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Several unmanned aircraft systems (UASs) have been and are being designed

with long, thin flexible wings, such as the joined-wing SensorCraft, to enhance the

operational capabilities. However, due to the long slender wings, these systems are

susceptible to aeroelastic instabilities, such as flutter. Thus, there is a need for

addressing nonlinear aeroelasticity and handling instabilities and post-instability

behavior. Nonlinear aeroelastic models can be quite computationally expensive. In

this dissertation, a nonlinear aeroelastic computational model is developed for the

joined-wing SensorCraft and simulations are carried out in a co-simulation frame-

work.

The aeroelastic model is composed of an unsteady vortex lattice method

(UVLM) based aerodynamic model and a finite element based structural model for

the joined-wing SensorCraft. Through computational cost profiling of the aeroelastic

model, it is determined that the aerodynamic processes are the most computation-



ally expensive. This means that the focus of the attempts to accelerate aeroelastic

computations should be on the aerodynamic computations. Specifically, computa-

tions of the field point velocities are found to increase the computational workload

as the wake grows over time.

In this dissertation, the fast multipole method (FMM) algorithm has been

integrated with the UVLM based aerodynamic model to reduce the computational

workload of evaluating the wake velocities. Furthermore, an aeroelastic compu-

tational model for the joined-wing SensorCraft has been developed by using the

accelerated aerodynamic model and a structural model. Flutter boundaries for var-

ious structural health conditions have been determined with respect to parameters

such as freestream speed, freestream direction, and freestream density.

In terms of contributions, this is the first effort in which the speedup ca-

pabilities of FMM accelerated vortex methods have been carried out and used in

nonlinear, unsteady UVLM based schemes. Also, computational studies on nonlin-

ear aeroelastic behavior of joined-wing aircraft have been carried out to examine

dynamic instabilities and the effects of structural degradation on these instabilities.

Although the joined-wing SensorCraft has been used as an illustrative application, it

is believed that the present work can be relevant to many other UASs. In addition,

the aeroelastic computations can be useful for integration for data-driven dynamic

application systems meant for UAS decision making applications.
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Chapter 1: Introduction

In this chapter, the background and motivation of this dissertation is discussed.

The overall research goal and the research questions to be addressed in this work are

defined. Through a review of the literature, the research gaps and needs, which are

addressed in this dissertation, are identified. To close the chapter, the organization

of the dissertation is stated.

1.1 Background and Motivation

Mission success of unmanned aircraft systems (UASs) can be adversely influ-

enced by unforeseen system responses and environmental conditions. For certain

operational and environmental conditions, an UAS may be quite susceptible to

aeroelastic instabilities, such as flutter. If an UAS is subjected to an aeroelastic

instability for a long enough period of time, it can fail depending on the material

properties and design of the aircraft and nature of the instability. With the increase

in usefulness and demand for surveillance and observation platforms and data col-

lection drones that have high aspect ratio wings for efficiency, the important need to

model and predict aeroelastic instabilities is increased. This is because the increased

aspect ratio results in high flexibility and brings forth the necessity for consideration
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Figure 1.1: Boeing joined-wing SensorCraft design. [1]

of aeroelastic loads to provide realistic estimates of the aerodynamic performance

and response of the aircraft. Predicting the onset of aeroelastic instabilities, such

as flutter, can become more challenging due to variations in aircraft store config-

urations or external instrumentation. For thin wing airframes, such as the Boeing

joined-wing SensorCraft [2, 3] shown in Figure 1.1, designed for efficient flight and

long loiter times, flutter can be extremely limiting for operations. Thus, accurate

offline estimation of flight envelopes and real-time dynamic flight envelop prediction

based on in-situ conditions and mission requirements can help significantly increase

mission capabilities.

Even though many tools are available to predict coupled aerodynamic-structural

loads, these tools are typically limited to the linear regime for aerodynamic and

structural force predictions. Systems with flexible wings can exhibit complex mo-

tions [4] and these behaviors, which tend to be nonlinear, cannot be sufficiently
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captured by a weak coupling of structural dynamics and aerodynamics. Nonlinear

aeroelastic models tend to be very computationally expensive but they are needed to

capture post-critical aeroelastic behavior and these models can be used to estimate

reliable margins for aeroelastic instabilities; that is, to generate a safe maneuver-

ing envelope. In this regard, there is an urgent need to develop a fast, accurate,

and reliable nonlinear aeroelastic computational model model based on fully couple

aerodynamics, structural dynamics, and nonlinear analysis. This is addressed in

this dissertation work.

1.2 Problem Definition and Research Questions

The overall goal of this dissertation is to construct estimates of the aeroelastic

stability envelope of the joined-wing SensorCraft by developing accelerated nonlinear

aeroelastic computational abilities. The proposed stability envelope is expected to

capture static and dynamic events, and the stability information will include post-

instability motions, such as limit cycle oscillations (LCOs). With the aeroelastic

computational model, the effects of wing damage on flutter boundary can also be

investigated. To address the research goal, the following research questions will be

addressed:

RQ1. How can the unsteady aerodynamics model be accelerated via an

algorithmic approach and hardware support and how much speedup

can be achieved? This question will be addressed in Chapter 2. It will be

shown that the most computational expensive components of the aeroelastic
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model are in the aerodynamic model.

RQ2. How can the influence of structural wing damage be accounted

for in the joined-wing aircraft structural model? Along with the

development of the structural model, this question is addressed in Chapter 3.

RQ3. How can the accelerated aerodynamics model and structural dy-

namics model be integrated to construct the aeroelastic compu-

tational model for the joined-wing aircraft? The procedure used to

combine the two models is presented in Chapter 4.

RQ4. How to determine the critical flutter speed and post-flutter motion

of the joined-wing aircraft using computational aeroelasticity sim-

ulations? This question is addressed in Chapter 5, wherein the results of the

numerical simulations will be presented.

In the next section, a review of the literature related to the research is pro-

vided in order to discuss the existing gaps in the literature and motivate the above-

mentioned questions.

1.3 Literature Review

To address nonlinear aeroelasticity and handle instability and post-instability

behavior for highly flexible structures, one requires nonlinear aeroelastic models.

Related to this, a review of computational aeroelastic models for highly flexible

structures is presented in Section 1.3.1. Then in Section 1.3.2, an overview is pro-
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vided on how aerodynamic computations have been accelerated via Graphics Pro-

cessing Unit (GPU) computing. The use of the Fast Multipole Method (FMM)

for accelerating the aerodynamic model computations is discussed in Section 1.3.3.

The integration of aeroelastic computations with the Dynamic Data-Driven Appli-

cation System (DDDAS) paradigm for decision support applications is reviewed in

Section 1.3.4. A review of how structural damage is considered in computational

models is presented in Section 1.3.5. Finally, in Section 1.3.6, the literature gaps to

be addressed in the dissertation are briefly discussed.

1.3.1 Modeling Aeroelasticity of Highly Flexible Structures

Highly flexible structures require nonlinear aeroelastic models to account for

lifting surfaces undergoing complex motions and large deformations. The primary

components of numerical aeroelastic simulations are the aerodynamic model, the

structural dynamic model, and the communication between them. Preidikman [5]

developed a method for simulating the interactions amongst aerodynamic, struc-

tural dynamics, and control systems. The aeroelastic model for this dissertation

is developed through the integration of a FE based structural dynamics model, an

UVLM based aerodynamic model, and a procedure for the inter-model connection;

that is, for transferring information between the aerodynamic simulator and the

structural dynamics simulator. The bi-directional exchange of information between

the simulators for aerodynamics and structural dynamics is part of a co-simulation

strategy [6–8]. With the advances in computational power, the co-simulation strat-
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egy was utilized in references [9–11] to further facilitate studies of highly flexible

structures such as flapping and morphing wings. Vortex methods were also used in

references [12–14] to create aeroelastic models to study motions of highly flexible

wings.

In 1986, Wolkovitch [15] provided an overview of the joined-wing configura-

tion concept and Livne [16] has brought up challenges of the design of a joined-wing

configuration design. Rasmussen et al. [17] conducted a study to determine the opti-

mal design of a joined-wing configuration. In recent years, studies on the nonlinear

aeroelasticity of joined-wing aircraft [18–20] have been carried out using compu-

tational models. Cesnik and Su [18] modeled nonlinear aeroelastic behavior of a

flexible joined-wing aircraft based on a nonlinear strained-based FE framework and

Peter’s [21] finite state aerodynamic theory. Snyder et al. [19] only focused on static

aeroelastic analysis. While the authors in references [13,20] employ the UVLM based

aerodynamic model for their nonlinear aeroelastic models, they did not attempt to

speed up the computations in the aerodynamic model.

In the next subsection, a review of some methods wherein aerodynamic com-

putations have been accelerated through hardware support is presented.

1.3.2 Accelerating Aerodynamic Computations via GPU Computing

As discussed in Section 1.1, the majority of the computational workload comes

from the evaluation of the wake velocities. To calculate the velocity field by using

the UVLM, based on the Biot-Savart law [22], the influence of N discrete finite vor-
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tex segments with spatially constant, time-varying circulations must be computed;

the associated computational cost is of O(N2). As noted earlier, due to the con-

vection of the wake, the value of N increases as time increases. To mitigate this

computational cost, Chabalko et al. [23] and Chabalko and Balachandran [24, 25]

sought to distribute two-dimensional vortex interaction calculations over the cores

of a GPU. In the development of the aeroelastic computational framework called

Flexit, Fleischmann et al. [26] utilized GPU computing to attain fast simulations

for the UVLM aerodynamic model. While effective in dispersing the workload over

more units, the speedup gained from GPU computing and parallel computing is

hardware dependent, which limits the scaling of this framework to large sized prob-

lems. In this dissertation, an algorithmic approach is also explored to address this

limit.

In the next subsection, the FMM and its applications to various problems are

introduced.

1.3.3 Applications of Fast Multipole Method (FMM)

The FMM has been identified as one of the ten algorithms with the greatest

influence on the development and practice of science and engineering in the 20th

century [27]. With the FMM, the computational cost of the N -body problem is

reduced from O(N2) to O(N) or O(N logN), which is essential for any practical

application when N becomes large. The FMM algorithm was first developed in 1987

by Greengard and Roklin [28] to calculate gravitational and electrostatic potentials.
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This algorithm was further improved by Carrier et al. [29] for the evaluation of

potential and force fields in systems involving large numbers of particles. In the

work reported in references [30, 31], the FMM algorithm is used for the evaluation

of Laplaces equation governing fluid flow. The FMM has been shown to be helpful

with approximating fluid flows governed by the Navier-Stokes equations through

vortex methods. In 2003, Gumerov et al. [32] reported on the generalized multilevel

FMM and Gumerov and Duraiswami [33] went on to later publish a book on the

use of the FMM for the Helmholtz equation in three dimensions. Gumerov and

Duraiswami [34] implemented the FMM algorithm for simulations based on vortex

methods via the Lamb-Helmholtz decomposition. The vortex filament method was

integrated with the FMM in reference [35]. Recently, an application of the FMM

algorithm with a discrete vortex method for free domain and periodic problems has

been presented by Ricciardi et al. [36]. Cheung et al. [37] applied an octree data

structure similar to that used in the FMM to speed up the calculations of wake

velocities. The acceleration gained through the application of the FMM can be

further enhanced through hardware usage, such as GPUs [38–40]. Recently, Deng

et al. [41] have used the dipole panel FMM to accelerate velocity field computations

in the UVLM. Jones et al. [42] developed methods for reducing the computational

cost of UVLM by using tree structures to approximate the influences of groups of

vortex rings. With faster aeroelastic computations, a larger variety of scenarios can

be simulated to account for unforeseen events in the system and environment.

The above-mentioned fast simulations together with the DDDAS paradigm,

which is discussed in the next subsection, can allow for better prediction and miti-
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gation of nonlinear aeroelastic effects via a decision support system (DSS).

1.3.4 Dynamic Data-Driven Applications Systems (DDDAS)

Nonlinear aeroelastic simulations can be combined with measurement data

through the DDDAS paradigm. This paradigm can be used to realize a framework

in which measurement data, such as those obtained from sensors, are collected for

a physical system and used to dynamically update the simulation. Darema [43] in-

troduced the DDDAS concept in 2004. In the studies of Farhat and Amsallem [44]

and Allaire et al. [45], the DDDAS paradigm has been utilized to predict the failure

and degradation in UAS and tailor mission plans to best suit the remaining capa-

bilities of the aircraft. Furthermore, meta-models can be developed to approximate

the nonlinear models, thereby helping reduce the number of execution calls of the

aeroelastic simulator [46–50].

With the DDDAS concept, the inclusion of damage in structures can be in-

corporated in the simulations. Related to this, questions on how to model damage

and how it affects the behavior of structure come up. These concepts are discussed

in the next subsection.

1.3.5 Structural Damage

From the literature, two of the main methods used to model structural wing

damage are the following: 1) the incorporation of a breathing crack in a portion

of the structure [51–56] and 2) through changes in the property matrices of the
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structure [57]. Stojanovic et al. [51] incorporated damage into their model by repre-

senting an open crack as a notch. New shape functions that included the damaged

location were introduced into their FE model based on Timoshenko’s beam theory.

Wei and Shang [52] also used Timoshenko’s beam theory to model the breathing

effect of an open crack by using a signal function. Hoseini and Hodges [53–56]

modeled the damaged section of the wing as a three-dimensional FE crack while

the rest of the wing is modeled with an one-dimensional beam. This reduced the

overall computational expense of modeling the entire wing as a three-dimensional

FE model. By using the model, Hoseini and Hodges investigated the critical flut-

ter regime of a damaged wing. Similar to what will be done in this dissertation,

Tenenbaum et al. [57] modeled damage in a beam as a change in stiffness matrix

of structure. Tomaszewska [58] and Mainini and Wilcox [59] focused more on the

aspects of damage detection and monitoring.

Based on the literature review, research gaps that will be addressed in this

dissertation are discussed in the next subsection.

1.3.6 Research Gaps and Needs

While there have been studies on the implementation and speedup capabilities

of the FMM (and other tree structure algorithms) accelerated vortex methods, such

as the discrete vortex method, the vortex filament method, and the quasi-steady

vortex lattice method, not many have focused on the nonlinear, unsteady UVLM

based scheme. There are a few studies on dynamic nonlinear aeroelastic analysis
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for the joined-wing SensorCraft. In these studies, there has been no focus on the

effects of structural damage on the aeroelastic behavior of the joined-wing aircraft

via numerical aeroelastic simulations. With the acknowledgement of what is missing

in the literature, the following research gaps and needs are addressed through this

dissertation:

(1) Exploration of the acceleration gained via the integration of the UVLM based

aerodynamic model and the FMM

� Implementation of the FMM accelerated UVLM based aerodynamic model

for a flat plate with high aspect ratio

� Examination of the tuning parameters in the FMM algorithm to study

the tradeoff of accuracy and computational speed of the FMM accelerated

UVLM based aerodynamic model

� Comparison of the computational speed of the standard UVLM based

aerodynamic model versus the FMM accelerated UVLM based aerody-

namic model

(2) Construction of an aeroelastic computational model, in which one utilizes the

FMM accelerated UVLM based aerodynamic model and the FE based struc-

tural dynamic model for capturing flutter boundary of a joined-wing Sensor-

Craft

� Development of FMM accelerated UVLM based aerodynamic model for

joined-wing SensorCraft that takes into account the symmetry of the
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aerodynamic mesh

� Development of FE based structural dynamics model for joined-wing Sen-

sorCraft that takes into account structural damage of the system and

rigid-body motion via multi-freedom constraints

� Integration of the aerodynamic and structural dynamic models of the

joined-wing SensorCraft via mesh coupling and co-simulation strategy

� Study of the effects of structural damage of various magnitudes and types

for the joined-wing SensorCraft on the flutter boundary via numerical

aeroelastic simulations

1.4 Dissertation Organization

In Chapter 2, the accelerated aerodynamic model developed for the joined-

wing SensorCraft is presented. This includes background on the UVLM and FMM

and how the FMM and UVLM are integrated to attain the FMM accelerated UVLM

aerodynamic model. The FE based structural dynamics model developed for the

joined-wing SensorCraft is discussed in Chapter 3. Chapters 2 and 3 are independent

of each other and can be read in whichever order the reader wants. In Chapter 4,

the integration of the aerodynamic and structural dynamic models that make up

the joined-wing aeroelastic model is discussed. Details presented in Chapter 4 re-

quire an understanding of information discussed in Chapters 2 and 3 and should

be read after the preceding two chapters. The results of the structural damage on

the joined-wings are presented and discussed in Chapter 5. It can be noted that
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Chapter 5 should be read after reading Chapter 4. Finally, the conclusions, con-

tributions, and possible future directions are stated in Chapter 6. The portions of

code of the computational aeroelastic simulation program that benefit the most from

parallelization are presented in Appendix A. In Appendix B, the modes used for the

computational aeroelastic simulations of the joined-wing aircraft are shown. More

details and reasoning for the settings used for the joined-wing aircraft aeroelasticity

simulations can be found in Appendix C. Additional results of the aeroelastic re-

sponses from the computational aeroelastic simulations can be seen in Appendix D.

Appendix A should be read after first reading Chapter 2, Appendix B should be

read after first reading Chapter 3, Appendix C should be read before reading the

results of the joined-wing aircraft aeroelasticity simulations presented in Chapter 5,

and Appendix D should be read after a reading of Chapter 5.
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Chapter 2: Aerodynamics: FMM Accelerated Scheme

In this chapter, the work carried out to integrate the UVLM based aerody-

namic model and the FMM is detailed and the results obtained with this computa-

tional model are presented. Some of the work presented in this chapter is based on

the author’s papers [60,61]. This chapter is used to answer research question RQ1.

The implementation of the FMM accelerated aerodynamics, the examination of the

accuracy versus speed tradeoff with the FMM, and the computational speed gained

are explored. A flowchart for the computational aerodynamic model of the joined-

wing SensorCraft is also presented along with details of the computational model

used in this work.

The FMM accelerated aerodynamic model is presented in Section 2.1, which

also includes details on the UVLM based scheme and the FMM. The results obtained

from the numerical tradeoff study of the FMM accelerated aerodynamic model and

the computational cost reductions are reported in Section 2.2. In Section 2.3, the

aerodynamic computational model for the joined-wing aircraft is introduced and a

flowchart for the aerodynamic simulation procedure is presented. Finally, in Sec-

tion 2.4, a summary of the chapter is provided.
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2.1 FMM Accelerated Aerodynamic Model

The aeroelastic computations are carried out by using a co-simulation strategy,

which is described in reference [10]. Co-simulation here refers to subdivision of

a system with coupled physics into subsystems that are simultaneously simulated

and numerically combined with a suitable exchange of states at predefined time

instances to account for the strong coupling. Co-simulations can consist of any

number of subsystems but in this effort, two subsystems are included in the co-

simulation strategy. For this work, in the aeroelastic simulator, the UVLM based

scheme is used to predict the aerodynamic loads on the lifting surfaces. Additionally,

the aerodynamic solver is coupled with a structural dynamics simulator to capture

dynamic aeroelasticity. The first subsystem is the UAS structural model, which is

obtained through the use of the FE method. The second subsystem is the UAS

aerodynamic model, which is obtained on the basis of the UVLM based scheme.

An overview of the UVLM based scheme is provided in the following subsec-

tion.

2.1.1 Unsteady Vortex Lattice Method

Here, the UVLM based scheme is used to compute aerodynamic loads. The

UVLM based scheme is a surface vorticity model that is used to accurately ap-

proximate the physics for a large Reynolds number, fully attached, flow. The in-

finitesimally thin layers of vorticity may be viewed as an infinite Reynolds number

approximation to the actual boundary layers. The UVLM based scheme can be ap-
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plied to lifting surfaces of any planform, camber, and twist, and the lifting surfaces

may undergo any time dependent deformation and execute any maneuver in moving

air. The flow surrounding the lifting surface is assumed to be inviscid, incompress-

ible, and irrotational over the entire flowfield, except at the solid boundaries and

in the wakes. Due to the relative motion between the wing and the fluid and the

viscous effects, vorticity is generated in the fluid in a thin region next to the wing’s

surface (the boundary layer). The boundary layers on the upper and lower surfaces

are merged into a single vortex sheet.

The bound vortex sheets are replaced by lattices of short, straight vortex seg-

ments with spatially constant/time-varying circulation Γ(t). These segments are

used to divide the wing surface into a finite number of typically nonplanar, quadri-

lateral elements of area with straight edges called panels. These closed loop of

straight vortex line segments are also referred to as vortex rings. The model is

completed by joining the free vortex lattices (wakes) to the bound vortex lattice

(lifting surface) along the separation edges, such as the trailing edges and leading

edges of the lifting surface. The separation locations are user supplied. Each vortex

ring has a single unknown circulation G(t) instead of the four unknown circulations

around each of the short, vortex line segments along its edges. Consequently, the

requirement of spatial conservation of circulation is automatically satisfied through-

out the lattices. Once the values of G(t) for each panel are known, the Γ(t)’s around

all of the straight vortex segments can be conveniently determined. The governing

equation is complemented with the following boundary conditions:
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(i) Regularity at infinity: This condition requires that the velocity field associated

with the disturbance decays away from the body and its wake. Hence,

lim
‖r‖2→∞

‖VB(r, t) + VW (r, t)‖2 = ‖V∞‖2 (2.1)

where VB(r, t) and VW (r, t) are the velocity fields associated with the vorticity

in the boundary layers on the body surface and the vorticity in the free vortex

shed from the wing’s trailing edge (including the tip), respectively, and V∞

is the freestream velocity. The velocity field obtained from the Biot-Savart

law identically satisfies this condition. Although, not shown here, the velocity

field associated with the leading edge can also be included on the left hand

side of equation (2.1).

(ii) No-penetration condition: This condition requires that at every point of the

solid surface, the normal component of the fluid velocity relative to the body’s

surface must be zero:

(VB(r, t) + VW (r, t) + V∞ −VBody) · n̂ = 0, (2.2)

where VBody is the velocity of the body’s surface, and n̂ is a unit vector normal

to the surface. Equation (2.2) is only imposed at the control point located in

the geometric center of each panel.

Discretizing the no-penetration condition at each control point, equation (2.2) is
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written in the following form:

(VB · n̂)i =

ncp
A∑

j=1

AijGj = [VW + V∞ −VBody]i · n̂i (2.3)

where i, j = 1, 2, · · · , nA are the indices of the receiving panel and the sending panel,

respectively, Aij is the normal component of the velocity induced on panel i by panel

j with unit circulation, Gj, and ncpA is the number of panels on the aerodynamic mesh.

The (ncpA × n
cp
A ) matrix A = [Aij] is the aerodynamic influence coefficient matrix.

The (nA × 1) right hand side (RHS) vector is defined as

b = {bi} = [VW + V∞ −VBody]i · n̂i. (2.4)

At every timestep, the no-penetration condition is satisfied by solving a time de-

pendent set of linear algebraic equations:

tA tG = tb (2.5)

where G = {Gj} is the (ncpA × 1) vector of vortex ring circulations.

To satisfy the unsteady Kutta condition at each timestep, the vortex rings

along the edges are shed into the flow where they have the same order as they had

on the wing’s surface. The vortex rings are moved downstream with the flow by

moving the end points of their vortex segments, called nodes, with the local fluid-

particle velocity V to new positions, denoted r(t+ ∆t) according to the first-order
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approximation:

r(t+ ∆t) ≈ r(t) + V(r, t)∆t. (2.6)

2.1.1.1 Nondimensionalization of Model

In order to have uniform elements in the lattice, the models are nondimension-

alized by using the following characteristic variables of length, velocity, and density:

LC is the chordwise length of one element on the bound lattice,

VC is the magnitude of the freestream velocity of the fluid,

ρC is the freestream density of the fluid, and

TC is the characteristic time

The characteristic time is defined as

TC =
LC
VC

. (2.7)

By the definition of the characteristic time, 1) an increase in the number of elements

is the chordwise direction of the bound lattice automatically leads to a corresponding

decrease in the physical timestep and 2) a nondimensional timestep of value one

(i.e., ∆t = TC) creates wakes elements of approximately the same dimensions as the

elements on the lifting surfaces.
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Figure 2.1: Application of Biot-Savart law to compute the velocity Vi(r, t) at point
r with respect to vortex segment.

2.1.1.2 Aerodynamic Loads

The aerodynamic loads acting on the lifting surface are computed as follows:

for each element of the bound lattice, the force is determined based on the pressure

jump across the lifting surface at the control point. This calculation is carried out

by using the unsteady Bernoulli equation [22,62]:

∂

∂t
ϕ(r, t) +

1

2
V(r, t) ·V(r, t) +

p(r, t)

ρf
= W (t). (2.8)

Here, ∂t denotes the partial time derivative at a fixed location in an inertial reference

frame, V(r, t) is the spatial gradient of the scalar velocity potential ϕ(r, t), ρf is the

fluid density, p(r, t) is the pressure, and W (t) is the total energy per unit mass,

which only depends on time and has the same value at every point in the domain

of the flow.
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2.1.1.3 Formulation

In Figure 2.1, the author shows a typical vortex ring, wherein the circulation

of the individual vortex segments is the same as the circulation of the vortex ring,

and how these vortex segments contribute to the velocity at the field point r. The

Bio-Savart integral [22] can be transformed as follows:

Vi(r, t) =
Γi(t)

4π

∫
Li

dr′ × (r− r′)

‖r− r′‖32
= Γi(t)∇×

∫
Li

G(r, r′) dr (2.9)

where G(r, r′) is the multipole expansion of a monopole source located at point r′.

