ABSTRACT

Title of Document:PROTEOMIC CHARACTERIZATION OF
EXOSOMES SHED BY MYELOID-DERIVED
SUPPRESSOR CELLS.Meghan Catherine Burke, Doctor of Philosophy,
2015Directed By:Professor Catherine Fenselau, Department of

Chemistry and Biochemistry

Exosomes are a class of extracellular vesicles that have been shown to contribute to metastasis when derived from tumor cells. Myeloid-derived suppressor cells (MDSC) are an immature population of myeloid cells that accumulate in the tumor microenvironment and inhibit anti-tumor immunity. Given the role of the source cells, it is our hypothesis that MDSC-derived exosomes may contribute to or mediate the effects of MDSC in the tumor microenvironment. The goal of this work is to use mass-spectrometry based proteomics to characterize exosomes produced by MDSC that are induced by 4T1 mammary carcinoma. The protein content of the exosomes will be analyzed to determine if the exosomal proteome is representative of the parental cells or if it reflects active protein sorting.

Increased inflammation in the tumor microenvironment is associated with an increased population of MDSC, which further increases the level of immune suppression. Here, the relative change in abundance of exosomal proteins under a

heightened level of inflammation in the tumor microenvironment will be performed using the spectral count method.

While it is known that exosomes first form through invagination at the plasma membrane, the mechanism(s) through which the protein cargo is sorted into exosomes remains poorly understood. Given the role of ubiquitination in protein localization and trafficking, immunoaffinity enrichment coupled to mass spectrometry has been employed to identify exosomal proteins that carry this modification. Identification of the substrate proteins in MDSC-derived exosomes may provide insight into exosome formation and/or function.

PROTEOMIC CHARACTERIZATION OF EXOSOMES SHED BY MYELOID DERIVED SUPPRESSOR CELLS.

By

Meghan Catherine Burke

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2015

Advisory Committee: Professor Catherine Fenselau, Chair Professor Najib El-Sayed, Dean's Representative Professor Suzanne Ostrand-Rosenberg Professor Paul Paukstelis Professor Shuwei Li © Copyright by Meghan Catherine Burke 2015

Dedication

This work is dedicated to my parents, Catherine and Michael Burke, who have made this possible through their unconditional love and support. To my brother, James Burke, who has taught me the true meaning of sacrifice through his military service.And to Marshall Harris for being a constant source of motivation and encouragement in everything I do. I am truly grateful.

Acknowledgements

I would like to acknowledge my advisor and mentor, Dr. Catherine Fenselau, for her guidance and support during my graduate career. I am grateful for the opportunity to study and train in her research group; she is an incredible role model. I would also like to acknowledge several collaborators who have made this project possible. I would like to thank Dr. Suzanne Ostrand-Rosenberg for providing the MDSC-derived exosomes and her invaluable insight. I am grateful to Dr. Yan Wang, Director of the Proteomics Core Facility, for sharing her knowledge and expertise. I would also like to acknowledge Dr. Nathan Edwards for his assistance with bioinformatics.

I would like to thank my committee members Dr. Najib El-Sayed, Dr. Paul Paukstelis, and Dr. Shuwei Li for their time and fruitful discussions. I am also grateful to all former and current members of the Fenselau research group including Sitara Chauhan, Amanda Lee, Lucia Geis, Yeji Kim, Kate Adams, Mrs. Sara Moran, Dr. Avantika Dhabaria, Dr. Waeowalee Choksawangkarn, and Dr. Joe Cannon. I feel privileged to have had to opportunity to know and work with such an intelligent and talented group of people.

Table of Contents

Dedication	ii
Acknowledgementsi	iii
List of Tables	v
List of Figures	vi
List of Abbreviationsvi	iii
Chapter 1: Introduction <u>Research Significance and Objectives</u> <u>Myeloid-Derived Suppressor Cells</u> <u>Exosomes</u>	.1 .3
Chapter 2: Comparative Exploration of Exosomes from Tumor-induced Immune Suppressive Myeloid-Derived Suppressor Cells (MDSC) (Adapted from reference 16	
Materials and Methods	
Results and Discussion	
<u>Summary</u> 3	\$1
Chapter 3: Ubiquitinated Proteins in Exosomes Exocytosed by Myeloid-derived	
Suppressor Cells (Adapted from reference 21)	33
Introduction	
Materials and Methods	
Results and Discussion	
	
Chapter 4: Conclusions and Prospectus	57
Appendices	50
Bibliography	31

List of Tables

Table 1: Proteins with significantly greater abundance in conventional exosomes (R_{sc}
\geq 1 and FDR \leq 0.05). R _{sc} is reported as the log ₂ ratio of conventional versus
inflammatory exosomes24
Table 2: Proteins with significantly greater abundance in inflammatory exosomes
(Rsc \geq 1 and FDR \leq 0.05). R _{sc} is reported as the log ₂ ratio of inflammatory versus
conventional exosomes
Table 3: Ubiquitinated proteins and peptides identified from in-gel digestion of
exosomal proteins with glycinylglycine-modified lysine residues45

Table 4: Ubiquitinated proteins and peptides identified following immunoaffinityenrichment of tryptic peptides with glycinylglycine-modified lysine residues.......47

List of Figures

Figure 1: Exosome biogenesis
Figure 2: A) Flow cytometry profile of MDSC expression for Gr1 and CD11b. B)
Sucrose density (g/mL) and optical density (OD 280) plots of fractions from sucrose
density gradients containing exosomes from conventional (left) and inflammatory
(right) MDSC13
Figure 3: Transmission electron microscope images of (left) exosomes shed by
conventional MDSC; (middle) exosomes shed by inflammatory MDSC; the TEM
stain itself (right)
Figure 4: Intracellular protein locations assigned by Gene Ontology annotations and
PIR GO Slim. Green: from exosomes from conventional MDSC; Red: from exosomes
from inflammatory MDSC; Blue from lysate of conventional MDSC23
Figure 5: Exosomes shed by MDSC contain S100A8 and S100A9 proteins that are
chemotactic for MDSC. MDSC were plated in the upper compartment of transwells
and either tumor-conditioned medium of MDSC shed exosomes exosomes \pm
antibodies to S100A8 or S100A9 were placed in the lower compartment. The number
of MDSC migrating to the lower compartment was determined after 3 hours of
incubation. Values are the average \pm SD of 3 independent cell counts of duplicate
samples
Figure 6: Exosomes shed by MDSC polarize macrophages from a tumoricidal M1
phenotype to a tumor-promoting M2 phenotype by inhibiting macrophage production
of IL-12. Type 1 macrophages were cultured alone, or in the presence of intact

MDSC or exosomes shed by MDSC. IL-12 production by macrophages was
measured by ELISA
Figure 7: Western blot of lysates from MDSC-derived exosomes. Antibodies used are
(left) anti-ubiquitin 3933, (middle) anti-K48-linked polyubiquitin, and (right) anti-
K63-linked polyubiquitin
Figure 8: Western blot of lysates from MDSC-derived exosomes in the (left) absence
and (right) presence of DUB inhibitor PR-619. Antibodies used are anti-ubiquitin
3933 and anti-K48-linked polyubiquitin44
Figure 9: Tandem mass spectrum of the aberrant tryptic peptide (LIFAGK $_{GG}$)
produced following tryptic digestion of K48-linked ubiquitin dimer51
Figure 10: Protein locations assigned to MDSC-derived exosomal lysate (412
proteins) in grey and the ubiquitinated cohort (50 proteins) in black. Some proteins
have multiple locations
Figure 11: Distribution of (top) grand average of hydropathicity score (GRAVY) and
(bottom) isoelectric point of MDSC-derived exosomal lysate (412 proteins) in grey
and the ubiquitinated cohort (50 proteins) in black

List of Abbreviations

Alix	ALG-2 (apoptosis-linked gene-2)-interacting protein X	
ARF1	ADP-ribosylation factor 1	
DUB	Deubiquitinase	
ESCRT	Endosomal-sorting complex required for transport	
GO	Gene Ontology	
GRAVY	Grand average of hydropathicity	
HMGB1	High mobility group protein B1	
IL-10	Interleukin-10	
IL-12	Interleukin-12	
IL-1β	Interleukin-1β	
IL-6	Interleukin-6	
LC-MS/MS	Liquid chromatography/Tandem mass spectrometry	
LETM1	Leucine zipper EF hand-containing transmembrane protein 1	
MDSC	Myeloid-derived suppressor cells	
PEC	Peritoneal exudate cells	
PVDF	Polyvinylidene fluoride	
R _{sc}	Spectral count ratio	
SDS	Sodium dodecyl sulfate	
Tsg101	Tumor suppressor gene 101	

Chapter 1: Introduction

Research Significance and Objectives

The role of a class of extracellular vesicles, termed exosomes, in the tumor microenvironment is currently an active area of research. Multiple reports have demonstrated that tumor cell-derived exosomes are composed of soluble factors and genetic material that contribute to metastasis.¹ However, the composition and function of exosomes is expected to reflect that of the parent cell.² The tumor microenvironment is composed of many cells that contribute to tumor-induced immune suppression, in addition to tumor cells; therefore, it is our interest to investigate the role of exosomes derived from myeloid derived suppressor cells (MDSC) in intercellular communication in the tumor microenvironment.

MDSC are immature myeloid cells that accumulate in the tumor microenvironment and are present in tumor bearing mice as well as patients with advanced cancer.³⁻⁵ MDSC inhibit anti-tumor immunity through suppression of T cell activation and polarization of macrophages towards a tumor promoting phenotype.^{6, 7} Furthermore, increased inflammation *in vivo* is associated with increased accumulation of MDSC in the tumor microenvironment, which propagates immune suppression.^{8, 9} Several mechanisms of MDSC activity have been associated with suppression of T cell activation, some of which require cell-to-cell contact.⁸⁻¹⁰ It is our hypothesis that extracellular vesicles shed by MDSC may mediate or contribute to

the immune suppressive activity and accumulation of MDSC in the tumor microenvironment.

MDSC produce extracellular vesicles that have all the characteristics¹¹⁻¹³ of exosomes. Electron microscopy experiments by Johnstone and coworkers, who contributed to the discovery of exosomes, have shown that exosomes are formed via invagination of the limiting membrane to form endosomes, which invaginate further to form multivesicular bodies. The multivesicular body fuses with the plasma membrane to release its contents into the extracellular milieu, which are then termed exosomes.^{14, 15} MDSC-derived exosomes used in this work have been provided by Dr. Suzanne Ostrand-Rosenberg.¹⁶ Here, mass spectrometry-based proteomics is used to identify the protein cargo of exosomes from MDSC induced by 4T1 mammary carcinoma (termed "conventional") and 4T1 cells transfected with and expressing interleukin-1β (termed "inflammatory"). Due to the increased suppressive potency of MDSC under heightened inflammatory conditions, quantitative mass spectrometry is also employed to compare protein abundances in exosomes from conventional and inflammatory MDSC.

Ubiquitination has been shown to signal both the internalization of surface proteins and the sorting of proteins into endosomal proteins; both have been proposed as possible mechanisms of exosome biogenesis.¹⁷⁻²⁰ We utilize immunoaffinity enrichment coupled to tandem mass spectrometry to identify ubiquitinated proteins present in exosomes shed by inflammatory MDSC.²¹ Biological assays have demonstrated that MDSC-derived exosomes carry proinflammatory proteins that contribute to the chemotaxis of MDSC and polarization of macrophages towards a

tumor promoting phenotype.¹⁶ Therefore, it is of interest to the community to investigate the nature of the protein cargos of exosomes. The presence of ubiquitinated proteins in exosomes has been previously reported using western blot analyses²²; however, the conjugated proteins were not identified.

Ubiquitin is an 8.5 kDa protein that forms an isopeptide bond though its terminal Gly76 and an ε-amino group of a lysine in a substrate protein or another ubiquitin, which contains seven lysine residues (Lys6, 11, 27, 29, 33, 48, and 63). One of the multiple tryptic cleavage sites in ubiquitin is Arg74, which leaves Gly75 and Gly76 on the modified lysine of a substrate protein or an additional ubiquitin moiety.²³⁻²⁵ This ubiquitin remnant can be identified through tandem mass spectrometry and bioinformatics analysis. Here, bottom up proteomic techniques are used to identify exosomal peptides that contain a glycinylglycine-modified lysine residue. Moreover, Gene Ontology annotations and the UniProt database will be used to look for trends in the cellular location (relative to the parental cell), protein function, size, and pI values of the ubiquitinated proteins. This may provide insight into the role of ubiquitination in exosome formation and/or function.

Myeloid-Derived Suppressor Cells

Chronic inflammation and cancer are associated with an increase in a population of immature myeloid cells.⁴ Activation by pro-inflammatory factors, such as interleukin-6 (IL-6) and interleukin-1 (IL-1 β), inhibit the differentiation of the immature myeloid cell population, termed myeloid-derived suppressor cells (MDSC).⁷ Factors produced by tumor cells, such as IL-6, activate MDSC in the tumor

microenvironment.⁷ Under healthy conditions, myeloid cells from the bone marrow would differentiate into dendritic cells, macrophages, and/or granulocytes; however, the immature MDSC population that accumulates upon activation inhibits both innate and adaptive immunity and promotes tumor progression in the tumor microenvironment.^{6, 26}

Under normal conditions, immature myeloid cells make up approximately 0.5% of mononuclear cells in the blood. However, a ten-fold increase in MDSC has been observed in cancer patients.^{4, 27-29} The role of MDSC in promoting tumor progression inhibits successful immunotherapy in cancer patients.³⁰ The causal relationship between chronic inflammation and tumor progression was first proposed by Virchow in the 1800's; however, the mechanism(s) that mediate this relationship are not completely understood.⁸ Therefore, a reduction in inflammation prior to immunotherapy has been proposed to improve the outcome of immunotherapy.⁹

MDSC skew the immune response and promote tumor progression through multiple activities including the induction of T regulatory cells and polarizing macrophages towards a tumor promoting phenotype.³¹⁻³³ MDSC production of interleukin-10 (IL-10) down-regulates macrophage production of interleukin-12 (IL-12) and skews macrophages from a tumoricidal phenotype to that of a tumor promoting M2-like phenotype.^{32,33} Additional mechanisms of MDSC activity include production of arginase ^{6,8,10,32,34,35} and inducible nitric oxide synthase ^{6,36,37}.

In addition to the pro-inflammatory factors produced by tumor cells, MDSC produce S100 A8 and A9, which are calcium-binding proteins that belong to the S100 protein family.⁴ S100 A8 and A9 are secreted by MDSC and thought to form a

heterodimer that promotes MDSC accumulation in the tumor microenvironment.⁴ In addition to producing the dimer, MDSC contain the N-glycan receptors for S100A8/A9 on their surface, which creates an autocrine feedback loop that ensures accumulation of MDSC in the tumor microenvironment and increased immune suppression.³⁸

Exosomes

Extracellular vesicles produced by cells include shedding microvesicles, apoptotic bodies and exosomes.^{1, 39} Exosomes differ from microvesicles and apoptotic bodies in their size, sucrose density and composition (protein, lipid, and nucleic acids).¹ Extracellular vesicles were originally observed from cartilage in 1969.⁴⁰ However, in 1983 the exosomal biogenesis pathway was described (Figure 1).^{14, 41} Exosomes are membrane-bound vesicles that are first formed through invagination at the plasma membrane to form early endosomes and mature to form intraluminal vesicles (Figure 1 a and b, respectively).¹⁵ Further budding of the endosomal membrane generates multivesicular bodies that can either fuse with lysosomes for degradation or fuse with the plasma membrane to exocytose their contents into the extracellular space (Figure 1 c).¹⁵ Exosomes are reported as 30-100 nm in diameter and contain marker proteins including heat shock protein 70, Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], Tsg101 (tumor suppressor gene 101), and tetraspanins (CD63, CD9, and CD81).^{1, 42}

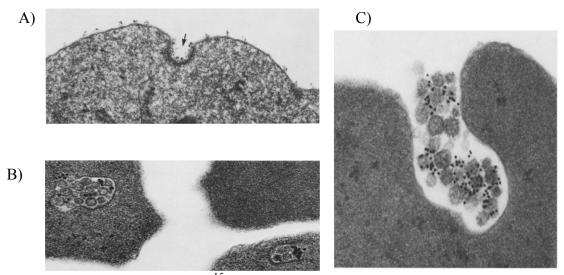


Figure 1. Exosome biogenesis.¹⁵

More recently, a report demonstrated that exosomes derived from Epstein-Barr virus transformed B cells contain major histocompatibility complex (MHC) class II molecules ⁴³ and suggested that exosomes may participate in intercellular communication.⁴⁴ Additionally, exosomes have been shown to promote angiogenesis, induce T regulatory cells, suppress natural killer cells, and inhibit DC maturation.^{45, 46} Together, these functions suggest that exosomes may promote metastasis via the formation of a pre-metastatic niche.^{46, 47, 48}

Exosomes can be purified from the parent cells and other contaminating vesicles present in cell culture through differential centrifugation.^{43, 49, 50} Relatively low speed centrifugations at 300, 200, and 10,000 x g are first performed to eliminate cells, cellular debris, and large extracellular vesicles (greater than 100 nm in diameter).⁵⁰ Ultracentrifugation at 100,000 x g is then performed on the supernatant to obtain an exosome pellet, which may contain extracellular protein. A sucrose

density gradient can be used to further purify the exosomes, since the vesicles are expected to band in the gradient and protein aggregates are expected to sediment.^{43, 50, 51} Together, differential centrifugation and transmission electron microscopy, used to characterize vesicle size and morphology, are considered the gold-standard of exosome purification.^{43, 44} More recently, the use of filtration and purification of exosomes based on classical exosome marker proteins have been increasingly used to obtain exosomes; however, the possibility of variability in the exosomes obtained from these methods has not been verified.¹²

While the biogenesis of exosomes has been reported, ^{14, 41} the exact mechanism of endosomal sorting of protein, lipid, and nucleic acids into exosomes remains unclear. Proteins belonging to the endosomal-sorting complex required for transport (ECSRT) have been identified in exosomes (Alix and Tsg101). Moreover, the exosomal marker proteins CD63 and CD81 have been found to co-purify with the ESCRT protein vacuolar sorting protein 4B (VPS4B) following exosome purification.⁵² The ESCRT pathway is known to participate in intraluminal vesicle and multivesicular body formation.⁵³ It comprises 20 proteins, which make up four complexes. ESCRT-0 protein complex recognizes and traffics ubiquitinated proteins in the endosomal membrane, which is followed by membrane deformation by the ESCRT-1 and -II complexes. The ESCRT-III complex participates in membrane scission, releasing the intraluminal vesicle.^{54, 55} Due to the overlap in endosomal and exosomal formation, including intraluminal vesicles and multivesicular bodies, it has been highly speculated that the ESCRT may participate in protein trafficking into exosomes. However, gene silencing of four ESCRT proteins (HRS, STAM, Tsg101,

and VPS4B) does not completely abolish multivesicular body formation.⁵⁶ This suggests that perhaps only part of the ESCRT pathway participates in exosome formation and/or other mechanisms may also participate in the protein sorting and vesicle formation.⁵³

Additional mechanisms that have been reported to affect exosome formation and/or release include high luminal concentration of calcium and higher-order oligomerization of plasma membrane proteins.57,44 An increase in luminal calcium concentration has been shown to increase exosome production in erythroleukemia cell line K562, ⁵⁸ oligodendroglial cells, ⁵⁹ dendritic cells ⁶⁰ and mast cells.⁶¹ Additionally, higher-order oligomerization has been shown to target plasma membrane proteins to exosomes.⁵⁷ This result is consistent with the original work on exosome formation in maturing reticulocytes, in which aggregation of the transferrin receptor corresponds to sites of exosome formation.^{57, 62} Interestingly, unlike an ESCRT-dependent formation, higher order oligomerization is independent of protein sequence and function.⁵⁷ Collectively, in addition to the potential role of the ESCRT pathway in exosome formation, evidence suggests that the luminal calcium concentration and higher-order oligomerization may also participate in the formation of intraluminal vesicles and multivesicular bodies that exocytose their contents into the extracellular space.

In addition to studying the mechanisms of protein trafficking into exosomes, another active area of research includes the RNA that is sorted into exosomes. In 2007, Valadi and coworkers reported the presence of messenger RNA (mRNA) and microRNA (miRNA) in exosomes.⁶³ Even more interesting is that exosomes obtained

from mice were able to transfer functional mRNA to human cells.⁴⁴ Since 2007, additional reports have demonstrated the presence of ribosomal RNA, mRNA, and noncoding RNAs including miRNA.⁶⁴ Due to previous observations that exosomes may mediate communication in the tumor microenvironment through chemokines and growth factors, ⁶⁴ a new question is raised whether exchange of genetic material (miRNA) may also contribute to metastasis.⁶⁵⁻⁶⁷

Due to the promising role of exosomes in intercellular communication, another area of active research is the use of exosomes in clinical research. Exosomes are considered a promising candidate for clinical use due to their stability in circulation^{64, 68} and a protein cargo that impedes exosome degradation.⁶⁹ Recently, mesenchymal stem cell-derived exosomes have been shown to reduce infarct size in mice.⁶⁴ Additionally, extracellular vesicle-based cancer vaccines are currently being evaluated in Phase I clinical trials and dendritic cell-derived extracellular vesicles will be evaluated for non-small-cell lung cancer in Phase II clinical trials.^{64, 70} While the application of exosomes as cancer vaccines is promising, much still remains to be learned regarding the mechanisms of exosome formation and function.

Chapter 2: Comparative Exploration of Exosomes from Tumor-Induced Immune Suppressive Myeloid-Derived Suppressor Cells (MDSC) (Adapted from reference 16)

Introduction

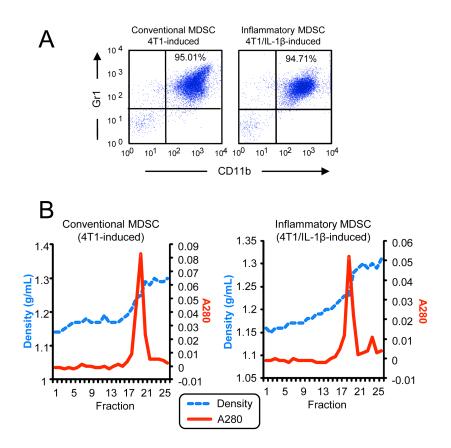
In order for tumors to establish metastasis, tumor cells must evade the immune system.^{46,47} Myeloid-derived suppressor cells have previously been shown to promote tumor growth through suppression of T cell activation and polarization of macrophages towards a tumor promoting phenotype.^{6,7} However, exosomes have also demonstrated potential to contribute to metastasis through their ability to transfer proteins and RNA to recipient cells.^{46, 71} Moreover, the ability of tumor cells to thrive is dependent upon communication between the tumor cells and the neighboring tissue and extracellular matrix.⁷¹ It is possible that, in addition to tumor cell-derived exosomes, exosomes produced by cells present in the tumor microenvironment, such as MDSC, may contribute to tumor growth and metastasis. Tumor cell-derived exosomes in a mouse glioblastoma xenograft model have been shown to promote tumor growth.⁷² Therefore, it is our goal to determine how exosomes derived from MDSC may also contribute to tumor growth in BALB/c mice carrying 4T1 mammary carcinoma using mass spectrometry-based proteomics.

As discussed earlier, increased inflammation is associated with an increase in MDSC accumulation and thereby increased immune suppression.^{8,9} However, the mechanisms through which MDSC promote tumor progression are not completely

understood.⁸ It has been shown that MDSC activity requires cell-to-cell contact and/or soluble mediators.⁸⁻¹⁰ It is our hypothesis that MDSC-derived exosomes may contribute to MDSC accumulation and immune suppression in the tumor microenvironment through mediating intercellular communication. Therefore, the identification of MDSC-derived exosomal proteins whose abundance is significantly altered due to heightened inflammation is expected to provide insight into the role of exosomes in the tumor microenvironment.

Mass spectrometry-based proteomics is ideal for investigating the role of exosomes in the tumor microenvironment as proteins participate in most clinical conditions.⁷³ Additionally, changes in protein abundance do not correlate with mRNA abundance.^{74,75} In order to compare the effect of heightened inflammation on protein abundance, available quantitation methods include stable isotope labeling (either metabolic or chemical tags) and label-free quantitation, which utilizes peptide precursor ion intensity or spectral counts.⁷⁴ It is believed that isotopic-labeling methods provide more accuracy, while label-free methods offer greater proteome coverage.⁷⁴ In this study, the spectral count method has been used to identify proteins with altered abundance under heightened inflammatory conditions.

The spectral count method is based on the assumption that the frequency at which a precursor peptide is selected for fragmentation correlates to the peptide, and therefore protein, abundance. The spectral count method requires that care is taken to avoid assigning identified peptides to multiple proteins, which would significantly alter peptide and protein quantitation.⁷⁴ Therefore, we have chosen to calculate spectral count ratios in this work with the requirement that each protein identification


contain at least two distinct, unshared peptides and each unique peptide is assigned to only one protein.

Here, mass spectrometry-based proteomics followed by spectral count quantitation is used to identify differentially abundant exosomal proteins due to heightened inflammation in the tumor microenvironment. The results from this analysis will allow us to ask if the exosomal proteins identified reflect the known immunosuppressive function of the source cells, MDSC. Moreover, is it possible that the MDSC-derived exosomes can contribute to this activity in the tumor microenvironment? If so, this would provide evidence that the role of exosomes in the tumor microenvironment should be considered as potential obstacles to immunotherapy.

Materials and Methods

Myeloid-Derived Suppressor Cells

BALB/c mice were injected in the mammary fat pad with 7000 wild type 4T1 mammary carcinoma cells or 4T1 cells stably transfected and expressing IL-1 β as described. When tumors were greater than ~8mm in diameter (~3-4 weeks after initial inoculation), MDSC were harvested from the blood and monitored by immunofluorescence and flow cytometry for purity by expression of the MDSC markers Gr1 and CD11b (**Figure 2**).⁸ MDSC used in experiments were >90% Gr1⁺CD11b⁺. MDSC induced by wild type 4T1 and 4T1/IL-1 β tumor cells are termed "conventional" and "inflammatory" MDSC, respectively. All procedures with animals and animal-derived materials were approved by the UMBC and UMCP Institutional Animal Care and Use Committees.

Figure 2: A: Flow cytometry profile of MDSC expression for Gr1 and CD11b. B: Sucrose density (g/mL) and optical density (OD 280) plots of fractions from sucrose density gradients containing exosomes from conventional (left) and inflammatory (right) MDSC.

Exosomes

Purified MDSC obtained from 2 or 3 mice ($\sim 1 \times 10^8$ MDSC for each experiment) were plated at 4 x 10⁶ cells/mL in serum-free HL-1 medium (BioWhittaker, Walkersville, MD) and maintained at 37 °C with 5% CO₂. After 16 hours the cultures were centrifuged at 805 x g for 5 min (Eppendorf 5810R centrifuge), the pellets discarded, and the supernatants centrifuged at 2090 x g for 30 min (Sorvall RC5C, SS34 rotor). The supernatants were then ultracentrifuged (Beckman L8 ultracentrifuge) at 100,000 x g for 20 hours at 10 °C using an SW40Ti rotor. Supernatants were discarded, the pellets containing the exosomes were resuspended in PBS, and absorbances were measured at 260 and 280 nm. Protein content was assayed by Bradford Quick Start according to the manufacturer's directions (BioRad). Exosomes were stored at -80 °C until used. For migration experiments, exosomes were resuspended to the original volume of the conditioned medium from which they were obtained so a direct comparison of the effects of exosomes versus conditioned medium could be made. For the MDSC-macrophage cross-talk experiments, exosomes were used at 1x, 2.5x, and 5x concentrations. On average, 1 mL of conditioned medium contained 714 μg of exosomal protein.

Sucrose Density Gradient Fractionation of Exosomes

Freshly prepared ultracentrifuged exosomes were resuspended in 1.8-2.0 mL of 2.5 M sucrose/0.020 M Hepes and layered on the bottom of 9/16 in. x 3 ³/₄ in. polyallomer ultracentrifuge tubes (Beckman). A 10 mL gradient of 0.25 to 2.0 M sucrose in 0.020 M Hepes was then layered over the 2 mL containing exosomes for a total volume of 11.8-12 mL. Gradients were ultracentrifuged (Beckman L8 ultracentrifuge) at 10 °C for 16 hours at 100,000 x g in an SW40Ti rotor. Then, 0.5 mL fractions were collected and assessed by optical density (**Figure 2**). Density of the fractions was confirmed by refractometry.

Transmission Electron Micrographs

An aliquot of exosomes containing 0.03-0.3 pg total protein was suspended in 2% glutaraldehyde and was applied to a Formvar-coated grid and negatively stained with uranyl acetate. Electron micrographs were acquired using a Zeiss EM10 transmission electron microscope at an accelerating voltage of 80 keV.

Protein Analysis for In-solution Tryptic Digestion

Aliquots of conventional and inflammatory exosomes containing 25 μ g of total protein were lysed in 8 M urea in 50 mM ammonium bicarbonate and 1% of a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). The exosomes in lysis buffer were centrifuged at 14,000 x g for 30 minutes with a 3 kDa molecular weight cutoff filter, and the supernatants were discarded. The process was repeated three times with the retentate from the previous wash step. After lysis, fifty millimolar ammonium bicarbonate was added to each sample to dilute the final urea concentration to >0.8 M, which is compatible with tryptic digestion. Each sample was then reduced in 20 mM dithiothreitol at 56 °C for 30 minutes followed by alkylation in 40 mM iodoacetamide at room temperature in the dark for 30 minutes. Three technical replicates of 7 μ g total protein were analyzed by LC-MS/MS (using HPLC-MS/MS parameters outlined below) for three biological replicates each for conventional and inflammatory exosomes.

HPLC-MS/MS Analysis

LC-MS/MS analyses were performed on a Shimadzu Prominent nanoHPLC (Shimadzu BioSciences, Columbia, MD) in-line with an LTQ Orbitrap XL (Thermo Fisher Scientific, San Jose, CA). Peptides prepared via tryptic digestion were injected onto an Acclaim PepMap 300 C18 precolumn (Dionex, Sunnyvale, CA) followed by desalting by 10% Solvent A (97.5% H₂O, 2.5% ACN, and 0.1% formic acid) for 20 minutes. Peptides were fractionated on a C-18 analytical column (Grace Vydak, Deerfield, IL) with a linear gradient increasing from 0 to 40% solvent B (97.5% ACN, 2.5% H₂O, and 0.1% formic acid) in 170 minutes, followed by an increase

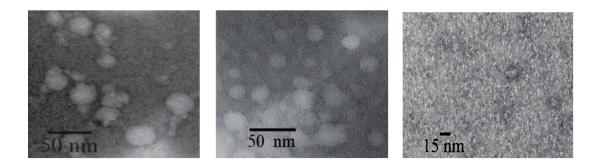
from 40% to 85% solvent B in 40 minutes. Flow rate was 500 nL/min. Precursor scans were acquired in the orbitrap with a resolution of 30,000 at m/z 400. In each cycle the nine most abundant ions were selected for fragmentation by collisional induced dissociation (CID), and product ion scans were acquired in the LTQ. A dynamic exclusion of 1 repeat count over 180 seconds was used.

Bioinformatics

Peptides and proteins were identified by the PepArML meta-search engine⁷⁶ using the mouse reference proteome of the UniProtKnowledgeBase (June 2013) containing 50,807 sequences. Carbamidomethylation of cysteine was selected as a fixed modification, and oxidation of methionine and deamidation of asparagine and glutamine residues were selected as variable modifications. Peptide identifications from technical and biological replicates were pooled and filtered at 1% spectral FDR, as computed by PepArML using the method of Elias and Gygi, ⁷⁷ and identified proteins were required to contain at least two distinct, unshared peptides, ensuring protein FDR of at most 0.01%. Spectral counts for identified proteins, spectral count ratios (R_{sc}) as described in Old et al., ⁷⁸ and statistical significance for differential spectral counts were determined using in house software. Differential spectral count p-values were computed using the Fisher exact-test and corrected for multiple testing by transformation to false-discovery-rate (FDR) using the method of Benjamini and Hochberg.⁷⁹ Identified proteins are assigned to cellular components according to their Gene Ontology annotations and the PIR GO Slim.

MDSC Chemotaxis

Cells used in the chemotaxis assay were >90% Gr1⁺CD11b⁺ conventional MDSC as assessed by flow cytometry.³⁵ Five hundred microliters of fresh media, media from MDSC cultures (conditioned media), or MDSC-derived exosomes from the equivalent amount of conditioned medium in fresh media were placed in individual wells of 24-well plates (lower compartment). Monoclonal antibodies to S100A8, S100A9, or irrelevant control isotype matched antibodies (10 µg/500 µL; Santa Cruz Biotech) were included in some wells. Transwells with an 8 µm polycarbonate semipermeable membrane were then inserted in each well, and 1x10⁶ MDSC in 100 µL of serum-free IMDM medium were placed in the transwells (upper compartment). Assembled transwells were incubated at 37 °C in 5% CO₂ for 3 hours, and the MDSC in the bottom chamber were then quantified by hemocytometer. Values for each sample are the average results of duplicate samples and three independent hemocytometer counts per well.³⁸


MDSC-Macrophage Cross-Talk

BALB/c mice were injected intraperitoneally with 1 mL of 3% thioglycolate, and peritoneal exudate cells (PEC) were harvested 4 days later. The percent of macrophages in the exudate was determined by flow cytometry analysis of the macrophage markers F4/80 and CD11b. PEC were plated in 24-well plates at 7.5 x 10^5 F4/80⁺CD11b⁺ cells/well/500 µL DMEM medium supplemented with 10% fetal bovine serum and incubated at 37 °C in 5% CO₂ for 3 hours. Non-adherent cells (non-macrophages) were then removed, and the attached macrophages were washed with macrophage medium (DMEM/5% serum). Five hundred microliters of macrophage medium containing 7.5 x 10^5 conventional MDSC (>90% Gr1⁺CD11b⁺

cells) or MDSC-derived exosomes from 7.5×10^5 (1X), 18.7×10^5 (2.5X), or 37.5×10^5 (5X) MDSC were then added to each well. MDSC and macrophages were activated with IFN γ and LPS and co-cultured at a ratio of 1:1 (5×10^5 cells of each type/200 μ L/well) for 18 hours. Supernatants were harvested and assayed by ELISA for interleukin-12 (IL-12).⁹

Results and Discussion

Cells produce several types of extracellular vesicles including exosomes, shedding microvesicles, and apoptotic bodies. Differential centrifugation is used to separate exosomes from their parental cells as well as larger extracellular vesicles (greater than 100 nm in diameter). However, further characterization is required in order to determine if the purified extracellular vesicles meet the criteria of exosomes.⁴³ After sucrose density gradient purification, MDSC-derived exosomes, prepared by Dr. Suzanne Ostrand-Rosenberg's laboratory at the University of Maryland Baltimore County, were further characterized using transmission electron microscopy. The purified MDSC-derived vesicles from both conventional and inflammatory MDSC equilibrate at a sucrose density of 1.2-1.3 g/mL (Figure 2) and are approximately 25-30 nm in diameter (Figure 3). The transmission electron micrograph images of both conventional and inflammatory exosomes reveal vesicles of similar diameter and morphology. The control grid shown in Figure 3 prevents the 15 nm artifacts from the negative staining from being considered as vesicles. Together, the sucrose density and diameter of the vesicles is consistent with the published characteristics of exosomes.^{11-13, 80}

Figure 3: Transmission electron microscope images of (left) exosomes shed by conventional MDSC; (middle) exosomes shed by inflammatory MDSC; the TEM stain itself (right).

