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In this dissertation, we study the problem of image compression for storage
and transmission applications separately. In addition to proposing new image
coding systems, we consider different design constraints such as complexity and
scalability.

We propose a new classification scheme, dubbed spectral classification, which
uses the spectral characteristics of the image blocks to classify them into one of
a finite number of classes. The spectral classifier is used in adaptive image cod-
ing based on the discrete wavelet transform and shown to outperform gain-based
classifiers while requiring a lower computational complexity. The resulting image
coding system provides one of the best available rate-distortion performances in
the literature. Also, we introduce a family of multi-resolution image coding sys-
tems with different constraints on the complexity. For the class of rate-scalable
image coding systems, we address the problem of progressive transmission and
propose a method for fast reconstruction of a subband-decomposed progressively-

transmitted image.



Another important problem studied in this dissertation is the transmission
of images over noisy channels, especially for the wireless channels in which the
characteristics of the channel is time-varying. We propose an adaptive rate
allocation scheme to optimally choose the rates of the source coder and channel
coder pair in a tandem source-channel coding framework. Also, we suggest
two adaptive coding systems for quantization and transmission over a finite-
state channel using a combined source and channel coding scheme. Finally,
we develop simple table-lookup encoders to reduce the complexity of channel-
optimized quantizers while providing a slightly inferior performance. We propose

the use of lookup tables for transcoding in heterogeneous networks.
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Chapter 1

Introduction

Image coding is concerned with minimizing the number of bits required to repre-
sent a digital image for a given quality. Given a fidelity criterion, rate-distortion
theory provides theoretical limits for compressing stationary sources [Sha59];
however, there is not such a solid known bound for images which are apparently
nonstationary. This absence of a theoretical lower bound makes the problem of
image compression more challenging; it is not clear how further we can compress
an image. Also, there is no perceptually acceptable distortion measure which can
be used as a standard to compare the quality of different images. Peak signal-to-
noise ratio (PSNR) ! has been used for the purpose of comparison because it is
easy to calculate and is mathematically tractable. A typical digital monochrome
image with 8 bits per pixel is considered as the original quality although this
original image is obtained by sampling and quantizing the corresponding analog
image. For a spatial resolution of 512 x 512 pixels, the amount of data associ-

ated with the original still image (or one frame of video) is 256 Kbytes. The

LPSNR=101log;,[255%/ % TN, (2, — £)?]



huge amount of memory requirements for image storage, or channel capacity
for image transmission, suggests the use of data compression. Image storage
is required for medical images, documents, motion pictures, satellite images,
weather maps, geographical surveys, and so on [Jai89]. Image transmission is
applicable in broadcast television, remote sensing via satellite, radar and sonar,
video teleconferencing, computer communications, facsimile transmission, and
so on [Jai89]. In this dissertation, we address the problems of image storage and
image transmission individually in separate chapters.

Image coding for storage applications is a mature field with existing standards
like JPEG [Pen93|. However, there are several open issues and new applications
which require further investigation. One of the important issues is the capability
of providing different resolutions and rates without sacrificing performance. The
multi-resolution property of the system, resolution-scalability, refers to the abil-
ity of reconstructing different display resolutions at the decoder while providing
a single embedded bit stream at the encoder. The multi-rate property of the
system, rate-scalability, is defined by the ability of using a subset of the em-
bedded bit stream to reconstruct a lower quality version of the image or adding
new bits to reconstruct a better quality version of the image. Based on these
characteristics, we can categorize image coding systems into two general classes
of scalable and non-scalable systems. For each category, another important issue
is the complexity of the encoder and the decoder. The complexity can be con-
sidered as a third dimension, besides rate and distortion, for comparing different
image coding schemes.

We introduce a family of multi-resolution image coding systems with different

constraints on the complexity. First, we assume that there is no constraint on




rate-scalability and the complexity of the system. We design a system which,
to the best of our knowledge, outperforms all existing image coding systems.
Then, we develop a modified version of the system which involves less complexity.
For the class of rate-scalable systems, since there exist schemes with very good
performances, e.g. [Sai96] and [Tau94], our focus will be on developing efficient
and low-complexity scalable image coding systems. Also, we address the problem
of progressive transmission for the class of rate-scalable image coding systems
and propose a method for fast reconstruction at the decoder.

Another important problem studied in this dissertation is the transmission
of images over noisy channels. A new challenge arises when a system is to be
used for transmission over noisy channels, especially for the wireless channels in
which the characteristics of the channel is time-varying. One way to overcome
this problem is to use channel coding techniques. Shannon has shown that,
theoretically and under some conditions, source coding and channel coding can
be done separately without loss of optimality [Sha48]. It is a well-known fact
that in the case of transmission over noisy channels under complexity or delay
constraints, a joint design of source coders and channel coders provides a better
performance than the performance of a separate design [Tan92, Far90]. For
the special case of time-varying channels (e.g. wireless channels), the separate
design of the source coder and the channel coder is not even asymptotically
optimal [Vem95].

Transmission of images over wireless channels is an interesting application
with many open problems. In this dissertation, we address some of these prob-
lems and propose some preliminary solutions. Especially, we concentrate on

stationary (or, in the worst case, very slowly moving) users, and as a result, slow



fading or fading caused by the movement of other objects in the surrounding.
There are some useful applications corresponding to this assumption: (i) two-
way, real-time teleconferencing with a portable computer on at least one end,
(ii) one-way or two-way, real-time video communication in search and rescue
type operations or in tele-medicine applications, and (iii) one-way, non-real-time
wireless access to image data.

In a joint source-channel coding scheme, one of the important problems is how
to allocate the bit rate (bandwidth) between the source coder and the channel
coder. The time-varying characteristics of the wireless channels suggest that the
source coder and the channel coder must be able to adapt themselves to the
state of the channel. One way to provide such an adaptation is to change the
rate of the coders. We propose an adaptive rate allocation scheme to optimally
choose the rates of the source coder and channel coder pair.

We also propose a channel-matched hierarchical table-lookup vector quantizer
which simultaneously provides low encoding complexity and robustness against
transmission noise. An important application is the use of lookup tables for
transcoding in heterogeneous networks. We use a finite-state channel to model
slow fading channels and propose two adaptive coding schemes to encode a source
for transmission over wireless channels: (i) a fully-adaptive system in which the
channel state information (CSI) is available at the encoder and decoder and (ii)

a decoder-adaptive system in which the CSI is only available at the decoder.



Chapter 2

Basic Building Blocks

2.1 Discrete Wavelet Transform and Subband
Decomposition

Image coding based on subband decomposition or discrete wavelet transform
(DWT) ideas has received much attention in recent years [Woo86, Mal89, Ant92].
In addition to giving good compression results (in a rate-distortion sense), these
systems are suitable for progressive transmission and provide a multi-resolution
capability — a feature that is desirable in some practical situations. The basic
idea behind the DWT is to decompose the input signal into two components:
(i) a low-resolution approximation and (ii) a detail signal. This results in
decomposing the input signal into low-pass and high-pass versions, generally re-
ferred to as subbands. Each of the resulting subbands can be further decomposed
using the same approach. In this manner, the DWT decomposes a given input
signal into a number of frequency bands. Two-dimensional (2-D) extensions of

the DWT can be obtained by a separable decomposition in the horizontal and



vertical directions [Woo86, Mal89).

The idea of subband coding is to decompose the source into its different
frequency subbands and encode each subband using a suitable coding system
[Cro76a]. Because there is little correlation between the decomposed subbands,
they can be coded separately [Mal89, Ant92, Tan92]. The separate coding of
different subbands provides three desirable features. First, by allocating the
available bits for encoding among the subbands and using an appropriate quan-
tizer for each of them, the encoding process can be tailored to the statistics of
each subband. Second, spectral shaping of the quantization noise is possible.
This feature can be used to take advantage of the noise perception of the human
auditory system for speech or the human visual system for images. Third, the
subband decomposition of the signal spectrum leads naturally to multiresolution
signal decomposition.

Using a bank of n band-pass filters, each associated with a separate frequency
channel, n different subbands of the source will be created. A dual set of filters is
needed to reconstruct the original source from its subbands. Quadrature Mirror
Filters (QMF’s) can be used to have a perfect reconstruction [Cro76b]. A mul-
tiresolution representation using wavelet orthonormal [Mal89] or biorthogonal
[Ant92] bases is another approach which is the subject of this section.

In a subband coding system, after decomposition, the subbands are quantized
and encoded. Therefore, it is not clear that the subband filters need to be perfect
reconstruction filters. However, since no definitive techniques for combining the
filter design and quantization are known, the filters used for decomposition are
usually perfect reconstruction filters. Good coding results have been reported

based on these filters.



2.1.1 Multiresolution Signal Decomposition

Defining L*(R) as the vector space of measurable and square-integrable one-
dimensional (1-D) functions, wavelets are functions ¢ (z) whose translations and
dilations (¥, n(z) = 27™/24H(27™z ~ n)) can be used for the expansion of func-
tions in L?(IR) [Mey85]. The class of functions ¥(z) € L?>(IR) that generate
an orthonormal basis for L?(IR) can be described using the multiresolution ap-
proach to wavelets [Mal89]. In what follows, the model is first described for 1-D
functions and then extended to two dimensions for image processing applications.

Let A,, be a linear operator used to approximate a signal at resolution m.
Clearly, if A,,f(z) is the approximation of f(z) € L?*(R) at resolution m, then
An(Anf(z)) = Anf(z). Thus, A, is a projection operator on a particular
vector space V,,, C L?(IR). The vector space V;, can be interpreted as the set
of all possible approximations at resolution m of functions in L?(R). Any set
of vector spaces {V,,}, for all m in Z, which satisfies the following properties is

called a multiresolution approximation of L%(R) [Mal89]:

Vin C Vin1, VYm € Z, (2.1)

f(z) eV, & f(2z) € Vipoy, Ym € Z, (2.2)
3¢ € Vp such that ¢z —n) € Vi, Vn, (2.3)
va = {0}, (2.4)

L,,JV’” = L*(R). (2.5)

Mallat has shown that for a multiresolution approximation of L%(IR), there
exists a unique function ¢(z) € L?(RR), called a scaling function, such that

bmn(z) = 27™2¢(2"™x —n), n € Z forms an orthonormal basis for V,,, [Mal89].



The orthogonal projection of f(z) on V;, can be computed by decomposing the

signal f(x) with the above orthonormal basis:

Amf(m) = i < f, bmn > ¢m,n(x) (2'6)

n=—oo

A discrete approximation of f(z) at resolution m can be defined as
amn(f) = Apf =< f, ¢mm >, Vn € Z. (2.7)

Equation (2.7) can be interpreted as a convolution product evaluated at point

2™
ama(f) = Anf = (f(w) * pmo(—u))(2™n), Vn€Z. (2.8)

The above equation is also equivalent to low-pass filtering of f(z) followed by a
uniform sampling at the rate 2™. To follow rapid changes of the signal in space
domain as well as the frequency domain using finite number of coefficients, the
transform used must accept nonstationarity and be well localized in both space
and frequency domains [Ant92].

Let H be a discrete filter with impulse response

h(n) =< ¢10, bom >, (2.9)

and let H be the mirror filter with impulse response h(n) = A(—n). It can be
shown that [Mal89]
o
amn(f) = D h2n —k)am_1,(f)- (2.10)
k=—00
Equation (2.10) implies that am,(f) can be computed by convolving a,—1 (f)
with H and sub-sampling by 2. All the discrete approximations am,,(f), for

m > 0 can be computed from a;,(f) by repeating this process. Usually a




regularity condition is imposed on the scaling function requiring that ¢(z) be
continuously differentiable and that the asymptotic decay of ¢(z) and ¢r(x)

satisfy

| ()] = O™, (2.11)
and

| ¢i(z) | = O(=™). (2.12)

Having the above conditions on ¢(z), the filter H will satisfy the following prop-

erties:
h(n) = O(n™?), (2.13)
|H(0)| = 1, (2.14)

and
|Hw)|? + |H(w+m) |*=1. (2.15)

The orthogonal complement subspace of V,,, in V,,_; is denoted by W,,, i.e.
Wi @ Vip = Vi1 and W, L V. (2.16)

The orthogonal projection of a signal on W, is called the detail signal at reso-
lution m.
Denoting the Fourier transform of f(z) by f(w) and the conjugate of a com-

plex number z by T, () is a function defined by

Pw) = Gw/2)9(w/2), (2.17)
where

Gw) = e “H(w+ ). (2.18)




Then ¥, (), for all n in Z, is an orthonormal basis of W,,, and t,,,(z), for
all (m,n) in Z>, is an orthonormal basis of L2(R). Here, 1 (z) is called an
orthogonal mother wavelet. The orthogonal projection of f(z) on W,, (detail

signal) can be characterized by the following set of inner products:
Cmn(f) = Dpf =< f,%mpn >, Vn€ L. (2.19)
Upon defining a filter G with impulse response §(n) given by
§(n) =< 10, b0 >, Vn €%, (2.20)

it can be shown that

enn(£) = 3 920~ Kam14(f), (2.21)

k=—00

where g(n) = g(—n). The detail signal ¢, ,(f) can be computed by convolving
am—1n(f) with the filter g and sub-sampling by 2. Using (2.18), §(n) and h(n)

are related by the following equation:
g(n) = (=1 ™h(1 —n). (2.22)

The two filters G and H are referred to as QMF’s and are high-pass and low-pass
filters respectively.

In practice, a physical measuring device can only measure a signal at a finite
resolution. For normalization purposes, we suppose that this resolution is equal
to 1. The original discrete a;,(f) measured at resolution 1 is represented by
amn(f), {emn(f)}, 1 < m < M. This set of discrete signals is called an
orthogonal wavelet representation. If the discrete approximation of the original
signal at resolution 1 has N samples, then the discrete signals ¢, , and a, , each
will have 2=™N samples. Therefore, the wavelet representation has the same

total number of samples as the original one. This is because of orthogonality.

10



Reconstruction can be achieved by upsampling (placing zeros between neigh-
boring samples) @, »(f) and ¢, »(f) and passing them through H and G respec-
tively:

i) = 3 (b~ 20 n(£) + 50— 2)emn)]. (2:29)

n=—0o0

2.1.2 Biorthogonal Wavelet Bases

Most of the orthonormal wavelet bases have infinitely supported v, correspond-
ing to filters h and g with infinitely many taps. Having finite number of taps
(using FIR filters) is required in practice and can be achieved when the support
of 9 is finite. It is desirable that the FIR filters used be linear-phase, since such
filters can be easily cascaded in a pyramidal filter structure without the need for
phase compensation [Ant92].

Unfortunately, there are no nontrivial orthonormal linear-phase FIR filters
with the exact reconstruction property. The only symmetric exact reconstruction
filters are those corresponding to the Haar basis, i.e. hy = h; = 22 and
go = —g1 = 2'/2, with all other g,, h, = 0 [Mal89].

By preserving the linear-phase property of the FIR filters and relaxing the
orthonormality requirement, and using biorthogonal bases, it is possible to have
perfect reconstruction and arbitrarily high regularity [Ant92]. In such a scheme

(Figure 2.2), the decomposition is the same as before

malf) = 3 920 Kam-1u(0), (2.24)
tmalf) = 3 h(2n — K)am_14(f)- (2.25)
k=—o0
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However, reconstruction becomes

amss(f) = 3 (52— Dama(F) + 320 — Demn(F),  (2.26)

n=-—oo
where the filters & and § may be different from h and g. Perfect reconstruction

is possible when

§(n) = (-1)"h(1 — n), (2.27)
g(n) = (=1)"h(1 — n), (2.28)

and
i h(n)h(n + 2k) = bx. (2.29)

The interpretation of the biorthogonal scheme in terms of the bases can be done

as follows. Define the functions ¢ and ¢ by

b(z) = nj;‘ooh(n)qs(zx —n), (2.30)
$(z) = n;m h(n)é(2z — n) (2.31)
Also define
¥o) = 3 gln)ez—n) (2.32)
B@) = > imies =) (2.3
Then G n(f) and cmn(f) can be rewritten as
tmn(f) = < Gmp, f >, (2.34)
emn(f) = <tYmm f>. (2.35)
Reconstruction is done by
f= ,;, < Y, f > Pmpn- (2.36)
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Equation (2.36) is very similar to the orthonormal case. The only difference
is that the expansion of f with respect to the basis 1/~Jm,n uses the coefficients

computed via the dual basis ¥, .

2.1.3 Extension to Two-Dimensional Signals

A simple way for extending the 1-D transform of the previous section to a 2-D
case is by separating the horizontal and vertical orientations. A scaling function

can be defined by
¢(z,y) = ¢(z)8(y), (2.37)

where ¢(z) is a 1-D scaling function. Let 1(z) be the wavelet associated with

the scaling function ¢(z). Then, the three 2-D wavelets are defined as

Y(z,y) = o(@)(y), (2.38)
P(z,y) = Y(2)ew), (2.39)
PP (2,y) = P(2)(y). (2.40)

The implementation is the same as before. Practically, rows will be decom-
posed by using the 1-D decomposition filters and then the columns of the output
will be decomposed using the same system.

When an M x N image is processed, after the first stage of decomposition,
two M X % images will be created. Each of them will go through the same
process for the columns and resulting in four % X % images. Clearly, the total
number of samples is the same as the original one. Thus, to prevent using extra

memory, these four sub-images can be placed in the memory location of the

original image as in Figure 2.3. The original image can be replicated by first

13



Figure 2.1: Multiresolution Approximation of L*(IR)

performing the reconstruction operations on columns and then doing the same
process on rows.

Each sub-image can be decomposed into new subbands using the same set of
filters. The result for two levels of decomposition for the 512 x 512 monochrome
Lenna image using the 9-7 spline filters designated No. 2 in [Ant92] is shown in

Figure 2.5.
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Figure 2.2: Implementation of the Biorthogonal Wavelet Scheme: (a) Wavelet

Decomposition and (b) Wavelet Reconstruction

H for Rows H for Rows

H for Columns |G for Columns

G for Rows G for Rows

H for Columns |G for Columns

Figure 2.3: Decomposing an Image into Four Subbands.

2.2 (Gain-Based Classification

In general, classification is a mapping from a high-dimensional event space
onto a low-dimensional feature space. Some form of classification is often used
in compression of real-world signals. Classifying blocks of signal samples into a
number of classes with similar properties (statistical, spectral, perceptual, etc.),
makes it possible to design quantizers that are better suited for coding the overall

signal. In a sense, signal compression with classification is some type of adaptive
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Figure 2.4: 512 x 512 Lenna

Figure 2.5: Decomposed 512 x 512 Lenna
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signal compression.