The velocity field satisfying equation (2.9) at the field point r for time t, Vi(r, t),

associated with a discrete segment of a straight line vortex, Li, i = 1, 2, · · · , N , of

circulation strength, Γi(t), can be evaluated as follows:

Vi(r, t) =
Γi(t)

4π

Li × r1i
‖Li × r1i‖22

[Li · (ê1i − ê2i)] ≡ A(Li, r)Γi(t) (2.10)

Here, r1i and r2i are the position vectors from the endpoints of the vortex segment,

Li = r1i − r2i, to the field point r, and ê1i and ê2i are unit vectors in the directions

of r1i and r2i, respectively. To avoid the singularity that appears when the point

approaches the vortex line or its extension, the term δ‖Li‖2 can be introduced to

equation (2.10) to obtain

Vi(r, t) =
Γi(t)

4π

r1i × r2i (‖r1i‖2 + ‖r2i‖2)
‖r1i ‖2 ‖r2i‖2 (‖r1i‖2 ‖r2i‖2 + r1i · r2i) + (δ‖Li‖2)2

≡ A(Li, r)Γi(t).

(2.11)
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Figure 2.2: Relative errors in computed aerodynamic load coefficients (normal force
coefficient cN , drag coefficient cD, and lift coefficient cL) between the Biot-Savart
law with equation (2.11) containing the smoothing parameter and equation (2.10)
without the smoothing parameter.

The influence of the cutoff radius, or smoothing parameter δ on the velocity

is strongly felt in the immediate vicinity of the considered vortex line but it is

hardly noticeable elsewhere. The cutoff radius used for the aerodynamic model

in this dissertation varies depending on the computational model. In Figure 2.2,

the relative errors in the computed aerodynamic load coefficients obtained by using

equations (2.10) and (2.11) are plotted. The corresponding simulations have been

carried out for a planar, rectangular wing with an aspect ratio of 4 and subjected to

a freestream speed of magnitude 125.00 m/sec, angle of attack 5◦, and air density

1.255 kg/m3. The wing has a chord length of 1.00 m with 9 panels in the chord-wise

direction and a wing span of 4.00 m with 36 panels in the span-wise direction. Given

the small magnitude of the error, there is good agreement between the aerodynamic

loads computed obtained by using equations (2.10) and (2.11).

The velocity field at point r can be computed as the summation of velocity
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fields associated with each of the discrete vortex segments L1,L2, · · · ,LN , at the

field point, r:

V(r, t) =
N∑
i=1

Vi(r, t) =
N∑
i=1

A(Li, r)Γi(t). (2.12)

At each timestep, the velocity field needs to be evaluated at M field points, rj,

j = 1, 2, · · · ,M , which leads to a computational cost of O(NM). The computational

cost of the simulation increases significantly with the number of field points and

vortex segments. As time evolves, for a system on the scale of a full aircraft, these

computations become intractable. Such computational expense motivates the need

for the FMM to accelerate the velocity field calculations. The FMM can be used

to reduce the computational cost from O(NM) to O(N +M), making the run time

more practical.

Another way to reduce the computational cost of the aerodynamic model is

to reduce the size of the problem. This can be done by truncating the wake at a

specified number of timesteps but doing so introduces some error into the solution

of the aerodynamic loads. This means that after a predefined number of timesteps,

every new row added to the wake after convection, replaces oldest row in the wake.

In doing so, the number of elements in the wake remain constant and so the num-

ber of elements in aerodynamic model remain constant. Ceballos [63] showed that

truncating the wake at six chord lengths introduced a negligible level of error into

the solution of the aerodynamic loads.
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2.1.1.4 Validation of Aerodynamic Model

In order to validate the UVLM based aerodynamic model, the lift coefficient

cL and induced drag coefficient cDi
obtained with the UVLM based scheme were

compared against those obtained from Prandtls lifting line theory [?]. The results

obtained for the lift and induced drag coefficients from the UVLM based scheme are

found to be in good agreement with the values from Prandtls lifting line theory.

Prandtls lifting line theory was used to validate the accuracy of the UVLM

calculated lift coefficients cL and induced drag coefficients cDi
for angles of attack

between 0◦ and 20◦ for a rectangular wing of aspect ratio 4. In Figures 2.3 and 2.4,

lift coefficient and induced drag coefficient are plotted against the angle of attack,

respectively. By using the L2 norm, the absolute error and relative error in the

computed lift coefficients are 0.156 and 0.0389, respectively; and the absolute error

and relative error in the computed induced drag coefficients are 0.0243 and 0.0849,

respectively.

2.1.1.5 Computational Profiling

Through computational profiling of the UVLM aerodynamic simulator utiliz-

ing the UVLM based aerodynamic model and the FE structural dynamics model,

it is discovered that the majority of the computational workload is associated with

computations of the aerodynamics. The wall clock times of the aerodynamic com-

putations reported are measured on an Intel® Xeon® CPU E3-1245 v5 (3.50

GHz) 8 core PC with 16 GB RAM. The dominant source of computational expense
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Figure 2.3: Lift coefficient versus angle of attack: Comparison between UVLM
results and Prandtl’s lifting line theory prediction.

Figure 2.4: Induced drag coefficient versus angle of attack: Comparison between
UVLM results and Prandtl’s lifting line theory prediction.
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Figure 2.5: Aerodynamic mesh of a representative joined-wing aircraft configuration.

in the aerodynamic model lies in the computation of the wake (region of recirculat-

ing flow immediately behind lifting surface) velocities. The high computational cost

can be observed in the aeroelastic simulation results obtained for a representative

joined-wing SensorCraft and shown in Figure 2.5. In Figure 2.6, it can be seen

that over 90% of the computation time involved in the aeroelastic simulation of the

joined-wing SensorCraft is spent on evaluating the wake velocity. This is mainly

due to the growth of the wake as time progresses as shown in Figure 2.7. As the

wake continues to expand, the number of calculations required to evaluate the wake

velocities also increases.

In Figure 2.8, it can be seen that when the number of sources (fields points

on the trailing edges and wing-tips of lifting surface) and receivers (vortex segments

on lifting surface and wake) exceed 100,000, the wall clock time for the evaluation

of the wake velocities can take more than 15 minutes for each run. The compu-
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Figure 2.6: Percentage of total computational workload of aeroelastic simulator from
aerodynamic model processes: evaluation of free deforming wake velocity (circle),
formation of the aerodynamic influence matrix (square), and evaluation of the right
hand side vector (triangle).

Figure 2.7: The longer the wake (blue area) becomes, the more computations that
will be needed for evaluating wake velocities.
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Figure 2.8: Wall clock time of total computational workload of aeroelastic simula-
tor from aerodynamic model processes: evaluation of free deforming wake velocity
(circle), formation of the aerodynamic influence matrix (square), and evaluation of
the right hand side vector (triangle).

tational time required to compute the structural response; that is, to numerically

integrate the structure’s equations of motion, is neglected in the figure since this

time is dwarfed by the time needed to carry out the unsteady aerodynamic calcu-

lations. For similar reasons, the processes of the aerodynamic model involving the

evaluation of the distribution of circulation and the calculations of the aerodynamic

loads are negligible. These observations emphasize the need for acceleration of the

free deforming wake velocity computations in the aerodynamic model to accelerate

the entire aeroelastic model. Given that over 90% of the computation workload is

involved with wake velocity computations, accelerating these computations would

produce a faster nonlinear aeroelastic computational model for generating safe ma-

neuvering envelopes. To achieve this goal, the FMM is used in implementing the

UVLM based aerodynamic model.
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It is important to note that procedures such as the formation of the aerody-

namic influence matrix and the evaluation of the RHS vector have been parallelized

in the computations. Some portions of the code that have been parallelized are

presented in Appendix A. Since these processes depend on the bound lattice panels,

the number of required computations do not increase as the time increases. Even

though this would a small reduction in required computational workload, this ad-

dition to the computational model becomes more noticeable with a more refined

aerodynamic grid.

2.1.2 Fast Multipole Method

The FMM is a hierarchical algorithm, which can be used to speed up matrix-

vector products. The main idea of the FMM is to split the computation associated

with equation (2.12) into near-field interactions and far-field interactions. This is

done through the decomposition of the dense matrix into sparse and dense parts as

shown below:

V(rj, t) =
N∑
i=1

A(Li, rj) Γi(t) =
N∑
i=1

A(sparse)(Li, rj) Γi(t) +
N∑
i=1

A(dense)(Li, rj) Γi(t).

(2.13)

Here, L1,L2, · · · ,Li, · · · , and LN are the sources (vortex segments) and r1, r2, · · · , rj,

· · · , and rM are the receivers (field points). The sparse matrix-vector product is per-

formed directly, while the dense matrix-vector product is approximated via the use

of data structures, the generation of multipole expansions, and the evaluation of

local expansions. This means that the interactions between near-field pairs of field
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points and vortex segments are directly computed, while the interactions between

the far-field pairs of field points and vortex segment pairs are approximated. More

details on the basics of the FMM can be found elsewhere [28–34, 38]. In the fol-

lowing subsections, the main components of the FMM algorithm and the specifics

for vortex filament computations and use in the UVLM based scheme are briefly

described.

2.1.2.1 Data Structure

The hierarchical data structure (usually octree for three dimensional simu-

lations) of the FMM serves two purposes. First, it is needed for a fast neighbor

search to compute the near-field interactions directly by using O(N) or O(N logN)

operations. Second, it is needed to organize far-field interactions in a hierarchical

way, which can be done with the same computational complexity as the near-field

interactions. The entire computational domain is enclosed in a cube, or box, of size

d0 × d0 × d0, which is said to be subdivision level 0. This cube is partitioned into

8 equal cubes of size d1 = d0/2, which form subdivision level 1. This process of

partitioning the volume is continued until the maximum number of source points

(the centers of the vortex segments) in a box does not exceed some number s called

the “clustering parameter”. The value of s depends on several parameters and is a

subject for tuning, as discussed below. This level of subdivision is the maximum

level in the octree, which is denoted by lmax. So at this level, 8lmax cubes of size

dlmax = d0/2
lmax are used to partition the entire computational domain. In the
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UVLM based scheme, the sources are located on a subset of surfaces and most of

the cubes in such a tree are empty. Since the FMM is an adaptive algorithm, one

skips all empty boxes and the actual number of cubes at some level l is much smaller

than 8l. There are variations of the FMM formulation, in which one uses data trees

(in this case the “leaves” of the “tree” can be located at any level not exceeding

lmax, for example, [31]; this is called “fully adaptive” FMM) and data pyramids (all

“leaves” of the tree are located at level lmax, for example, [38]). Details and practical

issues on efficient implementation of data structures and comparisons of “adaptive”

and “fully adaptive” FMM variations can be found in reference [33]. It is noticeable

that computations usually related to data structures do not exceed 10% of the com-

plexity of the entire FMM. This is why the standard procedures (bit interleaving

and sorting to form child, parent, and neighbor lists) are used in this dissertation.

2.1.2.2 Multipole Expansions

The velocity field generated by a vortex segment is not a potential, but can be

expressed in terms of three dependent scalar harmonic functions or two independent

scalar harmonic functions by using the Lamb-Helmholtz decomposition [34]. The

FMM for harmonic functions is well developed and studied. The far-field, or multi-

pole expansion of a monopole source located at point r′ with respect to the center

rc of the cube containing the source, can be represented in the form of a series:

G(r, r′) =
1

4π‖r− r′‖2
=

pF−1∑
n=0

n∑
m=−n

R−mn (rc − r′)Smn (r− rc) +O

((
r′ − rc
r− rc

)pF)
.

(2.14)
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Here, r is a field point, such that ‖r− rc‖2 > ‖r′ − rc‖2, pF is the FMM truncation

number, while Rm
n and Smn are regular and singular spherical basis functions, which,

generally, can be written as follows:

Rm
n (r) = rnN (R)m

n Y m
n (θ, ϕ),

Smn (r) = rn−1N (S)m
n Y m

n (θ, ϕ)

Here (r, θ, ϕ) are the spherical coordinates of point r, Y m
n (θ, ϕ) are the spherical

harmonics, and N
(R)m
n and N

(S)m
n are normalization coefficients. There are differ-

ent normalizations of spherical harmonics in the literature. Also, real or complex

harmonics can be used (see [30,38]).

Consider the field of vortex segments specified by a unit vector li = Li/‖Li‖2,

center ri = (r1i+r2i)/2, and circulation Γi(t). The Bio-Savart integral equation (2.9)

can be transformed as follows:

Vi(r, t) = ∇×
(

Γi(t)

2
li

∫ 1

−1
G

(
r, ri −

1

2
liξ

)
dξ

)
= ∇×A(Li, r)Γi(t). (2.15)

These expressions reveal several facts important for the FMM implementation.

First, the sums of the fields of vortex segments can be represented as a curl of

sums of the respective vector potentials A(Li, r). This means that the FMM can be

applied to the summation of vector potentials, and then, the curl of the obtained

field can be computed. Second, each Cartesian component of A(Li, r) is a scalar

harmonic function. This means that the FMM for the scalar Laplace equation can
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be applied to each component independently. Third, equation (2.14) can be used to

obtain the multipole expansion for the vector potential of each vortex segment:

A(Li, r) =
Γi(t)

2
li

pF−1∑
n=0

n∑
m=−n

Cm
(i)nS

m
n (r−rc)+O

((
max (‖r1i − rc‖2, ‖r2i − rc‖2)

‖r− rc‖2

)pF)
(2.16)

with

Cm
(i)n =

∫ 1

−1
R−mn

(
rc − ri +

1

2
liξ

)
dξ.

The expansion coefficients Cm
(i)n can be calculated by using Gauss-Legendre quadra-

ture of order Nq with weights wa, abscissae ξa, and residual res(Nq):

Cm
(i)n =

Nq∑
a=1

waR
−m
n

(
rc − ri +

1

2
liξa

)
+ res(Nq). (2.17)

It is noted that functions R−mn
(
rc − ri + 1

2
liξa
)

are polynomials of degree n of ξa.

Hence the Gauss-Legendre quadrature equation (2.17) provides an exact result for

Nq > n/2. According to equation (2.16), n ≤ pF1. Hence, selection

Nq =

[
pF − 1

2

]
+ 1, (2.18)

guarantees res(Nq) = 0; that is, zero quadrature error in the FMM. However, this

requirement is not necessary and may be relaxed, as for the overall accuracy of the

method it is sufficient to balance residuals in equations (2.16) and (2.17). In many

cases, selection Nq = 1 or Nq = 2 yields good results.
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2.1.2.3 Use of Standard FMMs for the Laplace Equation

After the multipole expansions are computed for each source box at level

lmax, the rest of the FMM procedure is standard and follows along the lines of

what is available in the literature (e.g. [31,38]). It consists of multipole-to-multipole

translation in the upward pass, which recursively produces the multipole expansions

for all source boxes at levels lmax, lmax−1, · · · , 2, and multipole-to-local and local-to-

local translations in the downward pass, which recursively produces local expansions

for all receiver boxes at levels 2, 3, · · · , lmax. Finally, for a receiver box centered at

rc, the author obtained the values of local expansion coefficients D
(h)m
n for each

Cartesian component h = 1, 2, 3 of the vector potential due to far-field interactions

Ah(r, t) =

pF−1∑
n=0

n∑
m=−n

D(h)m
n Rm

n (r− rc). (2.19)

To complete the calculation of the dense matrix-vector product, one needs to com-

pute the curl of the vector potential. This can be done by computing the gradient

of each component of the vector potential and combining the results into a sin-

gle vector. The gradient can be computed by using analytical expressions for the

derivatives of functions Rm
n (r).

According to equations (2.14), (2.16), and (2.17), the far-field approximation

of the hth Cartesian component of the vector potential is given by

Ah(r, t) =
Γi(t)

2
lhi

Nq∑
j=1

wjG

(
r, ri −

1

2
liξh

)
(2.20)
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This means that each vortex segment is represented by Nq monopole sources and

that the case should be set for NNq monopole sources of intensity 1
2
Γi(t)l

h
i wj located

at ri− 1
2
liξh and M receivers. The scalar FMM routine should be called three times,

for each Cartesian component, h = 1, 2, 3. The result should be obtained in the

form of gradients, which is standard for the FMMs computing forces, from which

the curl of the vector potential can be formed. An additional user procedure should

be created out of the core of the standard FMM that can be used to compute

the near-field interactions and subtract from them the near-field of the standard

FMM. In the dissertation, the author uses a specialized FMM code, that allows the

amortization and vectorization of a number of operations.

2.1.2.4 Tuning Configuration of the FMM

It can be useful to estimate the complexity of the steps of the UVLM based

scheme and its overall computational complexity with and without the FMM. Con-

sider the case of relatively small body mesh of size Nb, which is fixed and the mesh

representing the vortex sheets of size N , which is growing in time. Since at each

timestep, the vorticity is emitted from some edges of the body, the author can esti-

mate that for the kth timestep N = O(N
1/2
b k). So the total complexity to compute

K steps is a sum of the complexities for k = 1, 2, · · · , K. In Tables 2.1 and 2.2,

the author shows the estimates. From this table, it can be seen that the use of

the FMM changes the complexity of the entire UVLM based scheme, whose com-

plexity at large K grows proportionally to O(K2) as opposed to the O(K3) for the
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Table 2.1: Estimation of computational complexity of the UVLM based scheme
processes with and without FMM per timestep.

Step Without FMM With FMM
Form aerodynamic influence matrix O(N2

b ) O(N2
b )

Evaluate right hand side vector O(NbN) O(Nb +N)
Solve linear system O(N3

b ) O(N3
b )

Evaluate wake velocity O(NbN +N2) O(Nb +N)
Evolve mesh O(Nb +N) O(Nb +N)
Total O(N3

b +N2) O(N3
b +N)

Table 2.2: Estimation of computational complexity of the UVLM based scheme
processes with and without FMM for K total timesteps.

Step Without FMM With FMM
Form aerodynamic influence matrix O(N2

b ) O(N2
b )

Evaluate right hand side vector O(N
3/2
b K2) O(NbK +N

1/2
b K2)

Solve linear system O(N3
bK) O(N3

bK)

Evaluate wake velocity O(N3
bK

2 +N
3/2
b K3) O(NbK +N

1/2
b K2)

Evolve mesh O(NbK +N
1/2
b K2) O(NbK +N

1/2
b K2)

Total O(N3
bK +N3

bK
3) O(N3

bK +N
1/2
b K2)

conventional UVLM based scheme.

Generally, the tuning process can be organized as follows. First, for some s (or

lmax), pF should be varied to obtain a required accuracy of the FMM and stability

of computations, while Nq should be related to pF via equation (2.18) to eliminate

quadrature errors. As soon as an acceptable range of pF is determined, one should

try to reduce Nq as much as possible to stay within the required FMM accuracy.

Finally, the clustering parameter s (or lmax), should be adjusted to obtain the maxi-

mum speed. Note that variation of this parameter has a small effect on the accuracy,

but there exists a strong minimum of the computational time at some intermediate

values of s. Theoretically, this happens when the times for computations of the

sparse and dense products are equal.
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2.2 Numerical Tradeoff Study

In this section, the results attained from the tuning procedure of FMM config-

urations described in Section 2.1.2.4 are shown. The tuning procedure of the FMM

parameters was implemented on a planar, rectangular lifting surface by varying the

large aspect ratio (wing span to chord length) in the range from 4 to 16 and the

angle of attack in the range extending from 5◦ to 20◦. The results reported in this

section correspond to a planar, rectangular lifting surface that has an aspect ratio of

4, is subjected to a freestream speed of magnitude 125.00 m/sec, has angle of attack

5◦, and the air density 1.255 kg/m3. The wing has a chord length of 1.00 m with 9

panels in the chord-wise direction and a wing span of 4.00 m with 36 panels in the

span-wise direction. It was found that variations in the flow speed, angle of attack,

and air density have no noticeable effect on the computational time and accuracy of

the simulations. Increasing (decreasing) the aspect ratio of the rectangular plate is

accompanied by corresponding increase (decrease) in the number of vortex segments

and field points required for calculations in the various UVLM processes. Thus, the

change in computational time for different geometries will correspond with the es-

timated computational complexity presented in Tables 2.1 and 2.2. Therefore, the

FMM parameters found in this study are general and can be applied to cases with

various flow conditions and geometries. The wall clock times reported below were

measured on an Intel® Xeon® CPU E3-1245 v5 (3.50 GHz) 8 core PC with 16

GB RAM.
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2.2.1 Truncation Number

The first step in fine-tuning the FMM involves changing the truncation number

pF to obtain a required level of accuracy of the FMM and stability of computations.

While varying pF , the order of quadrature Nq should be consistent with pF via

equation (2.18) to eliminate quadrature errors. Also, the clustering parameter s (or

maximum number of levels in octree lmax) should be kept constant. For this study,

the clustering parameter was set to s = 200 and the order of quadrature was set by

equation (2.18) where the truncation number pF = 2, 4, 12, and 24.

From Figure 2.9, it can be seen that as pF increases, the magnitude of the L2

norm error of the evaluated wake velocities decreases. Since the far-field interactions

are approximated by polynomials of the pF th degree in the neighborhood of the

evaluation point, the higher pF is, the more accurate approximations of the far-

field interactions will be. At pF = 12 and pF = 24, the L2 norm error becomes

relatively low at orders 10−5 and 10−8, respectively. In deciding which pF to use,

the author takes into account the wall clock time for the different pF values shown

in Figure 2.10. The wall clock time corresponding to pF = 24 is significantly higher

than that corresponding to pF = 12. Given that the L2 norm error of the evaluated

wake velocities for pF = 12 is at an acceptably low level, pF = 12 is chosen as the

best truncation number for this study.
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Figure 2.9: Relative L2 norm errors for evaluated wake velocities for pF = 2 (circle),
pF = 4 (square), pF = 12 (plus sign), and pF = 24 (triangle) with Nq relative to
Eq. (2.18) and s = 200.

Figure 2.10: Wall clock time for evaluated wake velocities for pF = 2 (circle), pF = 4
(square), pF = 12 (plus sign), and pF = 24 (triangle) with Nq relative to Eq. (2.18)
and s = 200.
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Table 2.3: Relative L2 norm errors of evaluated wake velocities for Nq ≥ 4.

Relative L2 Norm Error (of magnitude 10−5)
Timestep

Nq = 4 Nq = 5 Nq = 6 Nq = 7 Nq = 8 Nq = 9
1 0.000 0.000 0.000 0.000 0.000 0.000
10 1.930 1.930 1.930 1.930 1.930 1.930
50 5.290 5.290 5.290 5.290 5.290 5.290
100 9.780 9.780 9.780 9.780 9.780 9.780
150 1.030 1.030 1.030 1.030 1.030 1.030
200 0.355 0.355 0.355 0.355 0.355 0.355
250 0.818 0.818 0.818 0.818 0.818 0.818
300 0.842 0.827 0.827 0.825 0.825 0.824

2.2.2 Order of Quadrature

With pF = 12 giving an L2 norm error of order 10−5, the order of quadrature

Nq can be reduced as much as possible to stay within the required FMM accuracy.

In Figure 2.11, the relative L2 norm error of the evaluation of wake velocities is

displayed when the truncation number is set to pF = 12, the clustering parameter

is set to s = 200, and the order of quadrature varies for Nq = 1, 2, 3, and 4. The

results for Nq > 4 show no noticeable difference in accuracy with respect to those for

Nq = 4 and this revelation can be seen in Table 2.3. Note that other than Nq = 1,

the accuracies attained for Nq = 2, 3, 4 match up well with each other. Given that

the wall clock time, which is shown in Figure 2.11, corresponding to the different

values of Nq follows the same trend with approximately the same values, it is best

to use Nq = 2 as the accuracy of the evaluated wake velocities does not significantly

increase as Nq is increased.
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Figure 2.11: Relative L2 norm errors of evaluated wake velocities for Nq = 1 (circle),
Nq = 2 (square), Nq = 3 (plus sign), and Nq = 4 (triangle) with pF = 12 and
s = 200.

