body 

mass index (BMI) was calculated.  For older subjects, body fatness was assessed with 

dual x-ray absorptiometry (Hologic).  In young subjects, body fatness was estimated 

using the seven-site skinfold procedure (25). 

Blood Chemistry Testing 
 
 Blood samples were sent to Quest Diagnostics for analysis.  The following 

levels were measured: glucose, triglycerides, total cholesterol, HDL cholesterol, and 

LDL cholesterol.  In addition, the ratios of total cholesterol to HDL cholesterol and 

ox-LDL to LDL cholesterol were calculated.  Finally, to calculate the subject’s 

overall CVD risk, the conventional CVD risk factors that were measured were 

applied to the equations based on the Framingham study (69). 
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Plasma Ox-LDL Measurement 

Plasma ox-LDL levels in the older subjects were measured previously with a 

commercially-available competitive Enzyme-Linked Immunosorbent Assay (ELISA) 

kit (Mercodia) (70).  The present study used the same assay to measure ox-LDL in the 

young subjects.  The ELISA was performed in accordance with the manufacturer’s 

directions for use for product number 10-1158-01, which required a dilution of 

plasma samples with the provided sample buffer.  With both the assay previously 

performed on older subject samples and the assay performed in the present study on 

young subject samples, two-level control samples (Mercodia) of a known ox-LDL 

concentration were assayed.  These controls confirmed that the procedure was able to 

detect a positive result. 

In the competitive ELISA kit, ox-LDL in the sample competes with a fixed 

amount of ox-LDL in the well plate for the binding of the mouse monoclonal 

antibody 4E6.  The antibody is able to bind the ox-LDL molecules because during 

lipoprotein oxidation aldehydes are substituted for lysine residues in the 

apolipoprotein B-100 region of the molecule, resulting in the generation of a new 

conformational epitope (20).  The 4E6 antibody has been used in several previous 

studies to measure ox-LDL levels, including a study that found an increase in ox-LDL 

levels in patients with coronary artery disease (20, 21, 22, 39, 50). 

Previously, all samples in the older group were analyzed in a single assay, and 

in the present study all samples from young subjects were analyzed in a single assay.  

Thus, within each group the interassay variability was minimized.  However, when 

comparing older and young subjects, the interassay variability must be considered.  
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Previous studies using this ox-LDL assay have cited an interassay variability of 12%, 

indicating that the measurements are reliable (20).  Samples from older and young 

subjects were run in duplicate to minimize the intra-assay variability and the results 

were averaged.  For the older subjects, the intra-assay coefficient of variation was 

6.8% (70).  For the young subjects analyzed in the present study, the average intra-

assay coefficient of variation for the competitive ox-LDL assay was 9.58%. 

Plasma Nitrotyrosine Measurement 

 Nitrotyrosine was measured using a commercially-available ELISA kit (Cell 

Sciences).  The kit is a solid-phase ELISA based on the sandwich principle that 

detects nitrotyrosine-containing proteins in plasma.  To ensure accurate measurement, 

the plasma samples were diluted with the provided dilution buffer per manufacturer’s 

instructions for product number HK501.  As a part of the constructed standard curve, 

two wells were filled with dilution buffer only, and they served as negative controls 

for the assay.  

 Interassay variability was controlled by running all samples in a single run.  In 

addition, all samples were analyzed in duplicate, minimizing intra-assay variability, 

and the results were averaged.  The average intra-assay coefficient of variation for the 

nitrotyrosine assay was 9.1%. 

Plasma MPO Measurement 

MPO was measured with the Human MPO ELISA kit (Cell Sciences).  The 

assay is a solid-phase ELISA based on the sandwich principle that measures the 

amount of MPO in plasma.  To ensure accurate measurement, the plasma samples 

were diluted with the provided dilution buffer per manufacturer’s instructions for 
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product number HK324.  As a part of the constructed standard curve, two wells were 

filled with dilution buffer only, and they served as negative controls for the assay. 

All samples were analyzed in one run to control interassay variation.  In 

addition, all samples were run in duplicate to minimize intra-assay variability and the 

results were averaged.  The average intra-assay coefficient of variation for the MPO 

assay was 5.0%. 

Plasma NOx Measurement 

The short half-life of NO makes it impossible to accurately measure NO levels 

directly.  However, the final products of NO metabolism, nitrite and nitrate, can be 

measured in plasma.  Collectively called NOx, the sum of nitrite and nitrate 

concentrations serve as an indicator of NO production (53). 

In the present study, plasma NOx levels were measured using a Nitrate/Nitrite 

Colorimetric Assay Kit (Cayman Chemical Company).  The kit provided an accurate 

and convenient way to perform a modified version of the Griess assay.  First, nitrate 

was converted to nitrite using nitrate reductase.  Then the addition of the Griess 

Reagents converted nitrite into a purple azo compound.  The azo compound is 

capable of selectively absorbing particular wavelengths of light.  Using a plate reader 

to measure the optical density of each sample at 541 nm, the absorbed light can be 

quantified.  To do this, a standard curve was constructed by plotting the absorbance 

measured for known quantities of nitrate.  As a part of the constructed standard curve, 

two wells were filled with assay buffer only, and they served as negative controls for 

the assay.  By subtracting the average absorbance of the negative controls from each 
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sample absorbance and plotting the result on the constructed standard curve, the total 

concentration of nitrate and nitrite was determined. 

As outlined in the manufacturer’s instructions for product number 780001, the 

plasma samples were diluted with the provided assay buffer.  All samples were run in 

triplicate to minimize intra-assay variability and the results were averaged.  Although 

two separate plates were used, inter-assay variation was minimized by creating a 

standard curve for each plate.  The average intra-assay coefficient of variation for the 

two plates was 7.7%, and the inter-assay coefficient of variation was 13.2%. 

Statistical Analysis 

A two-way ANOVA was done with SPSS software to examine the main 

effects of long-term exercise training and age, along with the interaction effect of 

physical activity and age, on the plasma levels of ox-LDL, nitrotyrosine, MPO, and 

NOx.  Multiple comparisons between study groups were analyzed with Fisher’s Least 

Significant Difference method.  One-sided p-values are presented for tests of a priori 

directional hypotheses, unless group means were opposite the direction hypothesized, 

in which case two-tailed p-values are presented.  Regression analysis was performed 

to determine whether there were any significant relationships between levels of NOx 

and levels of the selected oxidative stress markers.  In addition, Pearson correlation 

coefficients were used to assess relationships among study variables.  An α value of 

0.05 was used to indicate statistical significance.
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Results 

 
 

Subject Characteristics 

Active and inactive subjects were successfully matched for age and BMI 

(Table 1).  However, as expected, active subjects had significantly higher VO2 max 

values.  In addition, older active subjects had significantly lower body fat and 

significantly better blood chemistry profiles than older inactive subjects. 

Ox-LDL 

Multiple comparisons revealed that the young inactive group had significantly 

higher ox-LDL levels than either the young active (P = 0.042) or older active (P = 

0.042) groups (Figure 1).  There were no significant (P < 0.05) main effects of age or 

long-term exercise training on plasma ox-LDL levels, and no significant interaction 

effect (Figures 2A and 2B).  However, there was a trend (P = 0.05) suggesting that 

long-term exercise training is associated with lower ox-LDL levels (Figure 2B).  An 

examination of the relationships between plasma ox-LDL levels and conventional 

CVD risk factors found significant positive correlations between ox-LDL levels and 

LDL cholesterol (r = 0.325, P = 0.046), ox-LDL to LDL ratio (r = 0.361, P = 0.026), 

and total cholesterol to HDL ratio (r = 0.483, P = 0.002) across all study subjects 

(Figures 3A, 3B, 3C).  Also significant was the inverse correlation (r = - 0.467, P = 

0.003) between plasma ox-LDL and HDL cholesterol (Figure 3D).  The plasma ox-

LDL levels reported here are consistent with the values found in other studies in the 

literature that have used the same or similar ELISA kits (22, 39). 
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Nitrotyrosine 

 Multiple comparisons showed no between-group differences in plasma 

nitrotyrosine levels (Figure 4).  There was a significant main effect of age on plasma 

nitrotyrosine (P = 0.047, one-tailed), with older individuals having significantly 

higher levels (Figure 5A).  There was no significant interaction effect between age 

and long-term exercise training and no significant main effect of long-term exercise 

training on plasma nitrotyrosine levels (Figure 5B).  In addition, across all subjects 

there was a significant positive correlation (r = 0.429, P = 0.008) between plasma 

nitrotyrosine levels and systolic blood pressure (Figure 6).  The circulating levels of 

nitrotyrosine found in other studies vary widely, but the values reported here fall 

within the range of values reported in the literature (15, 54).   

MPO 

 Between-group analyses showed that the young active group had significantly 

higher plasma MPO levels (P = 0.012) compared to the older inactive group (Figure 

7).  However, there were no significant main effects of age or long-term exercise 

training on plasma MPO levels and no significant interaction effect (Figures 8A and 

8B).  In addition, there was a significant inverse correlation (r = - 0.348, P = 0.035) 

across all subjects between plasma MPO levels and triglyceride levels (Figure 9).  

The numbers reported here for plasma MPO concentrations are consistent with other 

results in the literature (4, 55). 
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NOx 

Tests of multiple comparisons revealed that the older inactive group had 

significantly higher plasma NOx levels than either the older active (P = 0.021) or the 

young active (P = 0.02) groups (Figure 10).  However, there were no significant main 

effects of age or long-term exercise training on plasma NOx levels and no significant 

interaction effect (Figures 11A and 11B).  In addition, there were no significant 

correlations between plasma NOx and any of the other outcome variables, ox-LDL, 

nitrotyrosine, or MPO.  Interestingly, a significant inverse correlation (r = - 0.357, P = 

0.03) was found between VO2 max and plasma NOx levels across all study subjects 

(Figure 12A).  Also observed across all subjects was a significant positive correlation 

(r = 0.355, P = 0.042) between plasma NOx levels and the ratio of total cholesterol to 

HDL cholesterol (Figure 12B).  In addition, the NOx values found in the present 

study are comparable to other values reported in the literature (5).   