A classified quantizer uses separate codebooks for different classes [Ram86).
Due to the apparent nonstationary behavior of the image blocks, classifying
these blocks into more homogeneous groups provides the opportunity for using
stationary probabilistic models for each group. Additionally, using a nonuniform
bit allocation among the different groups, more bits can be assigned to the more
important parts of the image. In this manner, the coding system captures the
nonstationary behavior of the source and results in better performance.

A block classification algorithm is characterized by (i) the feature which is
used for classification and (ii) the mapping which assigns a class to each block. Of
course, different choices of features or mappings result in different classification
schemes. A suitable parameter for block classification is the gain (square root of
the block ac-energy) of each image block. In gain-based classification schemes,
blocks are classified into a prescribed number of classes according to their gain
values. Thus, by and large, blocks with close gain values are assigned to the
same class.

To compute the gains, the image is divided into L x L nonoverlapping blocks
of pixels. If the L x L matrix which contains the pixels in the k** block is denoted

by Apg, its gain, g, is given by

1 L L o
9k = 2 Z Z[Ak(%J) - mk]27 (2-41)
i=1j=1
where
1 L L
me = 75 Zl Zl Ar(i, 7). (2.42)
=1 7=

This gain is a good measure of the level of activity in the block. For example,

if the block only consists of one grey level, the corresponding gain is zero. On
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the other hand, when grey levels change rapidly in a block, its gain is relatively
high. The extreme case is when half of the pixels are white (grey level 255) and
the other half are black (grey level 0) and the corresponding gain is 127.5.

In gain-based classification schemes, blocks are classified into a prescribed
number of classes according to their gain values. In this manner, blocks with
close gain values are gathered in the same class. The classification procedure
therefore assigns a class index to each block. A matrix whose entries are these
class indices is referred to as the classification table. Needless to say, different
criteria for classification result in different classification tables. In this section,
we consider different criteria for classifying the blocks of an image based on their

gain values.

2.2.1 Chen-Smith Approach

Chen and Smith [Che77] suggested a simple method to perform the classifica-
tion, or, equivalently, to choose thresholds between the gain values of different
classes. In this approach, thresholds are chosen such that all classes have the
same number of blocks. If there are IV blocks to be classified to K classes, the
% blocks with highest gain values fall into the first class. The % blocks with
highest gain values among the remaining blocks fall into the second class and so
on. These class indices specify the classification table and can be coded using
log, K bits/block. The classification table using four classes for the 512 x 512
Lenna image and blocks of size 16 x 16 is shown in Figure 2.6 in the form of
an image. This image is constructed by assigning a different grey level to each
class in order to visualize the classification table. Class 0 (low activity class) is

represented by a grey value equal to 0. Classes 1, 2, and 3 are represented by
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grey levels 100, 150, and 255, respectively.

The Chen-Smith classification procedure is an easy way to classify blocks
into different regions of activity. Although we have not defined a measurable
quantity to compare classification schemes with each other, intuitively, there
are situations in which this simple approach does not work well. For example,
an image containing a large area with constant grey levels has a lot of blocks
with zero (or very small) gains. If the number of such blocks exceeds &, the
Chen-Smith procedure will put some of them into other classes although it is
expected to have all of them in one class. The capability of allowing a different
number of blocks in each class can potentially improve the classification. Also,

as a gain-based classification method, Chen-Smith scheme pays no attention to

the spectral shape of the blocks. This issue is considered in depth in Chapter 3.

2.2.2 Equal Mean-Normalized Standard Deviation
(EMNSD) Approach

In what follows we propose a different method in which after sorting the gain val-
ues, they are split into the given number of classes such that the mean-normalized
standard deviation of the resulting classes are the same. The idea behind this
approach is to allow the possibility of having a different number of blocks in
each class and to have similar statistical properties within each class such that
the representation of the blocks as one class is meaningful from a coding stand
point. For a stationary source, standard deviation is a measure of dispersion of
samples and the smaller is the standard deviation of a source, the denser will be
the samples about the mean. When one of the classes has a higher dispersion

than others, the blocks in that particular class do not have the same level of
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activity. It is difficult to compare dispersions in sets with different means. The
“coefficient of variation” (defined by standard deviation divided by mean) is a
good measure for dispersion [Stu87).

In EMNSD classification scheme, we try to make the mean-normalized stan-
dard deviation of the gains in the resulting classes as close to each other as
possible. Because of the discrete nature of the problem an exact solution for
the problem may not be possible and there is no guarantee that a solution, if
one exists, is unique. For simplicity, for the moment, we consider the case with
two classes. When there are N blocks sorted in an increasing order of their gain
values ¢;, 1 = 1,2,..., N, we look for an integer N’ such that blocks 1 to N’
belong to the first class and the remaining blocks belong to the second class.

The mean m and standard deviation o of each class is defined by

my = % 211‘:};1 9n,
1 N
My = w7 Ln=N'+19n
N=NT Em=NHLon (2.43)
0-% = ﬁlf E'plmvzl(gn - m1)27
03 = ﬁ Zﬁ:N’+1(gn - m2)2.
Here, N’ is chosen such that
g1 g2
n=—=—=q. (2.44)
my mo

An iterative algorithm to find N’ satisfying (2.44) is provided below. If there is
no integer N’ which solves (2.44), the algorithm finds the N’ which minimizes

|CI1*Q2 |

e Algorithm:

1. Choose an initial value for N’ (e.g. N' = N/2) and set the iteration
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number ¢ = 0. Also choose i,,,, as an upper limit on the number of

iterations.
2. Compute ¢; and g, using (2.44) and set 7 =i + 1.

3. If ]%1 < 6 Or & > Gy, Stop. Otherwise,
if g < qg, et N =N+ AN’

if 1 > qg, 56t N'=N'— AN’
and go to (2).

For fast convergence, a large AN’ can be chosen at the beginning of the algorithm
and as the iteration number increases AN’ must be gradually decreased to one.

The same algorithm can be generalized for a larger number of classes. For the
case of K classes, K ratios ¢; = ;‘:Li;, i=1,2,...,K, and (K — 1) thresholds are
needed. The algorithm is stopped when &x’m‘]ﬁ&—ﬂ < 4 or when the number
of iteration exceeds its maximum. At each step of the algorithm, the thresholds
corresponding to the class with the maximum and minimum ¢; are alternatively
adjusted so as to make g;’s as close to one another as possible. The resulting
classification image using four classes for the 512 x 512 Lenna (§ = 0.01) is
illustrated in Figure 2.7. In Figure 2.7, we have used the same grey levels as
in Figure 2.6. Although it is not conclusive by itself, comparing Figures 2.6
and 2.7 shows that the EMNSD classification is more successful than the Chen-
Smith classification in separating high activity regions from other parts of the
image. For example, using the Chen-Smith scheme results in putting the blocks
corresponding to the strong edges and most of the blocks corresponding to the
texture in the feather in the same class. On the other hand, using EMNSD

approach has placed these blocks into different classes.
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Figure 2.6: Chen-Smith Classification Image; 512 x 512 Lenna.

Figure 2.7: EMNSD Classification Image; 512 x 512 Lenna.
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2.3 Hierarchical Table-Lookup Vector Quanti-
zation

Vector quantization, a powerful technique for source coding and signal classifi-
cation, has been the subject of intense research since early 1980’s when Linde,
Buzo, and Gray [Lin80] suggested a practical method for vector quantizer (VQ)
design. A comprehensive treatment of vector quantization, including discussion
of applications to speech and image coding can be found in [Ger92].

The codebook of an m-dimensional, rate R bits/sample VQ consists of M =
2mE codevectors. In general, a full-searched VQ encoder computes the distor-
tion between the input vector and each codevector in the codebook to find the
codevector which results in minimum distortion. This involves M distortion
computations per input vector. The decoder however is a simple lookup table.
The encoding complexity of the VQ, which grows exponentially with the product
of dimension and rate, constitutes a bottleneck in many practical applications
in which the VQ encoder is to be implemented in real time. This problem has
led to the development of a variety of different methods for reducing the VQ
encoding complexity. Examples are tree-structured vector quantization [Buz80],
multi-stage vector quantization [Jua82], fine-coarse vector quantization [Moa91],
lattice-based vector quantization [Con82, Fis86], and gain-shape vector quantiza-
tion [Buz80]. Other examples can be found in [Ger92]. Invariably, these methods
offer a tradeoff between performance, encoding complexity, and memory require-
ments.

Another technique for reducing the encoding complexity, developed by Chang,
May, and Gray [Cha85], is the hierarchical table-lookup VQ (HTVQ) in which

23



the input vector is successively quantized in multiple stages. Each quantization
stage is implemented using a lookup table which stores, for every possible input
vector, the codeword (index) of the nearest codevector. The entire idea is pred-
icated on the assumption that there are a finite number of input vectors, e.g.,
each input sample is already quantized — a reasonable assumption in most prac-
tical situations. When applied to speech coding, the HTV(Q system proposed
in [Cha85] is shown to suffer no more than 1 dB performance degradation com-
pared with a full-searched VQ. What is particularly attractive about the HTVQ
is that it entirely eliminates the need for any additions or multiplications, thus
making HTVQ a viable candidate for real-time, software-based source coding
applications.

More recently, Vishwanath and Chou have used the same concept for video
coding where they also develop a system combining the HTVQ idea with a
DWT for improved performance [Vis94]. The potential applications of HTVQ
encoders for real-time video compression over Internet-like networks, has resulted
in a proliferation of research on various e;ctensions of the HTVQ in the past two
years [Cha96b, Cha96a, Meh96, Jos96].

Let us briefly review the design and operation of an HTVQ. Consider an
m-dimensional VQ which performs the encoding operation using a lookup table.
Assuming n-bit input samples, encoding is performed by a lookup table which
stores the index of the nearest VQ codevector for every possible source vector
(2™™ possibilities). Note that this table-lookup encoding does not lead to any
performance loss as compared to a full-searched VQ.

The size of such a table (in bits) is 2™" times the number of output bits.

Clearly, for large values of mn this table will be prohibitively large. To keep
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Table 2.1: Lookup Table for One Stage of an HTVQ.

Input1 |0 |0 |---| 255
Input 2 {0 |1 |---| 255
Output | 49 | 41 | -~ | %6s535

the table sizes within manageable limits for large dimension VQ’s, a hierarchical
structure, as shown in Figure 2.8, was proposed in [Cha85]. In the most general
case, m;4; outputs of Table ¢ constitute the input of Table ¢ + 1 in Figure 2.8.
A practical configuration, which has been used throughout this dissertation,
corresponds to m; = 2 Vi. Figure 2.9 shows a 3-stage HTVQ with n = 8,
m; = 2, ¢ = 1,2,3, and each stage VQ containing 256 codevectors (thus 8-bit
outputs). To construct the lookup tables for each stage, first three VQ’s must be
designed for the source: a 2-dimensional VQ for the first stage, a 4-dimensional
VQ for the second stage, and an 8-dimensional VQ for the third‘stage. These
VQ’s operate at 4, 2, and 1 bit/sample, respectively. Table 1 is constructed by
considering each pair of input samples (2!¢ possibilities), and storing the index
(codeword) of the nearest codevector of the first stage VQ as the output of the
table (see Table 2.1). Likewise, to construct Table 2, all possible 8-bit pairs at
the input of Table 2 are considered and the 4-dimensional vector corresponding
to each pair is encoded using the 4-dimensional VQ of the second stage; the
resulting 8-bit codeword is stored as the output of Table 2. A similar procedure

can be used to design Table 3.
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Figure 2.8: An N-Stage HTVQ Encoder.
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Figure 2.9: A 3-Stage HT'VQ Encoder.
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Chapter 3

Adaptive Wavelet Coding Using

Spectral Classification

3.1 Introduction

Ever since the pioneering work of Chen and Smith in adaptive discrete cosine
transform (ADCT) coding [Che77], it has been well-known that the gain of a
spatial block is a useful quantity for measuring the level of activity within a
block. By first classifying the image blocks into four classes based on their ac-
energies, Chen and Smith were able to tailor the parameters of the quantizers
to suit the needs of each class and therefore obtain coding gains.

However, this classification suffers from the unnecessary constraint that all
classes contain an equal number of blocks. Because most natural images contain
fewer high activity blocks than other blocks, this requirement forces some low
activity blocks to be assigned to high activity classes, thus wasting some of the

available bit rate and reducing the efficacy of the classification scheme. By al-
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lowing the number of blocks in each class to vary according to the characteristics
of the image at hand, one can avoid this inefficient use of rate. To do this, how-
ever, it is necessary to develop a criterion for determining where the thresholds
for each class should be placed so that all blocks with similar activity levels are
placed in the same class. Recently, some solutions to this problem and appli-
cations of gain classification in subband coding have been explored in [Jos95].
Two new gain classification schemes, maximum classification gain and EMNSD
classification, which allow an unequal number of blocks in each class and provide
almost the same performance have been introduced in [Jos95]. It has been shown
that in a subband coding system, use of these classification schemes results in an
improvement over Chen-Smith classification (0.1-0.5 dB for the 512 x 512 Lenna
[Jos95]).

Proposing adaptive schemes which use features other than the gain for classi-
fication is not new. Pearlman [Pea90] proposed an ADCT image coding system
in which a constant target distortion is assigned to each block.

In this chapter, the spectral characteristics of the image blocks are used as
a feature for classification. A VQ with an appropriate distortion measure is de-
signed to split the spectral space into a prespecified number of classes. The per-
formance and complexity of the proposed classification scheme are investigated
for an adaptive wavelet transform coding system and compared with those of
gain classification schemes, specifically EMNSD classification. It is shown that
spectral classification improves the rate-distortion performance at a lower (some-
times significantly) complexity cost.

The organization of the chapter is as follows. Section 3.2 introduces spectral

classification and Section 3.3 provides a complexity analysis. Section 3.4 presents
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the application of spectral classification in a wavelet-based image coding system.
Section 3.5 shows how to design an optimal 2-D spectral classifier which is used

in a 2-D DPCM framework.

3.2 Spectral Classification

In image coding systems, gain-based classification techniques use the gain of
each block as a measure of block activity [Che77]. Based on this measure, the
classifier assigns to each block one of a finite number of activity classes. The
image blocks are then quantized using quantizers that are appropriately designed
for the activity class to which they correspond. Although gain-based classifiers
perform reasonably well in terms of improving the coder’s overall rate-distortion
performance, their capability in separating dissimilar blocks into different classes
is limited. For example, Figure 3.1 shows three blocks consisting of only black
and white pixels. Since the gain values of these blocks are exactly the same, any
gain-based classifier assigns them to the same class. However, from a spectral
point of view these three blocks are significantly different and therefore should
be quantized differently.

Indeed, the local spectrum of the signal is another feature which can, and
perhaps should, be used for classification. In this chapter, we propose a method
for classification which uses the block spectral content (including the block ac-
energy) to perform the classification task.

Specifically, the 2-D image blocks to be classified are first converted into a
1-D sequence by zigzag scanning the block [Pea90]. Then, the linear prediction

(LP) coefficients of the resulting 1-D signal (represented by X (z)) are used to
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characterize the spectral behavior of the signal. In other words, the signal X (2)
is modeled by an all-pole filter (M*-order autoregressive (AR) model) H(z) =
o/A(2), where A(z) = =¥ a;27* and ay = 1. Well-known techniques can be
used to compute the LP coefficients (a;, ¢ = 1, -+, M) corresponding to the
optimal filter (minimizing the mean squared prediction error) [Buz80].

Spectral classification is performed by vector quantizing these LP coefficients.
To quantize the LP coeflicients, we need to use a distortion measure that ulti-
mately minimizes the mean squared prediction error in the image domain. The
Itakura-Saito distortion measure, first developed for quantization of speech spec-
tral parameters, is such a measure [Buz80, Ita68]. For each block, the VQ de-
signed based on the Itakura-Saito distortion measure selects the best AR model
from among a finite number of AR models in the codebook (all having a fixed and
predefined order). The codebook contains a set of codevectors each described by
a vector of LP coefficients; each vector defines one class. The spectral classifier
finds the best match for each block and uses the corresponding codeword as the
classification index (class) associated with the block.

The algorithm used for the design of the VQ is the generalized Lloyd algo-
rithm [Lin80] in which the basic idea is to start from an initial codebook and
iteratively improve it. The algorithm consists of two steps: (i) Finding the best
partition of the space for a given codebook (generalized nearest neighbor rule)
and (ii) determining the best codebook for a given partition of the space (gen-
eralized centroid rule). Because the average distortions at successive steps of
the algorithm form a non-increasing sequence, convergence is guaranteed. The
process is terminated when the rate of reduction in average distortion falls below

a prescribed stopping threshold. The main steps needed for designing such a VQ
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are summarized below; details can be found in [Buz80].

e Generalized nearest neighbor distortion calculations

For a given input sequence, we wish to select the codevector (all-pole filter)
that minimizes the Itakura-Saito distortion measure. Buzo et al. [Buz80)]
have shown that this is equivalent to finding the filter that minimizes -% +

In 02, where « is the residual energy and can be computed as follows:

a= i Ta(n)12(n) = 75(0)7(0) + 2 ;ra(n)rm(n), (3.1)
where
M-n
ra(n) = Y appyn, n=0,1,---, M, (3.2)
k=0

and r,(n) is the autocorrelation of the input sequence.

e Generalized centroid calculations

For each class, we wish to choose the best representative LP vector. The
autocorrelation sequences of all blocks in the same class can be averaged to
find an average autocorrelation sequence and then by solving the Wiener-
Hopf equations for the average autocorrelation sequence the coefficients
of H(z) = o/A(z) can be calculated. These coefficients represent the

generalized centroid of the LP vectors [Buz80).

Using a large training sequence of monochrome images, a classification VQ is
designed based on the Itakura-Saito distortion measure. The resulting VQ is used
to classify images outside the training sequence. We refer to this classification

method as spectral classification.
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Classification image for the 512 x 512 Lenna using 16 x 16 blocks and a
4*"_order filter is shown in Figure 3.2. As can be seen in Figure 3.2, spectral

classification is successful in separating blocks with different levels of activity.

3.3 Computational Complexity

In this section we compare the complexity of the proposed spectral classification
scheme with that of EMNSD classification. Table 3.1 provides the number of
operations needed to classify NV blocks of size L x L into K classes. Clearly, the
computational complexity of spectral classification is O(N). In the gain-based
classification schemes of Chen-Smith [Che77]| and those proposed in [Jos95], the
block gain values need to be computed and sorted. Using quick sort, the com-
plexity is at least O(N log N) (O(N?) in the worst case) [Pre92]. So, spectral
classification is less complex than gain classification.

Another very important observation is that the spectral classifier can be
implemented as an HTV(Q which performs the encoding operation using a lookup
table, thus eliminating the need for additions and multiplications altogether. We
have actually implemented the spectral classifier as an HTV(Q and will report
the results in the next section.

