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Bikesharing systems’ popularity has continuously been rising during the past years due 

to technological advancements. Managing and maintaining these emerging systems are 

indispensable parts of these systems and are necessary for their sustainable growth and 

successful implementation. One of the challenges that operators of these systems are 

facing is the uneven distribution of bikes due to users’ activities. These imbalances in 

the system can result in a lack of bikes or docks and consequently cause user 

dissatisfaction. 

A dynamic repositioning model that integrates prediction and routing is proposed to 

address this challenge. This operational model includes prediction, optimization, and 

simulation modules and can assist the operators of these systems in maintaining an 

effective system during peak periods with less number of unmet demands. It also can 

provide insights for planners by preparing development plans with the ultimate goal of 

more efficient systems. 



  

Developing a reliable prediction module that has the ability to predict future station-

level demands can help system operators cope with the rebalancing needs more 

effectively. In this research, we utilize the expressive power of neural networks for 

predicting station-level demands (number of pick-ups and drop-offs) of bikeshare 

systems over multiple future time intervals. We examine the possibility of improving 

predictions by taking into account new sources of information about these systems, 

namely membership type and status of stations. 

A mathematical formulation is then developed for repositioning the bikes in the system 

with the goal of minimizing the number of unmet demands. The proposed module is a 

dynamic multi-period model with a rolling horizon which accounts for demands in the 

future time intervals. The performance of the optimization module and its assumptions 

are evaluated using discrete event simulation. Also, a three-step heuristic method is 

developed for solving large-size problems in a reasonable time. Finally, the integrated 

model is tested on several case studies from Capital Bikeshare, the District of 

Columbia’s bikeshare program.  
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Chapter  1: Introduction  

 Backgrounds and Motivation 

Collaborative use of both goods and services has become very appealing with the recent 

technological advancements (Hamari, 2015). The rise in the popularity of sharing 

systems during the past years has caused different modes of sharing systems to emerge 

and become popular, especially in urban areas.  

One of the most studied transportation-related sharing systems is vehicle sharing 

systems. Vehicle sharing programs (VSP) are defined in Nair (2010) as programs that 

“involve a fleet of vehicles located strategically at stations across the transportation 

network. Users are free to check out vehicles at any station and return the vehicles at 

stations close to their destinations (Nair, 2010).” The vehicle fleet can be cars, 

including electric vehicles, or bicycles. Among these two, the benefits of bikes in urban 

settings, where the distances are short, and the parking prices are high has caused the 

demand for such systems to increase. Bikesharing programs are ideal for short distance 

point-to-point trips in dense urban areas. They are also viable mobility options for the 

first/last mile of other public transport solutions (Nair, 2010; Toole design group, LLC 

and Foursquare ITP, 2013). Providing flexible mobility, travel time saving, reducing 

congestion and emission, decreasing car and fuel usage in addition to health benefits 

and support for multimodal transport connections are some other benefits of these 

systems (Shaheen, 2013; Fishman et al., 2013; Fishman, 2016).  
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More than 1000 cities had bikeshare systems in operation by July 2016 (DeMaio & 

Meddin, 2016). This number is eight times more than the number reported in 2010 

(Shaheen et al., 2010). Figure 1-1 represents the growth in bikeshare cities from 1998 

to 2013 (Fishman, 2016). 

 

Figure 1-1 Growth in Bikeshare Cities (Fishman, 2016) 

Maintaining these fast-growing systems is a difficult task. If the systems are not well-

maintained, their users will become dissatisfied, and usage rates could decrease - 

jeopardizing the huge funds invested in expanding these systems. One major factor in 

measuring how well a bikeshare system is maintained is the availability of bikes and 

empty docks at stations when they are needed. The unavailability of bikes and docks is 

mainly a consequence of having an imbalanced system, which, as stated in Raviv & 

Kolka (2013) may have many reasons, such as:  

● Flow patterns, 

● Availability and frequency of other transportation modes, 

● The altitude of stations, 



 

 

3 
 

● Weather, and, 

● Traffic conditions. 

Figure 1-2 shows the difference between the number of pick-ups and drop-offs for three 

different stations that are part of the Capital Bikeshare program in the District of 

Columbia. Figure 1-2(a) represents a station that is relatively balanced throughout the 

day, whereas Figure 1-2(b) and Figure 1-2(c) represent stations that have significant 

gaps between their number of pick-ups and drop-offs. Figure 1-2(b) belongs to a station 

with a high number of pick-ups in the morning and a high number of drop-offs during 

the evening whereas Figure 1-2(c) belongs to a station with a high number of drop-offs 

in the morning and a high number of pick-ups in the evening. As Figure 1-2 suggests, 

to avoid having any unmet demands for pick-up (or drop-off ), we need to provide bikes 

(or docks) for the difference between the number of pick-ups and drop-offs.   
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(a) 19th and East Capitol St SE 

 

(b) 4th and M St SW 

 

(c) M St and New Jersey Ave 

Figure 1-2 Pick-ups and Drop-offs Profile for Three Stations 
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 Problem Statement, Research Objective, and Research Approach 

Since there is a limitation on the number of bikes and docks that can be added to the 

bikesharing systems, reducing unmet demand has been addressed in the literature using 

two approaches. The first one is by introducing a pricing mechanism that reduces these 

imbalances by imposing a reward to users who pick up their bikes from stations that 

have excess bikes or dropping off at stations that have a deficiency in the number of 

bikes. The second approach is by repositioning the bikes in the system.  Fishman et al. 

(2013) describe this approach as “an operator moving bicycles across the network to 

maintain a more even distribution across the network (Fishman et al., 2013).” 

The goal of this study is to develop an operational model for the dynamic repositioning 

of bikes of bikesharing systems with the objective of minimizing the number of unmet 

demands during peak hours. To achieve this, a Mixed Integer Programming (MIP) 

model is formulated. Also, a three-step heuristic method is introduced to reduce the 

solution time of the proposed model. A discrete event simulation module is 

incorporated into the proposed  model to update the state of the system and to provide 

a framework for evaluating the operational models’ assumptions as well as measuring 

their performance.  

Similar to any operations research model, converting the bikesharing system’s data into 

information can assist in modeling the structure of the system as well as finding optimal 

decisions for the system,  and this can result in an increase in the effectiveness of the 

operation research model (Meisel, 2010). In the context of dynamic repositioning for 

bikesharing systems, predicting the demand for pick-ups and drop-offs for each station 

is a fundamental task, and a viable repositioning model should have an integrated 
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prediction and optimization module within. In this study, several models are compared 

in terms of performance, and the best model among them is chosen to evaluate the 

addition of two new features in enhancing the quality of predictions. 

 Organization of the Dissertation 

The dissertation is organized as follows. Chapter 1 introduced the background and the 

motivation for this research. It also presented the problem statement, research 

objective, and research approach.  

In Chapter 2, the literature on prediction models, along with studies focused on the 

prediction of the bikesharing systems’ demand, are reviewed. In the context of 

operations research models, the literature on inventory optimization models and 

bikesharing routing models are discussed. This chapter finishes with a discussion on 

the research gap and expected contributions of this study. 

Chapter 3 presents the proposed multi-period optimization model formulation for 

repositioning bikes in the bikeshare system, followed by a discussion on the simulation 

module used for simulating the bikeshare system. 

Chapter 4 provides a detailed discussion of the data used for the case studies of this 

research, and Chapter 5 presents the results of the prediction module and analyzes the 

improvements in the performance in terms of root mean squared error resulting from 

introducing the status of stations and membership information. 
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Chapter 6 provides several numerical case studies for evaluating the assumptions of the 

optimization model proposed in chapter 3, followed by a sensitivity analysis on the 

solution time of the optimization model. 

Chapter 7 presents the proposed heuristic algorithm to solve the multi-period 

optimization model, followed by comparing the solutions of the heuristic algorithm and 

the solutions of the model formulated in chapter 3. Also, the effect of the time interval 

is tested, and the quality of solutions are compared. 

Chapter 8 presents the results of the implementation of the developed heuristic method 

on a large size case study. Finally, a summary, conclusions, and recommendations for 

future research are presented in Chapter 9.  
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 Literature Review 

 Overview 

The concept of the bikeshare system was introduced in 1965 in Amsterdam and has 

evolved with the introduction and development of many technologies such as 

smartphones (DeMaio, 2009). Since the introduction of bikeshare systems, much 

research has been dedicated to developing descriptive and/or prescriptive models for 

different aspects of these systems.  

Strategic level analyses, as well as operational level analyses, have been the focus of 

previous studies. Strategic level analyses include evaluating mobility patterns of 

potential users, demand analysis, finding the optimal location of stations and depot, and 

determining the total number of bikes needed for the system. The operational level 

analyses include service level analysis, analysis of the possible expansion of the system 

such as adding stations and/or docks (Nair, 2010; Schuijbroek et al., 2013; Erdoğan et 

al., 2014). 

In the context of rebalancing operations that is the focus of this study, repositioning 

bikes throughout the systems is one of the widely used approaches around the world. 

Overall, avoiding lost demands by repositioning may involve many strategic and 

operational decisions, such as determining:  

• The number of trucks needed, 

• The number of bikes that need to be removed from or brought to each station,  

• Allocation of trucks to stations,  
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• Routing of the trucks,  

• The number of depots, and, 

• The location of each depot.  

Moreover, to reposition the bikes efficiently in the system, we need to have an estimate 

of the bikesharing system’s various demands. As a result, developing 

demand/prediction models, along with repositioning models, are two of the most 

relevant research areas for addressing the repositioning problem. 

 Prediction Models 

As stated above, a good repositioning plan requires accurate estimates of future 

demands. While having a good aggregate demand for the system is valuable for overall 

system evaluation, for the repositioning purpose, a more valuable prediction is more 

fine-grained and includes station level predictions. Nonetheless, most bikeshare 

demand predictions, due to their dependency and fluctuation over time, can be seen as 

cases of time-series predictions.  

Here, we will briefly review some of the existing methodologies for forecasting time 

series data that have been applied in this study, as well as some of the studies that have 

worked on bikeshare demand estimation or prediction. 

2.2.1 Dynamic Regression Models 

Dynamic regression models (DRM) are one of the classical methods in the literature 

for modeling or predicting time series data. These models allow for the inclusion of 

both past observations and other information that may be relevant. Autoregressive 
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Integrated Moving Average (ARIMA) models and Autoregressive Moving Average 

(ARMA) models are two popular autoregressive models (Whittle, 1951). ARMA is a 

stationary model. For nonstationary models, one can use ARIMA, which achieves 

stationary by taking a series of differences. Equation (2.1) shows an example of a 

dynamic regression model with ARMA errors with an order of 𝑝 for the autoregressive 

part and an order of 𝑞 for the moving average part for predicting 𝑦$. 𝑥$	is an additional 

information used for predicting 𝑦$. 

𝑦$ = 	𝛽𝑥$ +	∅+𝑦$,+ + ⋯+	∅.𝑦$,. +	𝜃+𝑧$,+ + ⋯+ 𝑠𝜃2𝑧$,2 +

											𝑧$																																																																										                                                                                                              

(2.1) 

2.2.2 Decision Trees and Regression Trees 

Classification and regression trees proposed by Brieman et al. (1984) are some of the 

widely used prediction models in the machine learning field, which can also be used 

for time series prediction. These models are developed by recursively partitioning the 

data space by a feature variable and establishing a structure that can be presented as a 

decision tree (Loh, 2011). Classification trees are used for predicting unordered 

dependent variables, and regression trees are for predicting ordered discrete or 

continuous dependent variables. Figure 2-1 illustrates a classification decision tree 

(Loh, 2011). 
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Figure 2-1 Classification Tree (Loh, 2011) 

2.2.3 Neural Network Models 

Neural network models are forecasting methods inspired by biological neural networks 

(McCulloch, 1943).  These models usually have one input layer, several hidden layers, 

and one output layer. Input nodes are connected to the output layer via nodes in the 

hidden layers. One of the advantages of these models compared to dynamic regression 

models is that they are capable of modeling complex non-linear relationships between 

inputs and outputs. Some of the well-known variants of these models are: 

• Multilayer Feedforward Neural Network: 

As it is shown in Figure 2-2, the layout of a multilayer feedforward neural network is 

an acyclic directed graph consisting of several layers. Each layer has one or more 

simple processing elements, which are called neurons, and they are fully connected to 

the neurons that are in the next and previous layers. Neurons at each layer sum the 

weighted inputs, add a bias term and pass the result through an activation function. 

After determining the number of hidden layers and the number of neurons per layer, 
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the training set can be used for tuning the weights of the connections and the bias 

values. The weights are adjusted in a way that a loss function is minimized. A 

commonly used loss function for regression is the sum of squared errors between the 

outputs of the network and the true values. The back-propagation algorithm is mostly 

used for learning the weights (Safavian, 1991). 

 

Figure 2-2 Multilayer Feedforward Network (Safavian, 1991) 

• Recurrent Neural Network: 

Recurrent Neural Networks (RNNs) are a class of artificial neural networks that have 

recurrent connections: they pass the output state of the neural network as the input of 

the next time step. This allows them to be able to model sequential data such as time-

series of variable length and be able to represent previously seen states. In some sense, 

they have memories. One of the main differences of RNN type networks with 

feedforward networks is the variability in length of the input and output sequence, 

unlike feedforward networks where the architecture choice forces the input and output 

to be fixed to a special size and shape (Dupond, 2019). Similar to feedforward neural 

nets, RNNs are trained by back-propagation of the error signal throughout the neural 
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networks' weights. To be able to perform back-propagation, RNNs are "unrolled." 

Unrolling is the process of representing the RNN as a feedforward network by making 

multiple copies of the RNN such that each RNN cell passes the message (state) to its 

successor. 

• Long Short-Term Memory: 

Long Short-Term Memory (LSTM) networks are a special type of RNNs that have been 

developed by Hochreiter & Schmidhuber (1997) to solve the problem of long-term 

dependencies, which is related to vanishing/exploding gradients. LSTM network's 

building blocks are LSTM cells. While theoretically, standard RNNs should be capable 

of learning long-term dependencies, they often struggle a lot and require a lot of fine-

tuning, as discussed in Bengio et al. (1994). LSTM's core idea is passing through the 

information of a cell's previous state to the next state with minor modifications. LSTM's 

have the ability to change the cell state through structures called gates carefully. 

2.2.4 Ensemble Models  

Ensemble models are a popular class of models in machine learning for improving 

classifications and predictions. These models are built based on training several models 

and then combining the result of these models to improve forecasting. Ensembling can 

be done in various ways, including: 

• Bagging: 

Short for bootstrap aggregating, was proposed by Breiman (1996). In this method, 

multiple predictors are combined to get an aggregated predictor. These predictors are 

often the same model that is trained on different subsets of data. These subsets are 
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selected at random with replacement from the entire training set. The aggregation 

strategy depends on the output task. If the task is regression and the predictor needs to 

predict continuous numerical values, the average of predictions by predictors can be 

used as the final prediction. If the task is classification, then the plurality (majority) 

vote can be used.  

• Boosting:  

Schapire (1990) developed a method for converting a weak learning algorithm (an 

algorithm that does slightly better than a random guess) into a highly accurate algorithm 

by combining the weak learning algorithms. This process is called boosting. One of the 

well-known boosting algorithms, AdaBoost, was developed by Freund & Schapire 

(1995), which is a classification algorithm based on combining multiple classification 

algorithms (called weak learners). AdaBoost adaptively resamples and reweights the 

training data to generate new weak learners, which improves the prediction for the 

misclassified instances.   

• Random Forest:  

Breiman (2001) proposed the idea of random forests for prediction. This method 

combines the idea of bagging and the concept of random feature selection, which has 

shown promising results in the work of Breiman (1996), Dietterich (1998), Ho (1998), 

and Amit & Geman (1997). A random forest classifier consists of a collection of tree-

structured classifiers that are created by randomly selecting feature vectors for 

randomly selected training datasets. 

• Stacking:  
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Wolpert (1992) proposed the idea of partitioning the training dataset into multiple parts 

and training based on one part of the training dataset and then correcting for biases 

based on the behavior of the model on the other part of the training data. 

2.2.5 Prediction Models for Bikeshare Systems  

Some of the prediction studies related to bikeshare systems focus on aggregate behavior 

predictions. Their focus is on estimating or identifying factors that affect the aggregated 

demand of bikeshare systems, such as the total number of bikes used per day or hour. 

Vogel & Mattfeld (2011) developed a regression model and an autoregressive 

regression model for predicting the total number of rentals using mostly weather data 

as the explanatory variable. Wang (2016) developed a random forest prediction model 

for predicting the total demand of the Citi Bike bikeshare system. Yin et al. (2012) 

applied four different models, namely: ridge linear regression, support vector 

regression (ε- SVR), random forest, and gradient boosted tree for predicting the hourly 

usage of the Capital Bikeshare system.  

