
Probabilistic Temporal Databases, I: Algebra

Alex Dekhtyar� Robert Rossy V. S. Subrahmanianz
January 26, 1999

Abstract

Dyreson and Snodgrass have drawn attention to the fact that in many temporal database applications,
there is often uncertainty present about the start time of events, the end time of events, the duration of
events, etc. When the granularity of time is small (e.g. milliseconds), a statement such as “Packet p
was shipped sometime during the first 5 days of January, 1998” leads to a massive amount of uncertainty
(5�24�60�60�1000)possibilities. As noted in [53], past attempts to deal with uncertainty in databases
have been restricted to relatively small amounts of uncertainty in attributes. Dyreson and Snodgrass have
taken an important first step towards solving this problem.

In this paper, we first introduce the syntax of Temporal-Probabilistic (TP) relations and then show
how they can be converted to an explicit, significantly more space-consuming form called Annotated
Relations. We then present a Theoretical Annotated Temporal Algebra (TATA). Being explicit, TATA is
convenient for specifying how the algebraic operations should behave, but is impractical to use because
annotated relations are overwhelmingly large.

Next, we present a Temporal Probabilistic Algebra (TPA). We show that our definition of the TP-
Algebra provides a correct implementation of TATA despite the fact that it operates on implicit, succinct
TP-relations instead of the overwhelmingly large annotated relations. Finally, we report on timings for
an implementation of the TP-Algebra built on top of ODBC.

1 Introduction

The world we live in evolves dynamically over time. Furthermore, our knowledge about what is true in the
world at a fixed point in time is highly uncertain. Databases that attempt to capture temporal aspects of the
world encounter uncertainty in a variety of applications.� Scheduling: Consider the databases maintained by a transportation provider such as CSX or Federal

Express. When a package is delivered to such an organization for shipping, a tentative shipping sched-
ule is created for the package. The transportation provider must maintain such schedules for millions
of packages. Such schedules specify which flight (or truck) the shipment is scheduled to leave on,
when the shipment will reach a waypoint, and so on. However, there is uncertainty about how long a
particular part of the schedule will actually take. For example, Federal Express may ship a package
from Boston to Chicago via Albany, NY. They have reliable statistics on how long the Boston-Albany
leg takes, and how long the Albany-Chicago leg takes. A user who wants to know when his shipment�Dept. of Computer Science, University of Maryland, College Park, MD 20742. Email: dekhtyar@cs.umd.edu.yDept. of Computer Science, University of Maryland, College Park, MD 20742. Email: robross@cs.umd.edu.zDept. of Computer Science, Institute for Advanced Computer Studies and Institute for Systems Research, University of Mary-

land, College Park, MD 20742. Email: vs@cs.umd.edu.

1

is likely to reach him usually gets an uncertain answer of the form “Either today (36%) or tomorrow
(64%).” A database system used by such a transportation vendor must have the ability to handle tem-
poral modes of uncertainty.� Weather Applications: Consider a weather database that tracks the weather at a fixed location (e.g.
Washington). Such a weather database contains not only information about the weather in Washington
in the past, but also contains projections for the future. Needless to say, any prediction about the future
is liable to be uncertain. How often have we heard a TV newscaster say “There is a 39% probability
of rain this afternoon”?� Time-Series Stock Applications: There are a wide variety of programs that analyze the behavior of
stocks, and predict their rise and fall in the future. Most such programs associate with their predictions
a level of uncertainty. Such programs may say “We expect, with 60-70% certainty, that IBM stock will
fall by 30% sometime in the next 2 weeks.” When the output of such programs is to be stored in a
relational database system, we must have the ability to represent and manipulate such statements.� Video Extraction: A completely different application arises in the case of feature extraction in video
databases [49]. A video may be viewed as a sequence of frames (still images). A video feature ex-
traction algorithm attempts to identify objects and activities occurring in these frames. However, most
image processing algorithms are uncertain in their identifications. Thus, the statement “Darth Vader
appears in frames 26 and 27” is an uncertain statement about uncertainty and time (frame numbers are
correlated tightly with time as most video players in the market today playback video at a rate of 15 to
30 frames per second). Thus, the creation of a video database which automatically identifies features
and/or gestures encompasses some temporal aspects as well as some uncertainty.

All the above applications require the ability to make statements of the following kind: Data tuple d is in
relationR at some point of time in the interval [ti; tj] with probability between p and p0. For example, in the
Transportation Application above, we must be able to store statements of the form “Package p will arrive in
Albany at some time between 9am and 5pm on Nov. 8 with probability 50–60%.” Similarly, in the weather
application, we must be able to store statements of the form “Rain is expected to begin sometime between
2pm and 12 midnight on Nov. 8 with probability 5–20%.” In the case of the stock market application, we
must be able to store statements of the form “IBM stock will reach $300 per share some time during the time
interval Nov 1-10 with probability 90-100%.”

The main contributions of this paper may now be summarized as follows.� We first introduce the concept of a temporal-probabilistic tuple or TP-tuple, for short. Intuitively, a
TP-tuple allows us to augment classical relational database tuples with temporal-probabilistic data, as
well as arbitrary probability distributions. For example, not only can we say “Data tupled is in relationr at some point of time in the interval [ti; tj] with probability between p and p0” but we can also say
that the probability mass is distributed over [ti; tj] according to an arbitrary probability distribution.
Throughout this paper, we will introduce definitions which allow us to make such statements in a TP-
relation and which allow us to manipulate such TP-relations algebraically.� We then show how given any TP-tuple tp, we may “flatten” tp into a set of annotated tuples. In general,
the set of annotated tuples associated with a single TP-tuple can be very large — hence, annotated
tuples serve as a purely theoretical device.� We then define a Theoretical Annotated Temporal Algebra (TATA) and show how the classical rela-
tional algebra operations can be extended to the case of annotated tuples. Intuitively, the Theoretical

2

Annotated Temporal Algebra provides a theoretical specification of how the TP-Algebra operations
must be defined.� We then define a Temporal-Probabilistic Algebra (TPA) which directly manipulates TP-tuples with-
out converting them to annotated tuples. This has a great advantage, as TP-tuples are very succinct
objects. We show that for each operation � in the Theoretical Annotated Temporal Algebra, there is a
corresponding operation �0 in the Temporal-Probabilistic Algebra which precisely captures it. Thus,
the Temporal-Probabilistic Algebra is a sound and complete way of implementing the declarative se-
mantics for temporal probabilistic data prescribed by the Theoretical Annotated Temporal Algebra.
The correctness results are formally proved for every operation.� We show that each operator, whether in the TP-Algebra, or in the Theoretical Annotated Temporal
Algebra, can be parametrized by the user’s knowledge of the dependencies between events. This is
important because, as shown in [30], the probability of a complex event like (e1 _ e2) depends upon
our knowledge of the dependencies between e1 and e2.� We present an implementation of the TP-Algebra on top of ODBC and provide a set of experimental
results.

