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Chapter 1: Introduction

1.1 Background and Motivation

The United States Energy Information Administration (EIA) estimates that

by the year 2050, the energy use for Air Conditioning (AC) systems will grow faster

than any other end use in the building sector (commercial and residential) [1]. In

the year 2020, the building sector consumed 37.7 quadrillion BTU (quads), thereby

accounting for roughly 39% of the energy consumption of the United States [1]. A

further breakup of the 37.7 quads revealed that Heating, Ventilation, Air Condi-

tioning and Refrigeration (HVAC&R) systems accounted for 60% of the residential

and 47% of the commercial energy intake respectively. At the heart of every AC

system is the Vapor Compression refrigeration Cycle (VCC). In addition, food and

beverage processing establishments, pharmaceutical industries and scores of other

industrial establishments have a deep need for temperature and humidity control.

This need is satisfied again by the VCC. In short, the importance of this cycle cannot

be exaggerated.

Since, air-to-refrigerant Heat eXchangers (HX) make up two of the four key

components of the VCC, they largely dictate the performance and cost of HVACR

systems. Westphalen et al. [2] highlighted the impact heat transfer enhancement
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(htc) on the air-side of a condenser has on energy consumption. The authors showed

that, doubling the air-side heat transfer coefficient could reduce cycle energy con-

sumption by 10-15%, consequently decreasing the building energy consumption by

4.6-6.9%. Thus, it is clear that the need of the hour is an improvement in HX

performance either through novel product design, or via rigorous mathematical op-

timization.

A-priori knowledge of favorable regions (performance wise) within the design

space is highly sought after in areas of design optimization and system integration.

The pool of prospective designs is quite significant to begin with; but when these

designs are required to be chosen in conjunction with other system components,

the number of combinations increase considerably and consequently the duration of

HX simulations is compounded. In this view, it is indisputable that there exists

a requirement for accurate yet quick prediction models. Such tools are therefore

of great prominence during design comparisons, and more so with ever-increasing

design complexity.

The complexity in HX analysis stems from the interactions between fluid flow

and heat transfer processes along with the effects of complex geometry. This de-

mands a high level of detail that is usually synonymous with physics based HX

models. In order to make these models more convenient to solve, reasonable but

restrictive assumptions are made [3].

Rather than attempting to understand the laws of physics as is the case with

conventional techniques [4], [5], Machine Learning (ML) models are capable of deter-

mining the causal relationship between the inputs (features) and outputs (targets)
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pertaining to a HX simulation [6]. These models are characterized by simple com-

putational steps, accompanied by a large number of repeated computational cycles.

Despite their black-box nature, ML models have been widely used for their

speed and accuracy to predict the performance of complex systems [7]. Keeping

in mind our intention of obtaining rapid but accurate HX designs for a given set

of system requirements, it is certainly attractive to implement ML models in our

performance predictions of HXs. In addition to predicting steady-state systems with

a high level of precision [8–10], ML models have yielded satisfactory results when

simulating transient systems [11]. Sen and Yang [12] conducted tests that dealt with

dynamic heating and cooling of air across a tube-fin HX (TFHX). They developed an

Artificial Neural Network (ANN), that was able to predict the outlet temperatures of

water and air in close agreement to experimental results. Furthermore, an aggressive

advancement of these techniques makes them all the more viable in the solving of

complex thermal problems.

That being said, ML techniques can hardly be considered a panacea to resolve

the existing challenges in the field of HVACR. An in-depth, physical understand-

ing of the phenomena that is being statistically modeled, will forever be relevant

since reliable ML models deeply rely on being fed with the appropriate mechanistic

parameters. Moreover, a sound theoretical understanding is a means of critically

analyzing the ML model output. What may sometimes be numerically correct may

have no practical meaning whatsoever. The following are disadvantages inherent to

ML techniques:
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(i) Extensive data required to develop accurate models.

(ii) Training and tuning of ML models can be time-consuming, and in some cases

the procedure involves trial-and-error.

(iii) Extra attention is required to prevent ML models from overfitting to the train-

ing data.

(iv) ML models cannot guarantee reliable performance beyond the training data

used [13], i.e., they cannot be extrapolated.
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Chapter 2: Literature Review

The role of Machine Learning (ML) in heat transfer studies has been on the

rise for over the past two and a half decades. A result of vigorous advances in

artificial intelligence and computer hardware, is a set of ML algorithms which are

being developed to efficiently map process inputs to output(s). Prior to thoroughly

reviewing the impact of ML in the field of heat transfer, it would be fitting to briefly

review conventional Heat eXchanger (HX) modeling techniques so as to provide the

necessary background for the utilization of ML not as an alternative, but as an

ally to conventional procedures in the solution of heat transfer challenges prevalent

today.

2.1 Heat Exchanger Modeling Techniques

Air-to-refrigerant HXs have been actively investigated for several years now.

The aim during the modeling and design optimization phase is to come up with a

prototype that is 90% correct [14]. Thus, apart from the performance enhancement

of HXs, there lies a strong emphasis on the improvement of their modeling, simula-

tion, and optimization. To accurately predict HX performance, several simulation

approaches have been formulated. Based on their accuracy and computational time,

5



they can be broadly classified as lumped parameter approach, moving boundary ap-

proach, tube-by-tube approach, and segment-by-segment approach 2.1. At the heart

of each technique is a fundamental heat transfer calculation method that is exercised

on a control volume of varying resolution. The calculation methods used widely are:

(i) Logarithmic Mean (UA-LMTD) or Arithmetic Mean Temperature Difference

(UA-AMTD).

(ii) Effectiveness Number of Transfer Units (ε-NTU).

(iii) Conservation of Energy.

Figure 2.1: Control Volumes Based on Modeling Approach [15]
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2.1.1 Lumped Modeling Approaches

The lumped modeling approach is by far the simplest among the four ap-

proaches mentioned above. Several researchers have employed the lumped approach

in their HX analyses [16–20].

Parise [16] developed a vapor compression heat pump simulation model by

employing simple lumped models for the condenser and evaporator. The overall

conductances (UA) of the HX are treated as constant input parameters based on

the arithmetic overall temperature differences of the fluids participating in the heat

exchange. It is worth mentioning that the values of UA do account for the two-

phase region in addition to single-phase. Jin and Spitler [19] presented a vapor

compression heat pump model in which the evaporator and the condenser were

modeled using the ε-NTU method on a lumped basis. Constant UA values for the

evaporator and condenser were derived from manufacturer’s data. The measured

condenser and evaporator values of Q were on average 12% and 17% lower than

the model-predicted rates respectively. A compact HX model which adopted the

lumped approach was developed by Zhou et al. [20]. The model is capable of cal-

culating Q and ∆P whose values were then validated using experimental data. The

results show that the RMAE for Q and ∆P is 7.6% and 2.9% respectively. While

the predicting capabilities of the model seem attractive, care should be taken before

utilizing this approach since the correlations of j and f factors are required to be of

a certain functional form. Additionally, dehumidification is not considered in this

approach.
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Though computationally inexpensive, the lumped approach possesses the fol-

lowing inherent drawbacks:

(i) Phase transition and local thermophysical properties are not considered which

may result in inaccurate predictions.

(ii) The predetermined empirical parameters used to represent overall heat transfer

coefficients in the two-phase region require careful tuning.

(iii) Additionally, these parameters rely on manufacturer provided HX performance

data which may not always be present.

2.1.2 Moving Boundary Modeling Approaches

The moving boundary modeling approach takes into consideration refriger-

ation phase change as part of its analysis in addition to dehumidification on the

air-side. In this approach, the HX is divided into single-phase and two-phase zones.

Once such a discretization has been made, the lumped approach is exercised on each

zone. The following are works based on this approach [21–26].

Braun et al. [21] devised effectiveness models for cooling coils through the

introduction of air saturation specific heat. In their modeling approach, they ana-

lyze the case of a combined wet and dry surface through a bifurcation of the HX

outer surface area into wet and dry zones. Abdelaziz et al. [24] adopted a moving

boundary HX modeling approach to obtain accurate but fast models as part of their

transient simulations of household refrigeration systems. The result of the authors’

8



efforts was a highly generalized model suitable for both condensers and evaporators.

Bell [25] used the moving boundary approach in the modeling of TFHXs. The ε-

NTU method was applied to each zone, wherein both fluids were assumed to have

constant specific heat values. Average heat transfer coefficients on the air and refrig-

erant sides were considered. Qiao et al. [26] presented an advanced HX model based

on the moving boundary approach to dynamically simulate VCCs. The model was

used to predict the occurrences during the start-up of an R410A flash tank vapor

injection cycle. A close agreement between experimental data and modeling results

were noticed. Furthermore, the results of this dynamic boundary model were com-

pared against that of the finite volume (segment-by-segment) model. Apart from

prediction accuracy being upheld, the former was able to outpace the latter by a

factor of 3.

The moving boundary approach exhibits a superiority in prediction accuracy

over the lumped approach. At the same time, computationally speaking, it is rela-

tively inexpensive. The approach however, has the following drawbacks:

(i) The temperature difference between the participating fluids are taken to be

constant over an entire single or two-phase zone, which may lead to inaccura-

cies in predictions.

(ii) Air or refrigerant flow maldistribution cannot be accounted for.

(iii) From a system level transient simulation point of view, the moving boundary

approach cannot be used in cases which include zero incoming flow [26]. In

such cases a segment-by-segment approach should be adopted.
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2.1.3 Tube-by-Tube Modeling Approaches

Post the initial consideration that each HX tube is a separate control volume,

the lumped approach is applied to each tube to solve for HX performance [27–31].

This approach is capable of handling refrigerant-side and air-side 1D (transverse to

the air flow) maldistributions in addition to accounting for refrigerant phase change.

Domanski [27], [28] presented a simulation model for a plate fin air-to-refrigerant

HXs. The heat transfer was calculated using the UA-LMTD method for each tube,

analyzed separately in a sequential manner. Refrigerant distribution is determined

by a sequential analysis of each split point and associated branches. Air distribu-

tion data is needed at discrete points on the coil face to handle 1D nonuniform air

distribution. Finally, tubes in which phase change occurs can be identified and the

fraction of tube length associated with each phase can be calculated. Liu et al. [30]

developed a general steady state model of TFHXs based on graph theory. With the

aid of a directed graph and graph-based search algorithms, the model is capable of

simulating complex refrigerant circuitry in addition to heat conduction through fins.

On a control volume level (tube in this case) where energy balance equations are

exercised, the authors’ have presented a computational algorithm that is iterative

in nature. The refrigerant ∆P is calculated by solving the momentum equation at

each control volume in a sequential manner along the flow path. The model predicts

experimental Q and ∆P values within deviations of ±10% and ±20% respectively.

Richardson [31] conducted modeling of a cross flow TFHX (condenser) by represent-

ing the entire length of the tube as a single segment followed by the application of
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lumped ∆P and heat transfer correlations. The ε-NTU method was implemented to

determine heat transfer for a given control volume. Heat transfer calculations of the

different phases were conducted separately with the help of correction factors. In

order to improve the simulation efficiency, multiple tube passes are combined into

a single pass with arrangements being made to offset errors arising out of such a

simplification.

While the tube-by-tube approach does away with the major disadvantage of

the moving boundary approach, one shortcoming is:

(i) 2D air maldistribution cannot be handled.

2.1.4 Segment-by-Segment Modeling Approaches

A significant difference in air profile exists along the length of a HX tube

[32], [33]. This necessitates a finer control volume approach resulting in widespread

application of the segment-by-segment method [4, 34–40]. Similar to the previous

approach this approach too subdivides a segment when phase transition occurs.

Rossi [34] developed a heat pump simulation model named ACMODEL. To en-

sure the convergence of a solver within a tight tolerance, the segment-by-segment ap-

proach was adopted. Heat transfer calculations were done using the ε-NTU method.