Station demand prediction is another line of research that has intensively been studied 

due to its relevance to rebalancing operations. Froehlich et al. (2009) provided a 

spatiotemporal analysis of bicycle usage. They developed a Bayesian network model 

for predicting the availability of bicycles for Barcelona’s bikeshare system, “Bicing,” 

Kaltenbrunner (2010) used an autoregressive moving average model that uses the 

information from surrounding stations as a predictor. Etienne & Latifa (2014) 

developed a model-based clustering methodology which groups the stations with 

similar bike usage, and then use this for predicting the demand of the clusters. Chen et 
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al. (2013) proposed a class of algorithms that use Generalized Additive Models for 

predicting bike availability. Li et al. (2015) proposed a hierarchical prediction model 

for predicting the rented and returned bikes from and to each station.  Faghih-Imani et 

al. (2014) identified the determining factors of bikeshare usage for Montreal’s 

bikeshare system, “BIXI” by developing models for the arrival and departure rates of 

stations. Yoon et al. (2012) developed a spatiotemporal prediction model for Dublin’s 

bikeshare system, which can be used to help users of bikeshare systems in planning 

their trips. Giot & Cherrier (2014) examined various regressors for predicting the usage 

of bikeshare systems and concluded that by adding these regressors, the prediction 

models perform better than the baseline models. Faghih-Imani & Eluru (2016) 

developed a pooled spatial model with random effect, temporally lagged observed 

variables, and temporally and spatially lagged dependent variables for arrival and 

departure rates of Citi Bike bikeshare users. 

 Repositioning Related Models 

Addressing the rebalancing problem by developing mathematical models for 

repositioning the bikes in the system is another stream of research related to bikesharing 

systems. We can divide the studies in this area into three major categories: Inventory 

level optimization, routing models, and combined models, which integrate the 

inventory level optimization and routing in the bikeshare systems.  

2.3.1 Inventory Level Optimization 

Some studies treat the problem of allocating bikes to stations (balancing) as an 

inventory problem. These studies only focus on determining the target inventory for 
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each station. Saltzman (2016) simulated the bikesharing system of San Francisco and 

tested several scenarios for improving the performance measurements of the bikeshare 

system. 

Raviv & Kolka (2013) developed an inventory management model for bikesharing 

systems. They defined a dissatisfaction function as a function of initial inventory and 

found an approximation for this function. This function incorporates the expected 

penalty due to the abandonment of users including those who want to return the bike 

and those who want to rent a bike given that we have two independent non-

homogeneous Poisson demand streams for the return’s rate and renter’s rate and the 

relative weights of dissatisfaction for unfulfilled requests. They proved this function is 

convex in the inventory level at the station at the beginning of the period and developed 

a method for estimating the function efficiently and providing bounds for their 

estimation. Kapsi et al. (2016) improved the work by accounting for unusable bikes. 

Datner et al. (2019) developed a model for determining the initial inventory level of 

stations for daily repositioning. The model accounts for the spillover that may occur 

due to empty or full stations and the interaction among stations. 

2.3.2 Routing  

Studies that focus on the routing part of repositioning can be further classified into 

static models and dynamic models.  

• Static Routing: 
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Static routing based models assume that the system remains static throughout the 

routing process. This assumption implies that bikes are not picked up or dropped off 

during the routing period. This assumption is mainly valid for night-time repositioning. 

In these studies, the target inventory is known, and the objective is to find the minimum 

cost route for repositioning the bikes to get to the targeted inventory level. By nature, 

this problem is similar to several problems in the literature:  

1. One-commodity pick up and delivery problem: In One-commodity pick up and 

delivery traveling salesman problem (1-PDTSP), a single vehicle with fixed 

capacity must either pick up or deliver known amounts of a single commodity 

to a given list of customers. There are two kinds of customers: delivery 

customers who want an amount of the product to be shipped to them and pick-

up customers who want to provide an amount of the product. In 1- PDTSP, it is 

assumed that the product collected from the pick-up customers can be supplied 

to the delivery customers and that the initial load of the vehicle leaving the 

depot can be any quantity (Hernández‐Pérez & Salazar‐González, 2007). In the 

case of multiple vehicles, the problem is similar to one commodity pick up and 

delivery vehicle routing problem (1-VRPPD). 

2.  Swapping problem: In which, a vehicle with unit capacity wants to ship items 

between the vertices (Anily & Hassin, 1992). The objective is to minimize the 

route taken by the truck for accomplishing all the shipments. In the preemptive 

version of this problem, items can be dropped temporarily at vertices that are 

not their final destination, and later on, they can be picked up and moved to 

their final destinations. In the non-preemptive version, this is not possible.  
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Routing problems related to rebalancing the bikeshare systems can have different 

objective functions such as minimizing the total unmet demand and minimizing the 

total user dissatisfaction (Raviv et al., 2013), minimizing the sum of relocation and lost 

user costs (Forma et al., 2015), minimizing the total travel cost or routing time 

(Benchimol et al., 2011; Chemla et al., 2013; Dell'Amico et al. 2014; Dell'Amico et al., 

2016; Erdoğan et al., 2014; Erdoğan et al., 2015), minimizing the deviation from the 

targeted number of bikes in each station (Ho & Szeto, 2014), minimizing the number 

of loading and unloading quantities (Papazek et al., 2013), minimizing the total travel 

time on all routes, and minimizing the maximum tour length (Schuijbroek et al., 2013) 

have been used as the objective function for the routing problem.  

The maximum time for each repositioning activity, routing constraints requiring each 

node to be visited once, perfect balance, road condition, traffic regulations, 

geographical factors, and probabilistic level of service are some of the operational 

constraints considered in the past studies (Ho & Szeto, 2014).  

The majority of the following studies develop deterministic models, which according 

to Shu et al. (2013), a deterministic model could be used for modeling these systems 

contrary to the stochastic nature of these systems.  

Benchimol et al. (2011) proposed a 9.5 approximation algorithm based on an algorithm 

developed by Chalasani & Motwani (1999) (C-delivery traveling salesman problem) 

for changing the current state of stations to the desired state by using a single truck. 

Their objective was minimizing the moving cost.  
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Ho & Szeto (2014) solved a static repositioning problem with a single vehicle using 

iterative tabu search. Their objective function was minimizing the penalty cost of 

deviation of the number of bikes at each station after repositioning from the optimal 

number of bikes. 

Raviv et al. (2013) proposed four different formulations: arc-indexed, time-indexed, 

sequence-indexed, and swapping-based for solving the repositioning problem. 

Minimizing user’s dissatisfaction was used as the objective, and multiple vehicles were 

used for balancing the system. 

Chemla et al. (2013) developed a MIP model for solving the single-vehicle 

repositioning problem with the objective of minimizing the cost of routing. They 

relaxed the constraint of visiting each station once and tried different branch and cut 

algorithms for reducing the computation time and used tabu search for finding an upper 

bound of the optimal solution.  

Dell'Amico et al. (2014) presented four MIP formulations for solving the multiple 

vehicle rebalancing problems with the objective of minimizing the cost of routing. They 

tried different branch and cut algorithms to solve the problem. Dell'Amico et al. (2016) 

proposed a destroy and repair metaheuristic and compared their results with the branch 

and cut algorithm developed in their 2014 work. 

Erdoğan et al. (2014) developed a static bicycle relocation model with demand 

intervals. In this problem, they redistributed bicycles among the system with a single 

capacitated vehicle, given that there are constraints on the lower and upper bounds of 

the required number of bikes at each station. Their objective was minimizing the 
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routing time. Branch-and-cut algorithm and benders decomposition were proposed for 

solving the problem. 

Erdoğan et al. (2015) presented an exact algorithm for determining the minimum cost 

route for a single truck to pick up and drop-off the targeted number of bikes from the 

stations. Multiple visits and temporary storage were allowed. 

Forma et al. (2015) proposed a 3-step heuristic approach with the objective of 

minimizing a combined function of station level penalties and total travel cost of 

vehicles. In the first step, stations are clustered based on their location and inventory 

considerations. The second step is to route the vehicles through the clusters and making 

decisions for each station independently. The final step is to solve the problem for all 

the stations. The traversal of vehicles is only allowed between two adjacent clusters. 

Papazek et al. (2013) used greedy construction heuristic (GCH) and preferred iterative 

look ahead technique (PILOT) for finding initial solutions to the static balancing with 

the objective of minimizing the routing time, deviation of stations from their targeted 

inventory and the number of loading activities. Then they used variable neighborhood 

descent (VND) for improving these candidate solutions and then used a greedy 

randomized adaptive search procedure (GRASP) for returning the best solution. 

Rainer-Harbach et al. (2013) used variable neighborhood search (VNS), and variable 

neighborhood descent (VND) for generating routes and they proposed three different 

approaches for optimal loading instruction given that the route is fixed. Greedy 

heuristic, maximum flow approach, and the linear programming approach were used. 
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Raidl et al. (2013) proposed a new method for calculating the load instructions, which 

is based on the maximum flow approach. 

• Dynamic Routing: 

In the beforementioned routing studies, the assumption was that the system is static, 

meaning the number of bikes required by, and present in each station is fixed. This 

assumption is usually true during nighttime repositioning in which the system is nearly 

idle. During the daytime operation, this assumption is not valid. Some studies tried to 

address the repositioning problem in the dynamic case. In the dynamic case, the number 

of bikes required by, and present in each station is changing over time. 

Contardo et al. (2012) formulated the problem on a space-time network with the 

objective of minimizing the unmet demand. Then they used Dantzig-Wolf 

decomposition and Benders decomposition to solve the problem.  

Vogel et al. (2014) proposed a model for minimizing the expected cost of relocation 

and violating the service level constraints. They used a hybrid metaheuristic integrating 

large neighborhood search with exact solution methods.  

Chemla et al. (2013) proposed three heuristics for the dynamic repositioning of bicycles 

using one vehicle. They also proposed a pricing strategy for balancing the system and 

tested their methods using simulation. 

Kloimüllner et al. (2014) modeled the dynamic case and used a greedy and PILOT 

heuristic, variable neighborhood search, and GRASP to solve the problem efficiently. 
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Wang (2014) developed two heuristic methods for solving dynamic repositioning 

problems using a single vehicle with the objective of minimizing the unmet demand 

and routing cost. The greedy algorithm and the rolling horizon approach were used to 

solve the problem. Benders’ decomposition was used as an exact method for solving 

the problem.  

Pfrommer et al. (2014) developed a dynamic routing algorithm and an incentive scheme 

with the objective of maximizing the number of bike trips.  

Ghosh et al. (2016) used a robust repositioning approach by mimicking the system as 

an iterative two-player game, which assumed the environment could generate a worst 

demand scenario. 

Ghosh et al. (2017) developed a dynamic repositioning model that accounts for the 

future expected demand. They used Lagrangian dual decomposition and clustering to 

solve the problem. 

2.3.3 Combined Inventory and Routing Optimization 

O'Mahony & Shmoys (2015) developed an optimization model for the desired filling 

level. They used two different strategies for routing the vehicles during the overnight 

balancing and mid-rush balancing. 

Schuijbroek et al. (2013) used a cluster-first route-second approach in which they first 

converted the multi-vehicle rebalancing problem into a single-vehicle problem based 

on maximum spanning star approximation and then tried to minimize the maximum 

routing time of each vehicle while satisfying service level feasibility constraints. 
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Liu et al. (2016) developed prediction models for pick-ups and drop-offs of the  NYC 

Citi Bikeshare system. Based on these two models, they determined the inventory target 

for each station. They developed two algorithms for clustering the stations and then 

solved the routing problem within the clusters. 

 Contributions 

Reviewing the literature shows there are limited studies in the literature evaluating and 

combining prediction and optimization models for repositioning of bikes in the 

bikesharing systems (e.g., Liu et al., 2016). This study aims to further explore this line 

of research by: 

• Improving station-level prediction of the number of pick-ups and drop-offs by 

including two new features -- membership information and status of stations -- 

into the prediction module of the repositioning model. Several models are 

compared as candidate underlying models for evaluating the additional value of 

introducing these new features/variables into the model. Feedforward neural 

networks are trained and used as the best model among the tested models, and 

results are presented using this method.  

• The sensitivity of the predictions is tested with respect to two factors: prediction 

interval (i.e., the prediction time duration (e.g., 30 minutes)), and dynamic 

setting. Dynamic setting refers to using streaming data for predicting the 

number of pick-ups and drop-offs for the future interval instead of using a static 

pre-trained prediction model. 
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• A novel MIP model is formulated. The introduced model is a multi-period 

optimization model with a rolling horizon. The benefit of using this model is 

that it can improve the efficiency of the repositioning operations by accounting 

for the short term as well as long term changes in the state of the bikeshare 

system. This benefit is verified via numerical experiments in section 6.4. This 

approach has also been used by Ghosh et al. (2017). However, their model 

objective is to maximize the revenue and uses the movement of customers in 

the system as an input. Our proposed model uses the number of pick-ups and 

drop-offs from the stations as an input, which is more aggregated and 

considerably easier to predict. 

• A discrete event simulation module is incorporated into the proposed 

framework. The simulation module will update the state of the system after each 

period. It will provide the ability to evaluate the optimization and prediction 

modules’ assumptions as well as measuring their performance.  

• A three-step heuristic method is introduced to reduce the solution time of the 

proposed model, and the quality of solutions are tested. The efficiency of the 

repositioning is tested with respect to interval duration using this heuristic 

method. 
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 Optimization Module and Simulation Module 

This section proposes a MIP formulation for the proposed rebalancing problem. It also 

demonstrates the simulation module framework that can be used for validating 

modeling assumptions and evaluating different models. 

 Optimization Module 

For the optimization module, a dynamic multi-period model is proposed. The 

advantages of the proposed multi-period model over some of the existing models in the 

literature are as follows. A multi-period model can account for the short-term demand 

as well as long-term demand. This feature is extremely important for repositioning 

bikes in the bikeshare systems. By planning for a specific interval, if the interval is 

short, the repositioning plan will not be efficient (i.e., some stations may need to be 

revisited during different intervals.)  If the interval is long, we may miss some of the 

demands due to temporal changes in the system. For instance, if a station has high pick-

ups for half of the interval and high drop-offs for the rest of the interval, the model may 

suggest we do not need to pick up or drop-off any bikes. 

Another advantage of the proposed model is that since the model is dynamic, the 

repositioning can be adjusted after having new/updated information about future 

demand (i.e., when predictions are updated.) An example is provided in Figure 3-1 to 

demonstrate the benefits of this model further. 

Figure 3-1(a) shows a system with three stations during two consecutive time intervals. 

All the stations have a capacity of seven bikes with the initial number of bikes equal to 

five. The number of bikes at the beginning of each interval is provided with a blue 
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color. Numbers in green show the potential demand for pick-ups, and Numbers in red 

show the potential demand for drop-offs. Numbers in the green box are the actual 

number of pick-ups, and numbers in the red box are the actual number of drop-offs 

(Figure 3-1(a)). Figure 3-1(c) shows the locations where the potential demands and the 

actual demands do not match. For instance, during the first interval, station 2 will have 

one potential pick-up and four potential drop-offs. Even in the optimistic scenario (i.e., 

one potential pick-up happens before the four potential drop-offs), the station can only 

serve three of the drop-offs. A truck can be used to move the bikes between the stations 

to serve all demands. Here, we assume that we know the pick-up and drop-off demand 

of each station for each time interval. Two different repositioning plans are proposed 

in Figure 3-1(d) and Figure 3-1(e). Repositioning 1 only looks at the next interval for 

planning the movements. As a result, we need two movements to serve all the demands 

during the two intervals. Repositioning 2 looks at the next two intervals. In this case, 

we only need one movement. As it is shown, repositioning 2 is more efficient compared 

to repositioning 1. We note that this analysis is only true if the predictions are close to 

the future demand. 
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Numbers in green = Potential number of pick-ups 
Numbers in red = Potential number of drop-offs 
Numbers in green with a box = Actual number of pick-ups 
Numbers in red with a red box= Actual number of drop-offs 
Blue color numbers = Number of bikes available at the station 
Capacity of each station = 7 

a) Legend 

  

b) System Demand c) System’s Missing Demands 

  

d) Repositioning 1 e) Repositioning 2 

Figure 3-1 Sample Example 
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3.1.1 Model Assumptions 

To formulate the problem, we have made two major assumptions. The first assumption 

is that an actual pick-up during a period adds extra capacity for drop-offs during the 

same period. Also, an actual drop-off during a period adds extra capacity for pick-up 

during that period. This assumption by itself follows from assuming that the pick-ups 

and drop-offs happen uniformly during each interval. The first assumption implies that 

a station will have unmet pick-up demand during a period only if the number of bikes 

available at the station at the beginning of the period plus the number of drop-offs is 

less than the pick-up demand. A similar statement is also true for the unmet drop-off 

demand. This assumption is optimistic; however, it should usually hold especially for 

short intervals. A simulation module is developed for the bikeshare system to examine 

this assumption. 

The second major assumption is that the bikes that are going to be picked up for 

movement by trucks are not available for pick-up during the interval for both origin 

and destination station.  We also need to have racks available for them at the destination 

stations for the entire repositioning interval. In contrast to the previous assumption, this 

is a conservative assumption. However, since the routing schedules are not finalized, it 

is logical to make this assumption. Not having this assumption may result in a 

discrepancy between loading plans and the availability of bikes or racks at the stations. 
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 Model Formulation 

3.2.1 Notation 

This section provides the notation used for defining the sets, parameters, and decision 

variables as well as their description and their domain for the proposed optimization 

module. 