Within-Age Group Correlation Analysis 

 In addition to assessing correlations across all subjects, the study examined 

relationships between outcome variables and conventional CVD risk factors within 

age groups.  These analyses were justified given the lack of any statistically 

significant age × activity interaction effects on the study’s main outcomes.  If a 

significant interaction effect had been uncovered, these within-age group analyses 

would not have been appropriate.  In young subjects, plasma ox-LDL levels were 

negatively correlated (P < 0.05) with VO2 max (Figure 13).  In older subjects, levels 

of ox-LDL were positively associated (P < 0.05) with several blood chemistry 

measures, including total cholesterol and triglycerides (Figures 14A and 14B).  Also, 
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a positive relationship (P < 0.05) between plasma ox-LDL levels and the Framingham 

risk score and risk percentage was observed in older subjects (Figure 15A and 15B).  

Finally, many of the significant relationships in the combined group that were 

discussed above were also found within age groups.  Because those relationships 

were already presented, the corresponding within-age group correlations are not 

shown. 

Within-Activity Level Group Correlation Analysis 

 When subjects were divided by activity level, plasma MPO levels were 

positively correlated (P < 0.05) with the ox-LDL to LDL cholesterol ratio in inactive 

subjects (Figure 16).  In addition, several of the significant associations already 

shown for the combined group were also found within-activity level groups, but they 

are not shown here since the combined group relationships were already presented. 
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Table 1. Subject Characteristics 
 Young Older 

Characteristic Active (n=7) Inactive (n=8) Active (n=12) Inactive (n=11) 

Age, yr 25 ± 4 25 ± 3 62 ± 6 64 ± 5 

Height, m 1.83 ± 0.1 1.81 ± 0.04 1.76 ± 0.07 1.75 ± 0.07 

Weight, kg 81.1 ± 12.5 77.9 ± 17.2 70.7 ± 10.6 74.7 ± 8.0 

BMI, kg/m2 24.4 ± 3.9 23.6 ± 4.4 22.9 ± 2.6 24.3 ± 2.1 

Body Fat, % 14.3 ± 5.8 14.8 ± 6.7 18.0 ± 4.5 23.5 ± 5.9 * 

Glucose, mg/dL 86 ± 7 81 ± 7 94 ± 7 101 ± 9 

TG, mg/dL 69 ± 19 81 ± 31 66 ± 29 103 ± 45 * 

TC, mg/dL 146 ± 21 147 ± 25 199 ± 31 194 ± 35 

HDL, mg/dL 53 ± 5 49 ± 11 71 ± 12 51 ± 15 * 

LDL, mg/dL 79 ± 21 82 ± 22 115 ± 29 123 ± 38 

TC/HDL 2.8 ± 0.6 3.1 ± 0.8 2.9 ± 0.7 4.2 ± 1.6 * 

SBP, mmHg 118 ± 6 121 ± 5 126 ± 14 133 ± 10 

DBP, mmHg 78 ± 5 79 ± 6 81 ± 7 86 ± 6 

VO2 max, mL/kg/min 60.4 ± 5.8 47.4 ± 5.7 † 50.0 ± 6.7 28.1 ± 5.8 * 

Values are means ± SD.  BMI, body mass index; TG, triglycerides; TC, total 
cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein; 
SBP, systolic blood pressure; DBP, diastolic blood pressure, VO2 max, maximal 
oxygen uptake.  † P < 0.05 vs. young active.  * P < 0.05 vs. older active.   
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Figure 1.  Between-group comparisons showing influence of age and long-term 
exercise training on plasma levels of ox-LDL.  Values are means ± SE.  Data with 
like letters are not statistically different from each other (P < 0.05). 
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Figure 2.  Main effects of age (A) and long-term exercise training (B) on plasma ox-
LDL levels.  Values are means ± SE.
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Figure 3A-B.  Significant relationships (P < 0.05) across all subjects between plasma 
levels of ox-LDL and the conventional CVD risk factors LDL cholesterol (A) and ox-
LDL to LDL cholesterol ratio (B).
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Figure 3C-D.  Significant relationships (P < 0.05) across all subjects between plasma 
levels of ox-LDL and the conventional CVD risk factors total cholesterol to HDL 
cholesterol ratio (C) and HDL cholesterol (D). 
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Figure 4.  Between-group comparisons showing influence of age and long-term 
exercise training on plasma levels of nitrotyrosine.  Values are means ± SE.  Data 
with like letters are not statistically different from each other (P < 0.05). 
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Figure 5.  Main effects of age (A) and long-term exercise training (B) on plasma 
nitrotyrosine levels.  Values are means ± SE.  * P < 0.05 vs. young.      
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Figure 6.  Significant relationship (P < 0.05) across all subjects between plasma 
nitrotyrosine levels and the conventional CVD risk factor systolic blood pressure 
(SBP). 
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Figure 7.  Between-group comparisons showing influence of age and long-term 
exercise training on plasma levels of MPO.  Values are means ± SE.  Data with like 
letters are not statistically different from each other (P < 0.05).
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Figure 8.  Main effects of age (A) and long-term exercise training (B) on plasma 
MPO levels.  Values are means ± SE. 
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Figure 9.  Significant relationship (P < 0.05) across all subjects between plasma MPO 
levels and triglyceride levels. 
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Figure 10.  Between-group comparisons showing influence of age and long-term 
exercise training on plasma levels of NOx.  Values are means ± SE.  Data with like 
letters are not statistically different from each other (P < 0.05). 
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Figure 11.  Main effects of age (A) and long-term exercise training (B) on plasma 
NOx levels.  Values are means ± SE. 
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Figure 12.  Significant relationships (P < 0.05) across all subjects between plasma 
NOx levels and VO2 max (A) and the conventional CVD risk factor total cholesterol 
to HDL cholesterol ratio (B). 
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Figure 13.  Significant relationship (P < 0.05) between plasma ox-LDL levels and 
VO2 max in young subjects. 
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Figure 14.  Significant relationship (P < 0.05) between plasma ox-LDL levels and 
total cholesterol (A) and triglycerides (B) in older subjects.   
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Figure 15.  Significant relationships (P < 0.05) between plasma ox-LDL levels and 
Framingham risk score (A) and Framingham risk percentage (B) in older subjects.   
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Figure 16.  Significant relationship (P < 0.05) between plasma MPO levels and ox-
LDL to LDL cholesterol ratio in inactive subjects.  
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Discussion 

 

The results of this study suggest that plasma oxidative stress levels are 

affected by long-term exercise training and age, but not consistently in the 

hypothesized direction.  In line with the presented hypotheses, ox-LDL levels did 

show a trend toward being lower with chronic exercise, with young and older active 

groups having significantly lower ox-LDL levels than young inactive individuals.  In 

addition, a main effect of age was reported in nitrotyrosine, with older individuals 

showing significantly elevated plasma nitrotyrosine levels compared to young 

subjects.  However, MPO levels were not reduced and NOx levels were not elevated 

in the chronic exercisers compared to their inactive peers, and older inactive 

individuals displayed the lowest MPO and the highest NOx levels.  The study also 

found that plasma NOx levels were not related to plasma oxidative stress levels.  

However, plasma oxidative stress levels, particularly ox-LDL levels, were related to 

various conventional CVD risk factors.  The relationships between oxidative stress 

markers and other CVD risk factors suggest that, at the very least, plasma oxidative 

stress levels may serve as indicators of CVD risk.  Plasma ox-LDL levels appear to be 

particularly attractive as potential markers of CVD risk, as the findings indicate that 

decreases in ox-LDL levels with chronic exercise could potentially explain some of 

the CVD risk reduction that occurs with regular exercise.  However, the lack of 

association between plasma oxidative stress and NOx levels does not support the 

hypothesis that reductions in NO bioavailability could explain how elevations in 

oxidative stress increase CVD risk. 
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Effects of Age and Activity Level on Oxidative Stress Markers 

One of the hypotheses that has been put forth to explain aging has postulated 

that the loss of functional capacity during senescence can be explained by the 

irreversible accumulation of molecular oxidative damage (62).  Therefore, one would 

expect older individuals to have higher levels of oxidative stress than young 

individuals.  In the present study, however, only nitrotyrosine levels were elevated in 

the older subjects compared to the young subjects.  The findings suggest that plasma 

ox-LDL and MPO do not respond to age the same way that nitrotyrosine does.  Thus, 

perhaps not all of the selected oxidative stress markers contribute to the larger 

increase in oxidative damage that has been hypothesized to occur with age.  However, 

this study appears to be the first to compare the plasma levels of the selected 

oxidative stress markers across age groups, so it is difficult to make definitive 

conclusions about how the chosen oxidative stress biomarkers are affected by age. 

One alternative explanation for why the present study did not consistently 

show elevated oxidative stress levels in older groups is the unique nature of the study 

population.  All of the subjects studied were healthy individuals.  In contrast, most 

previous studies have compared ox-LDL, nitrotyrosine, and MPO levels in CVD 

patients to those in healthy controls, finding elevated oxidative stress levels with the 

onset and progression of the disease (21, 61, 69, 71).  Given the good health of the 

present study’s subjects, perhaps it is not surprising that plasma ox-LDL and MPO 

did not show age-related changes.  A previous study suggested that plasma ox-LDL 

levels are quite low in healthy people (24).  The present findings support this, as the 

mean plasma ox-LDL levels reported in older subjects (61.6 U/L) and young subjects 
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(67.0 U/L) are relatively low compared to a previous study that reported an average 

ox-LDL level of 110 U/L in the plasma of patients who subsequently suffered a CVD 

event (39).  Thus, in the present study’s population of healthy subjects, age-related 

differences in plasma ox-LDL may be difficult to detect.  While there is currently no 

research in the literature on how age affects plasma MPO levels, one can speculate 

that the use of healthy subjects might also explain the lack of a main effect of age on 

MPO levels in the present study. 