A distributed simulation model for steady-state prediction of evaporator coils with

complex circuitry was developed by Liang et al. [35]. The UA-LMTD method was

made use of to calculate the performance of individual control volumes. Jiang et

al. [4] developed a general-purpose simulation and design tool for air-to-refrigerant
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HXs. They adopted a segment-by-segment modeling approach enabling an efficient

handling of 2D air maldistribution as well as heterogeneous refrigerant flow pat-

terns within the HX. A junction tube connectivity matrix was defined to account

for complex refrigerant circuitry. The ε-NTU method was employed at each seg-

ment for heat transfer calculations, and further subdividing of segments was carried

out in cases of phase transition. Singh et al. [39] formulated an air-to-refrigerant

fin-tube HX that is capable of accounting for tube-to-tube heat conduction. This

model was based on the solution methodology of Jiang et al [4] and includes two

approaches to solve for the tube-to-tube conduction. The UA-LMTD method was

exercised on individual control volumes. Both approaches were validated against

experimental data and were found to be in close agreement. In a recent work by

Sarfraz et al. [40], a fin discretized model was developed which eliminates the need to

iteratively compute tube wall temperature resulting in a reduction in computational

cost.

2.2 Approximation Assisted Modeling (AAM)

As was detailed in the previous section, most of today’s engineering (read as

HX) analyses consists of running complex physics-based models via computer pro-

grams. Despite continuous improvements in computing power, the cost of running

many such codes (simulations) is significantly high. In addition, the process of query

and response is a trial and error approach to engineering design since the true func-

tional relationship of the input and output vectors may never truly be understood.
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Thus, optimal solutions may never be arrived at in a timely manner [41].

To address the above concerns, AAM has been advocated by [41,42]. Approx-

imations of the mechanistic models are constructed, resulting in metamodels that

are more efficient to run and at the same time which attempt to understand the

functional relationship between the design variables and responses. AAM comprises

the following steps:

(i) Choosing an experimental design to generate data, e.g. Latin Hypercube,

Random Selection etc. Data could be subsequently generated either experi-

mentally or in a synthetic fashion.

(ii) Metamodeling, or fitting an appropriate model to the data generated previ-

ously, e.g. Linear Regression (LR), Artificial Neural Network (ANN) etc. This

step is termed “Model Training”.

(iii) Verification of model performance through random-sample evaluation or cross-

validation, where performance is indicated by error metrics such as Root Mean

Square Error (RMSE), Standard Deviation (σ), Relative Mean Absolute Error

(RMAE), Maximum Absolute Percentage Error (MAPE) etc. This step is

termed “Model Testing”.

13



2.3 Machine Learning Methods Adopted

One such powerful AAM technique is ML which has been the topic of intense

research over the last two decades or so [7]. ML techniques have been widely used

for their speed and accuracy to predict performances of complex systems across

various disciplines. The non-linear relationship between the cause-and-effect factors

of a HX can be correlated with minimal error using certain ML methods [6]. ML

approaches can be broadly categorized as shown in fig. 2.2

Figure 2.2: Machine Learning Types

This thesis focuses on the implementation of supervised ML techniques, namely,

Linear Regression (LR), Support Vector Regression (SVR), and Artificial Neural

Networks (ANN); particularly Multi-Layer Feed Forward Neural Networks (MLFFN).
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The reasons for their use are:

(i) These techniques have been relatively well understood [43]

(ii) Availability of extensive open-source libraries to develop models based on these

techniques [44], [45].

(iii) Several researchers have successfully utilized these techniques in their predic-

tion of heat transfer phenomena. This is elaborated in section 2.4.

2.3.1 Linear Regression

Linear models describe a continuous response variable as a function of one or

more predictor variables. Linear regression is a statistical tool used to create a linear

model by assuming that the regression function E(Y|X) is linear in the inputs X.

Suppose XT = (X1, X2, ....Xp) is an input vector and we want to predict a

real-valued scalar output Y. The form taken by the linear regression model is

Y = f(X) = β0 +

p∑
j=1

Xjβj (2.1)

where,

βj, = unknown coefficients, j = 0...p.

Since we are involved in the use of supervised ML techniques, we typically

possess a training dataset of N designs (observations); {(x1, y1)...(xn, yn)}. Each

observation xi = (X1i, X2i...Xpi)
T is a vector of p features for the ith case, while its

corresponding response is yi. The aim of linear regression is to estimate the values
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of the coefficients βj from the training data so as to minimize the Residual Sum

of Squares (RSS). This estimation method known as the Ordinary Least Squares

(OLS) method happens to be the most popular estimation method [43] and can be

represented as:

RSS(β) = min{
N∑
i=1

(yi − f(xi))
2} = min

β
{
N∑
i=1

(yi − β0 −
p∑
j=1

Xijβj)
2} (2.2)

Fig. 2.3 illustrates the OLS method in an Rp+1 dimensional space occupied by

the data pairs (X,Y). The residuals are represented by the vertical distances between

the true points (red markers) and the function f(X) (denoted by the plane).

Figure 2.3: Ordinary Least Squares Estimation [43]

Oftentimes, predictions from the OLS estimate have high prediction variance.

Prediction accuracy can be improved by choosing a subset of our predictors or more
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preferably, employing shrinkage methods. Shrinkage methods such as Ridge Regres-

sion, Lasso Regression and Least Angle Regression are preferred to subset selection

methods since they penalize or “shrink” the size of the regression coefficients, sac-

rificing high bias for low variance. On the other hand, subset selection is a discrete

process, which in turn may introduce high prediction variability.

2.3.1.1 Ridge Regression

Ridge regression (RR) is a technique used to estimate the regression coeffi-

cients. Its objective is to minimize a penalized RSS instead of just the RSS as

is done in OLS. The penalty term imposed here is an L2 norm of the regression

coefficients multiplied by a constant shrinkage term λ. RR can be expressed as:

Ridge(β̂ridge) = min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

β2
j } (2.3)

Larger the value of λ, greater will be the shrinkage. Geometrically, RR for p = 2

is illustrated in fig. 2.4.

The ellipses represent contours of the OLS estimate with the innermost point

having the least RSS. The circumference of the blue circle represents the penalty

term imposed. During RR we attempt to simultaneously minimize sizes of the ellipse

as well as the circle. Thus, the ridge estimate is the point of intersection between

the two.
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Figure 2.4: Ridge Estimate vs Ordinary Least Squares Estimate [43]

2.3.1.2 Lasso Regression

Like the RR, the Lasso Regression is a shrinkage method too. The main

difference lies in the penalization of the coefficients. Lasso does so with an L1

norm multiplied by a constant shrinkage term λ instead. As a result, some of the

coefficients can be exactly shrunk to zero. Lasso regression can be expressed as:

Lasso(β̂lasso) = min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

|βj|} (2.4)

Geometrically, Lasso for p = 2 is illustrated in fig. 2.5. In this case the diamond

represents the penalty term imposed, and the ellipses represent contours of the

OLS estimate. For the same reasons as in RR, the lasso estimate is the point of

intersection between the two.

18



Figure 2.5: Lasso Estimate vs Ordinary Least Squares Estimate [43]

2.3.2 Support Vector Regression

Support Vector Regression (SVR) is a particular implementation of Support

Vector Machines (SVM) which were initially used for carrying out classification

tasks. For regression purposes the ε-SVR [46] is commonly employed.

2.3.2.1 Linear Regression Using SVR

Suppose XT = (X1, X2, ....Xp) is the vector of p inputs, the goal of this method-

ology is to find an approximation function f(X) that will have at most a deviation

of ε from each of the true target values. In other words, errors within the threshold

“ε” are not considered. At the same time, the function f(X) must be as flat as

possible [47], i.e. we seek a small β which represents the model coefficients.
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Consider a training data of N designs (observations); {(x1, y1)...(xn, yn)}.

For the linear case:

f(X) = β ·X + β0 (2.5)

where β = [β1, β2...βn] is the vector of model coefficients.

In order to achieve both the aforementioned goals, we formulate this as a convex

optimization problem:

min
1

2
||β||2

subject to yi − β · xi − β0 ≤ ε

β · xi + β0 − yi ≤ ε

(2.6)

A key assumption in the above formulation is that there exists a function f(X) that

approximates all the input pairs (x1, y1) with an ε precision. However, we may want

to allow for some slackness to cope with constraints that have been violated. Thus,

we introduce slack variables ξ and ξ∗. The formulation now becomes:

min
1

2
||β||2 + C

N∑
i=1

(ξi + ξ∗i )

subject to yi − β · xi − β0 ≤ ε+ ξi

β · xi + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(2.7)

where C is a constant term which determines the trade-off between the flatness of

the function and the extent to which deviations greater than ε are tolerated.
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Fig. 2.6 illustrates the problem graphically. Only those points that fall outside the

shaded region contribute to the cost function. This contribution is equal to ξi − |ε|.

Figure 2.6: SVR Representation [47]

The problem formulation in 2.7 can be expressed as a Lagrangian function as:

L(β, β0, ξi, ξ
∗
i ) =

1

2
||β||2 + C

N∑
i=1

(ξi + ξ∗i )−
N∑
i=1

αi(ε+ ξi − yi + β · xi + β0)

−
N∑
i=1

α∗i (ε+ ξ∗i + yi − β · xi − β0)−
N∑
i=1

(ηiξi + η∗i ξ
∗
i )

(2.8)

The necessary optimality conditions for the above problem are as follows:

∂L

∂β
= β−

N∑
i=1

(αi − α∗i )xi = 0 (2.9)

∂L

∂β0
=

N∑
i=1

(α∗i − αi) = 0 (2.10)

∂L

∂ξi
= C − αi − ηi = 0 (2.11)
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∂L

∂ξ∗i
= C − α∗i − η∗i = 0 (2.12)

Expressing the problem in 2.7 in its dual form, we get:

max −1

2

N∑
i=1

(αi − α∗i )(αj − α∗j )(xi · xj)

− ε
N∑
i=1

(αi − α∗i ) +
N∑
i=1

yi(αi − α∗i )

subject to
N∑
i=1

(αi − α∗i ) = 0

(αi, α
∗
i ) ∈ [0, C]

(2.13)

Rewriting equation 2.9 as:

β =
N∑
i=1

(αi − α∗i )xi (2.14)

Finally, equation 2.5 can be rewritten as:

f(X) =
N∑
i=1

(αi − α∗i )(xi ·X) + β0 (2.15)

2.3.2.2 Nonlinear Regression Using SVR

As a result of expressing the SVR function in its dual form, we can approximate

nonlinear functions by replacing the dot product of the training vectors with a

nonlinear transformation of the input vectors. This transformation is carried out

via kernel functions and is represented as k(xi ·X), where xi and X are input vectors.

Table 2.1 lists some of the commonly used kernel functions which can conveniently
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Table 2.1: Kernel Functions

Linear k(xi ·X) = (xi
TX)

Polynomial k(xi ·X) = (xi ·X)n

Gaussian k(xi ·X) = exp(− ||xi−X||2
2σ2 )

Sigmoid k(xi ·X) = tanh(α(xi ·X) + γ)

be substituted into equation 2.15 as:

f(X) =
N∑
i=1

(αi − α∗i )k(xi ·X) + β0 (2.16)

In this manner SVR can approximate nonlinear functions while simultaneously main-

taining the simplicity and elegance of linear SVR approximations. Following are the

salient features of the SVR

(i) The regression coefficients can be expressed as a linear combination of the

training data.

(ii) The optimization problem is a quadratic programming problem with linear

constraints and a positive definite Hessian matrix. This ensures a unique

global optimum solution.

(iii) Though it is widely acknowledged that SVR provides a means for addressing

the curse of dimensionality, its training time complexity increases rapidly with

the training dataset size.
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2.3.3 Multi-Layer Feed Forward Neural Network

Multi-Layer Feed Forward Neural Network (MLFFN) or Multi-Layer Percep-

trons are a sub-category of Artificial Neural Networks (ANN), used to conduct

regression as well as classification tasks. MLFFN are massively parallel systems

with a large number of simple interconnected processors called neurons. Multiple

layers of neurons with nonlinear activation or transfer functions enable the network

to learn the linear and/or nonlinear relationship between the inputs and output(s).

A typical MLFFN is as shown in fig. 2.7.