• Sets 

T Set of time intervals/steps 

S Set of stations 

K Set of trucks 

N Set of stations + origin/destination node (artificial) N = S ∪ {0}   

 

• Parameters 

𝑃8$ Number of pick-ups at the station (s) at a time interval (t) 

𝐷8$ Number of drop-offs at the station (s) at a time interval (t) 

𝑇𝑇88;$  Travel time between station (s) and (s’) at a time interval (t) 

𝑅8 Capacity (Number of docks) of station (s) 

𝐴8> Number of bikes at the station (s) at the starting time 

𝐶 Capacity of trucks 

𝛼,𝛽		 The weighting factor for the objective function 

𝑆𝑆C Start station for the truck (k) 

I Duration of each interval 
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• Decision Variables 

𝑎8$	 Number of available bikes in the station (s) at the beginning of time interval 

(t) 

𝑎𝑝8$	 Number of actual pick-ups at a time interval (t) for the station (s) 

𝑎𝑑8$	 Number of actual drop-offs at a time interval (t) for the station (s) 

𝑏𝑝𝑝8$	 Binary indicator of unmet pick-up demand at a time interval (t) for the 

station (s) 

𝑏𝑑𝑝8$	 Binary indicator of unmet drop-off demand at a time interval (t) for the 

station (s) 

𝑝𝑝8$	 Number of unmet pick-up demands at a time interval (t) for the station (s) 

𝑑𝑝8$	 Number of unmet drop-off demand at a time interval (t) for the station (s) 

𝑞8C$ 	 Number of bikes picked from the station (s) by truck (k) at a time interval (t) 

𝑞′8C$  Number of bikes dropped at the station (s) by truck (k) at a time interval (t) 

𝑏𝑞8C$  Binary indicator of bikes picked from the station (s) by truck (k) at a time 

interval (t) 

𝑏𝑞′8C$  Binary indicator of bikes dropped at the station (s) by truck (k) at a time 

interval (t) 

𝑞𝑡𝑜𝑡	8C$  Number of bikes in the truck (k) after visiting station (s) at a time interval (t) 

𝑥88;C$  Binary indicator for the truck (k) traveling from the station (s) to station (s’) 

at a time interval (t) 

𝑏8C$  Binary indicator for truck (k) visiting station (s) at a time interval (t)  
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𝑦8C$  Auxiliary variable for subtour elimination purpose 

𝑎𝑢𝑥18$  Auxiliary variable for linearizing  

𝑎𝑢𝑥28$  Auxiliary variable for linearizing 

𝑏𝑎𝑢𝑥18$  Binary auxiliary variable for linearizing  

𝑏𝑎𝑢𝑥28$  Binary auxiliary variable for linearizing 

 

3.2.2 Objective Function 

Equation (3.1) shows the objective function of the model. The objective function has 

three parts. The first part is the lost demand penalty (number of unmet demands), which 

includes unmet pick-up demand and unmet drop-off demand. The second part of the 

objective function is the total routing time, and the third part is the initial penalty for 

moving bikes from or to a station. These terms’ contributions to the overall objective 

are weighed using coefficients (𝛼, 𝛽). These coefficients can be set based on the needs 

of the system and the operators’ view. Here, we have assumed the operator’s main goal 

is to minimize the unmet demand, so the second and third parts of the objective function 

have small coefficients to only avoid moving bikes in the system without any reduction 

in the unmet demand. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑍 = 	SS(𝑝𝑝8$ +	𝑑𝑝8$)
8∈W$∈X

+	 

𝛼 ∗SSS S 𝑇𝑇88!
$ ⋅ 𝑥88!C

$

8!∈W/{8}8∈WC∈\$∈X

+ 		𝛽 ∗SSS𝑞8C$

8∈WC∈\$∈X

 

(3.1) 
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3.2.3 Constraints 

For each interval, the start and end location of all the trucks during each interval are set 

to be an artificial origin. For the first interval, each truck is visiting a specific node after 

the artificial origin defined by the parameter 𝑆𝑆C. This specific node is the actual 

location of the truck at the beginning of the planning problem. Constraints (3.2) to (3.4) 

make sure these constraints are met. 

∑ 𝑥>8C$8 = 1           ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 (3.2) 

 

∑ 𝑥8>C$8 = 1           ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 (3.3) 

 

𝑥>WW"C
+ = 1 ∀𝑘 ∈ 𝐾 (3.4) 

 

Constraints (3.5) ensure the first visited node at each interval is the last visited node at 

the end of the previous interval. 

𝑥>8C$ = 𝑥8>C$,+ ∀𝑡 ∈ 𝑇 − {1},	 

∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑆 

(3.5) 

 

Constraints (3.6) are conservation of flow constraints. 

S 𝑥88;C$

8;∈b

= S 𝑥8;8C$

8;∈b

 ∀𝑡 ∈ 𝑇,	 

∀𝑘 ∈ 𝐾, ∀𝑠 ∈ 𝑁 

(3.6) 
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Constraints (3.7) and (3.8) ensure that we cannot move any bikes or add bikes to a 

station if that station does not have enough bikes for pick up or enough rack for drop-

off, respectively.  

S𝑞8C$

C∈\

≤ (1 −	𝑏𝑝𝑝8$) ∗ 𝑅8 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.7) 

 

S𝑞′8C$

C∈\

≤ (1 −	𝑏𝑑𝑝8$) ∗ 𝑅8 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.8) 

 

As mentioned in section 3.1.1, the model assumption is that the bikes that are going to 

be picked for movement by trucks are not available for pick up during the interval for 

both origin and destination stations. Also, we need to have docks available for the bikes 

in the destined station for the entire repositioning interval. Constraints (3.9) and (3.10) 

enforce these constraints.  

S𝑞8C$

C∈\

≤ 𝑚𝑎𝑥(0, 𝑎8$ −	𝑎𝑝8$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.9) 

 

S𝑞′8C$

C∈\

≤ max(0, 𝑅8 − 𝑎8$ −	𝑎𝑑8$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.10) 

 

One set of continuous and one set of binary auxiliary variables are introduced to the 

model formulation and constraints (3.11) to (3.18) are added to the model to linearize 

constraints (3.9) and (3.10). 

S𝑞8C$

C∈\

≤ 𝑎𝑢𝑥18$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.11) 
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𝑎8$ −	𝑎𝑝8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥18$ ≥ 0 ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.12) 

 

𝑎𝑢𝑥18$ ≤ 𝑀 ∗ 𝑅8 ∗ (1 − 𝑏𝑎𝑢𝑥18$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.13) 

 

𝑎𝑢𝑥18$ ≤ 𝑎8$ −	𝑎𝑝8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥18$    ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.14) 

 

S𝑞′8C$

C∈\

≤ 𝑎𝑢𝑥28$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.15) 

 

𝑅8 − 𝑎8$ −	𝑎𝑑8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥28$ ≥ 0 ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.16) 

 

𝑎𝑢𝑥28$ ≤ 𝑀 ∗ 𝑅8 ∗ (1 − 𝑏𝑎𝑢𝑥28$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.17) 

 

𝑎𝑢𝑥28$ ≤ 𝑅8 − 𝑎8$ −	𝑎𝑑8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥28$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.18) 

 

Constraints (3.19) and (3.20) limit the number of actual pick-ups and drop-offs. 

𝑎𝑝8$ ≤ 	𝑎𝑑8$ +	𝑎8$ −	S 𝑞8C$

C∈\

					 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.19) 

 

𝑎𝑑8$ ≤ 	𝑅8 −	𝑎8$ +	𝑎𝑝8$ −S𝑞8C$

C∈\

 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.20) 

 

Constraints (3.21) relate the available number of bikes at station s at time t+1 (𝑎8$i+) 

to the available number of bikes at station s at time t (𝑎8$) and the number of actual 

pick-ups (𝑎𝑝8$) and drop-off (𝑎𝑑8$) at the station during the interval (𝑡) and the number 
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of bikes moved from other stations (∑ 𝑞′8C$C ) to this station, and the number of bikes 

moved from this station to other stations (∑ 𝑞8C$C ). 

𝑎8$i+ = 	𝑎8$ 	− 	𝑎𝑝8$ +	𝑎𝑑8$ 	+ S𝑞′8C$

C∈\

−S𝑞8C$

C∈\

 		∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.21) 

 

The number of bikes picked from stations is equal to the number of bikes dropped at 

stations (Constraints (3.22)). 

S𝑞′8C$

8∈W

=S𝑞8C$

8∈W

 ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 

 

(3.22) 

 

Constraints (3.23) are the truck load constraints.  

 
𝑞8C$ ≤ 𝑞𝑡𝑜𝑡8C$ ≤ 𝐶 − 𝑞;8C

$ 	 ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, 𝑠

∈ 𝑆 

(3.23) 

 

𝑞′8C$ ≤ 	 𝑞𝑡𝑜𝑡8!C
$ + 	𝐶 ∗ (1 − 𝑥8!8C

$ ) ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, 𝑠

∈ 𝑆 

(3.24) 

 

Constraints (3.25) are conservation of load after visiting nodes which are linearized in 

Constraints (3.26). 

 
𝑞𝑡𝑜𝑡8C$ ≥ j𝑞𝑡𝑜𝑡8!C

$ +	𝑞8C$ − 𝑞;8C
$ k ∗ 𝑥8!8C

$  ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾,

{𝑠, 𝑠;} ∈ 𝑆 

 

(3.25) 
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𝑞𝑡𝑜𝑡8C$ ≥ 	 𝑞𝑡𝑜𝑡8!C
$ +	𝑞8C$ − 𝑞;8C

$ − 	𝐶 ∗ (1 − 𝑥8!8C
$ ) ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾,

{𝑠, 𝑠;} ∈ 𝑆 

(3.26) 

 

Travel time for each truck and during each interval should be less than interval duration. 

Loading and unloading time is not included in travel time calculations in this 

formulation. However, this constraint can be adjusted to include this term as well. 

∑ 𝑇𝑇88;$ ∗ 𝑥8!8C
$

8l	W,8!l	W/{8} ≤ 	𝐼           ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾 (3.27) 

 

Constraints (3.28) set the initial number of bikes at the station. 

𝑎8+ = 	𝐴8> ∀	𝑠 ∈ 𝑆 (3.28) 

   

 

Constraints (3.29) ensure that the station capacities are not violated. 

𝑎8$ ≤ 	𝑅8                                                                                                              ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.29) 

   

 

Each station has either unmet pick-up demand or unmet drop-off demand. It cannot 

have both (Constraints (3.30)). 

𝑏𝑝𝑝8$ +	𝑏𝑑𝑝8$ ≤ 1		 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.30) 

 

Unmet demand can only be greater than zero if the pick-up and drop-off penalty 

indicator are not zero. We have assumed that in each interval, the number of pick-ups 

or drop-offs cannot exceed 10 times the capacity of the stations, so M is 10. If the unmet 
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pick-up or drop-off demand is zero, then the corresponding binary indicator of that 

variable is also zero (Constraints (3.31) to (3.34)).  

𝑝𝑝8$ ≤ 	𝑀 ∗ 𝑅8 ∗ 𝑏𝑝𝑝8$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.31) 

 

𝑑𝑝8$ ≤ 	𝑀 ∗	𝑅8 ∗ 𝑏𝑑𝑝8$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.32) 

 

𝑏𝑝𝑝8$ ≤ 		 𝑝𝑝8$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.33) 

 

𝑏𝑑𝑝8$ ≤ 			 𝑑𝑝8$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.34) 

 

Constraints (3.35) and (3.36) relate the actual pick-ups	(𝑎𝑝8$) and drop-offs (𝑎𝑑8$) to 

the number of pick-ups (𝑃8$) and drop-offs (𝐷8$), and to the pick-up (𝑝𝑝8$) and drop-off 

penalties (𝑑𝑝8$). 

𝑎𝑝8$ = 𝑃8$ −	𝑝𝑝8$  ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.35) 

 

𝑎𝑑8$ = 𝐷8$ −	𝑑𝑝8$  ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.36) 

 

Constraints (3.37) and (3.38) make sure the unmet demand does not exceed the pick-

up and drop-off demand deficiency. Similar to constraints (3.31) and (3.32), we have 

assumed that in each interval, the number of pick-ups or drop-offs cannot exceed 10 

times the capacity of the stations (i.e., M is 10.) 

𝑝𝑝8$ ≤ 	−(𝑎8$ −	𝑃8$ +	𝐷8$) + 𝑀 ∗	𝑅8
∗ (1 − 𝑏𝑝𝑝8$)					 

 

∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.37) 

 



 

 

39 
 

𝑑𝑝8$ ≤ 	−(𝑅8 − 𝑎8$ + 𝑃8$ −	𝐷8$) + 𝑀 ∗	𝑅8
∗ (1 − 𝑏𝑑𝑝8$)		 

∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3.38) 

 

Constraints (3.39) are subtour elimination constraints. 

𝑦8C$ − 𝑦8!C
$ + (|N| − 1) ∗ 𝑥8!8C

$ ≤ 	 (|N| − 2) 

 

∀	𝑡 ∈ 𝑇, 𝑠, 𝑠′ ∈ 𝑆 (3.39) 

 

Finally, all variables are ensured to belong to their domains through variable domain 

constraints (i.e., all binary variables ∈ {0,1}, all continuous variables ≥ 0, and all 

integer variable ≥ 0	&	integer.) 

 Simulation Module 

To find the available bikes at the start of each interval after repositioning (except the 

initial availability (𝑆𝑆C) which is an input to the problem) as well as the number of 

unmet demands during each period, the bikeshare system is simulated using a discrete 

event simulation model. Discrete event simulation operates the system as a sequence 

of events in time. The possible events modeled here are bike pick-up by users, bike 

drop-off by users, pick-ups by trucks, and drop-off by trucks.   

Simulating the system also allows us to evaluate the assumptions of the proposed 

optimization module, especially the less conservative ones, and evaluate the overall 

performance of adding a repositioning plan to the system. The arrival time of customers 

to the stations for pick-up and drop-off is based on the actual trip data of the bikeshare 

system. 
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 Data 

 Bikeshare System  

The proposed model is implemented on the data from Capital Bikeshare. Capital 

Bikeshare (CaBi) is a program operated by Motivate International, Inc. and jointly 

owned and sponsored by the District of Columbia, Arlington County, the city of 

Alexandria, VA, and Montgomery County, MD. It offers different membership 

packages, which vary based on the membership period. CaBi was the largest bikeshare 

system in North America until May 2013. The system had 3200 bikes and 399 stations 

in the DMV area (District of Columbia, Maryland, and Virginia) in July 2016, and 3700 

bikes and 463 stations in May 2017.  

Based on the results of the 2016 CaBi Customer Use and Satisfaction Survey, 55% of 

CaBi members chose the availability of more docks or bikes at existing stations as the 

most needed CaBi expansion option. Also, 39% indicated that there is a need for a 

greater density of the stations within the existing service area. This shows the 

importance of having an accurate prediction model in conjunction with an optimization 

model for rebalancing this system. 

We focus our study on the 208 stations that are located within boundaries of District of 

Columbia and were fully in operation during 2016 and 2017 shown in Figure 3.1-1. 

The black dots in Figure 4-1 correspond to the location of these stations. The Surface 

area of the dots is related to the capacity. The capacities of the selected stations range 

between 9 and 52. The mean capacity and median capacity of the selected stations are 

18.4 and 18, respectively. 
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Figure 4-1 Location of the 208 CaBi Stations Used in this Study  
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 Trip and Membership Data 

Trip data for 2016 and 2017 is retrieved from the Capital Bikeshare website1. This data 

includes the following information regarding each trip: start date, end date, start station, 

end station, duration, bike number, and membership information of the user.  

Membership information refers to whether the trip is taken by a member user or a casual 

user. Member users are those who have purchased the annual membership, which 

grants them unlimited trips on the shared bicycles for up to 30 minutes. Casual users 

are users who purchase a three-day membership, single-day membership, or a single 

trip. The annual membership fee is $85 (2017 CaBi pricing), three-day membership is 

$17, single-day membership is $8, and single trips are $2 per ride. Additional usage 

fees apply to both casual and members if the duration of a trip exceeds 30 minutes.  

To avoid the inclusion of incorrect records in the analysis, we have done data cleaning 

to make sure the data includes correct trip records for the analysis. During our data 

cleaning process, the following trips were excluded: 

● Trips that lasted less than 60 seconds 

● Trips that lasted less than 120 seconds and had the same start and end location 

The number of pick-ups and drop-offs for each station were then aggregated into 30-

minute or 60-minute intervals. Figure 4-2 shows the Median, 10th percentile, and 90th 

percentile error bands of the number of pick-ups per hour for the studied CaBi stations 

during 2016 and 2017. 

 
1 https://www.capitalbikeshare.com/ 
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Figure 4-2(a) shows the usage of CaBi members, and Figure 4-2(b) shows the usage of 

CaBi casual users. We can observe a different pattern between members and casual 

users as well as a different pattern between weekdays and weekends. Member users’ 

travel patterns are similar to commuting patterns during weekdays, whereas casual 

users’ travel patterns are close to recreational travel patterns (Buck et al., 2013; Faghih-

Imani et al., 2016; Zamir et al., 2019).  