Finally, note that spectral classification is a one-pass process as each block
can be classified independently. However, gain-based classification is a two-pass
process: The gain of all blocks must be computed in the first pass and sorted in
the second pass. This fact, makes spectral classification more desirable from an
implementation point of view [Che96].

In the following section, we will make more definitive statements on the
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efficacy of the proposed spectral classification scheme in the context of a wavelet-

based image coding system.

3.4 Adaptive DWT Coding of Images

Now we consider an adaptive image coding system based on the DWT. Here,
our focus is on comparing spectral classification and EMNSD in a simple-to-
understand DW'T encoder and not on developing a very high performance image
coding system.

In the encoder considered, the image is decomposed into 22 subbands (see
Figure 3.3) using a 2-D separable DWT based on the 9-7 biorthogonal spline
filters of [Ant92]. Each of the 22 subbands is then encoded by an appropriately
designed encoder and transmitted. For a given design rate, the rate-distortion
performances of the quantizers are used to perform an optimal bit assignment
[Sho88, Wo0092]. At the receiver, the received signal is decoded and a replica of
the original image is reconstructed using the inverse filters.

Our classification strategy in this section is similar to Method 1 in [Jos95].
The low frequency subband (LFS) is not classified; the block size for classifica-
tion in high frequency subbands (HFS’s) is adjusted according to the decimation
factor, so that each block corresponds to a 16 x 16 block in the original image, i.e.,
block size of 1 x 1 for subbands 1-3, 2 x 2 for subbands 4-6, and 4 x 4 for other
subbands in Figure 3.3. The HFS’s are split into three groups with different
frequency orientations, i.e., subbands 1, 4, 7, 10, 11, 12 , and 13 in the vertical
group, subbands 2, 5, 8, 14, 15, 16, and 17 in the horizontal group, and subbands

3,6, 9, 18, 19, 20, and 21 in the diagonal group. A single classification map is
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used for each group, so that blocks corresponding to the same spatial location
have the same classification index. The three classification tables are obtained
by classifying subbands 7, 8, and 9 into two classes using spectral or EMNSD
classification. To compare the two classification schemes in a meaningful way, the
same quantizers are used in both. All quantizers used are entropy-constrained
trellis-coded quantizers (ECTCQ’s) designed for the so-called generalized Gaus-
sian distribution (GGD) [Far84] with parameter 0.6. The ECTCQ scheme used
in this work is a modified version [Lee93] of the scheme first proposed in [Fis92]
and then improved in [Mar94]. The ECTCQ proposed in [Lee93] places a symme-
try constraint on the reproduction codebook. This constraint, while essentially
costing no performance loss, simplifies the implementation of the entropy coder
used to encode the ECTCQ output. The entropy coder used here is an arithmetic
coder.

For 512 x 512 Barbara and Lenna images, Tables 3.2 and 3.3 summarize the
PSNR’s of the proposed system using different classification methods: Spectral
classification, HTVQ-implemented spectral classification, EMNSD classification
and no classification. The reconstructed Lenna images using the spectral clas-
sification method are shown in Figures 3.5 and 3.6. Table 3.4 summarizes the
simulation results for other images at a design rate of r = 1 bit/pixel.

The superiority of spectral classification is established once again in Tables
3.2, 3.3, and 3.4. Spectral classification consistently outperforms EMNSD clas-
sification by 0.1-0.4 dB and leads to 0.5-1.1 dB improvement compared to the
case where no classification is employed. It is important to note that even the
HTVQ-implemented spectral classification scheme outperforms EMNSD classi-

fication. This is particularly important from a real-time implementation point
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of view as HT'VQ has minimal computational complexity.

3.5 2-D Spectral Classification

In this section, first we generalize the idea of spectral classification to a 2-D
spectral classification. Then, the 2-D spectral classification is used in a 2-D
DPCM structure to encode the LFS.

To have a causal 2-D linear prediction, we may predict each pixel using three
neighboring pixels as in Figure 3.7. To be more specific, the predicted pixel,

Z(m, n), can be written as:
&(m,n) = ppx(m — 1,n) + pyz(m,n — 1) + pgz(m — 1,n — 1). (3.3)
The corresponding prediction error for each pixel is defined as:
e(m,n) = z(m,n) — (m,n). (3.4)

The objective is finding the LP coefficients that minimize the resulting mean-
squared prediction error E[E*(m,n)].! It can be easily shown that the optimal
I

coefficients p={[pp, p, 4]’ are the solutions of the following equation:

Ap=r, (3.5)

where
r(0,0) r(1,-1) r(0,-1)

A=|r(-1,1) r(0,0) 7(=1,0) |, (3.6)
r(0,1) r(1,0) r(0,0)

lwe use capital letters for random variables and small letters for specific values of the

random variable.
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and
r(1,0)

r=|r0,1) |, (3.7)
r(1,1)
where 7 is the corresponding autocorrelation function computed based on en-
semble averages.
Using a set of LP coefficients, the corresponding mean-squared prediction

error is given by:

E[E*(m,n)] =7(0,0)[1 + o} + p] + p3] +27(1,0)[pupa — p1]

+2r(0, 1)[prpa — po] + 2r(L, —=1)[pnps] + 2r(1, 1)[—pd].

(3.8)

This error is minimized when p = p given by (3.5).

In a block-based 2-D DPCM image coding system, the image is segmented
into L x L blocks and a suitable set of LP coefficients can be used to model each
block. However, the quantization of the corresponding coefficients results in a
large amount of overhead information. This suggests the use of a VQ for block
classification and quantization of the corresponding LP coefficients. The direct
use of conventional V() design procedures for prediction coefficients minimizes
the mean-squared error in the LP coefficient space domain. This minimization
is not satisfactory for two reasons : (i) It does not guarantee the minimization of
the mean-squared prediction error in (3.8), and therefore is not the best solution
and (ii) there is no reason to guarantee that the resulting coeflicients correspond
to a stable filter. In what follows, we propose a method to design a VQ which
does not suffer from the aforementioned weaknesses and optimally performs the
classification and quantization operations in one step. This is a 2-D extension

of the spectral classification method.
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To extend the idea to the 2-D case, the mean-squared prediction error of
(3.8) is used as the distortion measure for designing the VQ. Using a set of LP

coefficients (p), the distortion can be defined as:
d(X, X(p)) = Bl(X - X(p))*] = E[E*(m,n)]. (3:9)

The generalized Lloyd algorithm can be adapted to achieve a local minimum for
this distortion measure by iteratively applying the following steps in the design
procedure. Each Voronoi region of the VQ forms a class for the corresponding
blocks.

In the generalized centroid step of the algorithm, having a group of blocks
belonging to a given class C, we determine the best LP coefficient vector for pre-
dicting the pixels within that class. This problem is the same as the original 2-D
linear prediction problem and the solution is similar to the solution of (3.5). The
only difference is that in this case all expectations are conditional expectations
and, using a training sequence to design the VQ, we should only consider those
blocks which belong to class C. In other words, the autocorrelation function in

(3.5) must be replaced by the following conditional autocorrelation function:
r'(m',n') = E[X(m+m',n+n")X(m,n) | (m,n),(m+m',n+n') € C]. (3.10)

The optimal codevector is the solution of (3.5) when r is replaced by 7'

In the generalized nearest neighbor step, we decide which LP coefficient vec-
tor in the codebook is the best representative of an input block. This can be
done by computing the conditional autocorrelation function of each block and
finding the codevector which minimizes the distortion defined by (3.9).

Since the distortion is decreased at each step of the algorithm, the conver-

gence of the algorithm to a local minimum is guaranteed. The algorithm will be
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terminated when the rate of improvement is less than a prescribed small value.

Now, we propose an adaptive encoding structure similar to that of Section 3.4
and try to reduce the complexity of the system. This reduction in complexity
can be achieved by replacing the wavelet packet used in Section 3.4 with a
simpler one. The proposed image coding system contains the following parts.
First, the input image is decomposed into 7 subbands using two levels of a 2-D
separable DWT (Figure 3.8). Each of the subbands is then encoded separately.
After segmenting the LFS into 8 x 8 blocks, each block is encoded using a 2-D
predictive ECTCQ. Each LFS block is first normalized by removing its mean
and dividing the pixel values by its standard deviation. Then, the normalized
blocks are classified into one of four classes by the proposed 2-D spectral classifier
designed using the aforementioned generalized Lloyd algorithm. The process of
classification is the same as the generalized nearest neighbor part of the VQ
design algorithm. Based on the resulting codeword, a 2-D DPCM encoder using
the corresponding LP coefficients for each class encodes the normalized LFS
coefficients.

Each HFS neighboring the LF'S is segmented into 4 x 4 blocks and is classified
into one of two classes using spectral classification proposed in Section 3.2. The
resulting classification tables are used to classify 8 x 8 blocks in subbands 4, 5,
and 6 as it is shown in Figure 3.8.

The overhead information needed to be sent to the receiver includes: (i) the
mean and variance of each LFS block, (ii) the variance of each class in each
HF'S, (iii) the classification tables, (iv) the size of the image, and (v) the design
rate. We have used 8 bits to quantize each mean and variance parameter. The

variance of those blocks which have been assigned zero bits by the optimal bit

39



allocation procedure need not to be transmitted. The simulation results and the
reconstructed images for the 512 x 512 Lenna are shown in Figures 3.9, 3.10,
and 3.11. The classification gain is about 0.7 dB at rate r = 1 bit/pixel. The
performance of the 7-band system is up to 0.6 dB worse than the performance of
the 22-band system. However, the encoding and decoding complexity of the 7-
band system is quite small, thus making it an interesting candidate for situations

where the complexity is a serious practical constraint.

3.6 Comparison with Existing Image Compres-
sion Systems

In this section, we compare our results with, to the best of our knowledge, some of
the best results reported in the literature. In previous sections, our emphasis was
on developing a simple image coding system as a framework to compare different
classification schemes. Although the system presented in Section 3.4 exhibits a
rate-distortion performance comparable to or better than, to the best of our
knowledge, all existing image coding systems in the literature, it is possible to
improve the performance, specially at high bit rates, albeit with some increase in
complexity. For a complete survey of different possibilities, the interested reader
is referred to [Jos95].

In this section, we propose following modifications to improve the perfor-

mance:
e (Classifying all subbands into 4 classes.

e Compressing the classification tables.
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e Using a different quantizer for each class in different subbands.

Now, let us explain the characteristics of the image coding system. We use
the 22-band decomposition of Figure 3.3. Each subband is classified into 4 classes
using EMNSD classification scheme. We use 2 x 2 blocks for subbands 0-6 and
4 x 4 blocks in the remaining subbands. For each subband, samples from blocks
having the same classification index are grouped together into one class. Each
class is modeled as having a GGD , with the shape parameter chosen from the
set {0.5,0.6,0.7,0.8,0.9,1.0,2.0}. The ECTCQ designed for the corresponding
GGD is used to encode the coefficients. (The bit rate is defined by an optimal
bit allocation scheme.)

To compress the classification tables, we should exploit the dependence be-
tween the classification indices. In addition to the dependence between the clas-
sification maps of different subbands, there is also some dependence between the
classification indices of spatially adjacent blocks from the same subband. Any
one or both of these dependencies can be exploited to reduce the side information
required for sending the classification maps.

Consider a subband coding system for images where each subband is classified
into 4 classes and the classification map for each subband is sent as side informa-
tion. Assume that the side information for a subband is being arithmetic coded.
In the absence of any dependencies, a single probability table, where each entry
corresponds to the probability of a class, is adequate. However, the intra-band
and inter-band dependence of classification maps can be exploited as follows.
Multiple conditional probability tables are maintained, one for each state. The
state depends on the classification index of the previous block as well as the block

from the lower frequency subband corresponding to the same spatial location.
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For example, let Cs(i, j) denote the classification index for block (7, 5) from
subband 8 in Figure 3.3. Then the choice of probability table for encoding Cs (i, 5)
is dependent on Cy(i, 7 —1) as well as C5(i, 7). The conditional probability tables
have to be known at the decoder. Thus, if subbands 5 and 8 have 4 classes, then
16 tables have to be sent to the decoder. If all classes have nonzero rates, the
side information for sending all the probability tables can be prohibitive. But if
some classes have zero rates, all the classes having zero rates can be combined
into a single class. For example, suppose that subbands 5 and 8 have only 1
class having nonzero rate, then we can modify the classification map for each
subband, so that it contains 2 classes. In that case the number of probability
tables is reduced to 4. Since higher frequency subbands typically tend to have
many classes having zero rates, it is possible to exploit both intra-band and inter-
band dependencies. For low frequency bands, it is advantageous to exploit only
one of the dependencies. Thus for the 22-band decomposition, for bands 10-21,
both dependencies are exploited. For bands 1-9, only inter-band dependence
is exploited whereas for band 0 only intra-band dependence is exploited. The
entries in the probability tables are quantized to 5 bits and adaptive arithmetic
coding [Wit87] is used for encoding the classification maps. A side rate reduction
of 15 — 20% can be obtained using this method.

Figure 3.12 compares the rate-distortion performance of the above system
with some of the best results reported in the literature [Sai96, Sha93, Tau94,
Xi096]. As can be seen in Figure 3.12, to the best of our knowledge, the obtained
PSNR’s are equal to or better than any other results in the literature. Note
that unlike the systems presented in previous sections, the performance of this

system is not very sensitive to the choice of classification method (less than
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Table 3.1: Comparison of the Complexity of Spectral Classification with EMNSD
Classification. Number of Blocks=N, Block Size=L x L, Number of Classes=K,
Number of Iterations for EMNSD=I (20-30), Order of AR Model=M.

EMNSD Spectral

Multiplications |  NL?2+IN | [(M +1)[> — 20 4 (01 4 1) log, KN

Additions SNI? +3N | [(M +3)L? — MU0 4 (Af 4+ 2) log, K|N
Divisions N +3K +2 N
Comparisons 2K K

Sorting CNlog, N to N? -

Order Nlog, N to N? N

0.1 dB). This is because of the fact that first we over-classify the subbands by
classifying them into 4 classes and then we reduce the overhead by compressing
the classification tables. Over-classification reduces the performance degradation
due to the limitations of the classification scheme. For example, consider a
subband where 75% of the blocks have high activity and 25% of the blocks
have low activity. If the blocks are divided into two equally populated classes,
then one of the classes will contain a mixture of high and low activity blocks
in equal proportion. This is clearly not desirable. Using a smart classification
scheme which allows unequally populated classes, results in having high and
low activity blocks separated. In this example, classifying the subband into 4
equally-populated classes will also solve the problem, albeit at the cost of an

increase in side information if we do not compress the classification tables.
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Table 3.2: Simulation Results (PSNR in dB); 512 x 512 Barbara.

Spectral Spectral(HTVQ) EMNSD No Classification

Design | Actual | PSNR || Actual | PSNR | Actual | PSNR || Actual | PSNR
Rate Rate | (dB) Rate (dB) Rate | (dB) Rate (dB)

0.25 0.267 | 28.03 0.267 28.01 0.269 | 28.08 0.259 27.61

0.50 0.500 | 31.58 || 0.493 31.46 0.489 | 31.21 0.471 30.56

1.00 1.024 | 36.64 1.015 36.37 1.002 | 36.04 1.035 35.76

Table 3.3: Simulation Results (PSNR in dB); 512 x 512 Lenna.

Spectral Spectral(HTVQ) EMNSD No Classification

Design || Actual | PSNR || Actual | PSNR || Actual | PSNR || Actual | PSNR
Rate Rate | (dB) Rate (dB) Rate | (dB) Rate (dB)

0.25 0.264 | 34.48 0.263 34.44 0.265 | 34.46 0.241 33.31

0.50 0.505 | 37.43 || 0.501 37.33 0.507 | 37.39 || 0.454 36.15

1.00 1.030 | 40.81 1.018 40.68 1.017 | 40.68 0.990 39.89

Figure 3.1: An Example of Three Blocks with the Same Ac-Energy and Different

Spectrum.
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Table 3.4: Simulation Results (PSNR in dB); r = 1 bit/pixel.

Spectral Spectral(HTVQ) EMNSD No Classification
Image || Actual | PSNR || Actual | PSNR || Actual | PSNR || Actual | PSNR
Rate | (dB) Rate (dB) Rate | (dB) Rate (dB)
Barbara || 1.024 | 36.64 || 1.015 36.37 1.002 | 36.04 || 1.035 35.76
Goldhill || 1.069 | 37.34 || 1.074 37.34 1.077 | 37.29 || 1.009 36.71
Girl 1.058 | 42.26 1.051 42.17 1.049 | 42.12 1.000 41.74
Airplane || 0.999 | 41.42 || 0.994 | 41.30 0.974 | 40.87 | 0.985 39.78
Boat 1.076 | 35.54 || 1.079 35.53 1.052 | 35.17 || 0.980 34.47
Lenna 1.030 | 40.81 || 1.018 40.68 1.017 | 40.68 || 0.990 39.89
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Figure 3.2: Spectral Classification Image; 512 x 512 Lenna.
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Figure 3.3: The 22-Band Decomposition.
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Figure 3.4: Classification Image for Subbands; 512 x 512 Lenna.
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Figure 3.5: Reconstructed Image for the 22-Band Wavelet Coding System; 512 x

512 Lenna; r = 0.25 bits/pixel.
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Figure 3.6: Reconstructed Image for the 22-Band Wavelet Coding System; 512 x
512 Lenna; r = 0.5 bits/pixel.
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Figure 3.7: Two-Dimensional Linear Prediction.
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Figure 3.8: Classification Map and Enumerating Subbands.
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Figure 3.9: Performance of the Image Coding System Using 7-Band Decompo-
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Figure 3.10: Reconstructed Image for the 7-Band Wavelet Coding System; 512 x
512 Lenna; r = 0.25 bits/pixel.
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Figure 3.11: Reconstructed Image for the 7-Band Wavelet Coding System; 512 x

512 Lenna; r = 0.5 bits/pixel.
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Chapter 4

A Scalable Wavelet Image

Coding System

4.1 Introduction

Progressive transmission of signals is a mechanism by which the encoder’s output
is transmitted in groups of bits and the decoder produces a higher quality replica
of the signal based on receiving each new group of bits. Figure 4.1 illustrates
a simple progressive transmission system based on a uniform quantizer. A 128-
point source signal, shown in Figure 4.1 (a), is progressively transmitted and
reconstructed with 128, 256, and 384 bits (1, 2, and 3 bits/sample), as shown
in Figures 4.1 (b), (c), and (d), respectively. Upon receiving each group of 128
bits, the receiver updates the reconstructed signal and provides a more accurate
representation of the signal.

