
ABSTRACT

Model-based design has been touted as the most viable design methodology of the

future for the design of embedded hardware/software systems. Due to the large complex-

ity of modern embedded systems, it is more and more error-prone to design systems with-

out having a formal model to support and verify the application at design time. Also,

formal models generally capture broad classes of applications, and thus any innovation on

a modeling technique has the potential to enhance every individual application in the asso-

ciated class. Often, a formal model captures the high-level abstraction of an application,

which is lost in the final implementation, and thus modeling gives an effective platform to

perform high-level design optimizations. Dataflow graphs have been widely used as for-

mal models in the signal processing domain for a long time, and various commercial tools

have adopted dataflow semantics for model-based design methodology.
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In this thesis, we develop a new dataflow meta-modeling technique, called homoge-

neous parameterized dataflow (HPDF). HPDF is a meta-modeling technique in that it can

be applied to a variety of underlying dataflow models of computation to enhance their

expressive power, while maintaining much of the useful structure of the underlying mod-

els. HPDF addresses an important range of applications, especially in the image process-

ing domain. We present various properties and capabilities of HPDF, including the notions

of repetitions vector, valid schedule, derivation of looped schedules, single-rate equivalent

graphs, and HPDF graph transformation methods. We also give three in-depth examples of

complex systems that we have studied to demonstrate the capabilities of HPDF — a ges-

ture recognition application, an image registration application, and a gait-DNA applica-

tion. For hardware implementation, we target our applications onto Xilinx and Altera field

programmable gate arrays (FPGAs), and we present results from the hardware mapping of

the gesture recognition and the image registration application. 

To build a foundation for further broadening the impact of HPDF modeling, we

present initial work on applying cyclo-static dataflow as an intermediate representation for

mapping MATLAB programs into hardware implementations. Because of the compatibil-

ity between cyclo-static dataflow and the HPDF meta-modeling approach, which we dem-

onstrate in Chapter 3 of this thesis, this is an important first step to exploiting HPDF

techniques in the context of MATLAB-to-hardware synthesis. In particular, we focus on

relating cyclo-static dataflow to Compaan process networks, which is a variant of the

Kahn process network model of computation that has been shown to be useful in repre-

senting concurrency in MATLAB programs.



In summary, this thesis develops a useful new meta-modeling approach for imple-

menting an important class of image processing applications, and develops and exten-

sively demonstrates a methodology for efficient hardware implementation from

representations in the proposed new meta-model.
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Chapter 1. Introduction

1.1. Overview

Model-based design is rapidly becoming a popular approach in design environments

for embedded systems due to high level of complexity in these systems. In model-based

design, design representations in terms of formal models of computation (MoC) are used

to capture, analyze, simulate, and in some cases, optimize and implement the targeted

applications. Detailed simulation of the whole system can cut down on costly changes late

in the design phase, which are otherwise not visible at a component level. To overcome

this fundamental problem, engineers are moving toward model-based design environ-

ments that encompass and support all the major phases of system development: design,

simulation, code generation, verification, and implementation, as outlined above. 

There are many model-based design tools available, both commercially and from

academic sources, for embedded systems design — e.g., LabVIEW from National Instru-

ments, Simulink® from Mathworks, and Ptolemy II from U.C. Berkeley [17], to name a

few. However, designing a hardware system through systematic use of a formal model has

only recently been emerging as an area of interest not only to the academic world, but also

to commercial vendors. 

We cite some of the industry efforts made towards model-based hardware code gen-

eration, however this list is not comprehensive. We also present some related work done in

academia in Section 2.2. First, Synplicity — a leading provider in electronic design auto-

mation (EDA) tools, has a model-based hardware design tool named Synplify® DSP,

which is built for digital signal processing (DSP) system designers who target field pro-
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grammable gate arrays (FPGAs) and application specific integrated circuits (ASICs) for

implementation of high-performance DSP designs. Synplify® DSP provides an environ-

ment for specifying a design at the algorithm level in MATLAB®/Simulink®, and map-

ping the algorithm representation into an RTL design without the need for multiple

iterations between the DSP algorithm architect and the RTL hardware designer as in a tra-

ditional design cycle.

LabVIEW FPGA by National Instruments provides a graphical programming envi-

ronment to define the logic in FPGA chips that are embedded across the family of

National Instruments reconfigurable I/O hardware targets. Due to the high level of

abstraction used in this tool, designer can design and implement FPGA-based designs

without the knowledge of low-level hardware description languages.

Xilinx — a leading provider of FPGAs and related software tools, introduced Sys-

tem Generator™ for DSP, which is another effort to build a high-level tool for designing

high-performance DSP systems using FPGAs. The tool provides abstractions that enable

the development of parallel systems with advanced FPGAs, providing system modeling

and automatic code generation from Simulink® and MATLAB®.

Altera, another leading maker of high-performance FPGAs, has a similar graphical

tool for high performance DSP design for FPGAs. This tool, called Altera DSP Builder, is

a block-based tool that interfaces between Quartus® II — which is the synthesis tool for

Altera FPGAs — and MATLAB®/Simulink® tools.

Recently (September 2006), The Mathworks has introduced a new tool called the

Simulink® HDL Coder. It is for system and hardware engineers, letting them adopt model-

based design in their development processes for both hardware and software. The tool
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automatically generates synthesizable hardware description language (HDL) code from its

own Simulink® and Stateflow® software. Simulink HDL Coder can produce target-inde-

pendent Verilog and VHDL code and test benches for implementing and verifying ASICs

and FPGAs and later synthesize for their target platforms. Figure 1.1 shows a snapshot of

the working of HDL coder with a block-based design window in the middle, simulation

results in software on the left, and generated HDL code on the right of the figure.

1.2. Contributions of this Thesis

Our work is similar in spirit to the recent industry trends described in the previous

section. This similarity is in the sense that we have a similar motivation of proposing a

methodology for generating FPGA implementations from high-level, block- and model-

based design environments. However, our work is different in certain respects towards

obtaining that goal. First, we employ dataflow models of computation, which are widely

used in the DSP community, as the general formal modeling approach to capture high-

level abstractions of applications, and we develop a framework through which various

Figure 1.1 Example working of Simulink HDL coder. Figure taken from the Mathworks web-

site.
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dataflow graph transformations can be made with high-performance, hardware synthesis

in view. Second, we develop a specific dataflow modeling approach that targets a

restricted but important class of image processing applications, and using our modeling

approach, we develop methods for systematically exploiting properties in the targeted

applications to streamline the analysis, synthesis, and optimization of hardware imple-

mentations. Thus, this thesis represents a novel convergence of methods involving data-

flow modeling, image processing, and hardware implementation.

In the following sections, we elaborate further on the main contributions of this the-

sis.

1.2.1. Homogeneous Parameterized Dataflow (HPDF)

Static dataflow graphs, such as those based on synchronous dataflow (SDF) [31] or

cyclo-static dataflow (CSDF) [6] principles, have been relatively well-studied in the liter-

ature. However, many modern signal processing applications are dynamic or data-depen-

dent in nature to some extent, and cannot be fully modeled using static dataflow graphs.

We have proposed a new dataflow modeling approach, called homogeneous parameter-

ized dataflow (HPDF), that captures a subset of applications with a restricted form of

dynamic data production and consumption behavior. 

HPDF is a meta-model in that it can be applied to a variety of different underlying

dataflow models of computation, such as synchronous dataflow or cyclo-static dataflow.

When HPDF is applied to an underlying dataflow model, we refer to the underlying model

as the base model to which HPDF is applied, and we say that HPDF is being applied

“over” the base model (e.g., “HPDF over SDF” or “HPDF over CSDF”). The integration

of the HPDF meta model with a base model generally results in a more powerful (more
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expressive) version of the base model that retains much of the intuitive structure and much

of the useful analysis and optimization potential of the base model. 

HPDF is intuitive and well-suited to many image processing applications. HPDF is

similar to SDF in that it imposes significant restrictions on application structure, and has

an inherent simplicity in its core semantics, but captures an important class of applications

despite this simple and restrictive nature. to the These characteristics have contributed sig-

nificantly to the intuitive appeal, general popularity, and utility of SDF, and it is therefore

promising that HPDF exhibits this similarity.

In this thesis, we motivate and develop in detail the HPDF meta-modeling tech-

nique. We then define and explore useful properties of HPDF. To demonstrate the applica-

bility and capabilities of HPDF, we have develop three in-depth case studies of important

image processing applications. These applications include a gait-DNA application for load

carrying event detection [42], a gesture recognition application [55], and a 3-D image reg-

istration application. For all the three applications, we first employ HPDF over SDF, and

then refine our model using HPDF over CSDF so that the meta-modeling aspect of HPDF

can be concretely demonstrated.

1.2.2. Graph Transformation - Node Unfolding

In this thesis, we propose a new dataflow graph transformation — node unfolding.

Node unfolding can be used effectively to explore the design space starting with a data-

flow graph representation of an application when the final implementation is targeted

towards hardware, especially hardware in which area constraints are relevant. Node

unfolding systematically replicates selected nodes in the dataflow graph. 
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We propose an algorithm to transform an input dataflow graph by repeated applica-

tion of node unfolding for high-throughput implementation in hardware. The algorithm

requires initial estimates of execution time and area for each node in the graph, and it

applies maximum cycle mean (MCM) analysis for performance estimation. We also

present a preliminary version of a Verilog code generator for dataflow graphs that can be

used after we arrive at a suitably-transformed graph to generate HDL code.

1.2.3. HPDF to FPGA implementation

In this thesis, we present extensive demonstrations of FPGA implementations that

are derived from HPDF-based representations. Such demonstrations are developed for two

applications. First, we demonstrate the mapping of a gesture recognition application onto

the Xilinx Multimedia and Microblaze board. This board features a Virtex II FPGA that

supports 2 million gates. For the gesture recognition application, we also present an effec-

tive method for exploring trade-offs between different memory layout schemes, and we

present a thorough floating point optimization study for the application. Next we present

an HPDF-based mapping of a 3-D image registration algorithm onto an Altera StratixII

FPGA. In the process, we present a study of performance and area trade-offs across a mul-

titude of design points that correspond to various parallel implementations. These parallel

implementations can be mapped naturally onto an FPGA from the high-level HPDF spec-

ification. We also present a dynamically reconfigurable architecture for the image registra-

tion algorithm, and we present a novel parameterization of such an architecture in terms of

a metric that is based on the percentage of valid voxels (PVV) that are being considered at

a given algorithm iteration. This metric and its utility are developed in detail in Chapter 6.
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1.2.4. Dataflow as an Intermediate Representation for MATLAB Synthesis

Sequential, static affine nested loop programs can be automatically converted to

input-output equivalent Kahn process network (KPN) specifications [28]. The correspon-

dence between these classes of specifications have derived and exploited in depth by the

Compaan project [28]. Such specialized KPNs are also called Compaan process networks

(CPNs). Our studies, which have been developed in collaboration with the Compaan

project team at Leiden University, have shown that CPNs form a special case of the cyclo-

static dataflow graph (CSDF) model [6], but with additional non-dataflow properties that

need to be associated to derive a comprehensive correspondence [14]. 

The dataflow interchange format (DIF) is a standard language for specifying mixed-

grain dataflow models for DSP systems [25]. In this thesis, we extend DIF to capture the

form of cyclo-static dataflow that emerges from CPNs. Both CPN and CSDF are relatively

mature formal models and our preliminary study on their correspondence establishes the

potential to exchange information between the two domains to improve the synthesis of

hardware and software implementations from MATLAB programs. In particular, the cor-

respondence that we developed provides a bridge between the path from MATLAB to

CPNs, that has been developed in the Compaan project [28], with the paths from dataflow

representations to hardware that are developed in efforts such as this thesis.

1.3. Outline of this thesis

The rest of this thesis is structured as follows — Chapter 2 gives background infor-

mation on dataflow, and describes previous related work. Chapter 3 introduces the HPDF

meta-model, proves formal properties in relation to this model, and provides a concrete
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example by modeling a gait-DNA application using the proposed techniques. Chapter 4

introduces a new graph transformation technique named “node unfolding”, its application

to HPDF, use of this technique for design space exploration in high-level synthesis tech-

niques for hardware synthesis from dataflow, and preliminary work developed towards

designing a Verilog code generator for dataflow graphs. Chapter 5 describes a gesture rec-

ognition algorithm, and HPDF modeling and hardware implementation targeting a Xilinx

Virtex II FPGA. Chapter 6 describes an image registration algorithm, its HPDF model,

dataflow graph transformation based on the applied modeling, and FPGA implementation

and comparison of various implementation points for the algorithm. Chapter 7 describes

initial efforts towards integrating the Compaan intermediate representation framework

with dataflow modeling, and develops extensions to the dataflow interchange format

(DIF) [25] that achieve this integration. Chapter 8 gives concluding remarks, summarizes

this thesis, and suggests useful directions for future work.
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Chapter 2. Background and Related Work

In this chapter, we present some background to understand this thesis and also

present some previous work and show their relation to this thesis.

2.1. Dataflow Graphs

In this section, we review background on synchronous dataflow, cyclo-static data-

flow, and parameterized dataflow modeling, and describe various basic definitions related

to signal-processing-oriented dataflow modeling. The concepts reviewed in this section

will be applied later in the thesis in our formal development of HPDF.

2.1.1. Synchronous Dataflow

Synchronous dataflow (SDF) is a restricted form of dataflow in which data produc-

tion and consumption rates of actor ports (inputs and outputs) are restricted to be constant

values that are known at compile time [31]. This restriction enables static scheduling from

SDF representations, and offers strong compile-time predictability properties, and power-

ful optimization techniques, such as joint minimization of program and data memory

requirements [5]. These features come at the expense of limited expressive power, since

SDF cannot model data production rates that vary dynamically or are otherwise unknown

at compile time.

SDF is employed in a variety of widely-used commercial design tools, such as

CoWare SPW, Agilent ADS, and National Instruments LabVIEW. 
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An example of a simple SDF graph is in shown in Figure 2.1. Here, each edge is

annotated with the numbers of tokens that are produced by the source and sink actors of

the edge. For example, actor  produces 3 tokens on edge  every time it is invoked,

and each invocation of  results in 1 token being consumed from the edge . The

description of  is given in Section 2.1.3.

SDF graphs — and signal-processing-oriented dataflow graphs in general — typi-

cally represent computations that are iterated infinitely or for indefinite time (e.g., due to

the absence of apriori bounds on the durations of the input streams). Thus, each actor gen-

erally corresponds to an infinite number of invocations in an execution of the graph.

2.1.2. Cyclo-static dataflow

Cyclo-static dataflow (CSDF) is an extension of SDF where production and con-

sumption rates of actors can vary as long as the variations take the form of periodic

sequences that are known at compile time. Given a CSDF actor , a finite sequence is

associated with the production rate of each output edge, and with the consumption rate of

each input edge. These sequences associated with inputs and outputs of  all have the

same length, and correspond to a single period of the interface (data transfer) behavior of

. The th element of each sequence corresponds to a distinct phase of execution for . 

A B C
2D

3 2 1 1

Figure 2.1 A simple SDF graph.

A A B,( )

C B C,( )

2D

A

A

A i A



11

A simple example of a CSDF graph is presented in Figure 2.2. Each actor input/out-

put is annotated with the associated sequence of production/consumption rates. For exam-

ple, actor  has only one phase, and produces  tokens on edge  every time it

executes. Actor  has two phases, and the amounts of tokens consumed and produced by

successive invocations of  form the periodic patterns , and

, respectively.

2.1.3. Scheduling Concepts

In this section, we review some basic SDF- and CSDF-related scheduling concepts

and notations that are used throughout the rest of the thesis.

Dataflow notation. Given an edge  in a dataflow graph, the source and sink actors

of  are denoted by  and , respectively. Given an SDF edge , the number

of tokens produced on  by each invocation of  is denoted by , and the num-

ber of tokens consumed from  by each invocation of  is denoted by . Given a

CSDF actor , the number of phases associated with  is denoted by . Given a

CSDF edge , the number of tokens produced by  onto  in the th phase of

 is denoted by , and similarly, the number of tokens consumed by 

from  in the th phase of  is defined by . Clearly,  is defined for

, and  is defined for .

Delays and buffer state. In dataflow models for signal processing, edges can have

non-unity delays associated with them. One unit of delay is analogous to the  operator

A B C
2D

(3) (1,1) (1,0) (1)

Figure 2.2 A simple CSDF graph.

A 3 A B,( )

B
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e e( )src e( )snk e

e e( )src p e( )

e e( )snk c e( )

A A φ A( )

e e( )src e i

e( )src P e i,( ) e( )snk

e i e( )snk C e i,( ) P e i,( )

i 1 2 … φ e( )src( ), , ,= C e i,( ) i 1 2 … φ e( )snk( ), , ,=

z
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in signal processing, and can be implemented by placing an initial token on the associated

edge. The buffer state of an SDF graph at a given point in time  is an integer-vector  that

is indexed by the graph edges such that  gives the number of tokens that reside on 

at . Since delays can be implemented as initial tokens, we define the initial buffer state of

a graph to be , where  denotes the delay on edge .

Topology Matrix — The topology matrix (denoted by ) is used to represent the

dataflow characteristics of an SDF graph  [31]. The rows of  are indexed by the edges

in , and the columns are indexed by the actors in . The entries of  are defined by

(2.1)

For example, the topology matrix for the SDF graph in Figure 2.1 can be written as

, (2.2)

where the rows correspond to the edges  and , respectively, and the columns

correspond to the actors , , and , respectively.

The topology matrix for a CSDF graph is defined effectively by replacing  and

 in (2.1) with the sums of  and , respectively, across all relevant

phases. More precisely, the entries of the topology matrix  for a CSDF graph can be

expressed as

t b

b e( ) e

t

b e( ) e( )delay= e( )delay e

Γ

G Γ

G G Γ

Γ e A,( )
p e( )  if A = src(e);

c e( )  ;– if A = snk(e)

0  otherwise;





=

Γ 3 2– 0

0 1 1–
=

A B,( ) B C,( )

A B C

p e( )

c e( ) P e i,( ) C e i,( )
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. (2.3)

Hence, the topology matrix for the CSDF graph in Figure 2.2 is the same as the

topology matrix for the SDF graph in Figure 2.1.

Repetitions vector and valid schedules — The repetitions vector (usually denoted by

) for an SDF graph is a vector of co-prime positive integers that denotes the number of

times that each actor in the graph is executed in a minimal valid schedule for the graph. A

valid schedule  in turn is a finite sequence of actor invocations that fires each actor at-

least once, does not deadlock (i.e., does not attempt to consume data from an empty

buffer), and produces no net change in the buffer state of the graph (i.e., execution of 

returns the graph to its initial buffer state). The repetitions vector, when it exists, can be

determined by solving for the  column vector  in the system of balance equations

defined by 

. (2.4)

In particular, the repetitions vector is defined to be the minimum positive integer

solution to (2.4). It can be shown that such a unique minimum positive integer solution

exists whenever (2.4) has a nontrivial solution [31].

For example, the repetitions vector for the SDF graph in Figure 2.1 is given by

, and . 

An example of a valid schedule for this graph is given by .

Γ
CSDF

e A,( )

P e i,( )

i 1=

φ A( )

∑
 
 
 
 

 if A = src(e)

C e i,( )

i 1=

φ A( )

∑
 
 
 
 

if A = snk(e)–

0 otherwise

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

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


=
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S
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The main practical significance of a valid schedule is that it can be iterated indefi-

nitely to achieve unbounded-duration execution of the given graph with bounded buffer

memory requirements.

For CSDF graph, the concept of a valid schedule is the same as that for an SDF

graph; however, the process of computing the numbers of actor invocations involved in a

valid schedule is slightly more involved. The system of balance equations for a CSDF

graph is given by 

, (2.5)

where  again represents an  column vector.

A solution to the CSDF balance equations, when it exists, gives the number of

“actor periods” for each actor that is involved in an iteration of a valid schedule. Here, an

actor period for actor  corresponds to execution of  successive invocations (phases)

of . The CSDF repetitions vector — which gives the number of actor invocations for

each actor in a valid schedule — is thus obtained from

 for all , (2.6)

where  is the minimum positive integer solution to (2.5).

For example, for the CSDF graph in Figure 2.2, we have ,

, , , and . Furthermore,

the schedule  is a valid schedule for this CSDF graph.

Consistent graph — An SDF graph or CSDF graph is said to be consistent if it has a

valid schedule. Intuitively, consistency in this context means that the balance equations

((2.4) or (2.5)) have a nontrivial solution, and all directed cycles in the graph have enough

delays (initial tokens) to allow for deadlock-free execution [31].

Γ
CSDF

x 0=

x na 1×

A φ A( )

A

qCSDF A( ) τ A( )φ A( )= A

τ

τ A( ) 2=

τ B( ) τ C( ) 3= = qCSDF A( ) 2= qCSDF B( ) 6= qCSDF C( ) 3=

BBABBABBCCC( )
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The graphs in Figure 2.1 and Figure 2.2 are both consistent.