When examining the effects of exercise on systemic levels of oxidative stress, 

one must consider the apparent contrasting effects of an acute exercise bout versus 

chronic exercise training.  A higher metabolic rate is required during an intense 

exercise bout, and it results in increased ROS generation during the bout and elevated 

oxidative stress levels after the bout (9).  However, some previous research has 

indicated that exercise training may reduce systemic levels of oxidative stress (15, 

45).  Thus, in the present study it was not surprising that a trend was observed linking 

active individuals to reduced plasma ox-LDL levels.  This trend is supported by 

exercise intervention studies that have found reduced plasma ox-LDL levels in older 

men and women following a high-intensity exercise intervention (10) and decreased 

serum ox-LDL concentration after exercise training in sedentary, healthy young men 

and women (13).  The lower plasma ox-LDL levels in active versus inactive subjects 

in the present study are thus consistent with other results reported in the literature. 

However, the present study demonstrated no such reduction in nitrotyrosine or 

MPO levels in the chronic exercise groups.  This finding was somewhat unexpected, 

as one earlier study found a reduction in plasma nitrotyrosine levels with a 16-week 
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exercise intervention in older subjects (15).  Another study reported a decline in 

serum MPO levels with a 12-week endurance training intervention in adult subjects 

with elevated CVD risk (56).  Although the present nitrotyrosine and MPO results do 

not agree with these previously reported findings, they are not without precedent.  

The effect of training on systemic levels of oxidative stress is still under investigation, 

and at least one human study concluded that older adults who exercise regularly have 

higher levels of oxidative stress than their sedentary peers (40).  The overall scarcity 

of information in the literature on changes in plasma ox-LDL, nitrotyrosine, and MPO 

levels with exercise training prevents definitive conclusions from being drawn on 

how chronic exercise affects systemic levels of oxidative stress. 

In addition, the present findings that nitrotyrosine and MPO levels were not 

reduced in active individuals compared to their inactive counterparts could be a result 

of the unique features of this particular study.  First of all, the present study examined 

the effects of long-term exercise training on oxidative stress levels, while all the 

previous studies have focused on the effects of short-term training.  The older 

subjects in the present study had exercised regularly for over thirty years, and the 

young subjects for over three years, and these training durations are vastly different 

from the typical twelve- to sixteen-week training intervention.  The beneficial effects 

of short-term training on plasma oxidative stress levels may disappear with continued 

training.  This would explain how the effects of long-term training on circulating 

biomarkers of oxidative stress could differ from the effects of short-term training. 

The second unique feature of the present study is the nature of the inactive 

groups.  The sedentary subjects selected for the study had no readily apparent health 
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issues and appeared to suffer no negative consequences from their years of physical 

inactivity.  Despite their sedentary lifestyles, the young inactive subjects had body 

weights, BMI values, body compositions, blood pressures, and blood chemistry 

profiles that were no different from their active peers who had been exercising 

regularly for over three years.  The older inactive subjects had body weights, BMI 

values, and blood pressures that were not statistically different from their active peers 

who had been exercising regularly for over thirty years.  This makes the individuals 

in both the young and older inactive groups quite exceptional.  The inactive subjects 

may share some genetic advantage that has allowed them to avoid many of the 

physical consequences typically associated with inactivity.  In the same way that the 

inactive subjects avoided obesity and hypertension, two negative consequences one 

would expect to occur with many years of inactivity, the inactive subjects in the 

present study may also have avoided higher oxidative stress levels.  This could 

explain why nitrotyrosine and MPO levels were not reduced in the long-term exercise 

training groups compared to the inactive groups. 

NOx Levels with Age, Activity Level, and Oxidative Stress 

 The present study found no main effects of age or activity level on plasma 

NOx levels.  These results contrast with previous research that indicates that NOx 

levels decline with age, resulting in impaired endothelium-dependent vasodilation 

that can be reversed with exercise training (12).  Other studies have also found that 

short-term aerobic exercise training increases plasma NOx concentration in healthy 

young individuals (36).  However, the responses to longer-term training (≥ 16 weeks) 

seem to be more variable.  In a group of older men and women, 24 weeks of aerobic 
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exercise training failed to result in any improvements in plasma NOx levels (5).  

Given the extremely long duration of training in the present study, the lack of 

association between activity level and plasma NOx levels is less surprising.  

The present study also found no relationships between plasma NOx levels and 

plasma ox-LDL, nitrotyrosine, or MPO levels.  These findings seem to contrast with 

previous research that has linked increases in oxidative stress to endothelial 

dysfunction (64).  However, the present study’s plasma NOx measurement is an 

assessment of NO bioavailability as opposed to a measurement of endothelial 

function.  Some functional test, such as forearm blood flow in response to reactive 

hyperemia or vasodilation in response to the infusion of an agonist, is needed to 

assess endothelial health.  Therefore, the present study’s finding that the older 

inactive group had significantly higher plasma NOx levels than either the older or 

young active groups does not mean that the older inactive group had the best 

endothelial function.  The only conclusion that can be drawn is that the older inactive 

group had the highest NO bioavailability.  Although a reduction in NO bioavailability 

is one of the mechanisms thought to cause endothelial dysfunction (5), impairments 

in endothelial function can occur without decreases in NOx levels.  For example, an 

earlier study found that atherosclerotic rabbits had higher plasma NO levels, as 

determined by quantifying nitrosyl compounds in blood, but impaired endothelium-

dependent vasodilation, compared to control rabbits (42).  Thus, plasma NOx levels 

are not necessarily directly related to endothelial function, and the present study only 

allows one to make conclusions about how NO bioavailability is affected by age or 

inactivity. 
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However, the lack of association between NO bioavailability and plasma 

oxidative stress levels in the present study is still surprising.  Previous research has 

shown that ox-LDL reduces NO bioavailability by reacting with NO to inactivate it 

and by stimulating the release of NO scavengers (28).  Elevated levels of 

nitrotyrosine have previously been associated with increased NO consumption and 

inhibited NO synthesis (7).  MPO has previously been shown to decrease NO levels 

by inhibiting and uncoupling NOS, and consuming NO (48).  A possible explanation 

for why the present study failed to uncover any associations between plasma ox-LDL, 

nitrotyrosine, and MPO levels and plasma NOx levels has already been discussed.  In 

a few words, the particularly long duration of training undertaken by the active 

subjects in this study may have resulted in different effects on plasma NOx levels 

than a short-term intervention.  The previously reported finding that plasma NOx 

levels do not improve with longer-term exercise training (5) suggests that any 

relationship between oxidative stress levels and NO bioavailability that occurs with 

short-term training may disappear with continued training.  

The present study also found significantly higher plasma NOx levels in the 

older inactive subjects than either the older active or young active groups.  There are 

several possible explanations for this surprising finding.  First of all, the elevated NO 

bioavailability in the older inactive subjects may be the result of the partial 

uncoupling of endothelial nitric oxide synthase (eNOS) with age and inactivity.  

When eNOS is fully uncoupled, usually due to the absence of the substrate L-arginine 

or the reduced availability of the cofactor BH4, the ROS superoxide and hydrogen 

peroxide are produced instead of NO.  However, when only partially uncoupled, 
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eNOS produces superoxide and NO (7).  If old age or inactivity triggered the partial 

uncoupling of eNOS, the result would be runaway NO production.  Because NO is a 

free radical, unchecked NO production could be deleterious.  Therefore, the elevated 

NO bioavailability in the older inactive group could reflect a potentially harmful 

increase in NO production by the vascular endothelium. 

 Another possible explanation for the present study’s finding that the highest 

NOx levels occurred in the older inactive group is that the excess NO is being 

produced by some source other than the vascular endothelium.  Endothelial cells 

constitutively produce the NO that plays a role in vasodilation via eNOS (43).  

However, larger quantities of NO are produced in macrophages by inducible NOS 

(iNOS) in response to inflammatory stimuli (18).  Advanced age and inactivity may 

activate inflammatory pathways that result in increases in plasma NO via iNOS.  

Instead of improving endothelial health, the NO produced in response to 

inflammation has proatherogenic effects, oxidizing lipoproteins and promoting 

endothelial dysfunction (3).  Thus, the synthesis of NO by eNOS may be impaired 

with age or inactivity, but plasma NOx levels may actually increase due to the 

production of NO by inflammatory cells.  This would also explain how oxidative 

stress, which is known to activate the inflammatory response, might not be linked to 

reduced plasma NOx levels. 

Relationships between Oxidative Stress and Conventional CVD Risk Factors 

The present study found several significant relationships between oxidative 

stress levels, particularly ox-LDL, and conventional CVD risk factors.  Across all 

study subjects, plasma ox-LDL was positively correlated with LDL cholesterol, the 
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ratio of ox-LDL to LDL cholesterol, and the ratio of total to HDL cholesterol.  In 

addition, plasma ox-LDL was negatively correlated with HDL cholesterol.  These 

relationships between ox-LDL and blood lipid profiles are not unexpected or 

unprecedented.  First, ox-LDL molecules are formed by the oxidative modification of 

native LDL, so any increase in LDL is likely to be associated with an increase in ox-

LDL.  A significant positive association between ox-LDL and LDL cholesterol has 

been reported previously (22).  In addition, the negative association between ox-LDL 

and HDL levels fits with evidence suggesting that HDL molecules are 

atheroprotective in part because they inhibit LDL oxidation (41).  Indeed, a previous 

study supports the present finding that plasma ox-LDL levels are inversely correlated 

with HDL cholesterol levels (21).   

Fitting the observed relationship between ox-LDL and blood chemistry, ox-

LDL levels were also positively correlated with total cholesterol and triglycerides in 

the older subjects.  These findings are supported by previous research that has shown 

that hypercholesterolemia and dyslipidemia are strong independent predictors of 

plasma ox-LDL levels (20).  Also within the older subjects, ox-LDL levels were 

positively correlated with Framingham risk score and percentage, suggesting that ox-

LDL could have predictive value for CVD.  These results are supported by a study 

that found that plasma ox-LDL levels were predictive of future CVD events, and they 

were stronger predictors than the conventional lipoprotein profile, in apparently 

healthy men (39).  Thus, many of the ox-LDL correlations reported in the present 

study are not surprising. 
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Within inactive subjects, a positive relationship was observed between plasma 

MPO levels and the ratio of ox-LDL to LDL cholesterol.  Previous research has 

indicated that MPO can convert native LDL to ox-LDL (11).  In addition, one of the 

secondary oxidation products generated by MPO, nitrogen dioxide, has been reported 

to promote ox-LDL formation (6).  Thus, one would expect an increase in MPO to 

lead to an increase in ox-LDL formation, resulting in the increased ox-LDL to LDL 

ratio reported in the present study. 