Figure 2.7: Typical Multi-Layer Feed Forward Neural Network [48]

It typically consists of neurons aligned along an input layer, one or more hid-

den layers and an output layer. Fully connected networks are among the most

widely used MLFFN [11] wherein each neuron belonging to a layer is fully inter-

connected with each neuron present in the succeeding layer via connectors that

represent the weights of the ANN. While the number of neurons or perceptrons in

the input and output layers depend upon the number of independent and dependent

variables involved in our problem, the number of hidden layers and the number of
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neurons in each hidden layer is dependent upon the complexity of the phenomenon

we are attempting to model, and is usually arrived at through trial and error. The

computation occurring within a neuron is depicted in fig. 2.8.

Figure 2.8: Information Processing within Neuron

Starting from the first hidden layer, for a particular set of coefficients (weights

and biases), the neuron first calculates the weighted sum of its inputs followed by a

transformation of the sum through a chosen activation function 2.2. Barring percep-

trons contained in the final layer, the output from each perceptron in each hidden

layer(s) is fed as input to the neurons in the subsequent layer. In this manner, the

network is traversed in the forward direction, resulting in an estimated value of the

target variable. Rarely is it observed that an untrained network produces satisfac-

tory estimates of the output in one forward run. Therefore, an effective training or

learning procedure is needed. Back-Propagation (BP) is one such learning method

where the weights and bias terms are corrected layer by layer in the reverse direc-

tion. This training procedure is carried out until the optimizer yields results that

satisfy a termination criterion.
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Table 2.2: Activation Functions

Linear f(x) = x

Sigmoid f(x) = 1
1+exp(−x)

Tan Hyperbolic
(tanh)

f(x) = 2
1+exp(−2x) − 1

ReLU f(x) =


0 for x < 0

x for x ≥ 0

ELU f(x) =


α(exp(x− 1)) for x < 0

x for x ≥ 0

Typically in an ANN, a non-deterministic algorithm such as Stochastic Gra-

dient Descent (SGD) or its variants are used to find the optimal weights and bias

terms. The weights are initialized to random values (usually between 0 and 1) and

the network is traversed in the forward direction yielding an estimate of the output.

Depending upon the value of the cost function (e.g., RMSE for regression and cross-

entropy for classification), the coefficients are adjusted via BP so as to minimize

the loss. Training the network by performing one forward run and one BP on the

entire dataset is termed an epoch. Generally, several epochs are needed to obtain

a capable MLFFN model. For best results, it is necessary that the input training
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data be normalized.

Additionally, hyperparameter tuning is another necessity in achieving precise

prediction models. The hyperparameters generally associated with an MLFFN are:

(i) Number of hidden layers.

(ii) Number of nodes per hidden layer.

(iii) Activation function to be used.

(iv) Training procedure.

(v) Coefficient initialization scheme.

(vi) Optimizer and its hyperparameters.
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2.4 Machine Learning Approximation of Heat Exchangers

It has been observed that a majority of the published works belong to one or

more of the following areas:

(i) HX Performance Prediction.

(ii) Estimation of HX Parameters.

(iii) Identification of Two-Phase Flow Regimes.

2.4.1 HX Performance Prediction

Over the last two decades, numerous ML techniques have been utilized to build

models with the intention of predicting HX performance. These have been reviewed

in great detail by [6,49,50]. As tube-fin HXs are the focus of this study, the following

paragraphs highlight ML investigations pertaining to tube-fin HXs only.

Several authors have modeled TFHXs using ANN of varying network archi-

tectures [8, 51–58]. Diaz et al. [51] were one of the earlier practitioners of ANN

applied to HXs. Their neural network was able to accurately predict the heat trans-

fer from hot water to externally flowing air in a single row tube-fin HX. The authors

show that their predictions were superior in comparison to predictions made by a

conventional power law correlation. No geometrical parameters were considered as

inputs to the model, thereby restricting its scope of prediction. Pachecho Vega et

al. [52] developed a fully connected MLFFN to predict the heat transfer of a tube-fin

evaporator. A methodology to estimate the prediction error from ANN trained with
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limited data is presented with the objective of determining if there are sufficient data

points to aid in ANN predictions. In addition, the authors claim that their proce-

dure can help determine where further testing is necessary within the design space.

It is important to note that the predictions made by the developed MLFFN were

on the same dataset used for its training as opposed to using a separate verification

dataset. In a related study conducted by the same authors [53], they established

that the predictions of sensible and total Chilton-Colburn ‘j’ factors using ANN were

superior to the predictions made by prominent correlations of [59], [60]. The authors

further recommended the direct prediction of heat transfer instead of intermediate

parameters such as ‘j’ factors.

Ding et al. [54] highlighted the hybrid capabilities of ANN, by using them

in conjunction with an approximate integral model to predict the performance of a

tube-fin condenser. The pairing of the two methodologies resulted in a simpler ANN

structure as well as the representation of the nonlinear factors that were not con-

sidered in the approximate integral model.The RMAE in heat transfer predictions

was found to be less than 1%. The performance prediction of a gas cooler as part

of a Carbon Dioxide transcritical cycle was conducted by Wu et al. [8]. Apart from

accurately predicting performance, they examined the impact of the input design

variables on the model output. The deviation between predicted and experimental

data was found to be less than 5%. Tan et al. [55] predicted the performance of a

tube-fin HX as well as the exit air temperature by developing two separate ANNs.

The study involved blocking off various percentages of the HX face area. Addition-

ally, they utilized a Self-Organizing-Map Neural Network to classify the extent to
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which inlet air was obstructed at the face of a HX due to fouling. The RMAE per-

taining to heat transfer predictions were 1.8% and 5.1% for the ANN and non-linear

regression respectively. Yang et al. [56] utilized dimensionless Pi-groups as inputs

and outputs to the ANN model used to evaluate tube-fin condenser performance. It

was shown that the dimensionless ANNs outperformed dimensional ANNs in some

test cases, while the opposite was true for the remaining test cases. Nevertheless,

the dimensionless ANNs exhibited greater generality than their dimensional coun-

terparts. Parallel flow condensers with R134a to be used in electric vehicles were

investigated by Tian et al. [57]. An ANN was built to predict Q, outlet refrigerant

temperature, and ∆P on the air and refrigerant sides. The authors reported that

the RMAE for all the predicted parameters were less than 1.3%. Impact of geometry

was neglected in this modeling effort, as only the fluid inlet states were varied.

Kumra et al. [61] compared SVR and ANN models in their prediction of heat

transfer by a wire-on-tube HX. Their results show that the SVR model yielded bet-

ter predictions on a held-out validation dataset. No mention of the NN architecture

or its training is made. Yan et al [62] predicted the heat dissipated by an automotive

radiator as a function of HX geometry with the aid of an SVR model. The hyper-

parameters were tuned using a modified artificial fish swarm algorithm. The results

obtained were shown to be superior to predictions of LR and ANN. Details of the LR

and ANN models used as well as their training procedure and training time have not

been presented by the authors. Fitness of three approximation assisted modeling

techniques were compared by Huang et al. [63] based on their ability to accurately

and quickly simulate HXs as well as VCCs. On the HX level the metamodels ap-
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proximated change in enthalpy and ∆P. The Kriging metamodel was observed to

perform exceedingly well. An overall RMAE of 4.46% was attained in addition to

speeding up the tube-fin HX simulation by a factor of 60-170.

A handful number of evaluation studies on evaporative condensers have been

carried out by researchers with the aid of ML techniques [64–67]. Reichert et al. [66]

made use of ANN as an intermediate simulation tool to generate data related to the

working of an evaporative condenser. The data generated by the ANN was then

used to develop Design of Experiment predictive models to estimate the evaporative

condenser heat rejection and its overall heat transfer coefficient (htc). The authors

claim that nonlinearity effects were not dominant, thereby expressing heat rejection

rate and overall htc as linear functions of the relevant parameters. Behnam et

al. [67] conducted a comparative study of four different ML methods to predict the

Q and overall htc of an evaporative condenser. The results showed that the ANN

performed the best, and was followed by SVR and Random Forest models. The

study deemed the use of Decision Tree models ineffective in the prediction of the

aforementioned parameters.

Similar to the trend observed for heat transfer predictions, ANNs have been

extensively used to predict fluid Pressure Drop (∆P) in both single and two-phase

flows. [10, 68–73]. Alizadehdakhel et al. [68], investigated two-phase ∆P of water

in tubes of various orientations. They compared prediction results of CFD and

ANN. On the test dataset it was found that CFD results were marginally better.

The authors however, advocate the use of ANN due to its satisfactory performance

and convenience of use. Bar et al. [69] developed ANNs using three different BP
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optimization techniques to predict the two-phase ∆P in U-bends. The sigmoid

activation function combined with the Levenberg-Marquardt optimization algorithm

was found to yield the least value of RMAE of 9%. Zendehboudi and Li [70] leveraged

the robustness inherent to ML ensembling in the prediction of condensation ∆P of

R134a in inclined tubes. Encouraging results were obtained from three of the four

methodologies adopted, but the authors advocated for the use of the more robust

methodology which combined the prediction capabilities of ANN, SVR and Adaptive

Neuro Fuzzy Inference System. Khosravi et al. [10] compared the capabilities of three

different ML techniques in their prediction of ∆P during evaporation of R407C.

The ML techniques used were MLFFN, SVR, and a group method of data handling

ANN. While the prediction of all three techniques were satisfactory, the authors

claim that the group method of data handling ANN outperformed the other two.

Maldonado et al. [72] developed an ANN to predict frictional ∆P during flow boiling

of zeotropic mixtures through minichannels, subject to cryogenic conditions. The

model outperformed other well-known correlations across all flow regimes. Flow

boiling ∆P in mini/microchannels was investigated by Qiu et al. [73]. The authors

employed several supervised ML techniques in their study to determine the most

suitable regression function to a consolidated database gathered from 21 sources.

While all the ML models employed in this study outperform a reliable conventional

correlation [74], the ANN was found to be the most adept approach for this problem.

A similar study was also conducted by Ardam et al. [75] to predict the flow

boiling ∆P of R134a in a horizontal microfin tube. The Random Forest algorithm

that was utilized in this study, yielded an RMAE of 6.41%, which the authors
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present to be superior to the predictions made by a physical model proposed by

Shannak [76].

Oh et al. [77] optimized the design of a parallel flow HX via a second order

response surface methodology. The HX was optimized for maximum JF factor (a

criterion that represents both heat transfer and ∆P simultaneously). The proposed

methodology yielded a design with improved values of JF factor. Sun and Zhang

[78] evaluated the thermal performance of elliptical tube-fin HXs. With the aid

of response surface methodology and DOE the authors were able to identify the

interacting effects of the tube axis ratio, air velocity and internal fluid volumetric

flow rate on the overall performance of the HX.

2.4.2 ML Estimation of Heat Exchanger Parameters

HX parameters such as heat transfer coefficient, friction factor, void fraction

and fouling factor are key aspects considered during HX design, simulation, and

optimization. The investigations listed below leverage ML principles to accurately

approximate such parameters.

2.4.2.1 Heat Transfer Coefficient

Neural Networks have the distinction of being known as universal approxima-

tors [79], thereby making them very popular among researchers in the prediction of

Heat Transfer Coefficient (htc) [80–88] and other HX parameters as will be seen in

later subsections. Jambunathan et al. [80] presented one of the earliest applications
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of ANN to the transient simulation of air-side convective htc. Encouraging results

were obtained by the authors in their predictions, however it should be noted that

there was no held-out test or validation dataset to evaluate the realistic performance

of the model. Ghajar et al. [81] developed an ANN to accurately predict the single-

phase internal convective htc for transitional flow in a horizontal circular straight

tube under uniform heat flux boundary condition. The proposed correlation fared

better than their previous least squares correlation. Majority of the data points

were predicted within a deviation of 5%. Demir et al. [82] have utilized ML to study

alternative refrigerants (R600A). The authors predicted the internal convective htc

using an ANN whose predictions were found have an RMAE less than 4%, thereby

outperforming noteworthy correlations of Shah [89] and Travis [90]. A single corre-

lation to predict the Nusselt number (Nu) during boiling and condensation of R134a

flowing through smooth and microfin tubes was developed by Balcilar et al. [84].