2.1.4. Parameterized Dataflow

Parameterized dataflow [3] is a meta-modeling technique that can be used in con-

junction with any dataflow model of computation that has a well-defined notion of a graph

iteration. For example, in SDF and CSDF graphs, a graph iteration usually corresponds to

execution of a valid schedule. When parameterized dataflow is applied to a dataflow

model of computation , the model  is called the base model, and the resulting inte-

grated model can be viewed as a dynamically reconfigurable augmentation of . Thus,

parameterized dataflow provides for increased expressive power by allowing for run-time

reconfigurability of actor and edge parameters in a certain structured way. 

When parameterized dataflow is applied to SDF as the base model, the resulting

model of computation is called parameterized synchronous dataflow (PSDF). An actor 

in PSDF is characterized by a set of parameters  that control the actor’s

functionality, including possibly its dataflow behavior. Each parameter is either assigned a

value from a set of permissible values or left unspecified. These unspecified parameters

are assigned values at run-time through a disciplined run-time reconfiguration mechanism.

Techniques have been developed to execute PSDF graphs efficiently through carefully

constructed quasi-static schedules [3].

Parameterized dataflow specifications are built up in a modular way in terms of

hierarchical subsystems. Every subsystem is in general composed of three subgraphs,

called the init, subinit and body graphs. New parameter values used during run-time

reconfiguration are generally computed in the init and subinit graphs, and the values are

propagated to the body graph, which represents the computational core of the associated

D D

D

A

params A( )( )



16

parameterized dataflow subsystem. The init graph for a subsystem  is invoked at the

beginning of each invocation of the (hierarchical) parent graph of . In contrast, the sub-

init graph is invoked at the beginning of each invocation of  itself, prior to execution of

the body graph. Intuitively, reconfiguration of a body graph by the corresponding init

graph occurs less frequently but is more flexible compared to reconfiguration by the sub-

init graph [3].

2.1.5. Generic Model for Hierarchical Reconfiguration of Dataflow Graphs

Parameterization is a widely-used method to implement dynamic behavior of a data-

flow graph. But a parameterized actor might also have a predetermined production and

consumption rate. For example, an FIR filter might have its number of taps as a parameter,

which does not affect the production consumption rate. In this thesis, we discuss parame-

ters in the context of actors whose token production and consumption rates are a function

Figure 2.3 PSDF specification of a decimate actor that decimates by a different factor at 

each run (figure from [3]).

H

H

H
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of these parameters. In [38], the authors develop a mathematical model to represent the

reconfiguration of various types of dynamic dataflow graphs. The model allows reconfig-

uration at all levels of hierarchy. A hierarchical reconfiguration model is represented by a

containment tree, which has a finite set of actors in it. Non-leaf nodes are composite actors

and leaf elements are atomic actors. The behavior of a composite actor is given by the

actors that are its direct children. Every actor has its own set of parameters which define

its behavior and there is a one-to-one relation between the parameters and actors. Depen-

dencies among parameters are expressed explicitly through a domain function and its

value is constrained by a constraint function. A dependent parameter must at all times sat-

isfy the constraint function to become consistent. An independent parameter has null in its

domain function. 

The authors introduce specific points in their model called quiescent points, which

are constrained points in the execution model where change of parameter values are per-

mitted. These points occur between firings and an actor cannot communicate or perform

computation at these points. A precedence relation is set that performs partial ordering of

quiescent points of all the actors. At each quiescent point, a set of independent parameters

 is chosen for reconfiguration and all the parameters dependent on  are also reconfig-

ured based on their initial and reconfigured values. Parameters that cannot be reconfigured

or can be changed only at certain quiescent points are declared as constant parameters. A

constant parameter can be forced to remain constant either during one particular execution

of the model or over firings of the associated actor. To statically analyze the reconfigura-

tion of a model, two methodologies have been suggested. Firstly, all the executions of the

model are checked along with all possible reconfigurations and any invalid reconfigura-

Q Q
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tion predicts invalidity of the model. Secondly, the authors suggest a least change context

for every parameter  which is a conservative estimate of the actors affected by . This

helps in easy semantic constraint checking. 

2.2. Related Work 

2.2.1. Hardware from Formal Models

A number of studies have been undertaken in recent years on the design and imple-

mentation of multimedia applications on FPGAs using other formal or systematic

approaches. 

Streams-C [19] developed at the Los Alamos National Laboratory, USA provides

compiler technology that maps high-level, parallel C language descriptions into circuit-

level netlists targeted to FPGAs. To use Streams-C effectively, the programmer needs to

have some application-specific hardware mapping expertise as well as expertise in parallel

programming under the CSP (communicating sequential processes) model of computation

[22]. Streams-C consists of a small number of libraries and intrinsic functions added to a

subset of C that the user must use to derive synthesizable HDL code. 

Handel-C [11] developed at the Oxford University, UK represents another important

effort towards developing a hardware oriented C language. Handel-C is based on a subset

of the ANSI C standard along with extensions that support a synchronous parallel mode of

operation. It supports specification of width of variables, and consequently has strong bit

manipulation capabilities. This language also conforms to the CSP model. A canny edge

detector was designed in hardware in [37] using the Celoxica DK2 IDE tool — which is

the development tool for Handel-C.

p p
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Match [1] or AccelFPGA as it is called now, generates VHDL or Verilog from an

algorithm coded in MATLAB, a programming language that is widely used for prototyp-

ing image and video processing algorithms. AccelFPGA has various compiler directives

that the designer can use to explore the design space for optimized hardware implementa-

tion. Loop unrolling, pipelining, and user-defined memory mapping are examples of

implementation aspects that can be coordinated through AccelFPGA directives. 

Compaan [28] is a another design tool for translating MATLAB programs into HDL

for FPGA implementation. Compaan performs its translation through an intermediate rep-

resentation that is based on the Kahn process network model of computation [27]. Com-

paan can either generate an embedded software code to run on the softcores (for example

PowerPC on Virtex II Pro) or it can generate output in the form of executable Kahn Pro-

cess Networks for another tool named Laura [56]. Laura accepts this specification and

transforms the specification into design implementations described in synthesizable

VHDL.

Rather than adapting a sequential programming language for hardware design, as

the above-mentioned approaches do, our approach is based on concurrency exposed by the

designer in representing the algorithm as a dataflow model. This is a useful approach for

signal processing because the structure of signal processing applications in terms of its

coarse-grain components (e.g., FIR filters, IIR filters, and FFT computations) often trans-

lates intuitively into concurrent specifications based on dataflow principles.

2.2.2. Hardware from SDF

A SDF based digital hardware design for embedded signal processing was

addressed in [54]. Two techniques were presented for architecture generation — one is a
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general resource sharing technique for flexibility, and the other is a mapping of sequenced

groups for compact communication and interconnect. The problem addressed was to find

the minimum-cost hardware to meet the deadline for the time to execute all firings in the

SDF dataflow (for this work, a firing precedence graph was constructed from the schedule

of the SDF on which the hardware mapping was done). After the schedule of the SDF was

generated, each individual firing (execution) of a node  in the graph was associated with

a hardware cost  and execution time  which were estimates from the RTL (register

transfer level) synthesis results of any standard synthesizer. Hence the goal was to mini-

mize  for the schedule when . The two heuristics mentioned in the

work, approach the same problem from the two opposite directions. In one approach, the

authors start with maximum hardware — which is a separate hardware unit for every fir-

ing in the firing precedence graph and then try to cluster firings into shared hardware units

until no more clustering can be done without violating the deadline. Clustering (which

means shared resource allocation) was done based on the following criteria — two actors

having the same firing (identical computation of the same SDF actor without any con-

straints on sequential firings) can be merged to execute on the same hardware; two actors

having similar firings (similar computations, so that much of the execution unit can be the

same hardware and no constraints on sequential firing) can be merged; actors differing

only by a parameter can be merged too. If the inputs of the merged actors are from differ-

ent actors, then a multiplexer is needed and controller logic needs to be added for correct

execution. In the other approach, the whole graph is mapped onto a single hardware unit,

which is capable of performing all the required functionalities — this would result in low-

est area implementation as the standard hardware synthesizers are able to optimize the cir-

j

Cj Tj

Cj∑ Tj Tdeadline<∑
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cuit the best. However, this would act like a uniprocessor with every node firing

sequentially, thus not taking advantage of any parallelism that might be present in the

application. However, there are various design point in between the two extreme imple-

mentations that can be explored using clustering or declustering techniques.

Our approach is different from the approach in [54], in respect that due to inherent

simplicity of HPDF, we try to explore the architecture from the dataflow graph instead of

the firing precedence graph and our approach can handle limited dynamicity in the appli-

cation which the SDF based approach cannot. Also the clustering techniques are orthogo-

nal to our approach and hence can be used to enhance our method of hardware

development.

2.2.3. Image Processing in Hardware

Computer vision algorithms can be divided into three categories depending on the

level of granularity at which they are specified — low level, intermediate level and high

level algorithms. In the late 1980s and early 90s, a lot of work was done on image process-

ing on hardware. Some of it was on homogeneous/heterogeneous architectures specially

suited for image processing, and some of it was on specialized algorithms suited for hard-

ware implementations. The general observation was that single instruction multiple data

(SIMD) machines were good for exploiting fine-grained parallelism and multiple instruc-

tion multiple data (MIMD) machines were suitable for coarse-grained parallelism. In this

section, we mention a few instances of the work done in the hardware architecture for

computer vision domain. A more detailed description of all the architectures and some

others not mentioned here can be found in [16], [40].
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2.2.3.1. MESH Architecture

MESH is a SIMD 2D array architecture (array of processors) for computer vision.

This architecture is suited to perform low and intermediate level vision algorithms. One

major problem with such a major system is fault in final architecture due to fabrication

variabilities. MESH has a fault-tolerant strategy to enhance yield and improve reliability.

MESH has a hardware reconfiguration strategy to eliminate defective processors in com-

bination with data reconfiguration to redistribute the problem over the working proces-

sors. We give an example of a  processing element MESH architecture in Figure 2.4.

2.2.3.2. Hypercube Architecture

A hypercube also describes a SIMD connection. It differs from a MESH connection

in the way connections are made between different processing elements (PEs). A -

dimensional hypercube network connects  processing elements. A hypercube network

connects pairs of processing elements whose indices differ in exactly one bit when

expressed in the binary representation. We represent the hypercube network in Figure 2.5.

Figure 2.4 A 16 processing element (PE) MESH architecture 

where end-around connections are not shown.
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2.2.3.3. NETRA

NETRA is a highly configureable architecture for image understanding. The topol-

ogy of NETRA is recursive and hence easily scalable. It has a tree-type hierarchical archi-

tecture with leaf nodes consisting of small but powerful processor clusters connected by

crossbar switches — the tree has distributing and scheduling processors that perform the

task distribution. Each processor cluster has  to  processing elements with both

shared and distributed memory. Each of the clusters can operate in SIMD mode, MIMD

mode or systolic mode, and each processing element is a general purpose processor with

high-speed floating point capabilities.

2.2.3.4. IUA (Image Understanding Architecture)

IUA is a 3-tier architecture with a dedicated architecture for each level of abstrac-

tion (low level, intermediate level and high level vision algorithms). Main processor lan-

guages were added with extensions to provide several levels of parallelism, each requiring

a unique level of overhead.

Figure 2.5  processor hypercube 

architecture.
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2.2.3.5. Warp

Warp was a medium grain systolic array machine built at Carnegie Melon Univer-

sity (CMU). There are a few versions of this machine — WWWarp consists of a linear

array of  cells, each giving  MFLOPS with a total of  MFLOPS; PCWarp is an

extension to WWWarp with capabilities of  MFLOPS and with larger cell data and

program memory; iWarp (integrated Warp) which was a joint venture between CMU and

Intel had capabilities of  MFLOPS per cell as a result of faster clock with a linear array

of  cells, giving a total  GFLOPS.

10 10 100
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Chapter 3. Homogeneous Parameterized Dataflow 

Graph (HPDF)

Real-time multimedia applications are an integral part of embedded systems tech-

nology. Modeling such applications using dataflow graphs can lead to useful formal prop-

erties, such as bounded memory requirements, and efficient synthesis solutions (e.g, see

[4]). The synchronous dataflow (SDF) model for example has particularly strong compile

time predictability properties [31]. However, this model is highly restrictive and cannot

handle data-dependent execution of dataflow graph vertices (actors). There have been pre-

vious studies on extensions of SDF to provide for more flexible actor execution, including

handling of such dynamic execution capabilities. For example, a cyclo-static dataflow

(CSDF) [6] graph can accommodate multiphase actors with different consumption and

production rates at the input and output, respectively, at different phases of iteration. This

provides for more flexibility but does not permit data dependent production or consump-

tion patterns. Another extension known as the token flow model [7] was proposed in

which we can have dynamic actors where the number of data values (tokens) transferred

across a graph edge may depend on the run-time value of a token that is received at a

“control port” of an incident actor. A meta-modeling technique called parameterized data-

flow [3] (PSDF) was proposed later in which dynamic dataflow capability was formulated

in terms of run-time reconfiguration of actor and edge parameters. In this chapter, we

present another model HPDF which can model certain restricted forms of dynamic data-

flow very effectively and is more constrained compared to PSDF.



26

3.1. Model Definition

In this section, we first provide a more constrained definition of HPDF that was pre-

sented at some of our initial work. We present the characteristics of the actors, edges, and

delay buffers in an HPDF graph.

An HPDF subsystem is homogeneous in two ways. First, unlike general SDF graphs

and other multirate models, the top level actors in an HPDF subsystem execute at the same

rate. Second, unlike the hierarchically-oriented parameterized dataflow semantics, recon-

figuration across subsystems can be achieved without introducing hierarchy (i.e., recon-

figuration across actors that are at the same level of the modeling hierarchy). Some

dynamic applications are naturally non-hierarchical, and this kind of behavior can be mod-

eled using HPDF without imposing “artificial” hierarchical structures that a parameterized

dataflow representation would entail. At the same time, hierarchy can be used within the

HPDF framework when it is desired.

HPDF is a meta modeling technique. Composite actors in an HPDF model can be

refined using any dataflow modeling semantics that provide a well-defined notion of sub-

system iteration. For example, the composite HPDF actor might have SDF, CSDF, PSDF

or multi-dimensional SDF [32] actors as its constituent actors. 

As with other many other dataflow models, such as SDF and CSDF, an HPDF edge

 can have a non-negative integer delay  on it. This delay gives the number of initial

data samples (tokens) on the edge. The stream of tokens that is passed across an edge

needs markers of some kind to indicate the “packets” that correspond to each iteration of

the producing and consuming actors. An end-of-packet marker is used for this purpose in

our implementation. 

e δ e( )
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Interface actors in HPDF can produce and consume arbitrary amounts of data, while

the internal connections must, for fixed parameter values, obey the constraints imposed by

the base model. An HPDF source actor in general has access to a variable number of

tokens at its inputs, but it obeys the semantics of the associated base model on its output.

Similarly, an HPDF sink actor obeys the semantics of its base model at the input but can

produce a variable number of tokens on its output. HPDF source and sink actors can be

used at subsystem interfaces to connect hierarchically to other forms of dataflow.

3.2. An Extended Model Definition

In this section, we present, a generalized form of our proposed homogeneous param-

eterized dataflow (HPDF) model of computation [44][46][20], which is an extension to

the definition presented in Section 3.1. and we build on SDF scheduling fundamentals to

present, a precise formalization static scheduling concepts for HPDF. 

Like parameterized dataflow, HPDF is a meta-modeling technique that can be

applied to different dataflow models, including SDF and CSDF. In our generalized form of

HPDF, we restrict the homogeneity constraint so that it is required only for edges whose

production or consumption rates involve parameter values that can vary dynamically (e.g.,

parameterized scalar rates in the case of HPDF-SDF or parameterized vector-rates in the

case of HPDF-CSDF).

Henceforth in this thesis, by HPDF we mean the generalized form of HPDF that we

develop in this section, as opposed to the original, more restricted, form introduced in Sec-

tion 3.1. [44][46]. 
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3.2.1. Definition of HPDF

An HPDF subsystem is homogeneous in the sense that parameterized edges (in par-

ticular, edges that are associated with dynamically variable parameter values) have identi-

cal rates of production and consumption for any given iteration of the underlying base

model. Thus, the production rate associated with any given edge can change from one

base model iteration to the next provided the consumption rate of that edge changes in

exactly the same way. 

For example, let  be an edge in an HPDF-SDF graph  — that is, a dataflow graph

in which HPDF is applied to SDF as the base model. Furthermore, in a given execution of

the , let  denote the (constant) production rate associated with  during the

th iteration of , and similarly, let  denote the consumption rate associated

with  during the  iteration of . Then the HPDF meta-model imposes the restriction

that either 1)  and  remain constant for all  (although the constant

value for  may differ from the constant value for ), or 2)

 for all . Here. condition 1 simply means that  and

 are both independent of . An edge that satisfies condition 2 but does not sat-

isfy condition 1 is called a dynamic edge of the enclosing HPDF graph.

An example of an HPDF graph is shown in Figure 3.1. Here, the base model is SDF,

and  is a symbolic placeholder for a parameter value that is not statically known and that

A B C
2D

3      2 p p

Figure 3.1 An example of an HPDF graph.
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can vary dynamically from one base model iteration to the next. Thus,

 for all ;  for all ; and

 for all ,

where  represents the value of the parameterized expression  throughout the th base

model iteration and  represents the edge between  and .

Interface actors in HPDF can produce and consume arbitrary amounts of data from

interface edges — the constraints imposed by the HPDF meta-model in conjunction with

the given base model need only be satisfied for the internal connections of an HPDF

graph. Here, by an interface actor of an HPDF graph , we mean an actor that is con-

nected to one or more components that are outside of , and by an interface edge, we

mean an input or output edge of an interface actor that provides such an external connec-

tion. An HPDF source actor is an interface actor that has one or more input edges that are

interface edges, but conforms to HPDF semantics on its output edges. Similarly, an HPDF

sink actor conforms to HPDF on its input edges, and has one or more output edges that are

interface outputs.

3.2.2. HPDF with CSDF as the Base Model

We now demonstrate the integration of CSDF base model semantics into the HPDF

meta-modeling framework. This integration provides simultaneous application of the

bounded memory, dynamic parameterization of HPDF and the finer granularity, phased

decomposition of actor execution in CSDF. 

As mentioned in Section 3.2.1., the homogeneity requirement in HPDF is in the

sense that data transfer across a parameterized edge (production and consumption) must

be equal (but not necessarily constant or statically-known) across corresponding invoca-
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tions of the source and sink actors. In CSDF, a complete invocation of an actor involves

execution of all of the phases in a fundamental period of the actor [6]. Integration of CSDF

with HPDF allows the number of phases in a fundamental period to vary dynamically, and

also allows the number of tokens produced or consumed in a given phase to vary dynami-

cally. Such dynamic variation must adhere to the general HPDF constraint, however, that

the total number of tokens produced by a source actor of a given parameterized edge in a

given invocation (which, in the case of phased actors, means a given fundamental period)

must equal the total number of tokens consumed by the sink in its corresponding invoca-

tion. Thus, for all positive , the number of tokens produced by the th complete invoca-

tion of a source actor must equal the number of tokens consumed by the th complete

invocation of the associated sink actor when they are connected by a parameterized edge.

For fundamental periods that involve dynamic token transfer, this can be accommo-

dated by employing a special token that delimits the end of a fundamental period of a

source actor. The source actor produces this special end-of-invocation (EOI) delimiter just

after the end of each complete invocation. The HPDF restriction then requires the follow-

ing.

 Suppose that the sink actor of a dynamically parameterized HPDF edge  con-

sumes the last token in its th invocation (fundamental period of phases) at time .

Then just after completing  more consumption operations after time , the sink

actor will consume an EOI token, and it will not consume any EOI tokens before that. This

pattern must hold for all positive integers  (i.e., all invocation indices); that is, after each

complete sink invocation, the next EOI token is consumed after exactly  consumption

n n

n

e

i zi t( )

δ e( ) zi t( )
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operations. Furthermore no EOI token should be consumed during the first invocation

 of the sink actor.

The above formulation is useful for precisely specifying how HPDF applies to

dynamic parameterization of CSDF actors. The formulation can also be used to generate

code for quasi-static schedules, and to verify consistency of HPDF specifications at run-

time (i.e., to detect violations of HPDF behavior as soon as they occur).

3.3. Comparison of HPDF and PSDF

While HPDF employs parameterized actors and subsystems like PSDF, there are

several distinguishing features of HPDF in relation to PSDF. For example, unlike PSDF,

HPDF always executes in bounded memory whenever the component models execute in

bounded memory. In contrast, some PSDF systems do not execute in bounded memory,

and in general, a combination of static and run-time checks is need to ensure bounded

memory operation for PSDF [5].

Also, as described in Section 3.2.1, we do not have to introduce hierarchy in HPDF

to account for dynamic behavior of actors. For example, suppose that a dynamic source

actor  produces  tokens that are consumed by the dynamic sink actor . In PSDF, we

need to have  and  in different subsystems; the body of  would set the parameter ,

which will be a known quantity at that time, in the subinit of  (see Section 5.2.1 for a

more detailed example). This hierarchy can be avoided in HPDF as we assume that data is

produced and consumed in same-sized blocks. As we will describe further in Chapter 5,

this simple form of dynamicity has many applications in image processing algorithms. It

therefore deserves explicit, efficient support as provided by HPDF.

i 1=( )

A n B

A B A n
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Also, unlike parameterized dataflow, the stream of tokens that is passed across a

dynamic HPDF edge requires markers of some kind to delimit the “packets” that corre-

spond to successive invocations of the producing/consuming actors. An end-of-packet

marker is used for this purpose in our implementation.