The idea of handling uncertainty in temporal databases was first addressed by Dyreson and Snodgrass [13].
They proposed the concept of an indeterminate instant where we know that an event occurs at some point in a
set of time points, but we do not know exactly when. However, a probability distribution is known. Dyreson
and Snodgrass [13] propose an extension of SQL to handle indeterminate valid-time, and show that their im-
plementation is “reliable” (correct). They provide elegant data structures to represent probability mass func-
tions, and algorithms to compute temporal relationships between indeterminate events. The authors provide
impressive experimental results. The model presented in [13] proceeds under the following assumptions, all
of which are removed in our framework.� “All indeterminate instances are considered to be independent” [13, p.7]. In our paper, we show how

the user can explicitly specify in his query, his knowledge of the dependency or lack thereof between
events. Thus, this assumption is eliminated by us.� “: : : we do not allow partially known distributions” [13, p.8]. In this paper, we will allow partial dis-
tributions to be specified.� “We could not adopt the PDM approach or its successors to support temporal indeterminacy, since
there might be several million elements in a set of possible chronons. Representing each alternative
with an associated probability is impractical.” [13, p.46]. Our TP-Algebra explicitly shows how to get
around this problem.

Last but not least, our paper provides an extension of the relational algebra to handle temporal probabilistic
data — the contributions of [13] present an extension of SQL, thus neatly complementing our work. As we
will see in Section 8, there are many other interesting and important contributions made in [13] that comple-
ment the work reported here, leading to the potential for a very powerful system obtained by combining the
two frameworks.

The relationship between relational, temporal, and TP-databases may be briefly summed up as follows. In
classical relational databases [51] a data-relation R over schema (A1; : : : ; An) contains a set of tuples, as
shown in Figure 1(a). In contrast, a temporal database relation R may be thought of as shorthand for a set

3

Relation State

Time Line

Time Line

state at
time 0

1 2 3 4 5

state at
time 1

1 2 3 4 5

poss. states poss. states
at time 1 at time 2

(a) Relational DB

(b) Temporal Databases

(c) Probabilistic Temporal Databases

0.2

0.5

0.3

probability
distribution

Figure 1: Relationship between Relations, Temporal Relations and TP-relations

of snapshotsR(1); R(2); : : :— intuitively, given a time instant i, R(i) is a data-relation that specifies what
tuples are true w.r.t. relation R at time i. This is shown in Figure 1(b).

In contrast, a TP-relation is much more complicated, as shown in Figure 1(c). For every given point i in
time, we cannot specify R(i) precisely as we are uncertain about what is in R at time i. Thus, for each time
instant i, a TP-relation specifies a set of relations, fR(i; 1); : : : ; R(i; ki)g for some ki > 0, together with a
probability assignment,} on fR(i; 1); : : : ; R(i; ki)g. Intuitively,}(R(i; j)) = 0:3means that there is a 30%
probability that the content of relation R at time i is R(i; j).
2 Preliminaries and Basic definitions

In this section, we provide some basic definitions that are used in the algebras we develop later in the paper.
The work reported in Subsections 2.1, 2.2, 2.3 and refsec:ProbStrat is not new work, but form the basic
definitions needed to describe our algebras. Other parts of this section describe new work.� We first define (Sec. 2.1) a calendar, borrowing from definitions in [29]. Calendars are needed because

all TP-relations will assume that time is specified with respect to an arbitrary but fixed calendar.� Then, we define (Sec. 2.2) what a temporal constraint over an arbitrary but fixed calendar is. As spec-
ified earlier in the paper, our algebras use constraints to describe sets of time points.� We then define (Sec. 2.3) what distribution functions are.� Next, we define (Sec. 2.4) what a probabilistic tuple is. This definition will serve as a “springboard”
for the later definitions.

4

� In Section 2.5, we specify a set of axioms that a function must satisfy for it to be considered a prob-
abilistic conjunction or disjunction strategy. For example, when we compute the cartesian product of
two TP-relationsR and S where TP-tuples r 2 R and s 2 S at time i with probabilities in the interval[pr1; pr2] and [ps1; ps2] respectively, then a probabilistic conjunction strategy allows us to compute
the probability that the concatenation r � s is in the cartesian product of R; S. Clearly, this proba-
bility depends upon our knowledge (if any) of the dependencies between the events denoted by these
tuples. Section 2.5 specifies axioms that a function must satisfy for it to be considered a probabilistic
conjunction or disjunction strategy. When a user of a TP-database asks a query, he may ask the sys-
tem to execute the operations in his query under a probabilistic strategy (or strategies) that he believes
captures the relationship between the events involved.� Finally, in Section 2.6, we specify the means by which conflicting information about the probability
of an event (which must be true at a certain time point) can be combined together. We introduce the
concept of a combination function as a function that combines a set of probability intervals into one
interval while satisfying a prerequisite set of axioms.

2.1 Calendars

In this section, we define the concept of a calendar that is used by a TP application. In our architecture, a TP
application assumes the existence of an arbitrary but fixed calendar. The definitions in this section are not
new, but taken from [29].

Definition 2.1 (time unit) A time unit consists of a name and a time-value set. The time-value set has a
linear order, denoted <T , where T is the name of the time unit. As usual, we let �T denote the reflexive
closure of the <T relation. A time unit is either finite or infinite, depending on whether its time-value set is
finite or infinite; an infinite time-value set is assumed to be countable. 2

For instance, the time units named day, month, and year may have the time-value sets f1; : : : ; 31g,f1; : : : ; 12g, and fall integersg respectively.