By looking at the pick-up and drop-off profiles of members and casual users, we can 

qualitatively observe that membership type can potentially contain valuable 

information that can assist prediction. Also, we can see that the number of trips taken 

by members is significantly higher than the number of trips taken by casual users during 

the weekdays. The median trends are more similar during weekends, but the variance 

of casual users’ usage is slightly larger. 
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a) Members b) Casual users 

  

Figure 4-2 Median, 10th Percentile, and 90th Percentile Error Bands for Number of 
Pick-ups Per Hour for CaBi Stations (208 selected stations) During 2016 and 2017 for 

a) Members and b) Casual Users 
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Figure 4-3 and Figure 4-4 illustrate the average number of pick-ups per hour and the 

average number of drop-offs per hour for the stations.  

 

Figure 4-3 Average Number of Pick-ups Per Hour 
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Figure 4-4 Average Number of Drop-offs Per Hour 

Table 4-1 contains the summary statistics for the stations under study, and the summary 

statistics of the trip data. 
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Table 4-1 Summary Statistics for Stations 

Measurement Mean Std. Min Max 

Capacity  18.43+ 6.52+ 9 52 

Average number of pick-ups per hour 1.55+ 1.23+ 0.02+ 7.88+ 

Average number of drop-offs per hour 1.57+ 1.33+ 0.02+ 8.28+ 

Average number of pick-ups per hour 
(Members) 

1.19+ 0.91+ 0.02+ 6.90+ 

Average number of drop-offs per hour 
(Members) 

1.20+ 0.98+ 0.01+ 7.11+ 

Average number of pick-ups per hour 
(Casual users) 

0.36+ 0.65+ 0.00+ 5.67+ 

Average number of drop-offs per hour 
(Casual users) 

0.37+ 0.67+ 0.00+ 5.68+ 

Total number of pick-ups (2016) 13,403* 10,665* 152 68,256 

Total number of pick-ups (2017) 13,762* 11,059* 206 69,978 

Total number of drop-offs (2016) 13,573* 11,439* 130 71,755 

Total number of drop-offs (2017) 13,931* 11,877* 165 73,485 

+ Rounded off to two decimal digits 
*Rounded off to the nearest integer 
 

 Status of Stations 

The status of a station refers to historical data, which reports the start time and end time 

of the station’s outages. Outage refers to being completely empty or full. Status data, 

which records instances that CaBi was either full or empty, is retrieved from the CaBi 

tracker website2. This website is linked to the live feed of CaBi, which gives 

 
2 http://cabitracker.com/ 
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information about the number of docks and bikes available at each station. The 

historical dataset is available for a few of bikeshare systems including CaBi (District 

of Columbia, USA), Hubway (Chicago, USA), and Melbourne (Melbourne, Australia).  

The status of station data includes station name, status, start, end, and duration. Status 

can have two values empty or full. Empty means that no bikes are available for pick-

up, and full means that no docks are available for drop-off. The start column gives 

information about the start time that a specific station’s status is changed to full or 

empty, and the end column gives information about the end time of that status (after 

end time, the station has bikes and docks ready for pick up and drop-off). The precision 

of start time and end time is 1 minute. We clean the data by removing duplicate and 

overlapping records. We also process the data by calculating the duration of having full 

or empty stations in each 30-minute interval. After processing there are two columns 

for each station, one for recording full instances and one for empty instances, which 

indicates duration of being full or empty during each 30-minute interval. Table 4-2 

summarizes the total duration of the outage (empty/ full) for 2016 and 2017 aggregated 

over all 208 stations. 

Table 4-2 Summary Statistics of Outage for 2016-2017 

 2016 2017 

 Mean Std. Min Max Mean Std. Min Max 

Full 
 (Minutes) 

16,922* 14,522* 0 58,012 19,465* 18,396* 0 92,774 

Empty 
 (Minutes) 

33,286* 22,765* 124 93,580 42,767* 28,727* 37 125,975 

*Round off to the nearest integer 
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Figure 4-5 illustrates an example of the status data for a station of CaBi (8th & O St 

NW). Figure 4-5(a) shows the median, 10th percentile, and 90th percentile for the 

number of minutes that the station was empty throughout the day during 2016 and 2017 

on Thursdays, and Figure 4-5(b)  shows the average number for pick-ups during the 

same period. As presented, this station experiences outage for a significant amount of 

time between 8 AM and 12 PM. As a result, the number of pick-ups during this period 

is highly unreliable (i.e., is not fully reflective of the number of actual demand) and 

could be misleading for training a prediction model (O’Mahony and Shmoys, 2015). 

To include temporal outage information, we extract outage data for each interval. By 

including this source of information, we believe that the model will learn to predict 

lower usage in the presence of outage. It should be noted that for predicting the future 

demands to be used in rebalancing operations (implementation mode), outages should 

be set to zero. In other words, for applying the model, we want to predict the demand 

of stations so that we do not experience outages. 
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Figure 4-5 a) Median, 10th Percentile, and 90th Percentile Error Bands for a) Number 
of Minutes that Station (8th & O St NW) is Empty (Thursdays) b) Number of Pick-

ups Per Hour (Thursdays) at the Same Station 

 Weather Data 

Weather data, which includes hourly precipitation data in inch, hourly dry bulb 

temperature data in Fahrenheit, hourly relative humidity in percent, and hourly wind 

speed in mile per hour, is retrieved from NOAA’s (National Oceanic and Atmospheric 

Administration) National Centers for Environmental Information (NCEI). The records 

are for Ronald Regan Washington National Airport, which is located in the proximity 

of the District of Columbia. We only used the FM-15 report type as it includes data that 

is recorded on regular 1-hour intervals and does not cause inconsistencies to our 

models’ input data. These records are used to estimate the weather for each 30-minute 

interval. For temperature, humidity, and wind speed, we use interpolation and average 

the values for the 30-minute intervals before and after. We have assumed that 

precipitation is uniformly distributed, and we split it for each 30-minute interval. 

Although this assumption might not be true, it is reasonable, as studies in the literature 
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have confirmed that the demand for a given time-interval of bikeshare systems is 

correlated with weather data from the time intervals before and after it (Reiss and 

Bogenberger, 2015). Table 4-3 shows the summary statistics of weather data for 2016 

and 2017. Based on this table, we observe that there isn’t much variation between 

weather measurements in 2016 and 2017. 

Table 4-3 Summary Statistics of Weather Data for 2016-2017 

 2016 2017 

 Mean Std. Min Max Mean Std. Min Max 

Temperature 
(Fahrenheit) 

59.9 18.1 13 100 60.4 17.1 15 97 

Precipitation 
(Inch per half 

an hour) 

0.001 0.013 0.000 0.390 0.002 0.015 0.000 0.370 

Wind speed  
(Miles per hour) 

8.7 4.9 0.0 39 8.7 4.9 0.0 34 

Relative 
humidity 
(Percent) 

64.3 19.2 15 100 65.2 19.7 13 100 
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 Prediction Module 

 Overview 

As indicated in section 2.2, different machine learning and statistical techniques exist 

for predicting time series. Appendix A includes a comparison of some of these models, 

namely, dynamic regression, random forest, and deep neural networks (DNNs) in our 

case study. Among these models, the DNN achieved the lowest mean squared error. As 

a result, this model is chosen for further consideration and detailed parameter tuning. 

 Hyperparameter Tuning and Model Selection for DNN 

A Random grid search in the hyperparameter space is deployed for finding a good 

combination of hyperparameter values. Hyperparameter tuning is performed on the 

following variables: 

Number of hidden layers: number of layers in the graph in addition to input and output 

layer 

Number of neurons: number of processing units in each layer 

Dropout rate: the rate of eliminating some number of neurons of the hidden layers 

randomly during training. This method is used to reduce over-fitting and improve 

generalization error. 

Fixed values are used for other parameters of the model, including the number of 

epochs, which refers to the number of times all of the training vectors are used once to 

update the weights and the parameters of the Adam optimizer which is the optimization 

algorithm used for training the neural network model. 
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Given that every station will have its own model for the number of pick-ups and drop-

offs, a pipeline is developed for our search, which greatly speeds up the hyperparameter 

tuning step. The stations are divided into three groups: low usage, medium usage, and 

high usage. These groups are defined as follows: 

• Low usage: stations that their average pick-up and drop-off (both) per hour is less 

than 1. 

• Medium usage: stations that their average pick-up and drop-off (both) is more than 

1 and less than 2. 

• High usage: stations their average pick-up and drop-off (both) are more than 2 per 

hour. 

The thresholds mentioned above are selected to result in balanced clusters. Based on 

the mentioned criteria, 72 stations are identified as low usage, 68 stations are identified 

as medium usage, and 68 stations are identified as high usage. 20 percent of stations 

are randomly selected from each group, and a random search for hyperparameter tuning 

is performed on them. For each station, 10 random combinations of hyperparameters 

are chosen. The best combination for each station is then selected based on the values 

of root mean squared error of the validation dataset. Each station is then trained based 

on the best combination of other stations in its group, and the hyperparameter that has 

the best average performance across all the stations from that group is picked as the 

final hyperparameter. Figure 5-1 summarizes the hyperparameter tuning workflow. 
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Figure 5-1 Hyperparameter Tuning Workflow 
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More details and visual summaries regarding hyperparameter tuning can be found in 

Appendix B. Table 5-1 summarizes the hyperparameters and parameters resulting from 

this random search method for each usage group. 

Table 5-1 Hyperparameters and Parameters Value for Each Station Group 

                Usage group 

Parameters Low usage Medium usage High usage 

Number of layers 2 3 4 

Number of neurons  

(1st hidden layer) 

25 25 25 

Number of neurons  

(2nd hidden layer) 

50 200 25 

Number of neurons  

(3rd hidden layer) 

- 250 250 

Number of neurons  

(4th hidden layer) 

- - 250 

Drop rate 0.4 0.4 0.6 

Number of past 

observations 

12 2 6 

 

 Dynamic Prediction and Weight Re-estimation in the DNN 

Two methods are tested for re-estimating the weights in the neural network to take 

advantage of the streaming data and improving the predictions. 
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5.3.1 Training with Model Reloading  

Figure 5-2(a) summarizes the dynamic setting workflow for the first method. In this 

method, the neural network is trained on the training dataset for a number of epochs, 

and weights of the model are then stored for each station. With every new data point 

(i.e., aggregated number of pick-ups within 30 minutes), the weights are updated/fine-

tuned by running another epoch on the updated, augmented dataset. The updated model 

with new weights is then used for predicting the new interval. This approach may have 

the disadvantage of overfitting due to the excessive number of forward and backward 

passes (number of epochs) on the data.  

5.3.2 Training with Model Resetting  

Figure 5-2(b) summarizes the dynamic setting workflow for the second method. In this 

method, with every new data point, weights are reset to the model that has only used 

the initial training dataset. The model is then trained for a fixed number of epochs on 

the new updated and augmented dataset. This method limits the number of passes on 

the dataset and could overcome the overfitting problem that exists in the first approach. 

However, since this model needs to reset the weights and could potentially require more 

than one additional epochs, it could need more time for fine-tuning and could be slower 

compared to the first approach.   
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a) Training with model reloading 

 

 

b) Training with model resetting 

Figure 5-2 Dynamic Setting Workflow for a) Training with Model Reloading b) 
Training with Model Resetting 
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 Multi-step Forecasting  

Due to the nature of the optimization module (multi-step model with a rolling horizon) 

described in detail in Chapter 3 and to capture the fluctuation in the number of pick-

ups and drop-offs of the stations, we need to predict the demand periodically. As a 

result, the prediction module needs to predict not only the usage for the next interval 

but also other future intervals. Here, a 2-hour horizon is used. In sections 5.4.1 and 

5.4.2, two different duration intervals are used for predicting this 2-hour horizon. In 

section 5.4.1, 30-minute intervals are used, whereas section 5.5.2 uses 1-hour intervals. 

Thus, for the 30-minute model, we need to predict the system for the next 4 time 

intervals, whereas for the 1-hour model, we need to predict the system for only 2 time 

intervals. If the intervals are short, the rebalancing operation is more aligned with the 

assumptions of the optimization module (see 3.1.1). However, this could potentially 

result in lower accuracy for the predictions of the model. Sections 5.4.1 and 5.4.2 

compare the prediction accuracy of these two models. Prediction module results 

For all of the following sections except section 5.4.3 (Effect of dynamic set-up), 2016 

Capital Bikeshare trip data is used for training the models, and 2017 Capital Bikeshare 

trip data is used to test and compare them in terms of performance. Although 

feedforward neural networks do not explicitly require sequential time-series data, we 

decided to follow the standard method of time series validation that is training the 

model sequentially and without any interruptions. Using 1 year of data for training and 

1 year of data for testing allows us to account for seasonality, which makes using an 

un-shuffled training dataset more reasonable and closer to the real world. 
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Prediction accuracy of models are evaluated in term of root mean squared error 

(RMSE).  

𝑅𝑀𝑆𝐸	 = r∑ 	(𝑃s − 𝑂s)suv
su+

𝑛

w

 
 (5.1) 

 

where 𝑛 is the length of time series (time is indexed by i.) 𝑃s is the prediction for the 

number of pick-ups (or the number of drop-offs) at time index i. 𝑂s is the observed 

number of pick-ups (or number of drop-offs) at time index i. 

5.4.1 Effect of Adding Status Information and Membership Information 

Results for this section are based on multi-step forecasts (4-steps) without re-estimation 

meaning the model is estimated based on a single set of training data, and the estimated 

model is used to forecast the number of pick-ups and drop-offs for the next four 30 

minute intervals for the test dataset. To test the value of adding membership and status 

information, we have trained separate models for the number of pick-ups/drop-offs by 

members versus casual users and compared that with a base model that makes 

predictions by ignoring this information. 

Figure 5-3 and Figure 5-4 show the average root mean squared error along with the 

variance (whisks) for each model and across all of the studied stations for the number 

of pick-ups and drop-offs, respectively. The x-axis shows the time step for which we 

are reporting. The base model has the highest average root mean squared error. The 

base model uses weather data (precipitation, temperature, relative humidity, and wind 

speed), time of day, day of the week, and monthly indicators as inputs. Time of day is 
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incorporated into the model by dividing the day into 48 30-minute intervals. We use 

one-hot encoding, which is a vector representation of categorical variables using 0s and 

1s, to include these variables into the model. We also include the number of pick-ups 

or drop-offs from the previous intervals (similar to the autoregressive part of dynamic 

regression models) as input features of the model. 

The model with only status information has the second highest root mean squared error. 

Producing different models for different memberships come next, and the models with 

all of the information have the lowest root mean squared error. When interpreting the 

results, we should keep in mind that for the models/cases in which we have two separate 

models for member and casual users, the overall root mean squared error is between 

the root mean squared error of members and casual users. Depending on the usage split 

between casual and members that exists at each station, this number could be close to 

casual users or member users. Root mean squared error is relatively constant (only 

slightly increases for later time steps) between the time steps. Including status improves 

prediction marginally, and results indicate including status is more beneficial for the 

near future time-steps.  
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Figure 5-3 Average Performance (Root Mean Squared Error) of All Tested Models on 

Future Time Interval Predictions (Half an Hour) Across All of the Studied Stations 
for Pick-ups 
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Figure 5-4 Average Performance (Root Mean Squared Error) of All Tested Models on 

Future Time Interval Predictions (Half an Hour) Across All of the Studied Stations 
for Drop-offs 

Figure 5-5 illustrates the kernel density estimate of the average root mean squared error 

across all studied stations. The density of the distribution for the model with 

membership information and status information is concentrated on the left of 

distribution for the base model, which indicates the additional information has reduced 

the overall root mean squared error for the predictions. 
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Figure 5-5 Kernel Density Estimate of Average Root Mean Squared Error (Half an 

Hour) Across All of the Studied Stations (for Pick-ups and Drop-offs) 

Figure 5-6 shows the improvement of root mean squared error (in terms of percentage 

change) by adding membership and status information. This plot accounts for the split 

usage that exists between the number of pick-ups or drop-offs by the member and 

casual users of each station and gives us a concrete estimation of improvements 

resulting from the proposed model. As the figure suggests, a 30% improvement has 

taken place for some of the stations. The median improvement is around 19%. 
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Figure 5-6 Kernel Density Estimate of Percent of Improvement in Root Mean 
Squared Error Among All of the Studied Stations and Time Steps (Half an Hour) 

When Compared to the Base Model (for Pick-ups and Drop-offs) 

For a more rigorous comparison, we compare whether the improvement seen in Figure 

5-6 is statistically significant. For this, we used the Wilcoxon signed-rank test. The p-

value suggests that we could reject the null hypothesis at a confidence level of 5%, 

concluding that model with membership and status information has a lower root mean 

squared error compared to the base model.  