In summary, compared to PSDF, HPDF provides for simpler (non-hierarchical)

parameter reconfiguration, and for more powerful static analysis. In exchange for these

features, HPDF is significantly more narrow in the scope of applications that it is suitable

for. Intuitively, a parameterized multirate application cannot be modeled using HPDF.

However, as we motivate in this thesis, HPDF is suitable for an important class of com-

puter vision applications, and therefore it is a useful modeling approach to consider when

developing embedded hardware and software for computer visions systems.

3.4. Scheduling of HPDF Graphs

3.4.1. Repetitions Vectors and Valid Schedules

When HPDF is applied to SDF or CSDF, the topology matrix  for an HPDF

graph can be defined in manner analogous to the definition of the topology matrix for its

base model, with symbolic placeholders used to represent production rate values and con-

sumption rate values that are not statically known. For HPDF-SDF, such a symbolic place-

holder represents an unknown scalar value. For HPDF-CSDF, such a placeholder

corresponds to symmetric production/consumption-rate tuples that are equal, but in gen-

eral have variable lengths (numbers of phases), and variable values across CSDF itera-

tions.

Γ
HPDF
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For example, the topology matrix for the HPDF graph in Figure 3.1 can be written

as

.

Valid schedules and repetitions vectors can be defined for HPDF graphs in a manner

similar to the corresponding concepts that are reviewed in Section 2.1.3. The repetitions

vector denoted by , for an HPDF graph is a vector of co-prime integers that

denotes the numbers of times the actors in the HPDF graph should be executed in a mini-

mal base model iteration so that there is no resultant change in buffer state. For example,

the repetitions vector for the HPDF graph in Figure 3.1 can be expressed as 

, .

As in Chapter 2, we can derive a valid schedule from the repetitions vector for an

HPDF graph. A valid schedule for Figure 3.1 is given by .

In Sections 3.4.2 and 3.4.3, we apply HPDF with SDF as the base model and show

how existing methods for static scheduling that are based on SDF can be extended system-

atically to HPDF.

3.4.2. SDF Reductions of HPDF Graphs

Based on the concept of symbolic placeholders described in Sections 3.2.1 and

3.4.1, an HPDF graph contains a set of dynamic-parameter edges  such that

the for each , the production and consumption rate values of  are equal in any given

base model iteration, and this common value of dynamically-varying production/con-

sumption rate is represented by a symbolic placeholder .
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Given an HPDF-SDF graph , the SDF reduction of  is an SDF graph  that is

derived by replacing each  associated with  by the constant production and consump-

tion rate value of  for the associated edge. That is,

 for .

For example, the SDF reduction of the HPDF graph of Figure 3.1 is the SDF graph

in Figure 2.1.

SDF reductions are useful because important scheduling-related operations on

HPDF-SDF graphs can be reduced to scheduling operations on the corresponding SDF

reductions.

For example, the repetitions vector for HPDF-SDF graphs is well defined and has a

similar interpretations as with SDF graphs — each element of the HPDF-SDF repetitions

vector gives the number of times to execute the corresponding actor in a minimal valid

schedule. Given an HPDF-SDF graph , its repetitions vector can be derived simply by
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determining the SDF reduction  of , and computing the repetitions vector of . In

other words, the repetitions vector of an HPDF-SDF graph, when it exists, is equal to the

repetitions vector of the corresponding SDF reduction. Intuitively, this is true because in

terms of the balance equations, each dynamic edge  in an HPDF graph functions like an

SDF edge that has equal-valued production and consumption rates — that is, the con-

straint imposed by such an edge on the balance equations is that the source and sink actor

must execute the same number of times in a valid schedule.

For example, in Figure 3.2,  is first converted to its equivalent SDF reduction .

The repetitions vector for  can then be computed as the repetitions vector for , which

is given by

. (3.1)

3.4.3. Looped Schedules

A schedule for a dataflow graph is a (finite or infinite) sequence of actor executions.

To make schedules more compact (e.g., to reduce the code size when implementing sched-

ules), it is useful to employ looped schedules, which employ looping constructs called

schedule loops across regions of the schedules that involve repetitive execution schedules.

A schedule loop is a parenthesized term of the form , where  is a positive

integer, and each , called an iterand, is either an actor or a (nested) schedule loop. For

example, the schedule  for Figure 2.1 can be expressed more com-

pactly using schedule loops as . Schedules such as this that employ

looped notation are called looped schedules.
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A single appearance schedule (SAS) of a dataflow graph is a looped schedule in

which all actors appear only once. For example, the looped schedule 

for Figure 2.1 is not an SAS because it contains multiple appearances of . On the other

hand,  and  are both valid (looped) schedules for Figure 2.1

that are also SASs.

Intuitively, a SAS provides minimized code-size for a software implementation of a

dataflow graph. Acyclic, pairwise grouping of adjacent nodes (APGAN) [5] is a previ-

ously-developed algorithm that is useful for deriving SASs. Specifically, given a consis-

tent, acyclic, and connected SDF graph, APGAN derives a SAS using heuristic techniques

that minimize buffer memory requirements for the edges in the graph. 

In this section, we show that with minor adaptations, APGAN can be applied to

HPDF to derive valid SASs for HPDF-SDF graphs. We first review the original APGAN

algorithm for SDF, and then show how the same basic approach can be applied to HPDF.

Suppose that we have a consistent, acyclic, and connected SDF graph  with 

actors , and let the repetitions vector for  be , with each

th element of this vector being in correspondence with actor . We define the repetition

count of an actor  to be  — i.e., the corresponding entry in the repetitions vector, and

we represent this value also by . We also define

, (3.2)

where the gcd represents the greatest common divisor operator.

The basic idea in APGAN is that in each iteration, we try to hierarchically pair up

two adjacent actors that have the maximum common repetition count — as defined by

(3.2) — among all available adjacent actor pairs that can be clustered without introducing
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cycles in the graph. Here by clustering a subset , we mean grouping the actors in  into

a single hierarchical actor for the purposes of scheduling. This mechanism of clustering

can be used to constrain subsequent scheduling steps so that the actors in  are always

scheduled together, as a single unit. 

The clustering process of APGAN is repeated until there are no more actors avail-

able for pairing — that is, when the top-level of the clustered hierarchy consists of a single

actor. In the resultant graph at each clustering iteration , we represent the newly grouped

actors by the new hierarchical actor . 

If the actors chosen by APGAN are denoted by  in a given clustering iter-

ation, then for any edge  that has  or  as its source,  will be replaced by a modi-

fied version  that has the following properties [5]:

;

; and

. (3.3)

Similarly, for any edge  having  or  as its sink,  is replaced by a modified

version  that satisfies:

;

; and

. (3.4)

Once the clustering process is complete, a schedule is constructed by recursively tra-

versing the cluster hierarchy, and scheduling the clusters as they are traversed. The final

schedule that results from this process is a SAS for the input SDF graph. An illustration of

the operation of APGAN is shown in Figure 3.3.
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To apply the concepts of APGAN to an HPDF graph, let us consider a parameterized

edge with parameters , where the source of that edge is  and the sink is , and let the

graph in Figure 3.4 represent an arbitrary iteration in APGAN. Here, dotted edges and ver-

tices represent multiple copies — i.e., there can be multiple copies of  and multiple

edges connecting them to or from  or . The s are rates that are independent of . 

represents the grouped (hierarchical) actor that contains , and  represents the hierar-

chical actor that contains . 

As discussed in Section 3.4.2., the repetitions vector for a graph such as  is inde-

pendent of . Therefore, the production rate at the output edge of  will be (based on

(3.3)) , where  is independent of  and hence

replaced by . A similar argument can be used to show that  is independent of  as

well. By similar reasoning as in Section 3.4.2, it can be shown that the repetitions vector
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Figure 3.3 Example of working of APGAN and the resultant schedule.
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for  will be independent of  (by replacing  and  with  and ). Thus,

the consumption rate on the incoming edge (from (3.4)) will be

, which is clearly independent of , and hence denoted by 

in Figure 3.4. Similar reasoning shows  to be also independent of .

After the clustering process of APGAN is complete, the final schedule is produced,

as discussed earlier, by a recursive traversal of the cluster hierarchy. During the traversal

of , in the schedule for graph  (which is independent of ),  will be replaced

by , which again is independent of . This demonstrates that APGAN will

produce a static schedule (i.e., a schedule that is independent of any dynamic edge param-

eter ) for an HPDF-SDF graph. Furthermore, as in the application of APGAN to SDF

graphs, an SAS will be produced when APGAN is applied to an HPDF-SDF graph.

Figure 3.4 APGAN on an HPDF graph.
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3.4.4. Single-rate Equivalents of HPDF Graphs

A single-rate dataflow (SRDF) graph is a dataflow graph in which all the sample

rates (production and consumption rates on each edge) are same. A special case of SRDF

is Homogeneous Synchronous Dataflow (HSDF) where all the sample rates are unity.

Conversion to HSDF is a powerful technique because high-level performance estimations

can be performed on an HSDF based on the following definition of Maximum Cycle Mean

(MCM):

MCM puts a fundamental limit on the achievable throughput of a system [51]. We

can apply the algorithm for converting an SDF graph to its equivalent HSDF [51] on an

HPDF graph. The only difference the resultant HSDF would have, as compared to being

generated from an SDF, is that all the nodes that were either sources or sinks of the HPDF,

would be connected by a variable number of edges. We show the HSDF equivalent of the

HPDF graph  in Figure 3.5. Note that the number of edges between  and  is .

However, this graph can still be used to calculate the MCM of  to derive the maximum

achievable throughput for an HPDF graph. We will now demonstrate an interesting prop-

erty — changing the parameter  can change the MCM value of , hence the parameter

 can be a determining factor in the throughput of the system.

Let us consider that the cycle in the HSDF with maximum mean is . And let  and

 be the source and sink of a parameterized edge with parameter  which have repetition

counts of  (they will have the same repetition count due to homogeneity constraints).
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Also note, that by construction of the HSDF, all the edges that have  as the

source will have  as the sink — we denote these edges as .

Let the cycle  involve at least an edge of type . Also, let the number of

delays on the edge between  and  be . If during execution, the parameter  assumes

a value greater than , then there would be  delayless edges for each . So

if  for , then for , , resulting in an increased

. 
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3.5. Modeling using HPDF

In this section, we first present a brief description of a “Gait-DNA” algorithm [42]

for load carrying event detection, model the application using HPDF-SDF and then refine

the model using HPDF-CSDF. We have also presented two additional examples of model-

ing using HPDF in Chapter 5 and in Chapter 6.

3.5.1. Gait-DNA algorithm for load carrying event detection

A Gait-DNA is an image processing algorithm which looks for periodic patterns

corresponding to movement of wrists, elbows, knees and ankles in a sequence of image

frames to represent the gait signature of a human being. Since the generated pattern from

gait looks like a double helix in the DNA structure, hence the name. From the relative dis-

tortion in rate and period of the double helix pattern, a load carrying event detection for-

mulation was proposed in [42]. 

The algorithm has  basic blocks at the top level - “Input”, “Slice Generator”,

“Double Helix Signature (DHS) Extraction”, and “Classifier”. The actor “Input” can be

any input device producing image frames of a certain size (  pixels) at a certain rate

measured as frames per second (fps). “Slice Generator” stores a pre-defined number of

collection of images — say  of them (we henceforth call this collection as an “input

block”), and first finds “bounding box”-es which are the regions of interest for finding gait

in all the frames. So a bounding box typically would enclose one human being, and there

can be multiple of them in a frame corresponding to multiple human beings. Then it cre-

ates   coordinates depending on the heights of the bounding boxes (or objects) which

will correspond to the person’s elbow (  at  of object height), wrist (  at  of

4

x y×
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4 y
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object height), knee (  at  of object height), and ankle (  at  of object height).

The output of this actor is the value of the pixels at each of these  coordinates of each of

the bounding boxes over the entire input block. So it effectively slices through the input

block and creates  such slices for every human being. “DHS Extraction” performs 1-D

curve approximation after dividing each slices into strides (one stride is one “ ” like pat-

tern in the double helix), and subsequently dividing each stride into  quadrants (each

quadrant being one non-intersecting curve of the double helix pattern). It then extracts the

average rate and amplitude of the approximated curves for each slice and outputs these

information to the “Classifier”. “Classifier” looks at the rate and frequency of each quad-

rant and after doing symmetry analysis classifies gait as either natural walking, carrying

an object in one hand or carrying an object with both hands.

The experiment was done with frames for at least  seconds with  frames/sec.

(total of  frames) and the size of the frames were  pixels.

3.5.2. HPDF-SDF modeling of Gait-DNA 

We first model the Gait-DNA algorithm for load carrying event detection using

HPDF-SDF as shown in Figure 3.6. “Input” (or actor ) produces  tokens which is the

number of image frames constituting one input block - this is a parameter, as the authors in

[42] reported correct results with downsampling factor of up to  (for both the size and
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the frames per second) provided the bounding boxes are bigger than . “Slice Gen-

erator” (or actor ) consumes all the  frames to produce  tokens.  is the number

of bounding boxes in the frames (which is a input-dependent parameter and can only be

determined at run-time) and for each bounding box,  slices are generates as explained in

Section 3.5.1. “DHS Extraction” (or actor ) generates  tokens for each of the 

slices (  quantities — average rate and amplitude for each of  quadrants). “Classifier”

consumes all the  tokens and produces one token for each of the  bounding boxes

which represents one of the three activities described earlier. The schedule of the graph

would be: 

. (3.5)

3.5.3. HPDF-CSDF modeling of Gait-DNA

In this section, we further refine our model by using CSDF as the underlying model

of our HPDF metamodel as shown in Figure 3.7. Parameters ,  represent the same

parameters as described in Section 3.5.2.

 has the same behavior as its SDF counterpart, but now  has  phases,

where in the first phase, it consumes the input block with  image frames, without pro-

ducing any token. In the next  phases, it produces a slice at each phase without con-

suming any data.  consumes one token (representing one slice) at every phase for 
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phases of its execution and produces  tokens —  pairs of rate and amplitude.  has

only  phases and it consumes  tokens corresponding to each bounding box to pro-

duce one token which specifies the class of activity. The schedule of the graph would be:

. (3.6)

There are certain advantages of HPDF-CSDF over HPDF-SDF like lower buffer

requirements. For example, looking at the edge between  and , we see that buffer

requirement in (3.5) is  whereas the same edge has a buffer requirement of  in

(3.6). Similarly for the edge between  and , buffer requirement goes down from

 to  where  and  are the width of the bounding box and number of frames in

the input block respectively. 

We have later modeled a single camera gesture recognition algorithm in HPDF-SDF

and HPDF-CSDF. A comparative study of the two models can also be found in Chapter 5.

We also present the model for the distributed gesture recognition algorithm in Chapter 5.

Also Chapter 6 presents an image registration algorithm that was modeled using the

HPDF-CSDF and some interesting transformations that were applied to the model. 
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Chapter 4. Transformations for HPDF Graphs

In this chapter, we describe an approach that we explored for low-power synthesis

and optimization of digital signal, image, and video processing (DSP) applications. In par-

ticular, we consider the systematic exploitation of node unfolding (which as we explain in

details later is possible due to data parallelism) across the operations of an application

dataflow graph when synthesizing a dedicated hardware implementation. Data parallelism

occurs commonly in DSP applications, and provides flexible opportunities to increase

throughput or lower power consumption. Exploiting this parallelism in dedicated hard-

ware implementation comes at the expense of increased resource requirements, which

must be balanced carefully when applying the technique in a design tool. We propose a

high level synthesis algorithm to determine the node unfolding factor for each computa-

tion, and based on the area and performance trade-off curve, design an efficient hardware

representation of the dataflow graph. For performance estimation, our approach uses a

cyclostatic dataflow intermediate representation of the hardware structure under synthesis.

Then we apply an automatic hardware generation framework to build the actual circuit.

4.1. Motivation

High-level synthesis has been of primary importance in the field of DSP as area and

power considerations are critical in the DSP domain. Design space exploration can be

done effectively from a high level description as some inherent traits are more obvious in

the high level abstraction and become obscure in the low level implementations. Dataflow

has proven to be an attractive high-level computation model for programming DSP appli-
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cations. A restricted version of dataflow, termed synchronous dataflow (SDF), that offers

strong compile-time predictability properties, has been studied extensively in the DSP

context [5][31] (also see Section 2.1.1 of this thesis for the definition of SDF). We have

developed an algorithm and Verilog code generation framework for optimal application of

data parallel hardware implementations to SDF graphs. Further, since ,

where  is the operating voltage and  is the operating frequency, we can reduce both 

and  by sacrificing the performance gain that our algorithm provides and still maintain

existing performance but at a lower power. As an example, we consider a simple 3-tap FIR

filter. Figure 4.1 shows a synchronous dataflow graph representation of such a filter.

Here, the inputs to each module consume one unit of data upon each invocation, and

the modules produce one unit of data at the output. From this SDF graph representation of

the filter, we can clearly see that data parallelism through replication of hardware blocks

can be used for each of the modules to increase the throughput. The given dataflow graph

provides enough information to derive a hardware implementation of the filter. But by

analyzing the given dataflow, we can increase the throughput of the circuit by duplicating

power V
2

f∝

V f V

f

Figure 4.1 An SDF graph representation of a 3-tap FIR filter with production 

and consumption rates uniformly equal to one.

Z-1 Z-1

M1 M2 M3

A1 A2
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the multipliers and creating parallel datapaths to them. Figure 4.2 shows the 3-tap FIR fil-

ter of Figure 4.1 with node unfolding factors of  and  for the multipliers

and the adders respectively. The additional switches needed for sending data to multiple

instances of the modules are also shown. This possibility of configuring a node unfolded

(or replicated) hardware implementation results in a wide design space to probe around in

order to maximize throughput or minimize power consumption.

The rest of this chapter is constructed as follows. In Section 4.2, we present the def-

inition of node unfolding and present an algorithm to unfold a node  in a graph  times.

In Section 4.3, we present how and when node unfolding can be applied to HPDF and

some interesting results it gives. In Section 4.4, we present a formal synthesis problem

statement as well as the optimality of the solution provided by the proposed systematic

node unfolding algorithm. Section 4.5 provides the framework used for automatic hard-

ware code generation from the optimally configured circuit given by our algorithm. Sec-

Z-1 Z-1

M1

A1 A2

M1
M2 M2

M3 M3M3

Figure 4.2 The 3-tap FIR filter shown in Figure 4.1 with different node unfolding factors for 

the multipliers. Switches are also shown as a means of implementation of node unfolding.

2 2 3, ,〈 〉 1 1,〈 〉

n j
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tion 4.6 provides results for some typical DSP subsystems. Section 4.7 discusses the

implications of the results. 

4.2. Node Unfolding

We define node unfolding as a technique, in which instead of unfolding the whole

graph, the algorithm tries to unfold (replicate) nodes and edges that are either incoming

and outgoing to or from the unfolded (replicated) node [39]. Switches which can naturally

be represented as CSDF actors, are to be inserted at appropriate places to maintain correct

functionality. We propose an algorithm to systematically unfold a node ( )  times in a

dataflow graph in Figure 4.3. We show the concept of node unfolding through an example

(Figure 4.4). 

n j

Place a switch  on each edge incoming to .

Place a switch  on each edge outgoing from .

Make  copies of  denoted by , .

For each incoming edge to , place one edge connecting  and 

, for all  where the production rate is of the form 

 with  being the consumption rate of  and is 

placed on phase , total number of phases being  and consump-

tion rate is .

For each outgoing edge from , place one edge between  and 

, for all  where the consumption rate is of the form 

 with  being the production rate of  and is 

placed on phase , total number of phases being  and produc-

tion rate is .

Any delays on incoming edges to  stays on the corresponding 

edge now incoming to the switch .

Any delays on outgoing edges to  gets transferred to the cor-

responding edge now outgoing from the switch .

A self-loop with delay  on  would get replicated on each 

unfolded node  with the same amount of delay .

Consecutive switches on an edge can be replaced by one switch.
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Sout n
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Figure 4.3 Algorithm for unfolding a node ,  times.n j
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4.3. Node Unfolding on HPDF

Node unfolding can also be applied to HPDF systems whenever there is a data-rate

mismatch — i.e, where data production and consumption rates for parameterized edges

are not same, but differ by a constant factor  ( )— say production rate is  and con-

sumption rate is . In the original graph in Figure 4.5 (top), we see that the edge between

 and  has such data-rate mismatches, with . The actor with a lower data-rate (or

equivalently with a higher firing rate) of this edge can be unfolded  times using the algo-

rithm described in Figure 4.3. The resultant graph is still HPDF but with a higher through-

put but with an area overhead. We apply such a transformation and the resultant graph

along with the original graph is shown in Figure 4.5. We also applied node unfolding on

the HPDF graph of an image registration algorithm in Chapter 6 and presented a compre-

hensive study of area performance trade-off in Section 6.7.