Definition 2.2 (linear hierarchy) A linear hierarchy of time units, denoted H , is a finite collection of dis-
tinct time units with a linear order v among those time units. The greatest time unit according to v may be
either finite or infinite, while all other time units in the hierarchy must be finite. 2

For instance, H1 = day v month v year, H2 = minute v hour v day v month v year, and H3 =
hour v day v month are all linear hierarchies of time units.

Definition 2.3 (time point) Suppose T1 v � � � v Tn is a linear hierarchy H of time units. A time point t inH is an n-tuple (v1; : : : ; vn) such that for all 1 � i � n, vi is a time-value in the time-value set of Ti. Let(v1=:::=vn) be an abbreviation for time point t.
Time points are ordered according to the lexicographic ordering <H which is defined in the usual way.

Thus, time point t = (v1; : : : ; vn) <H t0 = (v01; : : : ; v0n) iff there exists an i (1 � i � n) such that vi <Ti v0i
and vj = v0j for all j = i + 1; : : : ; n. Note that if i = n, then the (vj = v0j) statement is vacuously true.
When t <H t0, we say that t occurs before t0, and conversely, t0 occurs after t. If t = t0, we say that t occurs
simultaneously with t0. 2

5

A time point in linear hierarchy H is simply an instantiation of each time unit in H (a specific point in
time with respect toH). For instance, using hierarchy H1 given above, “March 16, 1997” could be specified
by the time point (16/3/1997). By using hierarchy H2 given above, “3:45pm on March 12, 1997” could be
specified by the time point (45, 15, 12, 3, 1997). For hierarchy H1 given above, time point t occurs before
or simultaneously with t0, denoted t = (vday; vmonth; vyear) �H1 t0 = (v0day; v0month; v0year), is true iff((vyear < v0year)_(vyear = v0year^vmonth < v0month)_(vyear = v0year ^vmonth = v0month^vday � v0day)).
Definition 2.4 (calendar) A calendar � consists of a linear hierarchyH of time units and a validity predicate
denoted validH (or simply valid if H is clear from context). A validity predicate specifies a non-empty set
of valid time points; validH(t) is true iff t is a valid time point. The set of all time points over calendar � ,
denoted S� , is defined as ft j t is a time point in H and validH(t) is trueg. 2

For instance, if we are representing the Gregorian calendar � by hierarchyH1 given above, a suitable valid-
ity predicate states that valid(14/3/1996) = true but valid(29/2/1997) = false. (29/2/1997) is not a valid time
point since February of 1997 only contains 28 days. Note that a calendar for the hierarchy dayOfWeek v
day v month v year should have only one valid time point for each instantiation of (day, month, year) since
these three time units uniquely determine the valid time-value for dayOfWeek.

Let next� (t) denote the next, consecutive time point after t. Thus, next� (t) denotes the time point t0 2 S�
where t0 occurs after t and for all other t00 2 S� where t00 occurs after t, t00 also occurs after t0.
2.2 Constraints

When expressing a statement of the form “Data tuple d is in relation r at some time point in a set T of time
points with probability in the interval [p1; p2] and with the probability distributed according to distribution�”, we must be able to specify the set T of time points. Constraints are a natural way of specifying such
sets. In this section, we recapitulate (from [29]) how temporal constraints can be used to specify sets of time
points associated with a calendar.

Definition 2.5 (atomic temporal constraint) Suppose T1 v � � � v Tn is a linear hierarchy H of time units
over calendar � . An atomic temporal constraint over calendar � must take one of the following forms:

1. (Ti op vi) where op is a member of the set f�; <;=; 6=; >;�g and vi is a time-value in the time-value
set of time unit Ti. Here, (Ti op vi) is called an atomic time-value constraint.

2. (t1 � t2) where t1; t2 2 S� and t1 �H t2. Here, (t1 � t2) is called an atomic time-interval constraint.
For convenience, let (t1) be an abbreviation for (t1 � t1). 2

For example, (day < 15), (month� 8), and (12/3/1997� 10/4/1997) are all atomic temporal constraints,
but (1996 = year) is not. Also, (day < 45) is not an atomic temporal constraint since 45 is not in the time-
value set of day. Similarly, (15/2/1997� 29/2/1997) is not an atomic temporal constraint since (29/2/1997)
is not a valid time point in � . Furthermore, (10/4/1997 � 12/3/1997) is not an atomic temporal constraint
since time point (10/4/1997) occurs after (12/3/1997).

Definition 2.6 (temporal constraint) A temporal constraintC over calendar � is defined inductively in the
following way:� Any atomic temporal constraint over � is a temporal constraint over � .

6

� If C1 and C2 are temporal constraints over � , then (C1 ^ C2), (C1 _ C2), and (:C1) are temporal
constraints over � .

If temporal constraint C is solely a boolean combination of atomic time-value constraints, then C is a time-
value constraint. Similarly, if temporal constraintC is solely a boolean combination of atomic time-interval
constraints, then C is a time-interval constraint. 2

For instance, ((day > 5 ^ day < 15) ^ (month = 4 _ month � 8) ^ year = 1996) and ((12/3/1997�
10/4/1997)_ (10/7/1997� 10/7/1997)) are temporal constraints but (day > 5 : ^ day < 15) is not.

Definition 2.7 (solution set to an atomic temporal constraint) Suppose T1 v � � � v Tn is a linear hierar-
chy H of time units over calendar � . Then an atomic temporal constraint over � is of the form (Ti op vi) or
(t1 � t2). The solution set to an atomic temporal constraint over calendar � is the set S which is defined in
the following way:

Case Sop = (�) S = ft j t 2 S� ^ t:Ti �Ti vigop = (<) S = ft j t 2 S� ^ t:Ti <Ti vigop = (=) S = ft j t 2 S� ^ t:Ti = vigop = (6=) S = ft j t 2 S� ^ t:Ti 6= vigop = (>) S = ft j t 2 S� ^ vi <Ti t:Tigop = (�) S = ft j t 2 S� ^ vi �Ti t:Tigop = (�) S = ft j t 2 S� ^ t1 �H t �H t2g 2
For instance, the solution set to (day > 25) over the Gregorian calendar � is the set of all time points (day,

month, year) 2 � where day > 25. Note that (29, 2, 1996) is in this set but (29, 2, 1997) is not since the latter
is not a valid time point in S� . Also, the solution set to (1/1/1996� 31/12/1996) over the Gregorian calendar
would contain 366 time points (one for each calendar day in 1996) while the solution set to (1/1/1997 �
31/12/1997) over the same calendar would contain 365 time points.