Limitations 

 The present study is limited by the cross-sectional design and the relatively 

small sample size.  However, there was sufficient power to detect the differences 

indicated.  In addition, because the plasma ox-LDL levels in older and young subjects 

were measured separately, the comparisons across age groups for ox-LDL are less 

convincing.  Also, the use of plasma measurements may not be the best way to assess 

oxidative stress, as the systemic nature of these measurements means that they may 

not reflect the levels of oxidative stress present locally within every tissue.  However, 

there is substantial evidence to suggest that the plasma levels of the selected oxidative 

stress biomarkers do have clinical significance (4, 20-23, 39, 50, 61, 63, 66, 71).  In 

addition, the plasma markers of oxidative stress measured in the present study, 

although chosen because of their prevalence in previous research, may have left out 

other important plasma measurements such as malondialdehyde (MDA) or 

thiobarbituric acid reaction substances (TBARS). 

 Finally, the measurements of plasma ox-LDL, nitrotyrosine, and MPO levels 

in this study are reliant on the quality of the ELISA kits that were purchased.  The 
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construction of standard curves for each assay act as checks to make sure the values 

measured are accurate, but one must accept that the assay kits measure what they 

purport to measure.  The validity of any ELISA depends on the specificity of the 

primary antibody for the molecule of interest.  The researcher must accept that the 

antibodies provided in the kits by the manufacturers are binding the molecules of 

interest, which in this study were ox-LDL, nitrotyrosine, and MPO.   
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Conclusions 

 

 The findings of the present study suggest that age and chronic exercise 

training do modify circulating biomarkers of oxidative stress.  While the effects of 

age and long-term exercise training on plasma markers of oxidative stress were not 

consistently in the hypothesized direction, there was evidence that a sedentary 

lifestyle may contribute to elevated ox-LDL levels and that nitrotyrosine levels may 

increase with age.  In addition, the results did not show a link between plasma 

oxidative stress and plasma NOx levels, underscoring the need for further research to 

elucidate how elevations in oxidative stress levels contribute to increases in CVD 

risk.  Additionally, the many associations between plasma oxidative stress levels and 

conventional CVD risk factors suggest that plasma oxidative stress may serve as a 

marker of CVD.  Future research may even show that oxidative stress plays a role in 

the pathogenesis of atherosclerosis.  The present study also indicates that reductions 

in plasma oxidative stress, particularly plasma ox-LDL, may explain some of the 

observed reduction in CVD risk with exercise training.  This sets the stage for future 

research to determine how the training-induced reduction in oxidative stress levels 

could help prevent CVD.  And finally, while more investigation is needed, the present 

results suggest that adding a measure of plasma oxidative stress to the conventional 

risk factors used to calculate CVD risk may improve prediction of the disease. 
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Review of Literature 

 

Cardiovascular Disease (CVD) 

CVD and Atherosclerosis 

 Cardiovascular diseases include high blood pressure, coronary heart disease, 

stroke, and heart failure.  Collectively, these diseases of the heart and vasculature are 

the number one cause of mortality in the developed world.  The process underlying 

the development of CVD is atherosclerosis.  The atherosclerotic process is 

characterized by the narrowing of arteries due to plaque buildup.  In addition to 

impeding blood flow, the plaques can rupture, compromising the flow of oxygen to 

critical organs.  The response to injury hypothesis of atherosclerosis says that the 

process begins when the endothelial layer, which is the semi-permeable barrier 

between the blood and the arterial wall, is injured.  While the exact sequence of 

events is still being studied, the injury to the vessel wall is believed to trigger a 

change in endothelial permeability that allows LDL cholesterol molecules to enter the 

intima where they undergo chemical changes.  Once modified, LDL molecules first 

attract monocytes, forming foam cells, and then recruit smooth muscle cells, forming 

fatty streaks.  The buildup of smooth muscle cells and the subsequent development of 

a connective tissue network results in a fibrous plaque that begins to narrow the 

artery.  When the plaque is disrupted, it may block blood flow or trigger more 

coagulation and platelet binding to form a more complicated lesion.  This general 
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outline of the atherosclerotic process is commonly used as the foundation for further 

studies attempting to provide a more complete picture of the process. 

Conventional Risk Factors 

 In the last 50 years, extensive research has identified several factors that 

independently and significantly increase a person’s risk for developing CVD.  These 

intensely-studied risk factors include gender, heredity, smoking status, high 

cholesterol, hypertension, obesity, and diabetes.  Two of the conventional risk factors 

particularly relevant to this study are age and physical inactivity. 

 The increase in CVD risk with increasing age is striking.  An average 

American male aged 30-34 has a 3% risk of developing CVD over a ten-year period, 

while his ten-year risk jumps to 21% when he is 60-64 years old (69). 

 In addition, studies have repeatedly linked physical inactivity to unfavorable 

CVD risk factor profiles, including elevated LDL levels and blood pressure, reduced 

HDL levels, and increased risk of diabetes and obesity (17).  Also well-established is 

the reduction in CVD risk that occurs with exercise training.  In previously sedentary 

individuals, it is generally estimated that exercise training reduces LDL cholesterol by 

10 mg/dL, increases HDL cholesterol by 5 mg/dL, decreases systolic blood pressure 

by 10 mm Hg, and decreases diastolic blood pressure by 8 mm Hg.  In addition, only 

7 days of exercise training has been found to improve glucose tolerance and decrease 

insulin resistance in subjects with mild Type II diabetes (58).  The importance of 

physical inactivity as a risk factor for CVD is underscored by a meta-analysis that 

found a relative risk of death from CVD of 1.9 for inactive individuals compared to 

their active peers (2).  
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Novel Risk Factors 

 The conventional risk factors above have long been considered in estimating 

an individual’s CVD risk.  However, in the late 1990s, a growing number of 

researchers began to question the degree to which conventional risk factors accounted 

for a person’s CVD risk.  Several studies concluded that conventional CVD risk 

factors might explain only 50% of CVD cases (16).  In addition, the exercise training-

induced reductions in CVD risk could be only partially explained by improvements in 

conventional risk factors.  For example, Mora and colleagues associated higher levels 

of physical activity with fewer CVD events and found that differences in 

conventional risk factors could explain only 59% of that inverse relationship (44).  

The implication that other factors must play a significant role in the development of 

CVD has not been accepted without debate.  Research has emerged to bolster the 

earlier claims that conventional risk factors account for far more than 50% of an 

individual’s CVD risk (31). 

Although the question is not yet settled, the ongoing debate has led to a 

growing body of research attempting to identify additional CVD risk factors that 

might help provide a more complete picture of a person’s CVD risk.  Much of the 

attention has focused on emerging risk factors in the areas of oxidative stress, 

inflammation, and endothelial dysfunction.  Potential novel CVD risk factors in the 

area of oxidative stress include plasma levels of oxidized LDL, nitrotyrosine, and 

myeloperoxidase.  Because of the many physiological and biochemical links among 

oxidative stress, inflammation, and endothelial dysfunction in the pathology of 

atherosclerosis, the research in all three emerging areas will be discussed. 
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Oxidative Stress 

 Energy is produced in mammalian cells by reducing oxygen to water during 

aerobic respiration.  These reduction-oxidation reactions produce reactive oxygen 

species (ROS) as intermediates, and these by-products influence a variety of cellular 

activities in both normal and pathological conditions (47).  ROS have been shown to 

play important roles in cell signaling, vascular growth and differentiation, cell 

apoptosis, and platelet aggregation (14).  To properly execute these roles, ROS 

production must be carefully modulated and a steady-state balance must be 

maintained between the levels of oxidants and antioxidants.  When this delicate 

balance is disrupted and excess ROS results, the body experiences “oxidative stress” 

as the highly reactive ROS interact with lipids, proteins, and DNA to cause cellular 

damage (47).  In addition to cell damage, research suggests that oxidative stress can 

contribute to the development of various pathologies including aging, dementia, and 

atherosclerosis (47). 

ROS and RNS 

ROS can be divided into two categories: nonradicals and free radicals (64).  

Important nonradicals in oxidative stress pathways include hydrogen peroxide (H2O2) 

and hypochlorous acid (HOCl).  Free radicals are highly reactive because they have at 

least one unpaired electron.  When two free radicals meet, they will usually join their 

unpaired electrons to form a covalent bond, resulting in a nonradical product.  An 

example of this is the reaction between the free radicals superoxide and nitric oxide to 

form the nonradical product peroxynitrite: 

O2
- + NO → ONOO- 
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A free radical can also react with nonradical molecules, either by abstracting a 

hydrogen atom from the nonradical or adding to it (64).  Lipids, proteins, and nucleic 

acids are all examples of nonradicals that are altered in reactions with free radicals 

(47).  Because the products of these reactions are free radicals, ROS production is 

amplified, potentially leading to oxidative stress. 

In addition to ROS, reactive nitrogen species (RNS) are often referred to as 

oxidants because of their tendency to remove electrons.  The oxidative stress and 

resulting cell damage associated with ROS can be equated to the nitrosative stress 

caused by RNS, and in many studies, including this one, the term “oxidative stress” is 

used to describe the impact of both excess ROS and RNS.  In addition, this paper may 

at times refer to “nitro-oxidative stress” in an attempt to encompass the damage 

caused by both of these processes. 

Sources of ROS 

 The major intracellular source of ROS is the mitochondrial electron transport 

chain, which produces superoxide as a by-product (29).  The ROS in blood vessels 

have several other sources, including NADPH oxidase, xanthine oxidase, eNOS, 

lipoxygenase, and myeloperoxidase (64).   