Figure 2.12: Wall clock time for evaluated wake velocities for Nq = 1 (circle), Nq = 2
(square), Nq = 3 (plus sign), and Nq = 4 (triangle) with pF = 12 and s = 200.
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Table 2.4: Wall clock time and accuracy of FMM for different clustering parameters.

s Wall Clock Time [sec] Maximum Levels in Octree Average L2 Norm Error
100 45.34 7 2.63× 10−5

200 28.06 6 1.86× 10−5

300 27.92 6 1.55× 10−5

400 29.58 5 1.10× 10−5

500 32.20 5 1.06× 10−5

2.2.3 Clustering Parameter

Finally, the clustering parameter s (or lmax), is selected to obtain the maximum

speed. In Table 2.4, the wall clock time, accuracy, and maximum number of levels

in the octree lmax for fixed pF = 12 and Nq = 2 and clustering parameters s =

100, 200, 300, 400, and 500 are shown. The simulator was executed for K = 200

timesteps in each case. From this table, it is noted that the variation of s has

a minor effect on the accuracy of the computed wake velocities. Also note that

as the clustering parameter is increased, the maximum number of levels in the

octree attained is decreased. Most notably, there exists a strong minimum of the

computational time at s = 300. Hence, the configurations that produce that most

accurate results while also providing the largest acceleration in computational time

correspond to the truncation number pF = 12, the order of quadrature Nq = 2, and

the clustering parameter s = 300. These configuration settings for the FMM will be

used when examining the computational cost reduction in the following subsection.
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2.2.4 Computational Cost Reduction

In Figure 2.13, for pF = 12, Nq = 2, and s = 300, the results of the speed per-

formance of the UVLM based scheme with and without the FMM for the individual

timesteps are depicted. In this figure, the computational time for the evaluation of

the wake velocity fields of the UVLM is plotted against the number of timesteps. On

a logarithmic scale, the slope of the dashed line is 2, which indicates the computa-

tional complexity of the standard UVLM evaluation of wake velocities for large K is

of O(K2) where K is the total number of timesteps. The slope of the computational

complexity of the FMM accelerated UVLM is indicated by the dotted line, which

has a slope of 1 (i.e., grows proportionally to O(K)). Thus, with the FMM, the

computational complexity of the evaluation of wake velocities reduced from O(K2)

to O(K). Notice that the FMM accelerated UVLM has better performance than the

standard UVLM after about k = 8 timesteps (approximately N = 1, 500 sources).

This improvement in speed is achieved with no noticeable loss in accuracy. The rel-

ative L2 norm error of the computed wake velocities of the FMM accelerated UVLM

is of order 10−5.

In Figure 2.14, for pF = 12, Nq = 2, and s = 300, the results of the speed

performance of the UVLM based scheme with and without the FMM for the cumu-

lative timesteps is depicted. For significantly large K, the computational complexity

of the standard UVLM evaluation of wake velocities is of O(K3), while the com-

putational complexity of the FMM accelerated UVLM evaluation of wake velocities

is of O(K2). These results show that the FMM does help significantly reduce to
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Figure 2.13: Wall clock time for evaluation of wake velocity in UVLM with (for pF =
12, Nq = 2, and s = 300) and without the FMM for the individual timesteps. With
dashed line, the author shows quadratic dependence for the individual timesteps of
the UVLM, and with dotted line, the author shows the linear dependence of FMM
accelerated UVLM.

computational workload of the computational aerodynamic model, which in turn

is expected to accelerate the computational aeroelastic model of the joined-wing

SensorCraft.

These results show the improvements gained from implementing the FMM

algorithm only into the evaluation of the velocity fields for the wake convection

process. The FMM algorithm has also been implemented for the evaluation of

the velocity fields in the formulation of the right hand side (RHS) vector process

and the calculation of the aerodynamic loads process for the joined-wing aircraft

aerodynamic model. Since the number of elements in the wake is growing, the

number of velocity fields that need to be evaluated also grows. The FMM algorithm

is capable of handling the evaluation of the velocity fields as the problem grows. It

should also be noted that the FMM code used for this work has been modified for
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Figure 2.14: Wall clock time for evaluation of wake velocity in UVLM with (for
pF = 12, Nq = 2, and s = 300) and without FMM for the cumulative timesteps.
With dashed line, the author shows cubic dependence for the cumulative timesteps
of the UVLM, and with dotted line, the author shows quadratic dependence of the
FMM accelerated UVLM.

parallel computing [40].

2.3 Computational Aerodynamic Model

A flowchart of the aerodynamic model is shown in Figure 2.15. In the model

used, the wake is convected at the first iteration of each timestep and then held

stationary for the remaining iterations. The computation of the aerodynamic co-

efficient influence matrix, tA, and the RHS vector, tb, are not dependent on each

other but the RHS vector relies on the convected wake information. After using

the aerodynamic influence matrix and the RHS vector, the circulations, tG, are

solved for using equation (2.5). Finally, with the circulations, the aerodynamic

loads, FA(t), are calculated and transferred to the structural model to solve for the

structural displacements. This whole process is repeated in the timestep until there
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Figure 2.15: Flowchart of UVLM aerodynamic simulator.

is convergence in the solution for the structural displacements.

2.3.1 Joined-Wing SensorCraft

In Figure 2.16, the seven components of the aerodynamic model mesh are

shown as follows: 1) right forward wing, 2) right aft wing, 3) right half of fuselage,

4) left forward wing, 5) left aft wing, 6) left half of fuselage, and 7) vertical tail. In

previous versions of the aerodynamic model, only the mesh of the right forward wing,

right aft wing, and right fuselage data of the joined-wing aircraft were needed. In the

calculation of the wake velocities, it was assumed that the data for the left forward

wing, left aft wing, and left fuselage was available via modifications in the Biot-

Savart law calculations. Thus, simulations were limited to only cases of symmetric

flows for the no-penetration condition to be satisfied around the vertical tail. The
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Figure 2.16: Topview of the joined-wing SensorCraft aerodynamic mesh components.

aerodynamic mesh of the joined-wing aircraft configuration used for this dissertation

work is displayed in Figure 2.17. In this configuration, the joint connecting the

forward and aft wing is located closer to the root of the forward wing that is attached

to the fuselage. The inclusion of the full aerodynamic mesh geometry allows for

scenarios of flow with variations in pitch, roll, and yaw angles as opposed to just the

pitch angle in the previous model. From Figure 2.18, the yaw, pitch, and roll angles

of the freestream direction are represented by α, β, and φ. Based on the Figure 2.18,

the freestream direction is given by (α, β, φ).

With the integration of the FMM and the UVLM based aerodynamic model,
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Figure 2.17: Aerodynamic mesh of joined-wing aircraft used in this work.

Figure 2.18: Angles of freestream direction.
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the mesh data of the full joined-wing aircraft is required for all computations. Given

the symmetry of the model, the left half of the joined-wing aircraft is generated by

reflecting the right half mesh data along the symmetric axis. From Table 2.1, the

computational complexity for forming the aerodynamic influence matrix, evaluating

the RHS vector, evaluating the wake velocity, and evolving the mesh would be more

than squared compared to the original half joined-wing aircraft model. Expanding

equation (2.5) to account for the full joined-wing aircraft yields
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tG1

tG2

tG3

tG4

tG5

tG6

tG7



=



tb1

tb2

tb3

tb4

tb5

tb6

tb7



(2.21)

where tAij, for i, j = 1, 2, · · · , 7, is the aerodynamic influence matrix between the

components i and j of the aerodynamic model mesh shown in Figure 2.16 at timestep

t. tGi and tbi are the circulation and RHS vectors corresponding to component

i, respectively. Considering that only the wings are deforming in the aeroelastic

simulator, the aerodynamic influence matrix for any pair combination involving the

vertical and the right and left fuselage are not time dependent. This means A33,

A36, A37, A63, A66, A67, A73, A76, and A77 are constant throughout the whole
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simulation runtime. Due to the symmetry of the aerodynamic mesh, the equations



tG1

tG2

tG3


'



tG4

tG5

tG6


(2.22)



tb1

tb2

tb3


'



tb4

tb5

tb6


(2.23)

must hold true for the cases of symmetric flow in the purely aerodynamic model.

Furthermore, the positioning and orientation of the vertical tail requires that

tG7 ' 0. (2.24)

2.3.1.1 Global Mesh Data Numbering

Depending on the component of the aerodynamic mesh, the global numbering

of the panels and nodal points can be different. The forward wing aerodynamic

meshes are composed of 350 panels constructed from 432 nodal points as can be

seen in Figure 2.19. For the right forward wing presented in Figure 2.19(a), the

global nodal points and panels are numbered from top to bottom and left to right.

For the left forward wing presented in Figure 2.19(b), the global nodal points and

panels are numbered from top to bottom and right to left. It should be noted that

the nodes in the forward wings that intersect with the aft wings are counted twice
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in the model.

(a)

(b)

Figure 2.19: Global nodal point and element numbering: (a) right forward wing [1]
and (b) left forward wing [4].

The aft wing aerodynamic meshes are composed of 220 panels constructed from

270 nodal points as can be seen in Figure 2.20. For the right aft wing presented

in Figure 2.20(a), the global nodal points and panels are numbered from top to

bottom and left to right. For the left aft forward wing presented in Figure 2.20(b),
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the global nodal points and panels are numbered from top to bottom and right to

left.

The fuselage aerodynamic meshes are composed of 810 panels constructed from

902 nodal points as can be seen in Figure 2.21. For the right half of the fuselage

presented in Figure 2.21(a), the global nodal points and panels are numbered from

left to right and top to bottom. For the left half of the fuselage presented in Fig-

ure 2.21(b), the global nodal points and panels are numbered from right to left and

top to bottom.

The vertical tail aerodynamic mesh is composed of 35 panels constructed from

48 nodal points as can be seen in Figure 2.22. For the vertical tail, the global nodal

points and panels are numbered from left to right and bottom to top.

In total, over 3,200 nodal points are used to create the almost 2,800 elements

in the aerodynamic mesh. There are five elements along the chordwise direction of

the each of the lifting surfaces (i.e., the right and left forward and aft wings). This

ensured that there were enough elements on the wing-tips to capture the formation

of tip roll-up of vortices as investigated by Ceballos [63]. In the future, further

refinement of the aerodynamic mesh can be considered.

2.3.1.2 Local Mesh Data Numbering

For the seven components of the aerodynamic mesh, the local numbering of

the nodal points are consistent. With the local nodal points numbering system

established, the ordering and numbering of the vortex segments can be defined. As
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shown in Figure 2.23, each panel is constructed from four nodal points numbered in

clockwise orientation starting from the top left nodal point. The vortex segments,

Li, of the panel, along with their corresponding circulation strength Γi, are also

numbered in clockwise orientation starting from the topmost segment.

In Figure 2.24, vector v1 is obtained as the difference between node 1 and node

3, while vector v2 is obtained as the difference between node 2 and node 4. Given

these vectors v1 and v2, the normals to each panel are defined by normalizing the

vector that results from the vector product:

n̂ = v1 × v2. (2.25)

Note that location of the control point of the panel will coincide with the normal

vector at the intersection of the vectors v1 and v2.

2.4 Summary

In this chapter, the construction of the FMM accelerated UVLM based aero-

dynamic model used for the joined-wing aircraft aeroelastic simulator has been dis-

cussed. This included the implementation of the FMM accelerated UVLM based

aerodynamic model. For a rectangular flat plate, the procedure used to do the nu-

merical tradeoff study and computational cost reduction for the FMM accelerated

UVLM were presented. The chapter ended with the description of the computational

aerodynamic model for the joined-wing system.

In the next chapter, the structural model utilized for this dissertation work is
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discussed in detail.
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(a)

(b)

Figure 2.20: Global nodal point and element numbering: (a) right aft forward wing
[2] and (b) left aft forward wing [5].
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(a) (b)

Figure 2.21: Global nodal point and element numbering: (a) right half of the fuselage
[3] and (b) left half of the fuselage [6].
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Figure 2.22: Global nodal point and element numbering for the vertical tail [7].

Figure 2.23: Local nodal point numbering with vortex segments and circulations.

Figure 2.24: Control point and normal vector location of each panel.
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Chapter 3: Structural Dynamics: FE Model

In this chapter, the FE based structural dynamics model used in the aeroe-

lastic simulations is presented. Some of the work presented in this chapter is based

on the author’s contributions in reference [48]. This chapter is used to answer re-

search question RQ2. The structural model is constructed via the FE method to

describe the motions of the representative joined-wing SensorCraft’s wings using

non-prismatic, linearly elastic, undamped cantilevered beams with rigid constraints

at the roots. The beams satisfy the Euler-Bernoulli beam theory. The fuselage and

the vertical tail of the joined-wing SensorCraft are assumed to be completely rigid.

The structural model is composed of four beam structures: 1) the right forward

wing, 2) the left forward wing, 3) the right aft wing, and 4) the left aft wing. The

right and left forward and aft wings share a joint node, respectively, and the right and

left aft wings share a joint node at the vertical tail. A topview of these connections

can be seen in Figure 3.1.

The reference systems used for the structural model are presented in Sec-

tion 3.1. The multi-freedom constraints (MFCs) used to model the rigid-body na-

ture of the fuselage and vertical tail is explained in Section 3.2. Consideration of

structural damage on the joined-wings is represented is presented in Section 3.3
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Figure 3.1: Topview of beams used for joined-wings.

and the equations of motion of the system in nodal and modal space are reported

in Section 3.4, along with the nondimensionalized equations. In Section 3.5, the

structural computational model for the joined-wing SensorCraft is introduced and

this is accompanied by a flowchart of the structural simulation procedure; Finally,

Section 3.6, is used for the chapter summary.

3.1 Reference Systems

There are six reference systems used in this work: an inertial system that is

fixed to the ground, N , and five mobile systems that are fixed to the UAV at all

times. The first mobile system, S2, is fixed to the fuselage and the remaining four are
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positioned on the left and right forward and aft wings with the right forward wing in

the S3 reference frame, the right aft wing in the S4 reference frame, the left forward

wing in the S5 reference frame, and the left aft wing in the S6 reference frame. The

S3 and S4 reference systems have the associated systems of orthonormal vectors. The

S5 and S6 reference systems are constructed from the S3 and S4 reference systems

using the improper orthogonal tensor

Q =


1 0 0

0 −1 0

0 0 1

 , (3.1)

corresponding to a reflection about the xz-plane. The tensor is improper orthogo-

nal because it has a determinant that is equal to -1. The base vectors associated

with the reference systems N , S2, S3, S4, S5, and S6 are denoted, respectively, as(
î, ĵ, k̂

)
,
(
Ŝ12, Ŝ22, Ŝ32

)
,
(
Ŝ13, Ŝ23, Ŝ33

)
,
(
Ŝ14, Ŝ24, Ŝ34

)
,
(
Ŝ15, Ŝ25, Ŝ35

)
, and(

Ŝ16, Ŝ26, Ŝ36

)
.

In Figure 3.2, a three-dimensional sideview of the beams of the right forward

wing and the right aft wing of the joined-wing SensorCraft are shown with the N

and S2 reference systems labeled. The mobile reference systems of the four wings

are depicted in Figure 3.3.

Each nodal point in the beam has six degrees of freedom (DOF) representing

three structural nodal translations, u1,2,3, and three rotations, θ1,2,3. The beam

elements are constructed from two neighboring nodal points as shown in Figure 3.4.
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Figure 3.2: Three-dimensional sideview of right half of joined-wing aircraft.

Here, the element has a length of he, material density ρm, Young’s modulus E, and

shear modulus G.

3.2 Multi-Freedom Constraints via Master-Slave Elimination

In this work, the fuselage and vertical tail are assumed to be rigid. Given the

rigid body motion of the fuselage and vertical, rigid-links need to be established

between the rigid bodies and the flexible bodies. To enforce this relation between

the two types of bodies, multi-freedom constraints (MFCs) are utilized. MFCs [64]

can be implemented through one of three methods: penalty functions, Lagrange

multipliers, or master-slave elimination. The Lagrange multiplier method adds to

the total number of equations but requires less manipulation. The penalty method

leaves the number of unknowns unchanged but may produce an ill-conditioned set

of equations. For these reasons, the master-slave elimination method is employed in
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Figure 3.3: Mobile reference systems of wings.

this work.

With the master-slave elimination, the DOF in the structural model are clas-

sified into three types: independent, master, and slave. The independent DOF are

those that do not appear in any MFCs. The slave DOF are then explicitly eliminated

and the modified equations do not contain the slave DOF.

For each constraint a slave DOF is chosen. The DOF remaining in that con-

straint are labeled master. A new set of DOF is established by removing all slave

DOF from the original set of degrees of freedom. This new vector contains master

freedoms as well as those that do not appear in the MFCs. A matrix transformation

equation that relates the two sets of DOF is generated. The transformation matrix
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Figure 3.4: Element constructed from node I and node J in the global reference
frame, S2.

equation relating the slave DOF to the master DOF is given by

vS =

 I3×3 T

03×3 I3×3

vM (3.2)

or 

uS1

uS2

uS3

θS1

θS2

θS3



=



1 0 0 0 r3 −r2

0 1 0 −r3 0 r1

0 0 1 r2 −r1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





uM1

uM2

uM3

θM1

θM2

θM3



. (3.3)

Here ri (for i = 1, 2, 3) are the components of the vector r that connects the master

node to the slave node. uMi
, θMi

, uSi
, and θSi

(for i = 1, 2, 3) are the components of
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the translation and rotation of the master node and slave node, respectively. The

global transformation matrix TG is used to apply a congruent transformation to the

full stiffness and mass matrices, Kf and Mf. This can be done in the following way

K = TT
G Kf TG (3.4)

M = TT
G Mf TG (3.5)

through which the reduced stiffness and mass matrices are obtained. This procedure

yields a set of modified stiffness and mass matrices, K and M, that are expressed in

terms of the new DOF set. Because the modified system does not contain the slave

DOF, these have been effectively eliminated.

In this work, the master node is assumed to be at the origin between the

vertical tail and the fuselage as shown in Figure 3.5. The slave nodes are the root

nodes of the left and right forward wing beams and the root node shared by the left

and right aft wing beams. All other nodes in the structural model are assumed to

be independent.

3.3 Structural Damage

As shown in Figure 3.4, each element in the structural model has defined

material properties (i.e., material density ρm, Young’s modulus E, Poisson’s ratio ν,

and shear modulus G) and geometric cross-sectional properties (i.e., area A, planar

moments of inertia Iy and Iz, polar moment of inertia Ip, and torsion constant JT ). In

this dissertation, structural damage is defined by reductions in the stiffness and/or
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Figure 3.5: Structural node specifications for MFCs via master-slave elimination.

mass properties. This is possible by altering the material properties and/or the

cross-sectional properties. In the damage case studies to be presented in Chapter 5,

reductions in the polar moment of inertia and torsion constant are used to represent

bending and torsional wing damage on specific elements, respectively. While the

damage case studies in this dissertation only accounted for damage at one region, it

should be noted that the joined-wing structure can have prescribed damage at more

than one region in the system.

In this dissertation, damage is prescribed at the beginning of the simulations

and cannot be incurred while the simulation is running. In an operating scenario,
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one can envision the use of sensors to detect damage and use that information to

conduct offline and/or online simulations to examine the system performance.

3.4 Equations of Motion

The structural model used in this dissertation work is based on a non-prismatic,

linearly elastic model presented in the work of Preidikman [5] and Ceballos [63]. The

semi-discrete version of the equations of motion of the wings in terms of dimensional

physical variables have the form:

[M∗]
d2

dt∗2
v∗S(t∗) + [K∗] v∗S(t∗) = F∗S(t∗) (3.6)

where [M∗] is the mass matrix, [K∗] is the stiffness matrix, F∗S(t) is the vector of

generalized structural nodal forces, and v∗S(t∗) is the vector of generalized structural

nodal displacements from generalized nodal translations and rotations. Here, [M∗]

and [K∗] are
(
ndofS × ndofS

)
matrices and F∗S(t∗) and v∗S(t∗) are

(
ndofS × 1

)
vectors,

where ndofS is the number of DOF of the FE structural element. Let it be noted

that ndofS = 6nS since the structural model has nS nodal points with six degrees of

freedom per node.

An expansion in terms of the free-vibration modes of the undamped beams

is used to describe the motions of the wings. The generalized coordinates of the

dynamical system are the time dependent coefficients in the expansions. The free-

vibration modes of the structure are obtain by solving the generalized eigenvalue
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problem:

[K∗]
[
Φ̃∗
]

= [M∗]
[
Φ̃∗
] [

Λ̃∗
]

(3.7)

where

Φ̃∗ = [φ∗1 φ
∗
2 · · · φ∗m] (3.8)

is an
(
ndofS × ndofS

)
matrix with its columns being the ndofS eigenvectors or mode

shape vectors, and

Λ̃∗ = diag
(
ω∗2j
)

=



ω∗21

ω∗22

. . .

ω∗2
ndof
S


(3.9)

is an
(
ndofS × ndofS

)
diagonal matrix with the diagonal elements being the corre-

sponding ndofS eigenvalues ω∗2k ; where the ω∗k are the natural frequencies of the struc-

ture.

The generalized structural nodal displacements v∗S(t∗) can be expanded as

v∗S(t∗) '
nm∑
k=1

qk(t
∗)φ∗k = [Φ∗] q(t∗) (3.10)

where

Φ̃ =
[
φ∗1 φ

∗
2 · · · φ∗ndof

S

]
(3.11)

is an
(
ndofS × nm

)
matrix with its columns equal to the first-nm mode shape vectors
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and

q(t∗) = [q1(t
∗), q2(t

∗), · · · , qnm(t∗)]T (3.12)

is the (nm × 1) nondimensional vector of the generalized coordinates qi(t
∗), and

nm < ndofS . In the numerical simulations performed for this work, 20 modes are

used; that is, nm = 20.

After substituting equations (3.10) into equation (3.6), the result is

[M∗] [Φ∗]
d2

dt∗2
q(t∗) + [K∗] [Φ∗] q(t∗) = F∗S(t∗). (3.13)

Subsequently, left multiplying this equation by [Φ∗]T leads to

[Φ∗]T [M∗] [Φ∗]
d2

dt∗2
q(t∗) + [Φ∗]T [K∗] [Φ∗] q(t∗) = [Φ∗]T F∗S(t∗). (3.14)

Due to the orthogonality properties of [Φ∗] with respect to the mass and stiffness

matrices, one has

[Φ∗]T [M∗] [Φ∗] = diag
(
m∗j
)

=



m∗1

m∗2

. . .

m∗nm


(3.15)
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and

[Φ∗]T [K∗] [Φ∗] = diag
(
k∗j
)

=



k∗1

k∗2

. . .

k∗nm


. (3.16)

Equations (3.14) can be written as

diag
(
k∗j
) d2

dt∗2
q(t∗) + diag

(
k∗j
)

q(t∗) = [Φ∗]T F∗S(t∗). (3.17)

where diag
(
m∗j
)

is the (nm × nm) diagonal matrix with the diagonal entries being

the modal masses and diag
(
k∗j
)

is the (nm× nm) diagonal matrix listing the modal

stiffnesses. diag
(
m∗j
)

being positive definite means that equations (3.17) can be left

multiplied by diag
(
m∗j
)−1

to get

d2

dt∗2
q(t∗) + [Λ∗] q(t∗) = diag

(
m∗j
)−1

[Φ∗]T F∗S(t∗) (3.18)

with

diag
(
m∗j
)−1

diag
(
k∗j
)

= diag

(
k∗j
m∗j

)
= diag

(
ω∗2j
)

= [Λ∗] (3.19)

where [Λ∗] is a (nm × nm) diagonal matrix listing the squares of the first-nm natural

frequencies of the structure.

From here, the characteristic variables can be used to nondimensionalize the

equations of motion. The nondimensional or computational time t, which is related
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to the physical time t∗, is introduced as

t∗ = TC t (3.20)

where TC is the characteristic time defined as:

TC =
LC
VC

(3.21)

where LC is the chordwise length of one element of the bound lattice and VC is the

magnitude of the freestream velocity of the fluid.

Also a new set of modal coordinates q(t) = [q1(t), q2(t), · · · , qnm(t)]T , a func-

tion of the computational time, is introduced as follows

q(t) = q [t∗(t)] = (q ◦ t∗) (t). (3.22)

By using the chain rule, the following derivatives are evaluated

q̇(t) =
d

dt
q(t)

=
d

dt
(q ◦ t∗) (t)

=
d

dt∗
q [t∗(t)]

d

dt
t∗(t)

= TC
d

dt∗
q [t∗(t)]

= TC
d

dt∗
q(t∗) (3.23)
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and

q̈(t) =
d2

dt2
q(t)

=
d2

dt2
(q ◦ t∗) (t)

=
d

dt

{
TC

d

dt∗
q [t∗(t)]

}
=

d

dt∗

{
TC

d

dt∗
q [t∗(t)]

}
d

dt
t∗(t)

= T 2
C

d2

dt∗2
q [t∗(t)]

= T 2
C

d2

dt∗2
q(t∗). (3.24)

Hence, equations (3.18) can be rewritten as follows:

1

T 2
C

q̈(t) + [Λ∗] q(t) = diag
(
m∗j
)−1

[Φ∗]T F∗S(t∗) (3.25)

or

q̈(t) + T 2
C [Λ∗] q(t) = T 2

C diag
(
m∗j
)−1

[Φ∗]T F∗S(t∗). (3.26)

It is noted that

T 2
C [Λ∗] = diag

(
T 2
C ω

∗2
j

)
= diag

((
LC ω

∗
j

VC

)2
)

= diag
(
ω2
j

)
= [Λ] (3.27)
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where [Λ] is a (nm × nm) diagonal matrix listing the squares of the first-nm dimen-

sionless or reduced frequencies, ωj =
LC ω∗

j

VC
, j = 1, · · · , nm, of the structure. Hence,

the equationx of motion of the joined-wings is given by

q̈(t) + [Λ] q(t) = T 2
C diag

(
m∗j
)−1

[Φ∗]T F∗S(t∗) (3.28)

3.5 Computational Structural Dynamics Model

A flowchart of the structural dynamics model is shown in Figure 3.6. In the

model used, the mass matrix, [M] , and elastic stiffness matrix, [K] , are computed

from the material and geometric properties of the aircraft wings. The structural

load vector FS(t), can be obtained from the UVLM aerodynamic model. The nodal

displacements, vS(t), are computed by using the equation of motion and used to

update the aerodynamic mesh. The procedure of correcting for the displacements

and updating the aerodynamic mesh is repeated until the solution convergence it

achieved. The structural model is capable of taking into account wing structural

degradation and rigid-body body motion of the fuselage.