Definition 2.8 (solution set to a temporal constraint) Let S� be the set of all valid time points over cal-
endar � . Then the solution set to a temporal constraint C over calendar � , abbreviated sol(C), is the set S
which is defined inductively in the following way:� If C is an atomic temporal constraint, then S = sol(C).� If C is of the form (C1 ^ C2), then S = sol(C1) \ sol(C2).� If C is of the form (C1 _ C2), then S = sol(C1) [sol(C2).� If C is of the form (:C1), then S = S� � sol(C1).
Each time point t 2 sol(C) is called a solution to C. 2

For example, the solution set to ((5/8/1997� 10/8/1997)_ (7/8/1997� 12/8/1997)) would contain eight
time points.

The following well known result states that any time-value constraint can be rewritten as an equivalent
time-interval constraint (i.e., one which has an equal solution set) and vice-versa.

7

Proposition 1 (Folk theorem) Time-value constraints and time-interval constraints have the same expres-
sive power.

Definition 2.9 (finite calendar) Calendar � is a finite calendar iff S� is finite. 2
Note that when the greatest time unit of a calendar is finite, then the calendar is guaranteed to be finite. Fur-
thermore, for all temporal constraintsC over a finite calendar � , sol(C) must be a finite subset of S� . Given a
finite calendar � , we use t�S to denote the smallest time point of � (w.r.t. the ordering<H associated with the
calendar) and t�E to denote the largest time point. When � is clear from context, we will drop the superscript� and just write tS and tE .

In the rest of this paper, all calendars are assumed to be finite unless we specifically state otherwise. Fur-
thermore, all of our examples will use a finite version of the Gregorian calendar.

2.3 Distribution functions

Consider a simple statement saying that data tuple d is in relation r at some time point in the set f1; 2; 3; 4g
with probability 0:7. Suppose we are now asked “what the probability that d is in r at time 2?” There is no
way to answer this question without assuming the existence of some probability distribution. In this paper,
we wish to allow designers of TP-databases to specify probability distributions for each set of time points.

Definition 2.10 (probability distribution function) Let D be a temporal constraint over calendar � such
that jsol(D)j � 1. Then a probability distribution function (PDF) over calendar � , denoted pdf(D; tj), is
a function which takes D and a time point tj 2 S� as input, and returns as output a probability �j which
satisfies the following conditions:

1. For each tj 2 S� , 0 � �j � 1.

2. For all tj 2 S� where tj =2 sol(D), �j = 0.

3.
Ptj2S� (�j) � 1. This implies that

Ptj2sol(D)(pdf(D; tj)) � 1.

If the sum
Ptj2S� (�j) is strictly less than one, the function is called a partial PDF; if the sum is exactly

equal to one, the function is called a complete PDF. A PDF is determinate if
Ptj2S� (�j) is computable in

constant time. 2
PDFs are both discrete and finite. Complete PDFs tell us what percentage of the total probability mass

(i.e., 1.0) is associated with each tj 2 sol(D). Partial PDFs are useful when modeling infinite distributions;
here, we are considering only a finite portion of the total probability mass. Determinate PDFs tell us up-front
that a fixed percentage of the probability mass is unassigned. Thus, every complete PDF is determinate. In
addition, a partial PDF which is known to allocate only a total of 0:9 to the values in S� is determinate.

To see how specific PDFs may be defined, let us examine some examples.

Example 2.1 (PDF; uniform) The PDF for the uniform distribution over calendar � , denoted pdfu(D; tj),
is defined as �j = 1jsol(D)j if tj 2 sol(D) or �j = 0 otherwise. pdfu is a complete PDF.

Notice that for all t1; t2 2 sol(D), �1 = �2. In other words, we are equally dividing the probability mass
among all of the relevant time points. Also,

Ptj2S� (�j) = 1 is clearly true since there are n = jsol(D)j
8

non-zero �js, one for each tj 2 sol(D), and n � �j = jsol(D)j � 1jsol(D)j = 1. Furthermore, we will never
divide by zero since by definition of PDFs, jsol(D)j � 1.

For the following PDF examples, let D be a temporal constraint and let t0; : : : ; tn be a list of distinct time
points in S� where sol(D) = ft0; : : : ; tng and ti occurs before ti+1 for all 0 � i < n, i.e. sol(D) is enu-
merated in ascending order of time points. For instance if D = (1=8=1997 � 3=8=1997) then n = 2,t0 = 1=8=1997, t1 = 2=8=1997, and t2 = 3=8=1997.

Example 2.2 (PDF; geometric) Let p be a probability where (0 < p < 1). Then the PDF for the geometric
distribution with parameter p over calendar � , denoted pdfg;p(D; tj), is defined as �j = p � (1 � p)i iftj = ti 2 sol(D) or �j = 0 otherwise. pdfg is a partial PDF. Note that if jsol(Dj)j is fixed (or constant time
computable), then pdfg is a determinate PDF.

If p = 13 , pdfg;p(D; t0) = 13 � (23)0, pdfg;p(D; t1) = 13 � (23)1, and pdfg;p(D; t2) = 13 � (23)2. For all other
time points tj 2 S� , pdfg;p(D; tj) = 0. Notice that if p = 12 , then pdfg;p(D; t0) = 12 and pdfg;p(D; ti) will
be half of pdfg;p(D; ti�1) for each 1 � i � n.