Progressive transmission is a desirable feature in many practical signal trans-

mission situations such as telebrowsing and database retrieval. Progressive trans-
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mission also provides the opportunity for interrupting transmission when the
quality of the received signal has reached an acceptable level or when the re-
ceiver decides that the received signal is of no interest. Likewise, in applications
where the receiver is more interested in specific parts of the signal rather than
the entire signal (e.g., content-based image transmission), a valid question is how
to transmit and reconstruct a signal with different levels of quality (distortion)
in different temporal or spatial regions. For example, after receiving a rough
reproduction of a medical image in a telemedicine application, the radiologist,
at the receiver, may want to highlight a part of the image and request a higher
fidelity (or even lossless) replica of only the highlighted area.

Although the image coding systems proposed in Chapter 3 provide a very
good rate-distortion performance, they are not rate-scalable and hence not suit-
able for progressive transmission and image browsing in which a higher quality
image is gradually constructed by progressively transmitting new bits. The good
performance of these systems is partly due to the use of ECTCQ’s followed by
arithmetic coding which amounts to a non-scalable quantization structure and
relatively high coding complexity. The focus of this chapter is on developing
an efficient, low-complexity, and scalable image coding system without using
arithmetic coding.

Pruned Tree-Structured Vector Quantizer (PTSVQ) is a low-complexity quan-
tizer scheme which offers a good rate-distortion performance while providing
successive approximation of the source (thus, rate-scalability) due to the fact
that optimal trees are nested [Cho89]. However, there are practical limitations
on designing good PTSVQ’s at high rates. In particular, designing a VQ with a

good out-of-the-training-sequence performance requires a sufficiently large num-
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ber of training vectors so as to present a valid empirical approximation of the
statistics of the source. The robustness of PTSVQ to distribution mismatch is
less than that of VQ. To investigate this fact, we design 16-dimensional VQ’s and
PTSVQ’s operating at different bit rates. We use 4 x 4 blocks of the 512 x 512
PEPPERS as our training sequence. Figure 4.2 shows the rate-distortion perfor-
mance of the VQ’s and PTSVQ’s for the training sequence and a test sequence
(4 x 4 blocks of the 512 x 512 Lenna). As can be seen from Figure 4.2, the per-
formance degradation of a PTSVQ due to distribution mismatch is more than
that of a VQ operating at the same bit rate.

In subband image coding, after decomposing an image into its subbands,
encoding the LF'S requires a high bit rate and the number of samples in the LFS
is much less than the number of pixels in the original image. Even for low vector
dimensions, it is practically impossible to design a VQ with a high enough bit
rate which does not suffer from the distribution mismatch. This problem also
arises when the HFS’s are classified into two or more classes. One of the basic
ideas behind the classification is to separate high and low activity regions of a
subband and to spend more bits for the high activity part. Usually, the number
of blocks in the high activity class is a small portion of the total number of
blocks in each subband. Thus, not only does classification reduce the number of
training vectors, but also it amplifies the need for a higher bit rate quantizer.

In what follows, we suggest a solution for the above-mentioned problems and
propose an image coding system which is simple and scalable (both in resolution
and in rate). Section 4.2 introduces a hierarchical PTSVQ in which a multi-
stage PTSVQ (MS-PTSVQ) is used. Section 4.3 suggests an appropriate way to

choose 2-D blocks. Section 4.4 includes simulation results.
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4.2 Multi-Stage PTSVQ

To overcome the problems in designing a robust PTSVQ using a relatively short
training sequence, we use a tree-structured encoder in which the first stage is a
gain-based classifier. Here, we use the EMNSD classification scheme to classify
the vectors into two classes based on their gain values. The second stage of
the encoder is a PTSVQ with a maximum bit rate of R,,,. If a rate higher
than R,,,. is required, the quantization error of the last stage is computed and
another PTSVQ is used to encode the error vectors. Depending on the maximum
desirable encoding rate, additional stages can be used.

We must emphasize that use of such an MS-PTSVQ would not be wise if
we were able to design a good high bit rate PTSVQ. However, practical limita-
tions on the size of available training data and the corresponding distribution
mismatch are the primary motivation for resorting to this multi-stage structure.
It is important to recognize that only one stage of PTSVQ is used when the
encoding rate is sufficiently low and, as it is shown in Figure 4.3, an ordinary
PTSVQ is enough for coding the low activity regions. Another important issue
is the memory requirement of the PTSVQ. Using MS-PTSVQ instead of PTSVQ
reduces the required memory of the system. The number of nodes in a PTSVQ
depends on the source (in addition to its dependency on the rate); however, this
number is source independent for complete trees. The memory requirement of
tree-structured vector quantizers (TSVQ’s) increases exponentially by rate and
this will cause practical limitations on the rate of the quantizers. For example, a
4-dimensional TSVQ with rate » = 5 bits/sample contains 2,097,151 nodes and
storing the codebook would be impractical in most applications. A two-stage

TSVQ for the same rate, with equal rates for the two stages, needs only 4,094
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nodes to be saved.

To improve the performance of the MS-PTSVQ at high bit rates, we may
normalize the vectors at each stage of the MS-PTSVQ. This normalization is
usually done by removing the mean of vectors and dividing the mean-removed
vectors by their standard deviation. Since HFS’s have zero means, there is
no need for removing the mean of HFS’s. The effects of the normalization
in improving the performance and increasing the complexity are discussed in

Section 4.4.

4.3 Choosing the Block Sizes

After three levels of subband decomposition, we enumerate the image subbands
as in Figure 4.4. Statistical characteristics of the subbands indicate that sub-
bands 2, 5, and 8 have higher row correlations than column correlations; the
opposite is true for subbands 1, 4, and 7. Using non-square blocks in the clas-
sification procedure and vector quantization exploits this higher correlation and
provides a better performance. To show the effect of non-square blocks, we con-
sider two different systems. In System A, we use 2 x 2 blocks to classify subbands
1, 2, and 3. The corresponding block sizes for higher subbands in the hierarchy
are 4 x 4 for subbands 4, 5, and 6 and 8 x 8 for subbands 7, 8, and 9. The size
of the vector quantizer blocks is tabulated in Table 4.1. In System B, to exploit
the directional correlations in different subbands, we use non-square block sizes
as described in Table 4.2. In both systems, 2 x 2 blocks are used for vector quan-
tization of subband 0 and no classification is employed. The effects of changing

the block sizes on the final results are investigated in the next section.
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4.4 Simulation Results

Now, let us describe the overall image coding system. After three levels of wavelet
decomposition based on the 9-7 spline filters designated No. 2 in [Ant92], the
subbands neighboring the LFS are classified into 2 classes using the EMNSD
classification algorithm. Other HFS’s are classified based on the result of the
classification in the corresponding lower resolution subbands as it is shown in
Figure 4.4. This selection of classification map is because of the spatial depen-
dency of the HFS’s and is similar to the scheme presented in Chapter 3 to save
in overhead. MS-PTSVQ’s are used for the LF'S and the high activity regions of
the HFS’s. PTSVQ’s are designed for the low activity portions of the HFS’s. An
optimal bit allocation procedure is used to assign bits among different quantizers
[Ris91].

To compare the performance of our system with some of the existing image
coding results, first we choose four systems. The first system is a modified version
of the system presented in Chapter 3 and provides one of the best available rate-
distortion performances. This modified system, hereafter referred to as System
I, uses three levels of decomposition and a scheme similar to Figure 4.4 for
classification. Other specifications of System I, like using ECTCQ’s, are the
same as the system presented in Chapter 3. Note that System I is not rate-
scalable (not suitable for progressive transmission) and is more complex than the
proposed system. We use System I as a benchmark to measure the rate-distortion
loss incurred by demanding low complexity and rate-scalability. Another system
which has been used to evaluate the performance of the suggested system is
the one reported in [Per94] (System II). System II is a low-complexity PTSVQ-

based system providing scalability. System III is the same as the proposed
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system (System B) but uses PTSVQ instead of MS-PTSVQ. The only difference
between Systems III and IV is in the choice of vector dimensions. In System IV,
we use pruned tree-structured scalar quantizers instead of PTSVQ’s. Since the
dimension of a scalar quantizer is one, we can design high bit rate quantizers
and there is no need for a multi-stage structure. Note that theoretical results
show that asymptotically a VQ has space-filling advantage, shape advantage,
and memory advantage over a scalar quantizer [Loo89]. We include the results
for System IV to study the tradeoff between the VQQ advantages and the practical
limitations on designing VQ’s at high rates.

The codebooks of System II are designed based on 10 computerized tomogra-
phy (CT) images [Per94]. The codebooks of Systems B, III, and IV are designed
based on a set of 26 CT images including the 10 used for System II. In Figure
4.5 we compare the signal-to-noise ratio (SNR)! results of the aforementioned
systems for the same 12-bit 512 x 512 CT images used in [Per94]. The results,
using only two stages of PTSVQ without employing normalization, are the aver-
age SNR’s of two images outside the training sequence. As it is shown in Figure
4.5, the proposed system (System B) provides excellent results for very low bit
rates which at some points are even better than the results of System I. As the
rate is increased, the performance results fall short of those of System I but
rate-scalability, progressive transmission, and simplicity are preserved. On the
other hand, the performance is always superior to that of System II although
this comes at the cost of a higher encoding complexity. The proposed system
provides more than 3 dB improvement over System III at high bit rates. Also,

note that the memory requirement for the MS-PTSVQ is much less than that of

1SNR=10log; >_;(z: — T)*/ 2o, (xi — vi)?
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the PTSVQ. An interesting observation is that System IV outperforms System
IIT at high bit rates. This is due to the practical limitations on designing VQ’s
which has more effects than the VQ advantages at high bit rates. As it is ex-
pected the performance of System III is superior to that of System IV at low bit
rates. Also, note that not only does the proposed system, System B, overcome
the practical design problems, but also System B utilizes the VQ advantages
and outperforms System IV. Figures 4.6 and 4.7 show the original image and
reconstructed CT image for System B at » = 0.3 bits/pixel, respectively.

Our simulation results show that choosing non-square block sizes, System
B, will improve the results by up to 1.2 dB (compared to System A). This is
because of more efficient use of the horizontal and vertical correlations in different
subbands. Normalizing the vectors results in about 0.3 dB improvement at rate
0.35 bits/pixel. As we increase the bit rate, the gap becomes wider. Increasing
the bit rate results in using a larger portion of the rate in the second stage of
the MS-PTSVQ’s. Also, the second stage is not used for some subbands when
the rate is low and as a result normalization is not beneficial at low bit rates.
Using normalization adds one division per pixel per stage to the complexity of
the system.

We also compare our results with those of {Cos95] for the 512 x 512 Lenna in
Figure 4.8. In [Cos95], embedded Zerotrees wavelet (EZW) coding approach of
[Sha93] is combined with PTSVQ. The complexity of this system is comparable
with that of System B. As it is shown in Figure 4.8, the performance of System

B is about 0.5 dB better than that of [Cos95] at r = 0.2 bits/pixel.
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Figure 4.1: Illustration of Reconstructed Signal Quality in Progressive Trans-
mission: (a) Original Signal, (b) First Refinement at 1 bit/sample, (c) Second

Refinement at 2 bits/sample, and (d) Third Refinement at 3 bits/sample.
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Table 4.1: Selection of Block Sizes in System A.

Subband | Classification | Vector Quantizer
0 - 2x2
1 2x2 2x2
2 2x2 2x2
3 2x2 2x2
4 4 x4 2x2
5 4x4 2x2
6 4 x4 2x2
7 8x8 4x4
8 8 x8 4 x4
9 8x8 4 x4
- -
ilc%lvity 5 PTSVQ —
— Classification
Low L prsvQ |—
Activity

Figure 4.3: Encoder Block Diagram.
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Table 4.2: Selection of Block Sizes in System B.

Subband | Classification | Vector Quantizer
0 - 2x2
1 4x1 4x1
2 1x4 1x4
3 2x2 2x2
4 8% 2 4x1
5 2x8 1x4
6 4x4 2x2
7 16 x 4 8 x 2
8 4 x16 2x8
9 8x8 4x4
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Figure 4.6: Original 512 x 512 CT Image.

Figure 4.7: Reconstructed CT Image for System B; r = 0.3 bits/pixel.
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Chapter 5

Fast Reconstruction of
Subband-Decomposed Signals for

Progressive Transmission

5.1 Introduction

We proposed a simple and rate-scalable subband image coding system in Chapter
4. Also, several rate-scalable subband image coding systems have been proposed
in the literature which provide very good performances [Sha93, Sai96, Tau94].
These coding systems are strong candidates for multicasting and progressive
transmission due to the fact that they offer resolution-scalability, rate-scalability,
and good rate-distortion performance.

One of the problems in a DWT-based progressive transmission scheme is
that the decoder, upon receiving a new group of bits, has to perform the inverse

filtering operation to reconstruct the image. The conventional approach for doing
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this is to apply the inverse filters on the decoded versions of all DWT coefficients
to reconstruct a replica of the image. In this approach, even if only one DWT
coefficient is refined, the reconstruction complexity will be the same as in the
case when all coefficients are refined.

In a realistic progressive transmission scenario however, at each step of pro-
gression, only some of the DWT coefficients are refined and the other coefficients
remain unchanged. Therefore, only a portion of the image pixels need to be up-
dated after receiving the new bits. To reduce the complexity of reconstruction,
we propose a method through which one can recompute only those pixels of the
image that need to be updated. Not only does this method provide a fast recon-
struction of the output, but also it provides the capability to update the output,
without any increase in complexity, as the refinement of each DWT coefficient
arrives. This feature of the proposed reconstruction scheme is not limited to
progressive transmission systems and can be used in any packetized bit stream
for an on-line reconstruction of the output.

In Section 5.2, we propose a new method for signal reconstruction in pro-
gressive transmission which allows for updating only the necessary portions of
the signal instead of reconstructing the whole thing. The complexity of this new
reconstruction approach is proportional to the number of refined coefficients.
Section 5.3 generalizes the approach of Section 5.2 to a general filter bank struc-
ture. In Section 5.4, we provide two specific examples to illustrate the efficacy

of the proposed fast reconstruction method.
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5.2 One Level of Decomposition

In signal coding based on the DWT, the input signal is typically decomposed
into two components: (i) a low-resolution approximation and (ii) a detail signal.
This results in decomposing the input signal into low-pass and high-pass versions,
generally referred to as subbands. Each of the resulting subbands can be further
decomposed using the same approach. In this manner, the DWT decomposes a
given input signal into a number of frequency bands [Mal89]. At the receiver, the
signal can be reconstructed using appropriate inverse DWT filters. Figure 5.1
shows one level of a two-band decomposition and reconstruction process. In this
chapter the filters in Figure 5.1 are assumed to be linear-phase, FIR filters.

In this section, to convey the basic idea behind the proposed fast recon-
struction approach, we focus our attention to a one-level decomposition as in

Figure 5.1 where the reconstructed output signal can be written as:
Ny Ny
y(n) = Y ap(n—mh(m)+ > zi(n—m)g(m), (5.1)

7TL=—Nh m:—-Ng

where

Ty (n) = , Xh(2) = Xn(2%),
0 n odd
. T4(5) neven ) )
() = X)) = X,(), (5.2
0 n odd

and 2N, + 1 and 2N, + 1 are the lengths of the h and g filters, respectively.

To simplify the notation, we define z,(a) = z4(a) =0 if a ¢ Z. So,

zi(n) = x,(%), i=nh,g, and n€Z. (5.3)
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Using the above notation, the output can be written as:

N n—m Ny n—m
s = > a(“SThm) + S ("5 )glm) (54)

m=—Np, m=—Ny

5.2.1 Fast Reconstruction for Progressive Transmission

Systems

Now, let us consider a coding system in which the DWT coefficients are pro-
gressively encoded in K levels of refinement. At the Ith Jevel of refinement,
I =1,2,...,K, the DWT coefficient z;(n) is quantized and encoded by bi(n)
bits/sample, i = h, g. The values of b}(n) are defined by a bit allocation algorithm
or are otherwise dictated by the encoding algorithm. In general, b}(n) < b}, (n)
and it is possible — and crucial to note — that we might have b}(n) = b, (n),
for some ¢ and n. That is, at each level of refinement, only some DW'T coef-
ficients are refined. Let us use x;(n, %), z;(n, b3), ..., z;(n,b%) to represent the
decoded versions of the DWT coefficients z;(n), at different levels of refinement
(z;(n,b}) is the coarsest representation of z;(n) using b%(n) bits for quantiza-
tion and z;(n, b, ) is the finest representation using b% (n) bits for quantization).
Also, we use y;(n) to denote the reconstructed signal (output of the reconstruc-
tion process) corresponding to the 1B level of refinement.

Using the conventional method of reconstruction in subband coding sys-
tems, for each | = 1,2,..., K, upon obtaining z; and z,4, the decoder recon-

structs the ['! refinement of the output, ¥;, according to:

um = 3 eSS Rm) 3w (S Hglm). (55)

m=—Np, m=—Ny
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In other words, given that y; is reconstructed at the decoder, upon receiving
additional bits from which z(n, b} ;) and z,(n,b{ ;) — the (I + 1)** refinements
of z, and z, — are obtained, the inverse DWT filters are used anew to compute
an updated replica of the signal — the (I + 1)st refinement of y. Therefore, every
time that the output is updated, the entire computational complexity of the
reconstruction process is repeated.

In this chapter, we propose an alternative method in which we define Ay,(n) =
yir1(n) — yi(n) and Az;(n, b)) = z;(n, b,,) — zi(n, b)), i = h,g. Clearly, Ay,
[=1,2,...,K —1, can be computed as follows:

N n—m
Apn) = > Awa(5—,B)Am) + 3 Az( b)g(m).  (5.6)

m=—Np, m=—Ny 2

Then, to reconstruct a new refinement of the signal, y;1, it suffices to use

y+1(n) = wu(n) + Au(n). (5.7)

Now let us consider the complexity (number of multiplications) of the con-
ventional approach using (5.5) and compare it against the complexity of the
proposed fast reconstruction method. If, at each level of refinement [, we use
(5.5) to compute y;, it costs L = J(2N, + 1) + (2N, + 1) multiplications
— a quantity which is independent of the number of refined DWT coefficients.
Therefore, for K levels of refinement, the computational complexity is K L mul-
tiplications. By contrast, using (5.6) and (5.7) to update the output signal costs
2N; + 1 multiplications per each nonzero Az;, i = h,g (number of nonzero
Az; < &), If ayf DWT coefficients (z;, i = h, g) are refined at the 10 evel
of refinement, then using (5.6) and (5.7) to update the output signal, the total
number of multiplications would be £[(2N, + 1) T/, am + (2N, + 1) T, ag).

Note that for large values of K, K oy << K for the rate-scalable image cod-
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ing systems reported in the literature [Sha93, Sai96, Tau94] (also the system
of Chapter 4), and therefore the computational complexity of the proposed ap-
proach is much less than that of the conventional approach. For example, in the
EZW coding approach of [Sha93|, not only are there many “insignificant” coeffi-
cients at low bit rates which are not transmitted and are assumed to be zero, but
also the “significant” coefficients are refined in dominant and subordinate passes
(at each pass some of the significant coefficients remain unchanged). In Section
5.4, we provide two specific examples to demonstrate the amount of complexity

reduction obtained by the proposed method.