As stated earlier, the structural model is composed of four beams representing

the left and right forward and aft wings of the joined-wing aircraft. The left and

right forward wing beams contain 11 elements made from 12 nodal points each. The

left and right aft wing beams contain seven elements made from eight nodal points

each. The left and right aft wing beams share one nodal point between each other

and share a nodal point with their respective forward wing beams. For the joined-
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Figure 3.6: Flowchart of FE structural dynamics simulator.

wing aircraft utilized for this dissertation work, the joint connecting the aft wing

with the forward wing is located closer to the root of the forward wing attached to

the fuselage. This can all be seen in Figure 3.7, where the structural beam model (in

blue) is superimposed on the aerodynamic mesh. The element size has been chosen

to determine upto the first 20 modes of vibrations, which are discussed in the next

section.

3.5.1 Modes of Vibration

The material properties and geometric cross-sectional properties used for the

computational structural model are listed in Tables 3.1 and 3.2, respectively. With

these properties, the natural frequencies and mode shapes of the structural can
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Figure 3.7: Structural beam model superimposed on aerodynamic mesh.

obtained. The first 20 natural frequencies, which are required for the aeroelastic

model, are listed in Table 3.3 and the corresponding mode shapes for the first four

natural frequencies are shown in Figures 3.8, 3.9, 3.10, and 3.11. From the natural

frequencies and the mode shapes, a pattern can be detected. Note that starting

from the first two modes of vibration, subsequent pairs of natural frequencies are

nearly identical (e.g., Modes 1 and 2, Modes 3 and 4, Modes 5 and 6, and so on.).

In the mode, it is seen that each mode from a pair corresponds to a bending or

torsional motion on one half of the joined-wing. For example, the first bending

vibration mode of the left forward wing can be seen in Figure 3.8 while the first

bending vibration mode of the right forward wing can be seen in Figure 3.9. The

first torsional vibration modes can be seen in Figures 3.10 and 3.11 with the third

mode corresponding to twisting in the right forward wing and the fourth mode

corresponding to the twisting in the left forward wing. Even though the motions of

the vibrations are represented on opposite wings, the motions are identical (similar

to how the natural frequencies are identical). The mode shapes corresponding to
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Table 3.1: Material properties of computational structural model with no damage.

E [N/m2] G [N/m2] ν ρm [kg/m3]
7.310× 1010 2.800× 1010 0.33 2.780× 103

Table 3.2: Geometric cross-sectional properties of computational structural model
with no damage.

A [m2] Iy [m4] Iz [m4] Ip [m4] JT [m4]
1.744× 10−2 3.303× 10−4 7.576× 10−3 7.907× 10−1 1.055× 10−3

the last 16 natural frequencies are displayed in Appendix B.

3.6 Summary

In this chapter, the reference systems required for describing the motions of the

four flexible wings is presented along with the structural damage and MFCs. Also,

how the equations of motion are converted from nodal space to modal space and

the nondimensionalized form is discussed. The computational structural dynamics

model along with the mode shapes corresponding with the material and geometric

cross-sectional properties used in this work are presented.

In the next chapter, the method used to integrate the structural dynamic and

Table 3.3: First 20 natural frequencies of structural system with no damage.

Mode i Frequency fi [Hz] Mode i Frequency fi [Hz]
1 0.370 2 0.370
3 0.868 4 0.868
5 1.548 6 1.548
7 2.215 8 2.215
9 2.530 10 2.530
11 2.666 12 2.666
13 3.769 14 3.769
15 4.583 16 4.583
17 5.047 18 5.047
19 6.057 20 6.057
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Figure 3.8: First mode corresponding to natural frequency f1 = 0.370 Hz.

Figure 3.9: Second mode corresponding to natural frequency f2 = 0.370 Hz.

Figure 3.10: Third mode corresponding to natural frequency f3 = 0.868 Hz.
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Figure 3.11: Fourth mode corresponding to natural frequency f4 = 0.868 Hz.

aerodynamic models is addressed.
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Chapter 4: Integration of Aerodynamics and Structural Dynamics

In this chapter, the co-simulation process is expanded upon to describe the

integration of the aerodynamic and structural dynamic models, which produces the

aeroelastic model. Some of the work presented in this chapter is based on the

author’s contributions in reference [48]. This chapter is used to answer research

question RQ3. A flowchart for the aeroelastic simulations is shown in Figure 4.1.

Based on the initial conditions obtained with the structural response, the wake

velocities are computed, which tends to be the most computationally expensive pro-

cess, in the aerodynamic model. With the newly computed wake velocities in the

aerodynamic model, the RHS vector and the aerodynamic influence matrix, which

are required in solving for the circulations for the vortex panels, are evaluated. Af-

ter the aerodynamic loads are calculated, the aerodynamic loads are transferred to

the structural model to get the displacements and velocities needed to update the

models. If the structural solution does not converge after two sequential iterations,

the aerodynamic influence matrix and RHS vector need to to reevaluated with the

updated aerodynamic mesh geometry. This is repeated until the solution conver-

gence is reached. It is assumed that a solution cannot be reached if the solution

does not converge after a specified amount of iterations.
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Figure 4.1: Flowchart of aeroelastic simulations via integration of UVLM aerody-
namic model and FE method structural model.

In Section 4.1, the co-simulation framework is described in detail. The method-

ology used to transfer displacements, velocities, and forces between the aerodynamic

and structural models is presented in Section 4.2. In Section 4.3, the author has dis-

cussed the transferring of model information methodology and the integration of the

equations of motion. In Section 4.4, the numerical integration scheme used to solve

the equations of motion of the system is discussed. The incorporated of the aero-

dynamic model into the numerical integration scheme is presented in Section 4.5.

Finally, in Section 4.6, the author provides a summary of the chapter.
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4.1 Co-simulation Framework

Co-simulation refers to the partitioning of a coupled system into subsystems

that are separately simulated (but numerically integrated) with a suitable exchange

of states at predefined time instances to account for the coupling.

In Figure 4.2, the steps involved in the co-simulation process for a joined-wing

SensorCraft wing in airflow are depicted. At the initial stage, the coupled system

(structure in airflow) is represented by the continuous system, wherein the state

vector is given by

z(t) =

vS(t)

FA(t)

 (4.1)

where vS(t) is the state vector associated with the wing structures and FA(t) is the

aerodynamic loads generated from the velocity/pressure fields of airflow. The next

stage in the co-simulation process involves the partitioning of the dynamic system

into two subsystems as follows:

d

dt
z(t) =

d

dt

vS(t)

FA(t)

 =

f1 (vS(t),FA(t))

f2 (vS(t),FA(t))

 (4.2)

or

v̇S(t) = f1 (vS(t),FA(t))

ḞA(t) = f2 (vS(t),FA(t))

(4.3)

The final stage of the co-simulation process involves exchanging information bi-

directionally between the two subsystems. This is accomplished by using a predic-
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Figure 4.2: Co-simulation process for a system in airflow.

tion to represent the unknown state vector in the opposite subsystems. Therefore,

to simulate the v̇S(t) subsystem, a prediction FS(t) is needed for its FA(t) input.

Similarly, to simulate the ḞA(t) system, a prediction uA(t) is needed for the vS(t)

input. The system can be written as

v̇S(t) = f1 (vS(t),FS(t))

ḞA(t) = f2 (uA(t),FA(t))

(4.4)

in which the structure’s state is simulated by using the predicted airflow states

and the airflow state is simulated by using the predicted structure states. More

information on co-simulation of complex systems can be found in references [6–8].

The last stage of the co-simulation process can be summarized as a three-step

procedure:

1. Mapping of the structural motion onto the aerodynamic grid;

2. Mapping of the aerodynamic forces onto the structural grid;

3. Numerical integration of all of the governing equations simultaneously and
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Figure 4.3: Strong coupling scheme between structural dynamic and aerodynamic
models.

interactively in the time domain.

This procedure can be observed in Figure 4.3.

4.2 Transferring Generalized Displacements and Forces

The development of an aeroelastic simulator requires the transfer of displace-

ments from the structural grid to the aerodynamic grid and the transfers of forces

from the aerodynamic grid to the structural grid. The methodology used in this

work to exchange information between the two models will be described in detail in

this section.
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Figure 4.4: Structural nodal grids aligned with aerodynamic nodal and control
points.

4.2.1 Generalized Displacements in Structural Grid to Translations

in Aerodynamic Grid

A representation of the alignment of the joined-wing configuration structural

grid along the aerodynamic grid is shown in Figure 4.4.In this figure, the author

shows the structural nodal points, aerodynamic nodal points, and aerodynamic con-

trol points along with the DOF corresponding to the nodal points in both meshes.

Transfer of information between the two models is achieved through the use

of an interpolation matrix. This matrix makes explicit the relationship between the

DOF of the structural model and the aerodynamic model. In dimensional phys-
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ical variables, The displacements of arbitrary points in the aerodynamic grid are

connected to the generalized structural nodal displacements through the following

linear transformation:

u∗A(t∗) = [G∗AS] v∗S(t∗), (4.5)

where u∗A(t∗) is a (3nA×1) vector containing the components of the displacements of

the selected points in the aerodynamic grid, v∗S(t∗) is a (6nS×1) vector containing the

components of generalized nodal displacements, nA is the number of selected points

in the aerodynamic grid, nS is the number of nodes in the structural grid, and [G∗AS]

is the (3nA × 6nS) interpolation matrix that relates the generalized displacements

of the structural grid nodal points to the displacements of the aerodynamic grid

selected points. The construction of the interpolation matrix, [G∗AS], depends on

the following

1. the geometry of both the aerodynamic and structural grid,

2. the particular points selected in the aerodynamic grid, and

3. the particular kind of finite element selected to discretize the structure.

4.2.2 Calculation of Interpolation Matrix

In this subsection, the calculation of the elements that constitute the interpola-

tion matrix that relates the displacements and rotations on the structural grid nodal

points with the translations on the aerodynamic grid selected points is discussed.

In developing these elements, point B in considered to lie in a plane perpendicular
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to the undeformed axis of the beam. There are three cases:

1. the plane containing point B intersects the beam axis and is an “internal

point”

2. the plane containing point B intersects an imaginary extension near the be-

ginning of the beam and is an “initial point”

3. the plane containing point B intersects an imaginary extension near the end

of the beam and is an “end point.”

Case I: Connection with an Internal Point

Figure 4.5: Connection with an internal point.

First, point A is selected on the aerodynamic grid and then find point B on

the elastic axis of the beam between the structural grid nodal points I and J such
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that A and B lie in same plane perpendicular to the undeformed axis of the beam.

As shown in Figure 4.5, the relative position of point A with respect to point B is

given by the vector r∗.

To be consistent with the Euler-Bernoulli theory, it is assumed that the flat

section normal to the undeformed axis of the beam remains flat after deformation

and it is further assumed that the cross section maintains its shape. Hence, the

vector r∗ that connects the points A and B is rigid. The displacements of nodal

point A are related to the generlaized displacements of point B by the following

relationship:

u∗A =

[
I3×3 T1

]
u∗B

θ∗B

 (4.6)

or


u∗A1

u∗A2

u∗A3


=


1 0 0 0 r∗3 0

0 1 0 −r∗3 0 r∗1

0 0 1 0 −r∗1 0





u∗B1

u∗B2

u∗B3

θB1

θB2

θB3



(4.7)

where (r∗1, r
∗
2, r
∗
3) are the components of the r∗, (u∗A1

, u∗A2
, u∗A3

) are the components of

the translation of point A on the aerodynamic grid, and (u∗B1
, u∗B2

, u∗B3
, θB1 , θB2 , θB3)

are the components of the displacement and rotation of point B on the structural

grid. All of these components are referenced in the (x, y, z) coordinate system are

shown in Figure 4.5.
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After using the characteristic length LC , r∗ is rewritten as follows

r∗ = LC r (4.8)

and equation (4.7) becomes


u∗A1

u∗A2

u∗A3


=


1 0 0 0 LC r3 0

0 1 0 −LC r3 0 LC r1

0 0 1 0 −LC r1 0





u∗B1

u∗B2

u∗B3

θB1

θB2

θB3



(4.9)

Note that the displacement field within each finite element depends on the

type of finite element used in the discretization process. In general, these fields

may be written as linear combinations of the shape functions and the nodal dis-

placements. For the finite element used in this work, the displacement and rotation

fields are obtained as linear combinations of the shape functions N̄1 through N̄6, the

displacements u∗Ii and u∗Ji , as well as the rotations θIi and θJi of the nodal points I

and J , for i = 1, 2, 3, as follows:

u∗1(η
∗) = u∗I1 N̄3(η

∗) + u∗J1 N̄4(η
∗)− θI3 N̄5(η

∗)− θJ3 N̄6(η
∗) (4.10)

u∗2(η
∗) = u∗I2 N̄1(η

∗) + u∗J2 N̄2(η
∗) (4.11)

u∗3(η
∗) = u∗I3 N̄3(η

∗) + u∗J3 N̄4(η
∗) + θI1 N̄5(η

∗) + θJ1 N̄6(η
∗) (4.12)
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and

θ1(η
∗) =

d

dη∗
u∗3(η

∗)

= u∗I3
d

dη∗
N̄3(η

∗) + u∗J3
d

dη∗
N̄4(η

∗) + θI1
d

dη∗
N̄5(η

∗) + θJ1
d

dη∗
N̄6(η

∗) (4.13)

θ2(η
∗) = θI2 N̄1(η

∗)− θJ2 N̄2(η
∗) (4.14)

θ3(η
∗) = − d

dη∗
u∗1(η

∗)

= −u∗I1
d

dη∗
N̄3(η

∗)− u∗J1
d

dη∗
N̄4(η

∗) + θI3
d

dη∗
N̄5(η

∗) + θJ3
d

dη∗
N̄6(η

∗ (4.15)

where

N̄1(η
∗) =

η∗J − η∗

h∗e
(4.16)

N̄2(η
∗) =

η∗ − η∗I
h∗e

(4.17)

N̄3(η
∗) = 1− 3

(
η∗ − η∗I
h∗e

)2

+ 2

(
η∗ − η∗I
h∗e

)3

(4.18)

N̄4(η
∗) = 3

(
η∗ − η∗I
h∗e

)2

− 2

(
η∗ − η∗I
h∗e

)3

(4.19)

N̄5(η
∗) = (η∗ − η∗I )−

2

h∗e
(η∗ − η∗I )2 +

1

h∗e
2 (η∗ − η∗I )3 (4.20)

N̄6(η
∗) = − 1

h∗e
(η∗ − η∗I )2 +

1

h∗e
2 (η∗ − η∗I )3 (4.21)

and

N̄7(η
∗) ≡ d

dη∗
N̄3(η

∗) = − 6

h∗e
2 (η∗ − η∗I ) +

1

h∗e
3 (η∗ − η∗I )2 (4.22)

N̄8(η
∗) ≡ d

dη∗
N̄4(η

∗) =
6

h∗e
2 (η∗ − η∗I )−

6

h∗e
3 (η∗ − η∗I )2 (4.23)
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N̄9(η
∗) ≡ d

dη∗
N̄5(η

∗) = 1− 4

h∗e
(η∗ − η∗I ) +

3

h∗e
2 (η∗ − η∗I )2 (4.24)

N̄10(η
∗) ≡ d

dη∗
N̄6(η

∗) = − 2

h∗e
(η∗ − η∗I ) +

3

h∗e
2 (η∗ − η∗I )2 (4.25)

where η∗I is the coordinate along the elastic axis of the structural node I, η∗J is the

coordinate along the elastic axis of the structural node J, and

h∗e = η∗J − η∗I (4.26)

is the length between structural nodes I and J.

By using matrix rotation, the translation u∗B and rotation θ∗B of point B,

whose coordinates in the elastic axis system are (0, yB, 0), are written in terms of

the displacements u∗I and u∗J as well as the rotations θ∗I and θ∗J of the nodal points

I and J as follows:


u∗B

θ∗B

 =

 N̄11 N̄12 N̄13 N̄14

N̄21 N̄22 N̄23 N̄24





u∗I

θ∗I

u∗J

θ∗J


. (4.27)

Here, the submatrices N̄11 through N̄24 are given by

N̄11 =


N̄3(η

∗
B) 0 0

0 N̄1(η
∗
B) 0

0 0 N̄3(η
∗
B)

 (4.28)
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N̄12 =


0 0 −N̄5(η

∗
B)

0 0 0

N̄5(η
∗
B) 0 0

 (4.29)

N̄13 =


N̄4(η

∗
B) 0 0

0 N̄2(η
∗
B) 0

0 0 N̄4(η
∗
B)

 (4.30)

N̄14 =


0 0 −N̄6(η

∗
B)

0 0 0

N̄6(η
∗
B) 0 0

 (4.31)

N̄21 =


0 0 N̄7(η

∗
B)

0 0 0

−N̄7(η
∗
B) 0 0

 (4.32)

N̄22 =


N̄9(η

∗
B) 0 0

0 N̄1(η
∗
B) 0

0 0 N̄9(η
∗
B)

 (4.33)

N̄23 =


0 0 N̄8(η

∗
B)

0 0 0

−N̄8(η
∗
B) 0 0

 (4.34)

N̄24 =


N̄10(η

∗
B) 0 0

0 N̄2(η
∗
B) 0

0 0 N̄10(η
∗
B)

 . (4.35)
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After substituting the expressions for u∗B and θ∗B given by equations (4.27) into

equation (4.6), the following expression for the translation of point B in terms of

the displacements u∗I and u∗J are otained as well as the rotations θ∗I and θ∗J of the

nodal points I and J :

u∗A =

[
I3×3 T1

] N̄11 N̄12 N̄13 N̄14

N̄21 N̄22 N̄23 N̄24





u∗I

θ∗I

u∗J

θ∗J


(4.36)

=

[
G∗AS1

G∗AS2
G∗AS3

G∗AS4

]


u∗I

θ∗I

u∗J

θ∗J


(4.37)

Here, the submatrices G∗AS1
through G∗AS4

are given by

G∗AS1
= N̄11 + T1N̄21 (4.38)

=


N̄3(η

∗
B) 0 0

−r∗1 N̄7(η
∗
B) N̄1(η

∗
B) −r∗3 N̄7(η

∗
B)

0 0 N̄3(η
∗
B)

 (4.39)

G∗AS2
= N̄12 + T1N̄22 (4.40)
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=


0 r∗3 N̄1(η

∗
B) −N̄5(η

∗
B)

−r∗3 N̄9(η
∗
B) 0 r∗1 N̄9(η

∗
B)

N̄5(η
∗
B) −r∗1 N̄1(η

∗
B) 0

 (4.41)

G∗AS3
= N̄13 + T1N̄23 (4.42)

=


N̄4(η

∗
B) 0 0

−r∗1 N̄8(η
∗
B) N̄2(η

∗
B) −r∗3 N̄8(η

∗
B)

0 0 N̄4(η
∗
B)

 (4.43)

G∗AS4
= N̄14 + T1N̄24 (4.44)

=


0 r∗3 N̄2(η

∗
B) −N̄6(η

∗
B)

−r∗3 N̄10(η
∗
B) 0 r∗1 N̄10(η

∗
B)

N̄6(η
∗
B) −r∗1 N̄2(η

∗
B) 0

 (4.45)

After using the characteristic variable LC , the dimensionless form of the inter-

polation matrix [G∗AS] can be obtained through the following dimensionless variables

and shape functions:

η∗(η) = LC η (4.46)

h∗e(he) = LC he (4.47)

N1(η) = N̄1(η
∗(η)) =

ηJ − η
he

(4.48)

N2(η) = N̄2(η
∗(η)) =

η − ηI
he

(4.49)
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N3(η) = N̄3(η
∗(η)) = 1− 3

(
η − ηI
he

)2

+ 2

(
η − ηI
he

)3

(4.50)

N4(η) = N̄4(η
∗(η)) = 3

(
η − ηI
he

)2

− 2

(
η − ηI
he

)3

(4.51)

N5(η) = N̄5(η
∗(η)) = LC

[
(η − ηI)−

2

he
(η − ηI)2 +

1

h2e
(η − ηI)3

]
(4.52)

N6(η) = N̄6(η
∗(η)) = LC

[
− 1

he
(η − ηI)2 +

1

h2e
(η − ηI)3

]
(4.53)

N7(η) = N̄7(η
∗(η)) = − 6

h2e
(η − ηI) +

6

h3e
(η − ηI)2 (4.54)

N8(η) = N̄8(η
∗(η)) =

6

h2e
(η − ηI)−

6

h3e
(η − ηI)2 (4.55)

N9(η) = N̄9(η
∗(η)) = LC

[
1− 4

he
(η − ηI) +

3

h2e
(η − ηI)2

]
(4.56)

N10(η) = N̄10(η
∗(η)) = LC

[
− 2

he
(η − ηI) +

3

h2e
(η − ηI)2

]
(4.57)

Introducing the expressions for the dimensionless shape functionsN1(η) through

N10(η), given by equations (4.48)-(4.57), into equations (4.38)-(4.45), the compo-

nents of the interpolation matrix [G∗AS] are rewritten in terms of the dimensionless

variables and the characteristic length as:

G∗AS1
= N̄11 + T1N̄21 (4.58)

=


N3(ηB) 0 0

−r1 N7(ηB) N1(ηB) −r3 N7(ηB)

0 0 N3(ηB)

 (4.59)

G∗AS2
= N̄12 + T1N̄22 (4.60)
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=


0 LC r3 N1(ηB) −N5(ηB)

−r3 N9(ηB) 0 r1 N9(ηB)

N5(ηB) −r1 N1(ηB) 0

 (4.61)

G∗AS3
= N̄13 + T1N̄23 (4.62)

=


N4(ηB) 0 0

−r1 N8(ηB) N2(ηB) −r3 N8(ηB)

0 0 N4(ηB)

 (4.63)

G∗AS4
= N̄14 + T1N̄24 (4.64)

=


0 LC r3 N2(ηB) −N6(ηB)

−r3 N10(ηB) 0 r1 N10(ηB)

N6(ηB) −LC r1 N2(ηB) 0

 . (4.65)

Case II: Connection with an Initial Point

Figure 4.6: Connection with an initial point.
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Next, select point A on the aerodynamic grid and then find point B on an

imaginary extension of the elastic axis of the beam that comes before the structural

grid nodal points M, which is the first node (root) of the beam, such that A and

B lie in same plane perpendicular to the undeformed axis of the beam. As shown

in Figure 4.6, the relative position of point A with respect to point B is given by

the vector r∗. The displacements of nodal point A are related to the generlized

displacements of point M by the following relationship:

u∗A =

[
I3×3 T2

]
u∗M

θ∗M

 . (4.66)

In expanded form, this relationship is given by


u∗A1

u∗A2

u∗A3


=


1 0 0 0 r∗3 −r∗2

0 1 0 −r∗3 0 r∗1

0 0 1 r∗2 −r∗1 0





u∗M1

u∗M2

u∗M3

θM1

θM2

θM3



(4.67)

where (r∗1, r
∗
2, r
∗
3) are the components of the r∗, (u∗A1

, u∗A2
, u∗A3

) are the components of

the translation of pointA on the aerodynamic grid, and (u∗M1
, u∗M2

, u∗M3
, θM1 , θM2 , θM3)

are the components of the displacement and rotation of point M on the structural

grid. All of these components are with respect to the (x, y, z) coordinate system
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shown in Figure 4.6. By using the dimensionless expression for r∗ given by equa-

tion (4.8), equation (4.67) can be rewritten in terms of the dimensionless variables

and the characteristic length as


u∗A1

u∗A2

u∗A3


=


1 0 0 0 LC r3 −LC r2

0 1 0 −LC r3 0 LC r1

0 0 1 LC r2 −LC r1 0





u∗M1

u∗M2

u∗M3

θM1

θM2

θM3



(4.68)

or

u∗A =

[
G∗AS1

G∗AS2

]
u∗M

θM

 . (4.69)

Case III: Connection with an End Point

Now, select point A on the aerodynamic grid and then find point B on an

imaginary extension of the elastic axis of the beam that comes after the structural

grid nodal points N, which is the last node (tip) of the beam, such that A and

B lie in same plane perpendicular to the undeformed axis of the beam. As shown

in Figure 4.7, the relative position of point A with respect to point B is given by

the vector r∗. The displacements of nodal point A are related to the generlaized
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Figure 4.7: Connection with an end point.

displacements of point N by the following relationship:

u∗A =

[
I3×3 T2

]
u∗N

θ∗N

 (4.70)

or


u∗A1

u∗A2

u∗A3


=


1 0 0 0 r∗3 −r∗2

0 1 0 −r∗3 0 r∗1

0 0 1 r∗2 −r∗1 0





u∗N1

u∗N2

u∗N3

θN1

θN2

θN3



(4.71)
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where (r∗1, r
∗
2, r
∗
3) are the components of the r∗, (u∗A1

, u∗A2
, u∗A3

) are the components of

the translation of point A on the aerodynamic grid, and (u∗N1
, u∗N2

, u∗N3
, θN1 , θN2 , θN3)

are the components of the displacement and rotation of point N on the structural

grid. All of these components are reference in the (x, y, z) coordinate system shown

in Figure 4.7. Using the dimensionless expression for r∗ given by equation (4.8),

equation (4.71) can be rewritten in terms of the dimensionless variables and the

characteristic length as


u∗A1

u∗A2

u∗A3


=


1 0 0 0 LC r3 −LC r2

0 1 0 −LC r3 0 LC r1

0 0 1 LC r2 −LC r1 0





u∗N1

u∗N2

u∗N3

θN1

θN2

θN3



(4.72)

or in compact form by

u∗A =

[
G∗AS1

G∗AS2

]
u∗N

θN

 . (4.73)

After the procedures explained above are repeated for every selected point in

the aerodynamic grid, then a global interpolation matrix
[
nAnG

nSn∗
AS

]
for mapping

the generalized displacements of all the structural nodes into the deflections of all

the selected points in the aerodynamic grid is assembled. In regards to the global
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interpolation matrix
[
nAnG

nSn∗
AS

]
, nAn is the number of aerodynamic grid nodal

points and nSn is the number of structural grid nodal points,

4.2.3 Transfer of Forces from Aerodynamic Grid to Structural Grid

Figure 4.8: Control point of aerodynamic grid.