Let pdfgc;p be defined in the same way as pdfg;p except pdfgc;p(D; tn) = 1 if jsol(D)j = 1 or
pdfgc;p(D; tn) = 1 � (Ptj2ft0;:::;tn�1g(pdfg;p(D; tj))) otherwise. We call pdfgc;p the complete correlate
of pdfg;p since pdfgc;p(D; tj) = pdfg;p(D; tj) for all tj 2 S� �ftng and since pdfgc;p is a complete PDF. In
general, one can construct a complete correlate for any partial PDF in a similar way. Note that when p = 12
and jsol(D)j > 1, pdfgc;p has the nice property that pdfgc;p(D; tn) = pdfgc;p(D; tn�1).
Example 2.3 (PDF; binomial) Let p be a probability where (0 < p < 1). Then the PDF for the binomial
distribution with parameter p over calendar � , denoted pdfb;p(D; tj), is defined as �j = (ni) � pi � (1� p)n�i
if tj = ti 2 sol(D) or �j = 0 otherwise. pdfb is a complete PDF.

Example 2.4 (PDF; Poisson) Let (� > 0) be a rate and let e be the base of the natural logarithm (i.e.,e ' 2:71828). Then the PDF for the Poisson distribution with parameter � over calendar � , denoted
pdfpo;�(D; tj), is defined as �j = e�� � �ii! if tj = ti 2 sol(D) or �j = 0 otherwise. pdfpo is a partial
PDF. When jsol(D)j is known, then pdfpo is a determinate PDF.

Techniques that specify how to associate and store probability distributions with events are provided by
Dyreson and Snodgrass [13, p. 8] and by Dey and Sarkar [12]. Hence, we do not discuss this matter in further
detail here.

Throughout the rest of this paper, we will use (� = “u”), (� = “g; p”), (� = “gc; p”), (� = “b; p”), and (� =
“po; �”) to represent the distribution functions for pdfu, pdfg;p, pdfgc;p, pdfb;p, and pdfpo;� respectively. Fur-
thermore, unless we specifically state otherwise, assume that parameter p = 0:5. Thus, (� = \g”) represents
the pdfg;0:5 function.

2.4 P-tuples

In this section, we will briefly introduce the concept of a probabilistic tuple — one that extends the notion of
an ordinary tuple to include probabilistic information.

Definition 2.11 (P-tuple) Let D be a temporal constraint over � where jsol(D)j � 1. Furthermore, letL; U 2 [0; 1] be probabilities where L � U , and let � be a distribution function over � . Then the quadruplehD;L; U; �i is called a probabilistic tuple or P-tuple. 2
9

A P-tuple pt is usually associated with an event e. Here, pt has the following interpretation: “The probabil-
ity that e occured during the time periods described by sol(D) lies within the interval [L; U] and is distributed
according to �”. Thus for each t 2 sol(D), pt indicates that event e occurred at time t with probabilityPt 2 [Lt; Ut].

For instance, let e be the event “packet 47 arrives in Rome”, let D = (1=8=1997 � 3=8=1997), and letpt = hD; 0:4; 0:8; gi. Here, pt indicates that we should distribute [0:4; 0:8] among the members of sol(D)
according to the geometric PDF. Thus, packet 47 arrived at time t = (1=8=1997)with [Lt; Ut] = [0:2; 0:4],
at t = (2=8=1997) with [Lt; Ut] = [0:1; 0:2], or at t = (3=8=1997)with [Lt; Ut] = [0:05; 0:1].

An event is instantaneous if it can only occur at a single point in time. For example, consider the event
“Toss toss id of coin C comes up heads.” This is an instantaneous event since it can only be true at a single
point in time — the same coin cannot be tossed twice at the same time and two different tosses of the same
coin represent two distinct events. It is important to note that a real world event e (which has a continuous
duration) may be modeled in our framework through two instantaneous events — the event st(e) denoting
the start of e and the event end(e) denoting the end of e. Thus in this paper, without loss of generality, we
only consider events that are instantaneous. A similar assumption is made by Dyreson and Snodgrass[13].

2.5 Probabilistic strategies

Given the probabilities p1 and p2 of events e1 and e2, how do we compute the probability p of compound
event (e1 ^ e2)? As argued in [30], the answer depends on the relationship between e1 and e2. For instance
if e1 and e2 are mutually exclusive, p should be zero; if e1 and e2 are independent of each other, p should be(p1�p2). A similar situation arises when computing the probability of (e1_e2). We address these problems by
consultingprobabilisticconjunctionstrategies and probabilisticdisjunctionstrategies. Both of these concepts
were originally defined in [30] and are recapitulated below.

Before proceeding, recall that intervals obey the following definitions/properties:

1. [L1; U1] � [L2; U2] iff (L1 � L2 ^ U1 � U2).
2. [L1; U1] � [L2; U2] iff (L1 � L2 ^ U1 � U2).
3. [L1; U1] � [L2; U2] iff (L1 � L2 ^ U1 � U2).
4. [L; U] = ([L1; U1] \ [L2; U2]) iff (L = max(L1; L2) ^ U = min(U1; U2) ^ L � U).

Definition 2.12 (probabilistic conjunction strategy) Let events e1; e2 have probabilistic intervals [L1; U1]
and [L2; U2] respectively. Then a probabilistic conjunction strategy is a binary operation
 which uses this
information to compute the probabilistic interval [L; U] for event (e1 ^ e2). When the events involved are
clear from context, we use “[L; U] = [L1; U1]
 [L2; U2]” to denote “(e1 ^ e2; [L; U]) = (e1; [L1; U1])
(e2; [L2; U2])”. Every conjunctive strategy must conform to the following probabilistic postulates:

1. Bottomline: ([L1; U1]
 [L2; U2]) � [min(L1; L2);min(U1; U2)].
2. Ignorance: ([L1; U1]
 [L2; U2]) � [max(0; L1 + L2 � 1);min(U1; U2)]. A brief explanation of

this axiom is in order. Boole proved in 1854 [7] that if events e1; e2 are known to have probabilities
in the intervals [L1; U1]; [L2; U2], and we do not know anything about the relationship between these
two events, then the best that can be said about the probability for (e1^ e2) is that it lies in the interval
shown above. This forms the basis for numerous pieces of work in the AI and deductive database

10

literature ([19, 34, 36] to name a few). This axiom merely says that if we know something about the
dependency between e1; e2, then we must be able to infer a tighter probability interval than complete
ignorance about dependencies would allow us to infer.