The correlation is shown to predict experimental Nu values within a deviation of

±30%. Similar work by Ewim et al. [88] was conducted to predict condensation htc

of R134a inside enhanced inclined tubes. The ANN predictions were able to predict

the trends of experimental htc as a function of inclination angle, vapor quality and

refrigerant mass flux. Saturated flow-boiling htc in mini/microchannels of varying

cross sections was predicted with the aid of an ANN developed by Qiu et al. [86].

Experimental data from 50 sources, covering 16 fluids were collected to train and

validate the model. The capability of the developed ANN model was compared

against a prominent physics-based correlation [91], and it is observed that the ANN

with an RMAE of 14.3% performed better than the physics-based correlation whose

34



RMAE equalled 27.37%. Zhou et al. [87] applied ML techniques to predict the flow

condensation htc. The data for the model training and testing was amassed from

37 distinct sources covering 17 different fluids. Among the models compared, the

ANN (RMAE = 6.8%) and the XGBoost (RMAE = 9.1%) models outperformed

the rest regardless of the condensation flow regime. Results from the study showed

that the optimal ANN and XGBoost models yielded more accurate predictions than

the widely used correlation [92].

Tam et al. [93] built upon their previous work [81], by predicting the single-

phase internal convective htc for transitional horizontal flow using an SVR model.

The htc predictions were comparable to the ANN developed earlier with a majority

of the experimental data being predicted within an error band of ±5%. However,

the SVR model has an added benefit of yielding a unique correlation unlike ANNs.

As a natural extension to the aforementioned work [93], Tam et al. [94], developed

an SVM htc for turbulent gas-liquid two-phase flow in vertical pipes. Their results

showed that a majority of the data was predicted within a deviation of ±5%, while at

the same time outperforming a prominent empirical correlation developed to predict

the same.

2.4.2.2 Friction Factor

The following works have successfully approximated friction factor (f) in HXs

using ANNs [95–98]. Nasr and Khalaj [95] investigated corrugated tubes combined

with twisted tape inserts as means of enhancing heat transfer. They further devel-
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oped an ANN to predict the heat transfer and f. Predictions of htc were made with

an RMAE less than 2.9% and corresponding f RMAE was found to be less than

0.36%. Cebi et al. [97] developed several ANNs to predict the f associated with

buoyancy aided and buoyancy opposed single-phase flows in smooth and microfin

tubes, under cooling heating and isothermal conditions. Apart from obtaining en-

couraging results, the authors were able to conclude that geometry and mass flow

had a greater impact than the direction of heat transfer on f. Zhang et al. [99]

applied ANNs in an interesting manner by utilizing it to pick out the dominant pa-

rameters that correlate two-phase friction multiplier and α. The Laplace constant or

confinement number was found to be highly dominant and improved correlations for

two-phase frictional ∆P and α are developed as functions of the Laplace constant.

Najafi et al. [100] attempted to predict single-phase f and two-phase flow mul-

tipliers in microfin tubes with the aid of ML techniques. K-Nearest Neighbors and

Random Forest algorithms-both supervised ML approaches, were used for single-

phase and two-phase predictions respectively. The model predictions were compared

against well-known correlations found in the literature, and results showed that the

ML models fared better. Additionally the authors pointed out the trade-offs be-

tween model accuracy and complexity by employing a varying number of features

as model inputs.

Several authors have conducted investigations that seek to predict both htc

as well as frictional ∆P in HXs [9, 101–105]. Xie et al [102], recommend the usage

of ANNs to predict the air-side Nu and f for TFHXs having large diameter tubes

arranged along relatively higher number of tube banks. Moreover, three different
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types of fins were used in this study. The ANN yielded superior prediction in

comparison to reference correlations used in the study. In order to reduce variance

and avoid overfitting, an ensemble method was adopted by Pai et al. [103] to predict

single-phase Nu and f through 35 distinct channel cross sections. Lopez-Belchi et

al. [104] advocated the use of ANNs as a tool to predict the condensation htc and

∆P within minichannels. Additionally, a grouping method was utilized in order to

identify the minimum number of variables required to develop a satisfactory model.

Thermal-hydraulic performance of compact heat exchangers was predicted by

Peng and Ling [9] by adopting SVR. Predictions of j and f factors were slightly better

than that of an ANN whose hyperparameters and network architecture were tuned

based on trial and error (as is the norm with ANN). Moreover, the training time

for ANN was significantly longer. However, one point of concern with this work, is

that normalization of data was done before splitting into training and testing data

subsets. This could lead to exaggerated results of prediction accuracy from the SVR

model. Hughes et al. [105] performed a thermo-fluid investigation of condensation

heat transfer. As part of their study, they developed and compared conventional as

well as ML models to predict condensation htc and ∆P. Results demonstrate that

the random forest regression model performs significantly better than the other

conventional and ML models considered.

37



2.4.2.3 Void Fraction

Malayeri et al. [106] developed a radial basis function ANN to predict α in

vertical upward flows at elevated temperatures. The inputs to the model were di-

mensionless groups. The results of this investigation highlight similar trends across

experimental results and the ANN predictions. Azizi et al. [107] investigated the

ability of ANNs to predict the α of a gas-liquid two phase flow in horizontal and in-

clined pipes (upward and downward). The model predictions were compared against

seventeen α correlations form the literature, and in each case, it was found that the

ANN outperformed the correlations irrespective of the flow pattern. The α of gas-

liquid flows in minichannels was predicted by Huajun Li et al. [108] with the aid

of a SVR model. The α data was first classified into one of four flow regimes -

bubble, slug, stratified or annular flows. Subsequently one of the four developed

SVR models was used to make predictions for α.

2.4.2.4 Fouling Factor

An ANN was built by Riverol and Napolitano [109] to predict the internal

fouling factor in a tubular HX. An RMAE of 2.3% was obtained between predicted

and true experimental results. However key details regarding network architecture

were missing. SVM was employed to predict internal HX fouling by Sun et al. [110].

The authors claim that the SVM outperforms the radial basis function model. How-

ever, details related to the radial basis function model and clear description of the

error metrics used are absent from this communication. In an extensional work by
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the same authors [111], they exercised the particle swarm optimization algorithm

to tune the hyperparameters of the SVR model. While the authors claim that the

optimized SVR produced better results, the value of RMAE reported in this in-

vestigation is larger than the corresponding value present in [110]. Davoudi and

Vaferi [112] simulated the fouling factor in single tube HXs with the aid of an ANN.

The Pearson correlation coefficient was used to identify feature importance. How-

ever, it should be noted that the Pearson correlation coefficient does not take into

account interaction between the inputs while determining the feature importance.

Additionally the model output is the fourth root of the fouling factor. Neverthe-

less, results show that the RMAE = 5.4%. Internal, external and overall fouling

resistance in a cross-flow HX was investigated by Sundar et al. [113]. The authors

developed a fouling prediction framework with an ANN at its core, whose mean

absolute prediction errors were under 10−4 KW−1.

2.4.2.5 Miscellaneous HX Parameters

Kurt and Kayfeci [114] predicted the thermal conductivity of ethylene glycol-

water solutions with the aid of an ANN. The authors encourage the use of ANN to

predict thermal conductivity of liquids since their predictions were in close agreement

with experimental data. The normal boiling point of refrigerants widely used in

HVAC&R was predicted successfully by Deng et al. [115] with the aid of ANN

combined with Genetic Algorithm for network optimization. The ANN model was

found to be highly accurate and was also capable of distinguishing all the isomers of
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a particular refrigerant. Baghban et al. [116] developed a least squares SVM and a

ANFIS to predict the dew point temperature of moist air at atmospheric pressure.

The two models had their hyperparameters optimized using a genetic algorithm.

While both models performed well, the authors recommend the usage of least squares

SVM since it mapped the data most effectively. KNN was employed by Krishnayatra

et al. [117] to predict the thermal performance of fins used in conjunction with an

axial TFHX. The HX possessed primary fins (in contact with tube) and secondary

fins (in contact with primary fins). The model was able to predict upwards of 80% of

the test data within an absolute deviation of 10%. Giannetti et al. [118] developed

an ANN to accurately predict the two-phase flow distribution in the header of a

microchannel HX. The input parameters to the model were relevant dimensionless

numbers such as Reynolds number, Froude number, Capillary number and void

fraction. The developed ML model was compared against other prominent models

related to the phenomena (two-phase flow distribution) and results show that the

ANN outperforms contemporary models.

2.4.3 Identification of Two-Phase Flow Regimes

Accurate identification of the two-phase flow regime is crucial for accurate

modeling and prediction of the dynamic nature of two-phase flow systems. Con-

ventional methods of predicting two-phase flow regimes include flow regime maps

which are unfortunately not universal [50]. Since several ML models have displayed

great effectiveness in classification problems we can leverage this innate quality to
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conveniently and precisely identify the flow regime of a two-phase fluid.

Mi et al. [119, 120] classified vertical two-phase flow into one of four flow

regimes, namely bubbly flow, slug flow, churn flow and annular flow. The authors

did so with the aid of a supervised ANN and unsupervised self-organizing neural net-

work maps. In the former work, both the neural networks were trained from signals

emitted by an impedance void-meter while in the latter, the impedance results of a

verified two-phase flow simulation model were used. Across both works it was shown

that the ANNs were able to satisfactorily classify the flow regimes in agreement with

the flow regime map of Mishima and Ishii. However, some disagreements or misclas-

sifications exist around the transition regions. An on-line flow regime identification

approach has been developed by Tambouratzis and Pazsit [121] by combining a

statistical-operator driven feature extraction method with an ensemble of self or-

ganizing maps (unsupervised ANNs). The original inputs are a set of radiography

images. The vertical flow was classified into bubble, slug, churn or annular flows

with accuracies greater than 87.7%. For the same set of radiography images used in

the earlier study [121], Tambouratzis and Pazsit [122] developed a generalized re-

gression ANN (GRANN). Apart from exercising the same feature extraction method

employed in the earlier study, the authors also carried out counter-clustering result-

ing in a decrease of the training set. The authors claim that overall, the GRANN

was able to deliver at worst, similar classification accuracies than previous studies

but at significantly quicker rates of prediction.

Kreitzer et al. [123] employed a supervised ANN to identify flow regimes in hor-

izontal two-phase R134a adiabatic flow. The inputs to the ANN were pre-processed
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electrical capacitance tomography results. The results showed that the authors’

technique was able to classify with an accuracy of 99% the two-phase flow regime

into bubble, plug, slug, intermittent or annular flows. Seal et al. [124] conducted an

investigation to classify the condensation flow pattern of R134a refrigerant flowing

in inclined tubes. They developed an ANN capable of categorizing flow into one

among ten different regimes with more than 98%. Prior to classification, principal

component analysis was employed to ensure dimensionality reduction.

Identification of air-water two phase flow regimes was conducted by Zhou et

al. [125] with the combined usage of an effective image pre-processing technique and

SVMs (used as a classifier). In addition, the rough sets theory was utilized to reduce

the dimensionality of the flow regime samples (images). The results of the paper

demonstrate that the SVM had a higher classification accuracy than a BP ANN.

Hobold and da Silva [126] successfully classified the existent flow regimes during

boiling heat transfer via low speed visualization over a large captured area. Dimen-

sionality reduction was accomplished by the use of Principal Component Analysis.

Finally, classification was carried out with the aid of a Support Vector Classifier and

an ANN resulting in over 93% accuracy.
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2.5 Summary

The literature survey conducted can be summarized in two ways:

(i) Based on the application area of the ML investigations (fig. 2.9).

(ii) Based on the type of ML model applied (fig. 2.10).

Figure 2.9: Heat Exchanger Application Area

Figure 2.10: Machine Learning Model applied
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Since the focus of this thesis is to accurately predict TFHX performance, the

tabulated figure below describes in greater detail ML investigations pertaining to

this activity. These have been previously introduced in section 2.4.1.

Figure 2.11: HX Performance Prediction Studies
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2.6 Research Gaps

While there is no dispute that there has been extensive application of ML to

heat transfer, and more so to HX operation, a survey of the literature suggests that

there exist areas that warrant attention:

(i) Most HX performance investigations do not considered a comprehensive set

of features.

(ii) Impact of refrigerant is considered in only 2 HX performance prediction stud-

ies.

(ii) Lack of systematic framework to conduct a fair comparison.