The NADPH oxidase enzyme complex, present in many cells including 

vascular smooth muscle cells and endothelial cells, catalyzes the reduction of 

molecular oxygen to generate superoxide.  Xanthine oxidase catalyzes the oxidation 

of xanthine to uric acid, generating superoxide in the process.  Endothelial nitric 

oxide synthase (eNOS) is responsible for the oxidation of L-arginine to nitric oxide 

(NO).  When uncoupled, eNOS transfers electrons to molecular oxygen rather than L-
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arginine, resulting in superoxide formation (64).  Lipoxygenases catalyze the 

oxidation of polyunsaturated fatty acids.  Myeloperoxidase (MPO) is a heme-

containing enzyme secreted from macrophages and neutrophils.  MPO catalyzes the 

formation of the nonradical oxidant HOCl in the following reaction: 

H2O2 + Cl- + H+ → HOCl + H2O 

HOCl can oxidize nitrite to the nonradical oxidant nitryl chloride and the radical 

nitrogen dioxide, both of which promote nitrotyrosine production (64). 

 By producing various oxidants that can alter lipids and proteins, the above 

enzymes can contribute to oxidative stress in certain pathological states. 

CVD and Nitro-Oxidative Stress 

 As discussed previously, atherosclerosis develops in response to an 

endothelial injury or dysfunction which changes the permeability of the blood vessel 

wall (59).  The resulting movement of LDL molecules into the subendothelial space, 

where they are subject to uptake by macrophages, results in foam cell formation.  

These foam cells become fatty streaks and are covered by fibrous plaques and, 

ultimately, an atherosclerotic lesion, after smooth muscle cells, additional lipids, 

leukocytes, and platelets are attracted and bound to the site.  Recent research indicates 

that the oxidative stress resulting from ROS and RNS plays a crucial role in CVD.  

The proposed role of oxidative stress in atherosclerosis has been termed the oxidative 

modification hypothesis (64).  According to this hypothesis, oxidized molecules play 

an important role in atherosclerosis both by embedding in the vascular wall and 

promoting plaque formation and by interacting with inflammatory and endothelial 

dysfunction pathways which negatively affect vascular function. 
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Markers of Nitro-Oxidative Stress 

 One way to evaluate the amount of cell damage that is occurring due to ROS 

and RNS is to measure products of oxidative processes that can be found in human 

plasma.  Ox-LDL and nitrotyrosine are two such products that can serve as indicators 

of the body’s level of nitro-oxidative stress.  In addition, the presence of enzymes that 

catalyze reactions producing oxidants can provide a measure of excess ROS in the 

body.  MPO, a source of oxidants, is an example of such an enzyme that can be found 

and measured in human plasma.  

Oxidized LDL (Ox-LDL) 

 The term ox-LDL does not define a particular molecule, referring instead to a 

non-homogeneous population of modified forms of LDL.  Circulating levels of ox-

LDL are the result of oxidation in the arterial wall, most likely by MPO, 

lipoxygenases, or RNS such as peroxynitrite (41).  The oxidation of LDL begins with 

the loss of LDL’s endogenous antioxidants, followed by the conversion of most 

polyunsaturated fatty acids to hydroperoxides that then react with lysine residues of 

apolipoprotein B-100 (64).  LDL peroxidation leaves the lipoprotein more negatively 

charged, resulting in a decreased affinity for the LDL receptor and an increased 

affinity for scavenger receptors in endothelial cells, smooth muscle cells, and 

macrophages (41).  The oxidative modification of LDL in the vascular wall is an 

important step in the initiation and progression of atherosclerosis because it is 

oxidized LDL, not native LDL, that is trapped by macrophages in the subendothelial 

space (64).  Macrophage uptake of ox-LDL triggers the migration and proliferation of 
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smooth muscle cells, resulting in the formation of foam cells which can eventually 

develop into the fatty streaks characteristic of CVD (34). 

An important early step in atherosclerosis is the adhesion of monocytes and 

lymphocytes to the endothelium, and ox-LDL facilitates this by up-regulating the 

transcription of adhesion molecules like vascular cell adhesion molecule (30).  In 

addition to its effects on smooth muscle cell migration mentioned above, ox-LDL 

also supports foam cell formation by promoting monocyte infiltration into the 

subendothelial space, encouraging monocyte proliferation and differentiation into 

macrophages, and hindering the ability of resident macrophages to leave the intima 

(64).  Interestingly, one way that HDL cholesterol prevents atherosclerosis is by 

inhibiting LDL oxidation and by reversing the enhanced monocyte recruitment 

triggered by ox-LDL (41). 

Ox-LDL is also linked to endothelial dysfunction because it can reduce NO 

bioavailability and lead to vascular remodeling.  Ox-LDL reduces NO levels directly, 

by reacting with NO to inactivate it, and indirectly, by stimulating the release of NO 

scavengers (28).  Ox-LDL may also induce vasoconstriction by inhibiting NO 

production and stimulating endothelin expression, and a reduction in the arterial 

lumen occurs with the accumulation of foam cells and the necrosis and apoptosis 

induced by ox-LDL (41).  Collectively, the reduced NO bioavailability and the 

thickening of the intimal layer impair the function of the endothelium. 

Ox-LDL is also associated with increased thrombosis because ox-LDL 

stimulates platelet adhesion and aggregation, enhances the endothelium’s pro-

coagulant activity, and decreases fibrinolytic activity (41).  In summary, ox-LDL 
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plays a role in foam cell formation, plaque rupture, endothelial dysfunction, vascular 

remodeling, and thrombosis. 

CVD and Plasma Ox-LDL Levels 
 
As mentioned previously, research has shown that it is ox-LDL, and not native 

LDL, that makes up aortic lesions (51).  Although atherosclerotic lesions are enriched 

with ox-LDL, the plasma of healthy persons typically has very low levels of ox-LDL 

(24).  However, an increase in plasma ox-LDL levels occurs in certain pathological 

conditions, including carotid artery atherosclerosis and acute myocardial infarction, 

when atherosclerotic lesions rupture and expose accumulated ox-LDL to the 

bloodstream (23). 

Further investigation has revealed that elevated levels of circulating ox-LDL 

are present not only during clinical manifestations of CVD, but also with the 

symptom-less onset and progression of the disease.  For example, plasma ox-LDL 

levels in clinically healthy men independently predict plaque occurrence in the 

carotid and femoral arteries and are related to intima-media thickness and levels of 

the inflammatory marker C-reactive protein (22).  In addition, studies have found 

increased plasma ox-LDL levels in people with coronary artery disease (21). 

Even before the onset of CVD, however, circulating ox-LDL levels have been 

shown to be a useful marker for identifying individuals with a high risk of developing 

the disease (20).  Mounting evidence suggests that plasma ox-LDL levels may 

contribute as much to the development of CVD and the risk of cardiac events as 

current conventional risk factors such as total cholesterol.  In one study of apparently 

healthy men, plasma ox-LDL levels were predictive of future CVD events, and they 
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were stronger predictors than the conventional lipoprotein profile (39).  Another study 

identified an elevated ratio of plasma ox-LDL relative to total cholesterol as a 

possible indicator of increased acute myocardial infarction risk (50).  While more 

research is needed to definitively establish ox-LDL as a CVD risk factor, the 

literature points to a strong link between plasma ox-LDL levels and the initiation, 

development, and clinical outcomes of CVD. 

Nitrotyrosine 

 The formation of 3-nitrotyrosine in proteins results from the nitration of 

tyrosine, making it an indicator of nitro-oxidative stress.  RNS including nitryl 

chloride, nitrogen dioxide, and peroxynitrite can mediate 3-nitrotyrosine production.  

As mentioned previously, nitryl chloride and nitrogen dioxide are the ultimate 

products of the MPO-catalyzed formation of the oxidant hypochlorous acid.  

Peroxynitrite (ONOO-), a powerful oxidant, results from the reaction of the free 

radicals nitric oxide and superoxide. 

Superoxide anions are generated by components of atherosclerotic lesions 

including endothelial cells, smooth muscle cells, and macrophages, suggesting that 

peroxynitrite production occurs in the vascular wall (33).  While antioxidant defenses 

appear to protect NO from superoxide scavenging in healthy individuals, diseases like 

atherosclerosis may partially uncouple eNOS and result in increased generation of 

both NO and superoxide, leading to peroxynitrite formation (7).  Peroxynitrite 

promotes atherosclerosis by oxidizing lipids, proteins, and DNA, and contributing to 

cell death and tissue injury (35).  While peroxynitrite and other RNS are unstable, the 
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3-nitrotryosine production they mediate serves as a stable marker of nitro-oxidative 

stress. 

As indicated previously, peroxynitrite is one of the molecules responsible for 

LDL oxidation.  After in vitro studies showed that 3-nitrotyrosine was a highly 

specific marker for LDL oxidized by peroxynitrite, an in vivo study found that 

nitrotyrosine levels were 90-fold higher in LDL isolated from atherosclerotic lesions 

than in native LDL isolated from the plasma of healthy individuals (33).  Thus 

nitrotyrosine levels reflect the RNS production and subsequent oxidative 

modifications occurring in the vascular wall. 

Nitrotyrosine is associated with endothelial dysfunction because the RNS that 

lead to its formation reduce NO bioavailability.  Peroxynitrite production consumes 

NO, and once formed, peroxynitrite may uncouple eNOS by oxidizing 

tetrahydrobiopterin (BH4), a cofactor necessary for NO synthesis (7).  Any 

uncoupling of eNOS promotes endothelial dysfunction by decreasing NO production 

and leads to oxidative stress by generating superoxide.  In addition, the depletion of 

important plasma antioxidants and nitration of proteins that occur because of 

peroxynitrite lead to endothelium damage that induces thickening of the intima in the 

arterial wall and impairs vasodilation (65).  Nitrotyrosine production clearly has 

important consequences for endothelial function, and thus has been linked to CVD. 

CVD and Plasma Nitrotyrosine Levels 

 Research continues to examine nitrotyrosine as both a marker of the nitro-

oxidative stress present in pathological conditions and a part of the molecular basis of 

the disease state.  While nitrotyrosine levels are low in healthy individuals, they 
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increase significantly in disease states including inflammatory and cardiovascular 

disorders (63).  For example, patients with celiac disease displayed elevated plasma 

nitrotyrosine levels compared to controls (66).  Patients with established coronary 

artery disease had plasma nitrotyrosine levels almost twice as high as their healthy 

peers.  These nitrotyrosine levels were significantly reduced with statin therapy, 

demonstrating the ability of statins to inhibit superoxide formation (61).  In a study of 

clinical CVD patients, atherosclerotic blood vessels had significantly elevated tissue 

levels of nitrotyrosine when compared to control vessels (65).  Thus, there is 

substantial evidence that elevated nitrotyrosine levels accompany many disease states. 