After using the global interpolation matrix
[
nAnG

nSn∗
AS

]
for mapping the gen-

eralized displacements of all the structural nodes into the deflections of all the se-

lected points in the aerodynamic grid, the global interpolation matrix
[
nSnG

nAc∗
SA

]
=[

nAcG
nSn∗
AS

]T
that maps the aerodynamics forces into structural nodal forces is ob-

tained, where nAc is the number of aerodynamic grid control points, nAn is the

number of aerodynamic grid nodal points and nSn is the number of structural grid

nodal points.

For any element in the aerodynamic grid, the position of the control point is

the average of the positions of its corners, as shown in Figure (4.8). This definition
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is used to compute
[
nAcG

nSn∗
AS

]
from

[
nAnG

nSn∗
AS

]
as follows:

u∗p =
1

4
(u∗a + u∗b + u∗c + u∗d) (4.74)

or equivalently


u∗p1

u∗p2

u∗p3


=


1
4

0 0 1
4

0 0 1
4

0 0 1
4

0 0

0 1
4

0 0 1
4

0 0 1
4

0 0 1
4

0

0 0 1
4

0 0 1
4

0 0 1
4

0 0 1
4





u∗a1

u∗a2

u∗a3

u∗b1

u∗b2

u∗b3

u∗c1

u∗c2

u∗c3

u∗d1

u∗d2

u∗d3



(4.75)

where (u∗p1 , u
∗
p2
, u∗p3) are the components of the translation of the control point p,

(u∗a1 , u
∗
a2
, u∗a3), (u∗b1 , u

∗
b2
, u∗b3), (u∗c1 , u

∗
c2
, u∗c3), and (u∗d1 , u

∗
d2
, u∗d3) are the components of

the translation of the aerodynamic nodes a, b, c, and d, respectively. All components

are expressed in the elastic axis coordinate system. By using matrix notation,
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equation (4.75) is rewritten as follows:

u∗p = [T3]



u∗a

u∗b

u∗c

u∗d


. (4.76)

This relationship among the translation of a control point and the translations

of all four corners is written for every element in the aerodynamic grid. Then a global

matrix [T3] for mapping the translations of all nodal points into the translations

of all control points in the aerodynamic grid is obtained. Hence, using this global

matrix
[
nAcT

nAn
3

]
,

u
nAc∗
A =

[
nAcT

nAn
3

]
u
nAn∗
A . (4.77)

Taking into account equation (4.5), equation (4.77) leads to

u
nAc∗
A =

[
nAcT

nAn
3

]
u
nAn∗
A

=
[
nAcT

nAn
3

] [
nAnG

nSn∗
AS

]
v
nSn∗
S

=
[
nAcG

nSn∗
AS

]
v
nSn∗
S . (4.78)

Let’s also note that the same procedure used to find the translations of the

aerodynamic grid nodal points could have been used to find the translations of the

aerodynamic grid control points.
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4.3 Equations of Motion for Numerical Integration Scheme

4.3.1 Relationship Between Forces in Aerodynamic Model and Struc-

tural Model

To relate the structural forces F ∗S to the aerodynamic forces F ∗A, it is required

that the two systems of forces be structurally equivalent. This means that the two

force systems will do the same work for any virtual displacement, that is,

δW̄ ∗
A = δW̄ ∗

S , (4.79)

where the bar over δW ∗
A and δW ∗

S indicates that these quantities represent infinites-

imal increments and not true variations; the virtual work is given by

δW̄ ∗
A = (δu∗A)T F∗A (4.80)

δW̄ ∗
S = (δv∗S)T F∗S, (4.81)

where δW̄ ∗
A is the virtual work performed by the aerodynamic forces over the virtual

displacement δu∗A and δW̄ ∗
S is the virtual work performed by the structural forces

over the virtual displacement δv∗S. From here, equation (4.78) is used to relate the

virtual displacements in the aerodynamic grid to those in the structural grid as

follows:

δu
nAc∗
A =

[
nAcG

nSn∗
AS

]
δv∗S. (4.82)
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Then the requirement that work done by the two force systems be equal leads

to

δW̄ ∗
A = (δu∗A)T F∗A = (δv∗S)T

[
nAcG

nSn∗
AS

]T
F∗A (4.83)

= δW̄ ∗
S = (δv∗S)T F∗S. (4.84)

Due to the arbitrariness of the virtual displacement δv∗S, the result is

F∗S =
[
nAcG

nSn∗
AS

]T
F∗A (4.85)

=
[
nSnG

nAc∗
SA

]
F∗A. (4.86)

On substituting the expression for F∗S given by equation (4.86) into the equations

of motion for the joined-wings, equation (3.28), gives

q̈(t) + [Λ] q(t) = T 2
C diag

(
m∗j
)−1

[Φ∗]T
[
nSnG

nAc∗
SA

]
F∗A(t∗). (4.87)

A new matrix
[
nmG

nAc∗
MA

]
is defined to relate the aerodynamic forces to the modal

forces: [
nmG

nAc∗
MA

]
=
{[

nAcG
nSn∗
AS

]
[Φ∗] diag

(
m∗j
)−1}T

. (4.88)

Equation (4.87) can be rewritten as follows

q̈(t) + [Λ] q(t) = T 2
C

[
nmG

nAc∗
MA

]
F∗A(t∗). (4.89)
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4.3.1.1 Nondimensionalization of F∗A

In nondimensionalizing the aerodynamic forces, the aerodynamic force {F∗k}A

acting on panel k is taken into consideration. This force is considered to be applied

at the control point and is given by

{F∗k}A = ∆p∗k A
∗
k n̂k, (4.90)

where ∆p∗k = (p∗L)k − (p∗U)k is the pressure jump across the panel at the control

point k, and is defined as the pressure below the panel (point L) minus the pressure

above the panel (point U). This pressure jump is found from Bernoulli’s equation,

equation (2.8), from unsteady flows as described in Chapter 2. A∗k is the area of the

panel k, and n̂k is the unit vector normal to panel k.

Making use of the definition of the pressure coefficient Cp, the pressure jump

is rewritten as follows:

∆p∗k = (∆Cp)k
1

2
ρC V

2
C , (4.91)

After using the characteristic length LC , the area of the panel A∗k can be written in

terms of the dimensionless area Ak as

A∗k = L2
C Ak. (4.92)
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Introducing equations (4.91) and (4.92) into equation (4.90), leads to

{F∗k}A =
1

2
ρC V

2
C L

2
C (∆Cp)k Ak n̂k. (4.93)

The dimensionless aerodynamic force {Fk}A are defined as

{Fk}A = (∆Cp)k Ak n̂k. (4.94)

One can rewrite equation (4.93) as

{F∗k}A =
1

2
ρC V

2
C L

2
C {Fk}A. (4.95)

By extending this idea to all the panels that form the aerodynamic mesh, one

obtains

F∗A =



F∗1

F∗2

...

F∗nAn


A

=
1

2
ρC V

2
C L

2
C



F1

F2

...

FnAn


A

(4.96)

=

(
1

2
ρC V

2
C L

2
C

)
FA (4.97)

where nAc is the number of panels in the aerodynamic mesh.

Then substituting the expression for F∗A given by equation (4.97) into the
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equations of motion for the joined-wings, equation (4.89), the result is

q̈(t) + [Λ] q(t) = T 2
C

[
nmG

nAc∗
MA

](1

2
ρC V

2
C L

2
C

)
FA(t). (4.98)

Taking into account that LC = VC TC , leads to

q̈(t) + [Λ] q(t) =

(
1

2
ρC L4

C

) [
nmG

nAc∗
MA

]
FA(t). (4.99)

4.3.2 Integrating Equations of Motion

To numerically integrate the equations of motion, equation (4.99), it is neces-

sary first to rewrite them as a system of first-order ordinary differential equations.

To do this, the state vector is introduced

y(t) =


y1(t)

y2(t)

 (4.100)

where y(t) is a (2nm×1) vector (with nm being the number of modes of the system),

and the state variables y1(t) and y2(t) are given by

y1(t) = q(t) (4.101)

y2(t) = q̇(t). (4.102)

After using equation (4.99) and taking the derivatives of the state variables
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with respect to time t, one obtains

ẏ1(t) = y2(t) (4.103)

ẏ2(t) = − [Λ] y1(t) +

(
1

2
ρC L4

C

) [
nmG

nAc∗
MA

]
FA. (4.104)

which in state form can be written as


ẏ1(t)

ẏ2(t)

 =

0nm×nm Inm×nm

− [Λ] 0nm×nm




y1(t)

y2(t)

+


0nm×1(

1
2
ρC L4

C

) [
nmG

nAc∗
MA

]
FA

 .

(4.105)

Here, 0nm×nm is matrix of zeros with dimension (nm×nm), 0nm×1 is matrix of zeros

with dimension (nm×1), and Inm×nm is the identity matrix of dimension (nm×nm).

Finally, equations (4.105) will be integrated by using the numerical integration

scheme that is described in the next section.

4.4 Numerical Integration Scheme

During a timestep, the moving of the wake and the structure to their new

positions are occurring simultaneously. For this reason, Hamming’s fourth-order

predictor-corrector scheme [65] is used for time domain numerical integration. This

scheme was chosen because the aerodynamic model works better when the loads are

only evaluated at integral timesteps and the aerodynamic loads contain contributions

that are proportional to the acceleration. These contributions come from
∂Φ

∂t
, where

Φ(R, t) is proportional to the velocity.
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Equation (4.105) can be written as a system of 2nm first-order ordinary differ-

ential equations by redefining the modal displacements and modal velocities vectors:

ẏ(t) = F[y(t)] (4.106)

where half of the vector F represents the generalized velocities and the other half

represents the generalized forces divided by the corresponding inertias. In general,

the loads depend explicitly on y, and implicitly on the history of the motion and

acceleration through the term
∂Φ

∂t
.

In equation (4.106), ẏ(t) =
d

dt
y(t) is a vector of size (2nm× 1) along with the

Fi[y(t)] components in F[y(t)] and the yi(t) components in y(t) for i = 1, 2, · · · , 2nm.

Let tj = j∆t denote the time at the j-th timestep, where ∆t is the timestep size

used to obtain the numerical solution, and

yj = y(tj) (4.107)

ẏj = ẏ(tj) (4.108)

Fj = F[y(tj)]. (4.109)

The details of the basic numerical procedure used to determine the current value of

the vector y are given next:

A.1 At t0 (i.e. t = 0), the initial conditions of the problem are given, that is,

y0 = y(t0) is known. Hence, after using equation (4.106), the value of ẏ0 is
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obtained as

ẏ0 = F0 = F
(
y0
)
. (4.110)

A.2 At t1 (i.e., t = ∆t), the predicted solution, py1, is computed by using the Euler

Method scheme

py1 = y0 + ∆t F0. (4.111)

A.3 The predicted solution is corrected by using the Modified Euler Method scheme

k+1y1 = y0 +
∆t

2

(
kF1 + F0

)
(4.112)

kF1 = F
(
ky1
)

(4.113)

where k is the iteration number and 1y1 = py1. This step is repeated until the

iteration error

e1 =
∥∥k+1y1 − ky1

∥∥
∞ (4.114)

is less than a prescribed error tolerance ε. If e1 > ε, then one sets

ky1 = k+1y1 (4.115)

kẏ1 = k+1ẏ1 (4.116)

and goes to equation (4.112); if e1 ≤ ε, then one sets

y1 = k+1y1 (4.117)
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ẏ1 = k+1ẏ1 (4.118)

and computes the response at t2 = t1 + ∆t = 2∆t.

A.4 At t2 (i.e., t = 2∆t), the predicted solution, py2, is computed by the Adams-

Bashforth Two-Step Predictor Method scheme

py2 = y1 +
∆t

2

(
3F1 − F0

)
. (4.119)

A.5 The predicted solution is corrected by using the Adams-Moulton Two-Step

Method scheme

k+1y2 = y1 +
∆t

12

(
5kF2 + 8F1 − F0

)
(4.120)

kF2 = F
(
ky2
)

(4.121)

and 1y2 = py2. This step is repeated until the iteration error

e2 =
∥∥k+1y2 − ky2

∥∥
∞ (4.122)

is less than a prescribed error tolerance ε. If e2 > ε, then one sets

ky2 = k+1y2 (4.123)

kẏ2 = k+1ẏ2 (4.124)
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and goes to equation (4.120); if e2 ≤ ε, then one sets

y2 = k+1y2 (4.125)

ẏ2 = k+1ẏ2 (4.126)

and computes the response at t3 = t2 + ∆t = 3∆t.

A.6 At t3 (i.e., t = 3∆t), the predicted solution, py3, is computed by using the

Adams-Bashforth Three-Step Predictor Method scheme

py3 = y2 +
∆t

12

(
23F2 − 16F1 + 5F0

)
. (4.127)

A.7 The predicted solution is corrected by using the Adams-Moulton Three-Step

Method scheme

k+1y3 = y2 +
∆t

24

(
9kF3 + 19F2 − 5F1 + F0

)
(4.128)

kF3 = F
(
ky3
)

(4.129)

and 1y3 = py3. This step is repeated until the iteration error

e3 =
∥∥k+1y3 − ky3

∥∥
∞ (4.130)
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is less than a prescribed error tolerance ε. If e3 > ε, then one sets

ky3 = k+1y3 (4.131)

kẏ3 = k+1ẏ3 (4.132)

and goes to equation (4.128); if e3 ≤ ε, then, for the first time, one evaluates

the local truncation error

e3 = k+1y3 − 1y3. (4.133)

Next, one sets

y3 = k+1y3 (4.134)

ẏ3 = k+1ẏ3 (4.135)

and computes the response at t4 = t3 + ∆t = 4∆t.

A.8 For t4 and higher (i.e., t = 4∆t, 5∆t, 6∆t, · · ·), the solution is computed

by using the Hamming’s Fourth-Order Modified Predictor-Corrector Method

scheme. The predicted solution, pyj, is computed from the predictor equation

pyj = yj−4 +
4

3
∆t
(
2Fj−1 − Fj−2 + 2Fj−3) . (4.136)

A.9 The predicted solution is modified by using the local truncation error from the
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previous timestep

1yj = pyj +
112

9
ej−1. (4.137)

A.10 The modified-predicted solution is corrected by using the correction equation

k+1yj =
1

8

[
9yj−1 − yj−3 + 3∆t

(
kFj + 2Fj−1 − Fj−2)] (4.138)

kFj = F
(
kyj
)

(4.139)

and 1yj = pyj. This step is repeated until the iteration error

ej =
∥∥k+1yj − kyj

∥∥
∞ (4.140)

is less than a prescribed error tolerance ε. If ej > ε, then one sets

kyj = k+1yj (4.141)

kẏ3 = k+1ẏj (4.142)

and goes to equation (4.138).

A.11 When ej ≤ ε, one estimates the local truncation error for the use in the current

and next timesteps

ej =
9

121

(
k+1yj − pyj

)
. (4.143)
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A.12 The final solution at step j is

yj = k+1yj − ej. (4.144)

A.13 To calculate the solution at the next timestep, one sets

yj−4 = yj−3 (4.145)

yj−3 = yj−2 (4.146)

yj−2 = yj−1 (4.147)

yj−1 = yj (4.148)

ej−1 = ej (4.149)

and repeats steps A.8 to A.13 as many times as required. If ej > ε for more

than a specified amount of iterations, the program stops and it is assumed

that a solution cannot be reached.

4.5 Integrating Aerodynamic Model into the Numerical Scheme

During a timestep ∆t, the wakes convect to their new positions consistent with

the requirement that vorticity moves with the fluid particles and, simultaneously, the

structure moves to a new position consistent with the current forces and equations

of motion. This concept is implemented through the following sequence of steps to

calculate the solution at time t + ∆t when the solution is known at time t, t−∆t,
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t− 2∆t, and t− 3∆t:

B.1 The wakes are convected to their positions. A fluid particle in a wake is moved

to its new position R(t+ ∆t) from its current position according to R(t)

R(t+ ∆t) = R(t) + V (R(t)) ∆t, (4.150)

where V (R(t)) is the local velocity of the fluid. During the remainder of

the procedure for this timestep, the wake is not moved. Numerical experi-

ments with more precise algorithms for convecting the wake have shown that

equation (4.150) is adequate [66].

B.2 The current loads (i.e., those at the beginning of the timestep) are used to

predict the state of the structure by using equation (4.136).

B.3 The predicted solution is modified by using the local truncation error from the

previous timestep by using equation (4.137).

B.4 The modified-predicted solution is corrected by the iterative procedure that

makes use of the corrector equation (4.138). The loads are recalculated for

each iteration while the wake remains frozen. A great effort is required for the

calculating of aerodynamic forces since the aerodynamic model must be used

to completely recalculate the flowfield. This step is repeated until convergence

is reached; that is, until the iteration error given by equation (4.139) is less

than a prescribed error tolerance value). Typically, three to six iterations are

required to reduce the value of the iteration error to 10−6.
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B.5 After convergence, the local truncation error given by equation (4.143) is ob-

tained for the next timestep and for the final evaluation of the loads at the

current timestep.

B.6 Then equation (4.144) is used to evaluate that final position and velocity of

the structure, and these are used to recalculate the flowfield and to obtain the

final estimate of the aerodynamic loads.

At this point in time, (t+ ∆t), the position and velocity of the structure, the

distribution of the vorticity and the aerodynamic loads on the lifting surface, and

the distribution of vorticity are known as well as the positions of the wakes. This

information is used in the calculation of the solution for the next timestep. Begin

by shifting the information according to equations (4.145)-(4.149) and then repeat

steps B.1 though B.6 in this section.

The procedures described above requires information from the four previous

timesteps. In the beginning, this information does not exist so a special starting

scheme, which is described in steps A.8 through A.7 of Section 4.4, is used:

C.1 At t = 0, the initial conditions are used to calculate the aerodynamic loads ig-

noring the contribution of
∂Φ

∂t
. It is not important to capture this contribution

precisely at this timestep because the response of the structure to an arbitrary

initial disturbance is being determined. Then equation (4.110) is used to cal-

culate F0 and the wake is convected to its position for the next timestep.

Next, the state of the structure is predicted at time ∆t by using the first-

order Euler method scheme given by equation (4.111). Then, the predicted
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state is iteratively corrected using the modified Euler method scheme given

by equation (4.112), recalculating the loads in each iteration. As previously

mentioned, the position of the wake is not recalculated.

C.2 After convergence, time is advanced and the wake is convected. The solution

is predicted at time 2∆t by using the second-order Adams-Bashforth two-step

predictor method scheme given by equation (4.119). Then, the prediction is

iteratively corrected using the Adams-Moulton two-step method scheme given

by equation (4.120), recalculating the loads in each iteration.

C.3 After convergence, time is advanced and the wake is convected. The solution

is predicted at time 3∆t by using the third-order Adams-Bashforth three-step

predictor method scheme given by equation (4.127). Then, the predicted is

iteratively corrected by using the Adams-Moulton three-step method scheme

given by equation (4.128), recalculating the loads in each iteration. After

convergence, the local truncation error is calculated for the first time and

then, the procedure described at the beginning of this section is followed.

4.6 Summary

In this chapter, the co-simulation framework required for integrating the struc-

tural and aerodynamic model has been presented. It should be noted the co-

simulation approach is broad and can be used with different aerodynamics and

structural aerodynamics models. How the displacements and forces are transferred

between the two models is described in this chapter along with the methodology
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for solving the equations of motion of the system. In the next chapter, the results

obtained by using the aeroelastic simulator to predict the critical flutter speed of a

joined-wing aircraft is discussed.
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Chapter 5: Simulation Results

In this chapter, the simulation results obtained for a flat plate and a joined-

wing aircraft aeroelastic model are presented. The flat plate aeroelastic model is

used to verify the validity of the model to predict the critical flutter speed. For

different freestream directions, the critical flutter speed of the joined-wing aircraft

is predicted by using the aeroelastic model. With damage present on a specific

location of the joined-wing, the change in the critical flutter speed at a specific

freestream direction is investigated.

The verification of the aeroelastic model using an example for a flat plate from

the literature is presented in Section 3.1. The critical flutter speed of the joined-

wing aircraft with and without structural wing damage is discussed in Section 3.2.

Finally, Section 5.3, has a summary of the chapter. This body of work answers

research question RQ4.

5.1 Verification: Flat Plate Aeroelastic Model

To verify the flutter predictive capabilities of the accelerated aeroelastic sim-

ulator, a classic problem provided by Fung [67] to determine the torsion-bending

flutter for a suspension bridge is used. Fung modeled the bridge as a system with
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Table 5.1: Geometrical and material properties of Fung’s model.

b [ft] m
[

slug
ft

]
r2β ω2

h

[
rad
s2

]
ω2
β

[
rad
s2

]
30 269 0.6222 0.775 2.410

Figure 5.1: Computation model used to verify aeroelastic simulation results.

two degrees of freedom. This system had the geometrical and material properties

shown in Table 5.1. In Table 5.1, 2b is the width of the bridge, m is the mass per

unit length, r2β is the radius of gyration around the elastic axis, ωh is the natural

bending frequency, and ωβ is the natural torsional frequency. The elastic axis lies

at the center of the chord, the mass distribution is symmetrical, and the air density

is ρ = 2.378 × 10−4 slug/ft3. Fung [67] reported a flutter speed of 162 ft/s with a

corresponding frequency of 1.25 rad/s.

To perform the verification test for the aeroelastic simulator, an aerodynamic

mesh with an aspect ratio of 10, with five panels along the chord length, and 50

panels along the span length, was utilized. The chord and span of the mesh are 60

ft and 600 ft, respectively. The computational model used can be seen in Figure 5.1.

The structural beam is composed of 10 elements constructed from 11 nodes. A rect-

angular cross-section with a width of 60 ft and thickness of 1 ft was used. To ensure

that the same natural bending and torsion frequencies are obtained, the material

and geometrical properties used for the simulations, with regard to Figure 3.4, are
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Table 5.2: Material properties of computational structural model used for verifica-
tion case.

E
[

slug
ft s2

]
G
[

slug
ft s2

]
ν ρm

[
slug
ft3

]
1.482× 109 2.671× 109 0.33 4.483

Table 5.3: Geometric cross-sectional properties of computational structural model
used for verification case.

A [ft2] Iy [ft4] Iz [ft4] Ip [ft4] JT [ft4]
60 5 18000 18005 19.790

given in Tables 5.2 and 5.3.

The first two vibration modes are shown in Figure 5.2 and their corresponding

natural bending and torsion frequencies closely match those provided by Fung

ωh = 0.8804 rad/s (5.1)

ωβ = 1.5524 rad/s. (5.2)

The simulations were run for 240 seconds in realtime. Depending on the

freestream speed, the number of timesteps needed to run each individual simulation

ranged from 1,000 to 3,600. A freestream air density of ρ = 0.0002378 slug/ft3 and

freestream direction of (0◦, 0◦, 0◦) was used with initial conditions

q1(0) = 0 q̇1(0) = 0 (5.3)

q2(0) = 0.1 q̇2(0) = 0 (5.4)

The responses of the aeroelastic behavior of the flat plate for a freestream speed

of 110 ft/s are shown in Figure 5.3. This freestream speed is called a subcritical speed
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(a)

(b)

Figure 5.2: Vibration modes of structure: (a) first mode and (b) second mode.

since the amplitude of the oscillatory behavior of the q1 and q2 responses decay

over time, as can be seen in Figure 5.3(a). This is caused by the presence of just

aerodynamic damping.