5.4.2 Effect of Aggregation 

Results for this section are based on multi-step forecasts (2-steps) without re-

estimation, and the estimated model is used to forecast the number of pick-ups and 

drop-offs for the next two 1-hour intervals for the test dataset. Aggregation could be 

used in time series forecasting to increase the signal/noise ratio.  
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Figure 5-7 and  Figure 5-8 show the average root mean squared error along with the 

variance (whisks) for each model and across all of the studied stations for the number 

of pick-ups and drop-offs, respectively. Similar to section 5.4.1 results, the base model 

has the highest expected root mean squared error, and models with both status and 

membership information have the lowest root mean squared errors. 

 

Figure 5-7 Average Performance (Root Mean Squared Error) of All Tested Models on 
Future Time Interval Predictions (Hourly) Across All of the Studied Stations for Pick-

ups 
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Figure 5-8 Average Performance (Root Mean Squared Error) of All Tested Models on 
Future Time Interval Predictions (Hourly) Across All of the Studied Stations for 

Drop-offs 

Figure 5-9 shows the improvement to root mean squared error (in terms of percentage 

change) by adding membership and status information.  

To see the effect of aggregation on the root mean squared error, the sum of root mean 

squared error for future time steps of the model with 30-minute intervals is compared 

with that of the hourly interval method. Figure 5-10 shows the percentage improvement 

in the root mean squared error by aggregating the data hourly. The median 

improvement is around 27%. 
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Figure 5-9 Kernel Density Estimate of Percent of Improvement in Root Mean 
Squared Error Among All of the Studied Stations and Time Steps (Hourly) when 

Compared to the Base Model (for Pick-ups and Drop-offs) 

 

Figure 5-10 Kernel Density Estimate of Percent of Improvement in Root Mean 
Squared Error Among All of the Studied Stations and Time Steps (Hourly) 
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5.4.3 Effect of Dynamic Set-up 

Figure 5-11 illustrates the percentage change to root mean squared error by using the 

dynamic approach in 5.3.2 on a week of the dataset. The results indicate in most cases, 

the dynamic model will have better predictions.   

 

Figure 5-11 Kernel Density Estimate of Percent of Improvement in Root Mean 
Squared Error Among All of the Studied Stations and Time Steps (Half an Hour) for 

the Dynamic Case  
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 Numerical Results 

Overview 

The proposed optimization module is coded in Python using the gurobipy library3, 

which is Guorbi’s python interface. After running each round of the optimization 

module, the bikeshare system is simulated for measuring the performance of 

repositioning as well as calculating the initial availability at the start of the next round. 

The simulation module is also coded in Python to make this procedure convenient.  

For this chapter and the following chapter, the numerical experiments are chosen so 

that number of total pick-ups and total drop-offs for the selected stations do not deviate 

much from each other for the studied time of day. Given the initial number of total 

bikes for the numerical experiments is within 40% to 60% of the capacity of the 

selected stations, if these two numbers deviate much, it will result in a lack of bikes or 

docks in the system. For example, if the number of pick-ups is much higher than the 

number of drop-offs towards the end of the period, the number of bikes in the system 

will be very low, which is not well aligned with the real-world instances as the 

bikeshare systems are closed systems. As a result, numerical experiments are chosen 

so that the total number of pick-ups for the whole period is within 0.7 to 1.3 of the total 

number of drop-offs. 

The results of the optimization module tested on the observed pick-ups and drop-offs 

from 20 stations are presented here to verify the improvements resulting from the 

 
3 https://www.gurobi.com/documentation/ 
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modeling and to evaluate the assumptions of the model. Figure 6-1 and Figure 6-2 show 

the locations of the selected stations and their associated IDs, respectively. 

 

Figure 6-1 Location of Stations for the Numerical Experiments 
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Figure 6-2 Stations’ ID for the Numerical Experiments 

Three periods are included in the analysis to test the validity of the assumptions during 

different times of the day: a weekday morning peak (6 am-10 am), a weekday afternoon 

peak (3 pm-7 pm), and a weekend mid-day peak (11 am-4 pm). The optimization 

module generates the truck’s pick-ups and drop-offs and the routing schedules based 

on the next 2 hours. Two different interval durations are tested for the optimization 

module: 30 minutes (4 intervals) and 60 minutes (2 intervals).  

The repositioning is done using one truck with a capacity of 20 bikes, and the starting 

location of the truck is terminal number 31606. For travel time, estimates from Google 

Maps are used. 𝛼 and 𝛽 are set to 0.01 in the objective function. 

Two different methods for generating the initial number of bikes (initializations) at 

each station is used. The first method fixes the initial number of bikes uniformly to 

40%, 50%, and 60% of the capacity for each station. In the second method, the initial 
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number of bikes are randomly generated with the constraint that the ratio of the total 

number of bikes over the total capacity for a station is between 45% and 55%. For the 

second method, random numbers are generated three times.  

Table 6-1 summarizes the characteristics of the presented numerical experiments 

including the time of day as defined before, the ratio of the initial number of bikes in 

the station to the capacity of the station, and total demand, which is the sum of the 

number of pick-ups and drop-offs during the time of day of the case study. 

Table 6-1 Characteristics of Numerical Experiments 

Numerical 

experiment 

Time of day Interval 

duration 

Initialization method Total 

demand 

Case 6-1 weekday 

morning peak 

30 minute random (45%-55%) 531 

Case 6-2 weekday 

morning peak 

30 minute uniform (40%,50%,60%) 531 

Case 6-3 weekday 

morning peak 

60 minute random (45%-55%) 531 

Case 6-4 weekday 

morning peak 

60 minute uniform (40%,50%,60%) 531 

Case 6-5 weekday 

afternoon peak 

30 minute random (45%-55%) 1117 

Case 6-6 weekday 

afternoon peak 

30 minute uniform (40%,50%,60%) 1117 
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Case 6-7 weekday 

afternoon peak 

60 minute random (45%-55%) 1117 

Case 6-8 weekday 

afternoon peak 

60 minute uniform (40%,50%,60%) 1117 

Case 6-9 weekend mid-

day peak 

30 minute random (45%-55%) 680 

Case 6-10 weekend mid-

day peak 

30 minute uniform (40%,50%,60%) 680 

Case 6-11 weekend mid-

day peak 

60 minute random (45%-55%) 680 

Case 6-12 weekend mid-

day peak 

60 minute uniform (40%,50%,60%) 680 

 

 Optimization Module Results 

Table 6-2 stores the detailed output of the optimization module for one of the instances 

of the first numerical experiment (Case 6-1). This includes the order of stations visited 

and the number of pick-ups or drop-offs (inside the parenthesis). For example, during 

the first interval (6:00-6:30), the truck pickups 6 bikes from station 31606 and 2 bikes 

from station 31244, and drops 4 bikes at station 31218 and 4 bikes at 31231. 

 
Table 6-2. Optimization Module Results for Case 6-1 

Time Visited stations (Corresponding pick-ups or drop-offs) 
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6:00-6:30 31606 (6)-31244 (2)-31218 (-4)-31231(-4) 

6:30-7:00 31231 (8)-31247 (-8)-31633 (2)-31272 (8)-31618 (4)-31629 (5)-

31606 (1) 

7:00-7:30 - 

7:30-8:00 31231 (1)-31247 (-1) 

8:00-8:30 31247 (4)-31217 (7)-31633 (2)-31243 (7)-31605 (-9)-31269 (-2)-

31613 (-4)-31606 (-5) 

8:30-9:00 - 

9:00-9:30 31247 (1)-31243 (7)- 31244 (-8) 

9:30-10:00 31243 (9)-31218 (-9) 

 Simulation Module Results 

We run the simulation without any repositioning to evaluate the improvements in the 

efficiency of the bikeshare system as a result of repositioning the bikes in the system.  

Figure 6-3, Figure 6-4, and Figure 6-5 show the mean and variance for the number of 

unmet demands with and without any repositioning plan for weekday morning peak, 

weekday afternoon peak, and weekend mid-day peak. The means and variances are 

calculated based on different initializations.  

Overall, random initializations result in a higher number of unmet demands compared 

to uniformly distributed initializations. The overall performance of the model is better 

during weekdays compared to weekends. This may suggest the assumptions of the 

model do not hold very well during weekends, and shorter intervals should be picked 

for the interval durations. 
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Figure 6-3 Weekday Morning Peak Numerical Experiments 

 

Figure 6-4 Weekday Afternoon Peak Numerical Experiments 
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Figure 6-5 Weekend Mid-day Peak Numerical Experiments 

Table 6-3 shows the percentage of reduction in unmet demand with repositioning. As 

expected, increasing the interval duration will result in a decline in the performance of 

the optimization module as the assumptions of the optimization module deviate from 

what actually holds in the real world. The average improvement compared to the case 

that there is no repositioning in the system is 84% and 69% for 30-minute and 60-

minute intervals, respectively. 

Table 6-3 Percentage Reduction in Unmet Demand 

30 Minute 60 Minute 

Numerical 

experiment 

Mean percentage 

reduction in 

unmet demand 

Numerical 

experiment 

Mean percentage 

reduction in unmet 

demand 
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Case 6-1 87% Case 6-3 75% 

Case 6-2 95% Case 6-4 80% 

Case 6-5 87% Case 6-7 70% 

Case 6-6 91% Case 6-8 77% 

Case 6-9 70% Case 6-11 42% 

Case 6-10 74% Case 6-12 54% 

 

Assumptions mentioned in section 3.1.1 can result in inconsistencies between the 

number of unmet demands expected by the repositioning plan and the result observed 

by running the simulation. Table 6-4 shows the comparison between the number of 

unmet demand expected by the repositioning plan and simulation in detail. For one of 

the instances of the first numerical experiment (case 6-1), the output of the optimization 

module expects a total of 2 unmet demands for the studied period, whereas the 

simulation module shows 6 unmet demands. 

Table 6-4 Comparing Unmet Demand by Optimization Module and Simulation 
Module for One Instance of Case 6-1 

Time Number of 

unmet pick-

ups  

(optimization) 

Number of 

unmet pick-

ups 

(simulation) 

Number of 

unmet drop-

offs 

(optimization) 

Number of 

unmet drop-

offs 

(simulation) 

6:00-6:30 2 2 0 0 

6:30-7:00 0 1 0 1 

7:00-7:30 0 0 0 0 
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7:30-8:00 0 2 0 0 

8:00-8:30 0 0 0 0 

8:30-9:00 0 0 0 0 

9:00-9:30 0 0 0 0 

9:30-10:00 0 0 0 0 

 
 
While the optimization module, by itself, produces optimistic solutions, and the 

solution quality often degrades when the decisions of the optimization module are 

simulated using the simulation module, compared to the case without repositioning, the 

model does indeed improve the simulated system considerably. In Table 6-5, the 

percentage differences in unmet demands between the optimization module and 

simulation module for the studied cases are summarized to showcase this. The quantity 

in Table 6-5 measures the following: 

Percentage	difference	in	unmet	demand =
𝑧8s�,�.$ − 𝑧�.$
𝑧8s�,b�v�

∗ 100	  (6.1) 

 

where 𝑧�.$ is the unmet demand expected by the optimization module (i.e., the output 

of the optimization module), and 𝑧8s�,�.$ is the unmet demand resulting from running 

the solution of the optimization module through the simulator. 𝑧8s�,b�v� is the unmet 

demand reported by the simulator assuming “no repositioning”. Based on this metric, 

a smaller percentage difference in unmet demands is desirable. Note that percentage 

difference in unmet demand can be small (i.e., close to 0) either if the expected demand 

of the optimization module is very close to the result reported by the simulator, or if it 
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is non-zero but “no repositioning” would result in a large unmet demand (i.e., the 

denominator is large).  From Table 6-5, it can be seen that relative to the unmet demand 

in the case without repositioning, the value of repositioning measured after the 

simulation is around 12% for the 30-minute cases and 14% for 60-minute cases.  

Table 6-5 Percentage Difference in Unmet Demand between Optimization Module 
and Simulation Module 

30 Minute 60 Minute 

Numerical 

experiment 

Mean percentage 

difference in 

unmet demand 

Numerical 

experiment 

Mean percentage 

difference in unmet 

demand 

Case 6-1 6% Case 6-3 5% 

Case 6-2 5% Case 6-4 6% 

Case 6-5 3% Case 6-7 6% 

Case 6-6 8% Case 6-8 9% 

Case 6-9 23% Case 6-11 29% 

Case 6-10 26% Case 6-12 31% 

 

 Effect of Adding Future Steps 

Cases 6-1, 6-2, 6-5, 6-6, 6-9, and 6-10 are resolved based on a 1-hour planning horizon 

(2 30-minute intervals) instead of 2 hours (4 30-minute intervals) to see the effect of 

multi-step planning in reducing the number of unmet demands and the routing cost. 

Figure 6-6 compares the number of unmet demands for these cases. On average, adding 
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1 hour to the planning horizon will result in around 97% reduction in the number of 

unmet demands. 

 

 

Figure 6-6 Number of Unmet Demands Versus Planning Horizon 

 
Figure 6-7 compares the routing cost of cases when the planning horizon is fixed to 1 

hour to when the planning horizon is fixed to 2 hours. On average, adding 1 hour to the 

planning horizon will result in around 20% reduction in the total time of routing. 

Overall, the results indicate accounting for demands in the future steps will result in 

significant reductions in the number of unmet demands as well as routing costs. 
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Figure 6-7 Routing Cost Versus Planning Horizon 

 Running Time 

Although the results of section 6.3 show a significant reduction in the unmet demand 

of the bikeshare system by running the optimization module, the sensitivity analysis of 

running time versus the problem size on 16 cases (see Figure 6-8) shows that the 

proposed formulation can only solve problems with less than 20 stations in a reasonable 

time for a dynamic repositioning. A heuristic solution method is proposed to achieve a 

solution for this problem in a reasonable time. This method is described in the next 

chapter. 
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Figure 6-8 Solving Time Versus Problem Size 
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 Heuristic Method 

 Overview 

Solving a repositioning problem even for one time interval is an NP-hard problem. The 

proposed heuristic, which aims to reduce the solution time of the optimization module, 

breaks the problem into three parts. The first part is generating source and demand pairs 

based on future pick-ups and drop-offs for the entire planning horizon. In the second 

and third parts, a cluster-first-route-second approach is utilized, where, in the second 

part, the next interval pairs are clustered and assigned to trucks. Finally, in the third 

part, a routing problem is solved for each cluster. In the following sections, each of 

these parts is explained in detail. Figure 7-1 shows the workflow of the heuristic 

method. 

 

Figure 7-1 Heuristic Method Workflow 
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 Generating Source-demand Pairs 

The first step of the heuristic method is to generate the source and demand pairs for the 

movement of bikes for future planning time intervals. A MIP model is developed to 

find the optimal movements.  

7.2.1 Notation 

The following decision variables are used in addition to sets, parameters, and decision 

variables defined in section 3.2.1. 

 
• Decision Variables 

𝑏88;$  Binary indicator of traveling from the station (s) to station (s’) at a time 

interval (t) 

𝑙88;$  Number of bikes moved from the station (s) to station (s’) at a time interval 

(t) 

7.2.2 Objective Function 

Equation (7.1) shows the objective function of the model. Similar to equation (3.1), the 

objective function of this model includes lost demand penalty (number of unmet 

demands), routing penalty, and initial trip penalty. Instead of having an exact routing 

penalty, a surrogate function is used for the routing penalty, which only accounts for 

the routing cost between the pick-up nodes (source nodes) and drop-off nodes (demand 

nodes). 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑍 =SS(𝑝𝑝8$ + 𝑑𝑝8$)

8∈W$∈X

	+ 

𝛼 ⋅SS S 𝑏88!
$

8!∈W/{8}

. 𝑇𝑇88!
$

8∈W$∈X

+ 	𝛽 ⋅SS S 𝑙88;$
8!∈W/{8}8∈W$∈X

 

(7.1) 

 

7.2.3 Constraints 

In addition to constraints (3.28) to (3.38), the following constraints are included in the 

source-demand generator model. 

Constraints (7.2) are very similar to constraints (3.21), and relate the available number 

of bikes at station s at time t+1 (𝑎8$i+) to the available number of bikes at station s at 

time t (𝑎8$) and the number of actual pick-ups (𝑎𝑝8$) and drop-offs (𝑎𝑑8$) at the station 

during the interval (𝑡), and the number of bikes moved from other stations (𝑙8!8
$ ) to this 

station and the number of bikes moved from this station to other stations (𝑙88;$ ). 

 
𝑎8$i+ = 	𝑎8$ 	− 	𝑎𝑝8$ +	𝑎𝑑8$ 	+ S 𝑙8!8

$

8!∈W/{8}

− S 𝑙88!
$

		8!∈W/{8}

 

		∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.2) 

 
 

Constraints (7.3) and (7.4) limit the number of actual pick-ups and drop-offs.  

 
𝑎𝑝8$ ≤ 	𝑎𝑑8$ +	𝑎8$ −	 S 𝑙𝑠𝑠′

𝑡

8!∈W/{8}

					 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.3) 
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𝑎𝑑8$ ≤ 	𝑅8 −	𝑎8$ +	𝑎𝑝8$ − S 𝑙𝑠′𝑠
𝑡

8!∈W/{8}

 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.4) 

 

Constraints (7.5) enforce the load moved from 𝑠 to 𝑠; (𝑙88;$ )	to be zero if the binary 

indicator of traveling from 𝑠 to 𝑠; (𝑏88!
$ ) is 0. In other words, we can move bikes only 

if the truck is traveling the path. 