Research also supports the hypothesis that RNS play an important role in 

CVD by promoting lipid oxidation.  In human coronary arteries, the endothelium, 

foamy macrophages, and inflammatory cells associated with atheroma all display 

signs of extensive nitration (1).  Not surprisingly, an analysis of protein oxidation 

products in atherosclerotic lesions has revealed enriched nitrotyrosine levels, 

indicating that nitration induces lipoprotein aggregation (18).  So in addition to 

serving as a strong indicator of nitro-oxidative stress in various disease states, 

nitrotyrosine formation may be involved in the pathogenesis of atherosclerosis. 

Myeloperoxidase (MPO) 

 By catalyzing the production of ROS and RNS, MPO contributes to nitro-

oxidative stress.  The enzyme MPO is the single most abundant protein in neutrophils 

and is also present in monocytes, two types of white blood cells that ingest bacteria 

and damaged or dead cells by phagocytosis (52).  Collectively called phagocytes, 

these leukocytes typically circulate in the blood.  Carr and colleagues described how 
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activated endothelial cells and macrophages express cytokines that attract phagocytes 

to sites of acute inflammation in tissues.  The neutrophils and monocytes migrate 

toward the inflammatory site by chemotaxis, and once they reach it they ingest the 

pathogen or damaged cells and secrete MPO.  After being released, active MPO can 

adhere to endothelial cells, leukocytes, and lipoproteins (8). 

As described earlier, MPO catalyzes the production of hypochlorous acid, a 

cytotoxic oxidant: 

H2O2 + Cl- + H+ → HOCl + H2O 

In addition to its role in killing engulfed bacteria, hypochlorous acid may also injure 

normal tissue with its protein-destroying capabilities (11).  Once hypochlorous acid is 

produced, it can lead to the formation of other secondary oxidation products including 

nitryl chloride and nitrogen dioxide.  These MPO-generated oxidants can bind HDL 

cholesterol in atherosclerotic plaques, rendering the “good” cholesterol molecules 

dysfunctional (49).  So not only does MPO lead to ROS and RNS production and 

subsequent nitro-oxidative stress, but it also inhibits some atheroprotective 

mechanisms. 

MPO also seems to promote endothelial dysfunction by limiting NO 

bioavailability through several mechanisms.  MPO inhibits and uncouples NOS, 

reducing NO synthesis, and MPO and its secondary oxidation products consume NO 

(48).  Evidence that MPO impairs endothelium function includes a human study that 

found an inverse relationship between serum MPO levels and NO-dependent 

vasodilation (68).  These results suggest a link between MPO levels and endothelial 

dysfunction. 
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 Research also indicates that MPO activity is an important pathway for the 

conversion of native LDL to its pro-atherogenic form ox-LDL.  The enzyme’s role in 

the oxidative modification of LDL was first suggested by the presence of active MPO 

in human vascular lesions (11).  MPO seems to play a role in lipoprotein oxidation 

because of its production of hypochlorous acid and other secondary oxidation 

products.  LDL molecules that have been modified by hypochlorous acid have been 

shown to stimulate foam cell formation, increase leukocyte adherence and migration 

into blood vessels, boost leukocyte ROS production, and encourage the chemotactic 

activity of neutrophils (64).  This MPO-induced migration and aggregation of various 

leukocytes could contribute to plaque disruption.  And similar to hypochlorous acid, 

other MPO-generated oxidants like nitrogen dioxide have been shown to promote ox-

LDL formation (6).  Thus, MPO activity is linked to both the oxidative modification 

of LDL and the activation of the inflammatory response which are essential to the 

pathogenesis of CVD. 

CVD and Plasma MPO Levels 

Plasma MPO levels have been shown to have prognostic value for CVD.  

Patients with coronary artery disease had elevated blood and leukocyte MPO levels 

compared to controls, suggesting the enzyme’s role as an inflammatory marker of 

CVD (71).  In patients presenting to the hospital with chest pain, plasma levels of 

MPO independently predicted a person’s risk of myocardial infarction and other 

future major adverse cardiac events in the ensuing six months (4).  The evidence 

shows that plasma MPO levels are a valid marker for CVD. 
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However, further research suggests that MPO is more than just a marker of 

pathological conditions.  MPO also appears to be a causative factor in the disease 

states.  Both MPO and MPO-generated oxidants have been implicated as participants 

in tissue injury in inflammatory conditions including kidney disease and asthma (48).  

In addition, people with partial and total MPO deficiency are less likely to develop 

CVD (32).  While more research is needed, MPO appears to play a role in 

atherosclerosis through pathways of nitro-oxidative stress, endothelial dysfunction, 

and inflammation. 

Effects of Exercise Training on Nitro-Oxidative Stress 

 As discussed previously, endurance exercise training has been repeatedly 

shown to decrease CVD risk by improving both conventional and novel risk factors.  

Although not studied extensively, evidence shows that exercise training reduces 

systemic oxidative stress (45).  However, an acute bout of vigorous exercise actually 

increases oxidative stress because the higher respiration rate required during intense 

exercise leads to the production of more free radicals (9).  The contrasting effects of 

exercise training and an acute exercise bout indicate that progressive adaptations 

occur with exercise.  The plasma oxidative stress induced with each exercise bout 

may stimulate the arterial antioxidant response, decrease basal oxidant production, 

and increase eNOS activity, resulting in the ultimate drop in oxidative stress with 

training (38).  However, much of the work supporting these mechanisms has been 

done in animal models.  The effect of training on the antioxidant-oxidant balance in 

humans is more controversial. 
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In addition to the research on oxidative stress and exercise training, a few 

exercise intervention studies have examined changes in the identified nitro-oxidative 

stress markers with training.  Plasma ox-LDL levels were reduced with a high-

intensity exercise intervention in sedentary men and women over the age of 55 (10).  

In sedentary, healthy young men and women, exercise training increased endogenous 

antioxidant activity, decreased serum ox-LDL concentration, and increased LDL 

resistance to oxidation (13).  Other studies, using baseline levels of conjugated dienes 

extracted from LDL as an indicator of LDL oxidation, found that levels of these so-

called “mildly oxidized LDL” were reduced in young trained girls and older veteran 

athletes compared to controls, and after exercise training in previously sedentary 

middle-aged men and women (67). 

Even less research has been done on changes in nitrotyrosine and 

myeloperoxidase with training.  In subjects over the age of 65, plasma nitrotyrosine 

levels were decreased by 20% with a 16-week exercise intervention, and subsequent 

detraining abolished these adaptations (15).  Serum MPO levels declined 28% in 

adult subjects with elevated CVD risk after a 12-week endurance training intervention 

(56).  While these previous studies provide evidence that relatively short-term 

exercise training improves plasma levels of oxidative stress markers, little research 

has examined the effects of long-term exercise training.  In addition, while some have 

speculated about the mechanisms linking oxidative stress to inflammation and 

endothelial dysfunction, few have linked plasma markers of oxidative stress with NO 

levels. 
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Inflammation 

 Inflammation is emerging as a risk factor for CVD, with preliminary research 

finding that levels of inflammatory markers such as C-reactive protein (CRP) are 

predictive of CVD (57).  However, more relevant to the present paper is the 

intersection of oxidative stress and inflammation in the development of CVD.  

Research is still needed to determine whether the oxidative stress triggers the 

inflammatory response or the inflammation initiates atherosclerosis and promotes 

oxidative modification as a result.  But either way, these two emerging CVD risk 

factors are tightly linked. 

First of all, even when properly balanced with antioxidants, ROS and RNS 

play an important role in host defense and antimicrobial activity.  Their role in the 

immune response is evidenced by the association of impaired ROS/RNS production 

with susceptibility to bacterial or parasitic infection (64).  When excess ROS/RNS 

accumulates and oxidative modifications result, it is no surprise that inflammatory 

pathways are involved.  The positive relationship between levels of CRP and ox-LDL 

points to the interaction between inflammation and oxidation, and LDL oxidation has 

been found to trigger a state of chronic, low-level inflammation that leads to plaque 

development (20). 

During atherosclerosis, the inflammatory response leads to the recruitment 

and adherence of leukocytes and platelets to the sites of endothelial injury (64).  As 

discussed previously, ox-LDL facilitates this adhesion by up-regulating the 

transcription of various adhesion molecules (30).  Some leukocytes that aggregate at 

sites of endothelial injury release MPO, the enzyme that can catalyze oxidative 
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modifications.  In addition, leukocytes release proinflammatory cytokines which 

increase coagulation and cause an unfavorable lipid profile characterized by 

decreased HDL cholesterol and increased triglycerides (19).  Components of the 

inflammatory response are also responsible for macrophage and smooth muscle cell 

recruitment into the vascular wall, contributing to foam cell and fatty streak 

formation.  Thus, atherosclerosis can be thought of as a chronic inflammatory process 

whose pathogenesis is intimately linked to oxidative damage. 

Endothelial Dysfunction 

 Separating the arterial wall from flowing blood is the endothelium, a thin 

layer of cells that acts as a selectively-permeable barrier and plays a key role in 

regulating vascular function by releasing several autocrine and paracrine factors 

including nitric oxide (NO) (47).  NO is a vasodilator that has several antiatherogenic 

effects, including the regulation of blood pressure and vascular tone, and the 

inhibition of platelet aggregation, vascular smooth muscle cell proliferation, and 

leukocyte adhesion (46).  Many disease processes, including atherosclerosis, are 

characterized by a reduction in NO bioavailability.  The decline in NO bioactivity 

results in abnormal vascular homeostatic function, a condition called endothelial 

dysfunction. 