The normalized fast Fourier transforms (FFTs) of q1 and q2 superimposed on

the same plot are shown in Figure 5.3(b). The entire response of the aeroelastic

behavior is used to obtain the FFT plots. To have a better view of the frequency

responses around the natural frequencies of the system, the signals ranging between

0 rad/s and 5 rad/s are shown in the FFT plots. It can be seen that a frequency

of 1.412 rad/s can be observed in both the q1 and q2 responses. It should also be

noted that the q1 response has an additional frequency of 0.890 rad/s. Both notable

frequencies are bound between the natural frequencies (equations 5.1 and 5.2) of
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the structure during free oscillation (i.e., V∞ = 0). These natural frequencies are

indicated by the dotted vertical black lines in Figure 5.3(b).

The projected responses in the phase planes are shown in Figure 5.3(c). In

the two projections shown, it can be observed that spirals are converging to an

equilibrium point, typical of a stable focus.

The responses of the aeroelastic behavior of the flat plate for a freestream

speed of 124 ft/s, which is close to the critical speed, are shown in Figure 5.4. It can

be observed that after the transient, an oscillatory behavior of constant amplitude

develops in the responses of q1 and q2.

The normalized FFTs of q1 and q2 superimposed on the same plot are shown

in Figure 5.4(b). It can be seen that both the q1 and q2 responses oscillate at a

frequency of 1.361 rad/s. The observed frequency is bounded between the natural

frequencies of the structure during free oscillation, which is also indicated by the

dotted vertical black lines in Figure 5.4(b).

The projected responses in the phase planes are shown in Figure 5.4(c). In

the two projections shown, it can be observed that there is a tendency to establish

a closed path with constant amplitude. This is illustrated through the presence of

a limit cycle.

The responses of the aeroelastic behavior of the flat plate for a freestream

speed of 140 ft/s, which is called a supercritical speed, are shown in Figure 5.5. This

is because this velocity is past the critical fluttter speed. The amplitudes of the

oscillatory behavior of the responses q1 and q2 increases over time before reaching a

steady state, as can be seen in Figure 5.5(a).
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(a)

(b)

(c)

Figure 5.3: Aeroelastic response at subcritical speed, V∞ = 110 ft/s. (a) Time
responses of q1 and q2, (b) response in the frequency domain, and (c) projections in
the state space.
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(a)

(b)

(c)

Figure 5.4: Aeroelastic response at critical speed, V∞ = 124ft/s. (a) Time responses
of q1 and q2, (b) response in the frequency domain, and (c) projections in the state
space.
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The normalized FFTs of q1 and q2 superimposed on the same plot are shown

in Figure 5.5(b). It can be seen that both the q1 and q2 responses oscillate at a

frequency of 1.309 rad/s. The observed frequency is bounded between the natural

frequencies of the structure during free oscillation, which is also indicated by the

dotted vertical black lines in Figure 5.5(b).

The projected responses in the phase planes are shown in Figure 5.5(c). In the

two projections shown, it can be observed that trajectories are diverging in a spiral

from the initial conditions and will eventually converge towards a closed curve of

constant amplitude.

Fung [67] predicted a critical flutter speed of 162 ft/s with a corresponding

frequency of 1.25 rad/s. Based on the developed aeroelastic computational tool,

a critical flutter speed of 124 ft/s with a corresponding frequency of 1.36 rad/s

was obtained. The predicted critical flutter speed can be observed in the bifurca-

tion diagrams of Figure 5.6 based on responses of q1, in Figure 5.6(a), and q2, in

Figure 5.6(b). After the critical flutter speed (indicated by the red marker), the

amplitudes of the limit cycles start to grow gradually. These numerical approxi-

mations differ from Fung’s predictions by 23.5% for the speed and 8.8% frequency,

respectively. The differences in the predicted critical flutter speed are attributed to

the following:

� Fung [67] considered a plate with an infinite aspect ratio (i.e., plate of infinite

length), while the current model has an aspect ratio of ten;

� Fung [67] utilized a two-dimensional, linear theory based aerodynamic model,
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(a)

(b)

(c)

Figure 5.5: Aeroelastic response at supercritical speed, V∞ = 140 ft/s. (a) Time
responses of q1 and q2, (b) response in the frequency domain, and (c) projections in
the state space.
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while in the current work, the author has utilized the UVLM based aerody-

namic model.

The predicted results match closely with those predicted by Strganac [68], who pre-

dicted a critical flutter speed of 125 ft/s. It should be noted that Strganac also

implemented Fung’s aeroelastic model with a three-dimensional UVLM based aero-

dynamic model. In the present case, the author has used an accelerated aeroelastic

model.

5.2 Joined-Wing SensorCraft Aeroelastic Model

The simulations for the joined-wing aircraft aeroelastic model were run for 180

seconds in real-time. Depending on the freestream speed, the number of timesteps

needed to run each individual simulations ranges from 18,000 to 60,000. The

freestream air density is ρ = 0.1152 kg/m3. This is a reasonable air density for

a surveillance drone, such as the joined-wing SensorCraft, flying at an altitude that

is between 15,000 to 20,000 ft above sea level. Tilmann [2] suggested that a different

joined-wing SensorCraft configuration could cruise at an altitude between 60,000 to

70,000 ft above sea level. The initial conditions were chosen as

qi(0) = 0 q̇i(0) = 0 (5.5)

for i = 1, 2, · · · , 20. The wake in the aerodynamic model is truncated after six chord

lengths or 30 timesteps. More details about the simulation setup for the joined-wing
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(a)

(b)

Figure 5.6: Bifurcation diagram constructed with freestream speed as a control
parameter: (a) q1 versus freestream speed and (b) q2 versus freestream speed.
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aircraft is presented in Appendix C. On an Intel® Xeon® CPU E3-1245 v5 (3.50

GHz) eight-core PC with 16 GB of RAM, each simulation ran from approximately

two to fours days. A majority of the simulations were ran on the Deepthought High-

Performance Computing (HPC) cluster. On the HPC clusters, each simulation ran

from approximately one to two days, essentially cutting the runtime in half. It should

be noted that the simulations of the joined-wing computational aeroelastic model

developed in reference [63], where only half of the geometry for the aerodynamic

mesh ws used, ran on average for about three days on a desktop with a dual-core

processor and support for Hyper-Threading Technology®.

5.2.1 Cases with No Damage

5.2.1.1 Freestream Direction: (0◦, 5◦, 0◦)

In the first case of no damage to the structure, the freestream direction is given

by a yaw angle of 0◦, a pitch angle of 5◦, and a roll angle of 0◦. Over 20 different

simulations were run to determine the critical flutter speed. For this case, the critical

flutter speed was predicted to be 156 m/s. This can be observed in the bifurcation

diagrams of of the modes representing vibrations of the right joined-wing, shown

in Figure 5.7, and the modes representing vibrations of the left joined-wing, shown

in Figure 5.8. After the critical flutter speed (indicated by the red marker), the

amplitudes of the limit cycles start to grow gradually with increase in the freestream

speed. This is an example of emphsupercritical flutter or emphsupercritical Hopf

bifurcation [69,70].
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Figure 5.7: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the right joined-wing of the undamaged structure are shown.
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Figure 5.8: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the left joined-wing of the undamaged structure are shown.
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The results shown in Figures 5.9 and 5.10 correspond to a case where the

freestream speed is 120 m/s, which is below the critical flutter speed. The time re-

sponses of all modes corresponding to the right joined-wing are shown in Figures 5.9

and the time responses of all modes corresponding to the left joined-wing are shown

in 5.10. In the two figures, it can be observed that after a brief transient, all modes

exhibit an oscillatory behavior that decreases in amplitude as time passes. This is

caused by the presence of just aerodynamic damping.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures 5.11 and 5.12, respectively. Stable focus type of

characteristics can be observed in all modes as the spirals converge to an equilibrium

point.

In Figures 5.13 and 5.14, the normalized FFTs of the modes corresponding to

the right joined-wing and the left joined-wing, respectively, are presented. To have

a better view of the frequency responses around the free vibration frequencies of the

system, the signals ranging between 0 Hz and 6.5 Hz are shown in the FFT plots

of joined-wing aircraft. The free vibration frequencies are marked in the figures

by dashed red lines. In all cases, a dominant frequency can be observed from a

composition of two or more frequency components.

The results shown in Figures 5.15 and 5.16 correspond to a case where the

freestream speed is 156 m/s, which is close to the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures 5.15 and the time responses of all modes corresponding to the left joined-wing

are shown in 5.16. In the two figures, it can be observed that after the transient
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Figure 5.9: Time responses of modes corresponding to the right joined-wing for
the case with no structural damage at subcritical speed V∞ = 120 m/se case and
freestream direction (0◦, 5◦, 0◦).
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Figure 5.10: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at subcritical speed V∞ = 120 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure 5.11: At subcritical speed V∞ = 120m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with no structural damage case
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.12: At subcritical speed V∞ = 120 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.13: At subcritical speed V∞ = 120 m/s, responses in the frequency domain
of modes corresponding to the right joined-wing for the case with no structural
damage and freestream direction (0◦, 5◦, 0◦).
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Figure 5.14: At subcritical speed V∞ = 120 m/s, responses in the frequency domain
of modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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response, all modes begin to present an oscillatory behavior of constant amplitude

as time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures 5.17 and 5.18, respectively. In the responses

of the second modes corresponding the right and left joined-wings, limit cycles can

be seen.

In Figures 5.19 and 5.20, the normalized FFTs of the responses of the modes

corresponding to the right joined-wing and the left joined-wing are presented, re-

spectively. The free vibration frequencies are marked in the figures by dashed red

lines. At least two dominant frequencies can be observed in the responses of the

first, third, fourth, seventh, eighth, and tenth modes of each joined-wing.

The results shown in Figures 5.21 and 5.22 correspond to a case where the

freestream speed is 160 m/s, which is over the critical flutter speed. The time re-

sponses of all modes corresponding to the right joined-wing are shown in Figures 5.21

and the time responses of all modes corresponding to the left joined-wing are shown

in 5.22. In the two figures, it can be observed that after the transient response, all

modes exhibit an oscillatory behavior, which initially increases in amplitude as time

passes before reaching a steady state amplitude.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures 5.23 and 5.24, respectively. In the responses

of the about half of the modes corresponding the right and left joined-wings, limit

cycles can be seen.

In Figures 5.25 and 5.26, the normalized FFTs of the responses of the modes
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Figure 5.15: Time responses of modes corresponding to the right joined-wing for
the case with no structural damage at critical speed V∞ = 156 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure 5.16: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at critical speed V∞ = 156 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure 5.17: At critical speed V∞ = 156 m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with no structural damage and
freestream direction (0◦, 5◦, 0◦).
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Figure 5.18: At critical speed V∞ = 156 m/s, projections in phase planes of modes
corresponding to the left joined-wing for the case with no structural damage and
freestream direction (0◦, 5◦, 0◦).
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Figure 5.19: At critical speed V∞ = 156 m/s, responses in the frequency domain of
modes corresponding to the right joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.20: At critical speed V∞ = 156 m/s, responses in the frequency domain of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.21: Time responses of modes corresponding to the right joined-wing for the
case with no structural damage at supercritical speed V∞ = 160 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure 5.22: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at supercritical speed V∞ = 160 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure 5.23: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.24: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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corresponding to the right joined-wing and the left joined-wing, respectively, are pre-

sented. The free vibration frequencies are marked in the figures by dashed red lines.

Except for the first, second, and ninth modes of each joined-wing, a predominant

frequency of 2.615 Hz can be observed.

5.2.1.2 Freestream Direction: (0◦, 10◦, 0◦)

In the second case of no damage to the structure, the freestream direction

is given by a yaw angle of 0◦, a pitch angle of 10◦, and a roll angle of 0◦. Over

20 different simulations were ran to determine the critical flutter speed. For this

case, the critical flutter speed was predicted to be 153 m/s. This can be observed

in the bifurcation diagrams of of the modes representing vibrations of the right

joined-wing, shown in Figure 5.27, and the modes representing vibrations of the

left joined-wing, shown in Figure 5.28. After the critical flutter speed (indicated

by the red marker), the amplitudes of the limit cycles start to grow gradually with

respect to the freestream speed. From the two cases studied, one can infer that the

higher the pitch angle of the freestream direction, the lower the critical flutter speed

would be. The predicted critical flutter speed with freestream direction (0◦, 10◦, 0◦)

is 1.923% lower compared to the predicted critical flutter speed with freestream

direction (0◦, 5◦, 0◦). The results for this case are presented in Appendix D.
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Figure 5.25: At supercritical speed V∞ = 160m/s, responses in the frequency domain
of modes corresponding to the right joined-wing for the case with no structural
damage and freestream direction (0◦, 5◦, 0◦).
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Figure 5.26: At supercritical speed V∞ = 160m/s, responses in the frequency domain
of modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 5◦, 0◦).
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Figure 5.27: Bifurcation diagram constructed with (0◦, 10◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the right joined-wing of the undamaged structure are shown.
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Figure 5.28: Bifurcation diagram constructed with (0◦, 10◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the left joined-wing of the undamaged structure are shown.
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Figure 5.29: Structural beam model with damaged elements.

5.2.2 Cases with Damage

The critical flutter speeds of the joined-wing aircraft are predicted via the

aeroelastic simulations for the two cases with damage in this section. For this work,

two cases of damage are considered: 1) damage leading to reduction in bending

stiffness (10% reduction in the polar moment of inertia, Ip); and 2) damage leading

to reduction in torsion stiffness (10% reduction in the torsion constant, JT ). The

damage is applied at the same location for both cases. As shown in Figure 5.29, the

damaged elements of the structural beam are the right forward wing elements that

share a nodal point with the right aft wing. In this case study, the geometric cross-

sectional properties are alternated in the damaged region. The freestream direction

is given by a yaw angle of 0◦, a pitch angle of 5◦, and a roll angle of 0◦.

5.2.2.1 Damage Case with Loss of Bending Stiffness

In the first case, damage is considered in the two elements of the right forward

wing that are connected to the right aft wing, as shown in Figure 5.29. The damage
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Table 5.4: Cross-sectional properties of section of structural model with 10% bending
damage

A [m2] Iy [m4] Iz [m4] Ip [m4] JT [m4]
1.744× 10−2 3.303× 10−4 7.576× 10−3 7.116× 10−1 1.055× 10−3

Table 5.5: First 20 natural frequencies of structural system with 10% bending dam-
age

Undamaged Damaged
Mode i

Frequency fi [Hz] Frequency fi [Hz]
Percentage Difference

1 0.370 0.370 0.000
2 0.370 0.370 0.000
3 0.868 0.869 0.074
4 0.868 0.869 0.074
5 1.548 1.548 0.003
6 1.548 1.548 0.003
7 2.215 2.217 0.070
8 2.215 2.217 0.070
9 2.530 2.540 0.405
10 2.530 2.540 0.405
11 2.666 2.671 0.171
12 2.666 2.671 0.171
13 3.769 3.790 0.559
14 3.769 3.790 0.559
15 4.583 4.598 0.329
16 4.583 4.598 0.329
17 5.047 5.051 0.087
18 5.047 5.051 0.087
19 6.057 6.082 0.420
20 6.057 6.082 0.420

is represented by decreasing the polar moment of inertia Ip from Table 3.2 by 10%.

This change can be seen in Table 5.4. The adjustment of Ip affected the mass

matrix and caused the natural frequencies to slightly increase, which can be seen in

Table 5.5. The modes appear unchanged from the no damage case which appear in

Chapter 3 and Appendix B. This is to be expected as the magnitude of the damage

is smaller than the wavelengths associated with the modes.

The freestream direction is given by a yaw angle of 0◦, a pitch angle of 5◦, and a
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roll angle of 0◦.Over 20 different simulations were run to determine the critical flutter

speed. For this case, the critical flutter speed was predicted to be 150 m/s. This can

be observed in the bifurcation diagrams of of the modes representing vibrations of

the right joined-wing, shown in Figure 5.30, and the modes representing vibrations of

the left joined-wing, shown in Figure 5.31. After the critical flutter speed (indicated

by the red marker), the amplitudes of the limit cycles start to grow gradually with

increase in the freestream speed. From this case study, with the structural damage

leading to a reduction in the polar moment of inertia, the critical flutter speed is

found to decrease compared to the case with no damage for the chosen freestream

direction (0◦, 5◦, 0◦). The critical flutter speed decreased by 3.846% compared to the

corresponding value for the case with no structural damage. Additional results for

this case are presented in Appendix D.

5.2.2.2 Damage Case with Loss of Torsional Stiffness

In the second case, damage is considered in the two elements of the right

forward wing that are connected to the right aft wing, as shown in Figure 5.29. The

considered damage results in a decrease of the torsion constant JT from Table 3.2

by 10%. This change can be seen in Table 5.6. The adjustment of JT affected the

stiffness matrix and caused the natural frequencies to slightly decrease, which can

be seen in Table 5.7. The modes appear unchanged from those obtained in the case

with no damage; these are shown in Chapter 3 and Appendix B.

The freestream direction is given by a yaw angle of 0◦, a pitch angle of 5◦, and a
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Figure 5.30: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the right joined-wing of the structure with 10% bending damage are shown.
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Figure 5.31: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the left joined-wing of the structure with 10% bending damage are shown.
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Table 5.6: Cross-sectional properties of section of structural model with 10% tor-
sional damage

A [m2] Iy [m4] Iz [m4] Ip [m4] JT [m4]
1.744× 10−2 3.303× 10−4 7.576× 10−3 7.907× 10−1 9.498× 10−4

Table 5.7: First 20 natural frequencies of structural system with 10% torsional
damage

Undamaged Damaged
Mode i

Frequency fi [Hz] Frequency fi [Hz]
Percentage Difference

1 0.370 0.370 -0.023
2 0.370 0.370 -0.023
3 0.868 0.857 -1.309
4 0.868 0.857 -1.309
5 1.548 1.548 -0.007
6 1.548 1.548 -0.007
7 2.215 2.214 -0.069
8 2.215 2.214 -0.069
9 2.530 2.518 -0.457
10 2.530 2.518 -0.457
11 2.666 2.660 -0.248
12 2.666 2.660 -0.248
13 3.769 3.758 -0.308
14 3.769 3.758 -0.308
15 4.583 4.577 -0.120
16 4.583 4.577 -0.120
17 5.047 5.025 -0.435
18 5.047 5.025 -0.435
19 6.057 6.052 -0.076
20 6.057 6.052 -0.076
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roll angle of 0◦.Over 20 different simulations were run to determine the critical flutter

speed. For this case, the critical flutter speed was predicted to be 156 m/s. This can

be observed in the bifurcation diagrams of of the modes representing vibrations of

the right joined-wing, shown in Figure 5.32, and the modes representing vibrations of

the left joined-wing, shown in Figure 5.33. After the critical flutter speed (indicated

by the red marker), the amplitudes of the limit cycles start to grow gradually with

respect to the freestream speed. This is an interesting result given that in the case of

no structural damage and freestream direction (0◦, 5◦, 0◦), the critical flutter speed

was also predicted to be 156m/s. This could mean that in the case of damage with

loss of torsional stiffness, the change in JT may have to be greater than 10% or the

damage has to occur in a different location, to see a difference from the case with

no damage. Additional results for this case are shown in Appendix D.

5.3 Summary

In this chapter, the simulation results obtained with the accelerated com-

putational aeroelastic model are presented. The capability of the computational

aeroelastic model to predict the critical flutter speed was verified with a benchmark

problem from the literature. The critical flutter speed of the joined-wing aircraft for

cases of no structural damage and freestream directions (0◦, 5◦, 0◦) and (0◦, 10◦, 0◦)

are obtained. In addition, the critical flutter speed for the cases of structural bend-

ing and torsional damage were also determined. The results for the no structural

damage cases indicated that in the case of symmetric freestream flow, the higher the
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Figure 5.32: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the right joined-wing of the structure with 10% torsion damage are shown.
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Figure 5.33: Bifurcation diagram constructed with (0◦, 5◦, 0◦) freestream direction
and freestream speed as a control parameter. Responses of modes corresponding to
the left joined-wing of the structure with 10% torsion damage are shown.
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pitch angle, the lower the predicted critical flutter speed would be. With damage

located on the elements of the right forward wing that intersect with the right aft

wing, damage with loss of bending stiffness (reduction in Ip) affects the structure’s

response more than that of damage with loss of torsional stiffness (reduction in JT ).

In the next chapter, the conclusions drawn from this dissertation work and

stated, along with recommendations for future work.
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Chapter 6: Conclusions and Recommendations for Future Work

In this chapter, the concluding remarks of the dissertation are presented. In

Section 6.1, a summary of the accelerated nonlinear aeroelastic model developed in

this dissertation is provided and results are highlighted. The main contributions of

this dissertation are provided in Section 6.2. Finally, some possible future directions

for the dissertation work are discussed in Section 6.3.

6.1 Summary

In this dissertation work, the author estimated the flutter boundary of the

joined-wing aircraft for different structural health conditions and freestream direc-

tions. This is made possible by the construction of an nonlinear aeroelastic com-

putational model. The aeroelastic model is composed of the FE based structural

dynamics and the FMM accelerated UVLM based aerodynamic model. The imple-

mentation of the FMM accelerated UVLM based aerodynamic model is one of the

first efforts of its kind. This includes a numerical tradeoff study, through which

the tuning parameters of the FMM algorithm used in this dissertation have been

examined. The settings for the tuning parameters of the FMM algorithm that pro-

vided the fastest computational speed while keeping the accuracy of the results upto
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a certain standard were determined. Based on the results of the numerical trade-

off study, the accelerated aerodynamic model is found to significantly reduce the

computational time required for the evaluation of velocity fields. Parallelization of

the code further sped up the aerodynamic model computations. Furthermore, the

aerodynamic model can take into account non-symmetric freestream flows.

An FE based structural dynamics model is developed for the joined-wing air-

craft. This model allows for inclusion of damage on the joined-wings. The location

and magnitude of the damage can be specified depending on the type of damage that

needs to be modeled. Rigid-body motions can be taken into account for structural

model through the use of MFCs.

To integrate the FMM accelerated UVLM based aerodynamic model and the

FE based structural dynamics model, a co-simulation framework is utilized. The

aerodynamic mesh and structural grid are coupled via interpolation matrices that are

used to transfer displacements and forces between the two models. The methodology

used for solving the equations of motion of the system ensures that there is always

a reasonable agreement between the aerodynamic mesh and the structural grid.

Based on the results obtained by using the accelerated nonlinear aeroelastic

computational model, some preliminary statements can be made about how the

flutter boundary of the joined-wing aircraft changes due to varying the freestream

direction and consideration of structural damage. The results for the no structural

damage cases indicate that the higher the pitch angle, the lower the predicted critical

flutter speed. Fr the considered cases of structural damage, the joined-wing structure

with damage due to loss of bending stiffness experiences flutter at a lower freestream
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speed compared to the joined-wing structure with damage due to loss of torsional

stiffness. However, this needs further investigations.

The co-simulation framework utilized for this dissertation is broad and can

be used with different aerodynamics and structural dynamics models. The most

important component of the co-simulation approach is integration of the different

models through the exchanging of the states of the models at predefined time in-

stances. Thus, to implement the co-simulation framework for different models, a

new methodology for transferring model information and integrating the equations

of motion will need to be developed. It should be noted that the accelerated aeroe-

lasticity approach developed for this dissertation can be applied to other problems

with different aircraft. Thus, the type of flutter analysis presented in this disserta-

tion is applicable to other UASs operating under subsonic flow conditions.

6.2 Dissertation Contributions

The contributions of this work are as follows:

� An accelerated computational aerodynamic model based on the implemen-

tation of the FMM with the UVLM based nonlinear, unsteady aerodynamic

model has been developed. This is one of the first studies in which the inte-

gration of the FMM and UVLM based aerodynamic model has been explored.

The speedup capabilities of the accelerated aerodynamic model was tested

through a numerical tradeoff study. The computational model was also par-

allelized to take advantage of multi-threading capable technology. Research
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question RQ1 is addressed with this work that is presented in Chapter 2.

� The construction of a joined-wing aircraft FE structural dynamics model that

can take into account rigid-body motions and damage on the joined-wings

has been carried out. To the best of the author’s knowledge, the joined-

wing aircraft computational structural models in the literature do not account

for damage in the structure. This study allows for the investigation of how

damage can affect the flight performance of the joined-wing aircraft. Research

question RQ2 is addressed with this work that is presented in Chapter 3.

� The construction of a nonlinear aeroelastic computational model for the joined-

wing aircraft via the FMM accelerated UVLM based aerodynamic model and

the FE structural model has been carried out for the first time. With the

aforementioned aeroelastic model, a better understanding of the nonlinear

aeroelastic behavior of the joined-wing aircraft can be attained. Studies in

the literature focus more on the static nonlinear aeroelastic behavior of the

joined-wing aircraft as opposed to what has been done in this work. Research

questions RQ3 and RQ4 are addressed with this work that is presented in

Chapters 4 and 5.