5.2.2 On-line Updating of the Output

In addition to reducing the reconstruction complexity in a progressive trans-
mission system, using (5.6) and (5.7) to reconstruct the output provides the
capability to update the output signal upon receiving the new refinement of
each DWT coefficient, thus allowing for an on-line update of the output. For
many signal coding systems the output bit stream is transmitted in the form of
packets. Consider a general signal coding system (or one level of refinement of
a progressive coding system) and assume that the output is transmitted using
M packets. The size of each packet and thus the value of M depends on the
chosen protocol. Each packet contains the refinement bits corresponding to one
or more DWT coeflicients. At the receiver, there are two general alternatives for

reconstruction:

e Alternative 1. Wait until all M packets are received and then reconstruct

the output, or
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e Alternative 2. Reconstruct M intermediate versions of the output — one

for each newly received packet.

If the conventional reconstruction formula, (5.5), is used, Alternative 1 results
in a delay and Alternative 2 results in an increase in computational complexity
by a factor of M. Using the proposed approach (described by (5.6) and (5.7)) to
reconstruct the output makes it possible to provide M intermediate versions of
the output without increasing the complexity or delay, i.e., Alternative 2 without
the added complexity. This is possible because, in the proposed method, upon
receiving a refinement of a given DWT coefficient, say Az (k), we can determine
exactly which set of output samples need to be updated. Let us refer to this
set as Az. The output samples are obtained by multiplying Az, (k) by h(m) to
update y(2k + m), 2k +m € A (see (5.6)). Taking into account the boundary

effects, it is easy to show that Ay = {2k + m : m € By}, where

0,1,..., Ny + 2k, 0<k<Zx
Bk: —Nh,—(Nh——l),...,Nh, %h‘ <k< N—_2Nh‘ . (58)
—Np,...,N =2k, %thk<%

The same type of argument holds for updating the output when a refinement
Az,(k) is received.

Also, note that if after receiving a rough reproduction of the signal, the
receiver requests an update of only a portion of the signal (region of interest),
it suffices to send a refinement of the DWT coefficients corresponding to the
spatial location of the region of interest. In this case, the computational cost

of using (5.6) and (5.7) to update the output is proportional to the number

ITo have a smooth boundary after reconstruction, the signal is symmetrically extended

near the boundaries [Mal89].
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of refined coefficients and obviously less than the computational cost of the
conventional approach. Such interactive coding systems are particularly useful
in medical applications in which after receiving a rough version of the image, the
user identifies a region of interest (usually small compared to the entire image)
and requests additional information only for this region.

The same procedure can be applied to encoding systems which utilize more
than one-level of decomposition. The two-dimensional (2-D) extension of the

proposed approach is also straightforward for a separable 2-D DW'T.

5.3 General Filter Banks

In this section, we extend the idea for complexity reduction developed in the
previous section to general filter banks. Figure 5.2 illustrates a general decom-
position and reconstruction structure using a set of passband filters called filter
banks. This structure can be used to perform linear transformations like the dis-
crete cosine transform, lapped orthogonal transform, Laplacian pyramid, Gabor
transform, QMF’s, and DWT [Vet91]. Although there exist “fast implementa-
tions” for many of these transformations, the study of this general structure is
worthy of consideration as it unifies the application of our approach for different
transformations and provides a general methodology for progressive transmission
situations. Furthermore, our approach does not depend on the specific transfor-
mation used. In fact, the ratio of the computational complexity of the proposed
approach to that of the conventional approach for reconstruction is fixed for any
transformation as long as the number of refined coefficients are the same. So, the

choice of the transformation structure affects the complexity of both approaches

78



in the same manner.

To make the argument more precise, first, let us consider the example il-
lustrated in Figure 5.3 consisting of three levels of the two-band structure in
Figure 5.1. Later, we generalize our fast reconstruction approach to the filter
bank shown in Figure 5.2. The example in Figure 5.3 is equivalent to the example
in Figure 5.2 when ky = 2, ky = 4, ks = k4 = 8 and filters g; and h;, 1 = 1,2, 3,4,
are chosen appropriately. Given filters h and g in Figure 5.3, the corresponding
reconstruction filters in Figure 5.2 can be found. The main equation governing
the relationship between g;, 7 = 1,2, 3,4 and ¢ and h is the equivalence of the
two structures in Figure 5.4 [Vet91]. Using Figure 5.4, one can establish the

following equations relating different filters in Figures 5.2 and 5.3:

Go(2) = G(H(z), (5.10)

Gs(z) = G(YH(PA)H(2), (5.11)
and

Ga(2) = H(zY)H(2*)H(2). (5.12)

Although the reconstruction operations in Figures 5.2 and 5.3 are the same,
the number of multiplications in Figure 5.2 is more than the number of multipli-

cations in Figure 5.3. Specifically the output signal in Figure 5.2 can be written

as:
vin) = ZN 7 (n — m)gy(m) + ZN zh(n — m)gs(m) +
_Z_S:N z3(n — m)gs(m) + _Z_EN zy(n —m)gs(m), (5.13)
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where

z1(3) neven

7 (n) =  X{(2) = Xu(22),
0 n odd

zo(2) n =4k .

gh(n) =4 , X3(2) = Xa(2*),
0 otherwise

)

z3(%) n=28k

gy(n) =4 ° , X3(z) = X3(2°),
0 otherwise
z4(2) n =8k

2l (n) = () L X4(z2) = Xu(2Y), (5.14)
0 otherwise

2N; + 1 is the length of g; and Ny = Ny, Ny = 2N, + N, N3 = AN, + 3N,

and Ny = 7TN,. So, using all coefficients to reconstruct the output, we need

L= N[2N§+1 + 2NZ+1 + 2N§+1 -+ 2N§+1] multiplications in Figure 5.2 and Ly =
N[2Ny + 1)(3 + § + 3) + (2N, + 1)(3 + ; + 3)] multiplications in Figure 5.3.

After computing L; in terms of N, and N,, we can show that
7
Ly = N[1+3Ny +3Ny] > Ly = N[7(Nu + Ny +1)], (5.15)

establishing that the number of multiplications corresponding to the implemen-
tation of Figure 5.3 is less than that of Figure 5.2.

Now, we concentrate on the main issue of this section and show that a fast
reconstruction approach similar to what was proposed in Section 5.2 can be

used for the filter bank shown in Figure 5.2. To simplify the notation, we define
zi(a) =0if a ¢ Z. So,

2)(n) = zi(r), i = 1,2,3, and zy(n) = z4(

= ). (5.16)

ool 3
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Using the above notation, the output can be written as:

vm= 3 m1<”;m>gl<m>+ by u(”;m)gxmw
3 :cg(”; ) + Z 24 (2= ga(m). (5.17)
m=—N3 m=—Ny4

In the conventional approach for reconstructing the output of a progressive trans-

mission scheme, the different updates, y1,vs,...,yx, are computed after receiv-
ing z,(n, b)), zi(n, 83), ..., zi(n, b%) as follows:
N n —
wn)= 3 o(—5— b} g (m) + Z wz =, 02)ga(m) +
m=—Ni
oL n—m .3 - 4
> n Wem+ 3 o (m). (519
m=—Ns m=—Na

As before, we define Ayi(n) = yi1(n) — wi(n) and Azi(n, b)) = z;(n, b)) —
z;(n, b}), where Ay, 1 =1,2,..., K — 1, is given by:

Ay(n Z Azy (= by gy (m) + Z Az (BT 12 gy (m) +
m——N2
—m
Z A.CE?, 8 b3 g3 + Z A.’L‘4 3 ,b?)g4(m)(519)
m=—N3

Then, given that y;(n) is available at the decoder, yi+1(n) can be computed by
adding Ay;(n) to y;(n). Equation (5.19) is a generalization of (5.6) and therefore
provides a fast reconstruction scheme as was discussed in Section 5.2. As before,
complexity reduction is achieved due to the fact that many Az;’s are zero.
This approach also provides the capability to update the reconstructed signal
upon obtaining the refinement of each coefficient. Table 5.1 shows the required
updates for the coeflicients that are sufficiently far from the boundaries: For each
coefficient z;(k), the first row contains the filter coefficients needed for updating
the output and the second row contains the output samples that are affected by

the refinement of z;(k).
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5.4 Examples

Although our scheme works for any rate-scalable transform coding system, we
pick two particular coding systems to show the practical usefulness of the pro-
posed fast reconstruction method. We use the EZW approach of [Sha93] and

the scalable image coding system of Chapter 4 for this purpose.

5.4.1 Example 1

In [Sha93], an 8 x8 DWT decomposed image has been used to present the details
of the EZW algorithm. We use the same example (Table 5.2) and assume that
refining each coeflicient, using a decomposition structure like the 2-D version of
the one in Figure 5.2, affects all output pixels in the same row or column (a rea-
sonable assumption on the length of filters for an 8 x 8 image). The conventional
reconstruction approach takes 1,024 multiplications to create each update of the
output. Without going through the details of the EZW algorithm, as it is shown
in [Sha93], the first dominant pass results in refining coefficients in locations 11,
12, 13, and 54 (the numbers indicate the row and column indices, respectively).
Reconstructing the image using the proposed approach takes 160 multiplications
instead of 1,024. The first subordinate pass (the second level of refinement) re-
fines the same four coefficients [Sha93] and thus results in the same amount of
computational complexity reduction. The second dominant pass (the third level
of refinement) changes coefficients in locations 21 and 22. Our approach requires
80 multiplications to reconstruct the third image. The second subordinate pass
(the fourth level of refinement) refines the aforementioned six DWT coefficients.

To create the fourth image, our approach requires 240 multiplications. There-
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fore, to reconstruct the first four images, the fast scheme needs a total of 640
multiplications compared to 4,096 multiplications for the conventional method -
a six-fold reduction. Also, note that since we have had 16 coefficient refinements
in the first four passes, we could have reconstructed 16 intermediate images using
the fast reconstruction method without any additional computational complex-
ity. To construct these 16 images using the conventional approach would cost

16,384 multiplications.

5.4.2 Example 2

As our second example, we consider the image coding system described in Chap-
ter 4. Let us consider the progressive transmission of an image using System B
in Chapter 4. For this example, we assume that at each level of refinement, 0.025
bits/pixel (6,554 bits for a 512 x 512 image) are transmitted. The conventional
reconstruction approach takes 5,505,024 multiplications to create each update
of the output. Table 5.3 provides the exact number of multiplications needed in
the proposed fast reconstruction approach. As it is shown in Table 5.3, the com-
putational complexity of the proposed approach, for this example, is almost one
third of that of the conventional approach. Furthermore, note that if we want to
packetize the bit stream and transmit it over a network, e.g. an asynchronous
transfer mode (ATM) network, we should wait to receive all 6,554 bits before
starting to reconstruct each refinement. In ATM, each packet consists of 48 bytes
of information. So, we need about M = 17 packets to transmit the bit stream
corresponding to each level of refinement. Using the proposed method, we could
generate 17 intermediate images (one image after receiving each packet). Cre-

ating these intermediate images using the conventional approach would increase
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the computational complexity by a factor of 17. Avoiding this increase in com-

plexity in the conventional approach is only possible by accepting a delay and

waiting to receive all 17 packets.
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Table 5.1: Update Table for Coeflicients Sufficiently Far from the Boundaries.

r1(k) gi(=N1) -+ gi(0) - g1(N1)
Lok <M\ y2k—N) -+ y(2k) - y(2k+Ny)
$2(k) 92(—N2) cee 92(0) s 92(N2)
L k< M=t | y(dk — Ny) --- y(dk) - y(dk+ Ny)
z3(k) g3(—=N3) -+ g3(0) --- 93(N3)
ﬂs& <k< N;SNQ y(8k — N3) -+ y(8k) --- y(8k+ Na)
z4(k) 9a(=Na)  --+ gs(0) -+ ga(Ny)
Bk <=M |y —Ny) - y(8k) -+ y(8k+ Ny)

Table 5.2: Example of 3-level Wavelet Transform of an Image [Sha93).
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Table 5.3: Number of Multiplications Required to Build Each Level of Refine-

ment.

RefinementOur approachNormal approachlRatio

1 1,806,336 5,505,024 33%
2 1,855,270 9,905,024 34%
3 1,855,270 9,005,024 34%
4 1,855,270 9,905,024 34%
5 2,051,006 9,505,024 37%
6 2,051,006 5,005,024 37%
7 2,051,006 5,505,024 37%
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Chapter 6

Joint Source-Channel Coding for

Wireless Channels

6.1 Introduction

In a joint source-channel coding scheme (Figure 6.1), one of the important prob-
lems is how to allocate the bit rate (bandwidth) between the source coder and
the channel coder. Consider a class of source coders consisting of fixed-length
coders operating at different bit rates r; € R, and a class of channel coders
consisting of coders with rates r. € R.. Then, the overall transmission rate for
a particular combination of source and channel coders is r = r;/r.. The number
of possible (rs, ;) pairs is | R;| X |R.| where | R | is the cardinality of the set R.
For a channel with maximum transmission rate r;, any pair which satisfies the
condition r = r,/r, < r; can be used. So, a valid and important question is which
pair provides the best performance. Tanabe and Farvardin use a packetization

scheme to prevent infinite error propagation in a variable-length entropy-coded
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quantization scheme [Tan92]. They propose an optimal algorithm to assign bits
between the source and channel encoders of different subbands of an image for
a memoryless binary symmetric channel (BSC).

In this chapter, we propose an optimal rate allocation policy which minimizes
the end-to-end average squared-error distortion. First, we consider a BSC and
then we extend our approach to wireless channels with slow fading. The wireless
channel can be modeled as a finite-state channel which is a varying BSC with
crossover probabilities determined by a multi-state Markov process [Wan95b].
The organization of the remainder of the chapter is as follows: In Section 6.2,
we express the total distortion as the sum of the source coder distortion and the
channel distortion. Then, we propose a model to compute the channel distortion
and minimize the end-to-end distortion for a BSC. In Section 6.3, an adaptive
scheme is developed to minimize the distortion for finite-state channels (FSC’s).

Section 6.4 provides the simulation results.

6.2 Minimizing End-to-End Distortion for Bi-

nary Symmetric Channels

Let us first assume that the channel is a memoryless BSC. Later we will generalize
the solution to the case of finite-state channels. Our approach is to express the
expected total average distortion Dy, as the sum of two terms: (i) the source
coder distortion Dy and (ii) the channel distortion D, which is caused by channel

errors. With reference to Figure 6.1, we can write the total average distortion as

Dyt = B||X =Y;|* = BI|X - Y1|*+2E[(X - Y0)'(Y; - Y0) |+ B[ Y; = V5|, (6.1)
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Assuming the channel errors are independent from the source, and the source

encoder is designed to meet the centroid condition [Far90], we conclude that
E[(X - Y)'(Y1 = Yy)] = B{E[(X — Y1) H]B[(Y; - Y5) 1]} = 0. (62)

Therefore,
Dyt = Ds('rs) + Dc(rc)a (63)

where D,(r;) £ E||X — Y;||2 and D,(r.) £ E||Y; — Yy |2

Now, the problem can be formulated as the following minimization problem:

min Dtot . (64)

rs/Te <7t

To compute Dy, we need to compute Dg(rs) and D (r.). Here, Dy(r,) is the
distortion-rate performance of the source coder and is known or precomputed
for the chosen class of source encoders. To compute D.(r.), we need to model
the combination of the channel encoder, channel, and channel decoder, hereafter
referred to as the equivalent channel. For the class of algebraic codes, since
each error only affects one block of data, the equivalent channel can be modeled
as a discrete memoryless channel. For the more interesting case of the class
of convolutional codes, the decoding errors are known to occur in bursts, and
therefore the equivalent channel has memory. A modified Gilbert noise channel
[Gil60] is used to model the equivalent channel. For each convolutional code
in the given class of channel codes, the parameters of the model (b, g, p,, and
p, in Figure 6.2) are chosen so as to match the characteristics of the equivalent
channel as measured by the actual simulation of a convolutional encoder-decoder
and a memoryless BSC.

The model parameters are extracted in the following fashion. The combina-

tion of a convolutional encoder, a memoryless BSC, and a convolutional decoder
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yields a channel of bursty nature. We identify as error burst any cluster of con-
secutive bits with a high (typically higher than 0.5) probability of bit error. In
order to extract the start and end points of each burst we morphologically pro-
cess the bit error sequence obtained by simulation. The morphological filtering
consists of a dilation operation followed by an erosion operation, which connect
any two error bits that are no more than d positions apart. We have determined
experimentally that the choice of d = 4 gives an intuitively satisfying identifica-
tion of bursts. Moreover, the clusters identified as burst will not change unless
d is increased significantly. Then, we compute the average burst length [, tak-
ing into account all bursts of length greater than or equal to two. The rest are
considered random errors and are used to determine p,. The model parameters
b, g, and py are computed from the total number of bursts n;, the average burst
length [;, and the average bit error rate p. of the simulated bit-error sequence.

Direct calculations yield

1
b=1-17,
g=1 (11‘;bq)bl]b
n
Py = ﬁv,
Do = pe_—q_g&7 (6.5)

where ngy is the number of random errors, NV is the total number of bits in good
state, and g, = (1 — ¢)/(2—b—g) and g, = (1 — b)/(2 — b — g) are the steady
state probabilities of the “bad” and “good” states, respectively. Assuming a
uniformly distributed binary sequence as the input of the convolutional encoder,

we compute the model parameters (b, g, py, and p,) using the aforementioned
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procedure. The reason for assuming a uniform input is that we want to model the
equivalent channel independently of the statistics of the source encoder output.
After computing the parameters of the equivalent channel model, we can

calculate the channel distortion by
De(re) = E\Y; = Y;|* = B{E[||Y; - Ys|*|1]} =
i 25 i — yilPPeg (412) P (3),

where 4,7 € {0,1}¥, K is the length of the source encoder codewords, and

(6.6)

P.,(j]t) denotes the equivalent channel transition probability which can be com-
puted using the parameters of the model in Figure 6.2. Let s be the integer
with binary representation sgs;...Sx_1, where s; is determined by the equiv-
alent channel state during the transmission of the k% bit of a source encoder
codeword, i.e. s = 0 if the channel state is good and s, = 1 if the channellstate
is bad. Let us define 7y, as the probability of starting in state sy and 7,5, _, as
the probability of transition from state sx_; to sk, g5, , € {b,1 —b,9,1 — g}.