2.7 Research Objectives

In lieu of the gaps described in section 2.6, the following make up the objectives

of this thesis:

(i) Predict performance of single and two-phase HXs with a high degree of accu-

racy.

(ii) Determine the cost-accuracy appropriateness of a ML model applied to a par-

ticular problem.
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2.8 Research Tasks

The following are crucial so as to accomplish the research objectives put forth

in section 2.7

(i) A thorough review of the literature.

(ii) Generate the data required for ML modeling via sampling techniques and a

general-purpose air-to-refrigerant HX simulation tool [4].

(iii) Develop accurate and reliable Machine Learning models.

(iv) Design a framework to fairly evaluate suitability of chosen Machine Learning

models on a given problem.

2.9 Organization of Thesis

With the research objectives as the guiding principles of this thesis, the organi-

zation of the thesis is as follows; Chapter 2 begins with a brief review of conventional

HX modeling approaches. Presented next is an introduction to the ML models im-

plemented in this thesis, namely, Linear Regression models, Support Vector Regres-

sion models and Artificial Neural Networks. This is followed by a detailed review

of the relevant ML investigations applied to HXs. Chapter 3 presents an ML-based

performance approximation of a single-phase HX. A comparison of the ML mod-

els evaluated on their prediction accuracy, computation expense, and their reliance

upon available dataset size and design variables is conducted. A second series of
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systematic comparisons are made based upon model behavior to changes in design

space. Chapter 4 involves a similar analysis applied to two-phase HXs instead. Fi-

nally, chapter 5 consists of concluding remarks, contributions and scope for future

work.

47



Chapter 3: ML Model Development of Single-Phase Heat Exchanger

3.1 Introduction

Those HXs in which no phase transition occurs on either side of the HX are

termed single-phase HXs. The primary mode of heat transfer in these devices is

generally through single-phase forced convection (between fluid and HX surface).

One such type of HXs belonging to this class is a radiator. A radiator is typically a

source of heat to its environment, achieved either directly through space heating or

indirectly through fluid cooling as observed in automotive radiators and dry cooling

towers.

Tube-fin radiators stand out from other radiator designs such as flat-panel and sec-

tional radiators due to their compact structure, high heat dissipation efficiency and

low production costs [127]. A survey of investigations on radiator design and op-

eration revealed their impact on energy consumption and consequently guides the

designer towards potential opportunities for energy savings [128–130]. Therefore,

there is no dispute that there exists a strong need for accurate simulation tools

capable of calculating the performance of a given design. Models built using ML

techniques can effortlessly fulfil this need. Further design optimization can be per-

formed once ML models that inspire a high degree of confidence are developed.
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3.2 Solution Methodology

Following up on the premise that ML models can be viewed as an alterna-

tive method to estimate HX performance, the steps taken to arrive at acceptable

predictive ML models are shown in fig. 3.1.

Figure 3.1: Flowchart of ML Modeling
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3.2.1 Design Space Identification

The design space considered for the radiator modeling is shown in fig. 3.2.

The design space is essentially an N-dimensional space of model inputs, with each

point in this space corresponding to a valid HX design. Also present is a list of

parameters that can assume only a single value for this problem.

Figure 3.2: Radiator Design Space

The list of responses attempted to be predicted accurately is shown in fig. 3.3.

Figure 3.3: Machine Learning Model Output

Research objective number 1 (section 2.6), expresses the intent to consider a design

space that encompasses the entire set of geometrical parameters and operating con-

ditions (for both fluids) as considered in the physics-based HX simulation tool [4].

On the other hand, another equally important objective is to cover a vast operating
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range for each design variable so as to include a wide array of practical HX designs.

Data pertaining to the radiator design space has been obtained from standard guide-

lines [131] in addition to data made publicly available from an Original Equipment

Manufacturer [132].

3.2.2 Design Space Sampling

Design space sampling involves conducting a series of properly designed exper-

iments with the aim of generating a desired amount of data. An experimental design

comprises a number of factors (design variables) set at specified levels. Assignment

of levels to the factors is based upon the type of experimental design adopted. Since

it is preferred to have the ML models learn the entire landscape of the design space,

training data is collected through a combination of exhaustive, full factorial and

Latin Hypercube sampling [41], [133]. While the discrete variables were sampled

exhaustively, Latin Hypercube and full factorial (levels corresponding to minimum

and maximum) experimental design were exercised on the continuous variables. In

addition to collecting training data, we also require validation or testing data to

gauge model performance. A competent model is one that produces acceptable so-

lutions throughout the design space. Therefore, a testing dataset that is randomly

sampled over the entire design space is chosen. Details of the relevant datasets are

shown in table 3.1
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Table 3.1: Radiator Data

Application Training dataset size Testing dataset size
Tube-fin Radiator 167716 72000

3.2.3 Synthetic Data Generation

As mentioned in section 2.4, the focus of this thesis is limited to supervised

ML models. To enable model learning it is a must to provide them with labeled

values of output for given input designs. These labeled outputs, corresponding to

the training and test datasets are obtained via CoilDesigner® [4].

3.2.4 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is the approach of analyzing the dataset

at hand most commonly through data visualization techniques such as histograms,

pairplots, correlation matrices etc. The reasons for undertaking an EDA at all stages

of our modeling exercise are as follows:

(i) To gain a deeper understanding of the data, thereby laying the foundation for

subsequent modeling steps.

(ii) To monitor and debug model performance.

(iii) To communicate the results of our study.

Prior to carrying out any modeling related activities a good starting point is

to investigate the extent of spread and sparsity of our data. A convenient way of

conducting this analysis is through the use of histograms.
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Figure 3.4: Variable Distribution
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From the set of histograms shown in fig. 3.4, the following insights can be

drawn:

(i) The design variables exhibit a fair spread over their individual ranges.

(ii) Data representation at the boundaries is larger due to the adoption of the full

factorial DOE as described in section 3.2.2.

(iii) (iii) The distribution of heat load and Refrigerant ∆P is observed to be heavily

positively skewed.

In addition to investigating the distribution of the design and response vari-

ables, it is good practice to check for the existence of multicollinearity among the de-

sign variables in a multiple regression analysis such as ours. It is undesirable to have

a correlation among the independent variables because they result in high variance

of the OLS estimates of the regression coefficient [134]. Ultimately unreliable regres-

sion models are arrived at. One such means of determining the bivariate correlation

between two variables is the Pearson correlation coefficient (r) [135] represented on

a heatmap in fig. 3.5. The r values range from -1 to +1, with -1 indicating a strong

negative correlation, and +1 indicating a strong positive correlation. An r value of

0 indicates a lack of correlation. A close inspection of fig. 3.5a reveals the absence

of multicollinearity between the design variables. Several physics-based insights can

be obtained by observing figs. 3.5b and 3.5c. Occurrences that make intuitive sense,

such as refrigerant ∆P being directly proportional to the refrigerant mass flux, or

tubes per bank per circuit have been identified by the correlation matrix. However,

an attempt to conclude upon the relative importance of the design variables on the
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model output must be discouraged since an explanation of the interactive effects of

two or more design variables on the response variable cannot be provided by merely

examining the r values.

(a) Input-Input Relationship (b) Input-Output(Q) Relationship

(c) Input-Output(∆P) Relationship

Figure 3.5: Correlation Matrices

55



3.2.5 Data Pre-processing

Data pre-processing involves a series of activities that take in real-world data

with the aim of encoding it so as to significantly improve the generalization capabili-

ties of the ML modeling algorithm. A well-structured training dataset is the product

of the sub activities that comprise data pre-processing. Out of the several factors

affecting the performance of an ML model, Kotsiantis et al. [136] assert data pre-

processing to exert the greatest bearing. Data pre-processing is a broad umbrella

encompassing several processes such as instance selection, outlier detection, impu-

tation , discretization, normalization, transformation, feature selection and feature

construction. The steps adopted as part of this study are:

(i) Instance selection

(ii) Data Normalization

(iii) Data Transformation

3.2.5.1 Instance Selection

Broadly speaking instance selection involves data reduction to primarily handle

noise within the data. Erroneous simulation results which amounts to 0.02% of the

total synthetic data generated (see section 3.2.3) are removed as part of this step.
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3.2.5.2 Data Normalization

A multiple regression problem is composed of features whose values generally

differ in their orders of magnitude. Normalization is exercised so as to rescale the

features within a consistent range of values thereby minimizing the bias imposed

by the ML model from one feature to another. For this problem the Min-Max

normalization technique is exercised on each of the numerical variables, resulting in

values being calculated within [0,1] as follows:

xnew =
xold − xmin
xmax − xmin

(3.1)

Convenient data normalization is performed using the Scikit-learn MinMaxScaler

function [44]. In addition to the features, data normalization is also imposed on

the model outputs. While normalization between [0,1] is directly imposed on Heat

load-Q, refrigerant ∆P is handled indirectly, as will be explained in 3.2.5.3.

Finally, care is taken to ensure inverse scaling is carried out within the same range

of response variable values as observed in the training dataset.

3.2.5.3 Data Transformation

Fig. 3.4 highlights the skewness exhibited by the refrigerant ∆P distribu-

tion. Works in the literature [137, 138] advocate the mapping of a non-Gaussian

distribution towards more Gaussian-like distributions so as to aid in superior model

predictions. The Box-Cox transformation [139] is one such mapping function that
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enables us to transform skewed data to a normalized, Gaussian like distribution.

The transformation is defined as follows:

xi(λ) =


xλi −1
λ

if λ 6= 0

ln (xi) if λ = 0

(3.2)

where, xi is value of a numerical variable, and λ is a transformation parameter

determined through the maximum likelihood estimation over the entire dataset to

be transformed. Graphically the transformation is observed in fig. 3.6.

(a) Original (b) Transformed

Figure 3.6: Box-Cox Transformation

In this analysis the Box-Cox transformation was implemented over the val-

ues of refrigerant ∆P through Scikit-learn’s PowerTransformer function [44]. The

improvement resulting from such a transformation is shown in section 3.2.9.
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3.2.6 Hyperparameter Tuning

Unlike the weights of an ML regression model, hyperparameters have to be

specified prior to the model training. The hyperparameters pertaining to the ML

models used in this study are shown in table 3.2. The process of designing the ideal

ML model architecture with the optimal set of configured hyperparameters is defined

as hyperparameter tuning. Tuning of hyperparameters is considered a key compo-

nent of ML modeling due to the direct relevance it bears on the model performance.

A thorough review of the state-of-the-art techniques as applied to hyperparameter

optimization is presented in [140]. Steps on how to conduct hyperparameter tun-

ing is demonstrated both theoretically and through practical experiments. Several

techniques such as grid search, random search, genetic algorithm, particle swarm op-

timization and Bayesian optimization are benchmarked as part of this investigation.

Table 3.2: Model Hyperparameters

Model Hyperparameters Nature

Ridge Regression Regularization parameter Continuous

SVR

Deviation tolerance (ε) Continuous

Regularization parameter (C) Continuous

Kernel function Categorical

Kernel coefficient (γ) Continuous

ANN

Hidden layer neurons Discrete

Activation function Categorical

Batch size Discrete

Weight initialization scheme Categorical
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Bergstra and Bengio [141] provided empirical evidence to prove that random

search is capable of yielding solutions that are as good if not better than solutions

arrived at by the widely used grid search at a fraction of the compute time. Hence,

these two methods are adopted as part of this study by leveraging the implementa-

tions provided by Scikit-learn [44] - an open source ML library.

Cross validation (CV) [142] plays a significant role by evaluating the perfor-

mance of each model configuration during hyperparameter tuning. k-fold CV is one

of the more straightforward approaches wherein, the original training dataset is di-

vided into ‘k’ equal subsets or folds. This is followed by an assignment of ‘k-1’ folds

to train the model, while the held-out single fold is used to test the trained model.