Nitric Oxide (NO) 

NO is a diffusible gas that is so rapidly scavenged that it has a half-life of only 

a few seconds (3).  While this short half-life makes measuring NO unfeasible, the 

final products of NO metabolism, nitrite and nitrate, can be measured in plasma.  
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Collectively called NOx, nitrite and nitrate concentrations serve as an indicator of NO 

production (53). 

 NO is synthesized in trace quantities by a reaction of oxygen, arginine, and 

NADPH that is catalyzed by nitric oxide synthase (NOS).  The NO that plays a role in 

vasodilation is constitutively produced in endothelial cells, platelets, and neutrophils 

by endothelial NOS (eNOS) in response to homeostatic stimuli (43).  However, larger 

quantities of NO are produced in macrophages by inducible NOS (iNOS) in response 

to inflammatory stimuli (18).  Instead of improving endothelial health, the NO 

produced in response to inflammation has proatherogenic effects, oxidizing 

lipoproteins and promoting endothelial dysfunction (3).  Thus, in addition to its 

relationship to oxidative stress, inflammation also plays a role in endothelial 

dysfunction. 

CVD and Endothelial Dysfunction 

 The link between endothelial dysfunction and CVD is well-established.  

Measures of endothelial function, such as endothelium-dependent vasodilation, have 

been shown to predict long-term CVD progression and future CVD events in patients 

with atherosclerosis (60).  The loss of endothelium-dependent vasodilation reflects an 

impairment in endothelium-derived NO bioactivity (47).  Thus, decreased NO 

bioavailability is indicative of endothelial dysfunction.  As outlined previously, ox-

LDL, nitrotyrosine, and MPO have all been linked to reduced NO bioavailability by 

either decreasing NO production, increasing NO scavenging, or uncoupling eNOS.  

Thus, excess ROS production and oxidative stress are associated with endothelial 

dysfunction.  Whether endothelial dysfunction is an initiating event in atherosclerosis 
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that triggers oxidative modifications or simply a result of oxidative stress is not 

known. 

Effects of Exercise Training on Endothelial Function 

Previous research has shown that exercise training can reverse age-related 

decrements in endothelium-dependent vasodilation and that active individuals have 

increased NO bioactivity compared to their sedentary peers (12).  In addition, plasma 

NOx levels have been found to increase with exercise training in various populations.  

Intense aerobic exercise training increased plasma NOx concentration in healthy 

young individuals (36).  In previously sedentary older women, three months of mild 

aerobic-endurance exercise significantly increased plasma NOx levels (37).  Evidence 

indicates that physical activity improves endothelial function and can increase NO 

bioavailability.  The apparent links between oxidative stress and endothelial 

dysfunction suggest that the changes in plasma levels of ox-LDL, nitrotyrosine, and 

MPO with exercise training are concomitant with changes in plasma NOx.  The 

present study will look simultaneously at the training-induced changes in oxidative 

stress markers and NO bioavailability to try to better understand the mechanisms 

underlying the improvements in CVD risk with training.  In addition, the study will 

extend recent findings relative to exercise and age effects on novel CVD risk factors.   

Summary 

 
 While conventional risk factors explain a significant portion of CVD risk, 

emerging factors like oxidative stress, inflammation and endothelial dysfunction 

appear to improve CVD prediction.  Ox-LDL, nitrotyrosine, and MPO are oxidative 
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stress markers that have been linked to atherosclerosis.  While the mechanisms by 

which oxidative stress promotes CVD are not yet fully understood, research suggests 

that oxidative modifications may impair endothelial function.  Endothelial 

dysfunction, characterized by reduced NO bioactivity, seems to promote the 

inflammatory response essential to atherosclerosis.  Thus, the intersection of 

oxidative stress, endothelial dysfunction, and inflammation pathways seems to be 

important in the disease process.  

Early evidence also suggests that exercise training may be able to reduce CVD 

risk in part by decreasing levels of oxidative stress.  The training-induced decline in 

oxidative stress may result in improved endothelial function, which in turn decreases 

an individual’s CVD risk.  Great progress has been made in understanding the 

pathogenesis of atherosclerosis and the effects of exercise training on CVD risk, but 

more research is needed to elucidate the mechanisms and causes of the disease. 



 

 68 
 

Reference List 
 

1. Beckmann JS, Ye YZ, Anderson PG, Chen J., Accavitti MA, Tarpey MM, White 
CR.  Extensive nitration of protein tyrosines in human atherosclerosis detected by 
immunohistochemistry.  Biol Chem Hoppe Seyler 375: 81-88, 1994. 

2. Berlin JA, Colditz GA.  A meta-analysis of physical activity in the prevention of 
coronary heart disease.  Am J Epidemiol 132: 612-628, 1990. 

3. Bloodsworth A, O’Donnell VB, Freeman BA.  Nitric oxide regulation of free 
radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler 
Thromb Vasc Biol 20: 1707-1715, 2000. 

4. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, 
Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL.  
Prognostic value of myeloperoxidase in patients with chest pain.  N Engl J Med 
349: 1595-1604, 2003. 

 
5. Brinkley TE, Fenty-Stewart NM, Park J, Brown MD, Hagberg JM.  Plasma 

nitrate/nitrite levels are unchanged after long-term aerobic exercise training in 
older adults.  Nitric Oxide 21: 234-238, 2009. 

6. Byun J, Mueller DM, Fabjan JS, Heinecke JW.  Nitrogen dioxide radical 
generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes 
lipid peroxidation of low density lipoprotein.  FEBS Lett 455: 243-246, 1999. 

 
7. Cai H, Harrison DG.  Endothelial dysfunction in cardiovascular diseases: the role 

of oxidant stress.  Circ Res 87: 840-844, 2000. 
 
8. Carr AC, Myzak MC, Stocker R, McCall MR, Frei B.  Myeloperoxidase binds to 

low-density lipoprotein: potential implications for atherosclerosis.  FEBS Lett 
487: 176-180, 2000. 

 
9. Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E, 

Stadtman ER, Epstein Y.  Plasma antioxidant status and cell injury after severe 
physical exercise.  Proc Natl Acad Sci U S A 100: 5119-5123, 2003. 

10. Cornelissen VA, Arnout J, Holvoet P, Fagard RH.  Influence of exercise at lower 
and higher intensity on blood pressure and cardiovascular risk factors in older 
age.  J Hypertens 27: 753-762, 2009. 

 
11. Daugherty A, Dunn JL, Rateri DL, Heinecke JW.  Myeloperoxidase, a catalyst for 

lipoprotein oxidation, is expressed in human atherosclerotic lesions.  J Clin Invest 
94: 437-444, 1994. 



 

 69 
 

12. DeSouza CA, Shapiro, LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka 
H, Seals DR.  Regular aerobic exercise prevents and restores age-related declines 
in endothelium-dependent vasodilation in healthy men.  Circulation 102: 1351-
1357, 2000. 

13. Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, 
Ordonez-Llanos J, Marrugat J.  Response of oxidative stress biomarkers to a 16-
week aerobic physical activity program, and to acute physical activity, in healthy 
young men and women.  Atherosclerosis 167: 327-334, 2003. 

 
14. Eyries M, Collins T, Khachigian LM.  Modulation of growth factor gene 

expression in vascular cells by oxidative stress.  Endothelium 11: 133-139, 2004. 

15. Fatouros IG, Jamurtas AZ, Villiotou V, Pouliopoulou S, Fotinakis P, Taxildaris 
K, Deliconstantinos G.  Oxidative stress responses in older men during endurance 
training and detraining.  Med Sci Sports Exerc 36: 2065-2072, 2004. 

 
16. Futterman LG, Lemberg L.  Fifty percent of patients with coronary artery disease 

do not have any of the conventional risk factors.  Am J Crit Care 7: 240-244, 
1998. 

 
17. Goldberg A, Busby-Whitehead MJ, Katzel LI, Krauss RM, Lumpkin M, Hagberg 

JM.  Cardiovascular fitness, body composition, and lipoprotein lipid metabolism 
in older men.  J Gerontol 55A: M342-M349, 2000. 

 
18. Heinecke JW.  Mass spectrometric quantification of amino acid oxidation 

products in proteins: insights into pathways that promote LDL oxidation in the 
human artery wall.  FASEB J 13: 1113-1120, 1999. 

 
19. Hennekens CH.  Increasing burden of cardiovascular disease: current knowledge 

and future directions for research on risk factors.  Circulation 97: 1095-1102, 
1998. 

 
20. Holvoet P, Harris TB, Tracy RP, Verhammer P, Newman AB, Rubin SM, 

Simonsick EM, Colbert LH, Kritchevsky SB.  Association of high coronary heart 
disease risk status with circulating oxidized LDL in the well-functioning elderly: 
findings from the Health, Aging, and Body Composition study.  Arterioscler 
Thromb Vasc Biol 23: 1444-1448, 2003. 

 
21. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D.  Oxidized LDL 

and malondialdehyde-modified LDL in patients with acute coronary syndromes 
and stable coronary artery disease.  Circulation 98: 1487-1494, 1998. 

 
22. Hulthe J, Fagerberg B.  Circulating oxidized LDL associated with subclinical 

atherosclerosis development and inflammatory cytokines (AIR Study).  
Arterioscler Thromb Vasc Biol 22: 1162-1167, 2002. 



 

 70 
 

23. Itabe H.  Oxidized low-density lipoproteins: what is understood and what remains 
to be clarified.  Biol Pharm Bull 26: 1-9, 2003. 

 
24. Itabe H, Yamamoto H, Imanaka T, Shimamura K, Uchiyama H, Kimura J, Sanaka 

T, Hata Y, Takano T.  Sensitive detection of oxidatively modified low density 
lipoprotein using a monoclonal antibody.  J Lipid Res 37: 45-53, 1996. 

 
25. Jackson AS, Pollock ML.  Generalized equations for predicting body density of 

men.  Br J Nutr 40: 497-504, 1978. 

26. Jenkins NT, McKenzie JA, Hagberg JM, Witkowski S.  Plasma fetuin-A 
concentrations in young and older high- and low-active men.  Metabolism 4 Mar 
2010.  [Epub ahead of print]. 