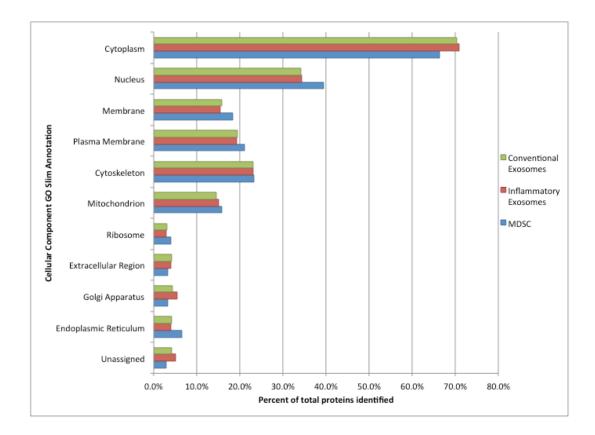
In order to compare the amount of exosomes produced by conventional and inflammatory MDSC, the total amount of exosomal protein was normalized for the number of MDSC cells used in each preparation. The amount of exosomes produced per cell, expressed as the amount of exosomal protein (μ g) per MDSC cell, was $[1.1 \pm 0.1] \times 10^{-6}$ (n=4) and $[1.2 \pm 0.2] \times 10^{-6}$ (n=4) for conventional and inflammatory MDSC, respectively. The similar ratios demonstrate that conventional and inflammatory MDSC produce the same amount of exosomes on a per cell basis.

Next, mass spectrometry-based proteomics was used to identify peptides, and therefore proteins, present in conventional and inflammatory exosomes from three biological replicates, each with three technical replicates. Three hundred and eighty seven proteins were identified (from 2528 peptides) in exosomes from conventional MDSC (Appendix Table 1), and 374 proteins were identified (from 2280 peptides) in exosomes from inflammatory MDSC (**Appendix Table 1**). Together, a total of 412 unique proteins were identified in both conventional and inflammatory exosomes. This inventory was compared with several databases of exosomal proteins in order to evaluate the number of proteins in MDSC-derived exosomes that have been previously reported in exosomes from other cell types. ExoCarta was the first exosomal database established by Mathivanan and Simpson.⁸¹ Approximately 83% of the proteins identified in MDSC-derived exosomes are present in the ExoCarta compendium (August 2013). Another resource is EVpedia, which was developed by Kim et al.⁸² Approximately 87% of the proteins identified in MDSC-derived exosomes have been reported in EVpedia (August 2013). Lastly, Kalra and Mathivanan et al. have also developed a compendium for proteins from all types of extracellular vesicles, called Vesiclepedia.⁸³ When compared to the general database of vesicular proteins, about 93% of the proteins identified in MDSC-derived exosomes are also present in Vesiclepedia. Proteins identified in MDSC-derived exosomes that have not previously been reported in ExoCarta, EVpedia, or Vesiclepedia are listed in Appendix Table 2.

Among the inventory of 412 exosomal proteins identified in this study, several proteins considered to be characteristic of exosomes were observed. These proteins include annexins (A1, A2, A3, A6, A7, A11) and tetraspanins, including CD177 as well as GTPases, NCK microfibrils (NCK associated protein 1 like), heat shock proteins (heat shock cognate 71 kDa protein, heat shock 70 kDa protein 4, and HSP90 alpha and beta) and cytoskeletal proteins. Another protein of interest includes vacuolar-sorting protein 35 (VPS35), which is a member of the endosomal sorting complex required for transport. This pathway has been proposed to play a role in exosome formation.

Additional proteins of interest identified in MDSC-derived exosomes include several proteins belonging to the 26S proteasome. These proteins include 26S protease regulatory subunit 6A, 26S proteasome non-ATPase regulatory subunits 1, 2, 5, 6, 7, 11, and 13, proteasome subunit beta type-2, and proteasome subunit alpha type-6. Proteasomal subunits have also been observed in extracellular vesicles produced by T lymphocytes and have been shows to be proteolytically active.⁸⁴

Interestingly, more than a dozen histones were identified in MDSC-derived exosomes as well as several elongation factors (1-gamma, 1-alpha 1 and 2), DNA topoisomerase, RNA helicase (ATP-dependent RNA helicase DDX39A) and a zinc finder protein (DBF-type zinc finger-containing protein 2 homologue). Recently, the high abundance of histones and other transcription-related proteins has gained attention from the exosome community.⁸⁵ It has been proposed that the transcription factors present in exosomes may alter signaling pathways in a way that enables disease progression or tumor growth or that perhaps the presence of nucleic acid binding proteins is required to allow the nucleic acids to fit within the limited space of exosomes.⁸⁵ The high abundance of histones and nucleic acid binding proteins in exosomes from various cell types highlights the need for further investigation of nucleic acid binding proteins in exosomes.


Several metabolic proteins have also been identified in MDSC-derived exosomes belonging to the pentose phosphate pathway. These proteins include glucose-6-phosphate 1-dehydrogenase X, 6-phosphogluconate dehydrogenase, and transketolase. Additionally, several proteins belonging to the glycolysis and gluconeogenesis pathways were identified (pyruvate kinase PKM, glucose-6-

phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, alpha-enolase, Llactate dehydrogenase A chain, fructose-bisphosphate aldolase, phosphoglycerate kinase 1, glycogen phosphorylase liver form, and glycogenin-1). These metabolic proteins have also been reported in exosomes derived from other cell types and are present in the exosomal databases.⁸¹⁻⁸³

In addition to proteins previously observed in exosomes, proteins were identified in MDSC-derived exosomes that are critical for MDSC function and the proinflammatory response. Proteins S100A8 and S100A9 have been identified in MDSC-derived exosomes and are known to drive MDSC accumulation and immune suppression in the tumor microenvironment.^{38, 86} Additionally, myeloid bactenecin was identified, which has previously been reported to interact with immune cells and participate in the inflammatory response.⁸⁷

In order to determine if the exosomal cargo of exosomes is representative of the parent cell or enriched for a subset of proteins, the cellular component GO annotations for the protein identifications for the conventional and inflammatory exosomes were compared to those belonging to 305 proteins identified in whole cell lysate analysis of conventional MDSC.⁸⁸ The cellular component GO annotations ascribed to exosomal proteins are relative to the parent cell, MDSC, as the exosomes do not contain organelles. The distribution of cellular component GO annotations for conventional and inflammatory exosomes shown in **Figure 4** illustrates that the protein content of the exosomes is similar. When the conventional and inflammatory exosomes are compared to the conventional MDSC, the distribution is similar with exceptions including nuclear and endoplasmic reticulum proteins. The exosomes

contain a greater abundance of nuclear proteins, including the histones and transcription factors described earlier.

Figure 4: Intracellular protein locations assigned by Gene Ontology annotations and the PIR GO Slim. Green: from exosomes from conventional MDSC; Red: from exosomes from inflammatory MDSC; Blue: from lysate⁸⁸ of conventional MDSC.

While the protein content of the conventional and inflammatory exosomes is similar, the spectral count method was used to determine how heightened inflammation in the tumor microenvironment alters protein abundance in the exosomes. Sixty-three of the 412 proteins (**Appendix Table 1**) identified in conventional and inflammatory exosomes were found to differ in abundance by two fold or more (FDR ≤ 0.05). From the cohort of 63 proteins with altered protein abundance, 33 were found to decrease by at least two fold under heightened inflammatory conditions (**Table 1**). Several of the proteins with decreased abundance participate in the innate immune response including ficolin-1, C4b-binding protein, Chitinase-3-like protein 3, complement C3, and CD5 antigen-like proteins. Additional proteins of interest include cytoskeletal proteins spectrin beta 1, ankyrin-1, tubulin beta-1 chain, and nesprin-1. Ankyrins anchor transmembrane proteins and link them to the spectrin-actin cytoskeleton and participate in cell motility and intercellular communication.^{89,90} Chemotactic proteins with decreased abundance include myeloid cysteine-rich protein and platelet factor 4. Together, the decrease in cytoskeletal and chemotactic proteins make it tempting to speculate that inflammation may alter proteins that participate in intercellular communication.

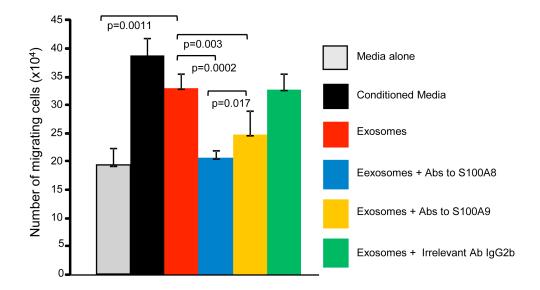
Table 1: Proteins with significantly greater abundance in conventional exosomes ($R_{sc} \ge 1$ and FDR ≤ 0.05). R_{sc} is reported as the log₂ ratio of conventional versus inflammatory exosomes.

Accession	Protein	R _{SC}	FDR
P70390	Short stature homeobox protein 2	8.6	6.26E-157
P04919	Band 3 anion transport protein	6.4	5.05E-32
P08032	Spectrin alpha chain, erythrocytic 1	5.6	7.16E-19
Q8CIZ8	von Willebrand factor	4.8	3.56E-10
P08226	Apolipoprotein E	4.6	5.86E-09
Q61171	Peroxiredoxin-2	4.4	1.53E-07

Q9QUM0	Integrin alpha-IIb	4.3	6.14E-07
P01837	Ig kappa chain C region	3.7	1.28E-04
P29788	Vitronectin	3.3	1.50E-03
P49722	Proteasome subunit alpha type-2	3.3	1.50E-03
Q02357	Ankyrin-1	3.3	1.50E-03
Q3UGX2	Spectrin beta 1	3.3	1.50E-03
Q8K482	EMILIN-2	3.3	1.50E-03
Q9QWK4	CD5 antigen-like	3.0	9.63E-03
Q07797	Galectin-3-binding protein	2.8	1.74E-02
P11276	Fibronectin	2.7	3.08E-124
O70165	Ficolin-1	2.7	2.95E-02
P08607	C4b-binding protein	2.6	4.68E-03
P10605	Cathepsin B	2.5	8.26E-03
P07724	Serum albumin	2.5	7.87E-22
Q61646	Haptoglobin	2.1	1.08E-03
P01942	Hemoglobin subunit alpha	2.1	9.53E-47
P01872	Ig mu chain C region secreted form	2.1	7.19E-13
O35744	Chitinase-3-like protein 3	2.0	8.90E-05
P35441	Thrombospondin-1	1.9	4.55E-14
Q6ZWR6	Nesprin-1	1.9	1.54E-02
P62259	14-3-3 protein epsilon	1.5	6.12E-03
P82198	Transforming growth factor-beta-induced protein ig- h3	1.5	1.04E-02
Q8C2Q7	Heterogeneous nuclear ribonucleoprotein H	1.5	4.89E-02
A2AQ07	Tubulin beta-1 chain	1.5	1.88E-03
P02089	Hemoglobin subunit beta-2	1.4	2.67E-10
P01027	Complement C3	1.3	4.62E-08

P02088	Hemoglobin subunit beta-1	1.3	5.26E-15
Q8K426	Myeloid cysteine-rich protein	1.3	2.59E-02
Q9Z126	Platelet factor 4	1.1	4.71E-03
Q9R1P3	Proteasome subunit beta type-2	1.0	2.41E-02

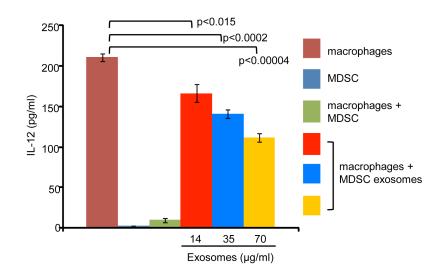
Thirty exosomal proteins were found to increase in abundance (Table 2) due to heightened inflammation. Several GTP and ATP binding proteins were found to increase by at least two fold, which includes ATP-citrate synthase, ADP-ribosylation factor 1 (ARF1), and phosphatidylinositol 4-phosphate 3-kinase C2 domain containing subunit gamma. Interestingly, ADP-ribosylation factors, including ARF1, have been shown to participate in membrane curvature and budding to form extracellular vesicles.^{91,92} Three proteins that participate in chemokine signaling that were identified include mitogen-activated protein kinase 3, cell division control protein 42 homolog and signal transducer and activator of transcription. Additional proteins of interest that were found to increase in abundance due to heightened inflammatory conditions are the biosynthetic proteins serine-tRNA ligase cytoplasmic, valine-tRNA ligase, aminopeptidase B, fatty acid synthase, ATP-citrate synthase, and elongation factor 1-gamma. Lastly, the vacuolar sorting-associated protein 35 was also found to increase in abundance, which is of interest because this protein participates in protein sorting.⁹³


Table 2: Proteins with significantly greater abundance in inflammatory exosomes (Rsc \geq 1 and FDR \leq 0.05). R_{sc} is reported as the log₂ ratio of inflammatory versus conventional exosomes.

Accession	Protein	R _{SC}	FDR
Q5SS00	DBF4-type zinc finger-containing protein 2 homolog	3.6	1.48E-03
Q8VDP4	DBIRD complex subunit KIAA1967 homolog	3.1	1.39E-02
E9QQ35	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit gamma	3.1	1.10E-03
P12970	60S ribosomal protein L7a	3.0	2.29E-02
P84078	ADP-ribosylation factor 1	3.0	2.29E-02
P62908	40S ribosomal protein S3	2.8	4.49E-03
P08730	Keratin, type I cytoskeletal 13	2.8	3.76E-02
Q6ZQA0	Neurobeachin-like protein 2	2.8	3.76E-02
P26638	SerinetRNA ligase, cytoplasmic	2.4	3.10E-02
P42227	Signal transducer and activator of transcription 3	2.4	3.10E-02
Q9D154	Leukocyte elastase inhibitor A	2.4	2.75E-05
Q9Z1Q9	ValinetRNA ligase	2.2	7.61E-05
Q8VCT3	Aminopeptidase B	2.0	1.48E-03
P84096	Rho-related GTP-binding protein RhoG	1.9	1.91E-03
P42932	T-complex protein 1 subunit theta	1.8	3.28E-02
O88593	Peptidoglycan recognition protein 1	1.8	4.31E-03

Q99KE1	NAD-dependent malic enzyme, mitochondrial	1.8	2.29E-02
O55029	Coatomer subunit beta'	1.7	1.49E-02
Q9EQH3	Vacuolar protein sorting-associated protein 35	1.7	9.63E-03
Q9CWJ9	Bifunctional purine biosynthesis protein PURH	1.6	1.48E-03
P80315	T-complex protein 1 subunit delta	1.5	2.40E-02
P19096	Fatty acid synthase	1.4	4.22E-03
P28293	Cathepsin G	1.3	1.72E-04
Q63844	Mitogen-activated protein kinase 3	1.2	3.10E-02
P60766	Cell division control protein 42 homolog	1.2	1.49E-02
Q8CCK0	Core histone macro-H2A.2	1.2	1.91E-03
Q9Z1Q5	Chloride intracellular channel protein 1	1.2	1.01E-02
Q9D8N0	Elongation factor 1-gamma	1.2	6.62E-03
Q91V92	ATP-citrate synthase	1.1	2.40E-02
P62827	GTP-binding nuclear protein Ran	1.0	1.15E-03

While the abundance of approximately 15% of the 412 proteins identified was found to differ by at least two-fold or more, two proteins of interest whose abundances were not found to differ due to heightened inflammation include proteins S100A8 and S100A9. These proteins are secreted by MDSC and are believed to form a heterodimer and drive the accumulation of MDSC, thereby increasing the immune suppression, at sites of inflammation including the tumor microenvironment.^{4,86} Proteins S100A8 and S100A9 have also been shown to contribute to polarization of tumoricidal macrophages to that of a tumor promoting phenotype.⁷


Because proteins S100A8 and S100A9 play a significant role in MDSC function and have been shown to be secreted extracellularly by MDSC, Dr. Suzanne Ostrand-Rosenberg's laboratory sought to determine if the extracellular S100A8 and S100A9 were actually active in the form of exosomes. The activity of S100A8 and S100A9 in MDSC-derived exosomes was assayed for MDSC chemotaxis and polarization of macrophages. The chemotaxis of MDSC by MDSC-derived exosomes was determined by measuring the number of MDSC migrating from the upper chamber of a transwell containing a semipermeable membrane to the lower chamber containing MDSC-derived exosomes (Figure 5). The MDSC-derived exosomes co-cultured with MDSC (upper chamber) were chemotactic for MDSC, approximately greater than 90% as chemotactic as the MDSC conditioned medium. When antibodies to S100A8 and S100A9 were added to MDSC-derived exosomes, a decrease in MDSC chemotaxis was observed. The decrease in chemotaxis due to the presence of the antibody for S100A8 is consistent with that for media alone. Together, the results indicate that MDSC-derived exosomes contain biologically active S100A8 and S100A9 that are chemotactic for MDSC. When the chemotaxis due to the MDSC-derived exosomes is compared to that of the conditioned media, the results suggest that most of the extracellular S100A8 and S100A9 is in the form of exosomes.

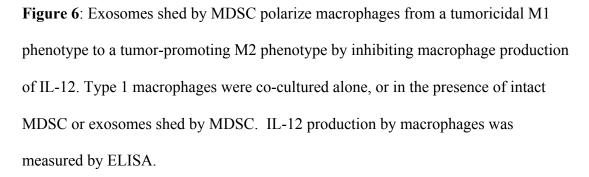


Figure 5: Exosomes shed by MDSC contain S100A8 andS100A9 proteins that are chemotactic for MDSC. MDSC were placed in the upper compartment of transwells and either tumor-conditioned medium or MDSC shed exosomes \pm antibodies to S100A8 or S100A9 were placed in the lower compartment. The number of MDSC migrating to the lower compartment was determined after 3 hours of incubation. Values are the average \pm SD of 3 independent cell counts of duplicate samples.

In addition to chemotaxis of MDSC, S100A8 and S100A9 contribute to the polarization of macrophages towards a tumor-promoting phenotype. This polarization is attributed to cross-talk between MDSC and tumoricidal (or M1) macrophages. MDSC produce IL-10, which decreases macrophage production of IL-12, resulting polarization of M1 macrophages towards a tumor promoting (or M2-like) phenotype.⁷ Here, the production of IL-12 by macrophages co-cultured with 7.5x10⁵ conventional MDSC or MDSC-derived exosomes from 1x, 2x, and 5x conventional MDSC was measured using ELISA by the laboratory of Dr. Suzanne

Ostrand-Rosenberg. The results of the IL-12 assay indicate that MDSC-derived exosome contribute to the polarization of macrophages towards an M2-like phenotype, and this polarization correlates positively with the concentration of exosomes. However, the MDSC cells are more effective, on a per cell basis, than the exosomes.

<u>Summary</u>

Mass spectrometry-based proteomics has been used to analyze the protein content of exosomes produced by MDSC and how conditions in the tumor microenvironment alter the relative protein abundance. A total of 412 proteins have been identified in exosomes from both conventional and inflammatory MDSC, which is similar to the protein content of the source cells. Highly abundant proteins were found to include histones, proteins that participate in metabolism, as well as the proinflammatory proteins S100 A8 and S100A9. While the total number of vesicles was not statistically different due to heightened inflammation in the tumor microenvironment, approximately 15% of the proteins identified were differentially abundant by 2-fold or more. Proteins that were found to increase in abundance include coatomer subunit beta and vacuolar protein sorting-associated protein 35, which are reported to participate in membrane budding and protein sorting, respectively.

Though highly abundant in the exosomes, the relative abundances of proteins S100A8 and S100A9 were not found to change by at least 2-fold due to heightened inflammation. However, biological assay results demonstrate that the exosomes contain biologically active S100A8 and S100A9 that accounts for approximately 90% of the activity that is observed in conditioned medium. Collectively, the biological assays illustrate the immunosuppressive activity associated with the MDSC is also mediated by the exosomes they produce. While MDSC are reported to inhibit successful immunotherapy in cancer patients,³⁰ the ability of exosomes to contribute to immune suppression suggests that extracellular vesicles may also need to be considered as obstacles to successful treatment.

Chapter 3: Ubiquitinated Proteins in Exosomes Exocytosed by Myeloid-derived Suppressor Cells (Adapted from reference 21)

Introduction

Exosomes are formed through the invagination of the plasma membrane to form early endosomes that mature into late endosomes, which are multivesicular bodies that contain intraluminal vesicles.^{44, 94} While the overall pathway of exosome formation has previously been reported, the mechanism(s) through which protein, lipid, and RNA are sorted into exosomes remains poorly understood.^{1,95} Interestingly, exosomes from multiple parental cell types are found to be enriched, relative to their parental cells, in Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X] and Tsg101 (tumor suppressor protein 101) proteins, which are known to participate in the endosomal sorting complex required for transport (ESCRT).¹ ESCRT protein complexes participate in the sorting proteins at the endosomal limiting membrane.⁵² which requires recognition of ubiquitinated proteins. The identification of ESCRTrelated proteins in exosomes^{1, 22,53} and the overlapping pathways that participate in endosome formation between the ESCRT-dependent recycling of cell surface receptors and exosome formation has led to the speculation that exosome formation may be, at least in part, dependent on the ESCRT pathway. Moreover, gene silencing of four proteins from ESCRT-0 and ESCRT-I protein complexes has been shown to alter exosome secretion.⁵³

As mentioned earlier, the ESCRT pathway is dependent on the recognition of ubiquitinated proteins through ubiquitin interaction motifs.²⁰ Ubiquitin is a protein of approximately 8.5 kDa and forms an isopeptide bond through its C-terminal Gly76 and an ε -amino group of a lysine belonging to another ubiquitin moiety or a substrate protein. ²³⁻²⁵ Conjugation of a ubiquitin molecule requires the activity of E1 ubiquitinactivating enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases.⁹⁴ Ubiquitin itself contains seven lysine residues (K6, K11, K27, K29, K33, K48, and K63), through which ubiquitin can form chains of various length and linkage types including linear or branched chains.⁹⁵⁻⁹⁷ Recently, there have also been reports of ubiquitination at residues other than lysine, including serine, threonine and cysteine.⁹⁸⁻¹⁰⁰

Ubiquitination serves as a post-translational modification that alters protein interactions, subcellular localization and/or promotes protein degradation.^{96, 101,102} The most well studied role of ubiquitination is the activity associated with K48-linked ubiquitin, which targets proteins to the 26S proteasome for subsequent deubiquitination and degradation.¹⁰³⁻¹⁰⁴ It has been reported that the most efficient signal for proteasomal degradation is K48-linked ubiquitin chains longer than four ubiquitin moieties.⁹⁵ Also worth noting is that substitution of K48 to arginine causes cell death.¹⁰⁵ Endocytosis of cell surface receptors and protein trafficking are associated with K63-linked polyubiquitin and monoubiquitination.^{95,106} Additional activities associated with ubiquitinated proteins include transcriptional regulation¹⁰⁷

and DNA repair.¹⁰⁸ Among polyubiquitin chains identified from yeast cells, K48and K63-linked ubiquitin are the most abundant linkages identified.^{20,24,95} However, it is important to note that many ubiquitin conjugates are believed to be short-lived and therefore care must be taken during sample preparation.²⁴

Proteomic characterization of ubiquitinated proteins has been much slower than other post-translational modifications, including phosphorylation and methylation,¹⁰⁹ which is in part due to the challenges associated with localizing the modification site in substrate proteins. Recent progress has been made using Histagged ubiquitin conjugates¹¹⁰ and anti-ubiquitin antibodies.¹¹¹ Following enrichment or purification of ubiquitinated proteins, the conjugates are typically digested with trypsin which cleaves C-terminally to Arg and Lys, including Arg74 of ubiquitin, which generates a ubiquitin remnant of Gly75 and Gly76 on the ubiquitinated lysine of a substrate protein. The fragment ion mass spectrum of a tryptic peptide containing the glycinylglycine ubiquitin remnant will contain two fragment ions with a mass difference of 242.12 Da corresponding to a glycinylglycine-modified lysine. This modification can be identified using available bioinformatic tools by allowing for a variable modification of glycinylglycine of lysine.²⁴ However, if a substrate protein contains one ubiquitination site, there would only be one lysine in the entire sequence carrying the modification.

The stoichiometry of unmodified peptides to peptides containing a ubiquitin remnant is not favorable for mass spectrometry analysis. This has led to the development of an antibody that recognizes glycinylgycine-modified lysine residues. Commercially available antibodies have been generated by preparing a histone H2A

antigen, which is lysine-rich, containing glycinylglycine-modified lysines.¹⁰⁹ Peptidelevel enrichment of glycinylglycine-modified lysines, from whole cell extract, has been shown to greatly improve the identifications of tryptic peptides containing the ubiquitin remnant.⁹⁸ In fact, over 10,000 glycinylglycine-modified lysines have been identified in over 4,000 proteins.^{112,113}

Our goal is to identify ubiquitinated proteins in MDSC-derived exosomes in order to provide insight into exosome formation and/or function. It is important to note that most reports that demonstrate the identification of up to 4,000 ubiquitinated proteins start from milligram quantities of whole cell extract followed by peptide level enrichment for gylcinylglycine-modified lysines¹¹⁴ or His-tagged ubiquitin.²⁴ In order to identify endogenous ubiquitinated proteins from limited starting material of MDSC-derived exosomes, an optimized immunoaffinity strategy was developed which included (1) protein level enrichment for ubiquitinated proteins followed by (2) peptide level enrichment for tryptic peptides containing gylcinylglycine-modified lysines.

Materials and Methods

Myeloid-derived Suppressor Cells

BALB/c mice were injected in the mammary fat pad with approximately 7000 4T1 mammary carcinoma cells stably transfected to express IL-1β. When tumors were greater than approximately 8 mm in diameter (about 3-4 weeks after initial inoculation), MDSC were harvested from the blood, stained with fluorescently labeled monoclonal antibodies against markers of MDSC (Gr1 and CD11b), and analyzed by flow cytometry. Cell populations that were greater than 90%

Gr1⁺CD11b⁺ were used in all experiments.⁸ For each experiment, a total of about 1 x 10⁸ MDSC were pooled from 2 to 3 mice. The UMBC and UMCP Institutional Animal Care and Use Committees approved all procedures with animals and animal-derived materials.

Exosomes

MDSC were plated in serum-free HL-1 medium (Bio-Whittaker, Walkersville, MD) and maintained at 37 °C with 5% CO₂. After 18 hours, the cultures were centrifuged at 805 x g for 5 min (Eppendorf 5810 rotor, Eppendorf, Hamburg), the pellets were discarded, and the supernatants were centrifuged at 2090 x g for 30 minutes (Sorvall RC5C, SS34 rotor, DuPont, Wilmington, DE). The supernatants were then ultracentrifuged at 100,000 x g for 20 hours at 10 °C (Beckman L8, SW40Ti rotor, Beckman, Pasadena, CA). The supernatants were discarded, and the pellets containing the exosomes were resuspended in PBS. Absorbances were measured at 260 and 280 nm. Exosomes were stored at -80 °C until use.

Exosomes were lysed in an optimized lysis buffer of 8 M urea in 50 mM ammonium bicarbonate with 50 μ M of deubiquitinase inhibitor PR-619 (LifeSensors, Malvern, PA) and 1% of a protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). The exosomes in lysis buffer were centrifuged at 14,000 x g for 30 minutes with a 3 kDa molecular weight cutoff filter, and the supernatants were discarded. The process was repeated three times with the retentate from the previous wash step. After lysis, the buffer was diluted to <0.8 M urea in 50 mM ammonium bicarbonate. Protein content before the immunoprecipitation was measured by the Quick Start Bradford Assay (Bio-Rad, Hercules, CA).

Immunoprecipitation of Ubiquitinated Proteins

Ubiquitinated proteins were enriched using Protein A-Sepharose 4B beads (Invitrogen, Carlsbad, CA) that had been incubated with anti-ubiquitin antibody 3933 (Cell Signaling Technology, Danvers, MA) in a 1:600 dilution with rotation for 4 hours at 4 °C. Excess antibody was removed from the beads by washing with 0.8 M urea in 50 mM ammonium bicarbonate and centrifuging three times at 3,000 x g for 2 minutes. One-hundred micrograms of exosome lysate was added to the Sepharose bead slurry and incubated with rotation overnight at 4 °C. The unbound fraction was collected via centrifugation at 500 x g for 5 min. The Sepharose bead slurry was washed with 50 mM ammonium bicarbonate and centrifuged at 1,000 x g for 5 minutes to remove non-specifically bound proteins. Bound proteins were eluted by incubating the Sepharose bead slurry in 0.2 M glycine, pH 2.6, for 1 hour at 4 °C and collected via centrifugation at 13,000 x g for 5 minutes. The elution was repeated, and the two elution fractions were combined.¹¹⁵ Enriched fractions of ubiquitinated exosomal proteins were subsequently processed either by tryptic digestion in gel or in solution and immunoprecipitation of peptides containing glycinylglycine-modified lysine residues.

In-Gel Tryptic Digestion of Ubiquitinated Proteins

Proteomic studies were conducted on exosomal proteins enriched for ubiquitin conjugates by immunoprecipitation. Three biological replicates were resuspended in 2% SDS, 5% β -mercaptoethanol, and 62.5 mM Tris HCl and reduced at 90 °C for 5 minutes. The samples were then loaded onto 8-16% polyacrylamide gels (Bio-Rad) and subjected to electrophoresis for approximately 50 minutes at 200 V, 15 mA, and

50 W. The gels were stained using Coomassie blue (40% methanol, 20% acetic acid, 0.1% w/v Coomassie blue reagent 250; Thermo Scientific, San Jose, CA) stain and then excised into 13 slices. After destaining, proteins were reduced in 10 mM dithiothreitol at 56 °C for 30 minutes and alkylated in the presence of 10 mM methylmethanethiosulfonate at room temperature for 45 minutes. Tryptic digestion was performed on each gel slice overnight at 37 °C.¹¹⁶ The extracted tryptic peptides were resuspended in 0.1% formic acid for injection into the LC-MS/MS. (See below for instrumental conditions)

Tryptic Digestion and Immunoprecipitation of Glycinylglycine-Modified Peptides

Enriched fractions of ubiquitinated exosomal proteins from five biological replicates were frozen, lyophilized and resuspended in 50 mM ammonium bicarbonate. Proteins were reduced with 20 mM dithiothreitol for 30 minutes at 56 °C and alkylated with 10 mM methylmethanethiosulfonate for 45 minutes. One microgram of trypsin was added to each fraction, and digestion was performed overnight at 37 °C. As a positive control, a ubiquitin dimer linked with an isopeptide bond at K48 (LifeSensors, Malvern, PA) was also digested with trypsin under these conditions.

Peptides with glycinylglycine-modified lysine residues were enriched using Protein A-Sepharose 4B beads coupled to anti-diglycyl-lysine antibody GX41 (Millipore, Billerica, MA) using the same procedure as that with the anti-ubiquitin antibody, except that anti-diglycyl-lysine antibody was prepared at a 1:1000 dilution. The fractions of immunoprecipitated ubiquitinated proteins were added to the

Sepharose bead slurry and incubated with rotation overnight at 4 °C. The unbound fraction was removed via centrifugation at 500g for 5 minutes. The Sepharose bead slurry was washed with 50 mM ammonium bicarbonate and centrifuged at 1,000g for 10 seconds to remove non-specifically bound peptides. Bound peptides were eluted by incubating the Sepharose bead slurry in 0.2 M glycine, pH 2.6, for 1 hr at 4 °C and collected via centrifugation at 13,000g for 5 minutes. The elution was repeated, and the two elution fractions were combined. Prior to LC-MS/MS analysis, all fractions were desalted with C18 TopTip spin columns (Glygen, Columbia, MD) and resuspended in 0.1% formic acid.

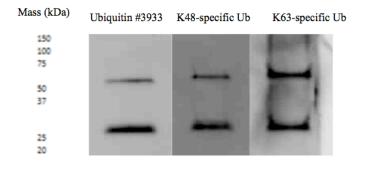
Western Blotting

All fractions were subjected to one-dimensional gel electrophoresis on an 8-16% Criterion precast gel (Bio-Rad) at 200 V, 50 mA, and 15 W for 56 minutes, followed by transfer to a PVDF membrane (EMD Millipore, Billerica, MA) at 100 V, 350 mA, and 35 W for 1 hr. Free ubiquitin, monoubiquitinated and polyubiquitinated proteins were detected by blotting with anti-ubiquitin antibody 3933 (Cell Signaling Technology) followed by anti-mouse IgG-HRP (Cell Signaling Technology). Protein bands were visualized with an Image Lab System (Bio-Rad, Hercules, CA) using the Gel-Doc program (Kodak Molecular Imaging Systems) and the SuperSignal West Dura chemiluminescent substrate (Thermo Fisher Scientific, Waltham, MA).

Extraction of Histones

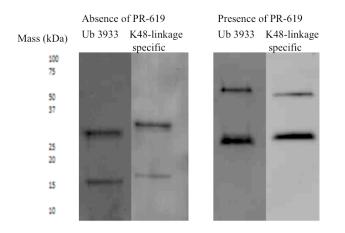
Exosomal histones were extracted using the EpiQuick Total Histone Extraction Kit (Epigentek, Farmingdale, NY) according to the manufacturer's instructions and analyzed for ubiquitination via western blotting with anti-ubiquitin antibody 3933 as previously described.

LC-MS/MS and Bioinformatic Analysis


LC-MS/MS analyses were performed on a Shimadzu Prominence nano HPLC (Shimadzu Scientific Instruments, Columbia, MD) in-line with an LTQ-Orbitrap XL (Thermo Fisher Scientific). A 10 µL aliquot of tryptic peptides was injected onto an Acclaim PepMap 300 C18 pre-column (Dionex, Sunnyvale, CA) followed by desalting with 10% solvent A (97.5% H₂O, 2.5% acetonitrile, and 0.1% formic acid) in 85 minutes, followed by an increase from 40 to 85% solvent B (97.5% acetonitrile, 2.5% H₂O, and 0.1% formic acid) in 85 minutes, followed by an increase from 40 to 85% solvent B in 20 minutes. The flow rate was 500 nL/min. Precursor scans were acquired in the orbitrap with a resolution of 30,000 at m/z 400. In each cycle, the nine most abundant ions were selected for fragmentation by collisional induced dissociation, and product ion scans were acquired in the LTQ. A dynamic exclusion of 1 repeat count over 180 seconds was used.