This procedure is repeated ‘k’ number of times, thereby presenting an opportunity

for each fold to act as a validation dataset once. The working of k-fold CV where k

= 5 is shown in fig. 3.7

Figure 3.7: k-Fold Cross Validation [44]
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On one hand k-fold CV is a valuable procedure that lends itself to the estima-

tion of an unbiased out-of-sample error for a particular model, however, on the other

hand, it significantly increases computational expense since it necessitates training

the model ‘k’ number of times. This drawback is further magnified when we are

working with large datasets. It is therefore desired to conduct CV on a subset of

the training data, while ensuring that the sampled subset is a fair representation

of the superset from which it is derived. A comparison of the statistical moments

shown in figs. 3.8 and 3.9 provides an indication of the statistical similarity between

the two datasets on all counts as well as the required degree of confidence to use

the randomly sampled subset for the purpose of CV. Furthermore, the two sample

Kolmogorov-Smirnov (K-S) test [143] is used to determine if two samples or datasets

come from the same probability distribution. For the radiator case, the results of

the K-S test are shown in table 3.3. At a significance level of 0.95, the K-S statistic

for each feature is lower than the corresponding critical value. This is an indication

that the random subset and the original dataset are drawn from the same probabil-

ity distribution, and that the former is indeed a good representation of the latter.

The tuned hyperparameters for Q and ∆P models are presented in table 3.4.
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Figure 3.8: Comparison of Statistical Moments

Table 3.3: Kolmogorov-Smirnov Test Results

Feature K-S Statistic Critical value

Tubes/Bank 0.0097

0.013 at α = 0.05

Tubes/Bank/Circuit 0.0045

Tube Banks 0.0036

Tube Length 0.01

FPI 0.01

Air Velocity 0.0097

Refrigerant Temperature 0.0097

Refrigerant Mass Flux 0.0094

3.2.7 Performance Metrics

The performance metrics used to ascertain accuracy of the ML models are:
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Figure 3.9: Comparison of Statistical Moments

(i) Relative Mean Absolute Error (RMAE)

RMAE =
1

N

N∑
i=1

|(ytrue − ypredicted)|
ytrue

× 100 (3.3)

(ii) Maximum Absolute Percentage Error (MAPE)

MAPE = maxi
|(ytrue − ypredicted)|

ytrue
× 100 for i = 1...N (3.4)
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Table 3.4: Tuned Model Configuration

Model Hyperparameters Nature
Tuned Value/Category

Q ∆P

RR Regularization parameter Continuous 0.38 0.5

SVR

Deviation tolerance (ε) Continuous 0.005 0.01

Regularization parameter (C) Continuous 2.3 0.51

Kernel function Categorical RBF RBF

Kernel coefficient (γ) Continuous 0.84 0.26

ANN

Activation function Categorical sigmoid sigmoid

Batch size Discrete 16 16

Weight initialization scheme Categorical normal uniform

Network architecture [-] 8-6-1 8-7-4-1

(iii) σerror - Standard Deviation of Absolute Errors

σerror = σ(
1

N

N∑
i=1

|(ytrue − ypredicted)|) (3.5)

(iv) βN - Percentage of data points predicted within ± N% deviation

(v) Training time - The time taken in seconds for a given model to be trained over

the entire HX training dataset

(vi) Prediction time - The time taken in seconds for a trained ML model to predict

the output of each HX design contained in the test dataset

3.2.8 Model Training

Model training or fitting of supervised ML algorithms can be informally de-

scribed as determining the best possible mapping for a given set of model inputs

and known model outputs. A more formal explanation of the manner in which the
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supervised ML methods considered in this thesis are trained is provided in sections

2.3.1, 2.3.2 and 2.3.3. From an application standpoint, once hyperparameter tuning

is successfully complete (section 3.2.6), the next step is to fit the configured model to

the training data. This is realized by utilizing the vast functionalities made available

through open-source ML libraries [44, 45]. Furthermore, the entire computational

load was borne by an Intel® Xeon® E3-1245, 3.5 GHz processor with 4 cores and

16 GB of installed RAM.

Despite the objective of model training being universal across all ML tech-

niques, the procedure however, is not. While RR and SVR training is fairly straight-

forward, ANN training requires further attention to prevent occurrences of either

overfitting or non-converging ANN weight updations. Measures to tackle these sce-

narios include but are not limited to early termination of training [6] and the in-

troduction of a time-based learning rate schedule [144]. The effect of implementing

these measures is observed by investigating plots of training behavior as shown in

fig 3.10.

(a) Heat Load (b) Pressure Drop

Figure 3.10: Artificial Neural Network Training Behavior

A few modeling insights may be drawn from the plots in fig. 3.10. The absence
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of deviation in the trends of train and test loss curves reveal a lack of overfitting

to the training data; as was desired. In addition, the usefulness of introducing a

learning rate schedule is also witnessed. The amplitude in the oscillations of the

test loss curve (more pronounced in fig. 3.10a) is observed to drastically decrease

as the number of training epochs advance.

3.2.9 Data Pre-processing Outcome

Section 3.2.5 advocates the utilization of several data pre-processing steps to

improve the predictive capabilities of ML models. The advantages of conducting the

steps described in section 3.2.5 prior to model training and testing is highlighted

here. A comparison of the SVR predictions of radiator refrigerant ∆P with and

without pre-processing of data is shown below (see fig. 3.11). Additionally, the

transformation of the refrigerant ∆P distribution from highly positively skewed to

a more Gaussian-like distribution is also exhibited (see fig. 3.11). 3.11e provides

further numerical evidence of the improvement in performance due to the adoption

of steps described in section 3.2.5.
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(a) Without Data Pre-processing (b) With Data Pre-processing

(c) Without Data Pre-processing (d) With Data Pre-processing

(e) Numerical Comparison

Figure 3.11: Data Pre-processing Outcome
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3.2.10 Model Testing

A culmination of the various procedures described in sections 3.2.1 - 3.2.8 is

an ML model which is expected to predict HX performance on unseen data. The

performance of the developed ML models (RR, SVR and ANN) on the test dataset

of the TF Radiator (see table 3.1) is compared by simultaneously examining their

individual verification plots and corresponding performance metrics. It must be

noted that unless specified, each performance metric pertains to the test dataset.

For a comparison of predictions of Q, the reader is directed to table 3.5 and fig.

3.12. Shown within each plot is a textbox of the tuned hyperparameters.

Table 3.5: Baseline Machine Learning Model Comparison

Heat Load Prediction

Metric RR SVR ANN

RMAE [%] 23.4 2.6 4.2

MAPE [%] 412.6 22.4 59.1

σerror [W] 58.5 15.8 247.8

β5 [%] 12.8 86.8 70.8

β20 [%] 52.1 99.9 99.2

Training Time [s] 1.3 4355 1041

Prediction Time [s] 0.002 49.6 1.3

Although the computation expense associated with SVR is a point of concern,

it yields the most accurate predictions. RR imposes minimal computation expense,

but results in inaccurate predictions. A favorable balance between prediction accu-

racy and computation expense is achieved using ANN.

The robustness of each ML technique can be assessed using σerror, which is deter-

mined as a result of performing 5-fold cross validation (CV). In concurrence with
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other works in the literature [145], [146], it is noticed that ANN suffers from high

variances in prediction. This is attributed to the backpropagation (BP) learning

algorithm being a gradient method that cannot guaranteed global minimum. Addi-

tionally, all models exhibit relatively high values of MAPE, indicating the existence

of region(s) in the design space where prediction capability is poor.

(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 3.12: Heat Load Prediction Verification Plots

Results relevant to ∆P predictions are presented in table 3.6 and fig. 3.13
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In the case of refrigerant ∆P, results show that ANN outperforms SVR. As with

heat load predictions, RR yields poor predictions. Though the predictions resulting

from the SVR are encouraging, there is a degradation relative to its corresponding

heat load predictions. Additionally, the robustness of ANN predictions in this case

is comparable to the other models, further increasing its standing as an effective

approximator.

Table 3.6: Baseline Machine Learning Model Comparison

Pressure Drop Prediction

Metric RR SVR ANN

RMAE [%] 18.4 3.7 1.8

MAPE [%] 131.1 27 25.5

σerror [Pa] 1.4 4.1 13.1

β5 [%] 15.4 73 93

β20 [%] 60.3 99.9 99.9

Training Time [s] 1.1 5604 289

Prediction Time [s] 0.001 44.4 1.3
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(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 3.13: Pressure Drop Prediction Verification Plots

3.2.11 Physical Verification of ML models

Section 3.2.10 highlights the ability of ML models to predict a large set of

points accurately. In order to further enhance their reputation as capable estimators,

it is necessary for these ML models to capture heat transfer and refrigerant ∆P

trends as physics-based models do.
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3.2.11.1 Parametric Analysis

To this end, a sample radiator design as shown in fig. 3.14 is considered.

Parametric analyses are conducted to investigate the impact of tube length on heat

load and refrigerant ∆P respectively. Figs. 3.15a and 3.15b show the variation in

heat load and refrigerant ∆P as calculated by a physics-based HX model [4] and ML

models (SVR and ANN) for various tube lengths. While, there does exist a clear

deviation in prediction it is evident that both ML models predict physical trends of

heat load and refrigerant ∆P in accordance with the physics-based HX model.

Figure 3.14: Sample Radiator Design Space

Further comparison of each ML model relative to the true heat load and ∆P

values is shown in table 3.7. In accordance with the results of a physics-based HX

model [30], the ML models also seem to predict heat load with a greater degree of

accuracy than refrigerant ∆P.
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(a) (b)

Figure 3.15: Parametric Analysis

Table 3.7: Comparison of ML Model Performance for Sample Radiator

Heat Load (kW)

SVR
RMAE [%] 7.9

MAPE [%] 13.6

ANN
RMAE [%] 6.4

MAPE [%] 11.4

Pressure Drop (kPa)

SVR
RMAE [%] 17.5

MAPE [%] 22.1

ANN
RMAE [%] 20.4

MAPE [%] 23.7

3.2.11.2 Pairwise Comparison

Evolutionary algorithms are effective methods of solving multi-objective op-

timization problems. Many of these algorithms comprise a non-dominated sorting

procedure which is conducted to determine the relative quality of designs [147].

In other words, feasible designs are compared pairwise to identify the design that

yields a more favorable objective function(s) value. Thus, it is desired to investigate

if ML models display exact comparative trends of HX performance as exhibited by

physics-based models. In this thesis, a pairwise comparison of HX designs is carried

out as follows:

(i) For n =1. . . N, consider
(
n
2

)
HX designs, where N values are randomly chosen
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from the test dataset (physics-based HX model predictions).

(ii) Pair the HX design as (Xn,1,Xn,2), n =1. . . N.

(iii) Calculate their corresponding objective function values which are then repre-

sented as (Qn,1, Qn,2), n =1. . . N.

(iv) Count the number of cases where Qn,1 > Qn,2, n =1. . . N, from test dataset

(true values), SVR ANN predictions, .

(v) Repeat the above four steps ‘m’ times and calculate mean number of cases

satisfying the criterion Qn,1 > Qn,2, n =1. . . N, for SVR and ANN predictions.

The number of cases from the test dataset, SVR and ANN predictions are further

compared. It is desired that the SVR and ANN predictions exhibit the same com-

parative trend as predicted by the physics-based HX model for each case considered.

For N = 1000, m = 10. The same set of radiator designs which have been considered

thus far as part of this study is used for the pairwise comparison. The results for

heat load and refrigerant ∆P are as shown in fig. 3.16.

(a) Heat Load (b) Refrigerant Pressure Drop

Figure 3.16: Pairwise Comparison of HX design
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Fig. 3.16 indicates the percentage of total cases where the SVR and ANN

models produce the exact same comparative trend as yielded by the physics-based

model [4]. For heat load and refrigerant ∆P, it is noticed that both the ML models

achieve a prediction accuracy > 99.8%.

3.3 Training Dataset Size Impact

Thus far, the prediction capability of the ML models have been gauged by

training these models over the entire training dataset. These models are termed

as baseline models in this study. Kotsiantis et al. [136] state that as the amount

of data available to a model grows, the rate of increase in its prediction accuracy

tends to slow down. Therefore, from the available training dataset, random sub-

sets of varying sizes are made available to the models during the training phase.