Then, B}
PC‘I(jlz.) = 320_1(7[90 Hlf:_ll Wsksk—l)ng[(JGBZ)AS]
(1 —py)?lu eAslpV IIODASl (1 p yWGG@INs]

where @, A, (+), and W(-) denote modulo 2 bitwise addition, bitwise AND op-

(6.7)

eration, binary compliment, and the Hamming weight function, respectively.

We compute Pe,(j|¢) for each convolutional code and each value of r. using
(6.7) and the parameters of the model. To compute D.(r.), using (6.6), we
need to know the source encoder codebook, the convolutional code, and the
BSC probability of error (¢) (no knowledge about the source is needed). Having
D.(r.) and D,(rs), minimizing D;,; in (6.4) is straightforward.

The procedure described above yields the optimal allocation of the available
transmission rate between the source and channel codes for a memoryless BSC.

In next section, we solve the same problem for an FSC.
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6.3 Optimal Rate Allocation for a Finite-State

Channel

To minimize the end-to-end distortion for an FSC, we assume that the receiver
and transmitter (through a feedback channel) have access to the channel state
information (CSI). Repeating the procedure of Section 6.2 for each of the con-
stituent channels of the F'SC, leads to an adaptive joint source-channel coding
scheme which assigns bit rates to the source and channel coders according to
the current state of the channel, while maintaining the overall transmission rate
fixed. Note that recent developments in convolutional coding theory, allow for
fast and easily implementable switching between convolutional codes of different
rates [Hag88, Hag90, Cox91]. So, based on the results achieved by the model,
we pick the best (rs,7.) pair for each memoryless BSC and save the results in
a table. This procedure is done off-line and takes no time during the trans-
mission. Then, at each time instant, the best (r;,7.) pair is chosen from the
corresponding table, based on the CSI, and is used to quantize and transmit the
source. Whenever the state of the channel is changed, the source encoder and
the channel encoder are adapted correspondingly. The advantage of the adap-
tive rate allocation procedure described above over a fixed rate allocation scheme
will be discussed in Section 6.4. We consider FSC’s representing Rayleigh and

log-normal fading channels arising in practical mobile communication scenarios.

6.3.1 Selection of the FSC

In this section, we describe the procedure used for modeling a slow fading channel

by an FSC. In this approach, we divide the range of received SNR’s into a finite
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number of intervals, each representing one state of the FSC. Figure 6.3 illustrates
a log-normal p.d.f. which is a good model for the received SNR of a slow fading
channel [Rap96]. In this figure, the average received SNR is 10 dB. The vertical
lines in Figure 6.3 represent the thresholds which divide the range of received
SNR’s into four intervals. For an uncoded binary phase-shift keying (BPSK)

signaling system, the bit error rate (BER) is given by

BER = —;—erfc(\/%), (6.8)

where 7, is the received SNR per bit and erfc is the error function. For this
signaling system, we assume that each interval, representing a state of the FSC, is
modeled by a BSC. For a K-state model, let us denote the K —1 SNR thresholds
by Ty, k=1,...,K — 1, and assume Ty = 0 and Tx = oo. Then, the BER, say
€x, associated with the BSC of state £ is taken as the average error rate of the

BPSK system given that vy, € [T}y, T}), i.e.,

f%:’“_l —é—erfc(ﬁ)p(m)dm
P

k=1,...,K, (6.9)

€ =
where Py, the probability of being at state k, is given by

sz/Tk p(z)dz, (6.10)

Te—a
and p(.) is a log-normal p.d.f.

To select the SNR thresholds, we adopt an ad-hoc approach. This approach
places a constraint on the thresholds by restricting the resulting BER values to
belong to the set .4 = {0,0.01,0.03,0.05,0.1,0.15}. This reduces the number of
distinct BER’s and therefore, the number of required simulations. The thresholds
are initially placed so as to get K equiprobable intervals, P, = %, Vk. Ife; ¢ A,

T is adjusted until ¢; € A. Changing 7 will affect ¢;. If the new value of e
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does not belong to A, T5 is adjusted until ¢; € A, and so on. Note that in this
process, some of the intervals may be merged in order to achieve the constraint
on the BER values. Therefore, the final number of states might be less than K.

The resulting FSC models for log-normal fading channels with average re-

ceived SNR’s equal to 10 and 15 dB are tabulated in Table 6.1.

6.4 Simulation Results

In this section, we consider the class of TSVQ’s [Ger92] as the source coder
and the class of rate-compatible punctured convolutional (RCPC) codes [Hag88]
as the channel coder. Although our scheme works for any class of source and
channel coders, we choose TSVQ and RCPC codes in this section due to the
fact that changing their rates is very simple. So, not only does this example
show the usefulness of our proposed rate allocation scheme, but also it provides
a practical encoding system which is easily implementable.

First, let us investigate the accuracy of the proposed equivalent channel model
in estimating D.(r.) using (6.6). We use the RCPC code in Table I of [Hag88]
and a 10-stage TSVQ with dimension 4 designed for a zero-mean, unit-variance
memoryless Gaussian source. For each stage of the TSVQ), the end-to-end dis-
tortion of the best (r,7.) pair for a memoryless BSC with € = 0.05 is shown in
Figure 6.4. The channel transmission rate r; = 2.5 bits per sample. As it is clear
from Figure 6.4, the simulation- and model-based results coincide for the first 5
stages. In other cases, the estimated distortion is not identical to the distortion
computed by simulation; however, the minimum distortion point of the two sets

of results coincide and therefore the model is adequate for choosing the optimal
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(rs,7.) pair. Similar results are obtained for ¢ = 0.01, 0.03, 0.1, and 0.15 and
for other TSVQ’s and transmission rates. In all cases investigated, the model
selects the optimal (7, 7.) pair.

Table 6.1 shows the different FSC models representing log-normal fading
channels. The FSC’s for the Rayleigh channel were very similar to those for the
log-normal channels and therefore we chose to present results for the latter case
only. This is also the most relevant case for the problem at hand since Rayleigh
fading is usually faster than log-normal and does not lend itself easily to adap-
tive transmission. For each case in Table 6.1, we investigate the performance
of the system for memoryless Gaussian sources as well as Gauss-Markov sources
with correlation coefficient p = 0.9. We consider different dimensions for the
TSVQ and different transmission rates for the channel as summarized in Tables
6.2-6.5. In obtaining the results for System I, the performance of the system
corresponding to each (g, r.) pair is obtained by simulation for each state of the
channel and the system resulting in minimum distortion is identified by consid-
ering all possible cases. System II characterizes the system in which the optimal
(rs,T¢) pair is obtained from our model for each state of the channel. The results
reported in these tables for System II are also SNR simulation results. In all
investigated cases, the model picks the best (r;,7.) pair and therefore provides
the same performance as the optimal performance (System I). System III re-
ports the best simulation results attainable using a non-adaptive rate allocation.
Using adaptation provides up to 1.9 dB for the memoryless Gaussian source and
up to 4.7 dB for the Gauss-Markov source. A higher transmission rate results
in a higher “adaptation gain.” The adaptation gain increases as the SNR of the

channel decreases. So, adaptation is more useful for channels with higher band-
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Figure 6.1: System Block Diagram.

width and lower SNR. We also report theoretical bounds on the performance of

a system with no complexity or delay constraints in Tables 6.2-6.5.
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Figure 6.2: Gilbert Channel Model.

Table 6.1: FSC Models Representing Log-Normal Fading Channels.

Ref! Fading Channel [State ProbState BER]

0.238 0.1
1 SNR=10 dB, 2 state

0.762 0.0

0.133 0.15

2 SNR=10 dB, 3 states 0.129 0.03

0.738 0.00

0.237 0.03
3 SNR=15 dB, 2 states

0.763 0.00

0.064 0.10

4 SNR=15 dB, 3 states 0.072 0.01

0.864 0.00
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Table 6.2: Simulation Results (SNR in dB) for Channel 1 in Table 6.1.

Memoryless Gaussian Source

Dim|Rate| I | II | III [ p:D(RC)D(RC)

8 11.25| 3.81 | 3.81 |3.22 6.39 6.69

4 12.00] 6.03 | 6.03 |5.11 9.90 10.70

4 12.50| 7.49 | 7.49 |5.60 12.10 13.37

Gauss-Markov Source (p = 0.9)

Dim|Rate| I | II | III [ p;D(RC;)\D(RC)

8 [1.25] 9.65 | 9.65 |6.59 13.57 13.90

4 12.00|111.13|11.13|7.63 17.12 17.91

4 12.50)112.80(12.80|8.34 19.32 20.58

Table 6.3: Simulation Results (SNR in dB) for Channel 2 in Table 6.1.

Memoryless Gaussian Source

Dim|Rate| I | I | III [, p:D(RC;)\D(RC)

8 [1.25] 3.85 | 3.85 |3.34 6.38 6.72

4 12.00] 6.13 | 6.13 |5.24 9.79 10.76

4 1250 7.41 | 7.41 |5.78 11.85 13.45

Gauss-Markov Source (p = 0.9)

Dim(Rate| I IT | III [ p; D(RC)D(RC)

8 |1.25] 9.56 | 9.56 |6.62 13.33 13.94

4 12.00(11.32|11.32|7.22 17.00 17.98

4 12.50(12.30|12.30|7.63 19.06 20.67
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Table 6.4: Simulation Results (SNR in dB) for Channel 3 in Table 6.1.

Memoryless Gaussian Source

Dim|Rate| 1 | II | III [, p:D(RC;)\D(RC)

8 [1.25] 4.34 | 4.34 | 4.34 7.13 7.18

4 12.00) 7.38 | 7.38 | 7.31 11.36 11.49

4 (2.50| 9.04 | 9.04 | 8.52 14.16 14.36

Gauss-Markov Source (p = 0.9)

Dim[Rate| I | II | III [ p;D(RC;)\D(RC)

8 11.25[10.90(10.90| 9.56 14.34 14.39

4 [2.00)12.74(12.74|10.95 18.57 18.70

4 12.50]14.7214.72|11.50 21.37 21.57

Table 6.5: Simulation Results (SNR in dB) for Channel 4 in Table 6.1.

Memoryless Gaussian Source

Dim|Rate| I | II | I [5;p:D(RC;)\D(RC)

8 |1.25] 4.65 | 4.65 | 4.45 7.15 7.26

4 12.00f 7.88 | 7.88 | 7.48 11.29 11.61

4 12501 9.79 | 9.79 | 8.80 13.96 14.51

Gauss-Markov Source (p = 0.9)

Dim|Rate| 1 | I | II [, p:D(RC;)\D(RC)

8 11.25111.09(11.09| 9.65 14.35 14.46

4 12.00(13.23|13.23|11.00 18.50 18.82

4 12.50(15.14}15.14|11.70 21.18 21.72
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Chapter 7

Channel-Matched Hierarchical
Table—Lookup Vector

Quantization for Finite—State

Channels

7.1 Introduction

Source coding applications which involve transmission over noisy channels, have
been the main motivation for studying the sensitivity of the V(Q to channel
noise. These studies have led to the development of techniques for making a VQ
robust with respect to channel noise, either by an appropriate binary codeword
assignment, [Far90, Zeg90] or by a complete redesign of the VQ partition and
codebook, resulting in the so-called channel-optimized vector quantizer (COVQ)

[Kum84, Far91].
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In this chapter, we consider an encoding system which borrows ideas from
channel-optimized vector quantization and hierarchical table-lookup vector quan-
tization. Specifically, we study the performance of the HTVQ over noisy chan-
nels and propose a channel-matched HTVQ (CM-HTVQ) which simultaneously
provides a low-complexity encoding (table-lookup encoding and decoding) and
robustness against channel noise. For this scheme, we present performance re-
sults for a memoryless Gaussian source, a Gauss-Markov source, and still images
over a memoryless binary symmetric channel. Further, we develop adaptive ex-
tensions of the CM-HTV(Q for wireless communication applications where the
transmission medium is modeled by a finite-state channel.

Section 7.2 provides the design procedure for the CM-HTVQ for a discrete
memoryless channel and presents simulation results. In Section 7.3, two adaptive
versions of the CM-HTVQ system are developed for finite-state channels. In the
first version, it is assumed that both the decoder and encoder have access to
the channel state; the second version assumes that the channel state is available
only at the decoder. Section 7.4 studies the effects of channel mismatch on
the performance of CM-HTVQ’s. In Section 7.5, a comparison between the
proposed CM-HTV(Q’s and a jointly-optimized tandem source-channel coding
scheme is presented. Section 7.6 focuses on the applications of lookup tables for
transcoding. In this section, an example motivated by multicasting applications
over a heterogeneous network is used to illustrate the use of lookup tables for

transcoding.
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7.2 Table-Lookup Vector Quantization for a Dis-

crete Memoryless Channel

7.2.1 Channel-Optimized VQ

The basic idea behind channel-optimized vector quantization is to incorporate
the effect of transmission noise in the design of the quantizer. In these schemes
the encoder and decoder are designed so that the end-to-end average distor-
tion after encoding, transmission over the channel, and decoding is minimized
[Kum84, Far91]. The optimization is done for a given source, a given discrete
memoryless noisy channel, a fixed dimension m, and a fixed codebook size M.
Let us denote the i** encoding cell and codevector by S; and c;, respectively.
Then, it is straightforward to show that for the squared-error distortion measure,
the design algorithm for the channel-optimized vector quantizer (COVQ) is a
modified generalized Lloyd algorithm [Lin80], with the following expressions for
the optimal partition, P = {Sy, S1,...,Sm-1}, and the optimal codebook C =

{co,€1,...,Cpm_1}, [Far9l]:

S; = {x: Z P(ili) || x - ¢ [2< z PGID I x—c; |5 I}, (7.1)

and
Sico P(5li) Js, xpx(x)dx
Ci = SM=1 b/, )
Yico P(jl3) fs, px(x)dx
where P(j|i) denotes the probability that j is received given that 7 is transmitted,

(7.2)

px(x) is the m-fold probability density function (p.d.f.) of the source, and 4,5 €
{0,1,---, M — 1}. The design algorithm is based on an iterative application of

Equations (7.1) and (7.2).
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When applied to the noisy channel it is designed for, a COVQ performs
better than a VQ (designed for a noiseless channel) [Far91]. The performance
improvement depends on the encoding rate, the level of noise in the channel,
and the statistics of the source. We will have more to say on this later in this
section.

Like an ordinary VQ, a COVQ suffers from a high encoding complexity.
The encoding complexity (number of additions and multiplications) of a COVQ
is proportional to the number of non-empty encoding cells [Far91]. We now
proceed to describe a COVQ-type scheme in which the hierarchical table-lookup
structure of HTVQ is used to reduce the encoding complexity. First, we consider

the case of a discrete memoryless channel with known transition probabilities.

7.2.2 Channel-Matched HTVQ

To design an N-stage HTVQ for a noisy channel, only the lookup table of the
last (V") stage and the codebook at the decoder need to be modified. The role
of the first N — 1 stages of an HTVQ is to provide the best pair of addresses
(a good approximation of the input vector) to the N stage and therefore the
design procedure for these stages remains unchanged. The last stage, which
describes the actual encoder partition, must be adapted to the characteristics
of the channel. We therefore propose an HTVQ-like quantizer in which the first
N — 1 stages are exactly the same as those in the HTVQ described in [Cha85],
and the last stage is based on a COVQ with partition P* = {Sg, ST, ..., Sk 1}
and codebook C* = {cf,c},...,ci_;}- Each pair of indices at the output of the
(N — 1) stage, say (i1,1%2), corresponds to an m-dimensional vector xy_1 (i1, %3)

— an approximation to the m-dimensional vector x at the input of the first stage.
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The lookup table of the N** stage (Table N) is constructed in such a way that
each possible pair of indices (41,4) at the output of the (N — 1)** stage (input
of Table N), corresponds to an index ¢ at the output of the N* stage such that

xy-1(i1,%2) € 57, ie.,

M-
Z (513) Il xv—1(in, i2) — €5 |I°< Z P11) || xy-1(in,52) — €5 |I?, VI (7.3)

We refer to this structure as the Channel-Matched HTVQ (CM-HTVQ). Note
that the resulting encoder is not optimal since the design of the intermediate
stages, even for a noiseless channel, is not optimal [Cha85] — hence the use of

the term “channel-matched” instead of “channel-optimized.”

7.2.3 Results and Comparisons

We now present simulation results on the performance of VQ, COVQ, HTVQ,
and CM-HTVQ over a memoryless BSC with probability of error € (P(j|7) =
Mid) (1 — €)lea2M—h(i3)  where h(i, j) = Hamming distance between i and j).
Tables 7.1 and 7.2 summarize the SNR performance of VQ, COVQ, HTVQ,
and CM-HTVQ for a memoryless Gaussian source and a Gauss-Markov source,
respectively. Both sources have zero mean and unit variance; the Gauss-Markov
source has a correlation coeflicient p = 0.9. Likewise, the PSNR. performance
results for the 512 x 512 monochrome Lenna are tabulated in Table 7.3. The
Gaussian and Gauss-Markov sources consist of 1,200,000 samples from a memo-
ryless Gaussian and a Gauss-Markov source quantized using an 8-bit Lloyd-Max
scalar quantizer, respectively. The quantizers for still images are designed using

a training sequence which consists of five images from the USC database (Cou-
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ple, Crowd, Man, Womanl, and Woman2) and the PSNR results are obtained
by averaging the mean squared error over 10 runs of channel simulation. Sim-
ulated annealing is used to assign binary codewords [Far90] to the codevectors
of VQ and HTVQ in all cases. This provides some degree of robustness against
channel noise [Far90], thus making the comparison between different schemes
meaningful. For visual examination, a graphical presentation of the results in
Table 7.3 at rate 1 bit/sample is provided in Figure 7.1.

It is clear from the tables that, a CM-HTVQ - like a COVQ - exhibits
some robustness against transmission noise (compared with HTVQ and VQ).
A very interesting observation is that the difference between the performance
of COVQ and CM-HTVQ is less than the gap between VQ and HTVQ for a
noiseless channel (¢ = 0.0). The gap shrinks as the channel becomes noisier.
This fact can be seen more easily in Figure 7.1. Notice that for large values of
€, the COVQ and CM-HTVQ have practically the same performance. Thus, for
a memoryless BSC, not only does CM-HTVQ provide a low-complexity table-
lookup encoding, but also it achieves almost the same performance as COVQ.
An intuitive explanation for this phenomenon follows.

Let us first isolate what is responsible for the loss in performance of an HTVQ
compared to a VQ of the same rate and dimension. To this end, let us divide the
process of HT'VQ encoding into two steps: The quantization of the first N — 1
stages and that of the last stage. The first step provides an approximation of
the input vector to the last stage; the second step quantizes this approximate
vector. Note that the HTVQ codebook is identical to the codebook of the VQ
used for the design of the last stage. Consequently, the only difference between

an HTVQ and a full-searched VQ (which is also used for the last stage of the
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HTVQ) is the encoder partition. If the HTVQ encoder could implement an
optimal nearest neighbor rule, it would give rise to the same partition as that
of the VQ encoder and, as a result, a performance identical to that of the VQ.
Unfortunately, the HTVQ encoder implements a nearest neighbor rule on the
output of the (N —1)*" stage, not on the input vector, and therefore its encoding
cells are not optimal (they only approximate the encoding cells of a full-searched
VQ). This means that, due to this approximation error, some input vectors are
suboptimally encoded — hence, the suboptimal performance of the HTVQ.