27. Jenkins NT, Witkowski S, Spangenburg EE, Hagberg JM.  Effects of acute and 
chronic endurance exercise on intracellular nitric oxide in putative endothelial 
progenitor cells: role of NADPH oxidase.  Am J Physiol Heart Circ Physiol 297: 
1798-1805, 2009. 

28. Jessup W.  Oxidized lipoproteins and nitric oxide.  Curr Opin Lipidol 7: 274-280, 
1996. 

 
29. Ji LL.  Antioxidants and oxidative stress in exercise.  Proc Soc Exp Biol Med 222: 

283-292, 1999. 

30. Khan BV, Parthasarathy SS, Alexander RW, Medford RM.  Modified low density 
lipoprotein and its constituents augment cytokine-activated vascular cell adhesion 
molecule-1 gene expression in human vascular endothelial cells.  J Clin Invest 95: 
1262-1270, 1995. 

 
31. Khot UN, Khot MB, Majzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, 

Lincoff AM, Topol EJ.  Prevalence of conventional risk factors in patients with 
coronary heart disease.  JAMA 290: 898-904, 2003. 

32. Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A.  
Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit?  
Acta Haematol 104: 10-15, 2000. 

33. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, 
Heinecke JA.  Reactive nitrogen intermediates promote low density lipoprotein 
oxidation in human atherosclerotic intima.  J Biol Chem 272: 1433-1436, 1997. 

34. Luc G, Fruchart JC.  Oxidation of lipoproteins and atherogenesis.  Am J Clin Nutr 
53: 206S-208S, 1991. 

 
35. Ma XL, Lopez BL, Liu G, Christopher TA, Gao F, Guo Y, Feuerstein GZ, 

Ruffolo RR, Barone FC, Yue T.  Hypercholesterolemia impairs a detoxification 



 

 71 
 

mechanism against peroxynitrite and renders the vascular tissue more susceptible 
to oxidative injury.  Circulation Res 80: 894-901, 1997. 

36. Maeda S, Miyauchi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe 
Y, Murakami H, Kumagai Y, Kuno S, Matsuda M.  Effects of exercise training of 
8 weeks and detraining on plasma levels of endothelium-derived factors, 
endothelin-1 and nitric oxide, in healthy young humans.  Life Sci 69: 1005-1016, 
2001. 

37. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, 
Ajisaka R, Matsuda M.  Moderate regular exercise increases basal production of 
nitric oxide in elderly women.  Hypertens Res 27: 947-953, 2004. 

38. Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S.  Role of 
arterial wall antioxidant defense in beneficial effects of exercise on 
atherosclerosis in mice.  Arterioscler Thromb Vasc Biol 21: 1681-1688, 2001. 

39. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W.  Plasma oxidized 
low-density lipoprotein, a strong predictor for acute coronary heart disease events 
in apparently healthy, middle-aged men from the general population.  Circulation 
112: 651-657, 2005. 

40. Mergener M, Martins MR, Antunes MV, da Silva CC, Lazzaretti C, Fontanive 
TO, Suyenaga ES, Ardenghi PG, Maluf SW, Gamaro GD.  Oxidative stress and 
DNA damage in older adults that do exercises regularly.  Clin Biochem 42: 1648-
1653, 2009. 

41. Mertens A, Holvoet P.  Oxidized LDL and HDL: antagonists in atherothrombosis.  
FASEB J 15: 2073-2084, 2001. 

42. Minor RL, Myers PR, Guerra R, Bates JN, Harrison DG.  Diet-induced 
atherosclerosis increases the release of nitrogen oxides from rabbit aorta.  J Clin 
Invest 86: 2109-2116, 1990. 

43. Moncada S, Higgs EA.  Nitric oxide and the vascular endothelium.  Handb Exp 
Pharmacol 176: 213-254, 2006. 

44. Mora S, Cook N, Buring JE, Ridker PM, Lee I.  Physical activity and reduced risk 
of cardiovascular events: potential mediating mechanisms.  Circulation 116: 
2110-2118, 2007. 

45. Napoli C, Williams-Ignarro S, De Nigris F, Lerman LO, Rossi L, Guarino C, 
Mansueto G, Di Tuoro F, Pignalosa O, De Rosa G, Sica V, Ignarro LJ.  Long-
term combined beneficial effects of physical training and metabolic treatment on 
atherosclerosis in hypercholesterolemic mice.  Proc Natl Acad Sci U S A 101: 
8797-8802, 2004. 



 

 72 
 

46. Naseem KM.  The role of nitric oxide in cardiovascular diseases.  Mol Aspects 
Med 26: 33-65, 2005. 

 
47. Nedeljkovic ZS, Gokce N, Loscalzo J.  Mechanisms of oxidative stress and 

vascular dysfunction.  Postgrad Med J 79: 195-199, 2003. 

48. Nicholls SJ, Hazen SL.  Myeloperoxidase and cardiovascular disease.  
Arterioscler Thromb Vasc Biol 25: 1102-1111, 2005. 

 
49. Nicholls SJ, Zheng L, Hazen SL.  Formation of dysfunctional high-density 

lipoprotein by myeloperoxidase.  Trends Cardiovasc Med 15: 212-219, 2005. 
 
50. Nordin FG, Hedblad B, Berglund G, Nilsson J.  Plasma oxidized LDL: a predictor 

for acute myocardial infarction?  J Intern Med 253: 425-429, 2003. 

51. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, 
Parthasarathy S, Carew TE, Steinberg D, Witztum JL.  Low density lipoprotein 
undergoes oxidative modification in vivo.  Proc Natl Acad Sci U S A 86: 1372-
1376, 1989. 

 
52. Podrez EA, Abu-Soud HM, Hazen SL.  Myeloperoxidase-generated oxidants in 

atherosclerosis.  Free Radic Biol Med 28: 1717-1725, 2000. 

53. Raitakari OT, Celermajer DS.  Testing for endothelial dysfunction.  Ann Med 32: 
293-304, 2000. 

54. Rector RS, Turk JR, Sun GY, Guilford BL, Toedebusch BW, McClanahan MW, 
Thomas TR.  Short-term lifestyle modification alters circulating biomarkers of 
endothelial health in sedentary, overweight adults.  Appl Physiol Nutr Metab 31: 
512-517, 2006. 

55. Rector RS, Warner SO, Liu Y, Hinton PS, Sun GY, Cox RH, Stump CS, Laughlin 
MH, Dellsperger KC, Thomas TR.  Exercise and diet induced weight loss 
improves measures of oxidative stress and insulin sensitivity in adults with 
characteristics of the metabolic syndrome.  Am J Physiol Endocrinol Metab 293: 
E500-506, 2007. 

56. Richter B, Niessner A, Penka M, Grdic M, Steiner S, Strasser B, Ziegler S, Zorn 
G, Maurer G, Simeon-Rudolf V, Wojta J, Huber K.  Endurance training reduces 
circulating asymmetric dimethylarginine and myeloperoxidase levels in persons at 
risk of coronary events.  Thromb Haemost 94: 1306-1311, 2005. 

 
57. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH.  Inflammation, 

aspirin, and the risk of cardiovascular disease in apparently health men.  N Engl J 
Med 336: 973-979, 1997. 



 

 73 
 

58. Rogers MA, Yamamoto C, King DS, Hagberg JM, Ehsani AA, Holloszy JO.  
Improvement in glucose tolerance after 1 wk of exercise in patients with mild 
NIDDM.  Diabetes Care 11: 613-618, 1988. 

59. Ross R.  The pathogenesis of atherosclerosis: a perspective for the 1990s.  Nature 
362: 801-809, 1993. 

60. Schachinger V, Britten MB, Zeiher AM.  Prognostic impact of coronary 
vasodilator dysfunction on adverse long-term outcome of coronary heart disease.  
Circulation 101: 1899-1906, 2000. 

61. Shishehbor MH, Aviles RJ, Brennan ML, Fu X, Goormastic M, Pearce GL, 
Gokce N, Keaney JF, Penn MS, Sprecher DL, Vita JA, Hazen SL.  Association of 
nitrotyrosine levels with cardiovascular disease and modulation by statin therapy.  
JAMA 289: 1675-1680, 2003. 

 
62. Sohal RS, Weindruch R.  Oxidative stress, caloric restriction, and aging.  Science 

273: 59-63, 1996. 

63. Souza JM, Peluffo G, Radi R.  Protein tyrosine nitration – functional alteration or 
just a biomarker?  Free Radic Biol Med 45: 357-366, 2008. 

 
64. Stocker R, Keaney JF.  Role of oxidative modifications in atherosclerosis.  

Physiol Rev 84: 1381-1478, 2003. 
 
65. Sucu N, Unlu A, Tamer L, Aytacoglu B, Ercan B, Dikmengil M, Atik U.  3-

Nitrotyrosine in atherosclerotic blood vessels.  Clin Chem Lab Med 41: 23-25, 
2003. 

66. ter Steege JC, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA.  
Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich 
ELISA.  Free Radic Biol Med 25: 953-963, 1998. 

 
67. Vasankari T, Lehtonen-Veromaa M, Mottonen T, Ahotupa M, Irjala K, Heinonen 

O, Leino A, Viikari J.  Reduced mildly oxidized LDL in young female athletes.  
Atherosclerosis 151: 399-405, 2000. 

68. Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn 
MS, Keaney JF, Hazen SL.  Serum myeloperoxidase levels independently predict 
endothelial dysfunction in humans.  Circulation 110: 1134-1139, 2004. 

69. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB.  
Prediction of coronary heart disease using risk factor categories.  Circulation 97: 
1837-1847, 1998. 

 



 

 74 
 

70. Witkowski S, Lockard MM, Jenkins NT, Obisesan TO, Spangenburg EE, 
Hagberg JM.  Relationship between circulating progenitor cells, vascular function 
and oxidative stress with long-term training and short-term detraining in older 
men.  Clin Sci (Lond) 118: 303-311, 2010. 

71. Zhang R, Brennan M, Fu X, Aviles R, Pearce GL, Penn MS, Topol EJ, Sprecher 
DL, Hazen SL.  Association between myeloperoxidase levels and risk of coronary 
artery disease.  JAMA 286: 2136-2142, 2001. 