Subsequently, the corresponding variation in performance and training time is ob-

served in fig. 3.17 where α represents the percentage of the original training dataset

size chosen at random. Contrary to the findings of section3.2.10 it is seen that the

prediction accuracies achieved by the reduced-domain SVR and ANN models dif-

fer significantly. Consistent with the observations of Mohanraj et al. [6], the ANN

model is seen to suffer from a performance degradation at low values of α, while the

same is not true in the case of the SVR. Moreover, when the models are trained on

significantly small dataset sizes, the time required to train the SVR is found to be

lower than the corresponding time required for ANN training.
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(a) Heat Load (b) Heat Load

(c) Refrigerant ∆P (d) Refrigerant ∆P

Figure 3.17: Radiator Training Dataset Size Impact

3.4 Outcome-based Comparison Framework

Conventionally, ML models are compared based on their prediction capabilities

with each model demanding the same level of input in terms of training dataset

size [10], [61]. Though this method of comparison provides an understanding of

an ML model’s capabilities, this form of comparison may not always be useful in

identifying the most suitable ML model for a given problem. Thus, an outcome based

comparison of ML models is proposed wherein, an attempt is made to gauge the

cost incurred by a model in order to achieve a pre-determined degree of prediction

accuracy. The steps that make up this outcome-based comparison framework is
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shown in the flowchart below (see fig.3.18).

Figure 3.18: Outcome-based Comparison Framework
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One of the two research thrusts of this thesis is to determine the cost-accuracy

appropriateness of an ML model applied to a particular problem (see section 2.7).

An outcome of this thrust is to identify the most efficient ML model for a given

problem.

The most efficient ML model is one that yields satisfactory prediction accuracy at

a reasonable cost. Either the conventional ML model comparison or the outcome-

based comparison can be exercised to deem the suitability of an ML model to the

problem at hand. This is depicted in greater detail in fig. 3.19

Figure 3.19: ML Model Appropriateness
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Chapter 4: ML Model Development of Two-Phase Heat Exchangers

4.1 Introduction

A two-phase HX is a device that is involved in the transfer of thermal energy

between two fluids by virtue of absorption or release of latent heat of vaporization.

The inclusion of latent heat of vaporization greatly enhances the heat transfer in

a two-phase HX where at least one of the two fluids undergo a phase change. As

part of a Vapor Compression Cycle (VCC), two-phase HXs are utilized either as

evaporators or condensers. Two-phase HXs are termed as evaporators when they

absorb thermal energy from an external fluid resulting in their evaporation, while

they are termed as condensers when they release thermal energy to the external

fluid resulting in their condensation. Thus, the change in enthalpy is observed as

a change in vapor quality rather than a change in temperature as is the norm in

a single-phase HX. As a consequence of their marked superiority over single-phase

HXs more than 60% of HXs in the industry operate in two-phase mode [148].

Tube-fin HXs due to their large heat transfer area and compactness are used

extensively as condensers and evaporators in HVAC&R systems. Furthermore, stud-

ies by Westphalen et al. [2] and Liang et al. [35] communicate the extent to which

optimal TFHX designs can yield benefits in terms of energy and cost reduction.
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With the objective of reducing the environmental impact of HVAC&R units, there

lies an imperative need for the development of quick, cheap and accurate HX per-

formance prediction tools. ML models due to their effective mapping capabilities,

thus prove to be a powerful instrument in fulfilling this need.

4.2 Solution Methodology

The steps taken to arrive at acceptable predictive ML models are analogous

to those exercised in section 3.2. Therefore a detailed description is provided solely

in those areas where stark differences with the former (section 3.2) exist.

4.2.1 Design Space Identification

The individual design spaces considered for the TF condenser and TF evapo-

rator modeling are shown in figs. 4.1 and 4.2 respectively.

Figure 4.1: Condenser Design Space

80



Figure 4.2: Evaporator Design Space

The list of responses attempted to be predicted accurately by both, the TF

condenser ML model as well as the TF evaporator ML model is shown in fig. 4.3.

Figure 4.3: Machine Learning Model Output

Data pertaining to the condenser and evaporator design space has been obtained

from standard guidelines [149] in addition to data made publicly available from an

Original Equipment Manufacturer [150].

4.2.2 Design Space Sampling

The same procedure adopted in section 3.2.2 is followed here. Details of the

relevant TF condenser and TF evaporator datasets are shown in tables 4.1 and 4.2

respectively.
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Table 4.1: Tube-Fin Condenser Data

Application Training dataset size Testing dataset size
Tube-fin Condenser 378511 142840

Table 4.2: Tube-Fin Evaporator Data

Application Training dataset size Testing dataset size
Tube-fin Evaporator 210008 74870

4.2.3 Synthetic Data Generation

As conducted in section 3.2.3, CoilDesigner® [4] is made use of to obtain

labeled data corresponding to the training and test datasets.

4.2.4 Exploratory Data Analysis

A significant difference between the design space considered for single-phase

HXs 3.2.1 and that considered for two-phase HXs 4.2.1 is the choice of refrigerant

flowing through the HX. While the single-phase HX utilizes only water, the two-

phase HXs considered in this thesis utilize R410A (mixture of difluoromethane and

pentafluoroethane in equal proportion) and R32 (difluoromethane).

Since we are dealing with two refrigerants or two “classes”, we must identify the

existence of an imbalance in class representation. The presence of a class imbal-

ance calls for a modification in our modeling approach as described in the work by

Japkowicz [151]. A convenient way of conducting this analysis is through the use

of histograms, which additionally serves as a means of investigating the extent of

spread and sparsity of the remaining inputs or features pertaining to each of the

two-phase HX ML models.
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Figure 4.4: TF Condenser Variable Distribution
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Figure 4.5: TF Evaporator Variable Distribution
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The following insights can be drawn from figs. 4.4 and 4.5,

(i) Both the refrigerants or classes are equally represented.

(ii) The design variables exhibit a fair spread over their individual ranges.

(iii) Data representation at the boundaries is larger due to the adoption of the full

factorial DOE as described in section 3.2.2.

(iv) The distribution of Refrigerant ∆P is observed to be heavily positively skewed.

Similar to section 3.2.4 a check for multicollinearity among the design variables

is conducted with the aid of correlation matrices (figs. 4.6 and 4.7) that indicate the

values of Pearson correlation coefficients [135]. As observed previously an absence

of multicollinearity between the design variables or inputs is witnessed.
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(a) Input-Input Relationship (b) Input-Output(Q) Relationship

(c) Input-Output(∆P) Relationship

Figure 4.6: Correlation Matrices for TF Condenser

4.2.5 Data Preprocessing

The measures considered for preprocessing training and test data pertaining to

the TF condenser and TF evaporator are analogous to the steps followed in section

3.2.5. However, one major point of difference is in relation to the transformation of

the refrigerant ∆P while developing the corresponding ANN models. As opposed

to the Box-Cox transformation [139] exercised earlier, the Yeo-Johnson transforma-

tion [139] is utilized in this case. The reason for such an alteration is due to the
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high degree of compatibility the Yeo-Johnson transformation has with the hyper-

bolic tangent (see table 2.2) activation function that was obtained as a result of

hyperparameter tuning.

(a) Input-Input Relationship (b) Input-Output(Q) Relationship

(c) Input-Output(∆P) Relationship

Figure 4.7: Correlation Matrices for TF Evaporator
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The Yeo-Johnson transformation is defined as follows:

xi(λ, xi) =



(xi+1)λ−1
λ

if λ 6= 0, xi ≥ 0

ln (xi + 1) if λ = 0, xi ≥ 0

−[(−xi+1)2−λ−1]
(2−λ) if λ 6= 2, xi < 0

− ln(−xi + 1) if λ = 2, xi < 0

(4.1)

where, xi is the value of a numerical variable. Graphically the transformation

is observed in fig. 4.8.

(a) Original (b) Transformed

Figure 4.8: Yeo-Johnson Transformation
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4.2.6 Hyperparameter Tuning

As there exists no difference between the steps adopted as part of the current

section and section 3.2.6, only a table of the tuned hyperparameters for both the

two-phase HX applications are provided.

Table 4.3: TF Condenser ML model tuned hyperparameters

Model Hyperparameters Nature
Tuned Value/Category

Q ∆P

RR Regularization parameter Continuous 0.8 1.81

SVR

Deviation tolerance (ε) Continuous 0.005 0.007

Regularization parameter (C) Continuous 1.4 1.2

Kernel function Categorical RBF RBF

Kernel coefficient (γ) Categorical 0.69 1.8

ANN

Activation function Categorical sigmoid tanh

Batch size Discrete 16 16

Weight initialization scheme Categorical glorot-uniform normal

Network architecture [-] 10-10-8-1 10-9-8-9-1

Table 4.4: TF Evaporator ML model tuned hyperparameters

Model Hyperparameters Nature
Tuned Value/Category

Q ∆P

RR Regularization parameter Continuous 0.28 0.34

SVR

Deviation tolerance (ε) Continuous 0.002 0.008

Regularization parameter (C) Continuous 2.3 1.1

Kernel function Categorical RBF RBF

Kernel coefficient (γ) Categorical 0.52 0.54

ANN

Activation function Categorical sigmoid tanh

Batch size Discrete 16 16

Weight initialization scheme Categorical glorot-uniform glorot-uniform

Network architecture [-] 10-10-9-1 10-9-6-8-1
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4.2.7 Model Training

The procedure followed and the computing resources used to train each ML

model is as described in section 3.2.8, and hence will not be elaborated further.

4.2.8 Model Testing

The performance of the developed ML models (RR, SVR, and ANN) on the

test dataset of the TF Condenser (see table 4.1) and TF evaporator (see table 4.2)

is compared by simultaneously examining their individual verification plots and

corresponding performance metrics 3.2.7. It must be noted that unless specified,

each performance metric pertains to the test dataset concerned with either HX. For

a comparison of heat load predictions, the reader is directed to tables 4.5 and 4.6

and figs. 4.9 and 4.10 respectively.

Inspecting the results for the heat load predictions reveals the ANN outper-

forming the other ML models considered. As seen in table 3.5, the prediction accu-

racy of the baseline RR model is poor. While the baseline SVR yields satisfactory

heat load predictions, it imposes a massive time penalty. A similar trend is observed

in the case of single-phase HX predictions too. ANN estimates provide the much

needed compromise between efficient mapping and quick compute time. The ANN

predictions result in consistently high values of β20, in spite of requiring only a frac-

tion of the training time needed by the SVR. Attention must be paid to the high

values of MAPE owing to each ML model’s inability to deliver equally satisfactory

performance over the entire design space. Similar to results from section 3.2.10
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ANNs suffer from high prediction variance for two-phase HX predictions as well.

Table 4.5: TF Condenser Baseline ML Models Comparison

Heat Load Prediction
Metric RR SVR ANN

RMAE [%] 22.1 3.1 2.7
MAPE [%] 336.1 29.3 56.15
σerror [W] 18.6 16.2 104.4
β5 [%] 12 82.7 85.3
β20 [%] 50.2 99.7.4 99.9

Training Time [s] 4.5 53571 1812
Prediction Time [s] 0.005 152 1.6

Table 4.6: TF Evaporator Baseline ML Models Comparison

Heat Load Prediction
Metric RR SVR ANN

RMAE [%] 33.4 7.8 6.9
MAPE [%] 335.1 159.8 67.4
σerror [W] 19.1 23 80.7
β5 [%] 14.5 47.8 51.4
β20 [%] 30.78 92.4 94.4

Training Time [s] 2.08 65898 946.2
Prediction Time [s] 0.003 174 0.4

Similarly, relevant results in relation to ∆P predictions are presented in tables

4.7 and 4.8 and figs 4.11 and 4.12 respectively. In conformance with earlier trends,

the ANN fares significantly better than other competing models for the condenser

and evaporator cases. A comparison of the predictions across both HXs indicates

that the ML models; SVR and ANN in particular, yield relatively better predictions

for condenser ∆P as opposed to corresponding estimates of evaporator ∆P.