3. Identity: When (e1 ^ e2) is consistent and [L2; U2] = [1; 1], ([L1; U1]
 [L2; U2]) = [L1; U1].
4. Annihilator: ([L1; U1]
 [0; 0]) = [0; 0].
5. Commutativity: ([L1; U1]
 [L2; U2]) = ([L2; U2]
 [L1; U1]).
6. Associativity: (([L1; U1]
 [L2; U2])
 [L3; U3]) = ([L1; U1]
 ([L2; U2]
 [L3; U3])).
7. Monotonicity: ([L1; U1]
 [L2; U2]) � ([L1; U1]
 [L3; U3]) if [L2; U2] � [L3; U3]. 2

The following are some sample conjunctive strategies:� Use the
ig (ignorance) operator when we do not know the dependencies between e1 and e2.([L1; U1]
ig [L2; U2]) = [max(0; L1 + L2 � 1);min(U1; U2)].� Use the
pc (positive correlation) operator when the overlap between e1 and e2 is maximal.([L1; U1]
pc [L2; U2]) = [min(L1; L2);min(U1; U2)].� Use the
nc (negative correlation) operator when the overlap between e1 and e2 is minimal.([L1; U1]
nc [L2; U2]) = [max(0; L1+ L2 � 1);max(0; U1 + U2 � 1)].� Use the
in (independence) operator when e1 and e2 are independent.([L1; U1]
in [L2; U2]) = [L1 � L2; U1 � U2].
Note that we use the more general notion of a probability interval [L; U] � [0; 1] instead of a point proba-

bility p 2 [0; 1]; intervals allow us to reason about the probabilities of compound events (through operators
such as
ig) without making traditional assumptions like independence [30].

Probabilistic conjunctions will be useful when describing TATA and TPA semantics for cartesian products
(x5:6, x6:7).

Definition 2.13 (probabilistic disjunction strategy) Let events e1; e2 have probabilistic intervals [L1; U1]
and [L2; U2] respectively. Then a probabilistic disjunction strategy is a binary operation � which uses this
information to compute the probabilistic interval [L; U] for event (e1 _ e2). When the events involved are
clear from context, we use “[L; U] = [L1; U1] � [L2; U2]” to denote “(e1 _ e2; [L; U]) = (e1; [L1; U1]) �(e2; [L2; U2])”. Every disjunctive strategy must conform to the following probabilistic postulates:

1. Bottomline: ([L1; U1]� [L2; U2]) � [max(L1; L2);max(U1; U2)].
2. Ignorance: ([L1; U1] � [L2; U2]) � [max(L1; L2);min(1; U1 + U2)]. The rationale for this axiom

is similar to that described for Ignorance in conjunction strategies earlier. This expression was also
derived by Boole in 1854 [7].

3. Identity: ([L1; U1]� [0; 0]) = [L1; U1].
4. Annihilator: ([L1; U1]� [1; 1]) = [1; 1].
5. Commutativity: ([L1; U1]� [L2; U2]) = ([L2; U2]� [L1; U1]).

11

6. Associativity: (([L1; U1]� [L2; U2])� [L3; U3]) = ([L1; U1]� ([L2; U2]� [L3; U3])).
7. Monotonicity: ([L1; U1]� [L2; U2]) � ([L1; U1]� [L3; U3]) if [L2; U2] � [L3; U3]. 2

The following are some sample disjunctive strategies:� Use the �ig (ignorance) operator when we do not know the dependencies between e1 and e2.([L1; U1]�ig [L2; U2]) = [max(L1; L2);min(1; U1 + U2)].� Use the �pc (positive correlation) operator when the overlap between e1 and e2 is maximal.([L1; U1]�pc [L2; U2]) = [max(L1; L2);max(U1; U2)].� Use the �nc (negative correlation) operator when the overlap between e1 and e2 is minimal.([L1; U1]�nc [L2; U2]) = [min(1; L1 + L2);min(1; U1 + U2)].� Use the �in (independence) operator when e1 and e2 are independent.([L1; U1]�in [L2; U2]) = [L1 + L2 � (L1 � L2); U1 + U2 � (U1 � U2)].
As conjunctive and disjunctive probabilistic strategies are commutative and associative, we can extend the

definition of either strategy to apply to more than two arguments. We adopt the notations ([L1; U1]
 : : :
[Lk; Uk]) and ([L1; U1]� : : :� [Lk; Uk]) to represent this generalization.

2.6 Combination functions

Suppose that we are trying to determine the probability that a single event e is true at time point t. Occasion-
ally, we may have multiple sources of information where each source provides a different probability interval
for e at time t. Here, combination functions can be used as a generic mechanism for combining these intervals
into a single [L; U] result.

Definition 2.14 (combination function) Let S = f[L1; U1]; : : : ; [Lk; Uk]g be a non-empty multiset of
probabilistic intervals. Then a combination function � is a function which takes S as input, and returns as
output a probabilistic interval [L; U] which satisfies the following axioms:

1. Identity: If [L1; U1] = : : : = [Lk; Uk], then �(S) = [L1; U1]. In other words, when all input intervals
are equal, the output interval is also equal to all of the input intervals.

2. Bottomline: L � maxfLi j [Li; Ui] 2 Sg. In other words, the lower bound of the result cannot
exceed the largest lower bound of the intervals in S. 2

Combination functions will be useful when describing TATA and TPA semantics for intersection (x5:2,x6:3) and union (x5:3, x6:4). For instance, after a union merges all tuples from two relations, the resulting
relation may contain more than one tuple for a single event. Here, we could compact (merge) these tuples
into a single tuple by applying a combination function.

Definition 2.15 (conflict) A multiset S of probability intervals conflict iff
T[L;U]2S[L; U] = ;. 2

Note that all combination functions must find a way to remove conflicts. A class of combination functions
called equity combination functions prescribe to the view that if S = f[L1; U1]; [L2; U2]g does not conflict,
then �(S) should equal [L1; U1]\ [L2; U2]. However, if these intervals conflicted, then different equity com-
bination functions may resolve the conflict in different ways.

12

Definition 2.16 (equity combination function) An equity combination function �e is a combination func-
tion where (T[L;U]2S[L; U] 6= ;)) (�e(S) = T[L;U]2S[L; U]). 2

The following example shows a variety of equity combination functions.