6.3 Directions for Future Work

The work presented in this dissertation can be considered a starting point for

the larger objective of gaining a thorough understanding of the nonlinear aeroelastic

behavior of the joined-wing aircraft. Given the current aeroelastic computational
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abilities, more simulations can be run to determine the critical flutter speed for

various freestream directions. This will include cases wherein the freestream flow is

not strictly symmetric (i.e., the yaw and/or roll angles of the freestream direction

are not set to zero). Also, the effect of damage at different locations and of different

magnitudes on the joined-wings can be investigated further. The flutter boundaries

for different joined-wing aircraft configurations can also be determined. Different

structural configurations of the joined-wing aircraft will affect the aeroelasticity of

the system and through that the flutter boundaries can be affected. With this

information, it will be possible to study how structural instability and nonlinear

aeroelasticity can influence the design of the joined-wing aircraft configuration. To

improve the current computational aeroelastic model, the computational structural

dynamics model can be modified to include the geometric stiffness and determine

the buckling loads in the structure.

For real-time decision support purposes, the accelerated nonlinear aeroelastic

simulation developed in this dissertation is not fast enough. The computational

aeroelastic model alone lacks information on current flight conditions needed to re-

late simulations results to the physical system. This could be addressed through the

integration of simulation and sensor data via the DDDAS paradigm. The DDDAS

paradigm can be used to produce data with accuracy comparable to the accelerated

nonlinear aeroelastic simulation and instantaneous information available from sen-

sor data. With this combination, online operation and control of the joined-wing

UAS can be enabled.
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Appendix A: Sample Parallelizable Code

While the code the produces the mode shapes and natural frequencies of the

computational structural model is written in MATLAB, the program for the com-

putational aeroelastic model is written in Fortran. This mainly includes the aerody-

namic model procedures described in Chapter 2. In this appendix, portions of the

program that benefited the most from parallelization are presented.

A.1 Aerodynamic Influence Matrix

Due to the inclusion of the full aerodynamic geometry, the aerodynamic in-

fluence matrix is quite large as shown in equation (2.21). Since the aerodynamic

influence matrix has to be formed during each iteration of every timestep, this pro-

cess is computationally expensive for very refined meshes. Given components n

and m, the following code can be used to obtain the Amn submatrix. It should be

noted that this process needs to be performed 72 times per iteration in a timestep.

Parallelizing this portion of the code helped reduced the computational workload.

1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 ! Submatrix [A_mn] : component m on component n

3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

4 do j = 1, NP_m

5 do i = 1, NP_n

6 A_mn( i, j ) = coeff( XYZ_m, GA_m, XYZCP_m, NORMAL_m, &

7 VS_m, NV_m, LM_m, i, j, NP_n, NP_m, &

8 NN_m, delta )
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9 enddo

10 enddo

A.2 Wake Vortex Shedding

Until the predefined truncation number, the length of the wake grows. At

each timestep, the new vortex segments and circulations need to be calculated. In

the code, this procedure is carried out. NWAKE continues to increase until the

truncation number is reached and so parallelizing the loops is of major benefit to

the program.

1 GAWK_R( 1:7, 1:NVWK ) = 0.00D+00

2 GAWK_L( 1:7, 1:NVWK ) = 0.0D+00

3

4 p = 0

5

6 !!Forward Wing Trailing Edge Wake: Vertical Vortex Segments

7 ! Inward edge

8 do i = 1, NWAKE

9 k = p + i

10 j = (i-1)*NCRTEFW+1

11 m = (i-1)*(NCRTEFW+1)+1

12 n = m+(NCRTEFW+1)

13

14 GAWK_R(1,k) = GRTEFW(j)

15 GAWK_L(1,k) = -1.0D+00*GLTEFW(j)

16

17 GAWK_R(2:4,k) = XYZRTEFW(1:3, m) - XYZRTEFW(1:3, n)

18 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

19

20 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

21 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

22 enddo

23

24 p = NWAKE

25

26 ! Internal vertical columns

27 do j = 1, NCRTEFW-1

28 do i = 1, NWAKE

29 k = p + (j-1)*NWAKE + i

30 l = (i-1)*NCRTEFW+j

31 m = (i-1)*(NCRTEFW+1)+(j+1)

32 n = m+(NCRTEFW+1)

33

34 GAWK_R(1,k) = GRTEFW(l+1) - GRTEFW(l)

35 GAWK_L(1,k) = GLTEFW(l) - GLTEFW(l+1)

36

37 GAWK_R(2:4,k) = XYZRTEFW(1:3, m) - XYZRTEFW(1:3, n)

38 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

39

40 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)
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41 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

42 enddo

43 enddo

44

45 p = p + NWAKE*(NCRTEFW-1)

46

47 ! Outward edge

48 do i = 1, NWAKE

49 k = p + i

50 l = i*NCRTEFW

51 m = i*(NCRTEFW+1)

52 n = m+(NCRTEFW+1)

53

54 GAWK_R(1,k) = -1.0D+00*GRTEFW(l)

55 GAWK_L(1,k) = GLTEFW(l)

56

57 GAWK_R(2:4,k) = XYZRTEFW(1:3, m) - XYZRTEFW(1:3, n)

58 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

59

60 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

61 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

62 enddo

63

64 p = p + NWAKE

65

66 !!Forward Wing Trailing Edge Wake: Horizontal Vortex Segments

67 ! First row (Union of lifting surface and wake)

68 do i = 1, NCRTEFW

69 k = p + i

70 m = i

71 n = m+1

72

73 GAWK_R(1,k) = GRTEFW(i)

74 GAWK_L(1,k) = GLTEFW(i)

75

76 GAWK_R(2:4,k) = XYZRTEFW(1:3, n) - XYZRTEFW(1:3, m)

77 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

78

79 GAWK_R(5:7,k) = XYZRTEFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

80 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

81 enddo

82

83 p = p + NCRTEFW

84

85 ! Internal rows

86 do j = 1, NWAKE-1

87 do i = 1, NCRTEFW

88 k = p + (j-1)*NCRTEFW + i

89 l = (j-1)*NCRTEFW+i

90 m = j*(NCRTEFW+1)+i

91 n = m+1

92

93 GAWK_R(1,k) = GRTEFW(l+NCRTEFW) - GRTEFW(l)

94 GAWK_L(1,k) = GLTEFW(l+NCRTEFW) - GLTEFW(l)

95

96 GAWK_R(2:4,k) = XYZRTEFW(1:3, n) - XYZRTEFW(1:3, m)

97 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

98

99 GAWK_R(5:7,k) = XYZRTEFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

100 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

101 enddo

102 enddo

103

104 p = p + NCRTEFW*(NWAKE-1)

105

106 ! Last row

107 do i = 1, NCRTEFW

108 k = p + i
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109 l = (NWAKE-1)*NCRTEFW+i

110 m = NWAKE*(NCRTEFW+1)+i

111 n = m+1

112

113 GAWK_R(1,k) = -1.0D+00*GRTEFW(l)

114 GAWK_L(1,k) = -1.0D+00*GLTEFW(l)

115

116 GAWK_R(2:4,k) = XYZRTEFW(1:3, n) - XYZRTEFW(1:3, m)

117 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

118

119 GAWK_R(5:7,k) = XYZRTEFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

120 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

121 enddo

122

123 p = p + NCRTEFW

124

125 !!Forward Wing Wing-Tip Wake: Vertical Vortex Segments

126 ! First column

127 do i = 1, NRRWTFW

128 k = p + i

129 m = i

130 n = m+1

131

132 GAWK_R(1,k) = GRWTFW(i)

133 GAWK_L(1,k) = -1.0D+00*GLWTFW(i)

134

135 GAWK_R(2:4,k) = XYZRWTFW(1:3, m) - XYZRWTFW(1:3, n)

136 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

137

138 GAWK_R(5:7,k) = XYZRWTFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

139 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

140 enddo

141

142 p = p + NRRWTFW

143

144 ! Internal columns

145 do j = 1, NWAKE-1

146 do i = 1, NRRWTFW

147 k = p + (j-1)*NRRWTFW + i

148 l = (j-1)*NRRWTFW+i

149 m = j*(NRRWTFW+1)+i

150 n = m+1

151

152 GAWK_R(1,k) = GRWTFW(l+NRRWTFW) - GRWTFW(l)

153 GAWK_L(1,k) = GLWTFW(l) - GLWTFW(l+NRRWTFW)

154

155 GAWK_R(2:4,k) = XYZRWTFW(1:3, m) - XYZRWTFW(1:3, n)

156 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

157

158 GAWK_R(5:7,k) = XYZRWTFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

159 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

160 enddo

161 enddo

162

163 p = p + NRRWTFW*(NWAKE-1)

164

165 ! Last column

166 do i = 1, NRRWTFW

167 k = p + i

168 l = (NWAKE-1)*NRRWTFW+i

169 m = NWAKE*(NRRWTFW+1)+i

170 n = m+1

171

172 GAWK_R(1,k) = -1.0D+00*GRWTFW(l)

173 GAWK_L(1,k) = GLWTFW(l)

174

175 GAWK_R(2:4,k) = XYZRWTFW(1:3, m) - XYZRWTFW(1:3, n)

176 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)
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177

178 GAWK_R(5:7,k) = XYZRWTFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

179 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

180 enddo

181

182 p = p + NRRWTFW

183

184 !!Forward Wing Wing-Tip Wake: Horizontal Vortex Segments

185 ! Top row

186 do i = 1, NWAKE

187 k = p + i

188 l = (i-1)*NRRWTFW+1

189 m = (i-1)*(NRRWTFW+1)+1

190 n = m+(NRRWTFW+1)

191

192 GAWK_R(1,k) = GRWTFW(l)

193 GAWK_L(1,k) = GLWTFW(l)

194

195 GAWK_R(2:4,k) = XYZRWTFW(1:3, n) - XYZRWTFW(1:3, m)

196 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

197

198 GAWK_R(5:7,k) = XYZRWTFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

199 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

200 enddo

201

202 p = p + NWAKE

203

204 ! Internal rows

205 do j = 1, NRRWTFW-1

206 do i = 1, NWAKE

207 k = p + (j-1)*NWAKE + i

208 l = (i-1)*NRRWTFW+j

209 m = (i-1)*(NRRWTFW+1)+(j+1)

210 n = m+(NRRWTFW+1)

211

212 GAWK_R(1,k) = GRWTFW(l+1) - GRWTFW(l)

213 GAWK_L(1,k) = GLWTFW(l+1) - GLWTFW(l)

214

215 GAWK_R(2:4,k) = XYZRWTFW(1:3, n) - XYZRWTFW(1:3, m)

216 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

217

218 GAWK_R(5:7,k) = XYZRWTFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

219 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

220 enddo

221 enddo

222

223 p = p + NWAKE*(NRRWTFW-1)

224

225 ! Last row

226 do i = 1, NWAKE

227 k = p + i

228 l = i*NRRWTFW

229 m = i*(NRRWTFW+1)

230 n = m+(NRRWTFW+1)

231

232 GAWK_R(1,k) = -1.0D+00*GRWTFW(l)

233 GAWK_L(1,k) = -1.0D+00*GLWTFW(l)

234

235 GAWK_R(2:4,k) = XYZRWTFW(1:3, n) - XYZRWTFW(1:3, m)

236 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

237

238 GAWK_R(5:7,k) = XYZRWTFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

239 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

240 enddo

241

242 p = p + NWAKE

243

244 !!Forward Wing Corner Row Wake: Vertical Vortex Segment
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245 ! Union of FW and wake

246 k = p + 1

247 m = NRZ1*NCFW

248

249 GAWK_R(1,k) = GRCRFW(1)

250 GAWK_L(1,k) = -1.0D+00*GLCRFW(1)

251

252 GAWK_R(2:4,k) = XYZFW_R(1:3, LMFW_R(2, m)) - XYZFW_R(1:3, LMFW_R(3, m))

253 GAWK_L(2:4,k) = XYZFW_L(1:3, LMFW_L(1, m)) - XYZFW_L(1:3, LMFW_L(4, m))

254

255 GAWK_R(5:7,k) = XYZFW_R(1:3, LMFW_R(3, m)) + 0.5D+00*GAWK_R(2:4,k)

256 GAWK_L(5:7,k) = XYZFW_L(1:3, LMFW_L(4, m)) + 0.5D+00*GAWK_L(2:4,k)

257

258 p = k

259

260 ! Union of FW trailing edge and corner row

261 do i = 1, NWAKE

262 k = p + i

263 m = i*(NCRTEFW+1)

264 n = m+(NCRTEFW+1)

265

266 GAWK_R(1,k) = GRCRFW(i)

267 GAWK_L(1,k) = -1.0D+00*GLCRFW(i)

268

269 GAWK_R(2:4,k) = XYZRTEFW(1:3, m) - XYZRTEFW(1:3, n)

270 GAWK_L(2:4,k) = XYZLTEFW(1:3, m) - XYZLTEFW(1:3, n)

271

272 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

273 GAWK_L(5:7,k) = XYZLTEFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

274 enddo

275

276 p = p + NWAKE

277

278 !!Forward Wing Corner Row Wake: Horizontal Vortex Segment

279 ! Union of FW and wake

280 k = p + 1

281 m = NRZ1*NCFW

282

283 GAWK_R(1,k) = GRCRFW(1)

284 GAWK_L(1,k) = GLCRFW(1)

285

286 GAWK_R(2:4,k) = XYZFW_R(1:3, LMFW_R(3, m)) - XYZFW_R(1:3, LMFW_R(4, m))

287 GAWK_L(2:4,k) = XYZFW_L(1:3, LMFW_L(3, m)) - XYZFW_L(1:3, LMFW_L(4, m))

288

289 GAWK_R(5:7,k) = XYZFW_R(1:3, LMFW_R(4, m)) + 0.5D+00*GAWK_R(2:4,k)

290 GAWK_L(5:7,k) = XYZFW_L(1:3, LMFW_L(4, m)) + 0.5D+00*GAWK_L(2:4,k)

291

292 p = k

293

294 ! Union of FW wing-tip and corner row

295 do i = 1, NWAKE

296 k = p + i

297 m = i*(NRRWTFW+1)

298 n = m+(NRRWTFW+1)

299

300 GAWK_R(1,k) = GRCRFW(i)

301 GAWK_L(1,k) = GLCRFW(i)

302

303 GAWK_R(2:4,k) = XYZRWTFW(1:3, n) - XYZRWTFW(1:3, m)

304 GAWK_L(2:4,k) = XYZLWTFW(1:3, m) - XYZLWTFW(1:3, n)

305

306 GAWK_R(5:7,k) = XYZRWTFW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

307 GAWK_L(5:7,k) = XYZLWTFW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

308 enddo

309

310 p = p + NWAKE

311

312 !!Forward Wing Corner Row Wake: Diagonal Vortex Segment
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313 ! Internal rows

314 do i = 1, NWAKE-1

315 k = p + i

316 m = (i+1)*(NRRWTFW+1)

317 n = (i+1)*(NCRTEFW+1)

318

319 GAWK_R(1,k) = GRCRFW(i+1) - GRCRFW(i)

320 GAWK_L(1,k) = GLCRFW(i+1) - GLCRFW(i)

321

322 GAWK_R(2:4,k) = XYZRWTFW(1:3, m) - XYZRTEFW(1:3, n)

323 GAWK_L(2:4,k) = XYZLTEFW(1:3, n) - XYZLWTFW(1:3, m)

324

325 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

326 GAWK_L(5:7,k) = XYZLWTFW(1:3, m) + 0.5D+00*GAWK_L(2:4,k)

327 enddo

328

329 p = p + (NWAKE-1)

330

331 ! Last row

332 k = p + 1

333 m = (NWAKE+1)*(NRRWTFW+1)

334 n = (NWAKE+1)*(NCRTEFW+1)

335

336 GAWK_R(1,k) = -1.0D+00*GRCRFW(NWAKE)

337 GAWK_L(1,k) = -1.0D+00*GLCRFW(NWAKE)

338

339 GAWK_R(2:4,k) = XYZRWTFW(1:3, m) - XYZRTEFW(1:3, n)

340 GAWK_L(2:4,k) = XYZLTEFW(1:3, n) - XYZLWTFW(1:3, m)

341

342 GAWK_R(5:7,k) = XYZRTEFW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

343 GAWK_L(5:7,k) = XYZLWTFW(1:3, m) + 0.5D+00*GAWK_L(2:4,k)

344

345 p = k

346

347 !!Aft Wing Trailing Edge: Vertical Segments

348 ! Inward edge

349 do i = 1, NWAKE

350 k = p + i

351 j = (i-1)*NCRTEAW+1

352 m = (i-1)*(NCRTEAW+1)+1

353 n = m+(NCRTEAW+1)

354

355 GAWK_R(1,k) = GRTEAW(j)

356 GAWK_L(1,k) = -1.0D+00*GLTEAW(j)

357

358 GAWK_R(2:4,k) = XYZRTEAW(1:3, m) - XYZRTEAW(1:3, n)

359 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

360

361 GAWK_R(5:7,k) = XYZRTEAW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

362 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

363 enddo

364

365 p = p + NWAKE

366

367 ! Internal columns

368 do j = 1, NCRTEAW-1

369 do i = 1, NWAKE

370 k = p + (j-1)*NWAKE + i

371 l = (i-1)*NCRTEAW+j

372 m = (i-1)*(NCRTEAW+1)+(j+1)

373 n = m+(NCRTEAW+1)

374

375 GAWK_R(1,k) = GRTEAW(l+1) - GRTEAW(l)

376 GAWK_L(1,k) = GLTEAW(l) - GLTEAW(l+1)

377

378 GAWK_R(2:4,k) = XYZRTEAW(1:3, m) - XYZRTEAW(1:3, n)

379 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

380
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381 GAWK_R(5:7,k) = XYZRTEAW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

382 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

383 enddo

384 enddo

385

386 p = p + NWAKE*(NCRTEAW-1)

387

388 ! Outward edge

389 do i = 1, NWAKE

390 k = p + i

391 j = i*NCRTEAW

392 m = i*(NCRTEAW+1)

393 n = m+(NCRTEAW+1)

394

395 GAWK_R(1,k) = -1.0D+00*GRTEAW(j)

396 GAWK_L(1,k) = GLTEAW(j)

397

398 GAWK_R(2:4,k) = XYZRTEAW(1:3, m) - XYZRTEAW(1:3, n)

399 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

400

401 GAWK_R(5:7,k) = XYZRTEAW(1:3, n) + 0.5D+00*GAWK_R(2:4,k)

402 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

403 enddo

404

405 p = p + NWAKE

406

407 !!Aft Wing Trailing Edge: Horizontal Segments

408 ! First row (Union of lifting surface and wake)

409 do i = 1, NCRTEAW

410 k = p + i

411 m = i

412 n = m+1

413

414 GAWK_R(1,k) = GRTEAW(i)

415 GAWK_L(1,k) = GLTEAW(i)

416

417 GAWK_R(2:4,k) = XYZRTEAW(1:3, n) - XYZRTEAW(1:3, m)

418 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

419

420 GAWK_R(5:7,k) = XYZRTEAW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

421 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

422 enddo

423

424 p = p + NCRTEAW

425

426 ! Internal rows

427 do j = 1, NWAKE-1

428 do i = 1, NCRTEAW

429 k = p + (j-1)*NCRTEAW + i

430 l = (j-1)*NCRTEAW+i

431 m = j*(NCRTEAW+1)+i

432 n = m+1

433

434 GAWK_R(1,k) = GRTEAW(l+NCRTEAW) - GRTEAW(l)

435 GAWK_L(1,k) = GLTEAW(l+NCRTEAW) - GLTEAW(l)

436

437 GAWK_R(2:4,k) = XYZRTEAW(1:3, n) - XYZRTEAW(1:3, m)

438 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

439

440 GAWK_R(5:7,k) = XYZRTEAW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

441 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

442 enddo

443 enddo

444

445 p = p + NCRTEAW*(NWAKE-1)

446

447 ! Last row

448 do i = 1, NCRTEAW
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449 k = p + i

450 l = (NWAKE-1)*NCRTEAW+i

451 m = NWAKE*(NCRTEAW+1)+i

452 n = m+1

453

454 GAWK_R(1,k) = -1.0D+00*GRTEAW(l)

455 GAWK_L(1,k) = -1.0D+00*GLTEAW(l)

456

457 GAWK_R(2:4,k) = XYZRTEAW(1:3, n) - XYZRTEAW(1:3, m)

458 GAWK_L(2:4,k) = XYZLTEAW(1:3, m) - XYZLTEAW(1:3, n)

459

460 GAWK_R(5:7,k) = XYZRTEAW(1:3, m) + 0.5D+00*GAWK_R(2:4,k)

461 GAWK_L(5:7,k) = XYZLTEAW(1:3, n) + 0.5D+00*GAWK_L(2:4,k)

462 enddo

A.3 Evaluation of Velocity

When the FMM is not active, the code below is used to evaluate the ve-

locity fields. As the wake grows, both the number of field points NREC and the

number vortex segments NV increase. Distributing the computational workload of

the evaluation of the velocity fields among several threads significantly reduces the

computational time required for a program run.

1 VEL( 1:3, 1:NREC ) = 0.0D+00

2

3 V ( 1:3, 1:NREC, 1:NV ) = 0.0D+00

4

5 do j = 1, NREC

6

7 do i = 1, NV

8

9 GG = dipolestrengths( i )

10

11 w( 1:3 ) = dipolemoments( 1:3, i )

12

13 u( 1:3, 1 ) = sources( 1:3, i ) - 0.5D+00*w( 1:3 )

14 u( 1:3, 2 ) = sources( 1:3, i ) + 0.5D+00*w( 1:3 )

15

16 r( 1:3, 1 ) = receivers( 1:3, j ) - u( 1:3, 1 )

17 r( 1:3, 2 ) = receivers( 1:3, j ) - u( 1:3, 2 )

18

19 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 ! Implementation of Biot-Savart

21 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22

23 R1 = r( 1:3, 1 )

24 R2 = r( 1:3, 2 )

25

26 normR1 = dsqrt( dot_product( R1,R1 ) )

27 normR2 = dsqrt( dot_product( R2,R2 ) )

28
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29 dotR1R2 = dot_product( R1,R2 )

30

31 lo = dot_product( w( 1:3 ), w( 1:3 ) )

32

33 dum1 = normR1 * normR2 + dotR1R2

34

35 !V( 1:3, j, i ) = 0.0D+00

36

37 if ( dabs( dum1 ) .gt. ( lo * CUTOFF ) ) then

38

39 crossR1R2(1) = R1(2) * R2(3) - R1(3) * R2(2)

40 crossR1R2(2) = R1(3) * R2(1) - R1(1) * R2(3)

41 crossR1R2(3) = R1(1) * R2(2) - R1(2) * R2(1)

42

43 dum = ( 1/normR1 + 1/normR2 ) / dum1

44

45 V( 1:3, j, i ) = GG * dum * crossR1R2( 1:3 )

46

47 endif

48

49 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50

51 enddo

52

53 enddo

54

55 VEL( 1:3, 1:NREC ) = sum( V, dim = 3 )
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Appendix B: Modes from Computational Structural Dynamics Model

The last 16 of the 20 modes of the undamaged structure are shown in Fig-

ures B.1 through B.16. This structure had been earlier discussed in Chapter 3.

The fifth through eighth modes (Figures B.1-B.4) appear to be in purely bend-

ing motions of the forward wings. The ninth and tenth modes (Figures B.5 and B.6)

appear to be in a mixture of bending and torsion motions of the forward wing and

slight bending motion of the aft wing. The eleventh and twelfth modes (Figures B.7

and B.8) appear to be mainly in bending motion with a low torsion motion in the

forward wing. The thirteenth and fourteenth modes (Figures B.9 and B.10) show

similar behavior to the ninth and tenth modes but with some torsion of the aft wing

included. The fifteenth and sixteenth modes (Figures B.11 and B.12) appear to be a

mixture of bending and torsion motions of the forward wing with low bending of the

aft wing. The seventeenth and eighteenth modes (Figures B.13 and B.14) appear

to be in torsion motion of the forward and aft wings. The nineteenth and twentieth

modes (Figures B.15 and B.16) appear to involve of bending and torsion motions of

the forward wing.
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Figure B.1: Fifth mode corresponding to natural frequency f5 = 1.548 Hz.

Figure B.2: Sixth mode corresponding to natural frequency f6 = 1.548 Hz.

Figure B.3: Seventh mode corresponding to natural frequency f7 = 2.215 Hz.
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Figure B.4: Eighth mode corresponding to natural frequency f8 = 2.215 Hz.

Figure B.5: Ninth mode corresponding to natural frequency f9 = 2.530 Hz.

Figure B.6: Tenth mode corresponding to natural frequency f10 = 2.530 Hz.

183



Figure B.7: Eleventh mode corresponding to natural frequency f11 = 2.666 Hz.

Figure B.8: Twelfth mode corresponding to natural frequency f12 = 2.666 Hz.

Figure B.9: Thirteenth mode corresponding to natural frequency f13 = 3.769 Hz.
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Figure B.10: Fourteenth mode corresponding to natural frequency f14 = 3.769 Hz.