Peptide and protein identifications were made by the PepArML^{76, 117} metasearch engine against the UniProt mouse database (July 2014). For the in-gel digestion, all peptide identifications were filtered at 10% spectral FDR, and proteins were required to be supported by at least 2 unshared peptides, bounding a protein FDR at 1%. For the two-step immunoaffinity enrichment of glycinylglycine-modified lysine-containing peptides, all peptides were filtered at 5% spectral FDR. A fixed modification included methylthio of cysteine residues and variable modifications of oxidation of methionine and glycinylglycine modification of lysine were allowed.

Proteins with at least one peptide containing a glycinylglycine-modified lysine were considered to be ubiquitinated. For all protein identifications based on a single peptide form the double immunoaffinity workflow, spectra are included in Appendix Figure 1. Subcellular location and function assignments for all protein identifications were made using the Protein Information Resource GO Slim (http://pir.georgetown.edu) using UniProt Gene Ontology annotations (July 2014).


Results and Discussion

Western blotting was first used to determine if MDSC-derived exosomes do in fact contain ubiquitinated proteins using a general ubiquitin antibody that recognizes free ubiquitin as well as monoubiquitinated and polyubiquitinated proteins. Additionally, antibodies specific to K48- and K63-linked polyubiquitin were also used. The Western blots shown in **Figure 7** confirm the presence of ubiquitinated proteins in MDSC-derived exosomes as well as the presence of polyubiquitin chains containing K48- and K63-linkages.

Figure 7: Western blots of lysates from MDSC-derived exosomes. Antibodies used are (left) anti-ubiquitin 3933, (middle) anti-K48-liked polyubiquitin, and (right) anti-K63-linked polyubiquitin.

In order to identify the exosomal substrate proteins carrying the ubiquitin modification(s) an immunoaffinity enrichment strategy was optimized. As noted earlier, most of the previous reports in which whole cell extracts were lysed and enriched at the peptide level for glycinylglycine-modified lysine-containing peptides started with milligram quantities of starting material; however, the amount of material that can be obtained from BALB/c mice carrying 4T1 mammary carcinoma is limited to approximately 100 µg per biological replicate. Moreover, it has been reported that deubiquitinating enzymes may be present in biological samples, which would significantly underestimate the number of ubiquitinated proteins identified. In order to address the second issue regarding deubiquitinating enzymes, exosome lysis and enrichment of ubiquitinated proteins was performed in the presence of a general deubiquitinatase (DUB) inhibitor PR-619. The Western blot in Figure 8 demonstrates the presence of DUB inhibitor PR-619 is required in order to maintain isopeptide linkage(s) between ubiquitin and substrate proteins due to the increase in mass observed in ubiquitinated proteins.

Figure 8: Western blot of lysates from MDSC-derived exosomes in the (left) absence and (right) presence of DUB inhibitor PR-619. Antibodies used are anti-ubiquitin 3933 and anti-K48-linked polyubiquitin.

Next, in-gel digestion of enriched ubiquitinated proteins, following immunoaffinity enrichment at the protein level using Sepharose beads coupled to anti-ubiquitin 3933 antibody, was evaluated by LC-MS/MS analysis. Mass spectrometry-based proteomic analysis resulted in 16 protein identifications from three biological replicates (**Table 3**). In order to report an exosomal protein as ubiquitinated, at least one tryptic peptide containing a gylcinylglycine-modified lysine must be observed. Initial peptide identifications and protein assignments were made by the PepArML meta search engine followed by manual curation of all tandem mass spectra assigned to confirm localization of the gycinylglycine-modified lysine. Results from the in-gel digestion of exosomal proteins enriched for ubiquitinated proteins suggested that unmodified tryptic peptides were suppressing the identification of tryptic peptides containing the ubiquitin remnant, glycinylglycinemodified lysine residues, which we require in order to claim that a protein is ubiquitinated. In order to overcome this challenge, a second immunoaffinity enrichment was evaluated following the protein-level enrichment for ubiquitinated proteins and in-solution tryptic digestion. LC-MS/MS analysis of tryptic peptides obtained from a second enrichment using anti-diglycyl lysine antibody GX41 coupled to Sepharose beads resulted in 38 protein identifications from five biological replicates (**Table 4**). It is important to note that while the enrichment for glycinylglycine-modified lysine-containing peptides improved the identification of ubiquitinated exosomal proteins, the experimental design leads to several proteins based on single peptide identifications. These peptides are less reliable than the peptides listed in **Table 3**, and annotated spectra for single peptide identifications have been included in **Appendix Figure 1**.

Protein Accession	Protein Name	Number of non- overlapping peptides identified	Protein FDR	Peptide Sequence
F6XI62	60S ribosomal protein L7 (Fragment) ^Ψ	2	2.450E-05	REKKKKVATVPGTL KKKVPAGPKTLK(G G)K
P61161	Actin-related protein 2	3	6.486E-04	VVVCDNGTGFVK(G G)
P26040	Ezrin	3	6.490E-04	EELMLRLQDYEQK(GG)TKR
P17156	Heat shock-related 70 kDa protein 2	5	4.860E-06	HWPFRVVSEGGK(G G)PK(GG)
P63158	High mobility group protein B1 ^{\(\V)}	4	5.614E-04	WK(GG)TMSAK(GG)
P10922	Histone H1.0	4	5.610E-05	AAKPKKAASK(GG) APSK K(GG)KPAATPK(GG) K

Table 3: Ubiquitinated proteins and peptides identified from in-gel digestion of exosomal proteins with glycinylglycine-modified lysine residues.

				KAKKPK(GG)VVK
				ASK(GG)PKKAKTVK PK
				K(GG)ATGAATPKK AAK
				AKKPAAAAVTK(GG)K
P15864	Histone H1.2 $^{\Psi}$	11	3.920E-14	K(GG)VAKSPK
				KAK(GG)VTKPKK
				AAK(GG)PKVAK
				TPVKK(GG)KAK(GG
)
P43277	Histone H1.3 $^{\Psi}$	9	2.738E-10	SPKKVKAAK(GG)PK
				KAAKSPAKAK(GG)
				AKASK(GG)PKASKP K
				AKKPAGAAK(GG)
P43274	Histone H1.4 $^{\Psi}$	4	1.250E-10	TVKPKAAKPK(GG)T
				SK(GG)
				AKK(GG)TGAAKAK
			3.040E-18	AKKPAGATPKKPKK
P43276	Histone H1.5 ^{\u03c4}	10		(GG) K(GG)PAAAGVK
				VTKPKTAKPK(GG)A
				AKAK
				GKGK(GG)KSASAK(
007122	Histone H1t	3	6.486E-04	GG)
Q07133	HIStone HIT	5		TK(GG)AVKKPKATP
				TK(GG)
P27661	Histone H2A.x Ψ	5	4.860E-06	K(GG)SSATVGPK(G
				G)APAVGKK
P62806	Histone H4 $^{\Psi}$	6	4.207E-07	GKGGK(GG)GLGK(G G)GGAK
OUEVa	Keratin, type I	0	2 72 0E 10	NK(GG)ILAATIDNAS
Q6IFX2	cytoskeletal 42 ^{\varphi}	9	2.729E-10	IVLQIDNAR
P08071	Lactotransferrin	29	1.522E-31	GDADAMSLDGGYIY
				TAGK(GG)
P52480	Pyruvate kinase isozymes M1 Ψ	7	3.640E-08	GPEIRTGLIKGSGTA EVELK(GG)K
	isozymes M1 ^Ψ			LYLLK(UU)K

Protein Accession	Protein Name	Number of peptides identified	Number of non- overlapping K(GG) containing peptides	Peptide FDR	Peptide Sequence
F6XI62	60S ribosomal protein L7 (Fragment)* ^Ψ	2	1	7.83E-02	REKKKKVATV PGTLKKKVPA GPKTLK(GG)K
Q5SWU9	Acetyl-CoA carboxylase 1	1	1	4.48E-02	FGGNKVIEKVL IANNGIAAVK(GG)CMRSIR
Е0СҮН9	Carboxyl- terminal PDZ ligand of neuronal nitric oxide synthase protein	1	1	5.10E-02	KKKVSIMVSV DGVKVILK(GG)KKKKLLLLQK
Q6P925	Cysteine-rich perinuclear theca 4	1	1	5.10E-02	AK(GG)RSKLK KKRNPRSKLP K(GG)RSRHSLI R
Q9CQJ6	Density- regulated protein	2	1	5.10E-02	QKK(GG)K(GG) TVPQKVTIAKI PRAKKKYVTR
P08113	Endoplasmin	2	1	3.63E-02	LLKVIRK(GG) KLVR
P/3275	Histone H1.1 ^{\v}	10	2	5.10E-02	KTVK(GG)TPK KPKKPAVSKK TSKSPKKPKVV K
P43275	Histone H1.1		2	5.10E-02	AKKVAKSPAK AKAVKPKASK AKVTKPK(GG) TPAKPK
				8.66E-02	K(GG)ATGAAT PKKAAK
P15864	Histone H1.2* [¥]	11	5	8.66E-02	AKKPAAAAVT K(GG)K
				8.66E-02	K(GG)VAKSPK
				8.66E-02	KAK(GG)VTKP KK

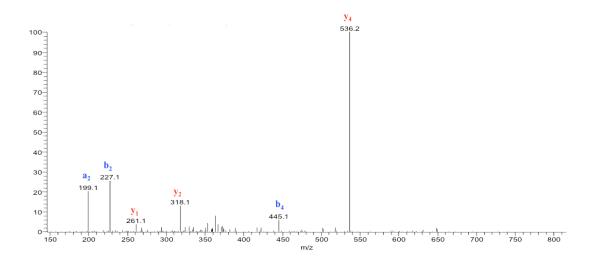
Table 4: Ubiquitinated proteins and peptides identified following immunoaffinity

enrichment of tryptic peptides with glycinylglycine-modified lysine residues.

				8.66E-02	AAK(GG)PKVA K
D42274		4	2	8.66E-02	AKKPAGAAK(GG)
P43274	Histone H1.4* [¥]	4	2	8.66E-02	TVKPKAAKPK(GG)TSK(GG)
				8.66E-02	AKK(GG)TGAA KAK
P43276	Histone H1.5* ^{\u03c4}	10	7	8.66E-02	AKKPAGATPK KPKK(GG)
F43270	nistolle n1.5	10	,	8.66E-02	K(GG)PAAAGV K
				8.66E-02	VTKPKTAKPK(GG)AAKAK
P15975	Inactive ubiquitin carboxyl- terminal hydrolase 53	1	1	4.48E-02	MAWVK(GG)F LRKPSGNLGK
B2RXC2	Inositol 1,4,5- trisphosphate 3- kinase B	1	1	2.15E-02	GTPASPRCGSP TPMETDK(GG) RVAPSLER
Q61781	Keratin type I cytoskeletal 14 [¥]	2	1	0.00E+0 0	TIEDLKSK(GG) ILAATVDNAN VLLQIDNAR
Q6IFX2	Keratin, type I cytoskeletal 42* ¥	9	1	8.66E-02	NK(GG)ILAATI DNASIVLQIDN AR
Q924L1	LETM1 domain- containing protein 1	1	1	8.52E-03	MKGIQMLWA DGKK(GG)AR
Q0P5X1	Leucine-rich repeat and IQ domain- containing protein 1	1	1	5.10E-02	KLRKKLEPSVR LALFKKAK(GG)NK(GG)VSVT K
P51960	Myb-related protein A	1	1	8.52E-03	WSLIAK(GG)H LK(GG)GR
E9Q5F6	Polyubiquitin-C	4	2	1.87E-03	TLSDYNIQK(G G)ESTLHLVLR
E3Q3F0	(Fragment) ^{\V}	4	2	5.10E-02	MQIFVK(GG)T LTGK
Q9Z100	Probable carboxypeptidas e X1	2	1	2.60E-03	LRVIKKKKIVV KKRK(GG)KLR
H3BKN5	Probable global transcription activator	1	1	9.13E-03	VLGRK(GG)LP KKKRVRKKA MK(GG)KR

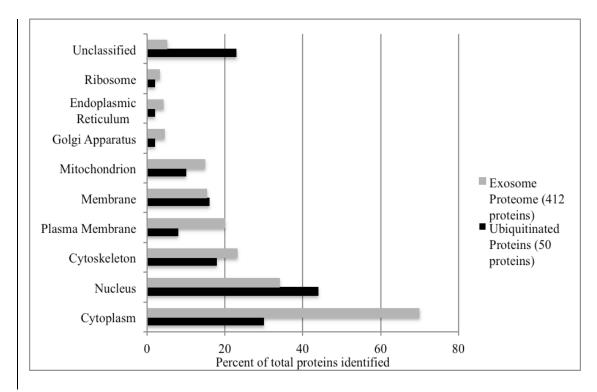
	SNF2L2				
H3BL88	Protein 9930021J03Rik	2	1	5.10E-02	K(GG)LKLTKM RAKKKKKKK
E9Q6J5	Protein Bod11	2	1	3.99E-03	IKEVLKERKVL EKKV(GG)ALS KRRRK
J3QQ16	Protein Col6a3	1	1	3.63E-02	DLK(GG)IMVL MLTGDMQR
A2AU83	Protein GM14124	1	1	1.02E-02	AFSSPSGFLYH K(GG)R
E9PZM7	Protein Scaf11	1	1	5.10E-02	RK(GG)SVRRG RK(GG)PPLLK KKLRR
G3UWJ2	Protein Zfp69	1	1	2.93E-02	GEGPCMAESQ GPEDPILDVKN KLETK(GG)
F6SB18	RNA-binding protein 28	2	1	5.10E-02	KVLALPSHRGP KIRRLKERLRR IRQK(GG)
Q8C4U3	Secreted frizzled-related protein 1	2	1	1.29E-05	IVPKKKKPLKL GPIKKK(GG)EL KRLVLFLK
Q9CZ91	Serum response factor-binding protein 1	2	1	4.05E-04	KEVKRIRVLVI RK(GG)LVRSV GRLKSKK
Q9CXH7	Shugoshin-like 1 ^Ψ	2	1	0.00E+0 0	EKRNKNLAGI GK(GG)
G5E861	Sodium channel and clathrin linker 1 ^{\varphi}	1	1	3.77E-02	LQQENEQLQK ETEDLRKVAL EAQK(GG)
Q6PHS6	Sorting nexin-13	1	1	5.28E-03	DDQVK(GG)GT AEDLVETFFEV EVEMEK
D3Z1Z3	Sphingosine-1- phosphate lyase 1	1	1	5.10E-02	KKLFKLIRKMP FIGRKVSKAK(GG)KDLVK(GG)
Q9CSP9	Tetratricopeptid e repeat protein 14	1	1	5.10E-02	TK(GG)K(GG)I ETRAEKLRKLL KEEKRLKKK
P40630	Transcription factor A, mitochondrial	2	1	2.45E-05	QRRLKKKALV KRRELILLGKP K(GG)R
Q5HZG4	Transcription initiation factor TFIID subunit 3	2	1	5.10E-02	LPSSVDVKKK LKKELKTKLK K(GG)KEKQR

	Ubiquitin- conjugating zyme E2 O ^{\v}	1	1	5.10E-02	KKSIPLSIKNLK (GG)RK(GG)HK RKKNKVTR
--	--	---	---	----------	--


^Ψ Indicates that the protein was also identified in the in-gel digestion. ^Ψ Indicates that the protein is reported previously to be ubiquitinated.

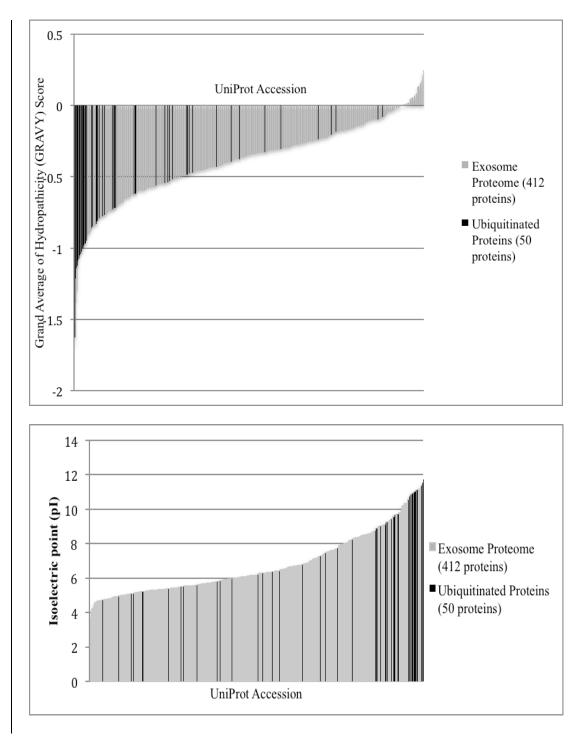
Together, a combined total of 65 tryptic peptides were identified containing gylcinylglycine-modified lysines corresponding to 50 ubiquitinated proteins (Appendix Table 3). From the combined cohort of 50 proteins, only ten of the proteins were previously identified in a proteomic survey of MDSC-derived exosomes, which highlights that enrichment of ubiquitinated proteins enables the identification of low abundance proteins that may not be identified in a complex sample. Consistent with the Western blots in Figures 7 and 8, polyubiquitin peptides containing glycinylglycine-modifications at K6 and K63 were identified following enrichment for glycinylglycine-containing peptides (Table 4). The identification of peptides assigned to polyubiquitin serves as an additional confirmation that the enrichment of ubiquitinated proteins was successful. The experimentally observed glycinylglycine-modified lysine residues were compared to ubiquitination sites predicted in silico by a ubiquitination prediction tool, UbiProber.¹¹⁸ Of the 65 ubiquitin remnant-containing peptides identified, the modification site of 42 peptides were also predicted with probabilities > 0.7, meeting UbiProber's confidence level.

Histones were identified as ubiquitinated with multiple conjugation sites and multiple unique peptides in both the in-gel digestion and two-step immunoaffinity enrichment of ubiquitinated exosomal proteins. Another protein of interest identified as ubiquitinated in exosomes includes high mobility group protein B1 (HMG B1). Parker *et al.* have recently reported that HMGB1 is secreted by MDSC cells in the


tumor microenvironment and contributes to the differentiation of MDSC and their associated immune suppressive activity.¹¹⁹ However, the effect of ubiquitin on HMGB1 is not yet known.

From the combined list of 65 ubiquitin remnant-containing peptides, 15 peptides correspond to tryptic cleavage at glycinylglycine-modified lysine residues. This aberrant tryptic cleavage has been previously observed by others.^{25,109} Tryptic digestion of K48-linked ubiquitin dimer was performed to confirm the identification of aberrant tryptic cleavage. In addition to the expected peptide containing a missed cleavage at the glycinylglycine-modified lysine (LIFAGK_{GG}QLEDGR), the aberrant peptide corresponding to enzymating cleavage of the glycinylglycine-modified lysine (LIFAGK_{GG}) was also identified by tandem mass spectrometry (**Figure 9**). The ratio of the expected glycinylglycinyl-product to the novel peptide is approximately 5:1, estimated by peak areas in selected ion chromatograms.

Figure 9: Tandem mass spectrum of the aberrant tryptic peptide (LIFAGK_{GG}) produced following tryptic digestion of K48-linked ubiquitin dimer


Following identification of ubiquitinated exosomal proteins, the ubiquitinated cohort of 50 ubiquitinated proteins was compared to 412 proteins identified from a proteomic survey of MDSC exosome lysate¹⁶ to determine if the ubiquitinated cohort exhibits unique characteristics. Figure 10 presents a comparison of the UniProt subcellular localizations of exosomal proteins (referenced to the location in the parental cell), which demonstrates that the ubiquitinated cohort contains an increased percentage of nuclear proteins and a significantly lower percentage of cytosolic and plasma membrane proteins. The nuclear proteins identified in the ubiquitinated cohort include nine histones as well as other nucleic acid binding proteins (transcription factor A; density regulated protein; transcription initiation factor TFIID subunit 3, and protein Bodl1) (Tables 3 and 4). It is important to note that histones, especially linker histones such as the histone H1 family, have been reported to be located in the cytoplasm and cell surface in addition to the nucleus¹²⁰ and several histones have been previously reported to be ubiquitinated.¹²¹⁻¹²³ The observation of ubiquitinated histones in MDSC-derived exosomes was confirmed by Western blot using anti-ubiquitin 3933 antibody following histone isolation from a total histone extract kit. Interestingly, 12 of the ubiquitinated proteins identified in MDSC-derived exosomes have no assigned cellular location. This is consistent with a previous report of the ubiquitinated proteins present in yeast expressing His-tagged ubiquitin,²⁴ where most of the proteins identified did not have assigned subcellular locations present in the available databases.

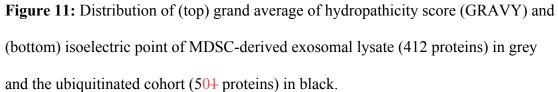


Figure 10: Protein locations assigned to MDSC-derived exosomal lysate (412 proteins) in grey and the ubiquitinated cohort (504 proteins) in black. Some proteins have multiple locations.

Next, gene ontology annotations and the UniProt database were used to compare the distribution of protein sizes (sans ubiquitin), grand average of hydropathicity (GRAVY) scores, and isoelectric points of the ubiquitinated cohort to the 412 proteins identified in proteomic survey of MDSC exosomes. The intact masses of the proteins identified in the ubiquitinated cohort are evenly distributed between 11 and 327 kDa (sans ubiquitin). The GRAVY score and pI distributions of the ubiquitinated cohort are shown in **Figure 11**. Although both the ubiquitinated cohort and proteomic survey of MDSC exosomes illustrate a wide range of GRAVY scores (-0.081 to -1.627) and pI values (4.72 to 11.71), ubiquitinated proteins tend to cluster as hydrophilic and basic proteins. Seventy-two percent of the proteins identified in the ubiquitinated cohort have a GRAVY score less than -0.5, and 50% of the ubiquitinated proteins have pI values greater than 9.00. Ubiquitin was not included in the calculation of GRAVY scores and pI values; however, monomeric ubiquitin has a GRAVY score of -0.489 and a pI value of 6.56. The observed bias of ubiquitinated proteins towards a high pH is consistent with observations reported by Chen and coworkers,¹¹⁸ who reports that ubiquitinated proteins contain a greater abundance of positively charged amino acids.

Interestingly, 34 of identified proteins in the ubiquitinated cohort have not previously been reported to be ubiquitinated (**Tables 3 and 4**). Among these, sorting nexin 13 has been observed to participate in endosomal trafficking of ubiquitinated proteins.¹²⁴ Identification of two ubiquitinated keratins is consistent with the proposed role of protein aggregation in invagination, which is the initial step in exosome formation.^{62,125} Other ubiquitinated proteins that are thought to play important roles in endosome and exosome formation include leucine zipper EF hand-containing transmembrane protein 1 (LETM1) and endoplasmin. Although the functions of the ubiquitinated proteins are not known, these two unconjugated proteins participate in transporting and maintaining high luminal concentrations of Ca²⁺ required for optimum exocytosis of exosomes.¹²⁶

<u>Summary</u>

Due to the role of ubiquitination in protein localization and degradation, as well as its effects on protein-protein interactions,^{96,101,102} it was the aim of this study to determine if MDSC-derived exosomes contain ubiquitinated proteins and to identify the substrate proteins that carry the modification(s). Here tandem mass spectrometry and immunoaffinity enrichment were used successfully to identify 65 exosomal peptides that contain the glycinylglycine ubiquitin remnant, which corresponds to 50 exosomal proteins. Thirty-four of the proteins identified have not previously been reported to be ubiquitinated. Moreover, both Western blots and peptides identified as ubiquitin indicate that MDSC-derived exosomes contain polyubiquitinated proteins.

The cohort of 50 ubiquitinated proteins includes five proteins associated with exosome formation. This includes the two proteins known to participate in ion uptake and transfer, LETM1 and endoplasmin. Compared to a proteomic survey of exosome protein content (412 proteins), the ubiquitinated cohort has a greater abundance of nuclear proteins that includes ubiquitinated histones. Given the recent report⁴⁴ of exosomes transferring function mRNA to recipient cells, the presence of histones in exosomes is of great interest.

Chapter 4: Conclusions and Prospectus

Mass spectrometry-based proteomics has been used in this work to characterize exosomes produced by the immunosuppressive cells, MDSC. MDSC promote tumor progression through suppression of T cell activation and polarization of macrophages towards a tumor-promoting phenotype.³¹⁻³³ This activity inhibits successful immunotherapy in cancer patients.³⁰ MDSC have also been shown to produce extracellular vesicles that meet the criteria of exosomes. The main objective of this work was to analyze the protein cargo of MDSC-derived exosomes in order to learn how these vesicles may contribute to immune suppression in the tumor microenvironment.

MDSC-derived exosomes were found to contain proteins that are considered characteristic of exosomes including annexins, tetraspanins and heat shock proteins. The spectral count method has identified 63 proteins whose abundance was found to differ by at least 2-fold or more due to heightened inflammation in the tumor microenvironment. Proteins that were found to decrease in abundance participate in the innate immune response (C4b-binding protein and complement C3) and chemotaxis (myeloid cysteine-rich protein and platelet factor 4). Additionally, proteins that increased in abundance due to heightened inflammation include proteins that participate in chemokine signaling (mitogen-activated protein kinase 3, cell division control protein 42 homolog and signal transducer and activator of transcription 3). Collectively, the effect of heightened inflammation on proteins that participate in innate immune response, chemotaxis, and chemokine signaling suggests that changes in the tumor microenvironment may alter intercellular communication.

Together, the proteomic analysis and biological assays indicate that MDSCderived exosomes contain proteins that are representative of the parent cell and are biologically active. The exosomes have been shown to be chemotactic for MDSC and contribute to the polarization of macrophages towards a tumor promoting phenotype. Therefore, the exosomes contribute to the immune suppressive activities associated with MDSC in the tumor microenvironment. Given the role of MDSC in inhibiting successful immunotherapy, these results suggest that exosomes produced by MDSC should also be considered as potential obstacles in successful treatment.

In this work, mass spectrometry-based proteomics was also used with immunoaffinity enrichment to characterize ubiquitinated exosomal proteins. Some previous reports have demonstrated successful enrichment at the peptide level by enriching in one step for the glycinylglycine ubiquitin remnant. However, most reports use His-tagged ubiquitin and/or start from milligram quantities of total protein.^{24,114} The method optimized in this study for the identification of endogenous ubiquitinated exosomal proteins from limited quantities of starting material is based on enrichment at the protein level for ubiquitinated proteins, followed by a peptide-level enrichment for the glycinylglycine ubiquitin remnant. This technique has been used to identify 50 ubiquitinated proteins in MDSC-derived exosomes, of which 34 have not previously been reported to be ubiquitinated.

Among the cohort of 50 ubiquitinated proteins are five proteins that are associated with exosome formation as well as ubiquitinated histones. Interestingly, histones located outside of the nucleus, such as the cytoplasm and plasma membrane, have been shown to possess proinflammatory activity.¹²⁰ Therefore, it is of great

interest to the exosome community to determine the location of the histones in the MDSC-derived exosomes.

As mentioned earlier, ubiquitin may have different effects on the conjugated protein depending on the ubiquitin linkage present as well as the degree of ubiquitination. While the identification of the exosomal substrate proteins carrying this modification has provided new insight on the role of this post-translational modification in exosome formation and/or function, the effect of this posttranslational modification on the biological activity of the exosomal proteins is not yet known. However, more information can be gleaned from identifying the linkagetypes present on the exosomal proteins as well as the degree of ubiquitination. For example, it would be of great importance to learn if the majority of ubiquitin modifications comprise monoubiquitin or polyubiquitin chains.

Appendices

Appendix Table 1: Protein identifications and corresponding spectral count ratio (R_{sc}) in exosomes from conventional and inflammatory MDSC.

Protein	Conv.: Distinct Peptides	Conv.: % Covera ge	Conv.: Est. FDR	Infl.: Distinct Peptides	Infl.: % Covera ge	Infl.: Est. FDR	Total: Spectra 1 Count	Rsc
A1BN54	12	19.6	1.29E- 17	10	15.1	1.27 E-12	125	0.301 17772 4
A2AF47	2	1.8	5.40E- 06	0	0.0	1.00 E+00	5	2.418 86030 7
A2AN08	0	0.0	1.00E+ 00	2	0.7	9.00 E-06	3	1.668 83494 9 -
A2AQ07	7	25.7	2.05E- 17	7	24.6	1.80 E-14	45	1.622 33123 7
A6ZI44	11	34.0	1.09E- 32	11	35.9	4.20 E-37	160	0.636 66988 1
D3Z6Q9	2	7.8	1.12E- 05	2	7.8	1.54 E-05	5	0.483 84009 3
D3Z7R7	2	3.0	9.34E- 06	1	2.9	4.01 E-04	6	0.096 78912 6
E9PV24	7	10.1	2.65E- 21	6	8.9	3.18 E-20	98	- 0.800 18427 6
E9Q0F0	1	1.1	1.15E- 03	2	1.3	7.94 E-07	31	- 0.010 62782 2

			1.47E-			1.78		0.528
E9Q0K6	11	26.4	31	13	32.1	E-41	146	19365
2, 20110				10	02.11	2	110	0.136
			1.60E-			4.74		20484
E9Q133	7	28.4	20	7	21.1	E-24	72	4
								-
								0.987
			3.67E-			3.10		97878
E9Q604	8	11.4	24	4	6.5	E-13	61	1
								2.923
			7.84E-			1.01		55986
E9QQ35	1	2.1	03	2	2.1	E-06	18	2
17000	1	2.1	05	2	2.1	L 00	10	-
								0.138
			1.13E-			5.65		64175
F6W687	5	43.8	13	3	43.8	E-10	136	5
								0.846
			1.15E-			1.61		71281
F6YXS3	1	11.6	03	2	19.6	E-07	7	3
								-
								0.033
			3.57E-			1.48		37068
F8WGL3	3	20.7	09	3	26.0	E-09	43	2
								-
								1.605
F8WGM	2	0.0	3.57E-	•		3.20	10	97950
5	3	8.9	09	2	6.4	E-07	10	9
								-
			5.89E-			6.72		0.416 41646
F8WH69	5	17.3	5.89E- 15	8	28.0	E-26	61	41040 6
10,001		17.5	15	0	20.0	L-20	01	
								0.268
			1.06E-			7.50		33147
F8WI35	28	65.2	08	17	59.3	E-10	1586	7
								0.789
			1.15E-			1.61		74130
G3UZJ4	1	13.9	03	2	23.5	E-07	21	4
								0.141
			1.16E-			8.24		06431
G5E8N7	7	29.3	20	7	29.3	E-24	107	7
								-
								0.496
	_		4.44E-		·	3.00		09322
H3BKH6	7	45.1	20	4	25.1	E-14	63	7
						1.57		0.251
000(02	15	E0 7	7.65E-	0	44.2	1.57 E 20	457	39631
O08692	15	58.7	42	9	44.3	E-30	457	3

								-
								0.810
0.00			2.20E-			4.01		60792
O08756	3	22.2	09	1	7.7	E-04	14	2
								1.040
			2.80E-			3.40		29299
O08810	2	4.5	06	2	4.5	E-07	7	7
								-
			1.10E-			4.01		0.646 73957
O08992	3	20.7	08	1	7.7	E-04	40	4
								-
			1.520			1 (1		0.667
O09061	3	18.8	1.52E- 09	2	12.9	1.61 E-07	18	23170 2
009001		10.0	0,7		12.9	L 07	10	0.208
			1.32E-			2.53		09330
O35286	2	3.5	06	3	3.9	E-10	7	1
			1.32E-			1.84		1.368 18161
O35350	2	4.8	1.52E- 06	5	11.5	E-16	21	3
								-
								1.040
O35598	2	4.1	1.32E- 06	1	1.9	4.01 E-04	7	29299 7
033398	Z	4.1	00	1	1.9	L-04	/	0.016
			1.52E-			2.07		43387
O35639	3	12.7	09	3	12.4	E-10	23	4
								-
			5.30E-			1.00		1.181 06571
O35643	5	11.2	06	2	2.9	E+00	17	6
								-
			5 205			2 00		2.192
O35744	6	23.9	5.28E- 18	3	11.3	2.80 E-10	41	75835 3
055711	0	25.9	10		11.5	LIV		-
								2.418
054000	~	~ ~	1.32E-	~		1.00	_	86030
O54890	2	5.5	06	0	0.0	E+00	5	7 1.584
			1.32E-			6.45		82850
O55029	2	3.2	06	3	5.7	E-11	28	3
			1.005			• • •		1.281
055222	0	0.0	1.00E+ 00	2	ר ר	2.04 E-06	2	78398
033222	0	0.0	00	Z	7.7	E-00	Z	-
			6.09E-			2.88		0.720
O70133	3	5.2	09	3	4.6	E-10	21	38434

								3
								5
								0.414
			1.52E-			1.61		41364
O70138	3	9.2	09	2	7.1	E-07	34	9
070120		2.2	0,7		,.1	E ¢/	51	0.472
			2.65E-			6.05		52025
O70145	7	25.9	21	8	25.7	E-27	162	8
								-
								2.819
			1.52E-			1.00		45779
O70165	3	16.2	09	0	0.0	E+00	7	4
								0.483
			8.08E-			5.11		03151
O88342	5	11.2	15	6	19.1	E-20	53	8
								1.613
			1.15E-			1.61		19599
088593	1	13.2	03	2	25.8	E-07	37	7
								-
			1.32E-			6.45		0.864
088685	2	7.0	06	3	9.3	E-11	36	12914
			1					0.561
000044	2	0.4	1.32E-	_	10.0	5.15	(0)	03724
088844	3	9.4	06	5	13.3	E-14	60	5
								-
			3.03E-			1.46		0.034 82676
089053	17	58.6		19	60.7	E-57	601	82070 5
087033	17	50.0	ر ب	17	00.7	L-37	001	
								1.474
			1.34E-			4.22		86566
P01027	19	55.9	55	10	32.0	E-34	153	9
								-
								0.096
			1.32E-			1.61		80651
P01325	2	14.8	06	2	14.8	E-07	24	8
								-
								2.167
			9.58E-			1.00		29176
P01794	2	23.6	06	0	0.0	E+00	4	2
								-
	_		1.32E-	-		1.00		3.883
P01837	2	45.3	06	0	0.0	E+00	16	85617
								-
			4.025			2.00		2.235
D01072	10	20.1	4.03E-	A	12.4	3.00 E 14	100	97928 7
P01872	10	29.1	30	4	13.4	E-14	123	7
			2.88E-			4.08		- 2.274
P01942	15	84.5	2.88E- 44	8	83.8	4.08 E-27	455	2.274 12756
101942	13	04.3	44	0	03.0	Ľ-2/	433	12/30