It is shown in [Far91] that the number of encoding regions in a COVQ is
less than that of a VQ operating at the same rate (some of the COVQ encoding
regions are empty). Since there are fewer encoding regions in a COVQ compared
with a VQ, in general, the COVQ encoding regions are larger and, therefore, the
effect of the approximation error of encoding cells is less noticeable in a CM-
HTVQ. The noisier is the channel, the smaller will be the number of COVQ
encoding regions and the less pronounced will be the suboptimality of CM-
HTVQ, an observation which is corroborated by our simulation results in Tables

7.1, 7.2, and 7.3.

7.3 VQ Design for Finite-State Channels

In this section, we extend the COVQ and CM-HTVQ results to FSC’s. We
consider FSC’s in which there is a memoryless BSC associated with each state
and a Markov chain governs the transition between the states [Gil60, ElI63,
Mus89]. Such an FSC is an appropriate model for the channel in many wireless

communication scenarios [Wan95a].
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In what follows, we propose two adaptive schemes to encode a source for
transmission over an FSC: (i) A system in which the channel state information
(CSI) is available at the decoder and encoder and (ii) a system in which the CSI

is only available at the decoder.

7.3.1 CSI Available at the Decoder and Encoder

Here, we assume that the state of the FSC is available both in the receiver and
transmitter. Since in practice the state of the channel is estimated in the receiver
(based on the received signal power), this assumption is hinged on the availability
of a feedback channel which can be used to send the estimated channel state back
to the transmitter. In addition, this assumption is only realistic in situations
where the variations in the fade depth are much slower than the round trip
transmission time.

Assuming a K-state FSC, our adaptive coding system consists of a bank
of K encoder-decoder pairs, one for each channel state. The encoder-decoder
pairs may be COVQ’s (full-searched encoding) or CM-HTVQ’s (table-lookup
encoding). In either case, for each state, the COVQ or CM-HTVQ encoder-
decoder pair is designed based on the BER of the BSC associated with that
state. To encode each input vector, the appropriate encoder is used based on
the available CSI. Since the receiver has access to the CSI, the received codeword
is decoded using the corresponding decoder. For ease of referencing, we call this
encoding scheme a fully-adaptive (adaptive at both ends) system. We use
the acronym FA-COVQ for a fully-adaptive system in which a COVQ is the
basic encoding unit. Similarly, we use the acronym FA-CM-HTVQ for a fully-

adaptive system in which a CM-HTVQ is the basic encoding unit. A useful set of
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simulation results for these fully-adaptive coding systems along with appropriate

comparisons with other schemes are presented in Section 7.3.3.

7.3.2 CSI Available Only at the Decoder

In this section, we maintain the assumption that the channel is an FSC but focus
on the case that the CSI is only available at the decoder. This corresponds to
the case where the feedback channel is not available or when the variations of
the fade depth are too fast. The resulting coding system has a fixed encoder
and an adaptive decoder. We refer to such a scheme as a decoder-adaptive
system.

In what follows, we consider a decoder-adaptive coding system in which the
basic coding unit is a COVQ (DA-COVQ). This is a generalization of the scalar
case studied by Wang and Moayeri [Wan90]. Then, we extend these results to a
CM-HTVQ based decoder-adaptive system (DA-CM-HTVQ).

A. DA-COVQ
Let us consider an m-dimensional VQ with a codebook size M and an FSC
with K states, where the probability of being in state k is denoted by P, k =
1,---, K. We assume the CSI is only available at the decoder and during the
transmission of a codeword the state does not change. Using a single encoder
and K sets of codevectors at the decoder, the end-to-end average squared-error
distortion, DD, can be expressed as

D=3 P(ili, )P [ px(x) || x - ci | dx, (7.4)

4,5,k :

where P(ji, k), 4,5 € {0,1,---, M —1}, denotes the probability that j is received

given that ¢ is transmitted and the channel is in state k, px (x) is the m-fold p.d.f.
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of the source, S; is the encoding region corresponding to codeword %, and c, is
the reconstruction vector associated with the received index 7 when the channel
is in state k. The fixed encoder and the K decoders can be designed using a

generalized Lloyd algorithm consisting of two steps:

e Computation of the generalized centroid
For each received index, j, and CSI, &k, we wish to choose the best code-
vector, c;x, when the encoding regions, S;’s, are fixed. It can be shown

that the optimal codevectors are given by

- > P(jli, k) [s, xpx(x)dx
k= 5 PGl k) s, px(x)dx

(7.5)

e Computation of the generalized nearest neighbor
For each input vector, x, we wish to select the codeword ¢ that minimizes
the distortion for a fixed set of codevectors, c;;’s. It can be shown that

the optimal encoding region corresponding to codeword 7 is given by

Si={x:> P(li, k)P | x =i IP< D Pl k)P || x — cjp [|% V1 # 4}
J.k J.k
(7.6)

Iterating between the above two steps results in reducing the end-to-end average
distortion. The iteration is terminated when the relative change in D in two
successive steps of iteration is less than a predefined small number.

Encoding an m-dimensional vector, x, corresponds to finding the codeword ¢
such that x € S;. To simplify the process of encoding, let us define S; = M;%;Sy,

where
S, = {x : 22j,k[P(j|’L', k‘) - P(]|l, IC)]Pk <X,Cjr >2>

S5ulPUli, k) — PGl k)P || s |12} (7.7)
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Also, define

c; = zij(ju, k) PxCj k, (7.8)
and ’
@ = S PGl KB | e (7.9)
Then, it can be shown that ’
Su={x:2<x,¢,—¢c;>>a; — oy} (7.10)

Therefore, by precomputing c¢; and «;, we can render the encoding process iden-
tical to that of a COVQ. There are MK codevectors, c;x’s, at the decoder.
To reduce the memory requirements at the decoder, we can use the following

formulas to compute the c;;’s instead of storing them. First, define

_ Js, xpx(x)dx
C; = ——fsi PxX)dx (7.11)
and
pi = /S px(x)dx. (7.12)

Then, assuming that C;’s and p;’s are precomputed and stored at the decoder,

we can compute c;; using the following formula:

Cor = xi P(jlé, k)piCi
T PGl k)ps

(7.13)

B. DA-CM-HTVQ

It is straightforward to extend the above design procedure to an encoder which
uses only lookup tables. Such a system consists of NV tables at the encoder (one
table per stage) and K decoding tables at the decoder (one per channel state).
The design of the first N —1 stages of an N-stage DA-CM-HTVQ encoder is the
same as that of an N-stage HTVQ. The lookup table of the last stage is based
on the DA-COVQ proposed before.
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7.3.3 Simulation Results

In this section, we investigate the performance of different coding systems when
used over an FSC. To study the relative merits of using the CSI in the design of
the coding system, we consider four different schemes: (i) a fully-adaptive sys-
tem which uses the CSI to adapt both the decoder and encoder, (ii) a decoder-
adaptive system which uses the CSI only to adapt the decoder, (iii) a non-
adaptive system in which the channel is assumed to be a binary symmetric
channel with a BER equal to the statistical average of the BER’s of the con-
stituent BSC’s of the FSC, and (iv) a non-adaptive system designed for a noise-
less channel (simulated annealing used for binary codeword assignment). These
four systems are illustrated in Figure 7.2. For the first three schemes, we con-
sider both the COVQ and CM-HTVQ as the basic coding unit. The COVQ
and CM-HTVQ versions of the third scheme are referred to as NA-COVQ and
NA-CM-HTVQ), respectively. Finally, for the forth scheme designed based on a
noiseless channel, we consider both the VQ and HTVQ versions.

We present simulation results for the FSC’s summarized in Table 6.1 and for
each of the above-mentioned systems. Simulation results for a zero-mean, unit-
variance memoryless Gaussian source (8-bit Lloyd-Max scalar quantized), a zero-
mean, unit-variance Gauss-Markov source with correlation coefficient p = 0.9,
(8-bit Lloyd-Max scalar quantized), and the 512 x 512 Lenna are reported in
Tables 7.4, 7.5, and 7.6, respectively. A few important observations are in order.

As expected, the performance of the decoder-adaptive system is in between
those of fully-adaptive and non-adaptive systems. In all cases, channel-matched
quantizers outperform quantizers designed for a noiseless channel by a large

margin. As an example, consider the PSNR results for coding Lenna at rate 1
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bit/pixel over FSC 1 (Table 7.6). There is a 7 dB difference between the VQ
designed based on a noiseless channel and the FA-COVQ system. Of this 7 dB,
about 5.4 dB is picked up by the NA-COVQ system and an additional 0.6 dB
by the DA-COVQ. Neither of these systems require a feedback channel. Also,
the systems based on the CM-HTVQ result in a performance loss in the range
0.05-0.96 dB compared to their COVQ-based counterparts; the gap is smaller
for higher bit rates and noisier channels. Finally, we observe that increasing
the number of states in the FSC model results in improving the performance,
albeit at the cost of an increase in memory requirement at the decoder in the
decoder-adaptive systems and at the encoder and decoder in the fully-adaptive

systems.

7.4 Channel Mismatch Issues

Since the design of CM-HTVQ and its adaptive extensions requires the knowl-
edge of the exact statistics of the channel, an important question that arises is
the extent of sensitivity of the CM-HTV(Q performance to channel mismatch.
Additionally, in many real-world applications, the exact value of the channel
parameter(s), (e.g., BER) is not known. Rather, it is known to belong to a
certain range. A related question in such situations is the appropriate value of
the channel parameter for which the encoding system should be designed. In
this section, we attempt to shed some light on these issues.

For a Gauss-Markov source, Table 7.7 summarizes SN R(eg, €,), the SNR (in
dB) performance of a CM-HTVQ designed for a BSC with BER ¢4, but applied
to a BSC with BER ¢,. The mismatch loss is SNR(¢,, €,) — SNR(€g,€,). The
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mismatch loss for different combinations of €¢; and ¢, can be inferred from the
figures in Table 7.7. It is evident from the results in this table that for a given
|ea — €4, the mismatch loss is larger when ¢, < €,. Therefore, in situations where
the channel BER is not known precisely but is known to be in a certain range,
a more robust CM-HTVQ is obtained if the higher BER in the range is used for
the design.

For finite-state channels, it is much more difficult to assess the sensitivity of
the coding system to channel mismatch, simply because there are many more
parameters which could lead to mismatch (2K parameters for a K-state FSC:
K state BER’s and K state probabilities). One possibility would be to assess
the loss when the average received SNR of the fading channel is different from
the average SNR of the channel for which the encoding system was designed.
Then, the mismatch can be described in terms of one parameter only: The
average received SNR. This problem is tightly connected to the method used
for deriving the FSC parameters from a given fading channel and is beyond the
scope of this dissertation.

On the other hand, one important issue for coding systems operating over
fading channels is the “transient” behavior of the system when the channel goes
into a deep fade and stays there for awhile. In other words, the performance
of the encoding system designed for a given FSC but applied to a BSC is also
of interest. Furthermore, if the performance of such a system is computed for
different BSC’s, the performance over any FSC can be computed by calculating
the average performance of the constituent BSC’s.

Figure 7.3 provides the simulation results for FA-) DA-, and NA-CM-HTVQ’s
designed for Channel 4 in Table 6.1 but applied to a BSC with different BER's.
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As can be seen from Figure 7.3, compared with the NA-CM-HTVQ, the DA-
CM-HTVQ is more robust to channel mismatch when the error rate of the BSC
is far from the average error rate of the FSC used for the design. This is due to
the fact that the decoder-adaptive system has some flexibility at the decoder and
when the channel goes into a deep fade, equivalent to high BER’s, it can use the
codebook used for the highest error rate in the FSC model. The NA-CM-HTVQ
does not have such a flexibility.

For brevity, we limited our discussions and results to CM-HTV(Q) based sys-

tems. Similar behavior and trends are expected for COVQ based systems.

7.5 Channel-Matched Quantization vs. Joint
Source-Channel Coding

In this section, for the FSC’s of Table 6.1, we provide comparisons between the
performance of the FA-COV(Q and NA-COVQ and their counterparts designed
based on a jointly-optimized tandem source-channel coding proposed in Chapter
6. The purpose of these comparisons is not to make conclusive statements or
definitive recommendations for one approach versus the other. Rather, they are
intended to provide a feel for the relative merits of adaptation in the two different
approaches to source-channel coding.

The specific tandem system used for our comparisons in this section consists
of a class of VQ’s (with encoding rates R, = {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0})
as the source encoder and an RCPC code [Hag88] as the channel coder. The
RCPC code is based on the codes tabulated in Table I of [Hag88]. This system

slightly differs from the one presented in Chapter 6 in that it uses VQ’s, instead
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of TSVQ’s, for source coding. This makes the comparisons more meaningful as
both the tandem system and the COVQ system are based on full-searched vector
quantization. For completeness, we will also report results for the CM-HTVQ
systems.

Simulation results for a zero-mean, unit-variance memoryless Gaussian source
as well as a zero-mean, unit-variance Gauss-Markov source with correlation co-
efficient p = 0.9 are tabulated in Table 7.8. These results are for the different
FSC’s in Table 6.1 at r, = 2 bits/sample. Three different systems are considered:
(i) the jointly-optimized tandem source-channel code (referred to as Tandem),
(ii) the COVQ, and (iii) the CM-HTVQ. In all three cases, we have considered
both the fully-adaptive and non-adaptive versions. The results for the COVQ
and CM-HTVQ are borrowed from Tables 7.4 and 7.5 and repeated here to
facilitate comparison.

The results for the fully-adaptive tandem system are obtained by choosing
the best (75, 7.) pair for each state of the FSC. These results should be compared
against FA-COVQ and FA-CM-HTVQ. The results for the non-adaptive tandem
system correspond to the case where a fixed (r,7.) pair, resulting in the best
performance, is employed. These results should be compared against those of
the NA-COVQ and NA-CM-HTVQ systems.

First, in all cases considered, the COVQ outperforms the tandem system.
Second, the gap between the performance of FA-COVQ and the adaptive tan-
dem system is less than the gap between their non-adaptive counterparts. This
observation is another indication of the relative robustness of COVQ. The CM-
HTVQ performance, which is close to that of the corresponding COVQ), is, in

all but two cases, superior to the performance of the tandem system. Notice
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that the CM-HTVQ system is simpler than the tandem system as it has a sim-
pler quantization operation (table-lookup search vs. full-search) and no explicit
channel encoding/decoding. Furthermore, in the case the CSI is only available
at the decoder, we may use the decoder-adaptive versions of the COVQ and
CM-HTVQ, to obtain an additional modest improvement over the non-adaptive
versions. For the tandem source-channel code, we do not know of a decoder-

adaptive extension.

7.6 Use of Lookup Tables for Transcoding

Until now we focused attention on the use of lookup tables for simplifying the
encoding operation in vector quantization. In this section, we discuss another
application of lookup tables in transcoding from a high bit rate code to equal or
lower bit rate codes or from a code designed for a given channel to one for another
channel with the same or higher level of noise. This can be accomplished simply
by adding relatively small lookup tables to the node responsible for performing
transcoding.

One important application in which table-lookup transcoding might prove
useful is multicasting in a “heterogeneous” network consisting of channels with
different throughputs and different levels and types of transmission error. To de-
scribe this application, we consider the simple, but instructive, example provided
in Figure 7.4, illustrating a network in which the source output is encoded at 2
bits/sample and transmitted over a noiseless channel to Node 1. At Node 1, the
received bit stream must be sent to Nodes 2 and 3. The channel between Nodes

1 and 2 (Link 1-2) is a memoryless BSC with ¢ = 0.1 operating at a through-
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put of 2 bits/source sample; the channel between Nodes 1 and 3 (Link 1-3) is a
log-normal fading channel, modeled by a 2-state FSC (Channel 1 in Table 6.1),
with a throughput of 1 bit/source sample. Of course, at Node 1, one could de-
code the received bit stream and re-encode it using two different encoders, one
suitably designed for Link 1-2 and one for Link 1-3. This is certainly undesirable
because the decoding and re-encoding at each node amounts to added hardware
(therefore cost) and delay. In what follows, we show that lookup tables similar
to what was used for HTVQ-type encoders considered in the previous sections
offer a powerful, elegant, and simple alternative for transcoding.

To describe table-lookup transcoding, assume that the source is quantized us-
ing a 4-dimensional, 2 bits/sample VQ. Therefore, for each 4-dimensional source
vector, an 8-bit index is received at Node 1. At Node 1, the received bit stream
is transcoded using two different lookup tables — one for Link 1-2 and another
for Link 1-3. We refer to these tables as “transcoding tables.”

Let us first focus on the design of the transcoding table for Link 1-2. A 4-
dimensional, 2 bits/sample COVQ designed for a memoryless BSC with ¢ = 0.1
is used to construct the transcoding table for Link 1-2. The table is constructed
so that a received index (8-bit word), say i, describing an approximation %X to
the source vector, is mapped to a new index, say j, if % is in the COVQ’s j*
encoding cell. Needless to say, the COVQ codebook must be used at Node 2 for
decoding. Note that in this example, the role of the transcoding table for Link
1-2 is to tailor the received bit stream for robust transmission over Link 1-2 and
not to achieve rate reduction. This table has 8 input bits, describing 7, and 8
output bits, describing 7, thus a total of 256 bytes!

Link 1-3 is modeled by a 2-state FSC described by Channel 1 in Table 6.1.
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For transcoding the bit stream received at Node 1 over this link, we consider
two possibilities: (i) The CSI is available at the decoder and encoder (Nodes 3
and 1), leading to a fully-adaptive encoding system, and (ii) the CSI is available
only at the decoder (Node 3), leading to a decoder-adaptive system. Of course,
one could consider a non-adaptive system as well, but this is uninteresting be-
cause its design would be similar to what we described for Link 1-2. For the
fully-adaptive case, two 8-dimensional COVQ’s, each with rate 1 bit/sample,
designed for the two constituent BSC’s of the FSC are used to construct two
transcoding tables, one for each state of the FSC. Each of these tables, takes
two 8-bit indices, corresponding to an approximation of the 8-dimensional source
vector, and produces an 8-bit index, specifying the encoding cell in which this
approximation falls. Therefore, in this case, the size of each transcoding table
is 64 Kbytes. At the decoder there are two codebooks, one associated with each
COVQ. In a similar fashion, for the decoder-adaptive case, an 8-dimensional,
1 bit/sample DA-COVQ designed for the given FSC is used to construct the
transcoding table. In this case, the size of the transcoding table is 64 Kbytes.
Again, in this case, there are two codebooks at the decoder, one associated with
each state of the channel. Note that the transcoding operation for Link 1-3
achieves two purposes: First, it reduces the bit rate by a factor of two (two 8-bit
words get mapped to one 8-bit word); second, it tailors the bit stream received
at Node 1 for transmission over a noisy channel.