A

M
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Figure 4.4 Illustration of the Node unfolding algorithm where A is 

unfolded twice.
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4.4. High-level Synthesis Problem Statement and Systematic Node 

Unfolding Algorithm

In this section, we present the formal statement of the synthesis problem that we

address, and present the algorithm developed to solve it. We also show that the algorithm

has polynomial complexity and provides optimal synthesis results.

4.4.1. Problem statement

In this model, each functional module  (dataflow graph vertex) that has a node-

unfolded implementation is characterized by an overhead factor, denoted , which

approximates the amount of additional functional resource area (or cost) required for each

Figure 4.5 Example showing node unfolding being used on HPDF.
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level of unfolding of the node. Specifically, an -fold unfolding of a node  (an imple-

mentation with m parallel copies of the hardware block) is modeled as requiring a func-

tional resource cost of

, (4.1)

where  is the cost of a single instance of module (without application of node

unfolding). Similarly, a module-independent area/cost switching overhead is used to

model the switching area or communication cost required for the connection between an

incoming (outgoing) data stream and an -way parallel network of hardware modules

operating at  times the data rate of the stream. Under this formulation, the data parallel-

ism synthesis problem becomes one of determining a strategic mapping : +,

where  denotes the set of application modules (dataflow graph vertices), + denotes the

set of positive integers, and  denotes the level of unfolding (the number of parallel

instantiations) of module . So, we are concerned with the constraints of area (cost),

power consumption, and throughput, and the objective of data parallel synthesis is to

achieve an optimal or near-optimal configuration  that targets the relevant constraints

and optimization criteria across these metrics.

4.4.2. Proposed Algorithmic Solution

We present the algorithm in Figure 4.6. The algorithm follows a greedy approach.

At every iteration, it checks for the module which when duplicated gives the maximum

performance benefit. The algorithm terminates when duplicating any hardware module

violates the area constraint.

m M

AM m 1–( )vMAM+ AM 1 m 1–( )vM+( )=

AM M

m

m

µ V Z→

V Z

µ M( )

M
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Performance benefit is measured by the function ‘Performance Analysis’ in Figure

4.6. The switching characteristics of any circuit is very aptly represented by the dataflow

computational model known as Cyclo-static dataflow (CSDF) [6]. In this model, a module

can have different phases in which it can consume and produce data at different rates. The

initial dataflow along with the data parallel factors and switches can now be effectively

represented by an equivalent CSDF graph. Performance of the resulting dataflow graph is

measured by its throughput. This is done by first forming the equivalent Homogeneous

SDF (HSDF) graph of the CSDF graph [6]. An HSDF graph is an SDF graph whose data

Data Structures Used:

list = queue of structures;
newlist = queue of structures;
structures = struct {
module_info;
number_of_copies_of_the_module;
}

Main algorithm:-

Form the newlist by enqueueing all the modules;
while(newlist_not_empty) {

list = newlist;
while(list_not_empty) {

Modulei = dequeue from the list;
m = (Modulei —>copies) ++;
Anew = vi Ai + Areaold;

if (Anew < Area available) {
Performance Analysis(Modulei);

}
}

get the module with **best** result;
(Modulei —>copies) ++ in newlist;

}

Performance Analysis:-

Form the corresponding Cyclostatic Dataflow(CSDF);
CSDF to Homogeneous Synchronous Dataflow(HSDF);
Maximum Cycle Mean (MCM) Analysis;
Store the result;
Enqueue_newlist(Modulei, copies);

Figure 4.6 The algorithm used to get the data parallel factors for 

each module.
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production and consumption rates per firing are uniformly equal to one. Every module in

the CSDF graph forms a cycle  in which the different elements in one cycle corresponds

to different phases of the CSDF graph in its most simplified form. Let  be the exe-

cution time of each of the modules in one such cycle . Then  is the total weight

of the cycle . The mean cycle weight  in an HSDF graph is defined as

. (4.2)

[51] where  is the total number of delay elements in . The cycle with the

maximum mean cycle weight is called the critical cycle; it gives the maximum achievable

throughput for the graph.

Let  be the execution time for a module  and let the unfolding factor for this

module be . Then the throughput for module  is . The throughput of the

entire system is thus  over all . Also let  be the base area of . Our objective

is to maximize  subject to the constraint  where  is the

maximum die-area on the chip available for hardware implementation.  is

approximately  if the overhead for multiple hardware units is negligible.

In the greedy approach taken, we repeatedly select the bottleneck module  and

increase its data parallel factor by one, provided area constraint is not violated. In effect,

we expand the module  just enough so that it is no longer the bottleneck for the system.

This greedy procedure results in optimal configurations; this can be seen from the follow-

ing argument. If a module  that is the bottleneck has a current data parallel factor , and

only a data parallel factor of  or more will remove it from being the bottleneck, then

the algorithm will always choose  for the next  iterations (provided there is

enough area). In other words, the algorithm always devotes available area toward improv-
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ing the bottleneck module, which is the best that can be done under a given area con-

straint. Improving the performance of any non-bottleneck task cannot improve the overall

throughput. The maximum number of times a module  is visited by the algorithm is

 which is polynomial.

4.5. Automatic Verilog Code generation

After the synthesis algorithm provides the node unfolding factor vector, we simulate

the actual hardware. For that we have developed an automatic Verilog code generation

framework that is built on top of Ptolemy II [17], a design environment for modeling and

design of heterogeneous embedded systems.

4.5.1. Motivation for code generation

 To measure the effectiveness of our algorithm, we have performed area and power

calculations on a number of circuits, which are presented in the results section. We synthe-

sized the dataflow graphs in hardware to verify our results from the algorithm. Thus our

results are backed by actual synthesis rather than software simulation.

4.5.2. Code generation methodologies

We have explored two different approaches for code generation. We either describe

the Verilog code for a module as a congregation of functions it performs or we have a stan-

dard code library that implements the basic structure for that module. The only difference

is in the granularity in which we confront the code generation problem.

The two different approaches were considered based upon flexibility and speed for

code generation. If the user needs more customized code generation, then the functional

i

Amax( ) Bi⁄
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description approach is more suited to his needs. But the user should have a sound knowl-

edge on synthesizable code generation for the generated code to work correctly. As for

code generation from the standard library, the user need not know the intricacies of code

generation. A basic parameterized framework for a particular module is already provided

in the library, the user needs to invoke it with the required parameters, one of them being

the number of inputs to the module. For example, an adder can be a two bit adder, or any

-bit adder — and this parameter needs to be specified at the time of invocation. This is a

very reasonable approach for code generation, and also we can generate area optimized

code that is suitable for low power applications as the library modules are optimized.

Overall, the library approach is easier and usually produces better code. We discuss this

approach in more detail in the following section.

4.5.3. Library approach to code generation

From the input SDF graph, we extract all the modules needed for code generation.

The only way to have a one-to-one correspondence between the module and the correct

code from the library is to use a uniform nomenclature. For this purpose, we have used the

intuitive names such as adder, delay, multiplier, etc. for the corresponding modules. After

the modules are identified, we import the module definition from the library. The different

modules are wired after the wiring pattern is extracted from the input SDF graph. Evi-

dently, the wires are the edges in the graph. If the unfolding factor for a particular module

is , then the code for it is defined only once but instantiated  times. We add a switch to

manage the data parallelization for the  instantiations. The generated code for the above

mentioned 3-tap FIR is given in Figure 4.7 and 4.8. The adder module is the only complete

n

n n

n
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module. The input, output and reg statements are omitted from the other module defini-

tions for brevity.

The code generated is divided into synthesizable and verifiable parts. This feature is

maintained by using the testbench approach for Verilog code generation. We generate two

separate files, one file contains code for the system being designed, and the other file con-

tains the test generator and the monitor. The first file contains the synthesizable part and

module adder(in1, in2, in3, out, clk);
    input [15:0] in1;
    input [15:0] in2;
    input [15:0] in3;
    input clk;
    output [15:0] out;
    reg [15:0] out;

always @(posedge clk) begin
        out <= in1 + in2 + in3;

end
    
endmodule

module multiplier(in1, in2, out, clk);
always @(posedge clk) begin

        out <= in1 * in2;
end

endmodule

module delay(in1, out, reset, clk);
always @(clk or reset) begin
if (reset == 1) begin

            out <= 0;
end
else if (clk == 1) begin

            out <= in1;
end

    end
endmodule

 module top(in, clk, reset, out);

assign param0 = `h0;
assign param1 = `h1;
assign param2 = `h2;

adder a(w2, w4, w6, out, clk);
multiplier m1(in, param0, w2, clk);
multiplier m2(w3, param1, w4, clk);
multiplier m3(w5, param2, w6, clk);
delay d1(in, w3, reset, clk);
delay d2(w3, w5, reset, clk);

endmodule

Figure 4.7 Generated synthesizable Verilog code for the 3-tap 

FIR filter described in Figure 1.
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the second file contains wires to input and output modules needed for verification. This

approach is described in detail in [52]. Figure 4.7 shows only the synthesizable code for a

3-tap filter.

We also generate the code for a switch when we simulate the hardware for the graph

shown in Figure 4.2. A simple  switch generated by our code generator is shown in

Figure 4.8.

4.6. Results

We evaluated our algorithm on a number of typical DSP subsystems. We present the

results of three such systems. The first one is a cascade of a simple adder (input node) and

multiplier (output node). Simulation results from Synopsys Design Compiler [60] are

shown in Table 4.1. The second circuit is a 3-tap FIR circuit shown in Figure 4.1. Third is

1 2→

module switch(in1, datainready1, in2,
datainready2, reset, clk, dataoutready, out);

always @(posedge clk) begin
if (reset == 1) begin

counter <= 0;
datainready1 <= 0;
datainready2 <= 0;
dataoutready <= 0;
end

else if(counter == 0) begin
counter <= counter + 1;
out <= in1;
dataoutready <= 0;
datainready1 <= 1;
datainready2 <= 0; 
end

else if(counter == 1) begin
counter <= counter + 1;

out <= in2;
dataoutready <= 1;
datainready2 <= 1;
datainready1 <= 0; 
end

end
endmodule

Figure 4.8 The example Verilog code of a simple  switch.1 2→
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a second order IIR filter. We observe that the data parallel factors provided by our synthe-

sis algorithm are supported by the data values produced by Design Compiler.

For the first circuit, our algorithm suggested . The synthesized

circuit gives maximum throughput for the same configuration under an area constraint of

60000 . For the 3-tap FIR filter, the best performance is provided by

,  for which tallies with the out-

put of our algorithm. The second row of Table 4.2 shows that even though the multiplier is

the bottleneck, providing only one parallel data-path to one of the multipliers does not

Config
Area

(µµµµcm2)

Dynamic Power
(mW)

Critical Time
(ns)

M=<1>
A=<1>

27394 1.52 10.31

M=<1>
A=<2>

33269 1.71 9.51

M=<2>
A=<1>

51903 2.83 5.93

Table 4.1.  Results of adder multiplier circuit from Synopsys

Config
Area

(µµµµcm2)

Dynamic Power
(mW)

Critical Time
(ns)

M1,2,3=<1,1,1>

A1,2=<1,1>
68632 3.89 10.68

M1,2,3=<1,2,1>

A1,2=<1,1>
88266 4.62 10.68

M1,2,3=<2,2,2>

A1,2=<1,1>
126634 6.08 5.88

Table 4.2.  Results of a 3-tap FIR filter from Synopsys

M 2〈 〉 A, 1〈 〉= =

µcm
2

M1 2 3, , 2 2 2, ,〈 〉= A1 2, 1 1,〈 〉= Amax 130000µcm
2

=
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decrease the critical path time, and accordingly, our algorithm does not choose this as an

improved configuration. Even though the results shown here are for moderate-sized

graphs with numbers of modules on the order of tens, the core algorithm is of low polyno-

mial complexity, and therefore our approach can be expected to scale efficiently to larger

systems.

4.7. Conclusion

The above tables show some of the possible configurations of the mentioned data-

flow graphs that do not violate the given area constraints. It can be observed that in all of

the above cases, the data parallel configuration suggested by our synthesis algorithm was

the solution with the best performance. Power measurements are given as an added param-

eter to the problem. 

Data parallelism for DSP hardware implementation is a well-known concept; the

contribution of our work is in the full vertical integration of data-parallelism-based trans-

formations with synchronous dataflow graph analysis, cyclostatic dataflow-based perfor-

mance analysis, synthesizable Verilog code generation, and hardware synthesis using the

Config
Area

(µµµµcm2)

Dynamic Power
(mW)

Critical Time (ns)

M1,2,3,4=<1,1,1,1>

A1=<1>
134812 1.9 7.63

M1,2,3,4=<2,2,2,2>

A1=<1>
259309 3.5 4.09

Table 4.3.  Results of a second order IIR filter from Synopsys
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Synopsys Design Compiler. This integration provides a fully automated design flow that

produces optimal exploitation of data parallelism for SDF-based designs.

Useful directions for further work include hardware synthesis from more general

dataflow models, such as integer-controlled dataflow [8], and well-behaved dataflow [18];

and systematic integration with other flowgraph transformations for multi-objective syn-

thesis.
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Chapter 5. HPDF-based Analysis Case Study: Gesture 

Recognition

Computer vision methods based on real-time video analysis form a challenging and

increasingly important domain for embedded system design. Due to the their data-inten-

sive nature, hardware implementations for real-time video are often more desirable than

corresponding software implementations despite the relatively longer and more compli-

cated development processes associated with hardware implementation. The approach that

we pursue in this thesis is based on direct representation by the designer of application

concurrency using dataflow principles. Dataflow provides an application modeling para-

digm that is well-suited to parallel processing (and to other forms of implementation

streamlining) for digital signal processing (DSP) systems [51]. Dataflow is effective in

many domains of DSP, including digital communications, radar, and video processing. 

In this chapter, we use dataflow as a conceptual tool to be applied by the designer

rather than as the core of an automated translation engine for generating HDL code. This

combination of a domain-specific model of computation, and its use as a conceptual

design tool rather than an automated one allows great flexibility in streamlining higher

level steps in the design process for a particular application.

As an important front-end step in exploiting this flexibility, we employ HPDF

(homogeneous parameterized dataflow) (See Chapter 3) semantics to represent the behav-

ior of the target gesture recognition system. HPDF is a restricted form of dynamic data-

flow, and is not supported directly by any existing synthesis tools. However, an HPDF-
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based modeling approach captures the high-level behavior of our gesture recognition

application in a manner that is highly effective for design verification and efficient imple-

mentation. As our work in this chapter demonstrates, the HPDF-based representation is

useful to the designer in structuring the design process and bridging the layers of algo-

rithm and architecture, while HDL synthesis tools play the complementary role of bridg-

ing the architecture and the target platform.

This work was done in collaboration with Prof. Wayne Wolf’s group at Princeton

University. In particular, I would like to mention the help of Fiorella Haim and Ivan Cor-

retjer from University of Maryland for the hardware implementation aspect of this work.

[46][20][47].

5.1. Description of the algorithm

As a consequence of continually-improving CMOS technology, it is now possible to

develop “smart camera” systems that not only capture images, but also process image

frames in sophisticated ways to extract “meaning” from video streams. One important

application of smart cameras is gesture recognition from video streams of human subjects.

In the gesture recognition algorithm discussed in [55], for each image captured, real-time

image processing is performed to identify and track human gestures. As the flow of

images is increased, a higher level of reasoning about human gestures becomes possible.

This type of processing occurs inside the smart camera system using advanced very large

scale integration (VLSI) circuits for both low-level and high-level processing of the infor-

mation contained in the images. Figure 5.1 gives an overview of the smart camera gesture

recognition algorithm.
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The functional blocks of particular interest in this chapter are the low-level process-

ing components Region, Contour, Ellipse, and Match (within the dotted rectangle in Fig-

ure 5.1). Each of these blocks operate at the pixel level to identify and classify human

body parts in the image, and are thus good candidates for implementation on a high perfor-

mance field-programmable gate array (FPGA). 

The computational core of the block diagram in Figure 5.1 can be converted from

being an intuitive flow diagram to a precise behavioral representation through integration

of HPDF modeling concepts. This exposes significant patterns of parallelism and of pre-

dictability, which together with application specific optimizations, help us to map the

application efficiently into hardware. 

The front-end processing is performed by region extraction (Region), which accepts

a set of three images as inputs (we will refer to this set as an image-group from now on).

The input images constituting the image-group are in the  color space in which 

represents the intensity and  represents the chrominance components of the image.

Figure 5.1 Block level representation of the smart camera algorithm [55].

YCrCb Y

Cr Cb,
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In the current application input, chrominance components are downsampled by a factor of

two. Thus, the three images in the image-group sent as input to Region extraction are:

• The  component, (Image1 in Figure 5.6);

• the background (Image2 in Figure 5.6); and

• the downsampled  components together (Image3 in Figure 5.6).

The image with background regions is used in processing the other two images,

which have foreground information as well. In one of the foreground images, the Region

block marks areas that are of human skin-tones, and in the other, it marks areas that are of

non-skin tone. Each of these sets of three images is independent of the next set of three,

revealing image-level parallelism. 

Additionally, modeling the algorithm with finer granularity (Section 5.2.3.) exposes

that the set of three pixels from the corresponding coordinates in the images within an

image-group are independent of any other set of pixels, leading to pixel-level parallelism.

This has been verified by simulating the model for correct behavior. Furthermore, the

operations performed are of similar complexity, suggesting that a synchronous pipeline

implementation with little idle time between stages is possible.

After separating foreground regions into two images, each containing only skin and

non-skin tone regions respectively, the next processing stage that occurs is contour follow-

ing (Contour). Here, each image is scanned linearly pixel-by-pixel until one of the regions

marked in the Region stage is encountered. For all regions in both images (i.e., regardless

of skin or non-skin tone), the contour algorithm traces out the periphery of each region,

and stores the  locations of the boundary pixels. In this way, the boundary pixels

making up each region are grouped together in a list and passed to the next stage.

Y

Cr Cb,

x y,( )
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The ellipse fitting (Ellipse) functional block processes each of the contours of inter-

est and characterizes their shapes through an ellipse-fitting algorithm. The process of

ellipse fitting is imperfect and allows for tolerance in the deformations caused during

image capture (such as objects obscuring portions of the image). At this stage, each con-

tour is processed independently of the others, revealing contour-level parallelism. 

Finally, the graph matching (Match) functional block waits until each contour is

characterized by an ellipse before beginning its processing. The ellipses are then classified

into head, torso, or hand regions based on several factors. The first stage attempts to iden-

tify the head ellipse, which allows the algorithm to gain a sense of where the other body

parts should be located relative to the head. After classifying the head ellipse, the algo-

rithm proceeds to find the torso ellipse. This is done by comparing the relative sizes and

locations of ellipses adjacent to the head ellipse, and using the fact that the torso is usually

larger by some proportion than other regions and that it is within the vicinity of the head.

The conditions and values used to make these determinations are part of a piece wise qua-

dratic Bayesian classifier that only requires the six characteristic parameters from each

ellipse in the image [55].

5.2. Modeling the Single-Camera Gesture Recognition Algorithm

In this section, we model the gesture recognition algorithm using both PSDF and

HPDF, and then show some application specific optimizations that are aided by the HPDF

representation.



67

5.2.1. Modeling with PSDF

As mentioned in Section 2.1.4., PSDF imposes a hierarchy discipline. The gesture

recognition algorithm is modeled using PSDF in Figure 5.2. At the uppermost level, the

GesRecog subsystem has empty init and subinit graphs, and GesRecog.body is the body

graph for the subsystem that has two hierarchical subsystems —  and . The sub-

systems  and  in turn each have two input edges. On one of these edges, one token

is consumed; this token provides the number of tokens (for example, the value of  on

the edge between  and  in Figure 5.2) that is to be consumed on the other edge,

which is edge that contains the actual tokens that are to be processed. 

The body graph of  has the actor  embedded inside. , which is called

once per iteration of the GesRecog subsystem, has one actor in the graph. This actor sets

the parameters  in the body graph. The  graph has one actor, which

sets  in  with the value sent by the actor .  is a dummy “gain” actor

R C HE HM

1 1 1 1 1 1

p1 p2 p3 p4

sets p1 = p2

graph HE.body

sets the values of

p2 in HE.body

specification GesRecog

graph GesRecog.body

specification HE

graph HE.subinit
graph HE.init

sets p3 = p4

graph HM.body

sets the values of

p4 in HM.body

specification HM

graph HM.subinit
graph HM.init

M

1 1 p4 p4

E

1 1 p2 p2

D1

D2

Figure 5.2 PSDF modeling of the Gesture Recognition application.
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required so that the schedule in the body graph is  to accommodate for  tokens

as input to . Analogous behavior is seen in , , and .

5.2.2. Modeling with HPDF over SDF 

We prototyped an HPDF-based model of the gesture recognition algorithm in

Ptolemy II [17], a widely-used software tool for experimenting with new models of com-

putation and integrating different models of computation (See Figure 5.4). Here, we

applied SDF as the base model to which the HPDF meta-model is applied. Our prototype

was developed to validate our HPDF representation of the application, simulate its func-

tional correctness, and provide a reference to guide the mapping of the application into

hardware.

In the top-level, the HPDF application representation contains four hierarchical

actors (actors that represent nested subsystems) — Region, Contour, Ellipse and Match —

as shown in Figure 5.3. The symbols on the edges represent the numbers of data values

produced and consumed on each execution of the actor. Here  and  are parameterized

data transfer rates that are not known statically. Furthermore, the rates can vary during

execution subject to certain technical restrictions that are imposed by the HPDF model, as

described in Section 3.2.1.