								9
								-
								1.446
			1.08E-			1.08		45389
P02088	15	79.6	26	10	73.5	E-19	310	8
								-
								1.593
			4.90E-			1.41		13404
P02089	10	78.2	12	6	53.7	E-06	174	5
								-
						2 (0		0.236
D02201	20	(E A	6.07E-	10	50 C	3.69	2272	13926
P02301	29	65.4	09	18	59.6	E-09	2372	6
								0.305
			7.98E-			1.61		85436
P04104	3	3.8	- <u>198</u>	2	3.8	E-07	39	85450
101101	5	5.0	0)		5.0	LUI	57	-
								6.536
			3.19E-			1.00		26789
P04919	11	24.5	32	0	0.0	E+00	107	6
								-
								0.043
			2.07E-			4.20		63521
P06151	9	36.1	26	8	32.8	E-27	106	2
								0.000
D0 (7 1 5	0	<u> </u>	7.29E-	10	20.2	1.26	1.7.6	24397
P06745	9	23.5	27	12	28.3	E-39	176	4
								-
			7.37E-			4.84		0.483 84009
P06800	2	2.6	7.37E- 06	2	4.3	4.04 E-06	5	34009
100800		2.0	00	2	4.5	L-00		5
			6.21E-			4.94		0.565
P07356	6	32.2	18	5	27.4	E-17	41	41162
								-
			9.31E-			2.57		2.662
P07724	16	35.4	48	5	13.3	E-16	165	85554
								1.668
			1.00E+			2.95		83494
P07742	0	0.0	00	2	4.8	E-06	3	9
								0.421
Domoni			1.32E-			6.45		77969
P07901	3	6.5	06	4	7.5	E-11	20	5
D 00020	-	20.2	2.01E-	-	20.2	1.04	100	0.616
P08030	5	38.3	15	5	38.3	E-17	109	75268
			1.005			1.00		- 5.804
P08032	17	14.2	1.00E- 47	0	0.0	1.00 E+00	64	5.804 66809
								00009
P08071	48	69.7	9.30E-	45	64.1	5.56	2141	-

			139			E-		0.059
						151		00329 7
			• • • • •			1.00		-
P08226	5	24.8	2.01E- 15	0	0.0	1.00 E+00	31	4.787 00581
								-
			1.75E-			6.45		0.713 65271
P08249	4	16.3	12	3	13.9	E-11	26	1
								2.760
D00(07	2	10.0	1.52E-	1	2.0	1.29	14	10762
P08607	3	10.0	09 1.00E+	1	3.0	E-03 6.30	14	6 2.625
P08730	0	0.0	00	2	6.8	E-07	7	87761
								- 0.705
			1.52E-			1.61		47014
P08905	3	31.1	09	2	27.0	E-07	36	6 0.759
			1.18E-			7.87		89712
P09411	9	36.9	26	12	47.0	E-40	265	5
								1.227
P09528	4	28.0	1.65E- 11	2	20.3	4.49 E-07	27	52304 1
109328	4	28.0	11	Ζ	20.3	E-07	21	0.029
P0C0S6	11	56.3	3.05E- 24	12	53.9	5.35 E-31	1102	01252 9
F0C030	11	50.5	24	12	55.9	E-31	1102	-
			8.48E-			1 22		0.682 56150
P10107	14	46.5	8.48E- 42	11	36.1	1.23 E-37	278	7
			2 795			4.96		0.476
P10126	10	36.4	3.78E- 28	12	38.5	4.96 E-37	120	49789 2
								-
			1.32E-			5.86		2.655 10828
P10605	2	9.1	06	1	3.8	E-03	13	3
								- 0.205
Dicost			5.76E-			3.40		14799
P10854	24	74.6	12	17	67.5	E-07	2222	8 0.558
			4.29E-	_		2.90		75722
P11247	21	33.7	61 1.22E-	26	38.7	E-87 3.07	510	3
P11276	63	39.5	1.221-	27	18.2	E-86	866	2.868

								49432
								9
								0.533
			7.64E-			4.98		81676
P11352	4	33.8	12	4	30.3	E-13	44	9
								-
			1.020			1 (1		0.535
P11499	4	8.7	1.83E- 09	3	5.7	1.61 E-07	24	80602 3
F11499	4	0./	09	3	5.7	E-0/	24	5
								0.558
			1.32E-			4.01		03408
P11672	2	17.0	06	1	10.5	E-04	48	5
								-
			1.78E-			3.25		1.054
P11835	13	23.2	37	6	10.6	E-18	60	34913
			1.755			2.20		0.645
D11092	1	10.0	1.75E-	7	17.0	2.30 E-23	72	75733
P11983	4	10.8	12	7	17.9	E-23	73	3
			1.15E-			1.41		39352
P12815	1	14.1	03	3	35.1	E-08	10	8
112010			00	5		2.00	10	2.790
			1.00E+			6.30		96470
P12970	0	0.0	00	2	7.9	E-07	8	3
								-
								0.483
D10000			3.11E-		1.5	4.01	_	84009
P13020	2	3.3	06	1	1.5	E-04	5	3
								0.265
			1.52E-			6.45		64427
P14069	3	32.6	09	3	32.6	E-11	66	2
								-
								1.367
			1.52E-			4.01		05696
P14131	3	21.9	09	1	6.8	E-04	12	1
								-
			4 425			1.00		1.475
P14152	2	11.1	4.43E- 06	0	0.0	1.00 E+00	2	35450
r 141 <i>32</i>	L	11.1	00	0	0.0	E-00	2	4
								0.296
			3.26E-			1.14		21822
P14206	3	20.0	08	3	20.3	E-09	41	1
								1.002
			4.43E-			1.56		91169
P14685	2	4.5	06	3	12.6	E-09	14	7
D14024	2	F 1	2.56E-	1	1.0	4.01		-
P14824	2	5.1	05	1	1.3	E-04	4	1.014

								38265
								4
								-
								0.244
			3.50E-			1.38		92720
P14869	2	10.1	06	3	20.5	E-09	17	7
								0.344
			1.75E-			2.83		68571
P15864	17	37.3	12	17	28.8	E-20	973	6
								-
			1.53E-			6.96		1.014 38265
P16546	2	1.8	1.33E- 05	1	0.9	6.96 E-03	4	38203
F10540	Z	1.0	05	1	0.9	E-03	4	0.203
			4.79E-			1.35		40652
P16858	14	63.4	41	18	71.5	E-59	598	6
					,			0.151
			1.09E-			3.25		05204
P17182	15	44.5	42	17	46.5	E-57	407	1
								-
								1.475
			4.17E-			1.00		35450
P17225	2	8.3	05	0	0.0	E+00	2	4
								-
			4 200			1 (1		1.181
P17427	5	9.1	4.38E- 14	2	3.4	1.61 E-07	17	06571 6
F1/42/		9.1	14		5.4	L-07	17	0
								0.907
			1.48E-			2.59		07624
P17742	6	52.4	17	4	40.2	E-14	56	3
								-
								0.483
			4.62E-			1.76		84009
P17751	2	14.4	06	2	15.4	E-06	5	3
						1 50		1.199
D1000	4	2.0	2.10E-	10	7.0	1.59		41785
P19096	4	2.8	12	10	7.8	E-33	64	4
								- 0.096
			1.07E-			4.01		81811
P20029	9	17.6	20	3	6.7	E-04	36	7
	,	17.0	20	5	0.7	201		-
								0.596
			1.75E-			1.96		45527
P20152	4	12.2	12	2	7.1	E-06	15	1
								0.303
			1.15E-			5.39		80063
P21107	1	7.3	03	1	5.2	E-04	12	2
P22752	46	70.8	3.48E-	45	66.2	6.41	8165	0.083

			53			E-51		69747
						-		9
								-
								0.026
			6.11E-			2.59		84044
P24270	6	15.2	18	4	11.6	E-14	80	6
			6.39E-			1.04		1.048
P25911	3	10.0	09	5	14.7	E-17	24	91208
								-
								1.044
			2.01E-			1.32		59424
P26039	36	27.0	104	31	24.4	E-96	390	1
								-
								0.067
			1.32E-			1.67		25156
P26040	7	11.4	06	6	9.7	E-06	95	5
								-
								0.096
			8.79E-			2.62		91100
P26041	10	18.5	15	9	16.6	E-16	132	5
						6.00		0.868
			3.11E-			6.98	10	58275
P26443	2	5.9	06	2	6.6	E-07	13	7
			1.1.55			4.01		0.459
D2(51)	1	07	1.15E-	1	5.0	4.01	0	65991
P26516	1	8.7	03	1	5.3	E-04	8	3
			1 1 5 5			0.07		2.225
D2((29	1	2 1	1.15E-	2	11.5	2.07	11	39344
P26638	1	3.1	03	3	11.5	E-10	11	8
			1.01E			1.07		0.727
P27005	5	74.2	1.01E- 14	7	02.1	1.97 E-22	510	75280
P2/003	3	/4.2	14	/	92.1	E-22	510	4 0.468
			1.32E-			3.20		0.408 88772
P27773	2	5.0		2	4.2	5.20 E-07	13	5
12///5		5.0	00		4.2	L-07	15	0.433
			5.14E-			4.01		0.433 75729
P27870	1	2.0	03	1	1.7	E-04	3	9
12/0/0	1	2.0	05	1	1./	L-04	5	1.115
			1.85E-			9.40		79700
P28293	7	31.0	20	13	50.2	E-42	121	7
	1	51.0	20	15	20.2		121	0.433
			4.61E-			7.10		75729
P28352	1	6.0	03	1	2.2	E-03	3	9
	-		4.72E-			1.04		0.419
P28650	5	15.4	15	5	14.8	E-17	54	57635
								-
								0.261
			1.32E-			1.30		88588
P28798	2	4.8	06	3	7.8	E-09	15	1

								0.367
			6.13E-			9.26		0.307 76272
P29351	13	39.2	39	12	34.2	E-40	236	6
127551	15	57.2	57	12	51.2	L 10	250	
			1.52E-			1.62		0.613
P29391	5	32.8	1.52L= 14	4	41.0	E-13	37	81182
12/3/1		52.0	17		+1.0	L-13	51	01102
								3.503
			4.11E-			1.00		13303
P29788	4	10.9	12	0	0.0	E+00	12	3
127700		10.7	12	0	0.0	L+00	12	
								0.761
			2.26E-			7.51		02913
P30681	8	27.6	2.20E- 17	5	25.7	E-13	55	3
1 30081	0	27.0	1 /	5	23.1	L-15	55	5
								0.096
			8.66E-			4.66		78526
P31230	1	3.9	03	1	5.5	E-04	2	18520
131230	1	5.9	03	1	5.5	L-04		0.292
			2.81E-			7.76		69634
P31725	20	79.6	2.81E- 59	18	77.9	E-59	2233	09034
F 51725	20	/9.0	59	10	11.9	E-39	2233	1.377
			4.61E-			5.16		25730
P34884	1	18.3	4.01E- 03	2	26.1	E-07	6	
P34884	1	18.3	03	2	20.1	E-07	0	6
								-
			2.21E			3.99		2.057 05630
P35441	19	23.2	2.21E- 55	11	16.9	5.99 E-34	155	
F 5 5 4 4 1	19	23.2	55	11	10.9	E-34	155	5
								0.627
			1.15E-			7.36		0.027 32975
P35700	1	5.5	03	1	11.1	7.30 E-03	3	
P33700	1	3.3	03	1	11.1	E-03	3	<u>4</u> 0.713
			2 22E			1.53		88664
P39054	5	9.5	2.32E- 14	8	15.4		45	88004 7
F 39034	5	9.5	14	0	13.4	E-24	43	/
								-
			2625			1.00		1.475 35450
P39654	2	57	2.62E-	0	0.0	1.00 E+00	2	
r 39034	2	5.7	05	0	0.0	E+00	2	4
			2.46E-			1 57		0.673 81256
P39655	2	5.4	2.46E- 05	1	1.0	1.57 E 03	9	
139033	2	5.4	05	1	1.8	E-03	9	5
								0.332
			8.53E-			756		0.332 86136
D40124	10	265		10	211	7.56 E-34	221	
P40124	10	36.5	30	10	34.4	E-34	231	5
			1.05			1.55		0.042
D40142	1.7	21.1	1.05E-	10	40.0	1.55	270	16706
P40142	15	31.1	42	18	40.0	E-58	372	4

								_
								0.096
			7.84E-			2.61		78526
P40201	1	0.7	03	1	0.8	E-03	2	1
110201	1	0.7	05	1	0.0	L 05	2	-
								1.143
			7.70E-			1.55		72221
P41245	16	32.5	45	8	19.0	E-27	179	3
	-			-				2.225
			1.15E-			8.64		39344
P42227	1	3.4	03	3	10.4	E-10	11	8
								1.619
			1.32E-			3.06		75015
P42932	2	5.3	05	6	14.6	E-20	20	7
			1.32E-			2.59		0.295
P43274	17	37.4	06	16	32.9	E-14	945	07886
								0.381
			1.75E-			2.80		82198
P43275	7	22.1	12	9	22.1	E-13	223	1
								-
								0.789
			6.18E-			1.21		51532
P43276	10	26.5	15	7	27.4	E-16	108	2
								0.812
			1.15E-	_		6.30		68446
P45376	1	4.4	03	2	10.1	E-07	27	9
			1.045			1.20		0.052
P47738	13	43.9	1.04E- 36	13	40.1	1.32 E-42	249	62945
P4//38	13	43.9	30	13	40.1	E-42	249	2
								- 0.766
			4.62E-			1.61		25396
P47753	5	28.0	4.02E- 12	3	15.0	E-07	37	23390
14/755	5	20.0	12		15.0	L-07	51	
								0.354
			1.52E-			4.01		01812
P47754	4	21.3	09	2	8.7	E-04	20	2
	-		••					-
								0.189
			1.75E-			1.21		56896
P47757	4	22.9	12	5	29.6	E-17	91	8
								-
								2.633
			1.52E-			1.00		01489
P47791	3	10.1	09	0	0.0	E+00	6	1
								-
								1.537
			1.32E-			1.87		63167
P47911	2	10.8	06	2	7.8	E-07	17	1
P47955	2	51.8	1.07E-	0	0.0	1.00	6	-

			05			E+00		2.633
			03			$E \pm 00$		2.035 01489
								1
								-
			4					0.096
			1.59E-			4.01		78912
P47962	2	8.1	06	1	3.4	E-04	6	6
								-
								0.627
			8.22E-			4.01		32975
P48025	2	5.4	06	1	1.7	E-04	3	4
								-
								3.503
			1.75E-			1.00		13303
P49722	4	23.5	12	0	0.0	E+00	12	3
								1.190
			4.46E-			4.23		33879
P50247	3	10.0	09	4	14.1	E-13	19	1
								0.270
			3.11E-			1.61		53398
P50516	2	8.1	06	2	8.1	E-07	37	9
100010		0.1	1.86E-		0.11	4.01		0.394
P50543	2	27.6	06	1	11.2	E-04	39	76911
100015		27.0	00	1	11.2	E 01	57	0.433
			1.15E-			3.29		75729
P51150	1	6.3	03	1	4.8	E-03	3	9
151150	1	0.5	05	1	7.0	L-05	5	,
								0.096
			1.15E-			6.55		78526
P51174	1	2.6	03	1	4.7	E-03	2	
F311/4	1	2.0	03	1	4./	E-03	Z	1
								-
			8.39E-			1 (1		0.038
D51427	2	25.0		2	10.7	1.61	47	50128
P51437	3	35.8	09	2	19.7	E-07	47	8
			2.055			1.82		0.732
D52400	22	56.0	2.95E-	24	56.2	E-	1150	65808
P52480	32	56.9	91	34	56.3	111	1152	9
			4 4 5 5					0.789
			1.15E-			5.44		74130
P54071	2	4.9	03	6	16.2	E-16	21	4
								-
								0.332
			3.11E-			1.45		92957
P54775	2	15.8	06	2	15.8	E-06	22	4
								0.290
			1.15E-			6.33		26377
P56480	1	3.6	03	3	9.1	E-10	5	4
								0.025
			1.32E-			5.39		44899
P57780	8	11.5	06	7	9.9	E-04	92	4

								0.526
			4.53E-			1.21		97745
P58252	12	25.4	35	17	31.8	E-56	280	2
								0.122
			1.32E-			7.49		83375
P59999	2	13.1	06	3	17.9	E-11	37	3
								1.125
			1.32E-			1.61		79629
P60122	2	6.6	06	2	6.6	E-07	15	3
								1.281
			1.00E+			3.26		78398
P60229	0	0.0	00	2	5.6	E-05	2	1
								0.584
			1.52E-			6.45		88677
P60335	3	12.1	09	3	12.1	E-11	32	7
								0.324
			6.93E-			4.66		41018
P60710	54	90.1	68	59	85.9	E-72	7298	5
								1.080
			1.15E-			1.72		32221
P60766	1	8.9	03	5	42.9	E-13	57	5
								0.666
	_		1.65E-	_		6.03		89293
P60843	5	19.5	14	5	16.0	E-17	71	1
						<u> </u>		0.005
D(11(1	0	21.0	5.01E-	10	25.0	8.44	110	86057
P61161	8	31.2	23	10	35.0	E-33	110	2
								-
			1.75			1.04		0.491
DC11C4	1	10.4	1.75E-	5	22.2	1.04	40	66373
P61164	4	19.4	12	3	22.3	E-17	49	6
			1.02E			7.94		0.378
P61979	2	10.9	1.03E- 05	2	6.6	7.94 E-07	22	64868
F01979	Z	10.9	03		0.0	E-0/	22	5
								0.065
			1.74E-			3.47		98151
P62137	4	21.8	1.742-	4	20.6	E-13	91	3
102157	T	21.0	11		20.0	L-15	71	5
								2.167
			3.50E-			1.00		29176
P62196	2	8.6	06	0	0.0	E+00	4	2 2
		0.0			0.0	2 00	· ·	-
								0.653
			5.04E-			1.41		24202
P62242	3	18.8	08	2	12.5	E-06	8	9
								-
								1.656
			1.19E-			1.61		06588
P62259	3	20.8	08	2	16.1	E-07	34	4

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									0.468
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4 62E-			3 40		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P62281	2	17.7		2	17.7		13	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	102201		1,.,			1,.,	11 01		-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									0.049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.32E-			1.61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P62315	2	27.7		2	27.7		59	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.32E-			4.01		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P62317	2	16.1		1	15.3	E-04	25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.720
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				3.57E-			3.40		38434
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P62320	3	31.7	09	2	15.1	E-07	21	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6.58E-					85092
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P62334	1	3.9	03	3	10.5	E-11	8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P62702	2	4.6	06	2	8.0		15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P62806	38	65.0	109	33	62.1	109	8009	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
P628279 40.7 26 8 37.0 $E-26$ 144 1 P628279 40.7 26 8 37.0 $E-26$ 144 1 P628279 40.7 26 8 37.0 $E-26$ 144 1 P628552 23.5 06 0 0.0 $E+00$ 4 2 P628552 23.5 06 0 0.0 $E+00$ 4 2 P628802 9.1 06 3 12.6 $E-10$ 24 4 P628802 9.1 06 3 12.6 $E-10$ 24 4 P628892 30.4 06 3 40.9 $E-11$ 16 3 P629081 5.3 03 4 21.0 $E-14$ 15 7 P629625 37.1 13 5 37.1 $E-15$ 99 1 P630050 0.0 00 2 8.2 $E-07$ 4 5					_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P62814	2	6.7	06	3	9.2	E-11	16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.025			5 40		
P62855223.50600.0 $E+00$ 42P62855223.50600.0 $E+00$ 42P6288029.106312.6 $E-10$ 244P6288029.106312.6 $E-10$ 244P62889230.406340.9 $E-11$ 163P62889230.406340.9 $E-11$ 163P6290815.303421.0 $E-14$ 157P6290815.303421.0 $E-14$ 157P62962537.113537.1 $E-15$ 991P6300500.00028.2 $E-07$ 45	D(2027	0	40.7		0	27.0		144	
P62855223.50.601.0029176P62855223.50.600.0 $E+00$ 42P6288029.10.6312.6 $E-10$ 2443128P6288029.10.6312.6 $E-10$ 244P6288029.10.6312.6 $E-10$ 244P62889230.40.6340.9 $E-11$ 163P6290815.303421.0 $E-14$ 157P6290815.303421.0 $E-14$ 157P62902537.11.92E-6.903363033630P62962537.113537.1 $E-15$ 991P6300500.0002 8.2 $E-07$ 45	P62827	9	40.7	26	8	37.0	E-26	144	1
P62855223.50.601.0029176P62855223.50.600.0 $E+00$ 42P6288029.10.6312.6 $E-10$ 2443128P6288029.10.6312.6 $E-10$ 244P6288029.10.6312.6 $E-10$ 244P62889230.40.6340.9 $E-11$ 163P6290815.303421.0 $E-14$ 157P6290815.303421.0 $E-14$ 157P62902537.11.92E-6.903363033630P62962537.113537.1 $E-15$ 991P6300500.0002 8.2 $E-07$ 45									-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.195			1.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P62855	2	23.5		0	0.0		4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F 02833		23.3	00	0	0.0	E+00	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 50E-			5 30		
P62889 2 30.4 06 3 40.9 E-11 16 3 P62889 2 30.4 06 3 40.9 E-11 16 3 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62902 5 37.1 13 5 37.1 E-15 99 1 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5	P62880	2	91		3	12.6		24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102000		<i></i>	00	5	12.0	L 10	21	
P62889 2 30.4 06 3 40.9 E-11 16 3 P62908 2.70E- 9.95 38908 2.664 38908 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62962 5 37.1 13 5 37.1 E-15 99 1 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5				3 11E-			6 4 5		
P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62962 5 37.1 13 5 37.1 E-15 99 1 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5	P62889	2	30.4		3	40.9		16	
P62908 1 5.3 0.3 4 21.0 E-14 15 7 P62908 1 5.3 0.3 4 21.0 E-14 15 7 P62908 1 5.3 0.3 4 21.0 E-14 15 7 P62962 5 37.1 1.92E- 6.90 33630 33630 P62962 5 37.1 13 5 37.1 E-15 99 1 P62962 5 37.1 1.3 5 37.1 E-15 99 1 P62962 0 0.0 00 2 8.2 E-07 4 5	102003	_	2011				2	10	
P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 03 4 21.0 E-14 15 7 P62908 1 5.3 0.3 4 21.0 E-14 15 7 P62962 5 37.1 1.92E- 6.90 33630 33630 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5				2.70E-			9.95		
P62962 5 37.1 1.92E- 1.92E- 1.3 6.90 6.90 33630 P63005 0 0.0 00 2 8.2 E-07 4 5	P62908	1	5.3		4	21.0		15	
P62962 5 37.1 1.92E- 13 6.90 33630 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5									-
P62962 5 37.1 1.92E- 13 6.90 33630 P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5									0.125
P62962 5 37.1 13 5 37.1 E-15 99 1 P63005 0 0.0 00 2 8.2 E-07 4 5				1.92E-			6.90		
P63005 0 0.0 1.00E+ 6.30 1.973 P63005 0 0.0 00 2 8.2 E-07 4 5	P62962	5	37.1		5	37.1		99	1
P63005 0 0.0 00 2 8.2 E-07 4 5									1.973
				1.00E+			6.30		71737
	P63005	0	0.0	00	2	8.2	E-07	4	5
P6301/ 16 33.7 9.74E-1 18 38.1 3.15 309 0.135	P63017	16	33.7	9.74E-	18	38.1	3.15	309	0.135

			45			E-51		71108
			2.025			1.07		1.247
P63085	2	6.7	3.23E- 03	6	15.9	1.97 E-10	9	30643 5
102002		0.7	00		10.9	L 10	,	-
			1 105			2.50		0.136
P63101	5	26.5	1.12E- 14	4	29.0	2.59 E-14	71	14022 2
1 00 101		20.0		-			, 1	-
D(2159	2	14.0	1.99E-	2	177	2.07	25	0.201
P63158	3	14.9	03	3	17.7	E-06	25	80586
P63330	4	24.3	1.75E- 12	4	24.3	1.01 E-13	42	0.033 0016
105550		21.5	12		21.5	L 15	12	0.102
D(0022	24		4.97E-	4.1	(2.0	1.17	1(40	64196
P68033	34	67.9	22	41	63.9	E-32	1649	5
								0.215
D (00.40			6.78E-	-		1.39		93810
P68040	6	34.4	18	5	25.9	E-17	46	<u> </u>
								1.014
			9.12E-			7.51		38265
P68254	2	21.8	06	1	11.9	E-03	4	4 0.195
			4.11E-			4.65		31348
P68368	11	34.2	12	10	31.5	E-10	196	3
								- 0.264
			1.32E-			4.01		37794
P68372	11	40.9	06	11	39.1	E-04	153	7
								0.250
			2.01E-			1.61		46689
P68373	12	36.3	15	9	29.6	E-07	186	4
			1.32E-			8.73		0.018 97076
P68433	27	65.4	06	17	59.6	E-10	3787	9
								-
			1.32E-			1.61		0.432 97872
P68510	2	17.9	06	2	17.9	E-07	32	6
								-
			1.53E-			1.40		0.163 19426
P70168	7	15.5	1.55E- 19	6	13.4	E-18	41	19420 6
			1 0 0 -					1.668
P70335	0	0.0	1.00E+ 00	2	2.7	6.30 E-07	3	83494 9
1 /0333	0	0.0	00	Z	2.1	E-07	5	7

								-
								8.782
			3.17E-			1.00		29104
P70390	40	13.8	109	0	0.0	E+00	508	5
								0.883
			1.83E-			5.68		82305
P70460	3	10.1	09	5	21.9	E-16	25	4
								1.239
			1.32E-			2.19		03475
P80313	2	7.5	06	4	11.8	E-12	16	3
								-
								2.167
			1.32E-			1.00		29176
P80314	2	7.1	06	0	0.0	E+00	4	2
								1.352
			1.75E-			3.65		40495
P80315	4	13.2	12	6	17.8	E-20	32	6
								0.044
			2.53E-			6.65		10865
P80316	4	16.5	12	5	19.0	E-17	59	9
								-
			1.32E-			1.61		0.166
P80317	2	7.0	06	2	7.0	E-07	39	39077
								-
								1.652
			4.06E-			2.71		79212
P82198	6	17.6	17	2	8.6	E-06	30	5
								2.790
D0 40 -0	0	0.0	1.00E+			3.55	0	96470
P84078	0	0.0	00	3	21.5	E-10	8	3
			1 1 7 5			2 40		0.208
D04001	1	C A	1.15E-	2	0.0	3.40 E.07	7	09330
P84091	1	6.4	03	2	9.9	E-07	7	1 705
			5 02E			5.80		1.705
P84096	5	30.9	5.93E- 15	7	49.2	5.80 E-18	39	61573
P 84090	5	50.9	15	1	49.2	E-10	39	4
								- 0.271
			1.52E-			2.83		0.271 92880
P84228	33	65.4	1.32E- 18	21	59.6	2.85 E-19	5337	92880
107220	55	UJ.7	10	21	57.0	L-17	5557	0.633
			2.01E-			1.04		0.033 72843
P97369	5	23.6	2.01E- 15	5	23.6	E-17	54	72843 9
17,507	5	25.0	1.5	5	25.0	L/~1/	54	-
								1.058
			5.43E-			1.44		16842
P97384	6	17.5	18	7	17.5	E-23	66	3
	5	1,.0	10	,	1,.0			-
			1.52E-			1.61		0.279
P99024	12	44.8	09	12	43.0	E-07	156	50845

								7
								,
								0.163
			2.49E-			1.01		19426
Q00519	7	10.4	2.471-	5	7.5	E-16	41	6
Q00517	/	10.4	20		1.5	L-10	71	0.778
			7.49E-			2.76		54123
Q00612	17	44.3	50	21	50.7	E-68	516	6
200012	17	11.5	20	21	00.7	1 00	010	-
								0.603
			3.12E-			8.08		57152
Q01853	20	38.3	54	13	24.9	E-45	344	1
C					,			0.301
			4.93E-			5.73		99199
Q02053	17	26.8	50	16	25.0	E-53	209	4
								-
								3.503
			2.00E-			1.00		13303
Q02357	5	62.8	14	0	0.0	E+00	12	3
								-
								0.506
			1.38E-			4.01		07197
Q04750	4	9.3	11	1	2.1	E-04	33	5
								0.250
			1.60E-			8.16		76507
Q05144	6	39.1	17	10	66.7	E-31	198	4
								1.441
			1.32E-			7.49		90733
Q07076	2	5.4	06	3	8.9	E-11	18	6
								-
		6.0	3.50E-			1.00		2.984
Q07797	2	6.8	06	0	0.0	E+00	8	54682
			1 0 0 7					1.281
OBTOM	0	0.0	1.00E+	•		2.50		78398
Q3TCJ1	0	0.0	00	2	7.5	E-06	2	<u> </u>
								-
			1.225			1.00		2.167
	2	47	1.32E-	0	0.0	1.00	А	29176
Q3TEA8	2	4.7	06	0	0.0	E+00	4	2
			1 155			1 22		0.955
O2TUE2	1	50	1.15E-	3	22.0	1.32 E 00	20	34457
Q3THE2	1	5.8	03	3	23.8	E-09	29	1
			1.89E-			5.46		0.129
Q3TRM8	11	18.0	32	10	16.6	E-34	87	46922
								-
								1.475
0.0777777	-		1.94E-	_		1.00		35450
Q3TXS7	2	3.8	05	0	0.0	E+00	2	4

								3.503
			8.95E-			1.00		13303
Q3UGX2	5	3.5	15	0	0.0	E+00	12	3
(-
								0.891
Q3UKW			2.29E-			1.61		48762
2	4	42.1	11	2	16.8	E-07	72	8
								0.244
		• • •	1.75E-		• • •	7.26		48279
Q3UP87	4	20.8	12	6	28.7	E-20	91	2
								-
			1.79E-			1.28		0.096 79685
Q3UW53	3	6.3	1./9L- 08	3	4.2	E-10	14	79085
Q30 W33	5	0.5	00	5	7.4	L-10	17	
								0.978
			2.01E-			1.61		52139
Q3UZZ4	5	12.7	15	2	5.0	E-07	38	5
								0.820
			8.34E-			4.01		80826
Q3V1G4	1	2.5	03	1	2.5	E-04	4	7
								0.412
0		0.0	1.75E-			6.45	10	90102
Q571I9	4	9.0	12	3	7.1	E-11	49	4
								-
			1.01E-			4.01		0.096 78912
Q5SQX6	3	1.7	07	1	0.9	E-04	6	6
Q35Q710	5	1./	07	1	0.7	L-04	0	3.414
			1.00E+			2.45		54059
Q5SS00	0	0.0	00	2	0.3	E-07	13	5
								0.130
			3.53E-			3.71		76849
Q5SXR6	26	25.0	75	24	22.9	E-75	252	1
								-
			1.225			()7		0.051
Q60605	5	15 7	1.32E-	7	51.0	6.27 E 22	61	37049
Q00005	5	45.7	14	/	51.0	E-23	61	2
								1.053
			1.32E-			4.01		83951
Q60692	2	10.9	06	1	4.2	E-04	10	6
				-				0.595
			1.15E-			1.61		14620
Q61081	1	5.5	03	2	10.0	E-07	6	1
								0.820
			1.15E-			4.01		80826
Q61096	1	5.1	03	1	5.1	E-04	4	7
Q61171	5	34.8	8.20E-	0	0.0	1.00	26	-

			15			E+00		4.543
			10			1.00		81391
								7
								0.480
			1.08E-			2.59	• •	95553
Q61210	4	9.0	11	4	6.3	E-14	38	8
								- 0.051
			1.16E-			1.55		19692
Q61233	16	35.9	46	20	46.1	E-65	250	7
201200	10					2.00		-
								0.096
			1.38E-			6.12		78526
Q61316	1	1.7	03	1	1.9	E-04	2	1
								-
			2.05E			157		1.062
Q61508	2	6.5	2.95E- 06	1	3.2	1.57 E-03	13	17453 5
Q01508	<u>∠</u>	0.5	00	1	5.2	L-05	15	0.123
			1.32E-			2.77		54976
Q61598	2	7.3	06	4	18.1	E-13	50	2
								-
								0.578
			1.32E-	_		1.61		46751
Q61599	2	23.5	06	2	23.5	E-07	58	6
			4.245			2 42		-
Q61646	7	33.1	4.24E- 20	2	10.4	3.42 E-06	27	2.304 95236
201010	1	55.1	20	2	10.1	L 00	27	-
								0.562
			1.32E-			4.73		51418
Q61656	2	4.4	06	2	4.1	E-07	10	6
								1.668
0(1752	0	0.0	1.00E+	2	6.4	1.12	2	83494
Q61753	0	0.0	00	2	6.4	E-06	3	9
								1.218
			1.32E-			3.20		92854
Q61990	2	8.3	06	2	8.3	E-07	11	2001
						• .		-
								0.788
			6.39E-			4.01		72445
Q62465	3	6.9	09	1	4.7	E-04	6	2
			2.015			5 70		1.082
Q63844	6	23.4	2.01E- 15	8	24.5	5.72 E-17	44	03017
Q03844	0	23.4	13	8	24.3	E-1/	44	8
								1.014
			2.96E-			4.01		38265
Q64514	2	4.1	05	1	0.9	E-04	4	4