In what was described above, all VQ’s and COVQ’s can be replaced by
HTVQ’s and CM-HTVQ’s, leading to a system which uses lookup tables both
for encoding and for transcoding.

Table 7.9 summarizes our simulation results in terms of PSNR at each node
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for multicasting the 512 x 512 Lenna image. Let us be more specific as to what
the columns in this table correspond to. For the first two columns of results
(labeled VQ and COVQ), it is assumed that a 2 bits/pixel VQ is used to encode
and transmit the source to Node 1. The PSNR result at Node 2 in the VQ
column corresponds to the case where the received sequence at Node 1 is directly
delivered to Node 2 (therefore the 20 dB drop in PSNR compared to Node 1).
Likewise, the PSNR result at Node 3 in the V(Q column corresponds to decoding
the received sequence and re-encoding it at 1 bit/pixel (assuming a noiseless
channel). The PSNR result for Node 2 in the COVQ column corresponds to the
case where a transcoding table as described above is used at Node 1 to tailor
the received sequence to the characteristics of Link 1-2. The improvement in
performance (compared with a simple re-directing of the bit stream to Node 2)
achieved with a 256-byte transcoding table is remarkable. For Node 3, there are
two results under the COVQ column, corresponding to the fully-adaptive and
decoder-adaptive cases. In both cases, transcoding tables as described above are
used at Node 1.

The next two columns in Table 7.9, labeled HTVQ and CM-HTVQ), pertain
to cases where an HTVQ is used instead of a VQ to encode and transmit the
source to Node 1. Everything else is the same as before. Figures 7.5-7.9 show
the corresponding reconstructed images at Nodes 2 and 3.

For a moment consider a hypothetical situation where the source is directly
connected to Node 2 through a BSC like the one in Link 1-2. The CM-HTVQ
designed for such a hypothetical case, would be different from the system we
have considered for encoding the source to Node 2 (an HTVQ followed by a

transcoding table at Node 1). However, our simulation results (not included in
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Table 7.1: Simulation Results (SNR in dB) for BSC’s; Memoryless Gaussian

Source.

Rate=0.5 bits/sample, Dimension=16,

e | VQ COVQHTVQ CM-HTVQ

0.00]2.33| 2.33 | 1.18 1.18

0.0171.91} 2.02 | 0.93 1.04

0.03{1.25| 1.67 | 0.49 0.88

0.05|0.74| 1.43 | 0.15 0.77

0.10 -0.12| 1.00 |-0.45 0.55

Rate=1 bit/sample, Dimension=8

e | VQ [COVQHTVQ CM-HTVQ

0.00{4.85| 4.85 | 4.05 4.05

0.013.82| 4.21 | 3.22 3.57

0.03]2.42| 3.59 | 2.02 3.08

0.05(1.45| 3.14 | 1.19 2.72

0.10{0.00| 2.26 |-0.14 1.98

Table 7.9) indicate that the performance loss compared to such a hypothetical
CM-HTVQ is only 0.14 dB. Unlike this case, the fully-adaptive and decoder-
adaptive CM-HTVQ systems which use transcoding tables to send the source to
Node 3 are exactly the same as the FA-CM-HTVQ and DA-CM-HTVQ designed
for the FSC of Link 1-3.
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Table 7.2: Simulation Results (SNR in dB) for BSC’s; Gauss-Markov Source,
p=0.9.

Rate=0.5 bits/sample, Dimension=16
e | VQ COVQHTVQCM-HTVQ

0.00| 8.57 | 8.57 | 7.92 7.92

0.01|6.85| 752 | 6.44 7.04

0.03| 4.80 | 6.64 | 4.49 6.30

0.05| 3.39 | 5.90 | 3.20 9.63

0.10] 1.33 | 453 | 1.19 4.42

Rate=1 bit/sample, Dimension=8

e | VQ COVQHTVQCM-HTVQ

0.00|11.36|11.36 | 10.73 10.73

0.01| 857 | 9.68 | 8.17 9.31

0.03| 5.62 | 8.41 | 5.50 8.13

0.05| 3.93 | 7.50 | 3.83 7.29

0.10f 1.53 | 5.83 | 1.49 5.76
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Table 7.3: Simulation Results (PSNR in dB) for BSC’s; 512 x 512 Lenna.

Rate=0.5 bits/pixel, Dimension=4 x 4

e | VQ COVQHTVQ CM-HTVQ

0.00{30.49|30.49 | 29.69 29.69

0.01|24.05|28.24|23.79 27.79

0.03120.02|26.40 [ 19.94 26.35

0.05|17.99|25.22 | 18.01 2513

0.10]15.27]23.02 | 15.26 22.99

Rate=1 bit/pixel, Dimension=4 x 2

e | VQ COVQHTVQ CM-HTVQ

0.00|32.47|32.47 | 31.79 31.79

0.01]24.1329.48|23.97 29.20

0.0319.90|27.46 | 19.88 27.32

0.05(17.89]26.09 | 17.83 26.00

0.10(15.12|23.40 | 15.06 23.35

125



Table 7.4: Simulation Results (SNR in dB) for FSC’s in Table 6.1; Memoryless

Gaussian Source.

covQ CM-HTVQ
FSCRateDim| FA | DA | NA | Y@ | Fa | DA | NA

HTVQ

1105(16 |1.97]1.87]1.82(1.61(1.02|0.96/0.96| 0.73

11| 8 |4.08[3.88(3.82(3.11(3.46]3.31|3.27| 2.62

1|24 |771(733(7.231542|7.56|7.20|7.10| 5.33

2 105]16199(1.91|1.84|1.64(1.03({0.98|0.97| 0.75

2 |1 | 8 14.09|3.92|3.84(3.21|3.47|3.34|3.28]| 2.71

2| 2| 4 (7.76(738]7.21|5.56|7.61|7.25|7.09| 5.47

3 105116 (216(2.12|2.10]2.04(1.11}1.08]1.08| 1.01

3] 1| 8 [4.51(4.40(4.38/4.13(3.80(3.72|3.70| 3.47

312 |4 |907877|875|7.87|8.85[8.58|8.56| 7.70

4 10516 (2.21(2.18]2.15|2.10([1.13|1.11|1.10| 1.04

4 |1 | 8 (4.58[4.50(|4.44(4.25|/3.85|3.79|3.75| 3.57

412 | 4 (917|8.89|8.78/8.05(8.95|8.69|8.58 | 7.88
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Table 7.5: Simulation Results (SNR in dB) for FSC’s in Table 6.1; Gauss-Markov

Source, p = 0.9.

covQ CM-HTVQ

FSORataDim] FA | DA | NA | @ | FA | DA | Na FTVQ

1105(16] 722 |6.78|6.71 | 5.53 || 6.78 | 6.41 | 6.36 | 5.25

111] 8 930]|854|841|6.57 | 894 | 826 | 8.16 | 6.36

12| 4 (11.73|10.37|10.15] 7.52 || 11.60|10.28 | 10.07 | 7.47

2 (05|16 |7.22|6.74 | 6.68 | 554 || 6.79 | 6.37 | 6.33 | 5.26

2 1|8 1922|849 828|657 || 887 |8.21 | 805 | 6.37

2 | 2| 4 |11.61|10.25{ 9.92 | 7.58 ||11.48]|10.16| 9.84 | 7.53

3105116 (802|773 770 | 728 || 7.47 | 7.24 | 7.19 | 6.81

3|1 | 8 [1042]9.99 | 9.98 | 9.23 || 9.94 | 9.56 | 9.56 | 8.86

3121 4 [13.78(12.82|12.82|11.33/13.56|12.6312.63|11.19

4 105116 | 809 | 7.81 | 7.80 | 7.34 | 7.54|7.29 | 7.29 | 6.87

4 1| 8 [10.60|10.06| 9.98 | 9.33 ||10.08| 9.60 | 9.55 | 8.93

412 | 4 (13.98(12.81(12.72(11.35|/13.75[12.63 12.55|11.22
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Table 7.6: Simulation Results (PSNR in dB) for FSC’s in Table 6.1; 512 x 512

Lenna.

CcovQ CM-HTVQ
FSCRatd Dim. | FA | DA | NA | Y@ || FA | DA | NA

HTVQ

1 10.5(4x4)27.24]26.36|25.79|21.09 || 26.89 | 26.11 | 25.60 | 21.05

1|1 [4x2(28.09(27.17|26.58|21.12|27.87(27.01|26.44|21.04

1] 2 |2x2(29.62)|28.22|27.59{21.16 |1 29.48 | 28.15 | 27.52 | 21.13

2 [0.5(4x4|27.07(26.20|25.55|21.19(26.73|25.97|25.35|21.15

2 |1 |4%x2]27.90|26.90(26.27|21.21 || 27.67|26.75|26.13|21.14

2 | 2 12x2|29.12|27.83(26.86|21.32 |/ 28.99|27.76 | 26.82 | 21.28

3 (0.5(4x4(29.13|28.62|28.50|25.09 || 28.56 | 28.13 | 28.03 | 24.88

3|1 |4x2(30.64]|29.80(29.71|25.45/30.21|29.45|29.41 | 25.32

2 12x2(32.94|31.89(31.75|25.78 || 32.63 | 31.68 | 31.54 | 25.74

I
e
o

4 x4)29.22(28.45(28.11 [ 25.23 || 28.63 | 27.96 | 27.64 | 25.04

=
—

4 x2130.5929.60|29.36|25.63 || 30.16 | 29.25 | 29.03 | 25.45

K
Do

2x2|32.81|31.43(30.97(26.03 || 32.50 | 31.23 | 30.80 | 25.95
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Table 7.7: Performance (SNR in dB) of CM-HTVQ in the Presence of Channel

Mismatch; Gauss-Markov Source, p = 0.9.

Rate=0.5 bits/sample, Dimension=16

Actual ¢ Design € (€g)

(e.) | 0.00 | 0.01 | 0.03 | 0.05 | 0.1

000 | 792 | 7.88 | 7.51 | 7.26 |6.72

001 | 644 | 7.04 | 7.09 | 6.94 |6.50

0.03 | 4.52 | 5.75 | 6.30 | 6.29 | 6.03

005 | 3.24 | 474 | 5.56 | 5.65 |5.98

0.10 | 1.28 | 2.98 | 4.01 | 4.25 | 4.42

Rate=1 bit/sample, Dimension=8

Actual € Design € (€4)

(e2) | 0.00 | 0.01 | 0.03 | 0.05 | 0.1

0.00 }10.73|10.45| 9.86 | 9.44 |8.40

001 | 818 | 9.30 | 9.27 | 9.01 | 8.16

0.03 | 545 | 7.61 | 8.16 | 8.15 | 7.65

0.05 | 3.82 | 6.32 | 7.12 | 7.30 | 7.14

0.10 | 1.48 | 4.08 | 5.04 | 5.38 | 5.75
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Table 7.8: Performance (SNR in dB) of Tandem Source-Channel Coding,
COVQ, and CM-HTVQ for FSC’s of Table 6.1; Dimension=4; r; = 2

bits/sample.

Memoryless Gaussian Source

Fully-Adaptive Non-Adaptive

FSCTandemCOVQCM-HTVQTandemCOVQCM-HTVQ

1| 705 | 7.71 7.56 5.48 | 7.23 7.10

2| 697 | 7.76 7.61 5.64 | 7.21 7.09

3| 827 |9.07 8.85 793 | 8.75 8.56

4 | 880 | 9.17 8.95 8.10 | 8.78 8.58

Gauss-Markov Source (p = 0.9)

Fully-Adaptive Non-Adaptive

F'SCTandemCOVQCM-HTVQTandemCOVQCM-HTVQ

1| 1133 |11.73| 11.60 7.63 |10.15| 10.07

2 | 11.72 |11.61 | 11.48 7.51 | 9.92 9.84

3 | 13.57 |13.78| 13.56 11.24 112.82| 12.63

4 | 13.69 {13.98} 13.75 11.34 {12.72| 12.55
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Table 7.9: Simulation Results (PSNR in dB) for the Multicasting Example of

Figure 7.5; 512 x 512 Lenna.

Node VQ COVQ |HTVQ CM-HTVQ
1 ]35.72 35.72 35.13 35.13

2 [15.04 24.23 15.04 24.14

FA | DA FA | DA

3 |21.11(27.90(27.03 | 21.01|27.87|27.01

35.00 M va

E cova

PSNR (dB)

HTVQ

BER CM-HTVQ

Figure 7.1: Simulation Results for a Binary Symmetric Channel with Different

BER’s; 512 x 512 Lenna; r = 0.5 bits/pixel; Dimension=4 x 4.
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Figure 7.2: Channel-Matched Quantizers for Finite-State Channels.
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Figure 7.3: PSNR Performance of FA-CM-HTVQ, DA-CM-HTVQ, and NA-CM-

HTVQ When Each System Is Designed for Channel 4 of Table 6.1 and Applied

to a BSC; 512 x 512 Lenna; r = 0.5 bits/pixel.
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Figure 7.4: Multicasting Example.
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Figure 7.5: Reconstructed Image for the Multicasting Example of Figure
Node 2 (HTVQ); 512 x 512 Lenna.
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Figure 7.6: Reconstructed Image for the Multicasting Example of Figure 7.5;
Node 2 (CM-HTVQ); 512 x 512 Lenna.
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Figure 7.7: Reconstructed Image for the Multicasting Example of Figure 7.5;
Node 3 (HTVQ); 512 x 512 Lenna.
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Figure 7.8: Reconstructed Image for the Multicasting Example of Figure 7.5;
Node 3 (FA-CM-HTVQ); 512 x 512 Lenna.
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Figure 7.9: Reconstructed Image for the Multicasting Example of Figure 7.5;
Node 3 (DA-CM-HTVQ); 512 x 512 Lenna.
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Chapter 8

Conclusions

In this dissertation, we have studied the problem of image compression for dif-
ferent applications. In addition to proposing new image coding systems, we have
considered different design constraints such as complexity and scalability. We
have shown that different applications require different solutions. Some required
properties of the system are so important that affect the whole design proce-
dure. For example, designing an image coding system for noisy channels is a
new challenge requiring novel strategies.

In Chapter 3, a new scheme for classifying image blocks based on their spec-
tral content has been introduced. A VQ with an appropriate distortion mea-
sure has been designed to split the spectral space into a prespecified number
of classes. It is shown that not only is spectral classification less complex than
gain-based classification, but also it outperforms gain-based classification in an
adaptive DWT coding system. The resulting DWT-based system, to the best of
our knowledge, provides one of the best available rate-distortion performances in

the literature. We have also introduced a table-lookup implementation and a 2-D
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version of spectral classification. Different versions of the image coding system
are proposed which provide a tradeoff between complexity and performance.

In Chapter 4, we have developed a scalable image coding system using DWT,
classification, and MS-PTSVQ. We have shown that due to practical limitations
in designing high rate PTSVQ’s, using MS-PTSVQ results in a performance
improvement. Also, we have investigated the advantages of choosing directional
block sizes.

In Chapter 5, we have proposed a scheme for fast reconstruction of a subband-
decomposed progressively-transmitted signal. Using the proposed approach, we
can update the reconstructed signal after receiving the refinement of each new
coefficient and create a continuously-refined perception of the output without
any extra computational cost (compared to the conventional approach where the
image is reconstructed after receiving a predefined number of bits). In existing
scalable image coding systems [Sha93, Sai96, Tau94] (also the system of Chapter
4), insignificant coefficients remain zero at the decoder for a few steps of the
refinement process. Also, at each step of the refinement, some of the coefficients
remain unchanged. The unrefined coefficients do not add to the computational
complexity of the proposed approach. On the other hand, the complexity of
the conventional reconstruction scheme does not depend on the value of the
coefficients (or refinements). Therefore, the larger is the number of unrefined
coefficients the more significant will be the complexity reduction of the proposed
approach.

In some applications, after receiving a preliminary draft of the signal, the
receiver only needs to upgrade a particular region of interest of the signal. Using

the approach proposed in Chapter 5, the complexity reduction in this case is
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approximately equal to the ratio of the number of samples in the region of
interest area to the number of samples in the entire signal.

In Chapter 6, we have proposed an adaptive rate allocation scheme to op-
timally choose the rates of the source coder and channel coder pair. We have
expressed the end-to-end expected distortion as the sum of the source coder
distortion and the channel distortion and proposed a modified Gilbert noise
channel to model the combination of channel encoder, channel, and channel de-
coder. Based on our new model, we have estimated the channel distortion and
have selected the best (rs,7.) pair to encode and transmit the source. This ap-
proach has provided a framework for adaptive transmission of sources over fading
channels that requires only low-complexity analytical computations, instead of
time-consuming simulations. Simulation results demonstrated the optimality of
the rate allocation scheme and the advantage of the adaptation.

In Chapter 7, we have proposed a CM-HTVQ for a discrete memoryless
channel and shown that it simultaneously provides low encoding complexity and
robustness against transmission noise. The performance gap between the CM-
HTVQ and COVQ is much less than the gap between the HTVQ and VQ. The
gap shrinks as the channel becomes noisier. Additionally, we have developed two
extensions of this work for quantization and transmission over a finite-state chan-
nel: (i) A fully-adaptive system for the case where the channel state information
is available at the decoder and encoder and (ii) a decoder-adaptive version in
which the channel state is known only at the decoder. We have shown that these
adaptive systems utilize the knowledge of the channel state to improve the end-
to-end performance of the system. Furthermore, we have studied the sensitivity

of the CM-HTVQ to channel mismatch. In an interesting, but limited, set of
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comparisons against a carefully-designed tandem source-channel code, we have
shown that the CM-HTVQ systems (both adaptive and non-adaptive versions)
perform close to or better than the tandem system. Finally, we have proposed
the use of lookup tables for transcoding in heterogeneous networks. We have
shown, through an example motivated by an application in multicasting, that
the proposed table-lookup transcoding approach is an elegant alternative to the
expensive and delay-introducing method of transcoding achieved by decoding
and re-encoding.

Future work includes the extension of ideas in Chapters 3-5 to video cod-
ing. Chapters 6 and 7 provide powerful schemes for transmission of memoryless
sources over noisy channels (especially finite-state channels). Preliminary re-
sults show the usefulness of these schemes for transmission of images over noisy
channels. One open problem is the utilization of the source memory to design a

robust and efficient image coding system for transmission over wireless channels.
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