5.2.3. Modeling with HPDF over CSDF

We have further refined our model for the gesture recognition algorithm using

CSDF [20] as the base model for HPDF. Figure 5.5 shows that Region can be represented

p2D1E p2

E HM init⋅ HM subinit⋅ HM body⋅

n p

Figure 5.3 HPDF model of the application with parameterized token production and 

consumption rates, where R is Region, C is Contour, E is Ellipse, and M is Match.

R C E M
1 1 n n  p p
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as a CSDF subsystem with  phases, where  is the number of pixels in one input frame,

and Region can work on a per-pixel basis (pixel level parallelism). On the other hand, Fig-

ure 5.5 suggests that Contour needs the whole image frame to start execution.

5.2.4. Modeling the actors

By examining the HPDF graph in conjunction with the intra-actor specifications

(the actors were specified using Java in our Ptolemy II prototype), we derived a more

detailed representation as a major step in our hardware mapping process. This representa-

tion is illustrated across Figure 5.6 and 5.7, which are lower level dataflow representations

of Region and Contour respectively. Here, as with other dataflow diagrams, the round

nodes ( , , , , and ) represent computations, and the edges represent unidirectional

data communication. 

Figure 5.4 The HPDF graph of the application as shown in Figure 5.3 with flattened 

hierarchy for C, E, and M in Ptolemy II.

s s

Figure 5.5 Model of the static part of the system
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Figure 5.6 and 5.7 are created by hand while mapping Region and Contour to data-

flow structures, and the actors  through  are each implemented in a few lines of Java

code. These are more refined dataflow representations of the actors in the original HPDF

representation. This kind of dataflow mapping from the corresponding application is a

manual process, and depends on the expertise of the designer as well as the suitability of

the form of dataflow that is being applied. In this particular case, the actors  to  repre-

sent the following operations (  here represents one pixel from the corresponding

image and the algorithm runs for all the pixels in those images,  represents thresh-

old values described in the algorithm):

 represents ;

 represents ;

 represents ;

 represents ; and

 represents .

The square nodes in Figure 5.6 represent image buffers or memory, and the dia-

mond-shaped annotations on edges represent delays. The representation of Figure 5.6

reveals that even though buffers Image1 and Image3 are being read from and written into,

the reading and writing occur in a mutually non-interfering way. Furthermore, separating

the two buffers makes the four stage pipeline implementation a natural choice. 

In Contour (Figure 5.7), the dotted edges represent conditional data transfer. In each

such conditional edge, zero or one data item can be produced by the source actor depend-

ing on its input data. More specifically, in Figure 5.7 there will either be one data value

produced on the edge between  and  or on the self looped edge, and the other edge will

A E

A E

ImageI

tholdi

A abs Image1 Image2–( )

B if Image3 thold1>( )

C if A( ) thold2>( ) thold3 Image1 thold4> >( )∧( )

D if A thold5>( )

E CD CB+
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have zero data items produced. The representation of Figure 5.7 and its data transfer prop-

erties motivated us to map the associated functionality into a four stage, self-timed pro-

cess.

5.3. Modeling the Distributed Gesture Recognition Algorithm

In this section, we provide the HPDF model for the distributed gesture recognition

algorithm, which is an extension to the single-camera gesture recognition algorithm pre-

sented in Section 5.2.

Figure 5.6 Region is shown to be broken into a four stage pipeline process.

A

B

Image1

Image2

Image3

C

D E

Image1'

Image3'

Figure 5.7 Contour is shown to have conditional edges and serial execution. This 

structure is implemented as a four-stage, self-timed process.
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5.3.1. Description of the Distributed Gesture Recognition Algorithm

In the distributed version of the gesture recognition algorithm, a peer-to-peer algo-

rithm was proposed in [34]. In the algorithm, two new terminologies were introduced.

Dominance of a contour is determined by the number of pixels of the same contour cap-

tured by a camera — which means that when a contour is captured by more than one cam-

era, after matching the corresponding contours across multiple cameras, the camera with

the highest resolution of that contour is said to “dominate” that contour. An object is made

of a few contours. Ownership of an object is determined by the largest size contour (for

example a torso in a body part), so the camera which “dominates” the largest size contour

is said to own the object.

With these terminologies in mind, a brief description of the distributed gesture rec-

ognition algorithm is presented. The algorithm assumes that the distributed cameras have

some knowledge of the topology of the network — knowledge of the coordinates of their

immediate neighbors would suffice. The algorithm also assumes that the regions of over-

lap in the frames of neighboring cameras are known beforehand.

Cam1 Cam2 Cam3

P1

P2 P3
P4

Figure 5.8 The geometry of the smart cameras in the multiple camera sys-

tem.
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The ‘Contour’ and ‘Ellipse’ has added logic to handle distributed gesture recogni-

tion. Depending on the load on the network of the cameras, ‘Contour’ or ‘Ellipse’ might

decide to send data to its neighbors. The trade-off being amount of data being sent (more

data to be sent in ‘Contour’ than in ‘Ellipse’) against better detection of ‘dominance’ and

hence ‘ownership’ of objects. In addition to performing the operations explained in Sec-

tion 5.1., ‘Contour’ (or ‘Ellipse’) check if the contour (or ellipse) detected lies inside or

near the overlapping region with a neighboring camera. It then transmits all such contours

(or ellipse) to its neighbors. Since coordinates of the neighboring cameras are known, the

transferred information can be transformed to the destination coordinates. Once the own-

ership of an object is determined through dominance of the major part of the object (like

dominance of the torso for a human body determines ownership of a human body), other

cameras would just send data regarding other parts of the object and leave the application

of the rest of the algorithm on the owner camera.

R1 C1 E1 M1

R2 C2 E2 M2

R3 C3 E3 M3

1 1

1

1

1

1

n11 n11

n22 n22

n33 n33

n21

n21n12

n12

n23

n23n31

n31

p1 p1

p2 p2

p3 p3

Figure 5.9 HPDF model of the distributed gesture recognition algorithm for 

the network in Figure 5.8, assuming contour is transmitted across cameras.
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5.3.2. Application modeling

We apply HPDF to model the distributed gesture recognition algorithm. The geome-

try of the smart cameras is as shown in Figure 5.8 where Cam1, Cam2, Cam3 are three

representative cameras with overlapping field of views. ,  etc. are objects in view,

where  is entirely in the field of view of Cam1 and hence no data sharing is done

between the cameras. However, ,  are in the overlapping region of multiple cameras

and hence sharing of information is essential. Figure 5.9 shows the HPDF over SDF

model of the distributed smart camera network when transmission across cameras are

done in contour level.  in the figure represents  contours are in or near the overlap-

ping region between camera  to camera  and hence transmitted from  to . Note that

 might not be equal to  as some contours might not be inside the overlapping

region, but close to it. Note that  and s are parameters and equal (homogeneous)

across an edge. Hence Figure 5.9 is the HPDF representation of the distributed gesture

recognition algorithm. Contours in Figure 5.9 are modified version of contours in Figure

5.3, we take a closer look in Figure 5.10.  is Figure 5.10 is same as the contour in the

1

n22

n21

n23

C
Over-

lap

n      n

Figure 5.10 A closer look at the modified Contour actor in the distributed 

gesture recognition algorithm.
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single camera algorithm, which is now followed by an “overlap” actor, which determines

the number of contours that are in (or near) the overlap region with its neighbors. Hence,

.

We presented to HPDF modeling of the distributed gesture recognition algorithm to

exemplify the robustness of HPDF modeling techniques over a wide variety of applica-

tion. For the rest of the chapter, we discuss the single-camera gesture recognition algo-

rithm and it is interchangeably used for “gesture recognition algorithm”.

5.4. From the Model to Hardware

Dataflow modeling of an application has been used extensively as an important step

for verification, and for performing methodical software synthesis [17]. Hardware synthe-

sis from SDF and closely related representations has also been explored (e.g., see [24, 45,

54]). In this section, we explore the hardware synthesis aspects for class of dynamic data-

flow representations that can be modeled using HPDF. Compared to PSDF, HPDF can be

more suited to intuitive, manual hardware mapping because of its non-hierarchical

dynamic dataflow approach. For example, Figure 5.3 might suggest a power-aware self-

timed architecture, where the different hardware modules hibernate and are occasionally

awakened by the preceding module in the chain. Alternatively, it can also suggest a pipe-

lined architecture with four stages for high performance. The designer can also suggest

multiple instantiations of various modules based on applying principles of data parallelism

on the dataflow graph [45]. Such application of data parallelism can systematically

increase throughput without violating the dataflow constraints of the application. Hence,

n n
21

n
22

n
23

+ +=
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an HPDF model can suggest a range of useful architectures for an application, and thus aid

the designer significantly in design space exploration.

In Region, the application level dataflow model (which shows pixel-level parallel-

ism) in conjunction with actor level dataflow (which suggests a pipelined architecture)

suggests that the pipeline stages should work on individual pixels and not on the whole

frame for maximum throughput. On the other hand for Contour, a self-timed architecture

that performs on the whole image was a natural choice.

In addition to dataflow modeling, we also applied some application specific trans-

formations. For example, the Ellipse module utilizes floating-point operations to fit

ellipses to the various contours. The original C code implementation uses a moment-based

initialization procedure along with trigonometric and square root calculations. The initial-

ization procedure computes the averages of the selected contour pixel locations and uses

these averages to compute the various moments. The total computation cost is

,

where  is the number of pixels in the contour, and each term  represents the cost of

performing operation . In an effort to save hardware and reduce complexity, the fol-

lowing transformation was applied to simplify the hardware for calculating averages and

moments:

,

and similarly for  and . The computational cost after this transformation is:

.
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Comparing this with the expression for the previous version of the algorithm, we observe

a savings of , which increases linearly with the number of contour pixels, at the

expense of a fixed overhead . This amounts to a large overall savings for prac-

tical image sizes.

Further optimizations that were performed on the ellipse-fitting implementation

included splitting the calculations into separate stages. This allowed for certain values

(such as ) to be computed in earlier stages and reused multiple times in

later stages to remove unnecessary computations.

The characterization of ellipses in Match is accomplished in a serial manner, in par-

ticular, information about previously identified ellipses is used in the characterization of

future ellipses. Our functional prototype of the matching process clearly showed this

dependency of later stages on previous stages. The hardware implementation that we

derived is similar to that of Contour, and employs a six-stage self-timed process to effi-

ciently handle the less predictable communication behavior.

5.5. Experimental Setup

The target FPGA board chosen for this application is the multimedia and microblaze

development board from Xilinx. The board can act as a platform to develop a wide variety

of applications such as image processing and ASIC prototyping. It features the XC2V2000

device of the Virtex II family of FPGAs. 

Some of the more important features of the board include the following.

• Five external, independent 512Kx36 bit ZBT RAMs 

• A video encoder-decoder.

3nC-

4C/ 3C*+

mxx myy mxy, ,
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• An audio codec.

• Support for PAL/NTSC TV input/output.

• On-board ethernet support.

• An RS-232 port.

• Two PS-2 serial ports.

• A JTAG port.

• A System ACE-controller and Compact Flash storage device to program the FPGA. 

5.5.1. ZBT Memory

One of the key features of this board is its set of five fully-independent banks of

512k x 32 ZBT RAM [58] with a maximum clock rate of 130 MHz. These memory

devices support a 36-bit data bus, but pinout limitations on the FPGA prevent the use of

the four parity bits. The banks operate completely independently of one another, as the

control signals, address and data busses and clock are unique to each bank with no sharing

of signals between the banks. The byte write capability is fully supported as it is the burst-

mode, in which the sequence starts with an externally supplied address.

Due to the size of the images, we needed to store them using these external RAMs.

A memory controller module was written in Verilog, simulated, synthesized, and down-

loaded onto the board. We then successfully integrated this module with the Region mod-

ule.

5.5.2. RS-232

In order to communicate between the host PC and the board, we used the RS-232

protocol. We adapted an RS232 controller core with a wishbone interface [59] and config-
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urable baud rate to write images from the PC to the memory. The board acts as a DCE

device; we implemented the physical communication using a straight-through three wire

cable (pins 2, 3 and 5) and used the Windows Hyperterminal utility to test it. This interface

was integrated into the Region and Memory Controller modules and tested in the board.

Figure 5.11 illustrates the overall experimental setup, including the interactions

between the PC and the multimedia board, and between the board and the HDL modules.

5.6. Design Trade-offs and Optimizations

There were various design decisions made during implementation of the algorithm,

some of which were specific to the algorithm at hand. In this section, we explore in more

detail the trade-offs that were present in the important design space associated with mem-

Figure 5.11 The overall setup showing interactions among various modules of 

our design and components of the multimedia board.
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ory layout. We also present a step-by-step optimization that we performed on one of the

design modules for reducing its resource requirements on the FPGA.

5.6.1. Memory Layout Trade-offs

The board memory resources are consumed by the storing of the images. Each of the

5 ZBT RAM banks can store 512 K words that are 32 bits long, for a total storage capacity

of 10 Mbytes. Given that each pixel requires one byte of storage and that there are 384 x

240 pixels per image, 90 Kbytes of memory are required to store each image. The first

module, Region, has 3 images as inputs, and 2 images as outputs. These two images are

scanned serially in the second module, Contour. The total amount of memory needed for

image storing is then 450 Kbytes, less than 5% of the external memory available on board.

However, reorganization of the images in the memory can dramatically change the num-

ber of memory access cycles performed and the number of banks used. These trade-offs

also affect the total power consumption. 

Several strategies are possible for storing the images in the memory. The simplest

one (Case 1) would be to store each of the five images in a different memory bank, using

90K addresses and the first byte of each word. In this way, the 5 images can be accessed in

the same clock cycle (Figure 5.12a). However, we can minimize the number of memory

banks used by exploiting the identical order in which the reading and writing of the

images occurs (Case 2). Thus, we can store the images in only two blocks, using each of

the bytes of a memory word for a different image, and still access all the images in the

same clock cycle (Figure 5.12b).

On the other hand, a more efficient configuration in order to minimize the number of

memory access cycles (Case 3) would be to store each image in a different bank, but using
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the four bytes of each memory word consecutively (Figure 5.12c). Other configurations

are possible, for example, (Case 4) we can have two images per bank, storing 2 pixels of

Figure 5.12 Image storage distribution. a) Case1: Each image in a separate bank 

using only the first byte of the first 90K words of the memory. b) Case2: Three 

images in bank 0 and two in bank. c) Case3: Each image in a separate bank but all 

four bytes used in each word, using 22.5K words. d) Case4: Images stored in three 

banks, each using 2 bytes of the first 45K words.
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each image in the same word (Figure 5.12d). Table 5 1 summarizes the number of banks

and memory access cycles needed for each of these configurations. 

Case 3 appears to be the most efficient memory organization. Here, the time associ-

ated with reading and writing of the images is 69120 memory access cycles, and the total

number of memory access cycles is also the lowest, 161280. This reduced number of

memory access cycles suggests that power consumption will also be relatively low in this

configuration. Figure 5.12 illustrates all of the cases discussed above.

5.6.2. Floating Point Optimizations

Floating-point operations are used throughout the implementation of the Ellipse and

Match blocks. The Ellipse block processes the  location of every pixel that is along

the border of a contour. From these locations, averages, moments, and rotation parameters

are derived that characterize a fitted ellipse to the particular contour. An ellipse is uniquely

defined by a set of five parameters — the center of the ellipse (dxAvg, dyAvg), its orienta-

tion (rotX) and the lengths of its major and minor axes (aX, aY) [26]. Here, the terms in the

parenthesis are the abbreviations used in this thesis (See Figure 5.16). 

Table 5 1.  Comparison of different memory layout strategies.

Configura-

tion

Banks 

Used

Read 

cycles-

Region

Write 

cycles-

Region

Read 

cycles- 

Contour

Total non-

overlap-

ping cycles

Total number 

of cycles

Case 1 5 92160X3 92160X2 184320X1 276480 645120

Case2 2 92160X1 92160X1 184320X1 276480 368640

Case3 5 23040X3 23040X2 46080X1 69120 161280

Case4 3 46080X2 46080X1 92160X1 138240 230400

x y,( )
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Due to the non-uniform shapes of the contours, the ellipse fitting is imperfect and

introduces some approximation error. By representing the parameters using floating point

values, the approximations made have more precision than if integer values were used. To

further motivate the need for floating point numbers, the Match block uses these approxi-

mations to classify each ellipse as a head, torso, or hand. To do so, the relative locations,

sizes, and other parameters are processed to within some hard-coded tolerances for classi-

fication. As an example, the algorithm considers two ellipses within a distance  of each

other with one being around  times larger than the other to be classified as a head/torso

pair. It is because of the approximations and tolerances used by the algorithm that floating-

point representations are desirable, as they allow the algorithm to operate with imperfect

information and still produce reasonable results

For our implementation, we used the IEEE 1076.3 Working Group floating-point

packages, which are free and easily available from [57]. These packages have been under

development for some time, have been tested by the IEEE Working Group, and are on a

fast track to becoming IEEE standards. Efficient synthesis of floating point packages

involved the evaluation of floating-point precision required by the smart camera algo-

rithm. The C code version of the algorithm utilizes variables of type double, which rep-

resent 64-bit floating-point numbers. Utilizing the floating-point library mentioned before,

we were able to vary the size of the floating-point numbers to see how the loss in precision

affected the algorithm outputs as well as the area of the resulting synthesized design. 

We reduced the number of bits used in the floating-point number representation and

performed a series of simulations to determine the loss in accuracy relative to the original

64-bit algorithm. Figure 5.16 shows the resulting root-mean-square (RMS) error for vari-

Y

X
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ous sizes of floating-point numbers. For the smart camera algorithm, we found that the

range from 20 to 18 bit floating-point number representations gave sufficient accuracy,

and any lower precision (such as 16-bit) caused a dramatic increase in the errors. The val-

ues that are most affected by the loss in precision are rotX, aX, and to some extent aY.

These values depend on the computation of the arctangent function. As the precision is

lowered, small variations cause large changes in the output of arctangent. The dxAvg and

dyAvg parameters are not as affected by the loss in precision, as the only computations

they require are addition and division. 

Since the arctangent and sqrt functions have domains from  to , and sqrt also

has a range of  to , theoretically the need might arise for expressing the whole real

data set. The input image data set on which our experiment was performed was relatively

small, and no prior knowledge was available of the range of values needed to be expressed

for a new data set that the algorithm might be subjected to. Thus our choice of floating-

point over fixed-point for implementation and simulations was motivated by the lack of a

quantization error metric and lack of predictability of the input data set for the low-level

processing of the gesture recognition algorithm. Also this low-level processing is a precur-

sor to higher-level gesture recognition algorithms for which, to our knowledge, no prior

metric has been investigated to determine how errors in low-level processing effect the

ability of the higher level processing to correctly detect and process gestures. Through fur-

ther simulation and analysis it may be possible to also determine suitable fixed-point pre-

cision, however, care must be taken to ensure reliable results especially for the arctangent

function.

∞ ∞–

∞ ∞–
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Table 5 2  presents the area in number of look-up tables required for each of the

floating-point number representations. As expected, when we reduce the number of bits,

the area of the resulting design decreases, but at the cost of lost precision.

The number of available LUTs in an FPGA varies heavily depending on the family

of the FPGA and also on the specific devices within the family. For example, in the Virtex

II family of the Xilinx FPGAs, the XC2V1000 contains 10,240 LUTs, the XC2V2000

contains 21,504 LUTs, and the XC2V8000 contains 93,184 LUTs. In the Xilinx Virtex II

Pro family, the XC2VP7 contains 9,856 LUTs and XC2VP100 contains 88,192 LUTs

(other intermediate devices in the family are omitted). In our experimental setup, we used

the XC2V2000 FPGA, which did not have enough resources for us to implement Ellipse

with the desired precision on the board (our current implementation involves 16-bit float-

ing point numbers and additional optimizations) but a larger FPGA would have sufficed.

5.7. Results

In this section, we present some representative results from both software and hard-

ware implementations of the gesture recognition algorithm. 

Table 5 2.  Synthesis results.

Number of 

bits

Area (in 

LUTs)

32-bit 110092

21-bit 54944

20-bit 46951

18-bit 41088

16-bit 23923
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We developed a software implementation of the gesture recognition algorithm on a

Texas Instruments (TI) programmable digital signal processor. We evaluated this imple-

mentation using the TI Code Composer Studio version 2 for the C’6xxx family of pro-

grammable DSP processors. The application, when implemented with our HPDF model,

for a C64xx fixed-point DSP processor has a runtime of 21405671 cycles, and with a

clock period of 40 ns, the execution time was calculated to be 0.86 sec. The scheduling

overhead for the implementation is minimal, as the HPDF representation inherently leads

to a highly streamlined quasi-static schedule. The worst-case buffer size for an image of

348 X 240 pixels was 184 kilobytes on the edge between Region and Contour, 642 Kb

between Contour and Ellipse and 34 Kb between Ellipse and Match for at total of 860

Region

Figure 5.13 Our HDL representation of Region transforms the image on the left to the 

output on the right.