			2.65E-			1.33		0.169
Q64522	40	60.8	21	36	53.8	E-27	6914	15369
								-
								0.382
			9.16E-			2.59		84420
Q64727	5	9.3	15	4	7.1	E-14	38	2
								-
								1.014
			4.69E-			7.10		38265
Q69ZK0	1	5.0	03	1	6.7	E-03	4	4
			1.32E-			6.45		0.130
Q6GSS7	38	70.8	06	34	63.8	E-11	7436	51815
								-
								2.418
		10.0	1.25E-	0	0.0	1.00	-	86030
Q6IRU2	2	10.9	05	0	0.0	E+00	5	7
			1.225			4.01		0.070
0(000	2	164	1.32E-	4	27.0	4.91	22	70013
Q6P069	2	16.4	06	4	27.9	E-13	32	2
								- 2.167
			1.32E-			1.00		2.107 29176
Q6P4T2	2	2.1	06	0	0.0	E+00	4	29170
Q01+12	<i>L</i>	2.1	00	0	0.0	E+00	<u>т</u>	
			1.83E-			2.73		0.508
Q6P5F9	3	4.9	09	5	7.7	E-15	54	38053
Quitty	5	,			,.,	2.10		0.433
			9.05E-			4.01		75729
Q6P9Q4	1	0.9	03	1	1.6	E-04	3	9
								-
								0.096
			9.41E-			6.54		78912
Q6PDI5	2	2.1	06	3	2.5	E-09	6	6
								1.125
			1.15E-			1.32		69069
Q6PDQ2	1	0.9	03	2	1.5	E-06	5	3
								-
								0.310
0.0000	-		1.15E-	_		1.61		94757
Q6PHN9	1	5.5	03	2	12.4	E-07	11	4
			1.500			0.52		0.368
0(7020	2	A -	1.59E-	A	()	9.53 E 12	10	92820
Q6ZQ38	2	4.5	06	4	6.3	E-12	10	6
			1.00E+			7.92		2.625
Q6ZQA0	0	0.0	00	4	2.8	E-14	7	87761
								-
								2.032
0.0000	_		4.51E-	-		2.61		05146
Q6ZWR6	6	8.9	17	2	1.8	E-06	18	4

								0.283
			4.93E-			2.59		90888
Q76MZ3	5	16.6	15	4	10.7	E-14	28	6
								-
								0.348
			1.32E-			3.72		35960
Q78PY7	2	4.0	06	2	4.4	E-06	9	3
								1.281
			1.00E+			4.71		78398
Q80TE4	0	0.0	00	2	1.9	E-05	2	1
								-
								1.218
			1.86E-			1.02		92854
Q80X41	2	11.4	06	2	11.4	E-05	11	2
					-			1.668
			1.00E+			2.65		83494
Q8BFY9	0	0.0	00	2	3.8	E-06	3	9
	-							0.526
			1.05E-			1.54		85112
Q8BFZ3	20	43.4	08	27	47.9	E-16	1790	3
	-					-		0.827
			1.52E-			1.35		95075
Q8BG32	3	8.5	09	6	18.2	E-18	33	3
Q02.002		0.0			10.2	2 10		1.668
			1.00E+			1.61		83494
Q8BJY1	0	0.0	00	2	6.3	E-07	3	9
QOBUTT	0	0.0			0.5	E 07		-
								0.221
			1.52E-			7.49		06290
Q8BT60	3	9.0	09	3	9.0	E-11	44	5
				-				-
								0.664
			4.86E-			3.38		17884
Q8BTM8	34	242.6	98	24	173.1	E-80	318	5
	-							-
								0.615
			1.52E-			1.61		38500
Q8BVQ9	3	12.0	09	2	8.8	E-07	20	1
	_						-	1.368
			1.15E-			3.66		18161
Q8BWT1	1	2.5	03	2	6.0	E-07	21	3
	-							0.468
			1.96E-			2.53		88772
Q8C147	4	10.8	11	3	8.8	E-10	13	5
	•			2	5.0			-
								1.635
			1.52E-			4.01		50877
Q8C2Q7	3	10.6	09	1	3.6	E-04	18	8
<u> </u>			1.00E+			7.74		1.668
Q8CC86	0	0.0	00	2	7.4	E-07	3	83494
200000	0	0.0		-	,.,	201	5	00171

								9
								1.061
			1.38E-			1.02		70706
Q8CCK0	4	12.4	03	5	12.4	E-05	92	4
QOUCKO	Ŧ	12.7	1.52E-	5	12.7	6.45)2	0.358
Q8CG29	3	4.4	09	3	4.4	E-11	55	79253
Q0002)	5	т.т	0)	5	7.7	L-11	55	17235
								0.162
			1.75E-			4.66		32952
Q8CGP1	24	74.6	1.752	16	54.0	E-04	2185	8
200011		,		10	00	2 0 .		0.039
			1.52E-			3.27		23426
Q8CGP4	21	56.6	09	22	58.9	E-10	3428	2
			• •					0.628
			1.75E-			2.07		55838
Q8CIE6	4	3.9	12	5	5.1	E-17	30	2
			2.2.45			2.04		0.364
000005	(0.0	3.34E-	10	11.4	2.04	40	37464
Q8CIH5	6	8.8	18	10	11.4	E-31	48	8
								-
			1 415			1.00		4.955
090179	9	26.6	1.41E-	0	0.0	1.00	35	80682
Q8CIZ8	9	36.6	26	0	0.0	E+00	35	6
								- 0.096
			3.04E-			4.01		0.096 78526
Q8JZQ9	1	3.0	5.04E- 03	1	2.1	4.01 E-04	2	18520
Q0JZQ9	1	5.0	03	1	2.1	E-04	2	1
								0.516
			4.20E-			7.33		46364
Q8K0E8	12	36.4	35	11	30.1	E-37	164	4
QUILUEU	12	50.1	2.15E-	11	50.1	6.66	101	0.436
Q8K1B8	14	33.4	2.10E 39	16	34.7	E-53	140	24996
Quindo				10	0	200	1.0	-
								0.867
			5.32E-			4.01		39661
Q8K1X4	2	4.0	06	1	1.4	E-04	9	3
								-
								1.426
			1.32E-			1.61		92121
Q8K426	2	23.1	06	2	23.1	E-07	30	2
								-
								3.503
			8.86E-			1.00		13303
Q8K482	4	5.8	12	0	0.0	E+00	12	3
								0.117
			1.52E-			6.45		35966
Q8QZY1	3	9.4	09	3	8.7	E-11	11	1

								0.290
			4.43E-			7.98		0.290 26377
Q8R010	2	12.8	4.43Ľ- 06	1	5.0	E-04	5	20377
QOROTO	7	12.0	00	1	5.0	L-04	5	-
								0.662
			1.15E-			1.61		0.002 47950
Q8R081	1	4.9	03	2	7.7	E-07	13	47930
Qokuoi	1	4.7	05		1.1	L-07	15	0.860
			2.52E-			1.61		25353
Q8R1B4	3	2.9	2.32E- 08	2	2.6	E-07	10	23333
Qokib4	5	2.9	00		2.0	L-07	10	0
								0.483
			1.32E-			2.37		0.483 84009
Q8R1Q8	2	5.9	1.32E- 06	2	9.0	E-06	5	34009
QokiQo	2	5.9	00	Z	9.0	E-00	5	3
								- 0.794
			4.85E-			5.35		0.794 59301
Q8R2S8	10	18.4	4.85E- 30	9	19.8	E-31	103	39301 9
Q0K250	10	10.4	50	7	19.0	E-31	105	1.668
			1.00E+			2.89		83494
Q8VCI0	0	0.0	1.00E+ 00	2	6.0	E-05	3	83494 9
Qovelo	0	0.0	00		0.0	E-03	5	9
								0.309
Q8VCM			9.48E-			1.72		12038
$\frac{Q_0 V C M}{7}$	10	34.9	9.48E- 30	9	31.4	E-30	216	12038
/	10	54.9	3.91E-	7	51.4	7.55	210	1.825
Q8VCT3	4	11.7	3.91E- 12	9	19.1	E-30	37	23393
Qovers	4	11./	12	9	19.1		57	
			5.27E-			4.18 E-		0.043 63309
Q8VDD5	44	29.8	3.27E- 123	36	24.6	L- 116	595	
QavDD3	44	29.0	125	50	24.0	110	393	9
								0.448
Q8VDM			1.52E-			4.01		0.448 32685
4	3	6.2	1.52E- 09	1	2.1	4.01 E-04	14	2
4	5	0.2		1	2.1		14	
			1.00E+			2.65		2.939
Q8VDP4	0	0.0	00	2	5.1	E-06	9	09119
								-
								2.167
Q8VDW			1.32E-			1.00		29176
0	2	11.0	06	0	0.0	E+00	4	2
								-
								0.572
			1.32E-			4.01		25785
Q8VEK3	2	4.6	06	1	2.8	E-04	22	7
								-
								0.885
			3.24E-			4.01		47143
Q8VHP7	2	11.3	06	2	10.2	E-04	20	6

								-
								2.418
			3.50E-			1.00		86030
Q8VIJ6	2	7.9	06	0	0.0	E+00	5	7
								0.927
			1.52E-			6.70		92933
Q91V92	3	4.6	09	8	11.4	E-28	65	1
								0.595
			2.29E-	_		7.44	_	14620
Q91VI7	2	7.5	05	3	12.3	E-09	6	1
			1 1 7 5			0.01		0.878
0013702	1	2.0	1.15E-	2	15 4	2.01	10	30903
Q91YP3	1	3.8	03	3	15.4	E-09	19	4
								- 1.014
			1.15E-			4.01		38265
Q91Z50	1	5.3	03	1	2.9	4.01 E-04	4	38203 4
Q71230	1	5.5	05	1	2.7	L-04	<u>т</u>	2.439
			1.00E+			1.36		43663
Q921G6	0	0.0	00	3	7.8	E-10	6	9
Q72100	0	0.0	00	5	7.0	L 10	0	-
								0.689
			7.17E-			2.59		00513
Q921I1	8	17.5	24	4	9.0	E-14	141	5
								-
								2.633
			1.83E-			1.00		01489
Q921M3	3	5.8	09	0	0.0	E+00	6	1
								1.247
			1.59E-	_		6.92		30643
Q922B2	2	6.0	06	4	10.4	E-14	9	5
			1 1 7 5			6 45		1.377
0000000	1	1.0	1.15E-	2	1.2	6.45		25730
Q922D8	1	1.6	03	3	4.3	E-11	6	6
			(40E			4.01		0.555
Q922U2	2	3.8	6.49E- 06	1	2.1	4.01 E-04	47	56499 2
Q92202		5.0	00	1	2.1	E-04	4/	0.621
			5.28E-			1.01		82106
Q93092	2	7.7	06	4	14.5	E-13	59	5
Q75072		1.1	00	•	11.0	L 15	57	0.660
			5.03E-			1.61		07316
Q99J77	1	8.9	03	2	12.8	E-07	17	5
								-
			1.15E-			2.71		0.096
Q99JI4	1	4.4	03	3	10.3	E-10	18	80072
								-
								0.231
			1.32E-			4.01		13159
Q99JI6	2	12.5	06	1	6.5	E-04	19	2

								0.147
000.000	10	50.0	1.14E-	10	12.0	1.45	265	73236
Q99JY9	12	50.0	34	10	42.8	E-34	365	4
								- 0.749
			3.57E-			1.51		22249
Q99K48	3	25.1	09	3	25.1	E-09	47	7
								1.599
			1.25E-			3.39		59071
Q99KE1	3	12.4	08	5	12.7	E-16	24	6
						4.02		1.973
Q99KI0	0	0.0	1.00E+ 00	2	4.1	4.92 E-07	4	71737 5
Q99K10	0	0.0	00	Z	4.1	L-07	4	5
								1.319
			9.58E-			2.57		26701
Q99KK2	2	14.5	06	1	6.0	E-03	5	2
								0.185
O O O VID (0.4	4.62E-			4.01	10	65663
Q99KP6	2	8.1	06	1	3.3	E-04	18	9
			1.00E+			8.96		1.281 78398
Q99LB4	0	0.0	1.00E+ 00	2	7.7	E-05	2	18598
Q//ED		0.0	00		7.7	1 00		1.281
			1.00E+			1.61		78398
Q99LC5	0	0.0	00	2	12.9	E-07	2	1
								1.060
	2		5.34E-	2	5.4	1.28	0	86546
Q99MK8	2	5.7	06	3	5.4	E-10	8	4
								2.418
			2.74E-			1.00		86030
Q99NB9	2	2.8	05	0	0.0	E+00	5	7
								-
								1.971
0000040		2.6	7.84E-		1.0	1.62	0	43304
Q99PV0	4	3.6	11	1	1.0	E-03	8	4
								1.140
			1.35E-			2.14		69343
Q9CQV8	5	32.8	14	4	32.0	E-13	35	9
								0.181
			8.96E-			1.89		98886
Q9CVB6	3	17.7	09	4	24.3	E-12	91	7
								-
			1.07E-			1.00		1.475 35450
Q9CW03	2	2.5	1.07E- 05	0	0.0	E+00	2	33430 4
2701105		2.0			0.0			
Q9CWJ9	3	11.0	6.21E- 09	5	14.9	1.49 E-15	54	1.471 96098
Q9C W 19	3	11.0	09	3	14.9	E-13	54	20020

								2
								3
								0.595
			4.59E-			3.72		14620
Q9CZN7	1	7.5	03	2	6.0	E-06	6	1
								-
			2.125			2.50		0.621
Q9CZU6	3	18.3	2.13E- 09	4	16.6	2.59 E-14	42	47544 5
Q9CL00	5	10.5	09	4	10.0	L-14	42	0.820
			1.15E-			2.32		80826
Q9D0I9	1	2.4	03	3	7.7	E-09	4	7
								2.190
			1.52E-			1.20		61727
Q9D154	3	16.1	09	8	33.5	E-23	46	7
								0.460
			3.99E-			3.79		04010
Q9D2V7	7	19.8	20	10	21.4	E-30	92	5
			0.015			0.15		1.003
OODONIO	5	10.5	2.01E-	0	27.0	9.15 E 26	80	53995
Q9D8N0	5	18.5	15	8	27.0	E-26	80	9 0.868
			1.15E-			1.61		0.888 58275
Q9D906	1	4.3	03	2	3.7	E-07	13	38273 7
Q7D700	1	т.5	05	2	5.1	L-07	15	-
								0.299
			1.59E-			2.16		68296
Q9DBG3	5	9.0	06	4	7.8	E-07	26	7
								-
								0.127
0.00011	_	~ -	5.31E-		• • •	1.19		11669
Q9DBJ1	5	32.7	15	6	28.3	E-18	93	7
			7 175			0.11		0.151
Q9DCD0	8	23.8	7.17E- 24	10	32.3	9.11 E-33	219	66821 5
QUCDU	0	23.0	24	10	52.5	E-33	219	5
			1.32E-			4.01		0.341
Q9DCH4	2	10.0	06	1	5.3	E-04	33	3204
<u> </u>		1010			0.0	20.		1.973
			1.00E+			3.22		71737
Q9EPU0	0	0.0	00	3	4.6	E-09	4	5
								1.573
			6.03E-			3.67		55587
Q9EQH3	5	12.8	14	7	12.7	E-23	32	3
						< =		0.028
ODEOW5	10	25.2	2.65E-	1 1	22.1	6.58	110	23837
Q9EQK5	12	25.2	34	11	22.1	E-33	113	8
			2.49E-			1.61		0.751 34315
Q9ERK4	3	5.7	2.49E- 08	2	3.0	1.01 E-07	15	34315 2
VIEWA4	5	5.7	00	Z	5.0	E-07	13	7

								_
								0.483
			2.70E-			4.01		84009
Q9ESX5	1	3.9	03	1	3.1	E-04	5	3
								0.172
			2.02E-			1.11		32162
Q9ET01	25	38.6	72	30	44.9	E-94	602	5
								-
								1.067
			1.32E-			4.01		82532
Q9JHK5	2	8.0	06	1	4.0	E-04	16	4
								-
								0.634
			1.73E-			1.89		46678
Q9JHU4	13	5.5	37	12	5.0	E-38	79	2
								1.377
			1.15E-			1.61		25730
Q9JIF0	1	3.5	03	2	8.7	E-07	6	6
								0.303
0.0.WF=			3.11E-			2.28	10	80063
Q9JIF7	2	4.2	06	3	5.6	E-10	12	2
			4.005			<i>с</i> 1 г		0.117
0.0110.0	2		4.02E-	2	4.0	6.45		35966
Q9JJ28	3	5.4	09	3	4.0	E-11	11	1
								-
			4 1 4 5			2 40		0.623
Q9JKF1	21	20.5	4.14E- 61	16	16.5	2.40 E-53	164	43606 8
Q9JKF1	21	20.3	01	10	10.5	E-33	104	0
								0.096
			3.11E-			6.98		0.090 79105
Q9JKR6	2	4.0	06	2	4.0	E-07	8	8
QUILICO		1.0	00		1.0	L 07	0	-
								1.862
			1.32E-			1.00		40740
Q9JL26	2	3.0	06	0	0.0	E+00	3	4
								-
								0.023
			3.01E-			6.45		72680
Q9JM76	5	34.3	14	3	24.7	E-11	37	2
								0.421
			2.59E-			3.38		77969
Q9QUI0	3	24.9	08	3	24.9	E-09	20	5
								-
								4.433
Q9QUM			7.51E-			1.00		78149
0	7	12.6	21	0	0.0	E+00	24	4
Q9QUM			1.75E-			2.59		0.102
9	4	17.9	12	4	17.9	E-14	41	57232
-	•	1,.,		•	/			

								3.132
Q9QWK			1.04E-			1.00		67523
4	2	6.5	05	0	0.0	E+00	9	9
		0.5	05	0	0.0	E · 00	,	-
								0.653
			1.18E-			8.56		24202
Q9QXK3	4	9.3	1.102	3	6.0	E-09	8	9
Q)Q/IIIS		7.5	11	5	0.0	L 07	0	
								1.475
			1.32E-			1.00		35450
Q9QZD9	2	5.5	06	0	0.0	E+00	2	4
		0.0	00	0	0.0	E · 00		0.191
			1.92E-			1.14		86854
Q9QZQ8	20	38.5	20	21	48.2	E-29	4493	5
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	20	50.5	20	21	10.2	L 2)	1175	0.615
			1.03E-			3.38		14665
Q9R062	4	24.6	1.051-	6	23.1	E-19	43	6
Q71002		21.0	11	0	23.1		15	0.555
			1.59E-			1.61		36917
Q9R0N0	2	12.0	06	2	9.5	E-07	11	50717 7
QINOINO		12.0	00	2	7.5	L-07	11	0.773
			8.48E-			6.45		31162
Q9R0P5	3	26.1	0.401-	3	29.1	E-11	18	4
Q7K015	5	20.1	0)	5	27.1	L-11	10	0.378
			8.50E-			1.61		64868
Q9R111	5	20.9	0.30L- 15	2	5.3	E-07	22	5
QJRIII	5	20.7	15	2	5.5	L 07	22	-
								0.646
			2.63E-			4.01		73957
Q9R1P0	3	21.5	2.05E	1	8.4	E-04	40	4
Quinto	5	21.5	0)	1	0.1	E VI	10	-
								1.177
			1.52E-			8.32		80671
Q9R1P3	3	21.4	09	3	21.4	E-10	45	2
Quints	5	21.1	0)	5	21.1	L 10	10	-
								0.653
			1.32E-			1.61		24202
Q9R1P4	2	8.7	06	2	9.9	E-07	8	9
271111		0.7	00	2	,,,	L 07	0	-
								0.763
			8.19E-			1.42		75422
Q9WU78	10	22.2	29	9	17.2	E-28	68	3
2211070	10		2)	1	1/.4	1 20	00	0.433
Q9WUA			9.94E-			3.20		75729
2	1	2.2	03	2	4.2	E-07	3	9
-	1	2.2	00		1.2	201	5	-
								1.971
Q9WUM			2.01E-			7.98		43304
3	2	10.7	2.01L= 05	1	2.3	E-04	8	43304
5	4	10.7	05	1	2.3		0	т

								- 0.078
			3.05E-			5.35		10296
Q9WV32	8	31.7	24	9	36.3	E-31	151	3
Q7WV32	0	51.7	27	,	50.5	L-J1	1.71	-
								1.014
			2.09E-			5.17		38265
Q9WVJ2	3	12.2	08	1	3.5	E-03	4	4
Q 7 11 11 12	5	12.2	00	1	5.5	L 05		-
								0.278
Q9WVK			1.63E-			8.28		71283
4	7	26.6	19	6	18.7	E-21	77	8
	,							1.973
			1.00E+			1.91		71737
Q9Z0N1	0	0.0	00	2	6.8	E-06	4	5
								0.820
			4.69E-			5.67		80826
Q9Z0P5	1	4.9	03	2	9.8	E-07	4	7
								-
								1.219
			1.75E-			6.45		55738
Q9Z126	4	46.7	12	3	38.1	E-11	65	2
								-
								1.971
			5.07E-			4.01		43304
Q9Z183	4	11.7	12	1	2.6	E-04	8	4
								0.420
			1.52E-			2.59		17365
Q9Z1E4	3	9.5	09	4	11.4	E-14	37	2
								1.056
			1.30E-			1.55		75388
Q9Z1Q5	5	39.0	14	8	36.1	E-27	66	5
								2.025
			1.19E-			6.13		52825
Q9Z1Q9	4	7.1	10	10	16.5	E-32	47	2
								0.595
			1.38E-			4.49		14620
Q9Z2L7	1	7.0	03	2	11.0	E-07	6	1
								-
								1.154
			5.31E-			1.90		42979
Q9Z2U0	5	30.6	15	3	19.0	E-09	26	2
								-
								0.448
0.077777	-		1.32E-	-		1.14		32685
Q9Z2U1	2	15.8	06	3	24.9	E-09	14	2

	Total:		Total:	
	Distinct		Estima	
	Peptide	Total: %	ted	
Protein	S	Coverage	FDR	Description
			6.43E-	
A1BN54	15	24.6	24	Alpha actinin 1a
			5.40E-	
A2AF47	2	1.8	06	Dedicator of cytokinesis protein 11
A2AN0			9.00E-	
8	2	0.7	06	E3 ubiquitin-protein ligase UBR4
A2AQ0			2.82E-	
7	9	32.4	20	Tubulin beta-1 chain
			1.14E-	
A6ZI44	12	39.2	39	Fructose-bisphosphate aldolase
			1.77E-	
D3Z6Q9	3	12.5	08	Bridging integrator 2
			3.26E-	Minor histocompatibility protein
D3Z7R7	2	3.0	06	HA-1
			1.37E-	
E9PV24	7	10.1	23	Protein Fga
			7.94E-	
E9Q0F0	2	1.3	07	Protein Krt78
2,2010			2.35E-	Deoxynucleoside triphosphate
E9Q0K6	15	36.7	2.33E- 47	triphosphohydrolase SAMHD1
EJQUKU	15	50.7	1.08E-	
E9Q133	9	32.9	29	T-complex protein 1 subunit
E9Q133	9	52.9		gamma
E9Q604	8	11 /	3.96E- 25	Integrin alpha M
E9Q004	8	11.4	23	Integrin alpha-M
				Phosphatidylinositol 4-phosphate
			1.01E-	3-kinase C2 domain-containing
E9QQ35	2	2.1	06	subunit gamma
			6.12E-	Non-histone chromosomal protein
F6W687	5	43.8	15	HMG-17 (Fragment)
			1.61E-	NEDD8-conjugating enzyme
F6YXS3	2	19.6	07	Ubc12 (Fragment)
F8WGL			3.99E-	- (
3	4	28.2	3.99E- 12	Cofilin-1
	4	20.2		
F8WGM	~	0.0	3.68E-	Syntaxin-binding protein 2
5	3	8.9	10	(Fragment)
F8WH6	-		2.27E-	
9	9	28.2	28	Neutrophil cytosol factor 1
			6.02E-	
F8WI35	29	65.2	12	Histone H3
G3UZJ4	2	23.5	1.61E-	Peroxiredoxin-6

			07	
			8.24E-	Bifunctional polynucleotide
G5E8N7	7	29.3	24	phosphatase/kinase
H3BKH			1.12E-	
6	7	45.1	22	S-formylglutathione hydrolase
•			4.41E-	
O08692	17	68.9	51	Myeloid bactenecin (F1)
			7.68E-	3-hydroxyacyl-CoA dehydrogenase
O08756	3	22.2	10	type-2
			3.40E-	116 kDa U5 small nuclear
O08810	2	4.5	07	ribonucleoprotein component
			3.84E-	• •
O08992	3	20.7	09	Syntenin-1
			1.85E-	
O09061	3	18.8	10	Proteasome subunit beta type-1
				Putative pre-mRNA-splicing factor
			2.13E-	ATP-dependent RNA helicase
O35286	4	5.9	13	DHX15
	-		1.84E-	
O35350	5	11.5	16	Calpain-1 catalytic subunit
	-		4.61E-	Disintegrin and metalloproteinase
O35598	2	4.1	07	domain-containing protein 10
0.05(0.0		15.0	2.13E-	
035639	4	17.3	13	Annexin A3
025(42	5	11.0	5.30E-	AD 1
O35643	5	11.2	06 1.12E-	AP-1 complex subunit beta-1
O35744	7	26.1	1.12E- 21	Chitinase-3-like protein 3
033744	/	20.1	1.32E-	Cintinase-5-fike protein 5
O54890	2	5.5	06	Integrin beta-3
001090		0.0	6.45E-	
O55029	3	5.7	11	Coatomer subunit beta'
			2.04E-	
O55222	2	7.7	06	Integrin-linked protein kinase
			3.31E-	
O70133	4	5.9	13	ATP-dependent RNA helicase A
			1.85E-	
O70138	3	9.2	10	Neutrophil collagenase
			7.99E-	
O70145	10	32.2	33	Neutrophil cytosol factor 2
	_		1.52E-	
070165	3	16.2	09	Ficolin-1
0.000 / 0	<u>_</u>		2.72E-	
088342	8	22.3	25	WD repeat-containing protein 1
O88593	2	25.8	1.61E-	Peptidoglycan recognition protein

			07	1
			6.45E-	1
O88685	3	9.3	0.43E- 11	26S protease regulatory subunit 6A
000005	5).5		· · · ·
O88844	5	13.3	5.15E- 14	Isocitrate dehydrogenase [NADP] cytoplasmic
000044	5	13.3	1.74E-	cytopiasinic
O89053	20	60.7	1.74L- 62	Coronin-1A
007033	20	00.7	1.03E-	Coronini-1A
P01027	19	55.9	1.03E	Complement C3
101027	17		1.61E-	
P01325	2	14.8	07	Insulin-1
			9.58E-	
P01794	2	23.6	06	Ig heavy chain V region HPCG14
			1.32E-	
P01837	2	45.3	06	Ig kappa chain C region
			6.94E-	
P01872	10	29.1	32	Ig mu chain C region secreted form
			2.99E-	
P01942	15	84.5	47	Hemoglobin subunit alpha
			1.11E-	
P02088	15	79.6	28	Hemoglobin subunit beta-1
D 0000	10		1.71E-	
P02089	10	78.2	12	Hemoglobin subunit beta-2
D00001	20	(5.4	1.62E-	
P02301	29	65.4	09 4.35E-	Histone H3.3C
P04104	3	3.8	4.33E- 10	Keratin, type II cytoskeletal 1
104104	5	5.0	3.19E-	Keratin, type if cytoskeretar i
P04919	11	24.5	3.1712-	Band 3 anion transport protein
101919	11	21.5	3.27E-	Build 5 union transport protein
P06151	10	38.6	32	L-lactate dehydrogenase A chain
			1.26E-	
P06745	12	28.3	39	Glucose-6-phosphate isomerase
			3.57E-	Receptor-type tyrosine-protein
P06800	4	6.9	11	phosphatase C
			6.38E-	
P07356	7	34.8	23	Annexin A2
			2.74E-	
P07724	16	35.4	49	Serum albumin
			2.95E-	Ribonucleoside-diphosphate
P07742	2	4.8	06	reductase large subunit
			6.45E-	
P07901	5	9.4	11	Heat shock protein HSP 90-alpha
			1.04E-	
P08030	5	38.3	17	Adenine phosphoribosyltransferase

			1.00E-	
P08032	17	14.2	1.00L- 47	Spectrin alpha chain, erythrocytic 1
100052	17	11.2	3.78E-	speet in tiplite entail, erytinoeytie i
P08071	54	72.0	175	Lactotransferrin
1000/1	01	72.0	2.01E-	
P08226	5	24.8	15	Apolipoprotein E
	-		8.53E-	Malate dehydrogenase,
P08249	5	20.7	17	mitochondrial
			1.52E-	
P08607	3	10.0	09	C4b-binding protein
			6.30E-	
P08730	2	6.8	07	Keratin, type I cytoskeletal 13
			1.85E-	
P08905	3	31.1	10	Lysozyme C-2
			2.01E-	
P09411	12	47.0	40	Phosphoglycerate kinase 1
			1.39E-	
P09528	4	28.0	12	Ferritin heavy chain
			6.15E-	
P0C0S6	14	56.3	34	Histone H2A.Z
			2.58E-	
P10107	15	46.5	49	Annexin A1
			1.51E-	
P10126	13	40.7	39	Elongation factor 1-alpha 1
			1.32E-	
P10605	2	9.1	06	Cathepsin B
			1.48E-	
P10854	25	74.6	12	Histone H2B type 1-M
			3.59E-	
P11247	28	40.4	93	Myeloperoxidase
			3.81E-	
P11276	66	40.7	200	Fibronectin
			5.73E-	
P11352	5	39.3	16	Glutathione peroxidase 1
D 11100	_		2.23E-	
P11499	5	10.2	10	Heat shock protein HSP 90-beta
			4.61E-	Neutrophil gelatinase-associated
P11672	2	17.0	07	lipocalin
			3.32E-	
P11835	14	25.7	41	Integrin beta-2
			2.64E-	
P11983	8	20.3	26	T-complex protein 1 subunit alpha
			1.41E-	
P12815	3	35.1	08	Programmed cell death protein 6
P12970	2	7.9	6.30E-	60S ribosomal protein L7a

			07	
D12020	2	4.0	1.25E-	Calcalia
P13020	3	4.8	09	Gelsolin
D140.00			6.45E-	
P14069	3	32.6	11	Protein S100-A6
		_	5.30E-	
P14131	3	21.9	10	40S ribosomal protein S16
			4.43E-	Malate dehydrogenase,
P14152	2	11.1	06	cytoplasmic
			3.47E-	
P14206	4	25.4	12	40S ribosomal protein SA
			6.03E-	26S proteasome non-ATPase
P14685	4	14.3	12	regulatory subunit 3
	•	1.1.5	1.03E-	
P14824	3	6.4	08	Annexin A6
		0.1	1.38E-	
P14869	3	20.5	09	60S acidic ribosomal protein P0
111009	5	20.5	3.25E-	
P15864	23	37.7	23	Histone H1.2
115004	23	51.1		
D16546	2	0.7	1.07E-	Spectrin alpha chain, non-
P16546	3	2.7	07	erythrocytic 1
			1.21E-	Glyceraldehyde-3-phosphate
P16858	20	74.5	64	dehydrogenase
			1.64E-	
P17182	20	50.7	64	Alpha-enolase
			4.17E-	Polypyrimidine tract-binding
P17225	2	8.3	05	protein 1
			8.15E-	
P17427	6	11.2	19	AP-2 complex subunit alpha-2
			3.42E-	Peptidyl-prolyl cis-trans isomerase
P17742	6	52.4	20	A
			8.12E-	
P17751	4	25.4	12	Triosephosphate isomerase
	-		2.52E-	
P19096	12	8.9	2.32E 39	Fatty acid synthase
	1 2	0.9	3.75E-	
P20029	10	19.2	21	78 kDa glucose-regulated protein
120027	10	17.4	6.09E-	ro kou grucose regulated protein
P20152	4	12.2	13	Vimentin
120132	+	12.2	6.19E-	
P21107	2	12.5	0.19E- 07	Tronomyosin alpha 2 shain
r2110/	Ĺ	12.3		Tropomyosin alpha-3 chain
D22752	50	70.0	9.03E-	History HOA torra 1
P22752	50	70.8	62	Histone H2A type 1
D0 4070		150	3.42E-	
P24270	6	15.2	20	Catalase

			1.04	
D25011	~	147	1.04E-	T ' (' 1 ' I
P25911	5	14.7	17	Tyrosine-protein kinase Lyn
D2 (0 2 0	42	20.0	1.02E-	TT 1: 1
P26039	43	30.9	131	Talin-1
D2 (0.40	0	11.4	5.30E-	
P26040	8	11.4	10	Ezrin
	10		3.42E-	
P26041	12	20.1	22	Moesin
			1.89E-	Glutamate dehydrogenase 1,
P26443	3	8.8	09	mitochondrial
			4.61E-	26S proteasome non-ATPase
P26516	2	14.0	07	regulatory subunit 7
			2.07E-	
P26638	3	11.5	10	SerinetRNA ligase, cytoplasmic
	_		1.97E-	8,
P27005	7	92.1	22	Protein S100-A8
12,000	,	/	3.68E-	
P27773	3	6.9	10	Protein disulfide-isomerase A3
12///3	5	0.9	2.06E-	
P27870	2	3.7	2.00L 06	Proto-oncogene vav
12/0/0		5.1	3.48E-	
P28293	13	50.2	42	Cathepsin G
120275	15	50.2		· · ·
D20252	2	()	3.27E-	DNA-(apurinic or apyrimidinic
P28352	2	6.3	05	site) lyase
D2 9650	7	20 (1.37E-	Adenylosuccinate synthetase
P28650	7	20.6	23	isozyme 1
D2 0700	-	10 (1.72E-	
P28798	5	12.6	15	Granulins
			7.11E-	Tyrosine-protein phosphatase non-
P29351	14	41.0	46	receptor type 6
			7.11E-	
P29391	6	48.6	19	Ferritin light chain 1
			4.11E-	
P29788	4	10.9	12	Vitronectin
			3.68E-	
P30681	10	38.1	24	High mobility group protein B2
				Aminoacyl tRNA synthase
			4.03E-	complex-interacting
P31230	2	9.4	06	multifunctional protein 1
			1.40E-	
P31725	23	79.6	73	Protein S100-A9
			5.16E-	Macrophage migration inhibitory
P34884	2	26.1	07	factor
			1.21E-	
P35441	20	24.8	60	Thrombospondin-1
		=		*

			8.46E-	
P35700	2	16.6	06-06	Peroxiredoxin-1
133700	2	10.0	4.13E-	
P39054	9	16.4	4.13Ľ- 27	Dynamin-2
1 3 9 0 3 4	,	10.4		
D20(54	2	57	2.62E-	Arachidonate 12-lipoxygenase,
P39654	2	5.7	05	leukocyte-type
			3.87E-	Arachidonate 12-lipoxygenase,
P39655	3	7.2	08	12S-type
			1.72E-	Adenylyl cyclase-associated
P40124	12	39.0	39	protein 1
-	• •		8.69E-	
P40142	20	40.0	63	Transketolase
			2.05E-	Chromodomain-helicase-DNA-
P40201	2	1.5	05	binding protein 1
			1.48E-	
P41245	16	32.5	48	Matrix metalloproteinase-9
			8.64E-	Signal transducer and activator of
P42227	3	10.4	10	transcription 3
			2.81E-	
P42932	6	14.6	20	T-complex protein 1 subunit theta
			2.59E-	· ·
P43274	22	38.8	14	Histone H1.4
			7.42E-	
P43275	9	22.1	14	Histone H1.1
			4.27E-	
P43276	12	33.2	19	Histone H1.5
			6.30E-	
P45376	2	10.1	07	Aldose reductase
			1.67E-	Aldehyde dehydrogenase,
P47738	16	46.4	50	mitochondrial
			5.63E-	F-actin-capping protein subunit
P47753	5	28.0	13	alpha-1
			5.30E-	F-actin-capping protein subunit
P47754	4	21.3	10	alpha-2
			1.39E-	F-actin-capping protein subunit
P47757	6	34.2	20	beta
	-		1.52E-	Glutathione reductase,
P47791	3	10.1	09	mitochondrial
	-		2.15E-	
P47911	3	13.5	10	60S ribosomal protein L6
			1.07E-	1
P47955	2	51.8	05	60S acidic ribosomal protein P1
-			5.55E-	
P47962	2	8.1	07	60S ribosomal protein L5
P48025	2	5.4	1.08E-	Tyrosine-protein kinase SYK
1 70023	۷	5.4	1.00L-	1 yrosine-protein kinase o i k