This degradation in prediction performance for the evaporator ∆P could be

attributed to the existence of a class imbalance pertinent to the following features:

Tubes/Bank, Tubes/Bank/Circuit and Tube Banks. Better resampling procedures
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(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 4.9: TF Condenser Heat Load Prediction Verification Plots

to either over-sample sparse classes or under-sample abundant classes [151] could be

adopted, ultimately leading to improved ML model predictions.
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(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 4.10: TF Evaporator Heat Load Prediction Verification Plots

Table 4.7: TF Condenser Baseline ML Models Comparison

Pressure Drop Prediction
Metric RR SVR ANN

RMAE [%] 19.9 6.4 4.5
MAPE [%] 187.8 58.9 119.4
σerror [Pa] 47.6 154.6 87.7
β5 [%] 14.5 51.6 67.6
β20 [%] 55.51 96.6 98.9

Training Time [s] 2.9 68087 6163
Prediction Time [s] 0.007 513 1.5
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Table 4.8: TF Evaporator Baseline ML Models Comparison

Pressure Drop Prediction
Metric RR SVR ANN

RMAE [%] 44 11 8.03
MAPE [%] 980.6 284 124.2
σerror [Pa] 475 726 784
β5 [%] 15.3 38.1 49.1
β20 [%] 34.9 83.1 91.4

Training Time [s] 1.6 29630 2564
Prediction Time [s] 0.004 137 1.5

(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 4.11: TF Condenser Pressure Drop Prediction Verification Plots
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(a) Ridge Regression (b) Support Vector Regression

(c) Artificial Neural Network

Figure 4.12: TF Evaporator Pressure Drop Prediction Verification Plots
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4.3 Training Dataset Size Impact

Similar to section 3.3, the impact of training the ML models over different

dataset sizes is explored for the cases of the condenser and the evaporator that were

investigated previously in sections 4.2 - 4.2.8. The results of this exercise are exhib-

ited in figs 4.13 and 4.14. Considering the case of the condenser heat load, results

similar to the baseline are observed in that the SVR and ANN models are able to

achieve high prediction accuracies. For the refrigerant ∆P however, an interesting

occurrence takes place. The SVR predictions seem to be degrading as the dataset

size increases. This phenomenon may be attributed to the onset of overfitting as

the dataset size increases, indicating that the hyperparameter tuning conducted

proved to be unsatisfactory. In terms of training times; trends similar to the radia-

tor dataset size impact is observed.

An observation of fig. 4.14 offers the following insight. Barring estimates of re-

frigerant ∆P at α ≤ 5, the ANN predictions of heat load and refrigerant ∆P are

consistently superior to that delivered by the SVR. This is also exhibited in the

baseline model performances, where the ANN fares better. A slight anomaly is

observed in the training time comparison for heat load. Unlike previous cases, the

SVR training time is always greater than the corresponding ANN training time in

this particular instance, indicating the inappropriateness of the SVR model for this

application.
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(a) Heat Load (b) Heat Load

(c) Refrigerant ∆P (d) Refrigerant ∆P

Figure 4.13: Condenser Training Dataset Size Impact

(a) Heat Load (b) Heat Load

(c) Refrigerant ∆P (d) Refrigerant ∆P

Figure 4.14: Evaporator Training Dataset Size Impact
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4.4 Outcome-based Comparison

As the framework was explained in section 3.4, only results pertaining to the

two-phase HXs are shown here in fig 4.15

Figure 4.15: ML Model Appropriateness
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Chapter 5: Conclusion

5.1 Summary

This section comprises a brief summary of each research objective pertaining

to this thesis

(i) Performance prediction of single and two-phase Heat exchangers with a high

degree of accuracy: Chapters 3 and 4 consist of the methodologies adopted to

develop Machine Learning (ML) based tube-fin heat exchanger (TFHX) mod-

els. Three ML techniques namely, Ridge Regression (RR), Support Vector Re-

gression (SVR) and Artificial Neural Networks (ANN) are implemented with

the aim of predicting the heat transfer capacity (Q) and refrigerant pressure

drop (∆P) associated with a given HX. Each model is subsequently verified

by a distinct dataset previously unseen by during the model training phase.

Performance metrics are used to determine their capabilities and comparisons

are finally made.

(ii) Determine the cost-accuracy appropriateness of an ML model applied to a

particular problem: Chapters 3 and 4 examine the potential of SVR and

ANN models to deliver previously exhibited levels of prediction accuracy when
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trained on datasets consisting of fewer samples and design variables. Compar-

isons are first made between the reduced-domain models and their correspond-

ing baseline models with the intent of checking for performance degradation.

This is followed by a comparison of the reduced-domain SVR and ANN mod-

els. Finally through the aid of an outcome-based comparison framework, the

most suitable ML technique for a given problem is identified.

Please note that RR models are not included in the reduced domain compar-

isons as their baseline performance was poor.

5.2 Conclusions

Concluding remarks associated with each objective is presented in this section.

HX Performance Prediction

Some of the common trends observed across each of the three HXs considered are

as follows:

(i) Linear models namely RR yields unsatisfactory predictions for both heat load

and refrigerant pressure drop.

(ii) Each of the ML models suffer from relatively high maximum absolute perfor-

mance error.

(iii) The training time required by the SVR model is significantly higher than the

other two models for both heat load and refrigerant pressure drop.
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Observations specific to each HX is enumerated below:

(i) TF Radiator

• SVR and ANN models predict > 99% of Radiator performance within

±20% for both heat load and refrigerant pressure drop.

• For predictions of heat load, the ANN exhibits comparatively low robust-

ness.

• Similar prediction trends of heat transfer and refrigerant pressure drop

phenomena across physics-based and ML models are exhibited.

(ii) TF Condenser

• Across both heat load and refrigerant pressure drop, ANN models predict

> 99% of condenser performance within ±20%, while SVR models predict

no lesser than 96.6%.

• The ANN models for heat load and refrigerant pressure drop are found

to have low prediction robustness.

(iii) TF Evaporator

• Evaporator refrigerant pressure drop predictions are poor across all ML

models.

• For predictions of refrigerant pressure drop, satisfactory performance is

achieved only by the ANN with β20 equalling 91.4%. The SVR model on

the other hands is able to achieve a β20 value of 83.1% only.
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• The robustness of each predictive model for refrigerant pressure drop is

extremely poor. Additionally ANNs also exhibit low robustness while

predicting heat load.

Cost-Accuracy Appropriateness of ML models

• Conventional comparison of baseline models indicates ANNs as the pre-

ferred choice for performance prediction.

• Reduced domain models are superior to baseline models in 4 out of 6

cases.

• Outcome-based comparison shows SVR can outperform ANN in certain

cases.

5.3 Contributions

The main contributions of this thesis are

(i) A detailed literature survey of investigations pertaining to ML techniques ap-

plied to heat transfer.

(ii) ML based TFHX models capable of quickly predicting performance with a

high degree of accuracy.

(iii) An outcome-based comparison framework for ML models - This serves as a

guide to determine the ML model to adopt while estimating HX performance.
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5.4 Future Work

While this thesis addresses a couple of gaps present in the literature, it also

opens up avenues for further research and development:

• Improve prediction capabilities: especially refrigerant pressure drop of a TF

evaporator by integrating first principles of heat transfer.

• Generalize investigations conducted: an emphasis must be placed to include

a larger family of refrigerants, with a focus on those that possess low Ozone

Depletion and Global Warming Potential.

• Extend the capabilities of this investigation to other classes of HXs. Compact

HXs are receiving greater attention while Shell-and-Tube HXs and Plate HXs

find greater prominence in the process industry. Thus it would be beneficial

to possess a tool suitable to these classes of heat transfer equipment.
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[122] Tatiana Tambouratzis and Imre Pàzsit. A general regression artificial neural
network for two-phase flow regime identification. Annals of Nuclear Energy,
37(5):672–680, May 2010.

[123] Paul J. Kreitzer, Michael Hanchak, and Larry Byrd. Flow Regime Identifi-
cation of Horizontal Two Phase Refrigerant R-134a Flow Using Neural Net-
works. In Volume 7B: Fluids Engineering Systems and Technologies, page
V07BT08A059, San Diego, California, USA, November 2013. American Soci-
ety of Mechanical Engineers.

[124] M.K. Seal, S.M.A. Noori Rahim Abadi, M. Mehrabi, and J.P. Meyer. Ma-
chine learning classification of in-tube condensation flow patterns using vi-
sualization. International Journal of Multiphase Flow, 143:103755, October
2021.

[125] Yunlong Zhou, Fei Chen, and Bin Sun. Identification Method of Gas-Liquid
Two-phase Flow Regime Based on Image Multi-feature Fusion and Support
Vector Machine. Chinese Journal of Chemical Engineering, 16(6):832–840,
December 2008.

[126] Gustavo M. Hobold and Alexandre K. da Silva. Machine learning classification
of boiling regimes with low speed, direct and indirect visualization. Interna-
tional Journal of Heat and Mass Transfer, 125:1296–1309, October 2018.

[127] Dan Li, Xuefeng Yang, Shouren Wang, Derong Duan, Zhuang Wan, Guofeng
Xia, and Wenbo Liu. Experimental research on vibration-enhanced heat trans-
fer of fin-tube vehicle radiator. Applied Thermal Engineering, 180:115836,
November 2020.

[128] Yiwen Jian, Zishuai Yu, Zhaohui Liu, Yi Li, and Rui Li. Simulation Study of
Impacts of Radiator Selection on Indoor Thermal Environment and Energy
Consumption. Procedia Engineering, 146:466–472, 2016.

115



[129] M. Embaye, R.K. AL-Dadah, and S. Mahmoud. Numerical evaluation of
indoor thermal comfort and energy saving by operating the heating panel
radiator at different flow strategies. Energy and Buildings, 121:298–308, June
2016.

[130] Qinguo Zhang, Liangfei Xu, Jianqiu Li, and Minggao Ouyang. Performance
prediction of plate-fin radiator for low temperature preheating system of pro-
ton exchange membrane fuel cells using CFD simulation. International Journal
of Hydrogen Energy, 42(38):24504–24516, September 2017.

[131] AHRI. AHRI standard 410-2001 with addenda 1 2&3.pdf, June 2011.

[132] Modine Manufacturing Company. Modine Commercial Fin Tube Radiation,
February 2020.

[133] M. D. Mckay, R. J. Beckman, and W. J. Conover. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
From a Computer Code. Technometrics, 42(1):55–61, February 2000.

[134] Edward R. Mansfield and Billy P. Helms. Detecting Multicollinearity. The
American Statistician, 36(3a):158–160, August 1982. Publisher: Taylor &
Francis.

[135] Larry L. Havlicek and Nancy L. Peterson. Robustness of the Pearson Cor-
relation against Violations of Assumptions. Perceptual and Motor Skills,
43(3 suppl):1319–1334, December 1976. Publisher: SAGE Publications Inc.

[136] S B Kotsiantis, D Kanellopoulos, and P E Pintelas. Data Preprocessing for
Supervised Leaning. 1(1):7, 2006.

[137] T. Jayalakshmi and A. Santhakumaran. Statistical Normalization and Back
Propagationfor Classification. International Journal of Computer Theory and
Engineering, pages 89–93, 2011.

[138] Dalwinder Singh and Birmohan Singh. Investigating the impact of data nor-
malization on classification performance. Applied Soft Computing, 97:105524,
December 2020.

[139] Sanford Weisberg. Yeo-Johnson Power Transformations. page 4, October
2001.

[140] Li Yang and Abdallah Shami. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing, 415:295–316,
November 2020.

[141] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter
Optimization. page 25, February 2012.

116



[142] M. Stone. Cross-Validatory Choice and Assessment of Statistical Predictions.
Journal of the Royal Statistical Society: Series B (Methodological), 36(2):111–
133, January 1974.

[143] Frank J Massey. The Kolmogorov-Smirnov Test for Goodness of Fit.
46(253):12, March 1951.

[144] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How
Does Learning Rate Decay Help Modern Neural Networks? arXiv:1908.01878
[cs, stat], September 2019. arXiv: 1908.01878.

[145] Eduardo Sontag and H Sussman. Backpropagation Can Give Rise to Spurious
Local Minima Even for Networks without Hidden Layers, 1989.

[146] M. Gori and A. Tesi. On the problem of local minima in backpropagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):76–
86, January 1992.

[147] Chunteng Bao, Lihong Xu, Erik D. Goodman, and Leilei Cao. A novel non-
dominated sorting algorithm for evolutionary multi-objective optimization.
Journal of Computational Science, 23:31–43, November 2017.

[148] F. Mayinger. Classification and Applications of Two-Phase Flow Heat Ex-
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