Contour

Figure 5.14 Actual transformation to the image done by HDL representation of Con-

tour.
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kilobytes. The original code (without modeling) had a run-time of 27741882 cycles, and

with the same clock period of 40ns, the execution time was 1.11 sec. Thus, HPDF-based

implementation improved the execution time by 23 percent.

To further take advantage of the parallelism exposed by HPDF modeling, we imple-

mented both the Region and Contour functions in hardware. We used Modelsim XE II

5.8c for HDL simulation, Synplify Pro 7.7.1 for synthesis of the floating-point modules,

and Xilinx ISE 6.2 for synthesis of non-floating-point modules, and for downloading the

bitstream into the FPGA. Figure 5.13 and 5.14 show the outputs of the first two processing

blocks (Region and Contour respectively) after they were implemented in HDL. Compar-

Figure 5.15 Part of Figure 5.14 zoomed-in and colored to show the effect of Con-

tour.

Figure 5.16 Comparison of percentage RMS error for different-length floating point 

representations, normalized to a 64-bit floating point representation.
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ing these outputs with the outputs of the software implementation verified the correctness

of the HDL modules. 

5.8. Conclusion

In this chapter, we have developed homogeneous parameterized dataflow (HPDF),

an efficient meta-modeling technique for capturing a commonly-occurring, restricted form

of dynamic dataflow that is especially relevant to the computer vision domain. HPDF cap-

tures the inherent dataflow structure in such applications without going into more compli-

cated hierarchical representations or into more general dynamic dataflow modeling

approaches where key analysis and synthesis problems become impossible to solve

exactly.

We have also developed and applied a novel design methodology for effective plat-

form-specific FPGA implementation of computer vision applications based on the HPDF

modeling technique. In particular, we have used HPDF to model a gesture recognition

algorithm that exhibits dynamically-varying data production and consumption rates

between certain pairs of key functional components.

The top-level HPDF model and subsequent intermediate representations that we

derived from this model naturally suggested efficient hardware architectures for imple-

mentation of the main subsystems. The hardware description language (HDL) code for the

four modules of the algorithm was developed following these suggested architectures. The

modules were then verified for correctness, and synthesized to target a multimedia board

from Xilinx. Memory management and floating point handling also played a major role in

our design process. We explored various trade-offs in these dimensions and through the
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framework of our HPDF-based application representation, we integrated our findings

seamlessly with the architectural decisions described above.
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Chapter 6. HPDF-based Hardware Mapping Case 

Study: Image Registration

6.1. Introduction

Image registration is a fundamental requirement in medical imaging and an essential

first step for meaningful multimodality image fusion and accurate serial image compari-

son. It is also a prerequisite for creating population-specific atlases and atlas-based seg-

mentation. Despite the existence of powerful algorithms and clear evidence of clinical

benefits they can bring, the clinical utilization of image registration remains limited. The

slow speed (i.e., long execution time) of fully automatic image registration algorithms

especially for 3D images has much do with this lack of clinical integration and routine use.

This chapter focuses on image registration algorithms that must be executed under

real-time performance constraints. In some cases, for example, visual accessories in surgi-

cal applications must meet stringent performance criteria in order to provide adequate

response and interactivity to surgeons. Hardware implementation is one way to speed-up

applications over existing software implementations. However, designing hardware

requires significantly higher turn-around time, and is more error prone compared to soft-

ware implementation. Systematic methods based on precise application modeling abstrac-

tions and associated hardware mapping techniques are therefore desirable, since such

methods make the design process more structured, while at the same time exposing oppor-

tunities for system-level performance optimization.
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In this chapter, we develop such a structured design methodology in the context of

image registration. Our approach starts with capturing the high level algorithm structure

through a carefully-designed, coarse-grain dataflow model of computation. As a result,

designers are exposed to various design points in the design space which represents an

area-performance trade-off for different configurations of the circuit to customize their

final implementation based on certain input characteristics that we define later. We also

develop methods to analyze this dataflow representation to systematically provide a hard-

ware implementation that dynamically optimizes its processing structure in response to

the particular image registration scenario in which it operates.

Image registration algorithms have the potential to be mapped onto hardware for

efficient execution. Fast Automatic Image Registration (FAIR) [10] is such an architecture

proposed by Castro-Pareja et. al. for accelerated hardware implementation of rigid image

registration. FAIR is optimized and fine tuned for the partial volume interpolation based

image registration by means of pipelining, parallel memory access, and distributed pro-

cessing. FAIR created a proof-of-concept implementation, and achieved greater than an

order of magnitude speedup for registration of multimodality images (MR, CT and PET)

of the human head, PET and CT images of the thorax and abdomen, and 3D ultrasound

and SPECT images of the heart [50]. As a demonstration of single modality image regis-

tration, FAIR used the accelerated implementation also for registration of pre- and post-

exercise 3D ultrasound images of the heart [50]. 

Several clinical applications to benefit from the proposed work include whole-body

PET/CT registration [49], virtual colonoscopy [9] and image registration tasks involving

pre- and intra-operative images in the context of image-guided surgeries [13]. The overall
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benefits will extend to numerous other applications being developed by researchers world-

wide.

In this chapter, we build on our experience with architectures for image registration

by developing and applying novel dataflow-based models and analysis methods of image

registration applications. These methods provide a framework for mapping and high-level

optimization of these applications onto embedded architectures. Using this framework, we

evaluate trade-offs between different design points and propose a new dynamically recon-

figurable architecture for image registration that optimizes its processing structure adap-

tively based on relevant characteristics of its input. This methodology is more generic and

further low-level fine-tuning for specific applications can be performed on top of the

implementation derived through the dataflow.

This work was a joint effort between us and the research group of Dr. Raj Shekhar at

University of Maryland, Medical College. In particular, I would like to thank Yashwant

Hemaraj for the simulation and initial synthesis of the Verilog code for the sys-

tem.[21][48].

6.2. FPGA technology

In this work, we target our hardware optimization framework to an FPGA device,

the Altera StratixII EP2S15F484C5. A major advantage of FPGA technology is the poten-

tial for dynamic reconfiguration of the processing structure. In the context of FPGA

implementation, dataflow is especially useful because it effectively exposes application

concurrency, and facilitates configuration of and mapping onto parallel resources. This

opens up design space exploration opportunities for meeting different user constraints, and
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achieving different implementation trade-offs. However, streamlining the use of dataflow

technology is challenging because it requires careful mapping of application characteris-

tics into the graphical and actor-based modeling abstractions of dataflow, and because of

the associated optimization issues, while exposed more effectively for signal processing

applications compared to other modeling abstractions, are usually NP-complete to solve

exactly [4]. This chapter addresses these challenges for the image registration domain.

6.3. Application Description

Image registration is the process of aligning two images that represent the same fea-

ture. So it can be thought of as a mapping function  that accepts an image to be

mapped (also called the floating image ) and returns the image transformed such that it

can map directly onto another image (also called the reference image ). Medical image

registration concentrates on aligning two or more images that represent the same anatomy

from different angles, obtained at different times, and/or using different imaging tech-

niques. Image registration is a key feature for a variety of imaging techniques and there

two main algorithmic approaches — linear and elastic. A linear transformation can be

approximated by a combination of rotation, translation and scaling coefficients while an

elastic approach is based on nonlinear continuous transformations, and is implemented by

finding correlations among meshes of control points. Our study concentrates on the linear

approach. As mentioned earlier, real-time image registration is essential in the medical

field for enabling image-guided treatment procedures, and pre-operative treatment plan-

ning.

F:I R→

I

R
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There are many approaches to 3D image registration [36]. But for hardware imple-

mentation a robust, accurate, flexible algorithm which does not require manual feedback

is preferred. Algorithms based on voxel (a pixel in 3-d) similarity fulfill the above criteria

better than feature-based approaches [23]. For the rest of the chapter, we use voxel which

can be treated as the 3-d equivalent of a pixel. Of them, the most commonly used tech-

nique is image registration based on mutual information [41]. Mutual information (MI)

methods have been shown to be robust and effective for multi-modal images.

6.3.1. MI-based Image Registration

Figure 6.1 represents the algorithmic flow of MI-based image registration. MI-based

image registration relies on maximizing the mutual information between two images.

Figure 6.1 Mutual Information based Image Registration
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Mutual information is a function of two 3-D images and a transformation between them.

The transformation matrix contains the information about the rotation, scaling shear and

translations that need to be applied to one of the images in order to map it completely to

the other image so that a one-to-one correspondence is established between the coordi-

nates of the images where they overlap. A cost function based on the mutual information

is calculated from the individual and joint histograms. The transformation that maximizes

the cost function is viewed as the optimum transformation. The goal of MI-based image

registration is then to find this optimal transformation :

, 

Here, RI is the reference image, and FI is the floating image (the image that is being regis-

tered). 

6.3.2. Computation of Mutual Information

Mutual information is calculated from individual and joint entropies using the fol-

lowing equations.

,

,

and , (6.1)

where , ,  and  are the reference image entropy, float-

ing image entropy, joint entropy and mutual information between the two images for a

given transformation.

The mutual histogram represents the joint intensity distribution. The joint voxel

intensity probability,  is the probability of a voxel in the reference image hav-

T̂

T̂ max
T

MI RI x y z, ,( ) FI T x y z, ,( )( ),( )arg=
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ing an intensity  and the corresponding voxel for a particular transformation  in the

floating image having an intensity , can be obtained from the mutual histogram of the

two images.

The individual voxel intensity probabilities are the histograms of the reference and

floating images in the region of overlap of the two images for the applied transformation.

The individual histograms can be computed by taking the row sum and the column sum of

the joint histogram.

The calculation of mutual information starts with the accumulation of the mutual

histogram values to the mutual histogram memory while every coordinate is being trans-

formed (MH update stage). This is followed by the MI calculation stage where the values

stored in the mutual histogram memory are used to find the individual and joint entropies

described above.

In the MH update stage, voxel coordinates are multiplied by the transformation

matrix and the resultant coordinates obtained are used to update the joint histogram. Since

the new coordinates do not always coincide with the location of a voxel in the reference

image interpolation schemes need to be employed. In the trilinear interpolation scheme,

the new value of the floating image  is calculated based on the amount of off-

set the new coordinates  have from the nearest voxel position. However this

scheme introduces a new value, which makes the MH sparse and hence ineffective in MI

calculation. Maes et. al. [35] showed that the partial volume interpolation scheme does not

cause such unpredictable variations in the MH values as the transformation matrix

changes. This method accumulates the eight interpolation weights directly into the mutual

histogram instead of calculating a resultant intensity level and increment that intensity

a T

b

FI x' y' z', ,( )

x' y' z', ,( )



97

level's MH count by one, as in trilinear interpolation. Thus the partial volume interpolation

scheme ensures a smooth transition in the MH memory and hence causes smooth MI

changes for various transformations applied.

Constructing the mutual histogram, the first step in mutual information calculation,

involves performing partial volume interpolation  times, where  is less than or equal to

the number of voxels in the reference image. The number of operations in the second step,

the calculation of mutual information, is a function of the size of the mutual histogram.

Since the size of the mutual histogram is less than the size of the image, it is the first part

which is the performance bottleneck. 

It has been shown that the size of the mutual histogram can be selected as 

for  bit images. By doing so, we can obtain a very good density of MH values while at

the same time preserving the variation along the different entries.

At current microprocessor speeds, the time of mutual histogram calculation for 3-D

images is dominated almost exclusively by the memory access time. Around 25 memory

accesses are needed to perform partial volume interpolation per voxel of the reference

image: 1 to access the reference image voxel, 8 to access the 8-voxel neighborhood in the

floating image and 16 accesses to the mutual histogram memory (8 reads to get the old

value in the adder and 8 writes to write back the updated value after adding the weights).

Accesses to the reference image are sequential and standard caching techniques can be

effectively used. The mutual histogram memory has a small size and thus accesses to it

also have high locality of reference. However, the floating image is accessed in a direction

across the image that depends on the transformation being applied. Unless there is no rota-

tion component, this direction is not parallel to the direction in which voxels are stored,

n n

64 64×

8
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hence accesses have poor locality and do not benefit from memory-burst accesses or

memory-caching schemes.

Speedup of registration is achieved by identifying bottleneck areas and optimizing

them in order to decrease the processing time. Speedup of the algorithm can be obtained

by using pipelined architectures and also by using parallel architectures [10]. Since the

majority of the registration execution time is spent on calculating the mutual histogram,

accelerating mutual histogram calculation has been the focus of our work. The aim of this

chapter is to use dataflow graphs to describe the inherent concurrency in applications, ana-

lyze the bottleneck areas and to use the dataflow graph transformations to exploit potential

areas which can be parallelized. 

6.3.3. Optimization

The image registration algorithm calculates the transformation matrix for which the

mutual information between the images is maximum. Initially, a small number of test

transformations are applied. The values of these transformations and the MI values are

stored in an optimizer. The optimizer outputs the values of the new transformation depend-

ing on the values of the mutual histogram in the previous iterations. Optimization of the

transformation parameters depends on the nature of the images and the amount of mis-

alignment between the two images. Some methods, such as the downhill simplex method,

provide faster convergence than the others. In the simplex method, in order to optimize a

transformation with  parameters, the optimizer needs to store  previous values.

There is a trade-off between the convergence time and the complexity of the optimizer.

m m 1+( )
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6.4. Modeling using HPDF-CSDF

In this section, we construct a hierarchical dataflow representation of the MI-based

image registration algorithms and we use the HPDF meta-modeling approach integrated

with CSDF for modeling lower-level, multi-phase interactions between actors which was

introduced in [20]. Figure 6.2 shows our top level HPDF model of the application. Here,

“ ” represents  units of delay; each unit of delay is analogous to the 

operator in signal processing, and is typically implemented by placing an initial data value

on the corresponding dataflow edge. The MI actor consumes one data value (token) on

every execution. This token contains co-ordinates of the reference image and the floating

image. After  executions each consuming one token (coordinate values in this case),

where  denotes the size of the image, the MI actor produces the entropy between the ref-

erence and floating images. This value is then sent to the optimizer as a single token.

The optimizer, which stores the previous  values to perform a simplex opti-

mization of an -parameter transformation vector, sends  tokens to the MI actor. Since

 can vary depending on the number of parameters used to represent the desired transfor-

Mutual
Information

(α)

Optimizer

(β)

(s 0) m m

(s-1 0) 1 0 1(s 1) 0

(m+1)D

Figure 6.2 Top level model of image registration application.

m 1+( )D m 1+( ) z
1–

s

s

m 1+( )

m m

m



100

mation, the associated edge represents a variable-rate edge of the HPDF graph. A valid

schedule for this HPDF would be

. (6.2)

The internal representation of the hierarchical MI actor is shown in Figure 6.3. Here,

“Reference Image” ( ) consumes one token (coordinates) and produces one token (inten-

sity values at the input coordinates), and “Coordinate Transform” ( ) produces one token,

which represents the transformed coordinates. If this voxel is valid (i.e., the voxel coordi-

nate falls within the floating image coordinates boundary), it is passed on to the “Weight

Calculator” ( ) and “Floating Image” ( ).

Now since all voxels may not be valid,  tokens ( ) are produced from the “Is

Valid” ( ) actor. This actor also produces  tokens on the edge that connects it to “MH
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Memory” ( ) — specifically, it passes a token from “Reference Image” only if a valid

voxel results from the transformation on input coordinates. For every input token in  and

, eight output tokens are produced on both the outgoing edges. The corresponding eight

intensity locations in the “MH Memory” are updated based on the tokens produced by . 

After all coordinates are processed, which occurs during the the first  phases of

the MH Memory actor or equivalently after  phases of the “Coordinate Transform” actor,

one token of size  is sent to the “Decomposer”, which in turn sends out  tokens

to the “Entropy Calculator” ( ) actor.  consumes all of these tokens, and produces a sin-

gle token that contains the entropy value corresponding to the transformation applied

based on equations given in (6.1). We added the “Decomposer” mainly for ease of repre-

sentation of the application in dataflow and it was subsumed by “MH Memory” in the

final hardware implementation. A valid schedule (ordering of execution) for the Mutual

Information subsystem based on Figure 6.3 would be . 

In this chapter, we describe our schedules as looped schedules which is a compact

form of representing the execution order of actors and any generic looped schedule of the

form  represents  successive repetitions of execution sequence 

where each  is either an actor or another looped schedule (to express nested looped

schedules). 

Looking more closely at “Coordinate Transform”, we see that it has an additional

input edge to it which takes in the initial  tokens from the “Optimizer” ( ) but produces

no output. Figure 6.3 only represents the steady-state behavior of Mutual Information sub-

system for simplicity. Figure 6.4 represents the initialization and the steady-state behavior

of Coordinate Transform - where the initial  tokens are used to calculate the new trans-
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formation matrix and hence it updates the values inside the actor without producing any

data. Hence the schedule of the whole “Mutual Information” subsystem considering the

initial and steady-state behavior of “Coordinate Transform” would be:

. (6.3)

Figure 6.5 shows the parameterized dataflow model of the “Entropy Calculator”.

“Row Sum” ( ) executes once every time it gets one row (  elements) to produce one

Coordinate
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Figure 6.4 Initial and steady-state modeling of Coordinate Transform.
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token but the “Column Sum” ( ) can only produce an output for every input after it had

already received  elements corresponding to  rows. There are many

valid schedules that can be proposed for Figure 6.5, but here we will try to derive any one

valid schedule. Since a valid schedule for “Entropy Calculator” is quite complex, we

derive it step-by-step - the graph has three distinct paths, the upper path (involving

) would have a schedule , the middle path (involving )

would have a schedule , and the lower part of the graph (involv-

ing ) would have a schedule . Combining these, a valid schedule for the

“Entropy Calculator” subsystem can be:

. (6.4)

Modeling of “Entropy Calculator” exposes huge buffer overhead.

Combining (6.3) and (6.4), the schedule for the “Mutual Information” subsystem

would be:
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and taking (6.2) also into account, the schedule for the whole image registration algorithm

can be derived by replacing  with (6.5).

Looped schedule is ideal for software code generation from a dataflow graph as

every execution in the schedule can be replaced by a function call (or inline code) and cor-

responding loop index can be upper bounded by the iteration count (  in our case)

to generate the executable code for the application [4].

Interestingly, the model shows potential for parallel hardware mapping at various

levels of abstraction. For example, extensive “intra-voxel” (within the processing struc-

ture for a single voxel) parallelism is possible for the MH memory and adder. From Figure

6.3, we can see a data-rate mismatch between “Weight Calculator”, “Floating Image” and

“Adder”, “MH Memory”. This naturally suggests a intra-voxel parallel architecture as

shown in Figure 6.6 where multiple copies (eight in the illustration as the data-rates mis-

matched by a factor of eight) of an actor can be created for a parallel implementation. We

also note, that resultant graph in Figure 6.6 becomes HPDF as all the parameterized actors

now have the same production and consumption rates and hence fire at the same rate. The

dataflow model also exposes inter-voxel parallelism, (as input actors  and  have  dis-

tinct phases where  is the number of voxels in the image) which leads to another set of

useful parallel implementation considerations. We also develop an architecture in this

which applies both intra- and inter-voxel parallelism, and balances these forms of parallel-

ism adaptively based on input characteristics.

α

m s r q, , ,

A B s
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6.5. Actor Implementation

The lowest level (non-hierarchical) actors in our dataflow-based design are imple-

mented in Verilog. As an illustration of Verilog-based actor in our design, Figure 6.7

shows the code corresponding to the Adder actor (  in Figure 6.3). An interesting point to

note in this code example is that by analyzing the dataflow behavior, we can ensure that

the interface code between the adder and the weight calculator places the correct weight at

every clock cycle in the input buffer labeled ‘weight’. This illustrates how using dataflow

as a high-level modeling abstraction helps to structure the hardware implementation pro-

/* global definitions in top.v */

reg [imsize+fracwidth-1:0] mh [0:4096];

reg [imsize+fracwidth-1:0] edgeweights [0:numweights-1];

/*one example module */

module mhupdate

#(parameter imsize = 8,

parameter fracwidth = 8,

parameter numweights = 8,

parameter lognumweights = 3)

(input [imsize-1:0] rival,fival,

input [imsize+fracwidth-1:0] weight,

input clk);

reg [11:0] currval;

reg [lognumweights:0]counter;

always @(posedge resetall)

counter <= 0;

always @(posedge clk)

begin

if(counter < numweights) begin

mh[currval] <= mh[currval] + weight;

currval[5:0] <= rival[imsize-1:imsize-6];

currval[11:6] <= fival[imsize-1:imsize-6];

counter <= counter + 1;

end 

else

counter <= 0;

end

endmodule 

Figure 6.7 Example code (partial) of the Adder from Figure 6.3

F
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cess, and makes the hardware description language (HDL) code modular and reliable.

Hence we had a one-to-one mapping in hardware from the dataflow graph except for the

“Decomposer” which was subsumed inside “MH Memory” for efficient implementation.

6.6. Experimental Setup

We explored in detail the effect of having a parallel architecture on the application

as suggested by the dataflow model. In our experimental setup, we varied the degree of

parallelism and studied the relation between performance and area of the system. We also

noted that the percentage of voxels that fall in the valid range after a transformation by the

“Coordinate Transform” greatly influences the runtime of the algorithm. Hence we studied

our system performance by varying percentage of valid voxels (PVV) for a given transfor-

mation.