			06	
			1.75E-	
P49722	4	23.5	1.752	Proteasome subunit alpha type-2
	-		2.50E-	
P50247	5	16.2	16	Adenosylhomocysteinase
			1.61E-	V-type proton ATPase catalytic
P50516	2	8.1	07	subunit A
			6.47E-	
P50543	2	27.6	07	Protein S100-A11
			3.79E-	
P51150	2	11.1	06	Ras-related protein Rab-7a
			7.53E-	Long-chain specific acyl-CoA
P51174	2	7.2	06	dehydrogenase, mitochondrial
			4.35E-	Cathelin-related antimicrobial
P51437	3	35.8	10	peptide
D52400	20	(0, 2)	9.43E-	
P52480	39	60.3	126	Pyruvate kinase PKM
D54051	ſ	160	5.44E-	Isocitrate dehydrogenase [NADP],
P54071	6	16.2	16	mitochondrial
D54775	2	15.8	1.08E-	265 motoogo no culatarry culturit (D
P54775	2	13.8	06	26S protease regulatory subunit 6B
D56490	3	0.1	6.33E-	ATP synthase subunit beta,
P56480	3	9.1	10 6.19E-	mitochondrial
P57780	9	13.0	0.19E- 07	Alpha-actinin-4
137700	,	15.0	1.21E-	
P58252	17	31.8	56	Elongation factor 2
	_ ,		7.49E-	Actin-related protein 2/3 complex
P59999	3	17.9	11	subunit 4
107777	5	1,.,	1.61E-	
P60122	2	6.6	07	RuvB-like 1
			3.26E-	Eukaryotic translation initiation
P60229	2	5.6	05	factor 3 subunit E
			6.45E-	
P60335	3	12.1	11	Poly(rC)-binding protein 1
			1.99E-	
P60710	66	90.1	80	Actin, cytoplasmic 1
			1.72E-	Cell division control protein 42
P60766	5	42.9	13	homolog
	_		2.81E-	
P60843	6	21.9	19	Eukaryotic initiation factor 4A-I
D(11(1	10	20 (7.79E-	A stin related system 2
P61161	12	38.6	38	Actin-related protein 2
P61164	5	22.3	1.04E-	Alpha-centractin

			17	
			7.13E-	Heterogeneous nuclear
P61979	3	14.8		ribonucleoprotein K
101777	5	11.0	07	Serine/threonine-protein
			1.17E-	phosphatase PP1-alpha catalytic
P62137	5	26.1	15	subunit
			3.50E-	
P62196	2	8.6	06	26S protease regulatory subunit 8
			1.46E-	
P62242	4	24.5	11	40S ribosomal protein S8
			1.44E-	
P62259	3	20.8	09	14-3-3 protein epsilon
			3.40E-	
P62281	2	17.7	07	40S ribosomal protein S11
D(0015			1.61E-	Small nuclear ribonucleoprotein
P62315	2	27.7	07	Sm D1
D(2217	2	16.1	1.86E-	Small nuclear ribonucleoprotein Sm D2
P62317	2	10.1	06 3.90E-	
P62320	3	31.7	3.90E- 10	Small nuclear ribonucleoprotein Sm D3
102520	5	51.7	6.45E-	26S protease regulatory subunit
P62334	3	10.5	0.45L 11	10B
102001	5	10.0	1.85E-	40S ribosomal protein S4, X
P62702	3	8.7	10	isoform
			1.85E-	
P62806	40	65.0	127	Histone H4
			7.42E-	V-type proton ATPase subunit B,
P62814	4	11.9	14	brain isoform
			9.23E-	
P62827	11	41.7	34	GTP-binding nuclear protein Ran
			9.18E-	
P62855	2	23.5	06	40S ribosomal protein S26
			1.85E-	Guanine nucleotide-binding protein
P62880	3	12.6	10	G(I)/G(S)/G(T) subunit beta-2
D(2000	2	40.0	6.45E-	
P62889	3	40.9	11	60S ribosomal protein L30
DC2000	4	21.0	9.95E-	405 mil agamal anotain 52
P62908	4	21.0	14 4.76E-	40S ribosomal protein S3
P62962	5	37.1	4.70E- 15	Profilin-1
		57.1	6.30E-	Platelet-activating factor
P63005	2	8.2	0.30E- 07	acetylhydrolase IB subunit alpha
105005	~	0.2	2.11E-	accepting arotase in subunit alpha
P63017	19	40.7	2.11L 54	Heat shock cognate 71 kDa protein
P63085	6	15.9	1.97E-	Mitogen-activated protein kinase 1

			10		
			1.91E-		
P63101	6	31.4	19	14-3-3 protein zeta/delta	
			7.97E-	•	
P63158	4	21.9	07	High mobility group protein B1	
				Serine/threonine-protein	
			7.42E-	phosphatase 2A catalytic subunit	
P63330	4	24.3	14	alpha isoform	
			2.06E-		
P68033	46	68.2	35	Actin, alpha cardiac muscle 1	
			1.84E-	Guanine nucleotide-binding protein	
P68040	7	37.2	23	subunit beta-2-like 1	
			9.12E-		
P68254	2	21.8	06	14-3-3 protein theta	
			5.00E-		
P68368	12	36.2	13	Tubulin alpha-4A chain	
			4.61E-		
P68372	13	45.2	07	Tubulin beta-4B chain	
			2.44E-		
P68373	13	38.3	16	Tubulin alpha-1C chain	
T (0) (0 0			8.73E-		
P68433	28	65.4	10	Histone H3.1	
D (0510	2	150	1.61E-		
P68510	2	17.9	07	14-3-3 protein eta	
D701(0	7	16.6	9.37E-	T (1 1 1 1 1	
P70168	7	15.5	22	Importin subunit beta-1	
D70225	2	2.7	6.30E-	Dha agga sisted motoin lyingga 1	
P70335	2	2.7	07 3.17E-	Rho-associated protein kinase 1	
P70390	40	13.8	3.17E- 109	Short stature homeobox protein 2	
170370	40	15.0	7.86E-	Vasodilator-stimulated	
P70460	6	21.9	19	phosphoprotein	
1,0100	0	<u> </u>	5.04E-	phosphoprotom	
P80313	4	11.8	13	T-complex protein 1 subunit eta	
		11.0	1.32E-		
P80314	2	7.1	06	T-complex protein 1 subunit beta	
		,.1	1.19E-		
P80315	6	17.8	20	T-complex protein 1 subunit delta	
			3.58E-	T-complex protein 1 subunit	
P80316	5	19.0	17	epsilon	
			1.61E-		
P80317	2	7.0	07	T-complex protein 1 subunit zeta	
			2.82E-	Transforming growth factor-beta-	
P82198	6	17.6	17	induced protein ig-h3	
P84078	3	21.5	3.55E-	ADP-ribosylation factor 1	

			10	
			3.40E-	
P84091	2	9.9	07	AP-2 complex subunit mu
104071).)	2.78E-	Rho-related GTP-binding protein
P84096	8	53.4	2.76E	RhoG
101070	0	55.1	2.08E-	
P84228	33	65.4		
			1.04E-	
P97369	5	23.6	17	Neutrophil cytosol factor 4
			1.44E-	
P97384	7	17.5	23	Annexin A11
			1.85E-	
P99024	14	49.1	10	Tubulin beta-5 chain
	_		9.24E-	
Q00519	7	10.4	23	Xanthine dehydrogenase/oxidase
			1.12E-	Glucose-6-phosphate 1-
Q00612	22	51.1	71	dehydrogenase X
			7.21E-	Transitional endoplasmic reticulum
Q01853	22	41.8	67	ATPase
			7.55E-	Ubiquitin-like modifier-activating
Q02053	20	28.6	65	enzyme 1
			2.00E-	
Q02357	5	62.8	14	Ankyrin-1
004550		0.0	4.80E-	
Q04750	4	9.3	12	DNA topoisomerase 1
			8.16E-	Ras-related C3 botulinum toxin
Q05144	10	66.7	31	substrate 2
005056			7.49E-	
Q07076	3	8.9	11	Annexin A7
007707	2	(9	3.50E-	Coloctin 2 hinding motoin
Q07797	2	6.8	06	Galectin-3-binding protein
Q3TCJ1	2	7.5	2.50E- 06	BRISC complex subunit Abro1
		1.5		•
Q3TEA 8	2	4.7	1.32E- 06	Heterochromatin protein 1-binding
o Q3THE	Z	4./	1.32E-	protein 3
2	3	23.8	1.52E- 09	Myosin regulatory light chain 12B
Q3TRM		25.0	2.20E-	ingosin regulatory light chain 12D
8	14	20.9	2.20E- 45	Hexokinase-3
0	14	20.9	4.5 1.94E-	
Q3TXS7	2	3.8	1.94E- 05	26S proteasome non-ATPase regulatory subunit 1
	۷	3.8		
Q3UGX	_) F	8.95E-	Spectrin hete 1
2	5	3.5	15	Spectrin beta 1

Q3UKW			2.79E-	
2 2	4	42.1	2.79E= 12	Calmodulin
2	7	42.1	8.34E-	Camiodum
Q3UP87	7	29.1	23	Neutrophil elastase
Q3UW5	,	27.1	1.20E-	
Q30 W3 3	4	7.3	1.201-	Protein Niban
Q3UZZ	4	7.5	2.44E-	
4	5	12.7		
Q3V1G	5	12.7	3.34E-	
4	2	5.1	06	Olfactomedin-like protein 2B
			8.53E-	Aldehyde dehydrogenase family 16
Q571I9	5	10.3	0.55L 17	member A1
Q5SQX	5	10.5	4.04E-	Cytoplasmic FMR1-interacting
Q35QA 6	4	2.6	4.04D- 11	protein 2
0	Т	2.0	2.45E-	•
Q5SS00	2	0.3	2.43E- 07	DBF4-type zinc finger-containing protein 2 homolog
Q5SS00 Q5SXR	2	0.5	1.08E-	
6 6	32	29.7	1.00L- 98	Clathrin heavy chain 1
0	52	29.1	5.50E-	Chulin neuvy chulin 1
Q60605	7	51.0	23	Myosin light polypeptide 6
200000	,	0110	4.61E-	
Q60692	2	10.9	07	Proteasome subunit beta type-6
			1.61E-	5 .
Q61081	2	10.0	07	Hsp90 co-chaperone Cdc37
			4.61E-	
Q61096	2	10.2	07	Myeloblastin
			8.20E-	
Q61171	5	34.8	15	Peroxiredoxin-2
			2.44E-	Rho guanine nucleotide exchange
Q61210	7	12.9	22	factor 1
			1.41E-	
Q61233	22	49.6	72	Plastin-2
			8.46E-	
Q61316	2	3.6	07	Heat shock 70 kDa protein 4
0.01700		- -	1.81E-	
Q61508	2	6.5	06	Extracellular matrix protein 1
0(1500	4	10.1	2.77E-	Rab GDP dissociation inhibitor
Q61598	4	18.1	13	beta
061500	2	22 E	1.61E-	Pho CDD dissociation inhibitor 2
Q61599	2	23.5	07 2.94E-	Rho GDP-dissociation inhibitor 2
Q61646	7	33.1	2.94E- 20	Haptoglobin
Q01040	/	33.1		· · ·
0(1(5)	2	C A	5.30E-	Probable ATP-dependent RNA
Q61656	3	6.4	10	helicase DDX5

			1 100		
0(1752	•		1.12E-	D-3-phosphoglycerate	
Q61753	2	6.4	06	dehydrogenase	
	-		3.20E-		
Q61990	2	8.3	07	Poly(rC)-binding protein 2	
			2.23E-	Synaptic vesicle membrane protein	
Q62465	3	6.9	09	09 VAT-1 homolog	
			6.58E-	<u> </u>	
Q63844	9	29.2	20	Mitogen-activated protein kinase 3	
			1.19E-	<u> </u>	
Q64514	3	5.0	08	Tripeptidyl-peptidase 2	
20.011		0.0	1.33E-		
Q64522	43	60.8	27	Histone H2A type 2-B	
Q04322	75	00.0	1.36E-		
Q64727	5	9.3	1.501-	Vinculin	
Q04727	5	9.5	10		
				Phosphatidylinositol 3,4,5-	
			3.33E-	trisphosphate-dependent Rac	
Q69ZK0	2	11.7	05	exchanger 1 protein	
			6.45E-		
Q6GSS7	41	70.8	11	Histone H2A type 2-A	
			1.25E-		
Q6IRU2	2	10.9	05	Tropomyosin alpha-4 chain	
			4.91E-		
Q6P069	4	27.9	13	Sorcin	
			1.32E-	U5 small nuclear ribonucleoprotein	
Q6P4T2	2	2.1	06	200 kDa helicase	
201 112		2.1	6.21E-	200 kBu heneuse	
Q6P5F9	5	7.7	16	Exportin-1	
201019	5	/./	3.63E-	FH1/FH2 domain-containing	
Q6P9Q4	2	2.5	06	protein 1	
Q01 7Q4	2	2.3		1	
	4	2.0	2.18E-	Proteasome-associated protein	
Q6PDI5	4	3.8	11	ECM29 homolog	
Q6PDQ			1.52E-	Chromodomain-helicase-DNA-	
2	3	2.4	09	binding protein 4	
Q6PHN			1.61E-		
9	2	12.4	07	Ras-related protein Rab-35	
			4.25E-	Cullin-associated NEDD8-	
Q6ZQ38	5	8.2	15	dissociated protein 1	
Q6ZQA	5	0.2	7.92E-		
Qozqa 0	4	1 0	7.92E- 14	Naurahaashin lika protain 2	
	4	2.8		Neurobeachin-like protein 2	
Q6ZWR			2.29E-		
6	7	9.9	20	Nesprin-1	
				Serine/threonine-protein	
Q76MZ			3.42E-	phosphatase 2A 65 kDa regulatory	
3	6	17.0	20	subunit A alpha isoform	
	9	20	= 2	· · · · · · · · · · · · · · · · · · ·	

			4.27E-	Staphylococcal nuclease domain-	
Q78PY7	3	6.0	09	containing protein 1	
			4.71E-	Signal-induced proliferation-	
Q80TE4	2	1.9	05	associated 1-like protein 2	
			1.86E-	Serine/threonine-protein kinase	
Q80X41	2	11.4		06 VRK1	
Q8BFY		• •	2.65E-		
9	2	3.8	06	Transportin-1	
000072	20	40.0	1.54E-		
Q8BFZ3	29	49.2	16	Beta-actin-like protein 2	
	r.	10.0	1.35E-	26S proteasome non-ATPase	
Q8BG32	6	18.2	18	regulatory subunit 11	
			1.61E-	26S proteasome non-ATPase	
Q8BJY1	2	6.3	07	regulatory subunit 5	
			7.49E-		
Q8BT60	3	9.0	11	Copine-3	
Q8BTM			1.21E-		
8	39	274.7	122	Filamin-A	
Q8BVQ			1.85E-		
9	3	12.0	10	26S protease regulatory subunit 7	
Q8BWT			3.66E-	3-ketoacyl-CoA thiolase,	
1	2	6.0	07	mitochondrial	
			2.74E-		
Q8C147	5	13.7	15	Dedicator of cytokinesis protein 8	
			5.30E-	Heterogeneous nuclear	
Q8C2Q7	3	10.6	10	ribonucleoprotein H	
			7.74E-	Nicotinate	
Q8CC86	2	7.4	07	phosphoribosyltransferase	
Q8CCK			1.02E-		
0	5	12.4	05	Core histone macro-H2A.2	
			6.45E-		
Q8CG29	3	4.4	11	Myosin IF	
Q8CGP			7.07E-		
1	25	74.6	13	Histone H2B type 1-K	
Q8CGP			3.76E-		
4	25	58.9	13	Histone H2A	
			2.07E-		
Q8CIE6	5	5.1	17	Coatomer subunit alpha	
				1-phosphatidylinositol 4,5-	
			2.35E-	bisphosphate phosphodiesterase	
Q8CIH5	11	13.4	34	gamma-2	
			1.41E-		
Q8CIZ8	9	36.6	26	von Willebrand factor	

			1.000	
001700	2	C 1	1.22E-	Eukaryotic translation initiation
Q8JZQ9	2	5.1	06	factor 3 subunit B
OOVOEO	1.4	20.1	2.62E-	
Q8K0E8	14	39.1	45	Fibrinogen beta chain
0.01/100	10	10.6	3.07E-	
Q8K1B8	19	40.6	60	Fermitin family homolog 3
Q8K1X	2	5 4	2.13E-	
4	3	5.4	09	NCK associated protein 1 like
0.01/ 10/	2	22.1	1.61E-	
Q8K426	2	23.1	07	Myeloid cysteine-rich protein
001/102	1	50	8.86E- 12	EMILIN 2
Q8K482	4	5.8		EMILIN-2
Q8QZY		11.7	7.42E-	Eukaryotic translation initiation
1	4	11.7	14	factor 3 subunit L
			0.175	Aminoacyl tRNA synthase
000010	2	12.0	9.17E-	complex-interacting
Q8R010	2	12.8	07	multifunctional protein 2
0000001			1.61E-	Heterogeneous nuclear
Q8R081	2	7.7	07	ribonucleoprotein L
			1.06E-	Eukaryotic translation initiation
Q8R1B4	3	2.9	09	factor 3 subunit C
			2.73E-	Cytoplasmic dynein 1 light
Q8R1Q8	3	12.6	09	intermediate chain 1
			7.06E-	
Q8R2S8	11	22.4	37	CD177 antigen
			2.89E-	
Q8VCI0	2	6.0	05	Phospholipase B-like 1
Q8VCM			6.15E-	
7	12	40.8	39	Fibrinogen gamma chain
Q8VCT			1.94E-	
3	10	20.6	32	Aminopeptidase B
Q8VDD			2.68E-	
5	55	35.2	168	Myosin-9
Q8VDM			5.30E-	26S proteasome non-ATPase
4	3	6.2	10	regulatory subunit 2
Q8VDP			2.65E-	DBIRD complex subunit
4	2	5.1	06	KIAA1967 homolog
Q8VDW			1.32E-	ATP-dependent RNA helicase
0	2	11.0	06	DDX39A
Q8VEK			4.61E-	Heterogeneous nuclear
QOVER 3	2	4.6	4.0112-	ribonucleoprotein U
Q8VHP			1.13E-	
Qoviii 7	3	13.9	06	Leukocyte elastase inhibitor B
/	5	13.9	00	Leurocyte clastase minutor D

				~
	-		3.50E-	Splicing factor, proline- and
Q8VIJ6	2	7.9	06	glutamine-rich
			6.70E-	
Q91V92	8	11.4	28	ATP-citrate synthase
	-		5.10E-	
Q91VI7	3	12.3	8 09 Ribonuclease inhibitor	
			2.01E-	Putative deoxyribose-phosphate
Q91YP3	3	15.4	09	aldolase
			4.61E-	
Q91Z50	2	8.2	07	Flap endonuclease 1
				Leucine-rich repeat and calponin
			1.36E-	homology domain-containing
Q921G6	3	7.8	10	protein 4
			1.22E-	
Q921I1	9	20.1	28	Serotransferrin
			1.83E-	
Q921M3	3	5.8	09	Splicing factor 3B subunit 3
			6.92E-	AspartatetRNA ligase,
Q922B2	4	10.4	14	cytoplasmic
			7.42E-	C-1-tetrahydrofolate synthase,
Q922D8	4	5.9	14	cytoplasmic
			2.27E-	
Q922U2	2	3.8	06	Keratin, type II cytoskeletal 5
			1.01E-	
Q93092	4	14.5	13	Transaldolase
			1.61E-	N-acetylneuraminic acid synthase
Q99J77	2	12.8	07	(Sialic acid synthase)
			2.71E-	26S proteasome non-ATPase
Q99JI4	3	10.3	10	regulatory subunit 6
			4.61E-	
Q99JI6	2	12.5	07	Ras-related protein Rap-1b
			1.66E-	
Q99JY9	13	51.9	42	Actin-related protein 3
			5.05E-	Non-POU domain-containing
Q99K48	3	25.1	10	octamer-binding protein
2771210	5	20 .1	2.61E-	NAD-dependent malic enzyme,
Q99KE1	7	20.7	2.01E- 21	mitochondrial
QUINET	/	20.7	4.92E-	
Q99KI0	2	4.1	4.92L- 07	Aconitate hydratase, mitochondrial
Q99KI0 Q99KK	<u> </u>	4.1	9.58E-	N-acylneuraminate
2	2	14.5	9.38E- 06	cytidylyltransferase
<u> </u>	۷	17.3	1.61E-	
Q99KP6	2	8.1	1.01L- 06	Pre-mRNA-processing factor 19
277NF0	۷	0.1	00	Tre-mixing-processing factor 19

	-		8.96E-	Capping protein (Actin filament),	
Q99LB4	2	7.7	05	gelsolin-like	
			1.61E-	Electron transfer flavoprotein	
Q99LC5	2	12.9	07	subunit alpha, mitochondrial	
Q99MK			6.85E-	.85E-	
8	5	11.0	16	16 Beta-adrenergic receptor kinase 1	
			2.74E-		
Q99NB9	2	2.8	05	Splicing factor 3B subunit 1	
			2.76E-	Pre-mRNA-processing-splicing	
Q99PV0	4	3.6	11	factor 8	
Q9CQV			2.17E-		
8	5	32.8	16	14-3-3 protein beta/alpha	
Q9CVB			1.46E-	Actin-related protein 2/3 complex	
6	4	24.3	12	subunit 2	
Q9CW0			1.07E-	Structural maintenance of	
3	2	2.5	05	chromosomes protein 3	
Q9CWJ			1.49E-	Bifunctional purine biosynthesis	
9	5	14.9	15	protein PURH	
Q9CZN			1.71E-		
7	3	13.5	08	Serine hydroxymethyltransferase	
Q9CZU			2.98E-		
6	5	23.1	17	Citrate synthase, mitochondrial	
			1.21E-	ArgininetRNA ligase,	
Q9D0I9	3	7.7	09	cytoplasmic	
000154	0	26.0	1.38E-	T 1 / 1 / 1111/	
Q9D154	9	36.9	26 7.19E-	Leukocyte elastase inhibitor A	
Q9D2V 7	11	24.2		Conomin 7	
/ Q9D8N	11	24.3	34 8.55E-	Coronin-7	
0	9	30.2	8.33L- 29	Elongation factor 1-gamma	
0)	50.2			
Q9D906	3	8.0	1.85E- 10	Ubiquitin-like modifier-activating enzyme ATG7	
	5	0.0		enzyme ATO7	
Q9DBG	Ę	0.0	2.16E-	AD 2 complex suburit hoto	
3	5	9.0	07 6.66E-	AP-2 complex subunit beta	
Q9DBJ1	7	32.7	0.00E- 22	Phosphoglycerate mutase 1	
	/	34.1		1 87	
Q9DCD	13	38.9	3.25E- 41	6-phosphogluconate	
	13	30.9		dehydrogenase, decarboxylating	
Q9DCH	2	10.0	4.61E-	Eukaryotic translation initiation	
4	2	10.0	07 3.22E-	factor 3 subunit F	
Q9EPU0	3	4.6	3.22E- 09	Deculator of nonconcentration of the	
	3	4.0		Regulator of nonsense transcripts 1	
Q9EQH	0	1 <i>6 E</i>	7.97E-	Vacuolar protein sorting-associated	
3	8	16.5	26	protein 35	

Q9EQK			1.36E-	
Q9EQK	15	28.3	44	Major vault protein
Q9ERK	15	20.5	4.35E-	
4	3	5.7	4.55E- 10	Exportin-2
	5	5.7	1.08E-	▲
Q9ESX5	2	7.1	1.08E- 06	H/ACA ribonucleoprotein complex subunit 4
Q9ESAJ		/.1	2.49E-	Glycogen phosphorylase, liver
Q9ET01	32	46.4	5 6 1 1 5 ,	
QJEIUI	52	40.4	4.61E-	
Q9JHK5	2	8.0	4.01L ⁻	Pleckstrin
Q)JIIK5	2	0.0	1.53E-	Cytoplasmic dynein 1 heavy chain
Q9JHU4	22	8.4	66	1
QUITET		0.1	1.85E-	Protein arginine N-
Q9JIF0	3	12.2	10	methyltransferase 1
2,011.0			5.00E-	
Q9JIF7	4	7.6	13	Coatomer subunit beta
	-		2.26E-	
Q9JJ28	5	8.2	16	Protein flightless-1 homolog
			1.92E-	Ras GTPase-activating-like protein
Q9JKF1	24	22.9	1.92E 77	IQGAP1
	21		6.98E-	
Q9JKR6	2	4.0	0.90£	Hypoxia up-regulated protein 1
Q, UILLO	_		1.32E-	
Q9JL26	2	3.0	06	Formin-like protein 1
			5.03E-	Actin-related protein 2/3 complex
Q9JM76	5	34.3	16	subunit 3
2,011210	· · ·		1.07E-	
Q9QUI0	3	24.9	09	Transforming protein RhoA
Q9QUM			7.51E-	
0	7	12.6	21	Integrin alpha-IIb
Q9QUM	,	12.0	2.59E-	
9	4	17.9	2.37L 14	Proteasome subunit alpha type-6
Q9QWK	•	17.9	1.04E-	Tioteusonie subunit uipnu type o
4 4	2	6.5	05	CD5 antigen-like
	4	0.5		
Q9QXK 3	4	0.2	1.03E- 12	Coatomer subunit gamma-2
	4	9.3		
Q9QZD	~		1.32E-	Eukaryotic translation initiation
9	2	5.5	06	factor 3 subunit I
Q9QZQ		10.0	9.49E-	
8	23	48.8	32	Core histone macro-H2A.1
000000	-	24.0	2.29E-	
Q9R062	7	34.8	21	Glycogenin-1
OODONIO	2	15.0	2.23E-	Calastalinasa
Q9R0N0	3	15.3	10	Galactokinase

			- 10		
			7.42E-		
Q9R0P5	4	32.7	14	Destrin	
			1.03E-		
Q9R111	5	20.9	15	Guanine deaminase	
			9.16E-		
Q9R1P0	3	21.5	10 Proteasome subunit alpha type-4		
			1.85E-		
Q9R1P3	3	21.4	10	Proteasome subunit beta type-2	
			1.85E-		
Q9R1P4	3	14.4	10	Proteasome subunit alpha type-1	
Q9WU7			1.14E-	Programmed cell death 6-	
8	11	23.1	34	interacting protein	
Q9WUA		2011	3.20E-	PhenylalaninetRNA ligase beta	
2 Q9 W U A	2	4.2	3.20E- 07	subunit	
	۷	4.2		subuint	
Q9WU		10.0	1.61E-		
M3	3	13.0	08	Coronin-1B	
Q9WV3			5.35E-	Actin-related protein 2/3 complex	
2	9	36.3	31	subunit 1B	
Q9WVJ			2.09E-	26S proteasome non-ATPase	
2	3	12.2	08	regulatory subunit 13	
Q9WVK	-		6.41E-		
4 4	9	28.7	28	EH domain-containing protein 1	
7)	20.7			
007011	•	()	1.91E-	Eukaryotic translation initiation	
Q9Z0N1	2	6.8	06	factor 2 subunit 3, X-linked	
	-		5.67E-		
Q9Z0P5	2	9.8	07	Twinfilin-2	
			7.42E-		
Q9Z126	4	46.7	14	Platelet factor 4	
			1.77E-		
Q9Z183	4	11.7	12	Protein-arginine deiminase type-4	
			2.59E-		
Q9Z1E4	4	11.4	14	Glycogen [starch] synthase, muscle	
			2.04E-	Chloride intracellular channel	
Q9Z1Q5	10	47.7	33	protein 1	
			1.38E-		
Q9Z1Q9	12	20.0	36	ValinetRNA ligase	
			4.49E-	~	
Q9Z2L7	2	11.0	07	Cytokine receptor-like factor 3	
			1.24E-		
Q9Z2U0	5	30.6	1.2.12	Proteasome subunit alpha type-7	
<u></u> 00	5	20.0	1.14E-		
Q9Z2U1	3	24.9	09	Proteasome subunit alpha type-5	
<i>VIL201</i>	5	27.7	0)	1 rowasonie subunit alpha type-5	

Appendix Table 2: Proteins identified in MDSC-derived exosomes that have not previously been reported in ExoCarta, EVpedia, or Vesiclepedia.

Protein	Protein Name
D3Z6Q9	Bridging integrator 2
E9Q0F0	Protein Krt78
	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing
E9QQ35	subunit gamma
O70138	Neutrophil collagenase
P01794	Ig heavy chain V region HPCG14
P01872	Ig mu chain C region secreted form
P08032	Spectrin alpha chain, erythrocytic 1
Q00612	Glucose-6-phosphate 1-dehydrogenase X
	Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac
Q69ZK0	exchanger 1 protein
Q8K426	Myeloid cysteine-rich protein
Q99MK8	Beta-adrenergic receptor kinase 1

Appendix Table 3: Peptide and protein identifications of ubiquitinated proteins in

MDSC-derived exosomes.