Figure B.11: Fifteenth mode corresponding to natural frequency f15 = 4.583 Hz.

Figure B.12: Sixteenth mode corresponding to natural frequency f16 = 4.583 Hz.

185



Figure B.13: Seventeenth mode corresponding to natural frequency f17 = 5.047 Hz.

Figure B.14: Eighteenth mode corresponding to natural frequency f18 = 5.047 Hz.

Figure B.15: Nineteenth mode corresponding to natural frequency f19 = 6.057 Hz.
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Figure B.16: Twentieth mode corresponding to natural frequency f20 = 6.057 Hz.
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Appendix C: Additional Information on Joined-Wing Aircraft Sim-

ulations

In this appendix, more details are provided on why the settings used in joined-

wing aircraft aeroelasticity simulations are adequate for determining the critical

flutter speed of the joined-wing aircraft.

C.1 Sensitivity Analysis: Number of Elements in Structural Model

In this section, additional results for a joined-wing aircraft model with a higher

number of elements are presented. The structural model used in this section has 146

elements constructed from 147 nodal points, which can be seen in Figure C.1. The

left and right forward wing beams contain 45 elements made from 46 nodal points

each. The left and right aft wing beams contain 28 elements made from 29 nodal

points each. The structural model used in this section has four times the number of

elements compared to the structural model used in the main body of the dissertation.

This implies that the individual length of the elements used in the main body of the

dissertation is four times the individual length of the elements used in this section.

It is recalled that the structural model used in main body of the dissertation that

36 elements constructed from 37 nodal points, as can be seen in Figure 3.7. The
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Figure C.1: Structural beam model with 146 elements.

results in this section are used to show that the aeroelasticity simulation results

converge and do not change when smaller element sizes are considered. The joined-

wing aircraft aeroelasticity simulation were run for 180 seconds in physical time.

The freestream air density is ρ = 0.1152 kg/m3. The initial conditions were chosen

as

qi(0) = 0 q̇i(0) = 0 (C.1)

for i = 1, 2, · · · , 20. The freestream speed is set to 156.00 m/s with freestream di-

rection (0◦, 5◦, 0◦). The wake in the aerodynamic model is truncated after six chord

lengths or 30 timesteps.

The time responses of all modes corresponding to the right joined-wing are

shown in Figure C.2 and the time responses of all modes corresponding to the

left joined-wing are shown in Figure C.3. The responses in blue correspond to the

structure with 36 elements and the responses in red correspond to the structure with

146 elements. The modal displacements corresponding to the right joined-wing of
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the two structures are nearly identical but with slight phase shifts in a few of modes,

as can be discerned in modes 6, 9, and 10 of Figure C.2. The modal displacements

corresponding to the left joined-wing of the two structures are nearly identical in

magnitude but with opposite signs, as shown in modes 1 through 5 and modes 7

through 9 of Figure C.3. This sign change is acceptable, as the modal amplitudes

are arbitrary to a scaling constant.

In Figures C.4 and C.5, the normalized FFTs of the modes corresponding to

the right joined-wing and the left joined-wing, respectively, are presented. The free

vibration frequencies are marked in the figures by dashed black lines. The phase

shifts observed in displacement plots can be observed in the normalized FFTs plots.

It can be concluded that when the number of elements in the structural model

is increased, the profiles of the responses do not significantly change. It would seem

that with more structural elements, the simulations will need to run for a longer

period of time to see oscillations in the response reduce to a similar level comparing

to the responses of the structure with fewer elements. A slight phase shifts in the

responses can also be observed from the normalized FFTs plots.

It should also be noted that the average length of an element in the structure

used in the main body of the dissertation is 3.273 m. The smallest wavelength of

each mode is 3.201 m. Since the smallest wavelength of each mode is smaller than

the average length of an element, it can be concluded that the chosen element size

used in the main body of the dissertation is adequate to capture the highest mode.
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Figure C.2: Time responses of modes corresponding to the right joined-wing for the
structure with 36 elements (in blue) and the structure with 146 elements (in red).
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Figure C.3: Time responses of modes corresponding to the left joined-wing for the
structure with 36 elements (in blue) and the structure with 146 elements (in red).
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Figure C.4: Responses in the frequency domain of modes corresponding to the right
joined-wing for the structure with 36 elements (in blue) and the structure with 146
elements (in red).
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Figure C.5: Responses in the frequency domain of modes corresponding to the left
joined-wing for the structure with 36 elements (in blue) and the structure with 146
elements (in red).
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Table C.1: Freestream air density with corresponding altitude.

Freestream air density [
kg
m3 ] Altitude above sea level [ft]

ρ1 0.4135000 10,000
ρ2 0.1152000 15,000-20,000
ρ3 0.0184100 30,000
ρ4 0.0003097 60,000

C.2 Effects of Freestream Air Density

In this section, additional results for a joined-wing aircraft model with different

freestream air densities are presented. The structural model used in this section has

36 elements constructed from 37 nodal points, which can be seen in Figure 3.7.

The results in this section are used to show how the air density of the freestream

affects the aeroelasticity simulation results. The joined-wing aircraft aeroelasticity

simulation were run for 180 seconds in physical time. The initial conditions were

chosen as

qi(0) = 0 q̇i(0) = 0 (C.2)

for i = 1, 2, · · · , 20. The freestream speed is set to 156.00 m/s with freestream di-

rection (0◦, 5◦, 0◦). The wake in the aerodynamic model is truncated after six chord

lengths or 30 timesteps. The varying freestream air densities along with the cor-

responding altitudes used for these simulation runs are shown in Table C.1. The

freestream air densities ρ3 and ρ4 correspond to cases of the joined-wing aircraft

flying at a higher cruising altitude. ρ1 corresponds to the case of the joined-wing

aircraft in the landing or take-off stage of flight.
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The modal displacements for simulation runs with the three lowest freestream

air densities corresponding to the right and left joined-wing are shown in Figures C.6

and C.7, respectively. The responses in black correspond to freestream air density

ρ2, the responses in blue correspond to freestream air density ρ3, and the responses

in red correspond to freestream air density ρ4. It can be observed that responses

corresponding to higher freestream air densities have large oscillations at the tran-

sient stage. In the case with freestream air density ρ1, the simulation comes to a halt

before 10,000 timesteps (or a little over 32 seconds in physical time) as the solution

fails converge past this point. This is an indication that the responses of the joined-

wing aircraft at higher freestream air densities become unstable. In Figures C.8

and C.9, the responses corresponding to freestream air density ρ1 (in green) can be

observed to dwarf the responses observed at the lowest freestream air density. It

can be concluded that the joined-wing aircraft aeroelastic model developed for this

dissertation is more suited for determining the response of the aircraft during the

cruising stage of flight.

C.3 Nontrivial Initial Conditions

In this section, additional results for a joined-wing aircraft model with different

initial conditions are presented. In this dissertation, a trivial response has been

used as an initial condition as this is the equilibrium point in the pre-flutter case.

After the flutter instability, the system response is attracted to a limit cycle. The

numerical results suggest supercritical flutter [69, 70] and one does not expect the
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Figure C.6: Time responses of modes corresponding to the right joined-wing for
freestream air densities: ρ2 (in black), ρ3 (in blue), and ρ4 (in red).
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Figure C.7: Time responses of modes corresponding to the left joined-wing for
freestream air densities: ρ2 (in black), ρ3 (in blue), and ρ4 (in red).
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Figure C.8: Time responses of modes corresponding to the right joined-wing for
freestream air densities: ρ1 (in green), ρ2 (in black), ρ3 (in blue), and ρ4 (in red).
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Figure C.9: Time responses of modes corresponding to the left joined-wing for
freestream air densities: ρ1 (in green), ρ2 (in black), ρ3 (in blue), and ρ4 (in red).
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response initiated from other initial conditions to go to a different response.

The structural model used in this section has 36 elements constructed from

37 nodal points, which can be seen in Figure 3.7. The results in this section are

used to show how the air density of the freestream affect the aeroelasticity simu-

lation results. The joined-wing aircraft aeroelasticity simulation were run for 180

seconds in physical time. The freestream speed is set to 156.00 m/s with freestream

direction (0◦, 5◦, 0◦). The freestream air density is ρ = 0.1152 kg/m3. The wake in

the aerodynamic model is truncated after six chord lengths or 30 timesteps. The

nontrivial initial conditions for the right joined-wing were chosen as

q1(0) = 1.0× 1010 q8(0) = 1. (C.3)

and the nontrivial initial conditions for the left joined-wing were chosen as

q3(0) = 1.0× 10−1 q11(0) = 3. (C.4)

The projected responses (of the last 5 seconds of physical time) in the phase

planes of the right joined-wing and the left joined-wing are shown in Figures C.10

and C.11, respectively. The limit cycles of the different cases have nearly identical

shapes for all modes corresponding the right and left joined-wings. In the case of the

modes corresponding to the left joined-wing, the sizes of the limit cycle oscillations

(LCOs) of the nontrivial initial conditions are smaller compared to those obtained

for the trivial initial conditions. Further numerical work needs to be carried out to
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resolve this.
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Figure C.10: Projections in phase planes of modes corresponding to the left joined-
wing with trivial initial conditions (in black) and nontrivial initial conditions (in
red).
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Figure C.11: Projections in phase planes of modes corresponding to the right joined-
wing with trivial initial conditions (in black) and nontrivial initial conditions (in
red).
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Appendix D: Additional Results on Joined-Wing Aircraft Aeroelas-

tic Responses

The aeroelastic responses of the joined-wing aircraft for last three cases dis-

cussed in Chapter 5 are presented in this Appendix. This includes the results of the

no structural damage case for freestream direction (0◦, 10◦, 0◦) and the cases with

structural bending and torsional damage for freestream direction (0◦, 5◦, 0◦).

D.1 Case with No Damage: Freestream Direction (0◦, 10◦, 0◦)

The results shown in Figures D.1 and D.2 correspond to a case where the

freestream speed is 135 m/s, which is below the critical flutter speed. The time re-

sponses of all modes corresponding to the right joined-wing are shown in Figures D.1

and the time responses of all modes corresponding to the left joined-wing are shown

in D.2. In the two figures, it can be observed that after a brief transient, all modes

exhibit an oscillatory behavior that decreases in amplitude as time passes. This is

caused by the presence of just aerodynamic damping.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.3 and D.4, respectively. Stable focus type of

characteristics can be observed in all modes as the spirals converge to an equilibrium
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Figure D.1: Time responses of modes corresponding to the right joined-wing for the
case with no structural damage at subcritical speed V∞ = 135 m/s and freestream
direction (0◦, 10◦, 0◦).
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Figure D.2: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at subcritical speed V∞ = 135 m/s and freestream
direction (0◦, 10◦, 0◦).
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point.

In Figures D.5 and D.6, the normalized FFTs of the modes corresponding to

the right joined-wing and the left joined-wing, respectively, are presented. The free

vibration frequencies are marked in the figures by dashed red lines. In all cases, a

dominant frequency can be observed from a composition of two or more frequency

signals of different frequencies.

The results shown in Figures D.7 and D.8 correspond to a case where the

freestream speed is 153 m/s, which is close to the critical flutter speed. The time re-

sponses of all modes corresponding to the right joined-wing are shown in Figures D.7

and the time responses of all modes corresponding to the left joined-wing are shown

in D.8. In the two figures, it can be observed that after the transient response, all

modes begin to exhibit an oscillatory behavior of constant amplitude as time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.9 and D.10, respectively. In the responses

of the second modes corresponding the right and left joined-wings, limit cycles can

be seen.

In Figures D.11 and D.12, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. At least two

dominant frequencies can be observed from the first, third, fourth, seventh, eighth,

and tenth modes of each joined-wing.

The results shown in Figures D.13 and D.14 correspond to a case where the

freestream speed is 160 m/s, which is over the critical flutter speed. The time
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Figure D.3: At subcritical speed V∞ = 135m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with no structural damage and
freestream direction (0◦, 10◦, 0◦).
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Figure D.4: At subcritical speed V∞ = 135m/s, projections in phase planes of modes
corresponding to the left joined-wing for the case with no structural damage and
freestream direction (0◦, 10◦, 0◦).
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Figure D.5: At subcritical speed V∞ = 135 m/s, responses in the frequency domain
of modes corresponding to the right joined-wing for the case with no structural
damage and freestream direction (0◦, 10◦, 0◦).
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Figure D.6: At subcritical speed V∞ = 135m/s, responses in the frequency domain of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 10◦, 0◦).
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Figure D.7: Time responses of modes corresponding to the right joined-wing for
the case with no structural damage at critical speed V∞ = 153 m/s and freestream
direction (0◦, 10◦, 0◦).
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Figure D.8: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at critical speed V∞ = 153 m/s and freestream
direction (0◦, 10◦, 0◦).
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Figure D.9: At critical speed V∞ = 153 m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with no structural damage and
freestream direction (0◦, 10◦, 0◦).
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Figure D.10: At critical speed V∞ = 153 m/s, projections in phase planes of modes
corresponding to the left joined-wing for the case with no structural damage and
freestream direction (0◦, 10◦, 0◦).
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Figure D.11: At critical speed V∞ = 153 m/s, responses in the frequency domain of
modes corresponding to the right joined-wing for the case with no structural damage
and freestream direction (0◦, 10◦, 0◦).
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Figure D.12: At critical speed V∞ = 153 m/s, responses in the frequency domain of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 10◦, 0◦).
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responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.13 and the time responses of all modes corresponding to the left joined-wing

are shown in D.14. In the two figures, it can be observed that after the transient

response, all modes exhibit an oscillatory behavior that increases in amplitude as

time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.15 and D.16, respectively. In the responses

of the about half of the modes corresponding the right and left joined-wings, limit

cycles can be seen.

In Figures D.17 and D.18, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. Except for

the first, second, and ninth modes of each joined-wing, a predominant frequency of

2.617 Hz can be observed.

D.2 Case with Bending Damage: Freestream Direction (0◦, 5◦, 0◦)

The results shown in Figures D.19 and D.20 correspond to a case where the

freestream speed is 140 m/s, which is below the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.19 and the time responses of all modes corresponding to the left joined-wing

are shown in D.20. In the two figures, it can be observed that after a brief transient,

all modes exhibit an oscillatory behavior that decreases in amplitude as time passes.
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Figure D.13: Time responses of modes corresponding to the right joined-wing for the
case with no structural damage at supercritical speed V∞ = 160 m/s and freestream
direction (0◦, 10◦, 0◦).
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Figure D.14: Time responses of modes corresponding to the left joined-wing for the
case with no structural damage at supercritical speed V∞ = 160 m/s and freestream
direction (0◦, 10◦, 0◦).
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Figure D.15: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with no structural damage
and freestream direction (0◦, 10◦, 0◦).
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Figure D.16: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with no structural damage
and freestream direction (0◦, 10◦, 0◦).
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Figure D.17: At supercritical speed V∞ = 160 m/s, responses in the frequency do-
main of modes corresponding to the right joined-wing for the case with no structural
damage and freestream direction (0◦, 10◦, 0◦).
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Figure D.18: At supercritical speed V∞ = 160 m/s, responses in the frequency
domain of modes corresponding to the left joined-wing for the case with no structural
damage and freestream direction (0◦, 10◦, 0◦).
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This is caused by the presence of just aerodynamic damping.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.21 and D.22, respectively. Stable focus

type of characteristics can be observed in all modes as the spirals converge to an

equilibrium point.

In Figures D.23 and D.24, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. In all cases,

a dominant frequency can be observed from a composition of two or more signals of

different frequencies.

The results shown in Figures D.25 and D.26 correspond to a case where the

freestream speed is 150 m/s, which is close to the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.25 and the time responses of all modes corresponding to the left joined-wing

are shown in D.26. In the two figures, it can be observed that after the transient

response, all modes begin to exhibit an oscillatory behavior of constant amplitude

as time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.27 and D.28, respectively. In the responses

of the second modes corresponding the right and left joined-wings, limit cycles can

be seen.

In Figures D.29 and D.30, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The
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Figure D.19: Time responses of modes corresponding to the right joined-wing for
the case with structural bending damage at subcritical speed V∞ = 140 m/s and
freestream direction (0◦, 5◦, 0◦).

227



0 50 100 150

-100

-50

0

0 50 100 150
0

0.5

1

0 50 100 150

-4

-2

0

0 50 100 150

-3
-2
-1
0

0 50 100 150

0

1

2

0 50 100 150

0

1

2

0 50 100 150
0

0.1

0.2

0 50 100 150

-0.2

-0.1

0

0 50 100 150

0

0.02

0.04

0 50 100 150
0

0.2

Figure D.20: Time responses of modes corresponding to the left joined-wing for
the case with structural bending damage at subcritical speed V∞ = 140 m/s and
freestream direction (0◦, 5◦, 0◦).
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Figure D.21: At subcritical speed V∞ = 140 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.22: At subcritical speed V∞ = 140 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.23: At subcritical speed V∞ = 140m/s, responses in the frequency domain
of modes corresponding to the right joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.24: At subcritical speed V∞ = 140m/s, responses in the frequency domain
of modes corresponding to the left joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.25: Time responses of modes corresponding to the right joined-wing for the
case with structural bending damage at critical speed V∞ = 150 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure D.26: Time responses of modes corresponding to the left joined-wing for the
case with structural bending damage at critical speed V∞ = 150 m/s and freestream
direction (0◦, 5◦, 0◦).
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Figure D.27: At critical speed V∞ = 150 m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with structural bending damage
and freestream direction (0◦, 5◦, 0◦).
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Figure D.28: At critical speed V∞ = 150 m/s, projections in phase planes of modes
corresponding to the left joined-wing for the case with structural bending damage
and freestream direction (0◦, 5◦, 0◦).
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free vibration frequencies are marked in the figures by dashed red lines. At least two

dominant frequencies can be observed from the first, third, fourth, seventh, eighth,

and tenth modes of each joined-wing.

The results shown in Figures D.31 and D.32 correspond to a case where the

freestream speed is 160 m/s, which is over the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.31 and the time responses of all modes corresponding to the left joined-wing

are shown in D.32. In the two figures, it can be observed that after the transient

response, all modes exhibit an oscillatory behavior that increases in amplitude as

time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.33 and D.34, respectively. In the responses

of the about half of the modes corresponding the right and left joined-wings, limit

cycles can be seen.

In Figures D.35 and D.36, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. For all the

modes of each joined-wing, a predominant frequency of 2.628 Hz can be observed.

D.3 Case with Torsional Damage: Freestream Direction (0◦, 5◦, 0◦)

The results shown in Figures D.37 and D.38 correspond to a case where the

freestream speed is 130 m/s, which is below the critical flutter speed. The time
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Figure D.29: At critical speed V∞ = 150 m/s, responses in the frequency domain of
modes corresponding to the right joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.30: At critical speed V∞ = 150 m/s, responses in the frequency domain
of modes corresponding to the left joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.31: Time responses of modes corresponding to the right joined-wing for
the case with structural bending damage at supercritical speed V∞ = 160 m/s and
freestream direction (0◦, 5◦, 0◦).
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Figure D.32: Time responses of modes corresponding to the left joined-wing for
the case with structural bending damage at supercritical speed V∞ = 160 m/s and
freestream direction (0◦, 5◦, 0◦).
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Figure D.33: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.34: At supercritical speed V∞ = 160 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with structural bending
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.35: At supercritical speed V∞ = 160 m/s, responses in the frequency
domain of modes corresponding to the right joined-wing for the case with structural
bending damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.36: At supercritical speed V∞ = 160 m/s, responses in the frequency
domain of modes corresponding to the left joined-wing for the case with structural
bending damage and freestream direction (0◦, 5◦, 0◦).
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responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.37 and the time responses of all modes corresponding to the left joined-wing

are shown in D.38. In the two figures, it can be observed that after a brief transient,

all modes exhibit an oscillatory behavior that decreases in amplitude as time passes.

This is caused by the presence of just aerodynamic damping.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.39 and D.40, respectively. Stable focus

type of characteristics can be observed in all modes as the spirals converge to an

equilibrium point.

In Figures D.41 and D.42, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. In all cases,

a dominant frequency can be observed from a composition of two or more signals of

different frequencies.

The results shown in Figures D.43 and D.44 correspond to a case where the

freestream speed is 156 m/s, which is close to the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.43 and the time responses of all modes corresponding to the left joined-wing

are shown in D.44. In the two figures, it can be observed that after the transient

response, all modes begin to exhibit an oscillatory behavior of constant amplitude

as time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.45 and D.46, respectively. In the responses
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Figure D.37: Time responses of modes corresponding to the right joined-wing for
the case with structural torsional damage at subcritical speed V∞ = 130 m/s and
freestream direction (0◦, 5◦, 0◦).

247



0 50 100

-100

-50

0

0 50 100
0

0.5

1

0 50 100
-4

-2

0

0 50 100
-3

-2

-1

0

0 50 100

0

1

2

0 50 100

0

1

2

0 50 100
0

0.1

0.2

0 50 100

-0.2

-0.1

0

0 50 100

-0.01
0

0.01
0.02

0 50 100
0

0.1

0.2

Figure D.38: Time responses of modes corresponding to the left joined-wing for
the case with structural torsional damage at subcritical speed V∞ = 130 m/s and
freestream direction (0◦, 5◦, 0◦).
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Figure D.39: At subcritical speed V∞ = 130 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.40: At subcritical speed V∞ = 130 m/s, projections in phase planes of
modes corresponding to the left joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.41: At subcritical speed V∞ = 130m/s, responses in the frequency domain
of modes corresponding to the right joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.42: At subcritical speed V∞ = 130m/s, responses in the frequency domain
of modes corresponding to the left joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.43: Time responses of modes corresponding to the right joined-wing for the
case with structural torsional damage at critical speed V∞ = 156m/s and freestream
direction (0◦, 5◦, 0◦).

253



0 50 100
-200

-100

0

0 50 100
0

1

2

0 50 100
-6
-4
-2
0
2

0 50 100
-4

-2

0

0 50 100

0

1

2

3

0 50 100

0

1

2

0 50 100
0

0.2

0 50 100
-0.4

-0.2

0

0 50 100

-0.02
0

0.02
0.04

0 50 100
0

0.2

0.4

Figure D.44: Time responses of modes corresponding to the left joined-wing for the
case with structural torsional damage at critical speed, V∞ = 156m/s and freestream
direction (0◦, 5◦, 0◦).
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of the second modes corresponding the right and left joined-wings, limit cycles can

be seen.

In Figures D.47 and D.48, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. At least two

dominant frequencies can be observed from the first, third, fourth, seventh, eighth,

and tenth modes of each joined-wing.

The results shown in Figures D.49 and D.50 correspond to a case where the

freestream speed is 165 m/s, which is over the critical flutter speed. The time

responses of all modes corresponding to the right joined-wing are shown in Fig-

ures D.49 and the time responses of all modes corresponding to the left joined-wing

are shown in D.50. In the two figures, it can be observed that after the transient

response, all modes exhibit an oscillatory behavior that increases in amplitude as

time passes.

The projected responses in the phase planes of the right joined-wing and the

left joined-wing are shown in Figures D.51 and D.52, respectively. In the responses

of the about half of the modes corresponding the right and left joined-wings, limit

cycles can be seen.

In Figures D.53 and D.54, the normalized FFTs of the modes corresponding

to the right joined-wing and the left joined-wing, respectively, are presented. The

free vibration frequencies are marked in the figures by dashed red lines. Except for

the first and second modes of each joined-wing, a predominant frequency of 2.600

Hz can be observed.
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Figure D.45: At critical speed V∞ = 156 m/s, projections in phase planes of modes
corresponding to the right joined-wing for the case with structural torsional damage
and freestream direction (0◦, 5◦, 0◦).
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Figure D.46: At critical speed V∞ = 156 m/s, projections in phase planes of modes
corresponding to the left joined-wing for the case with structural torsional damage
and freestream direction (0◦, 5◦, 0◦).
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Figure D.47: At critical speed V∞ = 156 m/s, responses in the frequency domain of
modes corresponding to the right joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).

258



Figure D.48: At critical speed V∞ = 156 m/s, responses in the frequency domain of
modes corresponding to the left joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.49: Time responses of modes corresponding to the right joined-wing for
the case with structural torsional damage at supercritical speed V∞ = 165 m/s oand
freestream direction (0◦, 5◦, 0◦).
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Figure D.50: Time responses of modes corresponding to the left joined-wing for
the case with structural torsional damage at supercritical speed V∞ = 165 m/s and
freestream direction (0◦, 5◦, 0◦).
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Figure D.51: At supercritical speed V∞ = 165 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.52: At supercritical speed V∞ = 165 m/s, projections in phase planes of
modes corresponding to the right joined-wing for the case with structural torsional
damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.53: At supercritical speed V∞ = 165 m/s, responses in the frequency
domain of modes corresponding to the right joined-wing for the case with structural
torsional damage and freestream direction (0◦, 5◦, 0◦).
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Figure D.54: At supercritical speed V∞ = 165 m/s, responses in the frequency
domain of modes corresponding to the left joined-wing for the case with structural
torsional damage and freestream direction (0◦, 5◦, 0◦).
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