6.6.1. Degree of Parallelism

When the “Floating Image” is provided with the base address in the floating image

space, the actor generates the floating image values (corresponding to the neighborhoods)

and provides it to the mutual histogram memory for updating the mutual histogram with

the weights generated by the weight calculator actor. When we have just one set of actors

(floating image, weight calculator and the mutual histogram memory), it takes eight fir-

ings of this set of actors (corresponding to the values of the eight neighborhood) before the

next input can be processed by the coordinate transform actor. However if we have two

copies of the above set of actors, then each set can process four neighborhoods each. Sim-

ilarly if we have four (or eight) copies, then each set can process two (or one) neighbor-

hood(s) each. This would mean that the number of firings of each set of actors becomes ,4
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 (or ) respectively. As updating the mutual histogram is a crucial part of the algorithm,

such parallel execution should result in significant improvement of the whole application.

However the parallel configurations result in extra FPGA resources and extra exter-

nal memory. Memory requirement also increases with increasing image size. In addition to

this, there is a cost of interfacing these external memories that needs to be addressed. Each

memory component comes with a latency that adds to the processing time. 

6.6.2. Relationship between PVV and Performance

When the transformed coordinate falls in the valid region, there are eight firings of

the actor set (“Adder”, “MH Memory” in Figure 6.3). However when “Is valid” does not

generate a signal (indicating the for the given input coordinates, the transformation pro-

duces coordinates outside of the valid coordinate boundary), the iteration of the graph

stops for that input coordinates and the next token is processed by the coordinate trans-

form actor indicating a new iteration. In our implementation, when an invalid voxel coor-

dinate is generated for the first time, there is a two cycle penalty (as we have to propagate

the invalid signal through “Weight Calculator” and “Adder”), however the penalty is only

one clock cycle for every successive invalid signals (as now, we already have those two

actors filled with the invalid signal).

We explore the performance area curve for different PVVs in Section 6.7.

6.7. Results

In this section, we present hardware synthesis results for various proposed configu-

rations of the Image Registration application. The results are obtained using the QuartusII

synthesis tool from Altera for the StratixII family of FPGA (StratixII EP2S15F484C5).

2 1
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Table 6.1. presents the synthesis results for various configurations - the columns represent

the number of parallel datapaths for MH Update actor and rows represent in order - exter-

nal memory required for the system, logic circuitry used in the FPGA for the MI actor,

DSP elements for the circuit for the MI actor, total number of ALUTs used in the FPGA

for MI, and maximum frequency of operation of the circuit representing MI. We note that

external memory increases with increasing data-paths due to multiple copies of “MH

Memory”. 

Number of parallel

datapaths
1 2 4 8

External Memory 256Kb 512Kb 1Mb 2Mb

LC Registers in FPGA 427 576 871 1463

DSP Elements 30 30 30 30

Total FPGA Area

(number of ALUTs)
598 878 1439 2588

Max freq of operation

(MHz)
74 72.2 74 70.1

Table 6.1.  Synthesis results for the whole system for different configurations of the MH 

Update actor.
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An adaptive logic module (ALM) is the basic building block of Altera StratixII

FPGA. Each ALM contains a variety of LUT-based (look-up table) resources, two full

adders, carry-chain segements, two flipflops and can be adaptively divided into two adap-

tive LUTs (ALUTs). Logic Cell (LC) registers represent the total number of registers used

and ALUTs used represent the percentage of the available resources in the FPGA that is

used. From Table 6.1. we can see that both of them increase as the number of data-paths

are increase. However, the number of DSP elements used and the frequency of operation

almost remains constant. Table 6.1. is independent of PVV as PVV only affects the runt-

ime of the circuit. 

Next, we simulated the performance of the various configurations of the circuit with

four different PVVs as 100, 90, 50 and 10 in terms of number of clock cycles. We assumed

that when PVV is low, invalid signals are contiguous and they are sparse when PVV is

high. This has a bearing on the performance as mentioned in Section 6.6.2. Figure 6.8

shows the area (measured by the number of adaptive logic units in the circuit without con-

sidering the external memory) and performance (measured by the number of execution

cycles) trade-off curve as we vary the number of parallel datapaths in the MH update actor

Number of

parallel datapaths
1 2 4 8

Power for Logic

(mW)
4 15 25 35

Dynamic power for

FPGA (mW)
92 115 147 159

Table 6.2.  Comparison of power consumption of circuit in different datapath 

configurations
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and the PVV. ,The trend in Figure 6.8 reflects that number of clock cycles decrease with

increasing amount of parallel data paths though the corresponding area increases but the

relative change in number of clock cycles by increasing data-paths is also dependent on

the PVV. Extending on this, a PVV-based dynamically-reconfigurable FPGA implementa-

tion is proposed in Section 6.7. For a more complete overview of the different configura-

tions, we also present the full system area estimation with consideration for external

memory in Figure 6.9.

We also measured the dynamic power of the FPGA for both the logic part and the

full circuit including RAM I/O power, DSP blocks, and clocks (without considering exter-

nal memory as that would depend on the physical board on which the application is finally

implemented) as shown in Table 6.2. . As expected, we see an increase in the power con-

sumption as the number of parallel data-paths increase.

Figure 6.8 Area v/s clock cycles for different PVV for different number of 

datapaths.
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6.8. Dynamic Reconfiguration

In this section, we compare multiple one voxel-one memory architecture against one

voxel-eight memory architecure and elaborate on the dynamic reconfigurability of our

proposed architecture and present results of our design. In other words, we compare inter-

voxel parallelism against intra-voxel parallelism both of which were exposed by our data-

flow-based design (Section 6.4).

Based on Section 6.7, we see that the PVV is input-dependent and as the PVV

increases, the run-time increases and memory access becomes more of a bottleneck, and

gradually, it becomes more performance-effective to trade-off inter-voxel parallelism in

the architecture for intra-voxel parallelism in the form of multiple (parallel) memories that

alleviate the memory bottleneck. This trend is demonstrated by the data in Table 6.3,

Figure 6.9 Whole system memory requirements in bytes including external memory.
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which compares the performance, for different PVV values, of a 1 voxel-8 memory archi-

tecture (intra-voxel parallelism) to a 7 voxel architecture with 1 memory module per voxel

(inter-voxel parallelism) architecture. The value of 7 is selected here because for the tar-

geted FPGA device, the area of a 1 voxel-8 memory architecture is around 7 times that of

a 1 voxel-1 memory architecture. The units of performance in Table 6.3 are nanoseconds

per voxel per co-ordinate transform and the frequencies of operation of the different mem-

ory architectures vary between 70 MHz and 74 MHz for various configurations.

We note in Table 6.3, considering the area constraint, performance of 1 voxel-1

memory architecture is better than that of a 1 voxel-8 memory architecture, however this

trend changes as the voxel validity percentage increases. Therefore, our image registration

architecture monitors the PVV metric at run-time and dynamically reconfigures the archi-

tecture from inter-voxel parallelism mode to intra-voxel parallelism mode once the transi-

tion point of around 50% PVV is observed. In order to prevent rapid toggling between the

two architectures (also known as thrashing) when PVV is close to 50%, users can select a

threshold  so that architecture gets reconfigured when a % PVV state is fol-

Table 6.3.  Comparison of intra- versus inter-voxel parallelism modes for different PVV 

values.

Voxel
Validity

Performance of 7

1 voxel-1 memory

Performance of 1
1voxel-8 memory

10% 6.39/7 = 0.91 2.54

50% 17.8/7= 2.54 2.91

90% 27.82/7 = 3.97 2.5

100% 30.08/7 =  4.29 2.33

T 50 T–( )
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lowed by a % PVV state or vice versa. This can be viewed as a periodic (once per

image), PVV-driven re-scaling of the subsystem shown in Figure 6.6. So in effect, our pro-

posed architecture monitors the PVV at run-time, and dynamically reconfigures between

inter-pixel and intra-pixel parallel architectures when the PVV crosses 50%.

Note that the optimal transition point is in general image-dependent, and our use of a

fixed value of 50% as a transition point is therefore a heuristic approach. Dynamically

determining the transition point is a useful topic for further investigation.

6.9. Conclusion

In this chapter, we have presented a dataflow-based design approach towards imple-

mentation of an image registration algorithm onto an FPGA. We have captured the inher-

ent concurrency of the application at inter- and intra-voxel level by modeling it through

the framework of homogeneous parameterized dataflow. We have also presented some

dataflow motivated parallel architectures for image registration and presented a detailed

study of area performance trade-off for these multiple architectures. Based on the results

obtained, we have also presented the derivation and FPGA mapping of an architecture for

dynamically-reconfigurable image registration. We have demonstrated the ability of the

architecture to strategically adapt its parallel processing configuration in response to rele-

vant image characteristics, and for this purpose we have formulated the PVV metric,

which represents the percentage of valid voxels that results from a transformation on the

given floating image. 

50 T+( )
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Chapter 7. Intermediate Representations for MATLAB 

Synthesis

Specifying signal processing applications in terms of dataflow graphs [31] or pro-

cess networks [33] is a common practise. This exposes inherent concurrency in the appli-

cations which otherwise is an extremely hard problem to solve starting from a sequential

program. Synchronous dataflow (SDF) graphs, Cyclostatic dataflow (CSDF) graphs and

Kahn process networks [27] (KPN) are natural choices for modeling static applications.

Previous work showed that it is possible to generate a KPN from a sequential affine

nested-loop program [28]. SDF and CSDF graphs can be analyzed for correctness, finite

buffer sizes, and scheduling which cannot be done for a KPN graph. KPN graphs do not

have a global schedule, and they synchronize by blocking reads. Due to the inherent

unblocking writes that are part of the KPN specification, every edge on a KPN graph can

potentially have an infinite buffer. In our recent work, [14], we showed that a KPN graph,

which is input-output equivalent to a static affine nested loop program (and hence can be

analyzed by a toolflow named Compaan as we describe later) is a special case of a CSDF

graph whose production and consumption rates in each phase is either a  or a . In this

chapter, we give a brief description of the work presented in [14] and show our proposed

extensions to a dataflow specification language (DIF) to capture the equivalent CSDF

arising out of a KPN.

We are very greatful to Prof. Ed Deprettere and Dr. Todor Stefanov for their time

and effort in collaborating with us for this work.

0 1
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7.1. Introduction to Compaan

The behavior of signal processing applications is very often specified in terms of

affine nested loop programs. An affine nested loop program is a nested loop program in

which the loop boundaries, the conditions, and the variable indexing functions are affine

functions of the loop iterators. An example of such a program is shown in Figure 7.1. Such

programs can be automatically converted to input-output equivalent concurrent specifica-

tions where the underlying model of computation is Kahn Process Network (KPN) [12]. A

Kahn process network is a network of processes that process communicate point-to-point

over unbounded unidirectional FIFO-type buffered channels, and synchronize by means

of blocking reads. A Kahn process network has neither a global memory nor a global

%parameter M 10 20;

%parameter N 1000 10000;

for k = 1:1:N,

[x(k)] = Read_SourceX();

end

for k = 1:1:M,

[y(k)] = Read_SourceY();

end

for j = 1:1:N,

for i = 1:1:M,

[x(j), y(i)] = f(x(j), y(i));

end

end

for k = 1:1:N,

[SinkX(k)] = WriteX(x(k));

end

for k = 1:1:M,

[SinkY(k)] = WriteY(y(k));

end

Figure 7.1 An affine-nested loop program
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scheduling policy [27].  Of course, KPNs that are derived from affine nested loop pro-

grams are special, and we call this special subclass Compaan process networks (CPN)

because the first reported affine nested loop program to KPN translator was called Com-

paan translator [28]. The convertion of an affine nested loop program to a CPN goes in

three steps. The first step is to derive a Single Assignment Program (SAP) version of the

given affine nested loop program [30].The SAP for the affine nested loop program in Fig-

ure 7.1 is shown in Figure 7.2. In this program, the functions ipd() and opd() are the iden-

Figure 7.2 The Single Assignment Program version of the 

Affine Nested Loop Program in Figure 7.1
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tity function to bind input variables to arguments of the function f() and the results of the

function f() respectively.

The second step is to convert the SAP to a Polyhedral Reduced Dependence Graph

(PRDG) data structure which is a compact mathematical representation of the dependence

graph counterpart of the SAP in terms of polyhedra and lattices [15][43]. In short, it is a

graph  where nodes , and edges  between output ports and input

ports of Nodes. Please refer to [15][43] for a more detailed understanding. The equivalent

PRDG is shown in Figure 7.3.

The third step is to derive the Compaan Process Network (CPN) from the PRDG

which includes code generation for the processes, and linearization of the higher dimen-

sional variable arrays [53]. Details of the process is in [53]. The topology of the derived

CPN is the same as the topology of the originating PRDG, as shown in Figure 7.3. The

code for Node  is shown in Figure 7.4. The nodes such generated from Compaan can

also be represented using another model named as Stream Based Function (SBF) model

[29]. The SBF model is a fire-and-exit model of computation that can be seen as a virtual

G ℵ ξ,( )= N ℵ∈ E ξ∈

ND_1

Read_SourceX

ND_2

Read_sourceY

ND_3

f

ND_4

Write

ND_5

Write

ED_1

ED_3

ED_2

ED_4

ED_5

ED_6

Figure 7.3 The PRDG corresponding to the SAP in Figure 7.2

ND3
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procesor (VP) for subsequent implementations. The general structure of a SBF virtual pro-

cessor is shown in Figure 7.5. 

7.2. Relation between SBF and CSDF

In this section, we give a brief description of the relation between an SBF actor

derived from a Compaan process network and a CSDF actor. The full extent of this work

is presented in [14]. Though we were a part of this research, but the majority of this work

was done in Leiden University, The Netherlands in collaboration with us. However, pre-

sentation of this part is essential towards understanding the next few sections of this chap-

ter.

for j = 1:1:N,

for i = 1:1:M,

if i = 1,

[in0] = Read(ED_2, token(r_2(j,i));

else

[in0] = Read(ED_1, token(r_1(j,i));

end

if j = 1,

[in1] = Read(ED_4, token(r_4(j,i));

else

[in1] = Read(ED_3, token(r_3(j,i));

end

[out0, out1] = f(in0, in1);

if i = M,

[token(w_5(j,i))] = Write(ED_5, out0);

else

[token(w_1(j,i))] = Write(ED_1, out0);

end

if j= N,

[token(w_6(j,i))] = Write(ED_6, out1);

else

[token(w_3(j,i))] = Write(ED_3, out1);

end

end

end

Figure 7.4 Example of the generated code for a Node. This node used here is 

ND_3 in Figure 7.3



119

We show that SBF VPs which are nodes in the CPN can be converted to CSDF

actors, and thus a CPN can be coverted to a CSDF graph. 

Recall the definition of CSDF graph as given in Section 2.1.2, that actors have mul-

tiple phases. The operation of a CSDF actor with  edges (both input and output com-

bined) is characterized by a function  where  is the phase

argument,  are input and output arguments. Thus for the CSDF actor in Figure

7.6 
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Figure 7.5 Strucure of a SBF Virtual Processor
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Figure 7.6 An example CSDF actor
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if , then  and if , then , (7.1)

where  represents a null token (or no token). 

The core of a VP is a re-usable IP implementation of abstract symbolic functions in

the underlying sequential program, such as f() in the program of Figure 7.1. The input and

output arguments to and from this IP core are taken from and sent to input and output

channels, respectively, possibly via the private memory, in case the consumption of tokens

is in a different order than they are read from the channels (Figure 7.5). The controller

selects the appropriate input and output channels, as well as the current function in the IP

function repertoire, in case the IP core implements more than one function. Hence the

input and output behavior of a VP can be expressed as phases (albeit possible long phases)

corresponding to the order in which data is consumed and produced, and the functionality

f() (or a combination of f()’s if there is a repertoir) can be the core functionality of the

CSDF actor. In Figure 7.7, we show the virtual processor for f() as described in Figure 7.1

with explicit mention of read and write sequences on the input and output edges. We first

derive the steady state behavior of the virtual processor and then show the resultant CSDF

actor in Figure 7.8. We also notice that the tokens are read and written one at a time as in

Process Networks, tokens are always read in multiples of one. As a result, the resultant

CSDF from a SBF VP will always have a phase signature with each phase having a value

of either a  or a . We have classified such CSDFs as Binary Cyclo-static Dataflow

graphs or BCSDF. As described by (7.1), we can analogously characterize the CSDF actor

 in Figure 7.8 by a function  in which  is the phase argu-

ment with the help of Table 7. 1.  in the table represents the Function Repertoire which

in this case contains only one function f(). Figure 7.9 shows the SBF VP behavior that can

z0 1= z2 ⊥,[ ] f z1( )= z0 2= ⊥ z3,[ ] f z1( )=

⊥

0 1

F F X0 X1 X2 X3 X4 X5 X6, , , , , ,( ) X0

FR
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be constructed back from Table 7. 1. We note that the generic expression —

 can be used to represent the function f() in Figure 7.9 where each of

 represent  groups: , , , . The

groups tell us to what exclusive channels the variables of the function can bind. 

selec
t

select

selec
t

select

f_IP

controller

x

y

x_2

y_2

N[0,M-1(1)]

N[1,M-1(0)]
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[M(0),N-1xM(1)]

N[M-1(1),0]

N[M-1(0),1]
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[N-1xM(1),M(0)]

Figure 7.7 SBF virtual f() processor for the prgram in Figure 7.1 with explicit mention of read 

and write sequences.
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responding CSDF actor on the right.
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7.3. CSDF to SBF

The conversion of a binary CSDF actor to a SBF virtual processor requires that the

CSDF phase signatures and the function  be converted to the selection of

channels in the SBF virtual processor and the binding of the channel variables to the argu-

ments of the functions in the function repertoire. We show the methodology for such a

conversion through an example. For the more general methodology, please refer to [14].

The first step is to set up a table from a CSDF actor as we did in Table 7. 1 and extract the

SBF VP specification from it. Thus let us consider the CSDF actor in Figure 7.10, and let

X0 X1 X2 X3 X4 X5 X6 FR

1 1 0 1 1 1 0 f

2-(M-1) 0 1 1 1 1 0 f

M 0 1 1 0 1 1 f

Table 7. 1.  Table represnting the function F X0 X1 X2 X3 X4 X5 X6, , , , , ,( )

if X_0 = 1,

[X_4, X_5] = f(X_1, X_3);

else if X_0 = 2,3,...,M-1,

[X_4, X_5] = f(X_2, X_3);

else if X_0 = M,

[X_6, X_5] = f(X_2, X_3);

Figure 7.9 Construction of SBF VP back 

from Table 7. 1.

F X0 X1 … Xn, , ,( )

F

e1

e2

e3

e4

(1,1,1)

(1,0,0)

(1,1,1)

(1,0,0)

e5

e6

(1,1,0)

(1,0,1)

Figure 7.10 An example binary CSDF.
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the actor  be characterized by a function  (as there are 

input edges —  through , and  output edges —  and  with  representing the

phase variable) as in Figure 7.11. Now the corresponding table built from Figure 7.10 and

Figure 7.11 would be as presented in Table 7. 2. For the first row, the functions max and

min are  and , respectively. For the second row,

we have  and for the last row, we have . We can

also give for each phase signature the corresponding set of functions, one for each phase

signature. Thus , , ,

, , . Finally, denoting by

 and  the two core functions, the groups (selec-

tors and distributors) will be as follows: , , ,

, , and . The equivalent SBF is presented in Figure

7.12 .

F F X0 X1 X2 X3 X4 X5 X6, , , , , ,( ) 4

e1 e4 2 e5 e6 X0

if X_0 = 1

X_5 = max(X_1, X_2);

X_6 = min(X_3, X_4);

else if X_0 = 2

X_5 = max(X_1, X_3);

else if X_0 = 3

X_6 = min(X_1, X_3);

Figure 7.11 Computational behavior of actor F in Figure 

7.10 .

Table 7. 2.  Table representing the BCSDF actor in Figure 7.10.

X0 e1 e2 e3 e4 e5 e6 FR

1 1 1 1 1 1 1 {max,min}

2 1 0 1 0 1 0 max

3 1 0 1 0 0 1 min

X5[ ] max X1 X2,( )= X6[ ] min X3 X4,( )=

X5[ ] max X1 X3,( )= X6[ ] min X1 X3,( )=

e1 max max min, ,{ }→ e2 max ⊥ ⊥, ,{ }→ e3 min max min, ,{ }→

e4 min ⊥ ⊥, ,{ }→ e5 max max ⊥, ,{ }→ e2 min ⊥ max, ,{ }→

vM[ ] max xM yM,( )= vm[ ] min xm ym,( )=

xM e1{ }= yM e2 e3,{ }= xm e1 e3,{ }=

ym e3 e4,{ }= vM e5{ }= vm e6{ }=
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A difference between a SBF process network and a CSDF graph is that the former

has neither initial tokens nor termination tokens, while the latter does have initial and final

tokens because it models the steady-state behavior of an algorithm. The SBF process net-

work works on finite streams, and although the phase signatures seems to be very long and

not repetitive, there are still core phase signatures that is periodically repeated for a finite

number of periods. That number appears explicitly in the phase signature expressions and

is merely an indication of the finiteness of the number of periods.