			Precurs				
			or	Mass			
Acc-	Precur-		neutral	Diff.		Modifi-	
ession	sor m/z	Charge	mass	(Da)	Peptide	cations	Estfdr
				-			
	805.88		1609.75	0.0411	AFSSPSGFLY	K12:+1	0.0214
A2AU83	73291	2	9008	85869	HKR	14.043	87603
						C8:+45.	
						988,M1	
						4:+15.9	
					GTPASPRCGS	95,K18:	
			2917.32	1.9572	PTPMETDKR	+114.04	0.0214
B2RXC2	973.45	3	6525	93152	VAPSLER	3	87603
						K21:+1	
					KKLFKLIRK	14.043,	
	1111.3		3331.11	4.0582	MPFIGRKVS	K26:+1	0.0509
D3Z1Z3	8	3	6525	98912	KA K KDLVK	14.043	75293
					KKKVSIMVS		
	1104.2		2210.16	5 0170	VDGVKVILK	IZ 10. ± 1	0.0500
FOCULIO	1104.3		3310.16	5.0170	KKKKLLLLQ	K18:+1	0.0509
E0CYH9	95264	3	2316	78584	K	14.043	75293

						K2:+11	
					R K SVRRGRK	K2.+11 4.043,K	
			2604.69	5.0388	PPLLKKKLR	4.043,K 9:+114.	0.0509
E9PZM7	869.24	3	6525	55904	R	9.+114. 043	75293
E9FZIVI/	009.24	3	0323	55904	κ	K2:+11	13293
					DUGUDDCDU		
	1105.0		2212.00	4.0520	RKSVRRGRK	4.043,K	0.0000
E0D71/7	1105.0	2	3312.09	4.0528	PPLLKKKLR	15:+114	0.0820
E9PZM7	38208	3	1149	39383	RSVPPAEK	.043	93135
	894.47		1786.93	0.0102	TITLEVEPSD		
E9Q5F6	29614	2	0273	50948	TIENVK	-	0
	894.47		1786.92	0.0074	TITLEVEPSD		
E9Q5F6	15576	2	7465	4333	TIENVK	-	0
1702010		2					
	748.74	_	2243.19	0.0070	TLSDYNIQKE	K9:+11	0.0018
E9Q5F6	05396	3	8144	78604	STLHLVLR	4.043	65672
	534.31		1066.61	0.0055			0.0052
E9Q5F6	73218	2	8993	03843	ESTLHLVLR	-	58545
	534.31		1066.61	0.0058			0.0018
E9Q5F6	75049	2	936	70054	ESTLHLVLR	-	65672
	534.31		1066.61	0.0061			0.0018
E9Q5F6	7627	2	9604	14194	ESTLHLVLR	-	65672
	534.31		1066.61	0.0064			0.0068
E9Q5F6	78101	2	997	80405	ESTLHLVLR	-	61064
	534.31		1066.61	0.0048			0.0250
E9Q5F6	70166	2	8383	93491	ESTLHLVLR	-	19547
	534.31		1066.61	0.0048			0.0052
E9Q5F6	70166	2	8383	93491	ESTLHLVLR	-	58545
	460.59		1378.76	0.0020	MQIFV K TLT	K6:+11	0.0509
E9Q5F6	66187	3	6381	54045	GK	4.043	75293
L)Q510		5				T.UTJ	
	894.47	_	1786.93	0.0102	TITLEVEPSD		0.0509
E9Q5F6	29614	2	0273	50948	TIENVK	-	75293
	541.28		1080.54	0.0013			0.0509
E9Q5F6	10669	2	6484	48413	TLSDYNIQK	-	75293
	748.74		2243.19	0.0070	TLSDYNIQK	K9:+11	0.0509
E9Q5F6	05396	3	8144	78604	ESTLHLVLR	4.043	75293
	534.31		1066.61	0.0055			0.0509
E9Q5F6	73218	2	8993	03843	ESTLHLVLR	-	75293
					IKEVLKERK		
			2951.88	4.0253	VLEKKVALS	K14:+1	0.0509
E9Q6J5	984.97	3	6525	57984	KRRRK	14.043	75293
					TLEP K APRIK		
	1136.3		3406.11	6.0394	EVLKERKVL	K5:+11	0.0782
E00615		3	3406.11 6525			K5:+11 4.043	
E9Q6J5	8	3	0323	91568	EKKVALSKR	4.043	98695
					KVLALPSHR		
	1108.3		3322.12	4.0525	GPKIRRLKER	K26:+1	0.0509
F6SB18	8208	3	2765	59242	LRRIRQ K	14.043	75293

						1	
F6XI62	1026.3 4	3	3075.99 6525	4.0577 7624	REKKKKVAT VPGTLKKKV PAGPKTL K K	K26:+1 14.043	0.0782 98695
F6XI62	940.61 51733	3	2818.82 2045	5.0512 22244	NFAELKVKR LRKKFALKT LRKAR	-	0.0782 98695
F7DCP6	820.47 96753	2	1638.94 3701	1.9448 06506	KPVASGVKK VAKSPK	K9:+11 4.043	0.0865 61747
F7DCP6	436.77 82898	2	871.540 9295	1.0121 5983	KVAKSPK	K1:+11 4.043	0.0865 61747
G3UWJ2	983.12 69531	3	2946.35 7384	1.9953 88887	GEGPCMAES QGPEDPILDV KNKLETK	C5:+45. 988,K26 :+114.0 43	0.0293 20987
G5E861	746.64 12354	4	2982.53 3641	0.9917 79278	LQQENEQLQ KETEDLRKV ALEAQK	K24:+1 14.043 K5:+11	0.0423 28041
H3BKN5	894.59 52759	3	2680.76 2353	5.0448 59277	VLGR K LPKK KRVRKKAM KKR	4.043,K 18:+114 .043	0.0913 32711
H3BL88	1096.7 1	3	3287.10 6525	4.0243 93416	LLIIKKKGKH KKHKSGKKS ISKKAITK	K22:+1 14.043, K27:+1 14.043	0.0782 98695
H3BL88	702.15 69824	3	2103.44 7472	5.0497 63234	KLKLTKMRA KKKKKKK	K1:+11 4.043	0.0509 75293
J3QQ16	631.98 60229	3	1892.93 4594	- 0.0177 74552	DLKIMVLML TGDMQR	K3:+11 4.043,M 13:+15. 995	0.0376 78976
P08071	931.44 83032	4	3721.76 1913	1.0246 40011	SSTRQCIQAI VTNRADAM TLDGGTMFD AGKPPYK	C6:+45. 988,M1 8:+15.9 95,M25: +15.995	0.0865 61747
P08071	596.30 59692	2	1190.59 6288	0.0060 14229	QCIQAIVTNR	C2:+45. 988	0.0865 61747
P08071	652.37 87231	2	1302.74 1796	0.0122 14001	LRPVAAEVY GTK	-	0.0865 61747
P08071	454.25 57373	4	1812.99 1649	0.0070 20947	LRPVAAEVY GTKEQPR	-	0.0865 61747
P08071	575.82 31201	2	1149.63 059	0.0123 4949	THYYAVAV VK	-	0.0865 61747

[1	
	908.16		2721.46	0.0195	IPIGTLRPYL NWNGPPASL		0.0865
P08071	40015	3	8529	30859	EEAVSK	-	61747
						C5:+45.	
	781.31		1560.62	0.0022	FPNLCSSCAG	988,C8:	0.0865
P08071	89087	2	2167	84999	TGANK	+45.988	61747
	902.39		1802.77	0.0116	CASSPEEPYS	C1:+45.	0.0865
P08071	39819	2	2314	66787	GYAGALR	988	61747
	495.56		1483.68	1.0139	CLRDNAGDV	C1:+45.	0.0865
P08071	94885	3	499	46576	AFTR	988	61747
	610.81		1219.61	0.0060	GSTVFEELPN		0.0865
P08071	50635	2	4477	12929	K	-	61747
	618.30		1851.89	0.0036	LLCPDNTWK	C3:+45.	0.0865
P08071	57861	3	3883	78606	PVTEYK	988	61747
	560.28		1677.82	0.0162	ECHLAQVPS	C2:+45.	0.0865
P08071	26538	3	4486	80082	HAVVSR	988	61747
	776.89		1551.77	0.0090	QASGFQLFA		0.0865
P08071	64233	2	7197	43888	SPSGQK	-	61747
	439.74		877.470	0.0043			0.0865
P08071	28589	2	0677	05125	ESAIGFVR	-	61747
						C3:+45. 988,C12	
						:+45.98	
	1039.9		2077.93	0.0111	VTCISFPTTE	8,M17:+	0.0865
P08071	77051	2	8451	58651	DCIVAIMK	15.995	61747
	658.84		1315.66	0.0050	CGLVPVLAE	C1:+45.	0.0865
P08071	19189	2	8188	82931	NQK	988	61747
					SNGLDCVNR		
	750.38		2248.12	0.0141	PVEGYLAVA	C6:+45.	0.0865
P08071	23853	3	3681	4693	AVR	988	61747
	634.80		1267.58	0.0060	EDAGFTWSS		0.0865
P08071	24902	2	933	18589	LR	-	61747
	895.88		1789.75	0.0063	FNEFFSQSCA	C9:+45.	0.0865
P08071	31177	2	0585	1668	PGADPK	988	61747
						C4:+45.	
	595.92		1784.76	0.0070	SNLCALCIGD	988,C7:	0.0865
P08071	91992	3	4123	18216	EKGENK	+45.988	61747
	813.90		1625.78	0.0084	LKDFELLCL	C8:+45.	0.0865
P08071	18555	2	8061	69401	DDTR	988	61747
	713.69		2138.04	0.0087	DFELLCLDD	C6:+45.	0.0865
P08071	04297	3	7814	59879	TRKPVTEAK	988	61747

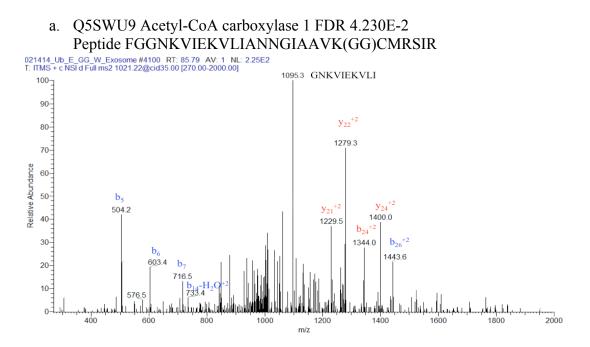
				-	1		
					TDKVEVLQQ		
	781.76		2342.27	0.0125	VLLDQQVQF		0.0865
P08071	51367	3	1935	28564	GR	-	61747
	667.03		1998.09	0.0044	VEVLQQVLL		0.0865
P08071	92456	3	4262	40056	DQQVQFGR	-	61747
						C1 + 45	
	675.77		1349.53	0.0066	CPGEFCLFQS	C1:+45. 988,C6:	0.0865
P08071	52686	2	4887	73485	K	+45.988	61747
	590.96		1769.86	1.0168	TKNLLFNDN	C12:+45	0.0865
P08071	31348	3	5929	61057	TECLAK	.988	61747
100071		5					
P08071	770.86 34644	2	1539.71 1279	0.0048 52215	NLLFNDNTE CLAK	C10:+45 .988	0.0865 61747
1000/1	54044	2	12/9	52215	CLAK	C2:+45.	01/4/
						988,C11	
	895.39		1788.76	0.0119	QCSSSPLLEA	:+45.98	0.0865
P08071	18457	2	8041	99662	CAFLTQ	8	61747
					GDADAMSL		
	480.47		1917.87	0.0328	DGGYIYTAG	K18:+1	0.0865
P08071	64099	4	4339	12016	Κ	14.043	61747
	740.52		1479.04	0.0299	LLKVIRKKL	K7:+11	0.0362
P08113	96631	2	3676	20012	VR	4.043	53776
	749.49		1496.96	1.0856	AAKPKKAAS	K10:+1	0.0865
P10922	24316	2	9213	83449	KAPSK	14.043	61747
						K1:+11	
						4.043,K	
	599.38		1196.75	1.0484		9:+114.	0.0865
P10922	39722	2	2294	47592	ККРААТРКК	043	61747
	571.43		1140.84	2.0920		K6:+11	0.0865
P10922	13965	2	7143	61417	KAKKPKVVK	4.043	61747
	763.49		1524.97	1.0258	ASKPKKAKT	K3:+11	0.0865
P10922	63379	2	7026	10269	VKPK	4.043	61747
	599.83		1197.66	0.0023	ASGPPVSELI		0.0865
P15864	92334	2	2817	17173	TK	-	61747
	554.29		1106.56	0.0046	ALAAAGYD		0.0865
P15864	05273	2	5405	19232	VEK	-	61747
	593.44		1184.87	0.0889	IKLGLKSLVS		0.0865
P15864	51294	2	4609	68197	K	-	61747
	532.00		1592.99	1.0016	AGAAKAKKP		0.0865
P15864	45776	3	0258	66646	AGAAKKPK	-	61747
	663.90		1325.78	0.9655	КРККАТБАА		0.0865
P15864	01465	2	4643	76905	TPKK	-	61747
110001	01100	-	1015	,0,00		1	01/1/

	1						
	452.95		1355.82	0.0401	KATGAATPK	K1:+11	0.0865
P15864	07446	3	8759	92151	КААК	4.043	61747
	649.95		1297.88	1.1008	AKKPAAAAV	K11:+1	0.0865
P15864	21484	2	8647	08507	TKK	14.043	61747
	436.77		871.540	1.0121		K1:+11	0.0865
P15864	82898	2	9295	5983	KVAKSPK	4.043	61747
	571.86		1141.71	0.9783		K3:+11	0.0865
P15864	41968	2	2743	97443	KAKVTKPKK	4.043	61747
	548.06		1641.16	4.1313	VKSASKAVK		0.0865
P15864	33545	3	6588	81301	РКААКРК	-	61747
			927.544	1.9733		K3:+11	0.0865
P15864	464.78	2	3499	81032	AAKPKVAK	4.043	61747
				-			
	973.53		1945.05	0.0130	MAWVKFLR	K5:+11	0.0485
P15975	73535	2	9057	20001	KPSGNLGK	4.043	65123
	744.35		1486.69	0.0043	TTPSYVAFT		0.0865
P17156	69946	2	8339	5449	DTER	-	61747
						K12:+1	
	927.49		1852.96	2.0154	HWPFRVVSE	14.043, K14:+1	0.0865
P17156	26147	2	1832.90 9579	37876	GGKPK	14.043	61747
11/100		4				11.015	
P17156	830.46 05103	2	1658.90 537	0.0174 36764	IINEPTAAAI AYGLDK		0.0865 61747
F1/130		2				-	
D1715(596.67	3	1786.99	0.0079	IINEPTAAAI AVCL DKK		0.0865
P17156	14478	3	0868	71342	AYGLDKK	-	61747
					NVLIFDLGG		
D15156	971.85		2912.54	2.0181	GTFDVSILTI		0.0865
P17156	60791	3	4762	22353	EDGIFEVK	-	61747
	591.80		1181.59	0.0050	APDFVFYAP		0.0865
P26040	3833	2	2016	75432	R	-	61747
	736.91		1471.80	0.0060	QLLTLSNELS		0.0865
P26040	05835	2	5517	6404	QAR	-	61747
	1098.5		2195.07	1.9563	EELMLRLQD	K13:+1	0.0865
P26040	46631	2	7612	39791	YEQKTKR	14.043	61747
	498.78		995.552	2.0501	MSGRGKTGG	M1:+15.	0.0865
P27661	42102	2	7703	2497	K	995	61747
	472.77		943.527	0.0039			0.0865
P27661	1759	2	868	21802	AGLQFPVGR	-	61747
					VGAGAPVYL AAVLEYLTA		
	972.87		2915.60	1.0223	EILELAGNA		0.0865
P27661	54272	3	2913.00	99874	AR	-	61747
P27661	54272	3	2807	99874	AR	-	61747

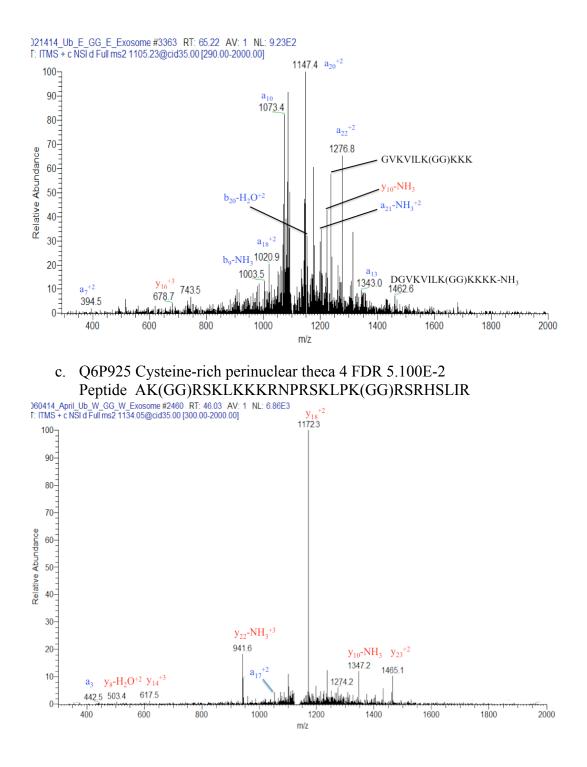
	564.97		1691.90	0.0103	HLQLAIRND		0.0865
P27661	64404	3	5846	67505	EELNK	- K1:+11	61747
						4.043,K	
	439.45		1753.79	0.8148	KSSATVGPK	9:+114.	0.0865
P27661	77332	4	9632	59417	APAVGKK	043	61747
					QRRLKKKAL		
	983.32		2946.94	6.0329	VKRRELILLG	K22:+1	0.0782
P40630	35474	3	7167	6149	KPKR	14.043	98695
					EARQRRLKK		
D40(20	1101.7	3	3302.13	5.0415	KALVKRREL	K25:+1	0.0782
P40630	2	3	6525	01192	ILLGKP K R	14.043	98695
	614.84		1227.67	0.0001	TSGPPVSELI		0.0865
P43274	32617	2	0873	90906	ТК	-	61747
	554.29		1106.56	0.0046	ALAAAGYD		0.0865
P43274	05273	2	5405	19232	VEK	-	61747
	593.44		1184.87	0.0889	IKLGLKSLVS		0.0865
P43274	51294	2	4609	68197	K	-	61747
D42274	532.00	2	1592.99	1.0016	AGAAKAKKP		0.0865
P43274	45776	3	0258	66646	AGAAKKPK	-	61747
P43274	478.79 53491	2	955.575 0482	1.0139 15666	AKKPAGAAK	K9:+11 4.043	0.0865 61747
1 43274	55471	2	0402	15000		K10:+1	01/4/
						14.043,	
D 40074	539.00	2	1613.99	3.0486	TVKPKAAKP	K13:+1	0.0865
P43274	63477	3	5568	36985	KTSK	14.043	61747
					KTVKTPKKP		
	1105.0		2210.14		KKPAVSKKT	774 . 11	0.0500
P43275	1107.3 9	3	3319.14 6525	5.0447 33424	SKSPKKPKV VK	K4:+11 4.043	0.0509 75293
143213	7	3	0525	55424		4.043	13293
					AKKVAKSPA		
	1176.7		3527.24	3.0339	KAKAVKPKA SKAKVTKPK	K27:+1	0.0509
P43275	56958	3	7399	31575	TPAKPK	14.043	75293
					TSKSPKKPK VVKAKKVA		
			2837.85	6.0400	KSPAKAKAV		0.0509
P43275	946.96	3	6525	89296	K	-	75293
	Ι Τ				KKPAGPSVS		
	671.38		2011.13	0.0064	ELIVQAVSSS		0.0509
P43275	7085	3	778	27571	K	-	75293

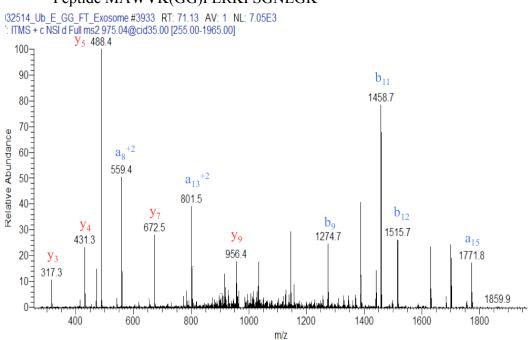
	1					1	1
	628.68		1883.03	0.0031	KPAGPSVSEL		0.0509
P43275	76831	3	9574	8514	IVQAVSSSK	-	75293
P43275	1131.0 74463	3	3390.19 9914	5.0610 08248	TVKTPKKPK KPAVSKKTS KSPKKPKVV KAK	K3:+11 4.043	0.0782 98695
P43275	1064.3 6	3	3190.05 6525	4.0496 9656	TVKTPKKPK KPAVSKKTS KSPKKPKVV K	K23:+1 14.043	0.0782 98695
P43275	1140.7 40723	3	3419.19 8693	6.0535 67065	KTSKSPKKP KVVKAKKV AKSPAKAKA VKPK	K15:+1 14.043, K16:+1 14.043	0.0926 5694
P43276	606.84 71069	2	1211.67 8564	0.0024 14163	ATGPPVSELI TK	-	0.0865 61747
P43276	547.28 42407	2	1092.55 2831	0.0076 96069	ALAAGGYD VEK	-	0.0865 61747
P43276	593.44 51294	2	1184.87 4609	0.0889 68197	IKLGLKSLVS K	-	0.0865 61747
P43276	545.31 70166	2	1088.61 8383	1.9673 72851	AKKTGAAK AK	K3:+11 4.043	0.0865 61747
P43276	521.98 88916	3	1562.94 32	- 0.0189 14795	AKKPAGATP KKPKK	K14:+1 14.043	0.0865 61747
P43276	429.30 40161	2	856.592 3821	2.0949 12627	KPAAAGVK	K1:+11 4.043	0.0865 61747
P43276	613.39 33105	2	1224.77 0971	0.9995 83598	SPKKAKAAA KPK	-	0.0865 61747
P43276	464.31	2	926.604 3499	2.0287 02464	SPAKPKAVK	-	0.0865 61747
P43276	799.51 29395	2	1597.01 0229	1.0015 70898	AVKSKASKP KVTKPK	-	0.0865 61747
P43276	841.52 7832	2	1681.04 0014	0.9989 20775	VTKPKTAKP KAAKAK	K10:+1 14.043	0.0865 61747
	564.89		1127.78	1.0992		K5:+11 4.043,K 8:+114.	0.0865
P43277	86206	2	1591	08235	TPVKKKAK	043	61747
P43277	599.83 92334	2	1197.66 2817	0.0023 17173	ASGPPVSELI TK	-	0.0865 61747
P43277	554.29 05273	2	1106.56 5405	0.0046 19232	ALAAAGYD VEK	-	0.0865 61747

	1					1	
	593.44		1184.87	0.0889	IKLGLKSLVS		0.0865
P43277	51294	2	4609	68197	K	-	61747
	532.00		1592.99	1.0016	AGAAKAKKP		0.0865
P43277	45776	3	0258	66646	AGAAKKPK	-	61747
	663.90		1325.78	0.9655	KPKKATGAA		0.0865
P43277	01465	2	4643	76905	ТРКК	-	61747
115277	01100		1015	-			01717
	648.39		1294.77	0.0332	SPKKVKAAK	K9:+11	0.0865
P43277	55078	2	5366	08183	РК	4.043	61747
				-			
			1112.62	0.0423	KAAKSPAKA	K10:+1	0.0865
P43277	557.32	2	435	10432	K	14.043	61747
			1252.00	-		17.7 + 1.1	0.0065
P43277	677.01	2	1353.80 435	0.0049 52136	AKASKPKAS KPK	K5:+11 4.043	0.0865 61747
F43277	677.91	Ζ.	433	32130	NFN	4.043 K6:+11	01/4/
				-		4.043,K	
	768.91		1535.82	0.0480	WSLIAKHLK	9:+114.	0.0085
P51960	80908	2	0532	89231	GR	043	17887
	586.32		1170.62	0.0046	LDIDSAPITA		0.0865
P52480	23877	2	9125	76959	R	-	61747
102100	23077		,120	10,07			01717
	022 10		2402.20	1 0170	EATESFASDP		0.00(5
P52480	832.10 68115	3	2493.29 6959	1.0170 92194	ILYRPVAVA LDTK		0.0865 61747
F 32460		3				-	
DC2400	607.29	2	1212.57	0.0071	ITLDNAYME	M8:+15.	0.0865
P52480	62646	2	6879	57161	K	995	61747
	571.31		1140.60	0.0066	GDLGIEIPAE		0.0865
P52480	25	2	935	99664	K	-	61747
					LAPITSDPTE		
	1073.5		2145.11	1.0172	AAAVGAVE		0.0865
P52480	66528	2	7407	94857	ASFK	-	61747
	793.90		1585.78	0.0123	DAVLNAWA		0.0865
P52480	08179	2	5986	5359	EDVDLR	-	61747
					GPEIRTGLIK		
	766.40		2296.20	0.0705	GSGTAEVEL	K20:+1	0.0865
P52480	93628	3	4613	15757	KK	14.043	61747
		-				C4:+45.	_ , _ ,
						988,K12	
	700.35		1398.69	2.0459	VVVCDNGTG	:+114.0	0.0865
P61161	49194	2	4189	33195	FVK	43	61747
	667.82		1333.62	0.0103	DLMVGDEAS		0.0865
P61161	22046	2	8759	8118	ELR	-	61747
	677.38		1352.74	0.0096	ILLTEPPMNP		0.0865
P61161	13477	2	7045	74361	TK	-	61747


						K5:+11	
	(72.22		1242 ((0.0100	CKCCKCLC	4.043,K	0.0965
P62806	672.33 78906	2	1342.66 0131	0.9122 94314	GKGGKGLG KGGAK	9:+114. 043	0.0865 61747
102000		2				045	
P62806	442.59 33228	3	1324.75 6493	0.0101 98198	DNIQGITKPA IR	-	0.0865 61747
102800		5				-	
P62806	789.45 12329	2	1576.88 6816	0.0043 61436	ISGLIYEETR GVLK		0.0865 61747
F02800	495.29	۷	988.575	0.0049	UVLK	-	0.0865
P62806	55627	2	4754	13312	VFLENVIR	-	61747
-	567.77		1133.53	0.0044	DAVTYTEHA		0.0865
P62806	771	2	977	70938	K	-	61747
	663.85		1325.70	0.0098	TVTAMDVV	M5:+15.	0.0865
P62806	78491	2	0048	76498	YALK	995	61747
						M1:+15.	
						995,C11	
D(2150	751.20	2	1500.62	0.0040	MSSYAFFVQ	:+45.98	0.0865
P63158	751.32	2	435	09632	TCR	8 K2:+11	61747
						4.043,M	
				-		4:+15.9	
	548.23		1094.46	0.0549		95,K7:+	0.0865
P63158	93799	2	311	96354	WKTMSAK	114.043	61747
	760.92		1519.83	0.0005	IKGEHPGLSI		0.0865
P63158	60254	2	6401	62309	GDVAK	-	61747
					LGEMWNNT		
	564.52		2254.04	1.0119	AADDKQPYE	M4:+15.	0.0865
P63158	01416	4	9266	85918	KK	995	61747
	554.29		1106.56	0.0046	ALAAAGYD		0.0865
Q07133	05273	2	5405	19232	VEK	-	61747
						K4:+11	
	505 95		1189.69	1 0227	GKGKKSASA	4.043,K 10:+114	0.0965
Q07133	595.85 30273	2	0405	1.0327 79856	K	.043	0.0865 61747
207135	50215		0105	19050	IX	K2:+11	01717
						4.043,K	
			1626.93	1.9739	TKAVKKPKA	13:+114	0.0865
Q07133	543.32	3	6525	43936	ТРТК	.043	61747
					KLRKKLEPS	K19:+1 14.043,	
	1081.3		3241.04	4.0561	VRLALFKKA	14.043, K21:+1	0.0509
Q0P5X1	57422	3	8791	42817	KNKVSVTK	14.043	75293
		_					
	1076.0		3225.05	4.0469	LPSSVDVKK KLKKELKTK	K21:+1	0.0509
Q5HZG4	26001	3	4528	71162	LKKEKQR	14.043	75293

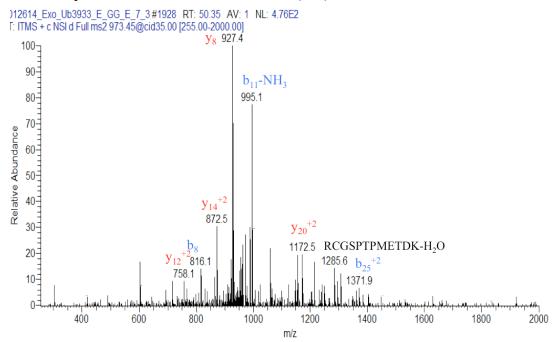
					AKLPSSVDV		
			2881.89	3.0541	KKKLKKELK	K22:+1	0.0782
Q5HZG4	961.64	3	6525	3636	TKL K KK	14.043	98695
		-					
						K21:+1	
				-	FGGNKVIEK	14.043,	
	1021.2		3060.62	0.0278	VLIANNGIAA	C22:+45	0.0448
Q5SWU9	15698	3	362	37185	VKCMRSIR	.988	4
					TIEDLKSKIL		
	1018.8		3053.66	2.0038	AATVDNAN	K8:+11	0.0693
Q61781	94592	3	0302	03847	VLLQIDNAR	4.043	6416
Q01/01		5				1.015	
Q61781	690.36 89575	2	1378.72 2265	0.0017 90815	TRLEQEIATY R		0.0509 75293
Q01781	09373	Δ	2203	90815	Κ	-	13293
				-	NKILAATIDN		
	789.76		2366.26	0.0286	ASIVLQIDNA	K2:+11	0.0865
Q6IFX2	2207	3	3146	95778	R	4.043	61747
				-			
	633.83		1265.66	0.0004	TKYETELNL		0.0865
Q6IFX2	83789	2	1108	54467	R	-	61747
	459.57		1375.69	0.0053	MSVEADING	M1:+15.	0.0865
Q6IFX2	22351	3	323	4993	LRR	995	61747
						M5:+15.	
						995,M1	
	644.29		1929.87	0.9730	ILNEMRDQY	2:+15.9	0.0865
Q6IFX2	79736	3	0446	78162	EKMAEK	95	61747
	439.25		876.495	1.0312			0.0865
Q6IFX2	57983	2	9466	28776	MAEKNRK	-	61747
			1571.76	2.0089	NRKDAEEWF		0.0865
Q6IFX2	524.93	3	6525	36888	FTK	-	61747
	586.76	-					
Q6IFX2		2	1171.52	0.0050	DAEEWFFTK		0.0865
Q0IFA2	96533	2	3657	70393	DAEEWFFIK	-	61747
	958.94		1915.88	2.0046	DAEEWFFTK		0.0865
Q6IFX2	99512	2	4252	98336	TEELNR	-	61747
	690.37		1378.72	0.0054	TRLEQEIATY		0.0865
Q6IFX2	07886	2	5927	52924	R	-	61747
						K2:+11	
					AKRSKLKKK	4.043,K	
	1134.0		3399.12	3.0497	RNPRSKLPK	18:+114	0.0509
Q6P925	5	3	6525	04528	RSRHSLIR	.043	75293
						K5:+11	
					DDQVKGTAE	4.043,M	
0.0000	0.55	_	2917.35	1.0341	DLVETFFEVE	22:+15.	0.0052
Q6PHS6	973.46	3	6525	03664	VEMEK	995	77045
						K12:+1	
	1054.0		2150.00	2 0200	KKSIPLSIKN	14.043,	0.0500
0(7012	1054.0	2	3159.00	3.0380	LKRKHKRKK	K14:+1	0.0509
Q6ZPJ3	1	3	6525	26352	NKVTR	14.043	75293