Example 2.5 (example equity combination functions) :

Name Interval Returned when
T[L;U]2S [L;U] = ;

Optimistic Equity �eq(S) = [max(fLi j [Li; Ui] 2 Sg);max(fUi j [Li; Ui] 2 Sg)]
Enclosing Equity �ec(S) = [min(fLi j [Li; Ui] 2 Sg);max(fUi j [Li; Ui] 2 Sg)]
Pessimistic Equity �ep(S) = [min(fLi j [Li; Ui] 2 Sg);min(fUi j [Li; Ui] 2 Sg)]
Rejecting Equity �er(S) = [0; 0]
Skeptical Equity �esk(S) = [0; 1]
Quasi-independence Equity �eqi(S) = [�[Li;Ui]2SLi;�[Li;Ui]2SUi]

Note that when
T[L;U]2S[L; U] 6= ;, all of the functions above return

T[L;U]2S[L; U].
Proposition 2 Every function listed in Example 2.5 is an equity combination function.

3 TP-relations

In this section, we define the syntax and semantics of a Temporal-Probabilistic relation. Intuitively, a TP-
relation is a multiset of TP-tuples. Each TP-tuple consists of a “data” part and a “probabilistic-temporal”part.
This latter part is called a TP-case statement and it intuitively specifies the probability with which the “data”
part of the tuple is in the relation at different instances of time. Once TP-cases are defined in Section 3.1
below, we will provide a formal definition of TP-tuples and TP-relations in Sections 3.2 and 3.3.

3.1 TP-case statements

We are now ready to define a TP-case statement and its constituent TP-cases.

Definition 3.1 (TP-case statement over calendar �) A TP-case statement over calendar � , denoted
, is
an expression of the form fhC1; D1; L1; U1; �1i; : : : ; hCn; Dn; Ln; Un; �nig where n � 1, Ci and Di are a
temporal constraints over � , Li andUi are probabilities, �i is a distribution function over � , and the following
conditions are satisfied for all 1 � i � n:

1. (0 � Li � Ui � 1).
2. sol(Ci) � sol(Di). This ensures that �i(Di; t) is defined for each time point t 2 sol(Ci).
3. jsol(Ci)j � 1. In other words, Ci and Di each have at least one solution in S� .

4. For all 1 � j � n, i 6= j) sol(Ci) \ sol(Cj) = ;. In other words, (Ci ^ Cj) is always inconsistent.
This ensures that each TP-case statement specifies at most one probability interval for each t 2 S� .
Note that we do not have a similar requirement for (Di ^Dj).

13

For each 1 � i � n,
i = hCi; Di; Li; Ui; �ii is called a TP-case of
. On occasion, we may want to assign
probabilities to every time point in S� . Here, sol(Cn) = sol(:C1 ^ :C2 ^ : : :^ :Cn�1) and
n is called the
catch-all case. For brevity, when
n is a catch-all case, we may use “(�)” to represent Cn.

Note: If sol(Ci) = sol(Di), we let “(#)” be an abbreviation for Ci. 2
The reader may wonder about the occurrence of two constraints (Ci andDi) in a TP-case
i = hCi; Di; Li; Ui; �ii.
Intuitively, sol(Ci) is the set of time points which
i is “interested in” while sol(Di) is the set of time points
used when distributing the probability interval [Li; Ui] according to �i. When the above TP-case is associ-
ated with a data-tuple d, it says that d is in some relation at some time point t that is a solution of the con-
straint Ci. The probability that d is true in the relation at such a t is �i(Di; t). In other words, the constraintDi is used to specify the set of time points used when distributing the probability interval [Li; Ui] accord-
ing to �i. This is an important distinction which is critically necessary. Why ? Suppose that originally,sol(Ci) = sol(Di) = S = f1; 2; 3; 4g and �i = \b; 0:5”. Thus, the probabilities associated with time
points 1,2,3,4 are 0.125, 0.375, 0.375, 0.125. Now suppose we perform a selection operation (x5:4) which
only asks for time points in the set S0 = f2; 3g � S. If we had no Di field in our TP-cases, then we would
merely carry over the fact that S0 has the binomial distribution on it. But applying the binomial distribution
to this set yields a probability of 0.5 to both 2 and 3 which is incorrect because selections should not change
the probabilities assigned to time points t 2 S0. Thus, some mechanism is needed to correctly compute the
probabilities of relations resulting from algebraic operations executed.

Thus, in order to accurately compute probabilities, we must do one of two things:� Carry with us the original set of values over which a probability distribution was defined, or� Determine how to accurately refine an arbitrary distribution to apply to a subset of the set to which
the distribution was originally applicable.

The latter option requires a complex algebraic theory of distributions and its implementation is likely to be
extremely expensive. For this reason, we have chosen the first option above.

For another (simpler) example, consider a TP-case statement with one TP-case
1:fh(1=8=1997 � 5=8=1997); (1=8=1997 � 10=8=1997); 0:4; 0:8; uig Intuitively,
1 says that some event
occurred during the first five days of August 1997 (in other words, it occurred during one of the time points
in sol(C1)). Since �1 = \u”, the probability that it occurred on any of these days is the same. Specifically,
this probability is [110 � 0:4; 110 � 0:8] = [0:04; 0:08] since we are uniformly distributing the probability mass[0:4; 0:8] between all of the (10) time points in sol(D1). In general, the probability interval for some time
point t 2 sol(Ci) is [Li � �i(Di; t); Ui � �i(Di; t)]. Here, we see that a TP-case hCi; Di; Li; Ui; �ii is simply
an extension to the P-tuple hDi; Li; Ui; �ii.
Comment 3.1 Even though TP-cases contain two distinct constraint fields, viz. C and D, this distinction
can be hidden from the user, especially in base relations where C and D are equal.

The expression on the left below is a TP-case statement. However, the expression on the right is not a
TP-case statement as the solution set to C1 (and D1) is empty.fh(#); (month < 6 ^ year = 1997); 0:4; 0:8; gi, fh(#); (year = 1996^ year = 1997); 0:4; 0:8; gi,h(#); (month � 6 ^ year = 1997); 0:6; 0:6; uig h(#); (year = 1998); 0:0; 0:0; uig

Furthermore,fh(#); (month < 6 ^ year = 1997); 0:4; 0:8; gi,h(#); (month � 3 ^ year = 1997); 0:6; 0:6; uig
14

is not a TP-case statement as (C1 ^ C2) is not inconsistent (i.e., the probabilities for the overlapping time
points are overspecified).