7.4. Introduction to DIF

The Dataflow Interchange Format (DIF) is a standard language to specify dataflow

models for stream-oriented applications such as DSP, Image and video processing etc. DIF

is built with the portability issue in mind. As in the dataflow domain, there is a lack of a

standard vendor-independent language. DIF has helped in providing an expandable repos-

max

min

Controller

Figure 7.12 SBF VP for the actor in Figure 7.10
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itory of dataflow models and techniques. Usually dataflow analysis and scheduling tech-

niques require production rates, consumption rates, edge delays and various node and

edge weight information. So detailed node characteristics is not important in many data-

flow-based analyses. As a result, the initial version of DIF did not include actor-specific

information as a part of the language specification. However, the computation and some

other actor attributes are essential for implementation. In the later version of DIF (DIF

0.2), actor specific information was added to preserve an actor's functionality while

importing and exporting between DIF and various design tools and also across design

tools.

In this work, we used the extended functionality provided by DIF 0.2 to represent

the dataflow graph as shown in Section 7.5.
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7.5. Proposed extensions to DIF

We generate a complete CSDF graph from Figure 7.10 in Figure 7.13 for the pur-

pose of illustration of the proposed extensions we made to DIF so that the CSDF gener-

ated from a SBF could be accurately captured. 

We provide a brief explanation of Figure 7.14, for a more detailed explanation of the

DIF language, please refer to [25]. The keyword csdf is used to describe the type of the

graph . Next we describe the topology of the graph by the set of nodes and edges in

graph . Each edge has a production and consumption rate, which for a CSDF can be an

array of integers. Next the actor  is described in which the computation inside the actor

is mentioned explicitly and the binding of edges with the variables for the actual function

call (described by the computation) is done. Attribute is a keyword in DIF which is used to

describe user defined attributes. An attribute coreInputs is used to express the grouping

among the input edges. A blank left at the left hand side of the assignment operator means

that the attribute described is an attribute of the csdf 

F
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e3
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(1,0,0)
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(1,0,0)
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(1,0,1)

I1

I2

I3

I4

C

D

1

1

1

1

1

1

Figure 7.13 CSDF graph made from Figure 7.10 for the purpose of explaining the DIF 

generated from it.
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csdf G1 {

  topology {

    nodes = I1, I2, I3, I4, F, C, D;

    edges = e1(I1, F), e2(I2, F), e3(I3, F), e4(I4, F), e5(F, C),

e6(F, D);

}

  production {

    e1 = 1;

    e2 = 1;

    e3 = 1;

    e4 = 1;

    e5 = [1, 1, 0];

    e6 = [1, 0, 1];

}

  consumption {

    e1 = [1, 1, 1];

    e2 = [1, 0, 0];

    e3 = [1, 1, 1];

    e4 = [1, 0, 0];

    e5 = 1;

    e6 = 1;

}

  actor F {

    computation = "MaxMin";

    u = e1;

    v = e2;

    w = e3;

    x = e4;

    y = e5;

    z = e6;

}

  attribute coreInputs {

    = "group1 = {e1}";

    = "group2 = {e2, e3}";

    = "group3 = {e3, e1}";

    = "group4 = {e4, e3}";

}

  attribute coreOutputs {

    = "group5 = {e5}";

    = "group6 = {e6}";

}

  attribute coreFunctions {

    = "maximum (2, 1)";

    = "minimum (2, 1)";

}
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graph - G1. Since this grouping information does not need to be parsed by the DIF parser,

and is used only to extract relevant information for the equivalent SBF representation, it is

expressed as a string. Similarly coreOutputs is an attribute for grouping the output edges.

Attribute coreFunctions describe in more detail the computation for actor F, it describes

the actual function calls made inside the computation of the actor F (if any) and the num-

ber of input and output arguments they have. Attribute coreSequences describe the func-

tion calls along with the input and output arguments (described as groups in coreInputs

and coreOutputs) for each phase of the CSDF actor F. So in Figure 7.14, in phase 1, F

takes in one input argument from group1 of inputs and one input argument from group2 of

inputs, passes them to the maximum function and the output is produced on an edge in

group5. In the same phase, it also takes in one input from group3 and one from group4

passes them onto the minimum function and produces an output on an edge from group6.

However, in phase 2 and 3 of F, it only calls maximum and minimum as expressed in Fig-

ure 7.14. Along with the DIF specification, the functionality of F was expressed by a C

function which is shown in Figure 7.15. 

The function in Figure 7.15 describes the actual C code expressed by F which has

the computation core expressed by MaxMin and the binding of the edges to variables in

the function which is done in actorF block of Figure 7.14.

 attribute coreSequences \{

    = "(group5) = maximum(group1, group2), (group6) = mini-

mum(group3, group4)";

    = "(group5) = maximum(group1, group2)";

    = "(group6) = minimum(group3, group4)";

  \}

\}

Figure 7.14 DIF representation of the CSDF graph in Figure 7.13
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7.6. Binary CSDF

Binary CSDF is a restricted version of Cyclo-static dataflow where the production

and consumption rates are constrained to be binary vectors, more specifically, the produc-

tion and consumption rates can only be vectors of 0 or 1. A BCSDF is a natural outcome

from a SBF as explained in Section 7.2. One of the major advantages of having a separate

dataflow model for BCSDF is that the binary vectors can be very efficiently compacted as

bit vectors, this is especially useful where the phases are long strings of 0's and 1's as we

saw in the case of CSDFs arising out of SBFs.

void MaxMin (int *phase, float *u, float *v, float *w, float *x,

float *y, float *z) {

  if(*phase == 0) {

    y = maximum(u, v);

    z = minimum(w, x);

}

  else if (*phase == 1) {

    y = maximum(u, w);

}

  else if(*phase == 2) {

    z = minimum(u, w);

}

} 

float *maximum(float *a, float *b) {

  if(*a >= *b) return a;

  return b;

} 

float *minimum(float *a, float *b) {

  if(*a <= *b) return a;

  return b;

}

Figure 7.15 C addition to the DIF representation of Figure 7.14 to represent the CSDF graph 

of Figure 7.13
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Chapter 8. Conclusions and Future Work

8.1. Conclusion

In this thesis, we developed a new dataflow meta-modeling technique, called homo-

geneous parameterized dataflow (HPDF). HPDF is a meta-modeling technique in that it

can be applied to a variety of underlying dataflow models of computation to enhance their

expressive power, and we gave examples through the use of HPDF over two static data-

flow models — synchronous dataflow (SDF) and cyclo-static dataflow (CSDF) which

allowed us to extend SDF and CSDF to be used for dynamic data-dependent applications

as well. We also demonstrated that using HPDF as a metamodel allows us to retain much

of the useful structure of the underlying models. We also believe that HPDF can be easily

extended to other underlying dataflow models which have a well-defined notion of graph

iteration. We also presented various properties and capabilities of HPDF — we defined the

notion of repetitions vector, valid schedule for HPDF and proved that an existing algo-

rithm (APGAN) can be used to derive efficient looped schedule for HPDF. We also gave a

framework for derivation of a single-rate equivalent for HPDF. We presented three in-

depth examples of image processing applications where we have applied our HPDF mod-

eling technique to expose inherent parallelism. We presented the models for a gesture rec-

ognition application, an image registration application, and a Gait-DNA application. With

the advent of model-based hardware generation, which is aspiring to be the bridging gap

between hardware and software designers, our work is one of the first dynamic dataflow-

based approach towards hardware synthesis. Use of static dataflow is quite limited to com-

plex modern applications, thus our effort is a significant improvement over existing SDF
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based hardware code generation. Traditional handwritten hardware codes will almost

always outperform hardware generated through an automated tool, but with more and

more complex systems, hand-written hardware generation is becoming more time-con-

suming and error prone. Our work provides a framework that software designers should

abide by during the design of their algorithms so that efficient hardware can be generated

at a later stage. We believe without such a formal framework, hardware design either will

be of poor quality, or a hardware designer will have to manually reorganize the algorithm

to generate efficient hardware.

We presented a dataflow graph transformation technique — node unfolding, which

is an effective technique for design space exploration with the goal of maximizing

throughput when the final implementation is targeted towards hardware. We also pre-

sented a preliminary demonstration of a verilog code generator from dataflow graphs that

combined with the graph transformation techniques can serve as an effective tool for

model-based hardware code generation. Such a high-level transformation takes advantage

of application properties that a modern synthesizer cannot take because these high-level

graph properties get obscured at the implementation level. Graph transformations along

with standard synthesizer optimization techniques present the opportunities for a better

overall system.

We have presented in this thesis an extensive demonstration of FPGA implementa-

tions from the HPDF model of applications for two applications. We also presented how

the HPDF model exposes inherent parallelism that might otherwise be obscured by the

implementation details. We also demonstrated the usefulness of our modeling technique

by exploring the various design points early in the design phase. We targeted the gesture
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recognition application to a Xilinx Multimedia and Microblaze board with a Virtex II

FPGA on board and presented trade-offs between different memory layout schemes for

image storage. We also presented a HPDF-based mapping of a 3-D image registration

application onto an Altera StratixII FPGA. We explored the area-performance trade-offs

between different design points representing different degrees of parallelism exposed by

HPDF. We also presented a dynamically reconfigurable architecture for the image regis-

tration algorithm which based on some input characteristics we defined, will change its

architecture to arrive at a good area-performance design point. Our FPGA implementa-

tions not only exemplified the efficacy of our model and architecture exploration tech-

niques, they also behave as a prototype implementation which can be transformed into

ASIC designs for the final implementation of a system. Also FPGA served as the ideal

platform for our dynamic reconfiguration technique for image registration.

We also presented based on previous work (Compaan) done at Leiden University,

The Netherlands, that sequential affine nested loop MATLAB programs can be expressed

as a special case of cyclo-static dataflow graph (CSDF), but with additional non-dataflow

properties required to derive a comprehensive correspondence. We proposed extensions to

the dataflow interchange format (DIF) to capture the additional information that Compaan

produces through its intermediate CSDF representation. 

We illustrated some additional interesting results that were done in the Appendices

that could be further explored in future.
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8.2. Future Work

We believe that the work presented in this thesis is one of possible large impact as

model-based hardware design is gaining momentum in industry right now. This work

introduces a framework instead of an automated tool for hardware code generation. Most

of the current tools come with a predefined set of libraries, which are not adequate for new

and better algorithms being constantly developed by the algorithm development commu-

nity. Hence, the current tools can only be used for certain “basic” algorithms. Since it is

not feasible to ask an algorithm developer to use only a certain number of pre-defined

blocks for his/her design but at the same time, an algorithm developed with no hardware

implementation in mind is in most cases going to be a suboptimal design for hardware,

hence we think that our framework can be used as a guideline for algorithm developers

(without being too restrictive for new algorithm development) for efficient hardware

implementation at a later stage. That said, we think that our framework can also be used as

the backbone for an automated hardware code generation tool at a later stage. Since such a

tool will be based on dataflow, dataflow related formal properties and graph transforma-

tion techniques (such as node unfolding) can be systematically used in addition to ad-hoc

optimizations that the current synthesis tools provide for target specific hardware code

generation. 

We think that the preliminary work done on proving that Compaan Process Net-

works are a special case of Cyclo-static dataflow is a major step towards providing a com-

mon platform through with the two formal models can exchange information. Both the

models are extremely rich and well studied and a wealth of work has been done on both of

them, however, each one has some fundamental limitations that the other model does not.
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For example, static buffer management cannot be guaranteed through Compaan Process

Networks and CPNs do not have static schedules which are basic properties of static data-

flow and also some forms of dynamic dataflow (HPDF for example). Dataflow on the

other hand cannot be used very effectively to model extensive control dependent applica-

tions. Thus when an application can be modeled with either of them, exchange of such

information will add valuable information towards more efficient implementation either in

software or in hardware. There exists a toolflow of Compaan and Laura which starting

from a (restricted) MATLAB code builds a multi-processor (multiple virtual processors)

implementation on FPGAs through the use of Process Networks as the formal model. On

the other hand, dataflow graph is extremely well suited for software synthesis of DSP

applications. Hence we think that our preliminary work when fully explored can lead to a

very efficient MATLAB to KPN to CSDF to software code synthesis on one hand, and

DSP application to CSDF to KPN to code generation for FPGA as shown in Figure 8.1.
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MATLAB

COMPAAN

Kahn Process Network

LAURA

IP Cores

Synthesizable VHDL

Synthesizer

FPGA Configuration

file

DSP Application

Dataflow modeling

DIF Specification

DIF to C

C

Compiler

Processor specific C

Scheduling

Strategy

Buffering

Strategy

Figure 8.1 The two existing flows can be merged using our proposed intermediate represen-

tation as shown by the two curved lines.
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Appendix A

A.1. Modeling of SOBEL

The Sobel algorithm was modeled by hand - this is an application that has been

explored in details at Leiden. The application can be implemented in two different ways

depending on the way the input image is scanned. Both the implementations were mod-

eled by hand using dataflow graph, in specific CSDF was used as the model.

The model without data behavior has the following structure, the exact dataflow

model depends on the way the image is scanned and will be represented later in the sec-

tion.

A.2. Description of the application

The algorithm has five distinct processing blocks, a block which represents the input

which in this case is a streaming input from which a  window is sent to the next

block which does edge detection based on the SOBEL algorithm. These  pixels are

Streaming 
input

SOBEL ABS SUM o/p

Figure A.1 The flowchart of the application.

3 3×

3 3×
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shown by the nine edges, the point to be noted is that since the input is streaming, and pix-

els come in row by row, so input modeling is very important to accurately reflect the

behavior between the first two blocks. Output of SOBEL is sent through an absolute value

operator and it is sent to an accumulator. The accumulator adds up the output of ABS for

each column and outputs one number per column, so the output of the algorithm is one

row of numbers.

A.3. Two different implementations

The algorithm can be implemented in two different ways, the  window men-

tioned in Section A.1 can either slide horizontally or it can slide vertically, the difference

is noted in the way the inputs are handled and the way accumulator treats the incoming

data. Though the output result will be the same in both the cases, a static analysis provides

different buffer requirements on the various edges which provides an interesting topic for

exploration.

A.4. Input modeling

Input modeling is of prime importance in this application as the input is streaming

and it comes in a rowwise manner. However, the next processing block - SOBEL needs

the inputs in the form of a  window, so there is a lot of internal storing that happens

on the edges. The generic technique used for storing the intermediate data is to copy the

data as many times as needed on the appropriate edges at the appropriate time instant for

future use. For a more detailed explanation, please see Figure A.2 which shows the buffer

arrangement for the nine different edges when horizontal sliding is applied on the image

3 3×

3 3×
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for an image of size . Two different techniques are applied in the case of a horizontal

scanning and vertical scanning which are explained in the next two sections.

A.5. Horizontal scanning

If the input image is  pixels wide and  pixels high, then generalizing Figure A.2,

we get that the firing rules on the edges between Streaming Input and SOBEL for a hori-

zontal scanning should be :

•

4 6×

Streaming input SOBEL

18 17 16 15 12 11 10 9

22 21 20 19 16 15 14 13

23 22 21 20 17 16 15 14

24 23 22 21 18 17 16 15

16 15 14 13 10 9 8 7

12 11 10 9 6 5 4 3

11 10 9 8 5 4 3 2

10 9 8 7 4 3 2 1

17 16 15 14 11 10 9 8

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Figure A.2 An example showing the pixels to be stored on different edges where m = 6 and n = 

4.

m n

n 2–[ ] m 2–[ ] 1 2 0( )( ) 2m 0( )
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•

•

•

•

•

•

•

•

in that order going from the top edge downwards.

A.6. Vertical Scanning

For vertical scanning the edges should have the following phases : (it can be easily

derived from the horizontal scanning by interchaning m and n).

•

1 0 n 2–[ ] m 2–[ ] 1 2 0( )( ) 2m 1–[ ] 0( )

2 0 n 2–[ ] m 2–[ ] 1 2 0( )( ) 2m 2–[ ] 0( )

m 0( ) n 2–[ ] m 2–[ ] 1 2 0( )( ) m 0( )

m 1 0+( ) n 2–[ ] m 2–[ ] 1 2 0( )( ) m 1 0–( )

m 2 0+( ) n 2–[ ] m 2–[ ] 1 2 0( )( ) m 2 0–( )

2m 0( ) n 2–[ ] m 2–[ ] 1 2 0( )( )

2m 1 0+( ) n 3–[ ] m 2–[ ] 1 2 0( )( ) m 2–[ ]1( )1 0

2m 2 0+( ) n 3–[ ] m 2–[ ] 1 2 0( )( ) m 2–[ ]1( )

Streaming 
input

SOBEL ABS SUM Output1 1 1

(mn 1) (m(n -1)) 0  n 1 1

(m(n -1)) 1   n 0(m(n -1)) 1   n 0

Figure A.3  CSDF modeling of the model of the application with horizontal scanning

m 2–[ ] n 2–[ ] 1 2 0( )( ) 2n 0( )
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•

•

•

•

•

•

•

•

A.7. Schedule and buffer calculations

We calculate a valid schedule for the application for both type of scanning assuming

it to run sequentially on a single processor.

A.7.1. Horizontal scanning

One of the possible schedules for the horizontal scanning could be :

Streaming 
input

SOBEL ABS SUM Output1 1 1

(n 1) (n -1) 0  1 1 1

(n -1) 1  1 0
(n -1) 1  1 0

Figure A.4  CSDF modeling of the application for vertical scanning.  The buffer is initialized to 

zero for each iteration of the graph.

1 0 m 2–[ ] n 2–[ ] 1 2 0( )( ) 2n 1 0–( )

2 0 m 2–[ ] n 2–[ ] 1 2 0( )( ) 2n 2 0–( )

n 0( ) m 2–[ ] n 2–[ ] 1 2 0( )( ) n 0( )

n 1 0+( ) m 2–[ ] n 2–[ ] 1 2 0( )( ) n 1 0–( )

n 2 0+( ) m 2–[ ] n 2–[ ] 1 2 0( )( ) n 2 0–( )

2n 0( ) m 2–[ ] n 2–[ ] 1 2 0( )( )

2n 1 0+( ) m 3–[ ] n 2–[ ] 1 2 0( )( ) n 2–[ ]1( )1 0

2n 2 0+( ) m 3–[ ] n 2–[ ] 1 2 0( )( ) n 2–[ ]1( )
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The buffer is calculated with the following logic, maximum buffer is needed on an

edge when a process fires the maximum number of times before the following actor on the

edge fires once. With that logic, the maximum amount of buffer needed is calculated as

follows:

max A-B  (2m+3) AB  => buffer size is (2m+3) + (2m+2) + (2m+1) + (m+3) +

(m+2) + (m+1) + 3 + 2 + 1 = 9m + 18

max B-C BC => buffer size is 1

max C-D CD => buffer size is 1

max D-D cannot be calculated such

max D-E (n-3)(m-2) + 1 D E => buffer size (n-3)(m-2) + 1

A.7.2. Vertical scanning

One of the possible schedules for the vertical scanning could be :

The maximum amount of buffer needed is calculated as follows:

max A-B  (2n+3) AB  => buffer size is (2n+3) + (2n+2) + (2n+1) + (n+3) + (n+2) +

(n+1) + 3 + 2 + 1 = 9n + 18

max B-C BC => buffer size is 1

max C-D CD => buffer size is 1

max D-D cannot be calculated such

max D-E (n-2)D E => buffer size (n-2)

2m 2+[ ] A( ) n 3–( ) m 2–( )[ ]ABCD( ) mABCDE( )

2n 2+[ ]A( ) m 2–[ ] n 2–[ ]ABCD( )E( )
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Appendix B

B.1. MJPEG modeling in CSDF

We present a simplified version of the Motion-JPEG(MJPEG) algorithm in Fig. A.5

where the image size in pixels is  and  is the number of vertical  pixel

blocks and  is the number of horizontal pixel blocks — ,  both being parameters. In

the application, the image is worked upon by  set of parallel hardware and depending on

how the partioning is done, we can get different CSDFs. For example. if the partitioning of

the image is done as shown in Fig. A.6 and its corresponding CSDF is shown in Fig. A.7.

In Fig. A.5, DCT represents Discrete Cosine Transform, Q represents the quantizer, VLE

represents the Variable length encoder.

This example is mainly provided as in many image processing algorithms, we see a

similar ordering of pixels (or blocks in image) in which input is required. Since this order-

Vin DCT Q VLE Vout
64NM 64NM 64NM X

Figure A.5 A simplied version of MJPEG algorithm in dataflow representation.

64 N M×× M 8 8×

N M N

4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

N

M

Figure A.6  way image partioning for MJPEG 

where each numbered block is .

4
8 8×
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ing is not the same as the input ordering, the CSDF exposes huge buffer overhead on the

edges which can also be seen intuitively as the equivalent of a reorder buffer.

DCT1 Q1 VLE1

DCT2 Q2 VLE2

DCT3 Q3 VLE3

Vin Vout

DCT4 Q4 VLE4

64
,0

,0
,0

0,64,0,0

0,0,64,0
0,0,0,64

(64 1)

(64 1)

(64 1)

(64 1)

(64 1)

(64 1)

(64 1)

(64 1)

64

64

64

64

m

n

p

q

64

64

64

64

64

64

64

64

Figure A.7 CSDF representation of the MJPEG considering a partition as shown in Fig. A.6.
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