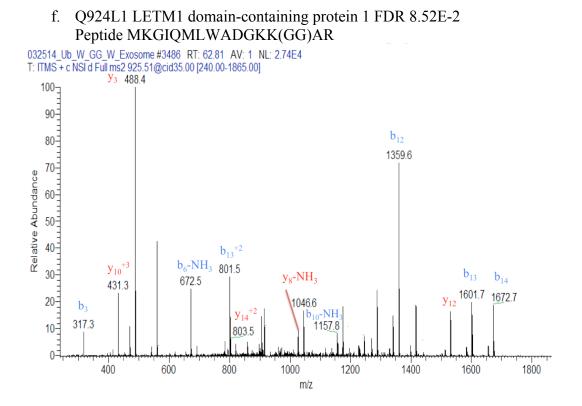

					IVPKKKKPL		
	1101.0		3300.18	3.9821	KLGPIKKKEL	K17:+1	0.0509
Q8C4U3	7	3	6525	1888	KRLVLFLK	14.043	75293
						K5:+11	
					KIVPKKKKP	4.043,K	
			2827.86	3.0081	LKLGPIKKKE	21:+114	0.0509
Q8C4U3	943.63	3	6525	3916	LKR	.043	75293
						K11:+1	
					IKEVKKENG	14.043,	
	1105.7		3314.10	3.0519	DKKIVPKKK	K27:+1	0.0509
Q8C4U3	1	3	6525	45528	KPLKLGPIK	14.043	75293
					MKIKEVKKE	M1:+15.	
					NGDKKIVPK	995,K24	
	1368.8		4103.61	5.0629	KKKPLKLGPI	:+114.0	0.0509
Q8C4U3	8	3	6525	4988	KKKELK	43	75293
						K7:+11	
						4.043,K	
	683.13		2046.39	4.0453	KIVPKKKKP	8:+114.	0.0913
Q8C4U3	81836	3	1076	47797	LKLGPIK	043	32711
					MKGIQMLW		
	924.00		1845.99	0.0250	ADGKK(GG)	K13:+1	0.0085
Q924L1	56763	2	5702	53075	AR	14.043	17887
C = = = = = =						K3:+11	-,,
					QK K KTVPQK	4.043,K	
	1057.3		3168.99	4.0613	VTIAKIPRAK	4:+114.	0.0509
Q9CQJ6	4	3	6525	92152	KKYVTR	043	75293
		-				K2:+11	
					TKKIETRAEK	4.043,K	
	1076.3		3226.02	4.0516	LRKLLKEEK	3:+114.	0.0509
O9CSP9	50952	3	9381	55389	RLKKK	043	75293
x = -		-		-			
	721.40		1440.80	0.0139	EKRNKNLAG	K12:+1	
Q9CXH7	89355	2	2221	57386	IGK	14.043	0
```							
	100 ( 0		010505	4 00 - 4		<b>X10</b>	0.0-00
000701		2					
Q9CZ91	6	3	6525	25872	GRLKSKK	14.043	75293
			2378.64	3.9884	LRVIKKKKIV	K15:+1	0.0509
Q9Z100	793.89	3	6525	2796	VKKRKKLR	14.043	75293
	825 75		2502 75	5 0500		V14.⊥1	0.0500
007100		2					
Q92100	83449	3	210	00862	Γ	14.043	13293
					TIEDLKSKIL		
	1018.2		3051.61	3051.6	AATVDNAN	K6:+11	
Q61781	11426	3	0802	56498	VLLQIDNAR	4.043	0
Q9CZ91 Q9Z100 Q9Z100	835.25 85449	3	6525 2502.75 216	2796 5.0508 00862	VKKRKKLR HVRLRVIKK KKIVVKKRK K TIEDLKSKIL	14.043 K16:+1 14.043	


	1					r	
Q9CQJ6	814.51 87988	3	2440.53 2921	2434.4 72147	KQKRGGRG QIKQKKKTV PQK	K20:+1 14.043	0.0782 98695
D00112	638.32	2	1274.63	1274.6	ELISNASDAL		0.0509
P08113	58667	2	6083	35407	DK	-	75293
					VIKKKKIVV		
			2881.89	2877.9	KKRKKLRHP		0.0820
Q9Z100	961.64	3	6525	07257	GPLGTAR	-	93135
	025.25		2502 75	24077	HVRLRVIKK	$\mathbf{V} 1 \mathbf{C} + 1$	0.0500
007100	835.25	2	2502.75	2497.7	KKIVVKKRK	K16:+1	0.0509
Q9Z100	85449	3	216	01359	K	14.043	75293
					TLEPKAPRIK		
	1136.3		3406.11	3400.0	EVLKERKVL	K5:+11	0.0782
E9Q6J5	8	3	6525	77033	EKKVALSKR	4.043	98695
L)Q035	0	5	0325	11055		1.015	70075
					RKVLALPSH		
	1037.0		3108.03	3103.9	RGPKIRRLKE		0.0509
F6SB18	2	3	6525	74776	RLRRIR	-	75293
						K1:+11	
					KIVPKKKKP	4.043,K	
			2830.89	2824.8	LKLGPIKKKE	11:+114	0.0509
Q8C4U3	944.64	3	6525	58386	LKR	.043	75293
					MRKEVKRIR		
	1057.0		3168.07	3163.0	VLVIRKLVRS	M1:+15.	0.0782
O9CZ91	31494	3	1007	18033	VGRLKSK	995	98695
Q7CL71	51494	3	1007	10033	VUILLISI	K7:+11	20025
					QRRLKKKAL	4.043,K	
	1105.3		3313.15	3308.1	VKRRELILLG	4.043,K 22:+114	0.0782
P40630	92212	3	3161	11081	KPKRPR	.043	98695
1 40000	14414	5	5101	11001			70075

Appendix Figure 1: Annotated tandem mass spectra for all single peptide identifications containing a glycinylglycine ubiquitin remnant. B-type (blue) and ytype ions (red) are labeled to the corresponding peaks in the tandem mass spectra shown.

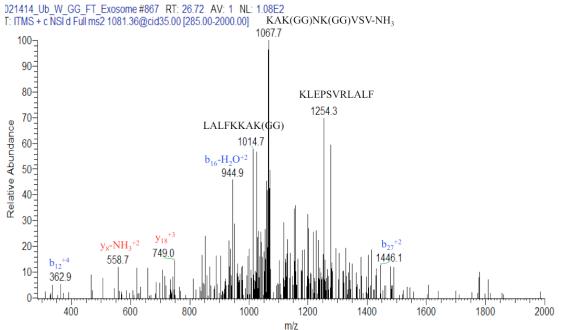


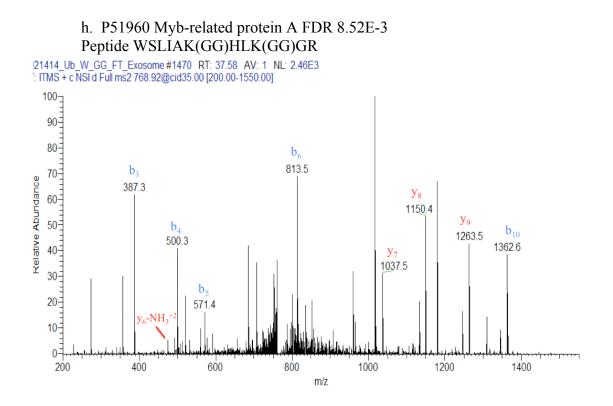

 E0CYH9 Carboxyl-terminal PDZ ligand of neuronic nitric oxide synthase protein FDR 2.370E-4 Peptide KKKVSIMVSVDGVKVILK(GG)KKKKLLLLQK



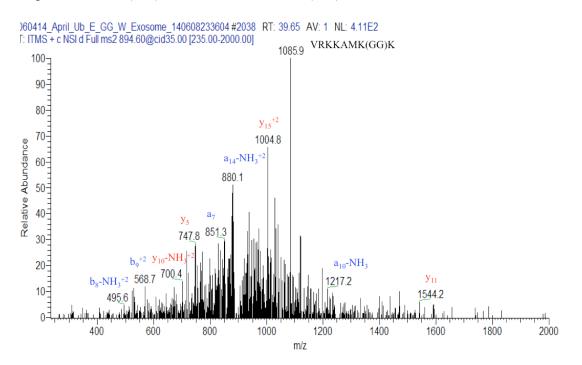


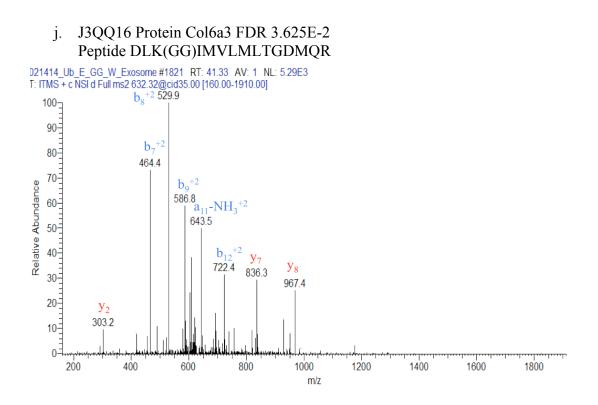

d. P15975 Inactive ubiquitin carboxyl-terminal hydrolase 53 FDR 4.484E-2 Peptide MAWVK(GG)FLRKPSGNLGK


e. B2RXC2 Inositol 1,4,5-trisphosphate 3-kinase B FDR 2.15E-2 Peptide GTPASPRCGSPTPMETDK(GG)RVAPSLER

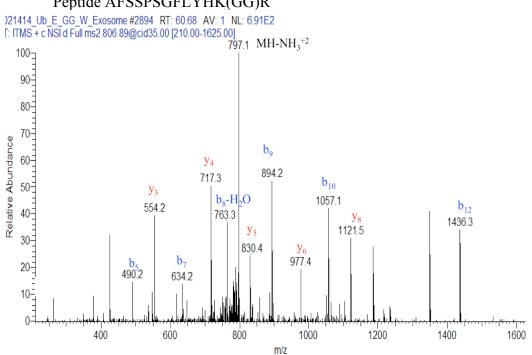


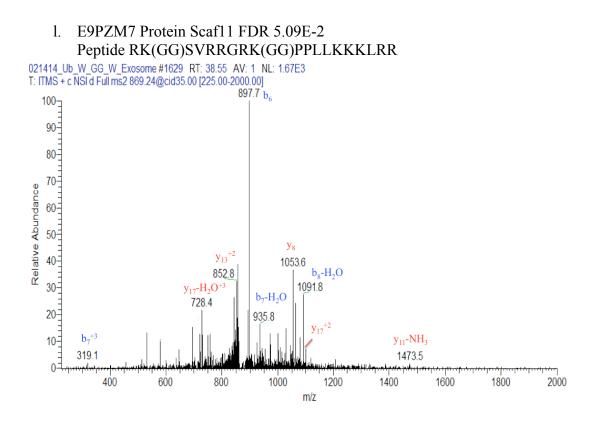




g. Q0P5X1 Leucine-rich repeat and IQ domain-containing protein 1 FDR 5.09E-2

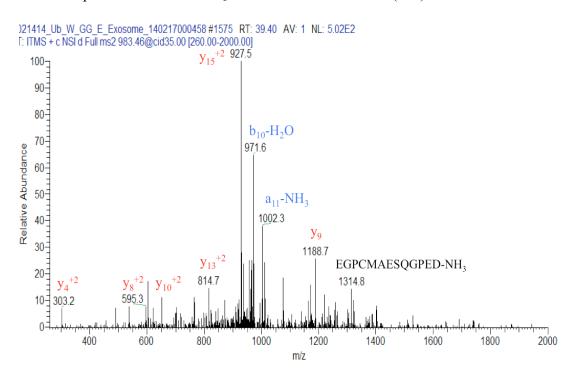

Peptide KLRKKLEPSVRLALFKKAK(GG)NK(GG)VSVTK

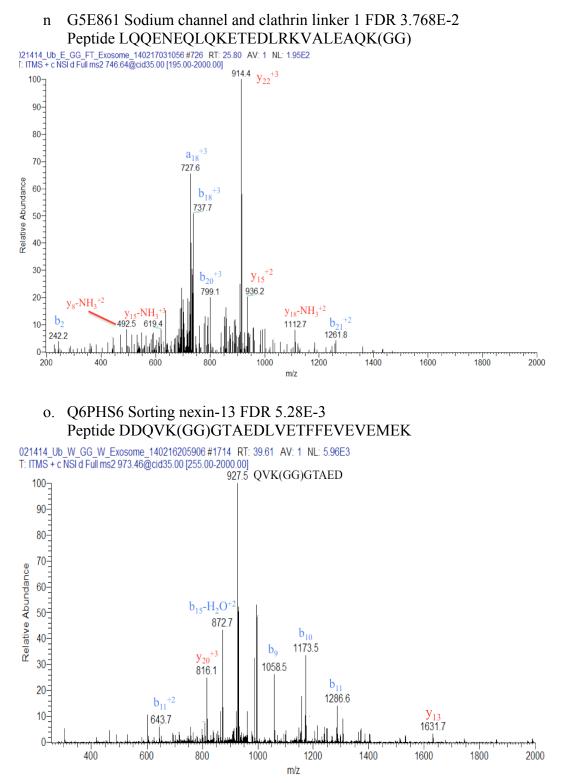


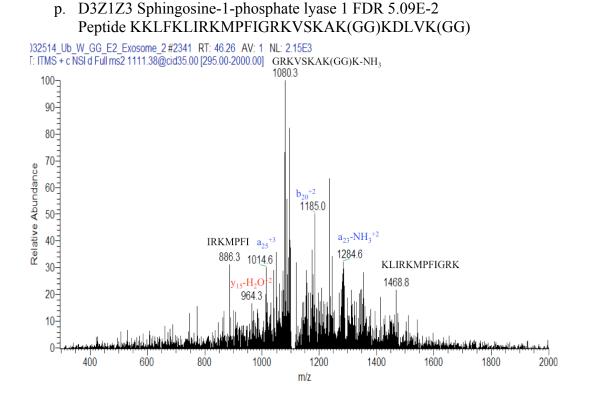




## i. H3BKN5 Probable global transcription activator SNF2L2 FDR 9.13E-3 Peptide VLGRK(GG)LPKKKRVRKKAMK(GG)KR

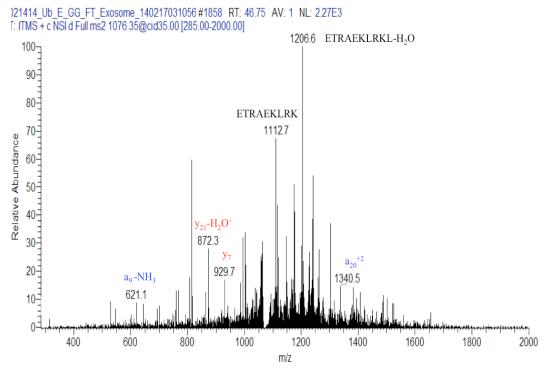


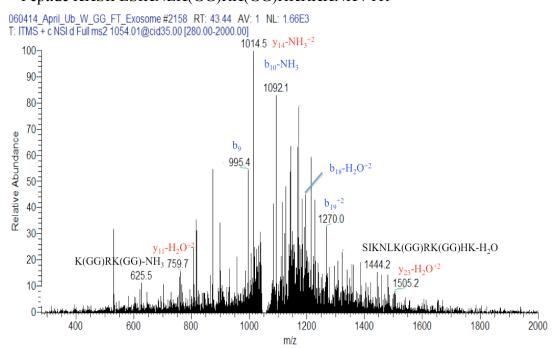




#### k. A2AU83 Protein GM14124 FDR 2.149E-2 Peptide AFSSPSGFLYHK(GG)R







#### m. G3UWJ2 Protein Zfp69 FDR 2.932E-2 Peptide GEGPCMAESQGPEDPILDVKNKLETK(GG)








## q. Q9CSP9 Tetratricopeptide repeat protein 14 FDR 5.09E-2 Peptide TK(GG)K(GG)IETRAEKLRKLLKEEKRLKKK





## r. Q6ZPJ3 Ubiquitin-conjugating enzyme E2 O FDR 5.09E-2 Peptide KKSIPLSIKNLK(GG)RK(GG)HKRKKNKVTR

# **Bibliography**

- Bobrie, A.; Théry, C. Exosomes and communication between tumors and the immune system: are all exosomes equal? *Biochemical Society Transactions* 2013, 41, 263-267.
- Johnstone, R. M. Exosomes biological significance: a concise review. *Blood Cells, Molecules, and Diseases.* 2006, 36, 315-321.
- 3. Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumors. *Nature Reviews Immunology* **2012**, 12, 253-268.
- 4. Gabrilovich, D. I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. *Nat. Rev. Immonol.* **2009**, 9, 162-174.
- Marx, J.; Cancer Immunology. Cancer's bulwark against immune attack: MDS cells. *Science* 2008, 319, 154-156.
- Hanson, E. M.; Clements, V. K.; Sinha, P.; Ilkovitch, D.; Ostrand-Rosenberg,
   S. Myeloid-derived suppressor cells down-regulate L-selectin expression of
   CD4+ and CD8+ T cells. *J. Immunol.* 2009, 183, 937-944.
- Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. *Cancer Immunol. Immunother.* 2010, 59, 1593-1600.
- Bunt, S. K.; Sinha, P.; Clements, V. K.; Leips, J.; Ostrand-Rosenberg, S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. *J. Immunol.* 2006, 176, 284-290.

- Bunt, S. K.; Yang, L.; Sinha, P.; Clements, V. K.; Leips, J.; Ostrand-Rosenberg, S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. *Cancer Res.* 2007, 67, 10019-10026.
- Kusmartsev, S.; Nefedova, Y.; Yoder, D.; Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. *J. Immunol.* 2004, 172, 989-999.
- Shen, B.; Wu, N.; Yang, J. M.; Gould, S. J. Protein targeting to exosomes/microvesicles by plasma membrane anchors. *J. Biol. Chem.* 2011, 286, 14383-14395.
- 12. Gould, S. J.; Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. *J. Extracellular Vesicles* **2013**, 2, 1-3.
- Théry, C.; Zitvogel, L.; Amigorene, S. Exosomes: composition, biogenesis, and function. *Nat. Rev. Immunol.* 2002, 2, 569-579.
- Harding, C.; Heuser, J.; Stahl, P. Receptor-mediated endocytosis of transferring and recycling of the transferrin receptor in rat reticulocytes. *J. Cell Biol.* 1983, 97, 329-339.
- Pan, B.-T.; Teng, K.; Wu, C.; Adam, M. Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. *J. Cell Biol.* 1985, 101, 942-948.
- Burke, M.; Choksawangkarn, W.; Edwards, N. J.; Ostrand-Rosenberg, S.; Fenselau, C. Exosomes from myeloid-derived suppressor cells carry biologically active proteins. *J. Proteome Res.* 2014, 13, 836-843.

- 17. Katzmann, D. J.; Orodizzi, G.; Emr, S. D.; Receptor downregulation and multivesicular-body sorting. *Nat. Rev. Mol. Cell Biol.* **2002**, 3, 893-905.
- Hicke, L. Protein regulation by monoubiquitin. *Nat. Rev. Mol. Cell Biol.* 2001, 2, 195-201.
- Piper, R. C.; Lehner, P. J. Endosomal transport via ubiquitination. *Trends Cell Biol.* 2011, 21, 647-655.
- 20. Tanno, H.; Komeda, M. The ubiquitin code and its decoding machinery in the endocytic pathway. *J. Biochem.* **2013**, 153, 497-504.
- Burke, M.; Oei, M. S.; Edwards, N. J.; Ostrand-Rosenberg, S.; Fenselau, C. Ubiquitinated proteins in exosomes secreted by myeloid-derived suppressor cells. *J. Proteome Res.* 2014, 13, 5965-5972.
- Buschow, S. I.; Liefhebber, J. M. P.; Wubbolts, R.; Stoorvogel, W. Exosomes contain ubiquitinated proteins. *Blood Cells, Molecules, and Diseases*. 2005, 35, 398-403.
- 23. Van Nocker, S.; Vierstra, R. D.; Cloning and characterization of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. *Proc. Nat. Acad. Sci.* **1991**, 88, 10297-10301.
- 24. Peng, J.; Schwartz, D.; Elias, J. E.; Thoreen, C. C.; Cheng, D.; Marsischky, G.; Roelofs, J.; Finley, D.; Gygi, S. P. A proteomics approach to understanding protein ubiquitination. *Nat. Biotechnol.* 2003, 21, 921-926.
- 25. Denis, N. J.; Vasilescu, J.; Lambert, J. P.; Smith, J. C.; Figeys, D. Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. *Proteomics* 2007, 7, 868-874.

- Sinha, P.; Clements, V. K.; Bunt, S. K.; Albelda, S. M.; Ostrand-Rosenberg,
   S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. *J. Immunol.* 2007, 179, 977-983.
- Ochoa, A. C.; Zea, A. H.; Hernandez, C.; Rodriguez, P. C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. *Clin. Cancer Res.* 2007, 13, 721s-726s.
- Almand, B.; Clark, J. I.; Nikitina, E.; van Beynen, J.; English, J. R.; Knight, S. C.; Carbone, D. P.; Gabrilovich, D. I. Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. *J. Immunol.* 2001, 166, 678-689.
- Diaz-Montero, C. M.; Salem, M. L.; Nishimura, M. I.; Garrett-Mayer, E.; Cole, D. J.; Montero, A. J. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. *Cancer Immunol. Immunother*. 2009, 58, 49-59.
- Nagaraj, S.; Gabrilovich, D. I. "Myeloid-derived suppressor cells" *Immune Mediated Diseases, Advances in Experimental Medicine and Biology*. Eds. Shurin, M. R.; Smolkin, Y. S. Springer: New York, **2009**, 601, 213-223.
- Ostrand-Rosenberg, S.; Sinha, P. Myeloid-derived suppressor cells: Linking inflammation and cancer. *J. Immunol.* 2009, 182, 4499-4506.

- Sinha, P.; Clements, V. K.; Ostrand-Rosenberg, S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. *Cancer Res.* 2005, 65, 11743-11751.
- 33. Terabe, M.; Matsui, S.; Park, J. M.; Mamura, M.; Noben-Trauth, N.; Donaldson, D. D.; Chen, W.; Wahl, S. M.; et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1drestricted T cells block cytotoxic T lymphocyte-mediated tumor immune surveillance: abrogation prevents tumor recurrence. *J. Exp. Med.* 2003, 198, 1741-1752.
- 34. Rodriguez, P. C.; Hernandez, C. P.; Quiceno, D.; Dubinett, S. M.; Zabaleta, J.; Ochoa, J. B.; Gilbert, J.; Ochoa, A. C. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. *J. Exp. Med.* 2005, 202, 931-939.
- 35. Sinha, P.; Clements, V. K.; Ostrand-Rosenberg, S. Reduction of myeloidderived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. *J. Immunol.* 2005, 174, 636-645.
- 36. Kusmartsev, S. A.; Li, Y.; Chen, S. H. Gr-1⁺ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. *J. Immunol.* 2000, 165, 779-785.
- Bronte, V.; Serafini, P.; Mazzoni, A.; Segal, D. M.; Zanovello, P. L-Arginine metabolism in myeloid cells controls T-lymphocyte functions. *Trends Immunol.* 2003, 24, 302-306.

- Sinha, P.; Okoro, C.; Foell, D.; Freeze, H. H.; Ostrand-Rosenberg, S.;
   Srikrishna, G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. *J. Immunol.* 2008, 181, 4666-4675.
- Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. *Nat. Rev. Immunol.* 2009, 9, 581-593.
- 40. Anderson, H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. *J. Cell Biol.* **1969**, 41, 59-72.
- 41. Pan, B. T.; Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. *Cell* 1983, 33, 967-978.
- 42. Bobrie, A.; Colombo, M.; Krumeich, S.; Raposo, G.; Théry, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. *J. Extracell. Vesicles* 2012, 1, 18397.
- Raposo, G.; Nijman, H. W.; Stoorvogel, W.; Liejendekker, R.; Harding, C. V.; Melief, C. J. M.; Geuze, H. J. B lymphocytes secrete antigen-presenting vesicles. *J. Exp. Med.* 1996, 183, 1161-1172.
- 44. Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Ann. Rev. Cell Dev. Biol.* 2014, 30, 255-289.
- 45. Eken, C.; Gasser, O.; Zenhaeusern, G.; Oehri, I.; Hess, C.; Schifferli, J. A. Polymorphonuclear neutrophil-derived ectosomes interfere with the

maturation of monocyte-derived dendritic cells. *J. Immunol.* **2008**, 180, 817-824.

- Rak, J.; Guha, A. Extracellular vesicles vehicles that spread cancer genes.
   *Bioessays* 2012, 34, 489-497.
- 47. Andaloussi, S. E. L.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A.
  Extracellular vesicles: biology and emerging therapeutic opportunities. *Nat. Rev. Drug Discovery* 2013, 12, 347-359.
- Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. *Nature Med.* 2012, 18, 883-891.
- Johnstone, R. M.; Adam, M.; Hammond, J. R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). *J. Biol. Chem.* 1987, 262, 9412-9420.
- 50. Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. *Curr. Protocol Cell Biol.* 2006, 30, 3.22.1-3.22.29.
- 51. Escola, J. M.; Kleijmeer, M. J.; Stoorvogel, W.; Griffith, J. M.; Yoshie, O.; Geuze, H. J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human-Blymphocytes. *J. Biol. Chem.* **1998**, 273, 20121-20127.

- 52. Gan, X.; Gould, S. J. Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome microvesicle proteins. *Molecular Biology of the Cell* 2011, 22, 817-830.
- 53. Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L. F.; Théry, C; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition, and secretion highlights the heterogeneity of extracellular vesicles. *J. Cell Science* 2013, 126, 5553-5565.
- 54. Henne, W. M.; Buchokovich, N. J.; Emr, S. D. The ESCRT pathway. *Dev. Cell* **2011**, 21, 77-91.
- Stenmark, H.; Malerød, L. ESCRT & Co. *Biol. Cell* 2010, 102, 293-318.
- 56. Stuffers, S.; Sem Wegner, C.; Stenmark, H.; Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. *Traffic* 2009, 10, 925-937.
- 57. Fang, Y.; Wu, N.; Gan, X.; Yan, W.; Morrell, J.C.; Gould, S. J. Higher-order oligomerization targets plasma membrane proteins and HIV Gag to exosomes. *PLoS Biology* 2007, 5, 1267-1283.
- Savina, A.; Furlan, M.; Vidal, M.; Colombo, M. I. Exosome release is regulated by a calcium-dependent in K562 cells. *J. Biol. Chem.* 2003, 278, 20083-20090.
- 59. Krämer-Albers, E. M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Möbius, W.; Berger, H.; Nave, K.-A.; Schild, H.; Trotter, J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? *Proteomics Clin. Appl.* **2007**, 1, 1446-1461.

- Montecalvo, A.; Larregina, A. T.; Shufesky, W. J.; Stolz, D. B.; Sullivan, M. L.; Karlsson, J. M.; Baty, C. J.; Gibson, G. A.; Erdos, G.; Wang, J.; Milosevic, J.; Tracheva, O. A.; Divito, S. J.; Jordan, R.; Lyons-Weiler, J.; Watkins, S. C.; Morelli, A. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. *Blood* 2012, 119, 756-766.
- Raposo, G.; Tenza, D.; Mecheri, S.; Peronet, R.; Bonnerot, C.; Desaymard, C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degradation. *Mol. Biol. Cell* 1997, 8, 2631-2645.
- 62. Vidal, M.; Mangeat, P.; Hoekstra, D. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. *J. Cell Sci.* **1997**, 110, 1867-1877.
- 63. Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J. J.; Lötvall, J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat. Cell Biol.* 2007, 9, 654-659.
- 64. György, B.; Hung, M. E.; Breakefield, X. O.; Leonard, J. N. Therapeutic applications of extracellular vesicles: Clinical promise and open questions. *Ann. Rev. Pharmacol. Toxicol.* 2015, 55, 439-464.
- 65. Ji, H.; Chen, M.; Greening, D. W.; He, W.; Rai, A.; Zhang, W.; Simpson, R. J. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. *PLoS One* **2014**, 9, e110314.

- 66. El Andalouss, S.; Lakhal, S.; Mager, I.; Wood, M. J.; Exosomes for targeted siRNA delivery across biological barriers. *Advanced Drug Delivery Rev.*2013, 65, 391-397.
- Mittelbrunn, M.; Sanchez-Madrid, F. Intercellular communication: diverse structures for exchange of genetic information. *Nat. Rev. Mol. Cell Biol.* 2012, 13, 328-335.
- 68. Laulagnier, K.; Motta, C.; Hamdi, S.; Roy, S.; Fauvelle, F.; Pageaux, J.-F.; Kobayashi, T.; Salles, J.-P.; Perret, B.; Bonnerot, C.; Record, M. Mast celland dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. *Biochemistry* 2004, 380, 161-171.
- 69. Clayton, A.; Harris, C. L.; Court, J.; Mason, M. D.; Morgan, B. P. Antigenpresenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. *Eur. J. Immunol.* 2003, 33, 522-531.
- Mignot, G.; Roux, S.; Théry, C.; Ségura, E.; Zitvogel, L. Prospects for exosomes in immunotherapy of cancer. J. Cell Mol. Med. 2006, 10, 376-388.
- 71. Benito-Martin, A.; Di Gianntale, A.; Ceder, S.; Peinado, H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. *Frontiers in Immunology* **2015**, 6, 1-13.
- Vader, P.; Breakefield, X. O.; Wood, M. J. A.; Extracellular vesicles: emerging targets for cancer therapy. *Trends in Molecular Medicine* 2014, 20, 385-393.
- 73. Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. *Nature* 2003, 422, 198-207.

- Gstaiger, M.; Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. *Nature Rev. Genetics* 2009, 10, 617-627.
- 75. Ideker, T.; Thorsson, V.; Ranish, J. A.; Christmas, R.; Buhler, J.; Eng, J. K.; Bumgarner, R.; Goodlett, D. R.; Aebersold, R.; Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. *Science* 2001, 292, 929-934.
- 76. Edwards, N.; Wu, X.; Tseng, C. W. An unsupervised, model-free, machinelearning combiner for peptide identifications from tandem mass spectra. *Clin. Proteomics* 2009, 5, 23-36.
- 77. Elias, J. E.; Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. *Nature Methods* 2007, 4, 207-214.
- 78. Old, W. M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K. G.; Mendoza, A.; Sevinsky, J. R.; Resing, K. A.; Ahn, N. G. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. *Mol. Cell. Proteomics* 2005, 4, 1487-1502.
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B* 1995, 57, 289-300.
- 80. Choi, D. S.; Yang, J. S.; Choi, E. J.; Jang, S. C.; Park, S.; Kim, O. Y.; Hwang,D.; Kim, K. P.; Kim, Y. K.; Kim, S.; Gho, Y. S. The protein interaction

network of extracellular vesicles derived from human colorectal cancer cells. *J. Prot. Res.* **2012**, 11, 1144-1151.

- Mathivanan, S.; Simpson, R. J. ExoCarta: A compendium of exosomal proteins and RNA. *Proteomics* 2009, 9, 4997-5000.
- Kim, D.; Kang, B.; Kin, O.; Choi, D.; Lee, J.; Kim, S. R.; Go, G.; Yoon, Y. J.; Kim, J. H.; Jang, S. C.; Park, K.; Choe, E.; Kim, K. P.; Desiderio, D. M.; Kim, Y.; Lötvall, J.; Hwang, D.; Gho, Y. S. EVpedia: An integrated database of high-throughput data for systematic analyses of extracellular vesicles. *J. Extracell. Vesicles* 2013, 2, 20384.
- Kalra, H.; Simpson, R. J.; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.;
  Bond, V. C.; Borràs, F. E.; Breakefield, X.; Budnik, V.; Buzas, E.; Camussi,
  G.; Clayton, A.; Cocucci, E.; Falcon-Perez, J. M.; Gabrielsson, S.; Gho, Y.S.;
  Gupta, D.; Harsha, H. C.; Hendrix, A.; Hill, A. F.; Inaal, J. M.; Jenster, G.;
  Kiang, L. S.; Krämer-Albers, E-M.; Llorente, A.; Lötvall, J.; MinchevaNilsson, L.; Nazarenko, I.; Nieuwland, R.; Nolte-'t Hoen, E. N. M.; Pandey,
  A.; Patel, T.; Piper, M. G.; Pluchino, S.; Prasad, T. S. K.; Rajendran, L.;
  Raposo, G.; Record, M.; Reid, G. E.; Sánchez-Madrid, F.; Schiffelers, R. M.;
  Siljander, P.; Stoorvogel, W.; Taylor, D.; Thery, C.; Valadi, H.; van Balkom,
  B.W.M.; Vázquez, J.; Vidal, M.; Yáñez-Mó, M.; Zoeller, M.; Mathivanan, S.
  Vesiclepedia: A compendium for extracellular vesicles with continuous
  community annotation. *PLoS Biology* 2012, *12*, e1001450.
- Bochmann, I.; Ebstein, F.; Lehmann, A.; Wohlschlaeger, J.; Sixt, S. U.;
   Kloetzel, P.-M.; Dahlmann, B. T lymphocytes export proteasomes by way of

microparticles: a possible mechanism for generation of extracellular proteasomes. *J. Cell. Mol. Med.* **2014**, 18, 59-68.

- 85. Ung, T. H.; Madsen, H. J.; Hellwinkel, J. E.; Lencioni, A. M.; Graner, M. W. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. *Cancer Science* **2014**, 105, 1384-1392.
- 86. Cheng, P.; Corzo, C. A.; Luetteke, N.; Yu, B.; Nagaraj, S.; Bui, M. M.; Ortiz, M.; Nacken, W.; Sorg, C.; Vogl, T.; Roth, J.; Gabrilovich, D. I. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. *J. Exp. Med.* **2008**, 205, 2235-2249.
- Soehnlein, O.; Weber, C.; Lindbom, L. Neutrophil granule proteins tune monocytic cell function. *Trends Immunol.* 2009, 30, 538-546.
- 88. Choksawangkarn, W. Development of a proteomic strategy for analysis of plasma membrane proteins. Ph.D. thesis, University of Maryland, 2013.
- Ukena, S. N.; Geffers, R.; Bucholz, S.; Stadler, M.; Franzke, A. Biomarkers for acute and chronic graft-versus-host disease in regulatory T cells. *Transplant Immunology* 2012, 27, 179-183.
- Goellner, B.; Aberle, H. The synaptic cytoskeleton in development and disease. *Developmental Neurobiology* 2011, 72, 111-125.
- 91. Graham, T. R.; Kozlov, M. M.; Interplay of proteins and lipids in generating membrane curvature. *Curr. Opin. Cell Biol.* **2010**, 22, 430-436.
- 92. Islam, A.; Jones, H.; Hiroi, T.; Lam, J.; Zhang, J.; Moss, J.; Vaughn, M.; Levine, S. J. cAMP-dependent protein kinase A (PKA) signaling induces

TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIβ to BIG2. *J. Biol. Chem.* **2008**, 283, 25364-25371.

- Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. *Nat. Rev. Mol. Cell Biol.* 2009, 10, 623-635.
- 94. Hershko, A.; Crechanover, A. The ubiquitin system. *Ann. Rev. Biochem.*1998, 67, 425-479.
- 95. Ziv, I. Matiuhin, Y.; Kirkpatrick, D. S.; Erpapazoglou, Z.; Leon, S.;
  Pantazopoulou, M.; Kim, W.; Gygi, S. P.; Haguenauer-Tsapis, R.; Reis, N.;
  Glickman, M. H.; Kleifeld, O. A perturbed ubiquitin landscape distinguishes
  between ubiquitin in trafficking and in proteolysis. *Mol. Cell. Proteomics*2011, 10, M111.009753.
- 96. Ikeda, F.; Dikic, I. Atypical ubiquitin chains: new molecular signals. *EMBO reports* **2008**, 9, 536-542.
- 97. Kim, H. T.; Kim, K. P.; Lledias, F.; Kisselev, A. F.; Scaglione, K. M.; Skowyra, D.; Gygi, S. P.; Goldberg, A. L. Certain pairs of ubiquitinconjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. *J. Biol. Chem.* **2007**, 282, 17375-17386.
- 98. Bustos, D.; Bakalarski, C. E.; Yang, Y.; Peng, J.; Kirkpatrick, D. S. Characterizing ubiquitination sites by peptide-based immunoaffinity enrichment. *Mol. Cell. Proteomics* **2012**, 11, 1529-1540.

- 99. Cadwell, K.; Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. *Science* **2005**, 309, 127-130.
- 100. Wang, X.; Herr, R. A.; Chua, W. J.; Lybarger, L.; Wiertz, E. J.;
  Hansen, T. H. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. *J. Cell Biol.* 2007, 177, 613-624.
- Hicke, L.; Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. *Ann. Rev. Cell Dev. Biol.* 2003, 19, 141-172.
- Pickart, C. M.; Fushman, D. Polyubiquitin chains: polymeric protein signals. *Curr. Opin. Chem. Biol.* 2004, 8, 610-616.
- 103. Glickman, M. H.; Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. *Physiol. Rev.* 2002, 82, 373-428.
- 104. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. *Ann. Rev. Biochem.* **2009**, 78, 477-513.
- Finley, D.; Sadis, S.; Monia, B. P.; Boucher, P.; Ecker, D. J.; Crooke,
  S. T.; Chau, V. Inhibition of proteolysis and cell cycle progression on a multiubiquitination-deficient yeast mutant. *Mol. Cellular Biol.* 1994, 14, 5501-5509.
- Lauwers, E.; Erpapazoglou, Z.; Haguenauer-Tsapis, R.; André, B. The ubiquitin code of yeast permease trafficking. *Trends Cell Biol.* 2010, 20, 196-204.

- 107. Kodadek, T. No splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. *J. Biol. Chem.* 2010, 285, 2221-2226.
- 108. Thomson, T. M.; Guerra-Rebollo, M. Ubiquitin and SUMO signaling in DNA repair. *Biochem. Soc. Trans.* 2010, 38, 116-131.
- 109. Xu, G.; Paige, J. S.; Jaffrey, S. R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. *Nat. Biotech*, 2010, 28, 868-873.
- 110. Beers, E. P.; Callis, J. Utility of polyhistidine-tagged ubiquitin in the purification of ubiquitin-protein conjugates and as an affinity ligand for the purification of ubiquitin-specific hydrolases. *J. Biol. Chem.* **1993**, 268, 21645-21649.
- 111. Tomlinson, E.; Palaniyappan, N.; Tooth, D.; Layfield, R. Methods for the purification of ubiquitinated proteins. *Proteomics* **2007**, *7*, 1016-1022.
- Kim, W.; Bennett, E. J.; Huttlin, E. L.; Guo, A.; Li, J.; Possemato, A.;
  Sowa, M. E.; Rad, R.; Rush, J.; Comb, M. J.; Harper, J. W.; Gygi, S. P.
  Systematic and quantitative assessment of the ubiquitin-modified proteome. *Mol. Cell* 2011, 44, 325-340.
- Wagner, S. A.; Beli, P.; Weinert, B. T.; Nielsen, M. L.; Cox, J.; Mann,
  M.; Choudhary, C. A proteome-wide, quantitative survey of *in vivo*ubiquitylation sites reveals widespread regulatory roles. *Mol. Cell. Proteomics*10.1074/mcp.M111 013284

- 114. Udeshi, N. D.; Svinkina, T.; Mertins, P.; Kuhn, E.; Mani, D. R.; Qiao, J. W.; Carr, S. A. Refined preparation and use of anti-diglycine remnant (K-{varepsilon}-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. *Mol. Cell. Proteomics* 2013, 12, 825-831.
- Bonifacino, J. S.; Dell'Angelica, E. C.; Springer, T. A.
   Immunoprecipitation. *Curr. Protoc. Immunol* 2001, 41, 8.3.1-8.3.28.
- Shevchenko, A.; Tomas, H.; Havliš, J.; Olsen, J. V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nat. Protoc.* 2007, 1, 2856-2860.
- Risk, B. A.; Edwards, N. J.; Giddings, M. C. A peptide-spectrum scoring system based on ion alignment, intensity, and pair probabilities. *J. Proteome Res.* 2013, 12, 4240-4247.
- 118. Chen, X.; Qiu, J.-D.; Shi, S.-P.; Suo, S.-B.; Huang, S.-Y.; Liang, R.-P. Incorporating key position and amino acid residue features to identify general and species-specific ubiquitin conjugation sites. *Bioinformatics* 2013, 29, 1614-1622.
- 119. Parker, K.; Sinha, P.; Horn, L. A.; Clements, V. K.; Yang, H.; Li, J.; Tracey, K. J.; Ostrand-Rosenberg, S. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. *Cancer Res.* **2014**, 85, 996-1004.

- Parseghian, M. H.; Luhrs, K. A. Beyond the walls of the nucleus: the roles of histones in cellular signaling and innate immunity. *Biochem. Cell Biol.* 2006, 84, 589-604.
- 121. Haas, A. L.; Bright Reback, P.; Chau, V. Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. *J. Biol. Chem.* **1991**, 266, 5104-5112.
- 122. Wang, H.; Zhai, L.; Xu, J.; Joo, H.-Y.; Jackson, S.; Erdjument-Bromage, H.; Tempst, P.; Xiong, Y.; Zhang, Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. *Mol. Cell* **2006**, 22, 383-394.
- I23. Zhou, W.; Zhu, P.; Wang, J.; Pascual, G.; Ohgi, K. A.; Lozach, J.;
   Glass, C. K.; Rosenfeld, M. G. Histone H2A monoubiquitination represses
   transcription by inhibiting RNA polymerase II transcription elongation. *Mol. Cell* 2008, 29, 69-80.
- Zheng, B.; Tang, T.; Tang, N.; Kudlicka, K.; Ohtsubo, K.; Ma, P.;
  Marth, J. D.; Farquhar, M. G.; Lehtonen, E. Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. *Proc. Nat. Acad. Sci. U.S.A.* 2006, 103, 16776-16781.
- Janig, E.; Stumptner, C.; Fuchsbichler, A.; Denk, H.; Zatloukal, K.
  Interaction of stress proteins with misfolded keratins. *Eur. J. Cell Biol.* 2005, 84, 329-339.
- Savina, A.; Furlan, M.; Vidal, M.; Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. *J. Biol. Chem.*2003, 278, 20083-20090.