𝑙88;$ ≤ 		𝐶 ∗ 𝑏88!
$  ∀	𝑡 ∈ 𝑇, 𝑠&𝑠′ ∈ 𝑆 (7.5) 

 

Constraints (7.6) to (3.13) are similar to constraints (3.11) to (3.18). 

 
S 𝑙88;$

8!∈W/{8}		

≤ 𝑎𝑢𝑥18$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.6) 

 

𝑎8$ −	𝑎𝑝8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥18$ ≥ 0 ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.7) 

 

𝑎𝑢𝑥18$ ≤ 𝑀 ∗ 𝑅8 ∗ (1 − 𝑏𝑎𝑢𝑥18$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.8) 

 

𝑎𝑢𝑥18$ ≤ 𝑎8$ −	𝑎𝑝8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥18$    ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.9) 

 

S 𝑙88;$
8!∈W/{8}

≤ 𝑎𝑢𝑥28$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.10) 

 

𝑅8 − 𝑎8$ −	𝑎𝑑8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥28$ ≥ 0 ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.11) 
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𝑎𝑢𝑥28$ ≤ 𝑀 ∗ 𝑅8 ∗ (1 − 𝑏𝑎𝑢𝑥28$) ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.12) 

 

𝑎𝑢𝑥28$ ≤ 𝑅8 − 𝑎8$ −	𝑎𝑑8$ + 𝑀 ∗ 𝑅8 ∗ 𝑏𝑎𝑢𝑥28$  ∀	𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.13) 

 

Constraints (7.14) and (7.15) indicate that we cannot move any bikes or add bikes to a 

station if that station does not have enough bikes for pick-ups or enough racks for drop-

offs. 

S 𝑙88;$
8!∈W/{8}

≤ (1 −	𝑏𝑝𝑝8$) ∗ 𝑅8					 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.14) 

 

S 𝑙8;8$
8!∈W/{8}

≤ (1 −	𝑏𝑑𝑝8$) ∗ 𝑅8 ∀	𝑡	 ∈ 𝑇, 𝑠 ∈ 𝑆 (7.15) 

 

 Clustering 

The proposed clustering algorithm is similar to bottom-up hierarchical clustering. The 

inputs of the algorithm are the number of clusters/trucks (K), location of trucks (𝐿C), 

and source-demand pairs (source and demand stations’ location) generated (𝑆𝐷) using 

the source-demand generator model that was explained in the previous section. The 

output of the clustering model is a set of pairs that need to be covered by each truck 

(CR).  

The clustering algorithm is summarized in Figure 7-2.  
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Figure 7-2 Proposed Clustering Algorithm 
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 Routing Model 

7.4.1 Overview 

The output of the source-demand generator model and clustering model is the subset 

of stations that need to be covered by each truck and their corresponding number of 

Input: 𝐾, 𝐿C, 𝑆𝐷 

Output: 𝐶𝑅 

1. 𝐶𝑅 ← 𝑆𝐷 

2. 𝑁 ← |𝐶𝑅| 

3. while |K|	 < 𝑁	: [Reduce the size of the output set to |𝐾|] do 

 3.1. Calculate/update the pair-wise distance between all (source, 

demand) pairs in 𝐶𝑅 

 3.2. (𝑠�, 𝑑�), (𝑠v, 𝑑v) ← Find the two (source, demand) pairs which 

have the minimum distance 

 3.3. (𝑠�, 𝑑�) ← 	Merge the two (source, demand) pair into a super-

node 

 3.4. 𝐶𝑅 ← 𝐶𝑅/{(𝑠�, 𝑑�), (𝑠v, 𝑑v)}[Remove the two pairs from the 

output set] 

 3.5. 𝐶𝑅 ← 𝐶𝑅 ∪ {(𝑠�, 𝑑�)}[Add the two merged pair to the output set] 

 3.6. 𝑁 ← 𝑁 − 1   [Decrement the size of the output set by 1] 

4. Solve an assignment problem to assign every element in |𝐾| to every element 

in |𝐶𝑅| based on distance between location of trucks (𝐿C) and super-nodes. 
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bikes that need to be picked up or dropped off. To find the order of visiting the nodes, 

we need to develop a routing model for the generated pick-up and drop-off pairs. The 

routing model only develops routing plans for the next interval and not all the intervals 

of the rolling horizon. This allows for taking advantage of the new information and 

updating the routing model with the new predictions for future intervals. A modified 

version of the dial and ride problem proposed by Cordeau (2006) is used for the routing 

model 

Similar to pick up and delivery problems, the routing model is defined on a directed 

graph, where, 𝑁C is the vertex set partitioned into �𝑃, 𝐷, {0}�, 𝑃 = 	 {1, . . . , 𝑛} is the set 

of pick-up stations (i.e., stations for which a truck needs to pick up bikes from), 𝐷 =

	{𝑛 + 1, . . . , 2𝑛}  is the set of corresponding drop-off stations, and 0 is an auxiliary 

station where the truck is located at the beginning/end of the interval and has a distance 

of zero to all other stations. Number of pick-ups and drop-offs (𝑄8) are also the output 

of source-demand generator model and 𝑄8 = 	−𝑄8,v. 

7.4.2 Notation 

The following parameters and decision variables are used in addition to sets, 

parameters, and decision variables defined in section 3.2.1. 

• Sets 

𝑆8�� The subset of stations that need to be covered by the truck 

𝑁C Set of stations + auxiliary origin/destination node (artificial) 	

𝑁C 	= 	 𝑆8�� ∪ {0}   
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• Parameters 

𝑄8 Number of bikes loaded/unloaded at the station (s) 

𝜔 Weight of routing penalty 

SS Start station 

 

• Decision Variables 

𝑞𝑡𝑜𝑡8 Number of bikes in the truck after visiting station (s)  

𝑥88; Binary indicator for the truck traveling from the station (s) to the station (s’) 

𝑏8 Binary indicator for visiting station (s)  

𝑦8 Subtour elimination variables 

 

7.4.3 Objective Function 

Unlike most routing models that try to minimize the routing cost, this model has the 

objective of maximizing the number of served demands. Equation (7.16) shows the 

objective function of the model, which has two parts. The first part maximizes the 

served demands, and the second part minimizes the routing cost. Routing duration/cost 

is a secondary objective. The routing cost is included with a small coefficient (𝜔) to 

avoid picking schedules with high routing costs among the ones that have the same 

number of served demands.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑍 = S 𝑏8 ⋅ 𝑄8
8∈𝑆𝑠𝑢𝑏

− 	𝜔 ⋅ S S 𝑥88;
8;∈𝑆𝑠𝑢𝑏/{𝑠}

⋅ 𝑇𝑇88�
8∈𝑆𝑠𝑢𝑏

 (7.16) 
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7.4.4 Constraints 

Every truck, as mentioned, needs to start from the auxiliary origin, visit the start node 

(SS), and end at auxiliary destination for each interval. Constraints  (7.17) and (7.18)  

make sure these constraints are met. 

𝑥>WW = 1  (7.17) 

 

S 𝑥8>
8∈W&'(

= 1  (7.18) 

 

Constraints (7.19) ensure that stations are only served if the truck departs the auxiliary 

station.  

S 𝑥88;	
8;∈W&'(/{8}

≥ 	 𝑏8 ∀𝑠	 ∈ 𝑆8��                                                                                                          (7.19) 

 

Constraints (7.20) are the conservation of flow constraints 

S 𝑥88;
8;	∈W&'(/{8}

= 	 S 𝑥8;8	
8;	∈W&'(/{8}

 ∀𝑠	 ∈ 𝑆8��    (7.20) 

 

Constraints (7.21) are constraints on the load after visiting a given station s. 

max(0, 𝑄𝑠) ≤ 𝑞𝑡𝑜𝑡8 ≤ min(𝐶, C + 𝑞𝑡𝑜𝑡8) ∀𝑠	 ∈ 𝑆8��    (7.21) 
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Constraints (7.22) are for conservation of load, which are linearized in constraints 

(7.23). 

𝑞𝑡𝑜𝑡8 ≥ (𝑞𝑡𝑜𝑡8; + 𝑄8) ∗ 𝑥8!8 ∀𝑠	 ∈ 𝑆8��    (7.22) 

 

𝑞𝑡𝑜𝑡8 ≥ 𝑞𝑡𝑜𝑡8! +	𝑄8 − C ∗ (1 − 𝑥8!8) ∀𝑠	 ∈ 𝑆8��    (7.23) 

 

As noted in 7.4.1, stations are named so that 𝑠 ∈ {1, . . . , 𝑛} are the set of pick-up stations 

and 𝑠 ∈ 	 {𝑛 + 1, . . . , 2𝑛} are the set of corresponding drop-off stations. Constraints 

(7.24) make sure that both source and demand are served for each pair of source and 

demand generated by the source-demand generator model. 

𝑏8 = 𝑏8iv	 ∀𝑠	 ∈ 𝑆8��    (7.24) 

 

The routing model also includes subtour elimination constraints, which look similar to 

those included in the complete optimization model (equation (3.39) presented in section 

3.2.1. 

𝑦8 − 𝑦8; + (|N| − 1) ∗ 𝑥8!8 ≤ 	 (|N| − 2) ∀𝑠	 ∈ 𝑆8��, ∀𝑠′	 ∈

𝑆8��/{𝑠}    

(7.25) 

 

 Beam Search 

Due to the overall nature of the source-demand generator model, solving the source-

demand generator model will likely result in a multi-optimal solution. For example, in 

many cases, there is a possibility to move the bikes from a particular station to another 

station either at this period or in a future period. Given that the main problem is a multi-
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period problem, different solution among the multiple optimal solutions of the first 

subproblem (i.e., source-demand generator), can result in different solutions with 

varying qualities for the subsequent parts/problems. A beam search algorithm is 

developed to choose the most promising solution at each interval by inspecting a 

predetermined number of optimal solutions generated from the source-demand 

generator model. The advantage of this approach is that once the source-demand 

generator model is solved to optimality, finding few additional alternate optimal 

solutions incurs little to no additional cost. Also, the rest of the steps (including 

clustering and routing) can be solved in parallel for each of the solutions as they are 

independent. After solving all of the branches, a criterion is used for choosing the best 

solution. Here, ∑ 𝑏8 	 ⋅ 𝑄88∈W&'( /∑ ∑ 𝑥88;8;∈W&'(/{8} ⋅ 𝑇𝑇88!8∈W&'(  which is the number of 

moved bikes divided by the routing duration is chosen to evaluate different solutions. 

The solution with the highest ratio is picked as the most promising solution for each 

interval and fed to the simulation module for evaluation.  

 Numerical Results 

In this section, several case studies are developed for comparing the results of the 

complete model and the heuristic model. Figure 7-3 to Figure 7-5 show the location of 

the stations of the numerical experiments, and  

 

Table 7-1 summarizes the characteristics of the numerical experiments. 

All the numerical experiments are solved with three different initial values for the 

availability of bikes for each station. The number of initial bikes in the stations are 
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randomly chosen, such that the ratio of the total number of bikes over the capacity is 

between 45% to 55%. Repositioning is done using trucks with a capacity of 20 bikes, 

and the starting locations of the trucks are randomly chosen for each case study. 

For all the cases, 𝛼  and 𝛽  are set to 0.01, and for the heuristic method 𝜔 is set to 0.01. 

The interval duration is set to 30 minutes, and the planning horizon is set to 2 hours. 

The effect of interval duration is discussed in section 7.6.2. 

 

Figure 7-3 Location of Stations for Case 7-1 (10 Stations) 
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Figure 7-4 Location of Stations for Case 7-2 (20 Stations) 

 

Figure 7-5 Location of Stations for Case 7-3 (30 Stations) 
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Figure 7-6 Location of Stations for Case 7-4 (40 Stations) 

 

Table 7-1 Characteristics of the Numerical Experiments 

Numerical 

experiment 

Time of day Number of 

stations 

Interval 

duration 

Number 

of trucks  

Total 

demand 

Case 7-1 weekday 

afternoon peak 

  10  30 minute 1 588 

Case 7-2 weekday 

afternoon peak 

20 30 minute 1 1248 

Case 7-3 weekday 

afternoon peak 

30  30 minute 1 1779 

Case 7-4 weekday 

morning peak 

40  30 minute 2 1136 
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7.6.1 Number of Unmet Demands and Routing Cost Results 

For each numerical experiment, the five following models are compared in terms of 

number of unmet demands and routing cost (time): 

a) Model 0: Running the simulation without any repositioning to see the number 

of unmet demands without repositioning. 

b) Model 1: Running the complete optimization model discussed in chapter 5 with 

the assumption that we know the number of pick-ups and drop-offs for each 

station during each time interval (𝑃8$	and 𝐷8$). 

c) Model 2: Running the heuristic model discussed in this chapter with the 

assumption that we know the number of pick-ups and drop-offs for each station 

during each time interval. 

d) Model 3: Running the heuristic model discussed in this chapter with the 

predictions from the prediction model proposed in Chapter 5. 

e) Model 4: Running the heuristic model discussed in this chapter with the 

predictions from a naïve prediction method. The naïve prediction method uses 

the number of pick-ups and drop-offs of the station during the same weekday 

and time of day of the previous week. 

Model 0 gives us a baseline for assessing the value of repositioning. The repositioning 

can be done based on model 1 or model 2. By comparing model 2 to model 3, we can 

evaluate the value of having perfect information. By comparing model 3 and model 4, 

we can appraise the proposed prediction model by comparing it with a naïve but strong 

prediction baseline. 
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Figure 7-7 and Figure 7-8 show the number of unmet demands and routing times of the 

described models (model 0 to model 4) for the case 7-1, respectively. 

Both the complete model (model 1) and the heuristic method (model 2) have average 

unmet demand of around 2 (a 96% reduction of unmet demand compared to model 0) 

which illustrates that the heuristic is performing on par with the complete model when 

evaluated using the number of unmet demands. However, when comparing model 1 

and model 2 in terms of routing cost, the complete model (model 1) has a shorter 

routing time. The average routing time of heuristic is around 50 minutes, whereas the 

routing time of the complete model is around 35 minutes. Model 3 reduces the unmet 

demand around 80%, whereas model 4 only reduces the unmet demand around 51% 

compared to the model without any repositioning (model 0), which shows the value of 

the prediction model. 

 

Figure 7-7 Comparison of Different Models’ Unmet Demand for Case 7-1 
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Figure 7-8 Comparison of Different Models’ Routing Time for Case 7-1 

The number of unmet demands and routing times for the different models evaluated 

using case 7-2 are shown in Figure 7-9 and Figure 7-10, respectively. Similar to case 

7-1, on average, model 1 and model 2 have similar performance in terms of unmet 

demand. However, the routing time of model 2 is around 12% higher than model 1. 

Also, for this case, model 3 has a slightly lower number of unmet demands compared 

to model 4; however, the routing time of model 4 is 32% higher than model 3. 
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Figure 7-9 Comparison of Different Models’ Unmet Demand for Case 7-2 

 

Figure 7-10 Comparison of Different Models’ Routing Time for Case 7-2 

Figure 7-11 and Figure 7-12 show the number of unmet demands and routing times for 

case 7-3. Results indicate by using the proposed prediction model and heuristic method  
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(model 3), we can reduce the unmet demand by around 62% compared to the baseline 

model 0. If we had a prediction model with the capability of predicting the exact 

number of pick-ups and the number of drop-offs, we could reduce the unmet demand 

to around 83% (using model 2). Comparing the routing time of model 2 and model 3 

in Figure 7-12, we can conclude that there is not going to be a significant reduction in 

the routing time by having a prediction model with high accuracy. 

 

Figure 7-11 Comparison of Different Models’ Unmet Demand for Case 7-3 



 

 

103 
 

 

Figure 7-12 Comparison of Different Models’ Routing Time for Case 7-3 

Figure 7-13 shows the unmet demand for case 7-4. For this case, due to the problem 

size, the complete model did not find a solution even after running the model for more 

than 12 hours, so we could not present the results of this model (model 1). 
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Figure 7-13 Comparison of Different Models’ Unmet Demand for Case 7-4 

Figure 7-14 shows the routing time of model 2, 3, and 4. The routing time of models 2 

and 3 are similar to each other and slightly higher than that of model 4. 

 

Figure 7-14 Comparison of Different Models’ Routing Time for Case 7-4 

Overall, the results of this section show that the quality of solutions of the heuristic 

method (model 2) is comparable to that of the complete model (model 1). Although the 

routing time of the heuristic method is slightly higher than the complete model, In all 

of the cases, the two methods have similar unmet demands.  

The model with the trained prediction model (model 3) has lower unmet demand in all 

of the cases tested compared to model 4, which uses the naïve method for predicting 

the number of pick-ups and drop-offs. Model 3 can reduce the unmet demand by up to 

30% compared to model 4. The average reduction is around 14%. Also, in all of the 

cases except 7-4, model 4’s routing time is higher than that of model 3.  
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Results also indicate using the proposed heuristic model in conjunction with the trained 

prediction model (model 3) can reduce the unmet demand up to 85% compared to the 

baseline model without repositioning (model 0). Using model 3, the average reduction 

in unmet demand is 64%. For model 2, the average reduction is around 87%. This 

suggests improving the prediction model can potentially reduce the unmet demand by 

23% for the cases tested. 

7.6.2 Effect of Interval Duration  

As discussed in section 3.1.1, and further illustrated using the numerical results in 

section 6.3, the assumptions of the optimization module hold better for shorter time 

intervals. However, the prediction power of the model has the opposite relation with 

respect to shorter time intervals (see section 5.4.2). The case studies in  

 

Table 7-1 are resolved using 60-minute interval durations instead of the 30-minute 

interval duration to see the overall performance of the model with respect to the interval 

durations. We use model 3 (heuristic method with predicted demands) for comparisons. 

Figure 7-15 and Figure 7-16 compare the routing cost, and unmet demand of the model 

with 30 minutes interval duration, and the model with 60 minutes interval duration, 

respectively.  
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Figure 7-15 Routing Costs of 30 and 60 Minutes Interval Durations 

Although in all the cases the routing time of the model with the 60-minute interval 

duration is lower, the unmet demand of the model with 30 minutes is significantly lower 

(see Figure 7-16). The average reduction in the unmet demand is around 48% for the 

model with 60 minutes interval, whereas this reduction is around 64% for the model 

with 30 minutes interval.  
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Figure 7-16 Number of Unmet Demands of 30 and 60 Minutes Interval Durations 

7.6.3 Running Time 

Table 7-2 to Table 7-5 summarize the summary statistics of the running time of the 

optimization module for each of the numerical experiments. Each of the numerical 

experiments in  

 

Table 7-1 is run for a specific time period (for the definition of time periods, see chapter 

6). The min, max, median, and mean running time of the interval durations (30 min) 

within each time period are reported in Table 7-2 to Table 7-5. Similar to previous 

experiments, results are averaged across all the different initializations for the 

availability of bikes. Comparing model 2 with all the instances solved by the heuristic 
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method (except case 7-44) suggests that model 2 can find a good solution faster (up to 

44 times faster) than model 1.  

It is worth noting that the heuristic method (model 2) can be even further accelerated 

by reducing the problem size using data preprocessing. One possible method for this 

preprocessing is explained in Chapter 8.  

Table 7-2 Comparison of Different Models Running Time for Case Study 7-1 

Model  Max  

(Sec) 

Min 

(Sec) 

Median 

(Sec) 

Mean 

(Sec) 

Total time 

(Sec) 

Model 1 1.9 0.1 0.4 0.6 4.9 

Model 2 0.3 0.2 0.1 0.2 1.4 

Model 3 0.4 0.1 0.2 0.2 1.5 

Model 4 0.5 0.1 0.1 0.2 1.5 

 
Table 7-3 Comparison of Different Models Running Time for Case Study 7-2 

Model  Max  

(Sec) 

Min 

(Sec) 

Median 

(Sec) 

Mean 

(Sec) 

Total time 

(Sec) 

Model 1 41.1 2.3 8.2 12.7 102 

Model 2 0.7 0.1 0.3 0.3 2.6 

Model 3 0.6 0.1 0.3 0.3 2.4 

Model 4 4.1 0.2 0.4 1.0 7.6 

 
 
 

 
4 For case 7-4, model 1 (the complete model) was not able to find a solution even 
when it was executed for 12 hours. 
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Table 7-4 Comparison of Different Models Running Time for Case Study 7-3 

 
Model  Max  

(Sec) 

Min 

(Sec) 

Median 

(Sec) 

Mean 

(Sec) 

Total time 

(Sec) 

Model 1 4794.3 62.3 235.8 890.5 7123.6 

Model 2 50.1 1.1 9.4 16.3 159.3 

Model 3 3.1 0.7 1.3 1.5 12.0 

Model 4 11.4 0.6 3.2 4.0 31.8 

 
Table 7-5 Comparison of Different Models Running Time for Case Study 7-4 

Model  Max  

(Sec) 

Min 

(Sec) 

Median 

(Sec) 

Mean 

(Sec) 

Total time 

(Sec) 

Model 1 - - - - - 

Model 2 99.1 2.5 14.9 24.5 196.3 

Model 3 43.7 1.9 9.4 13.7 109.5 

Model 4 25.9 1.5 7.9 9.6 76.7 
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 Case Study 

The heuristic method, combined with the prediction model, is tested on one week of 

Capital Bikeshare data during different time periods. Similar to previous numerical 

experiments, time periods considered are weekday morning peak (6 AM – 10 AM) and 

weekday afternoon peak (3 PM – 7 PM).  

The predictions are for four 30-minute future intervals, and the planning horizon of the 

optimization module is four (2 hours). The repositioning is done using trucks with 

capacity 20. The availability of the bikes for each station is initialized by random so 

that the total number of bikes in the system is within 45% – 55% of the total number 

of docks.  

The number of stations considered in the case study is 208. There are some stations that 

are somewhat balanced. This observation can be used to prune the problem size. For 

example, the stations for which the prediction model predicts they have the same 

number of pick-ups and drop-offs may require fewer visits by trucks. While these 

stations may not have any shortage of demands among themselves, visiting them can 

still be helpful for limiting the shortage of demands at other stations (i.e., moving bikes 

from one of these stations to a station which has a shortage of bikes.) The inclusion of 

these stations is always good as long as it does not hurt running time. Due to this trade-

off, one can have a fixed number of stations to be used in the heuristic in mind. The 

stations which are included in the subset of stations used in the heuristic can be 

evaluated and sorted based on their importance. One possible metric for importance is 

as follows which computes the “imbalanceness” of a station s: 
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𝐼8 = S max�	0,			 − j𝐷8,$ − 𝑃8,$ + 𝐴8,$k,			𝐷8,$ − 𝑃8,$ + 𝐴8,$ − 𝐶8�
$∈{+,w,�,�}

 

where 𝐷8,$, and 𝑃8,$ are the drop-off and pick-up predicted by the prediction model for 

station s at time t, 𝐴8,$ is the availability of bikes of station s at time t, and 𝐶8 is the 

capacity of station s (i.e., the number of docks of the station.) The above metric is non-

negative and will be equal to zero for the stations which might not incur a demand 

penalty based on the prediction model. If the fixed number of stations is more than the 

number of stations with  𝐼8 > 0, then some of the stations with 𝐼8 = 0 could also be 

included at random.  

 System Evaluation without Rebalancing 

As a base-line, the system is simulated without rebalancing. For the considered 

morning peaks (i.e., different weekdays), no rebalancing results in 679 to 1058 unmet 

demands. And for the considered afternoon peaks, the unmet demands will be 567 to 

805. To put things in perspective, the morning peaks’ total number of pick-ups and 

drop-offs are between 4,107 and 5,461, and the afternoon peaks’ total is between 6,565 

and 7,574. 

 System Evaluation with Heuristic and Effect of the Number of Vehicles 

As stated before, the repositioning of problems with more than 20 stations could only 

be done using the heuristic method. Also, given that the problem size of the final case 

study is large compared to the illustrative numerical studies of the previous chapters, 

this case study can be used for evaluating the value of having additional trucks in the 

fleet. As can be seen in Figure 8-1, for the morning peaks, the heuristic is able to find 
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solutions that result in 55% fewer unmet demands. Adding more trucks can result in 

solutions with fewer unmet demands. However, going beyond more than 5 trucks for 

this case study does not considerably decrease the number of unmet demand but 

considerably increases the routing time of the trucks, as seen in Figure 8-2, which 

results in a drop in efficiency of trucks. A comprehensive sensitivity analysis can be 

used by operators of bikesharing systems to make decisions regarding the truck fleet 

size.  

 

Figure 8-1 Effect of Number of Trucks on Unmet Demand for A.M. Peak  



 

 

113 
 

 

 

Figure 8-2 Effect of Number of Trucks on Total Routing Time for A.M. Peak  

Similar results for the afternoon peak can be observed in Figure 8-3 and Figure 8-4. 

The number of unmet demands can approximately be cut in half using the combined 

heuristic and prediction model. 

Overall, results indicate that for this particular case study, the bikeshare system is more 

balanced during P.M. peaks compared to morning peaks as the average unmet demands 

without repositioning is around 900 for A.M. peaks, whereas for P.M. peaks this 

number is around 700.  
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Figure 8-3 Effect of Number of Trucks on Unmet Demand for P.M. Peak  

  

Figure 8-4 Effect of Number of Trucks on Total Routing Time for P.M. Peak  
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 Summary, Conclusions, and Future Research 

 Summary 

In this study, an integrated prediction and multi-period optimization model was 

proposed for solving the repositioning problem for bikesharing systems during peak 

periods.  

In the context of prediction models, several prediction models from the literature, 

namely, dynamic regression, random forests, and feedforward neural networks, were 

compared. For the purpose of predicting station-level pick-ups and drop-offs of the 

Capital Bikeshare data, the feedforward neural network resulted in the best 

performance. Consequently, feedforward based regression models were utilized as base 

models of the prediction model.  

Moreover, the inclusion of membership information and station status information 

were proposed as possibly useful sources of information which can potentially improve 

prediction models’ performance. Membership information is included in the meta-data 

of each trip, and status information is available per station. The status of stations 

includes information on the duration of the outage (full or empty). Through visualizing 

the user behavior of members and non-members (casual users), it can be observed that 

these categories of users make use of the bikeshare systems in different ways. This 

observation is consistent with previous works.  

In the context of the optimization model, a MIP model was proposed. The optimization 

model is a multi-period model with a rolling horizon. Several assumptions were made 
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to model the system. These assumptions were evaluated using a discrete-event 

simulation module. The complete MIP model results in good solutions but does not 

scale well to larger problems with more stations. A three-step heuristic model was 

proposed, which allows the operators to solve the rebalancing problem for real-world 

size instances. The solutions found using the heuristic method decrease the unmet 

demand by a large factor. By performing an analysis of the real-world problem, the 

system operators can assess the value of having additional trucks.  

 Conclusions 

The results of the prediction model confirmed that adding the status of stations as an 

input to the prediction model as well as having separate prediction models for the 

number of pick-ups (number of drop-offs) of casual users and member will improve 

the quality of predictions in terms of root mean squared error. Results show that adding 

this information can improve the root mean squared error of the prediction model by 

up to 30%. The median improvement is around 19%. 

A comparison of the multi-step model to the model without any consideration for future 

demands shows that accounting for future demands can significantly improve the 

efficiency of the repositioning plan. Results of studied cases indicate adding 1 hour to 

the planning horizon will result in around 97% reduction in the number of unmet 

demands and a 20% decrease in the routing time duration. 

Limited sensitivity analysis on the interval duration suggests the quality of the 

prediction model improves by increasing the duration of the time intervals (due to an 

increase in the signal/noise ratio); however, the assumptions of the optimization 
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module do not hold very well when the interval duration increases. Results of studied 

cases on two different interval durations show that the overall performance of the 

integrated model is better when the interval duration is shorter. 

The prediction module, when combined with the optimization module, resulted in 

system improvements compared to the case where the prediction module is replaced 

with reasonable temporal-based baselines such as the naïve temporal method, which 

predicts that the demand is similar to the same time and day of the previously observed 

week. On average, the combined model reduces the unmet demand by around 14% 

compared to the model that uses the naïve temporal method. However, comparing the 

combined model with the model that uses the actual number of pick-ups and drop-offs 

suggests that the repositioning model can still benefit from improvements to the 

prediction model. 

 Future Research 

The proposed models and methods in this dissertation have some assumptions and 

limitations which can be relaxed for future studies. Some possible directions for future 

research are: 

• In this dissertation, the value of information on the user’s membership and the 

status of stations is evaluated on the forecasting power of the prediction model. 

Although these findings are not model specific, it is of interest to compare and 

evaluate this forecasting power using other existing models in the literature. As 

the numerical results suggest, the efficiency of the proposed model highly depends 

on the quality of predictions. Among other models in the literature and not tested 
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in this study, Graph Convolutional Networks and especially Spatio-Temporal 

Graph Convolutional Networks (STGCN) has shown promising results in tackling 

time series prediction on graph-structured data (Zhang et al. 2019, Yu et al. 2017) 

and can be possibly tested to improve the predictions. Moreover, this study did not 

account for the effect of special events on the dynamics of the time series. 

• Solutions from the proposed heuristic model could only be compared to the 

solutions of the complete model in cases with a limited number of stations. For 

larger cases, the complete model cannot find a feasible solution within a 

reasonable time limit. It is desirable to verify the quality of the solutions found by 

the heuristic with other new heuristic methods. Moreover, to further reduce the 

solution time of the complete model and parts of the heuristic that are solved by 

commercial solvers (such as the routing model), a branch and cut algorithm can be 

incorporated into the model. 

• As the focus of the current study is on developing an operational model for 

repositioning bikes in a system during peak hours, there are limited numerical 

experiments on strategic level decisions related to the repositioning problem (e.g., 

number of trucks and their capacity). The presented model in this dissertation can 

be utilized for recommending strategic actions/decisions by performing extensive 

case-study experiments. Although we have tested the effect of using different 

initialization methods in the workload of repositioning during peak hours and the 

performance of the repositioning model, there is a need to further evaluate the 

option of rebalancing during non-peak hours with the objective of reducing the 

workload of repositioning during peak hours as well as evaluating the effect of 
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having different ratios for the number of bikes and capacity at each station. 

Moreover, the coefficients of lost demand penalty (quantity of unmet demands) 

and routing penalty can be adjusted in the objective function using data from the 

intended bikeshare system to maximize the profit. One way to this could be to set 

the coefficients of lost demand so that stations that tend to have a higher profit per 

pick-up or drop-off have larger penalties for their unmet demand as well. 

• Starting from 2019, some of the bikeshare systems located in North America, 

including Capital bikeshare, have initiated pilot programs for introducing electric 

bikes into their station-based bikesharing systems. It is of interest to study how the 

rebalancing operations need to be possibly modified. For example, one might be 

interested in mostly positioning these bikes in stations along uphill routes where 

users need to bike uphill, and one might need to account for recharging and battery 

swapping of these bikes.  
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Appendix 

 Model Comparison 

A.1 Overview 

Some results for prediction module based on dynamic regression models (DRM), 

random forest, and neural network models are presented here. To evaluate these results, 

they are compared with base models such as naïve and seasonal naïve.  

Results for all the models are based on one-step forecasts without re-estimation, which 

means that the model is estimated based on a single set of training data, and the 

estimated model is used to forecast the number of pick-ups and drop-offs for the next 

30-minute time interval for the test data.  

The data is divided into two sets of training and testing data. The first training dataset 

is from January 1st to June 27th, 2017, and the testing dataset for this data is from June 

28th to June 30th, 2017.  The second training dataset is from January 1st to December 

22nd, and the testing dataset is from December 23rd to December 25th, 2017. This allows 

us to have a better comparison by accounting for different time of year and 

consequently different levels of demands. 

Four stations are selected from the 208 sampled stations. Their locations are shown in 

Figure A-1. To see the performance of the model on the stations with different usage 

(high, low, and medium demand), these four stations are chosen which have different 

levels of demand: Jefferson Dr. & 14th St SW as a high demand station, Eastern Market 

/ 7th & North Carolina Ave SE and 4th & East Capitol St NE as two medium demand 

stations, and 19th & East Capitol St SE as a low demand station. 
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Figure A-1 Four Sampled Stations’ Locations and Their IDs 

 

The effects of the following variables are included in the models: 

• Weather data, including precipitation data, and temperature data that is retrieved 

from NOAA (national oceanic and atmospheric administration)’s national centers 

for environmental information (NCEI). Two cases are considered for incorporating 

these features: (a) continuous features - these features are represented in the models 

as they are, and (b) categorical features - they are represented in a discrete and  

categorical form. Two different conversions to categorical variables are used. In the 

first one, numbers are converted based on equal size bins (7℉) for temperature and 

(0.05 inch) for precipitation. This results in 12 categories for temperature and nine 

categories for precipitation. In the second one, these categories are merged based 

on their median (categories with similar medians are merged into one category) to 
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get fewer categories and have more observations in each category. The second case 

results in nine categories for temperature and six categories for precipitation. 

• Hour of the day, the day of the week, and monthly indicators are also added to the 

models. One-hot-encoding is used to include these categorical variables in the 

model. For the neural network and random forest, the previous observations are 

also added (These are automatically included for the DRM, so we do not need to 

add them as regressors.) 

A.2 Naïve, Seasonal Naïve, and DRM Method Results 

In the naïve method, all the forecasts are set to be equal to the last observed value. In 

the seasonal naïve method, the forecasts are set to be the last value observed from the 

same season of the year (here, the observation from the same day and interval of the 

last week is used).  

To fit the DRM model to the data, the series are required to be stationary (stabilizing 

mean and variance), and then the DRM model will be used to fit the transformed 

stationary data. Box-cox transformation and differencing are two methods for 

stabilizing variance and mean. After this step, different models were developed by 

changing the order of the autoregressive part, the moving average part, and by including 

different regressors. The final models for each station are chosen based on the Akaike 

Information Criterion, and then the model is tested on the test data. 

Based on the best results from the DRM, the demand is correlated with most of the 

considered/selected features, especially the day of the week, temperature, and time of 

day. Precipitation is not included in our final models. The impact of each of these terms 

is different for different stations and for pick-up/drop-off models. For example the 
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fitted model for “Jefferson Dr. & 14th St SW pick-ups” has a relatively large coefficient 

for time intervals that are within 12:30 P.M. to 5:30 P.M. Whereas for Eastern Market 

/ 7th & North Carolina Ave SE station’s pick-ups, these intervals are between 7:30 to 

9:00 A.M. In general, the effects of days of the week and times of the day are different 

for different stations.  

A.3 Random Forest Method Results 

As it was discussed in the literature review (section 2.2.4), random forest fits a number 

of classifying decision trees by choosing random samples from the training data and 

randomly selecting a subset of features (regressors). Here, the minimum squared error 

is used to measure the quality of splits at the nodes of the tree. There are a few 

hyperparameters that require tuning for the construction of the trees. One is the 

minimum number of samples required to be at a leaf node. Four different numbers are 

tested for this parameter: 1, 2, 3, and 4. For the number of trees in the forest, five 

numbers are tested: 50, 100, 250, 500, and 1000. For the maximum number of features 

that can be used for constructing trees, two different numbers are tested: number of 

features itself and square root of the number of features. Temperature and precipitation 

are tested both in continuous and categorical formats, but for the final cross-validation, 

only categorical formats of temperature are used since this format results in higher 

accuracies. Similar to DRM, precipitation is removed from the candidate/initial 

features since it doesn’t increase the accuracy of the model. As a result, for each station, 

and each training dataset, 80 different combinations of hyperparameters are tested 

using k-fold cross-validation. Here k is set to three. The final model for each station is 
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chosen based on the average performance on the folds, and then the best model is 

trained on the full training set and evaluated on the test set.  

Feature importance is calculated using error reduction, and the number of samples at 

each internal node that splits on that feature. Overall, for all four stations, a general 

trend can be observed that previous observations, along with the temperature and day 

of the week, have higher importance compared to the other features. Similar to DRM, 

different stations have different hours of the day, which have the highest importance. 

A.4 Multilayer Feedforward Neural Network (DNN) Results 

Similar to the other approaches, DNNs have hyperparameters that require tuning. 

Unlike the previous methods though, DNNs have many hyperparameters. To restrict 

the search space, the architecture search space is limited to having at most two hidden 

layers. All architectures have one neuron as the output. Once a prediction is made, the 

continuous prediction is rounded to the closest integer value; then, this integral value 

is used to calculate the desired metric. Root mean squared error between the prediction 

and the true value is used as the loss function for training the DNN. To accelerate 

learning and as a regularization, batch normalization is included before the activations 

of every hidden layer. Other regularizers, including weight decay with a coefficient of 

1e-4, are also included to prevent overfitting on the training data. 

While the general architecture is similar to Figure A-2, the number of neurons for the 

first (𝑛�)) and second hidden layer (𝑛�*) are varied. In our experiments, 𝑛�) ∈ {30, 35} 

and 𝑛�* ∈ {5,10,15,20}. An adaptive learning rate that decays if the loss of the model 

increases is used, but the initial learning rate is set to one of {0.01, 0.05, 0.1, 0.15}. 

Another hyperparameter that is considered is related to the stopping condition. The 
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number of epochs is set to be 500, 1000, or 2000. In the end, for each station and pick-

up/drop-off, the best model based on the validation set is selected and is used for 

predicting the pick-up or drop-off of the test set. 

 

 

 

 

 

 

Figure A-2 General Architecture of DNNs with Two Hidden Layers. 

 
Figure A-3 to Figure A-10 illustrate the predicted number of pick-ups and drop-offs by 

using the selected models of the DRM, random forest, and DNN versus actual pick-ups 

and drop-offs for the four stations under consideration, and for the first test dataset. 
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Figure A-3 Jefferson Dr. & 14th St SW the Predicted Number of Pick-ups Versus 

Actual Numbers 

 

Figure A-4 Jefferson Dr. & 14th St SW the Predicted Number of Drop-offs Versus 
Actual Numbers 

Ju
ne

 2
8,

 0
:0

0

6:
00

12
:0

0

18
:0

0

Ju
ne

 2
9,

 0
:0

0

6:
00

12
:0

0

18
:0

0

Ju
ne

 3
0,

 0
:0

0

6:
00

12
:0

0

18
:0

0

24
:0

0

0
2

4
6

8
10

12
14

16
18

20
22

24

Time of Day

N
um

be
r 

of
 P

ic
ku

ps

Actual
DRM
Random Forest
Neural Network

Ju
ne

 2
8,

 0
:0

0

6:
00

12
:0

0

18
:0

0

Ju
ne

 2
9,

 0
:0

0

6:
00

12
:0

0

18
:0

0

Ju
ne

 3
0,

 0
:0

0

6:
00

12
:0

0

18
:0

0

24
:0

0

0
2

4
6

8
10

12
14

16
18

20
22

24

Time of Day

N
um

be
r o

f D
ro

p−
of

fs

Actual
DRM
Random Forest
Neural Network



 

 

127 
 

 

Figure A-5 7th & North Carolina Ave SE the Predicted Number of Pick-ups Versus 
Actual Numbers 

 

Figure A-6 7th & North Carolina Ave SE the Predicted Number of Drop-offs Versus 
Actual Numbers 
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Figure A-7 4th & East Capitol St NE the Predicted Number of Pick-ups Versus 
Actual Numbers 

 
 

Figure A-8 4th & East Capitol St NE the Predicted Number of Drop-offs Versus 
Actual Numbers 
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Figure A-9 19th & East Capitol St SE the Predicted Number of Pick-ups Versus 
Actual Numbers 

 
Figure A-10 19th & East Capitol St SE the Predicted Number of Drop-offs Versus 

Actual Numbers 
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Table A-1 and Table A-2 show the performance measurements, including mean error, 

mean absolute error, and root mean squared error of the five methods. It should be 

noted that since the numbers that are predicted by the models are continuous, as stated 

before, they are rounded to integer values. As expected, generally, DRM, RF, and DNN 

have fewer errors (i.e., higher accuracy) compared to the baseline naïve and the naïve 

seasonal methods. Looking at Table A-1, we can see that the DNN has a smaller root 

mean squared error on the test sets in seven out of the eight cases in high-demand 

seasons. The mean absolute error for predicting the pick-ups and drop-offs is around 2 

for the high usage station, around 1 for medium usage stations, and less than 1 for the 

low usage station.  
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Table A-1 Prediction Accuracy Measurements for the First Test Set 

 Method 
Naïve 
method 

Seasonal 
naïve 
method 

DRM 
model 

 

Random 
forest 

Neural 
network 
model 

Je
ffe

rs
on

 D
r &

 1
4t

h 
St

 S
W

 

Pi
ck

- u
ps

 

A
cc

ur
ac

y 
M

ea
su

re
s 

Mean error 0.02 0.06 -0.09 0.31 -0.03 
Root mean 
squared error 

5.23 4.64 3.40 3.40 3.30 

Mean 
absolute error 

3.56 2.85 2.27 2.28 2.08 

D
ro

p-
of

fs
 Mean error -0.06 0.08 -0.10 0.43 -0.19 

Root mean 
squared error 

4.29 3.77 3.41 3.44 3.22 
 

Mean 
absolute error 

2.94 2.54 2.33 2.46 2.19 

7t
h 

&
 N

or
th

 C
ar

ol
in

a 
A

ve
 

SE
 

Pi
ck

- u
ps

 

Mean error 0.02 -0.38 -0.01 0.01 0.03 
Root mean 
squared error 

1.55 1.54 1.24 1.22 1.13 

Mean 
absolute error 

0.94 1.04 0.81 0.81 0.74 

D
ro

p-
of

fs
 Mean error -0.04 -0.27 -0.09 0.04 0.06 

Root mean 
squared error 

1.38 1.42 1.24 1.25 1.20 

Mean 
absolute error 

0.88 0.98 0.80 0.81 0.78 

4t
h 

&
 E

as
t C

ap
ito

l S
t N

E  

Pi
ck

-u
ps

 

Mean error 0.02 0.21 0.01 -0.11 -0.10 
Root mean 
squared error 

2.29 1.83 1.71 1.70 1.64 

Mean 
absolute error 

1.35 1.00 1.06 1.03 0.97 

D
ro

p-
of

fs
 Mean error 0.02 0.31 0.03 -0.14 -0.15 

Root mean 
squared error 

2.56 1.88 1.62 1.54 1.52 

Mean 
absolute error 

1.69 1.19 1.10 1.00 0.95 

19
th

 &
 E

as
t C

ap
ito

l S
t S

E  

Pi
ck

- u
ps

 

Mean error 0.00 -0.23 0.01 -0.08 -0.21 
Root mean 
squared error 

0.94 2.25 0.88 0.85 0.82 

Mean 
absolute error 

0.54 0.85 0.58 0.52 0.49 

D
ro

p-
of

fs
 Mean error -0.02 -0.10 0.08 -0.19 -0.18 

Root mean 
squared error 

1.23 1.66 0.94 0.94 0.96 

Mean 
absolute error 

0.69 0.85 0.60 0.56 0.58 
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Table A-2 Prediction Accuracy Measurements for the Second Test Set 

 Method 
Naïve 
method 

Seasonal 
naïve 
method 

DRM 
model 

 

Random 
forest 

Neural 
network 
model 

Je
ffe

rs
on

 D
r 

&
 1

4t
h 

St
 

SW
 

Pi
ck

-u
ps

 

A
cc

ur
ac

y 
M

ea
su

re
s 

Mean error 0.00 -0.64 -0.43 0.31 0.54 
Root mean 
squared error 

1.42 2.15 1.41 1.45 1.69 

Mean 
absolute error 

0.61 1.00 0.71 0.79 0.93 

D
ro

p-
of

fs
 Mean error 0.00 -0.62 -0.32 0.26 0.68 

Root mean 
squared error 

1.70 2.46 1.48 1.36 2.44 

Mean 
absolute error 

0.82 1.22 0.75 0.81 1.29 

7t
h 

&
 N

or
th

 C
ar

ol
in

a 
A

ve
 

SE
 

Pi
ck

- u
ps

 

Mean error 0.00 -0.58 -0.10 0.19 0.19 
Root mean 
squared error 

0.83 1.68 0.71 0.72 0.80 

Mean 
absolute error 

0.38 0.88 0.39 0.42 0.37 

D
ro

p-
of

fs
 Mean error 0.00 -0.63 -0.10 0.21 0.24 

Root mean 
squared error 

0.67 1.67 0.56 0.70 0.76 

Mean 
absolute error 

0.28 0.83 0.27 0.39 0.39 

4t
h 

&
 E

as
t C

ap
ito

l S
t N

E
 

Pi
ck

-u
ps

 

Mean error 0.00 -0.41 -0.10 0.26 0.18 
Root mean 
squared error 

0.83 1.22 0.72 0.75 0.75 

Mean 
absolute error 

0.42 0.69 0.42 0.52 0.44 

D
ro

p-
of

fs
 Mean error 0.00 -0.37 -0.13 0.19 0.17 

Root mean 
squared error 

0.79 1.13 0.75 0.73 0.70 

Mean 
absolute error 

0.29 0.56 0.38 0.41 0.34 

19
th

 &
 E

as
t C

ap
ito

l S
t S

E
 

Pi
ck

- u
ps

 

Mean error 0.00 -0.17 0.00 0.01 0.02 
Root mean 
squared error 

0.33 0.57 0.33 0.32 0.34 

Mean 
absolute error 

0.11 0.26 0.11 0.10 0.12 

D
ro

p-
of

fs
 Mean error 0.00 -0.13 -0.01 -0.05 -0.07 

Root mean 
squared error 

0.42 0.58 0.45 0.40 0.37 

Mean 
absolute error 

0.15 0.26 0.17 0.13 0.11 
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  Hyperparameter Tuning and Model Selection for DNN 

B.1 Overview 

Hyperparameter tuning is performed on the following variables: number of layers, 

number of neurons, and dropout rate. Hyperparameter tuning is done on the base model 

(model which only uses following variables: past observations, weather data, time of 

the day, day of the week, and monthly indicators.) and the selected hyperparameters 

are used for training the base model and all other models (models that include other 

information including the status of stations and membership information.) For a well-

tuned model, the same method can be used for the hyperparameter selection of other 

models. 

The search space for the number of layers is {2, 3, 4} (i.e., no hidden layers, one hidden 

layer, or two hidden layers), and the search space for the number of neurons per hidden 

layer is {25, 50, 100, 200, 250}. Neural network architecture is picked so that there is 

no bottleneck layer in the neural network, meaning there is no layer that has a lower 

number of neurons compared to its previous and succeeding layer.  

The dropout rate refers to the rate of eliminating some number of neurons of the hidden 

layers randomly during training. This method is used to reduce over-fitting and improve 

generalization error. Search space for dropout rate is {0.4, 0.5, 0.6}. The rate can be 

seen as the probability of the neuron becoming inactive during training. At test time, 

dropout is disabled.   

The sensitivity of the evaluation metric used is also tested with respect to the number 

of past observations chosen as an input to the model to find the optimal number of 

previous observations. Although it is possible to put a high number of past observations 
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as input and let the neural network decide which ones to choose, this step is done to 

reduce the training time of the models (Number of epochs for training) and reduce 

model complexity and over-fitting. The Search space (i.e., number) of past observations 

is in {1, 2, 4, 6, 12, 24, 48}. 

B.2 Training and Validation Dataset for Hyperparameter Tuning 

We randomly choose 70% of the 2016 trip data of each station to train the models and 

use the rest (30%) for comparing different hyperparameters (validation dataset). The 

2017 trip data is used for testing.  

In the first step, 10 random combinations of hyperparameters are chosen for 20% of 

stations from each of the groups defined in before. The model is trained based on these 

hyperparameters and then the root mean squared error of the 4-step ahead prediction 

(number of pick-ups or drop-offs in 0-30 minute, 30-60 minute, 60-90 minute, and 90-

120 minute) on the testing dataset is used as the measurement for comparison. In the 

second step, the optimal combination of hyperparameters of each station is used for all 

other stations. In the last step, the combination that has the lowest average root mean 

squared error among all the stations of that group is selected as the optimal 

hyperparameters for the corresponding group. 

Based on this method, a DNN with 2, 3, and 4 layers shows the lowest average 

minimum square error for low, medium, and high usage stations, respectively. For the 

list of all the hyperparameters picked by the method, see Table 5-1. 

Figure B-1 shows an example of mean and variance of root mean squared error 

(whisks) at different time steps for the number of pick-ups of a) high demand station 

b) medium demand station c) low demand station using the hyperparameter 
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combinations picked by the random search method described above. This visualization 

and similar visualizations in appendix B are developed by applying the trained models 

on 2017 trip data (testing dataset). Each model is run 5 times with different 

initializations to get the variance (whisks). This applies to all the plots with whisks. 

 
 

a) High demand station 
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b) Medium demand station 

 
c) Low demand station 

 

Figure B-1 Mean and Variance of Root Mean Squared Error for the Number of Pick-
ups a) a High Demand Station  (Terminal Number 31247 -Jefferson Dr & 14th St 

SW) b) a Medium Demand Station (Terminal Number 31610-7th & North Carolina 
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Ave SE) c) a Low Demand Station (Terminal Number 31516- Rhode Island Ave 
Metro) 

 
In almost all the instances, root mean squared error monotonically increases for the 

future steps. Differences between time steps are clearer in high usage stations. This 

could indicate that the past few observations are not an important factor for predicting 

pick-ups and drop-offs of low and medium usage stations compared to high usage 

stations. 

B.3 Effect of the Dropout rate 

Figure B-2 shows the effect of the dropout rate on the mean and variance of root mean 

squared error at different time steps for the number of drop-offs of a high demand 

station.  
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Figure B-2 Effect of Dropout Rate on Root Mean Squared Error for the Number of 
Drop-offs of a High Demand Station  (Terminal Number 31247 -Jefferson Dr & 14th 

St SW) 

 
As can be seen in Figure B-2, an appropriate value for the dropout rate can increase 

generalization. However, if the dropout rate takes on large values, then the model will 

underfit, and the performance drops.  

B.4 Effect of the Number of Previous Observations on the Accuracy 

Figure B-3 shows the effect of the number of previous observations on the mean and 

variance of the root mean squared error of the validation dataset for the number of pick-

ups of a high demand station (terminal number 31247 -Jefferson Dr & 14th St SW.) 

 

Figure B-3 Effect of Number of Previous Observations on Root Mean Squared Error 
for the Number of Drop-offs of a High Demand Station (Terminal Number 31247 -

Jefferson Dr & 14th St SW) 
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B.5 Optimizer, Learning-rate, and Training Epochs 

Adam optimizer is used as the optimization algorithm for all the groups with learning 

rate =0.01, beta_1 = 0.9, beta_2 = 0.999, and decay = 1e-4. The number of epochs is 

set to 30 for all the instances.  
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