We reiterate that each temporal constraint in a TP-case statement must have a finite number of solutions
(sinceS� is finite). We restrict ourselves to finite calendars and solution sets to avoid the complications which
arise when trying to determine whether a constraint using negations is infinite or not.

3.2 TP-tuples

In this section, we will define the important concept of a Temporal Probabilistic tuple (TP-tuple for short).
We will require that all TP-tuples contain a special field called a “hidden field.” Intuitively, two TP-tuples
with equal “data” parts may represent two different events. The hidden field (similar in function, but easier
to implement than the concept of a path introduced in [30]) keeps track of how these TP-tuples were derived
in order to determine whether or not two TP-tuples refer to the same event.

Definition 3.2 (hidden field) A hidden field holds a lexicographically sorted hidden list of field-value pairs
(i.e., “<field1>:<value1>, : : :, <fieldn>:<valuen>”). If there are no pairs to store, the hidden list will be
EMPTY. 2

In base relations, the contents of the hidden field will be EMPTY (since no fields have been projected out).
For intermediate relations, the hidden field holds values of the form “<field>:<value>” for fields which
have been projected out. Although these values should be hidden from the user, we shall see that they are
important in determining whether two TP-tuples refer to the same event or not.

Definition 3.3 (TP-tuple) Let T1 v � � � v Tm be the linear hierarchy of time units over calendar � and
suppose A = (A1; : : : ; Ak) is a relational schema where for all 1 � i < k, Ai =2 f“C”, “D”, “L”, “U”,
“�”, “Lt”, “Ut”, “H”g, and for all 1 � j � m, Ai 6= Tj . Furthermore, let Ak be the hidden field “H”, letd = (d1; : : : ; dk) be a (data) tuple over A, and let
 be a TP-case statement over � . Then tp = (d;
) is a
TP-tuple over relational schema A and calendar � . Intuitively,
 gives the probability for each t 2 S� thatd occurs at time t. 2
For instance, suppose our relational schema is A = (Item, Origin, Dest, H). Then

Item Origin Dest H C D L U �
I1 Rome Vienna (#) day < 15^month = 11 ^ year = 1996 0.5 0.6 u(#) day � 15^month = 11 ^ year = 1996 0.4 0.4 u

is a TP-tuple which indicates that item “I1” left from “Rome” and will arrive in “Vienna” in November 1996
at some time before the 15th (with 50� 60% probability) or on/after the 15th (with 40% probability). This
TP-tuple is not concerned with I1’s arrival before or after November 1996 since no probabilities are assigned
to this time range.

If we were sure that I1 did not arrive in Vienna before or after November 1996, we could add the TP-
case h(#); (�); 0; 0; ui to the TP-tuple above. If we had no information regarding I1’s arrival before or after
November 1996 but we were assuming that the distribution function for this time was “u”, we could add the
TP-case h(#); (�); 0; 1; ui to the TP-tuple above.

15

Finally, if we had no information whatsoever regarding I1’s arrival before or after November 1996, we
would not change the TP-tuple above. Here, we are implicitly assigning a probability interval of [0; 1] to
each time point t which lies outside of November 1996 since for all 1 � i � n, t =2 sol(Ci).

Some of our definitions in the following sections will rely upon the following operators which manipulate
hidden lists.

Definition 3.4 (manifest projection) Let A = (A1; : : : ; Ak) be a relational schema where Ak is the hidden
field (“H”) and let d = (d1; : : : ; dk) be a (data) tuple over A. Then the manifest projection of data tuple d,
denoted P(d), is defined as (d1; : : : ; dk�1). In other words, the tuple P(d) contains every value in d except
the hidden list (d:H). Here, A1 to Ak�1 are known as manifest data fields. 2

Intuitively, the manifest projection of a TP-relation simply eliminates the hidden field of the TP-relation.
The following definition specifies how hidden lists are concatenated.

Definition 3.5 (hidden list concatenation) The concatenation of hidden lists d:H and d0:H, denoted (d:H kd0:H), is a hidden list h00 which can be constructed by lexicographically merging every field-value pair in d:H
and d0:H. For instance if d:H = “Fld3:Val3, Fld6:Val6” and d0:H = “Fld4:Val4, Fld8:Val8, Fld9:Val9”, thenh00 = “Fld3:Val3, Fld4:Val4, Fld6:Val6, Fld8:Val8, Fld9:Val9”. 2

Intuitively, the concatenation of two hidden lists can be obtained by taking the union of the two hidden
lists, and then sorting them in lexicographic order.

3.3 TP-relations

We may now define a TP-relation in terms of TP-tuples.

Definition 3.6 (TP-relation) A TP-relation over relational schema A and calendar � , denoted r, is a mul-
tiset of TP-tuples over relational schema A and calendar � . Intuitively, a base TP-relation is a TP-relation
which did not result from a query. If r is a base TP-relation, then for each TP-tuple tp = (d;
) 2 r, (i)d:H = EMPTY and (ii) for each TP-case hCi; Di; Li; Ui; �ii 2
, Ci = Di.

We associate with each TP-relation a primary key. This key will be used when we describe the TPA’s
semantics for projection (x6:8). 2

Recall that a primary key is a minimal set of fields which, taken collectively, allow us to uniquely identify
a tuple in a relation [25]. In the worst case, a primary key may need to contain every manifest data field in
a relation. In practice, well designed databases use tuple ids, transaction ids, SSNs, timestamps, etc. to help
keep the primary keys small.

Definition 3.7 (TP-database) A TP-database over calendar � is a pair (Base;MV iew) where Base is a
set of base TP-relations over � and MV iew is a set of non-base TP-relations over � . 2

For simplicity, we require all TP-relations in a TP-database to use the same calendar. Note that this require-
ment does not force us to lose any expressional power. Throughout this paper, we assume that all TP-relations
are in the same TP-database unless we specifically state otherwise.

16

3.4 Semantics and consistency of TP-relations

We are now ready to define the formal semantics of TP-relations. In order to provide such a semantics, we
will extend classical logic [44] to the case of TP-relations, by extending the concept of an interpretation in
classical logic [44] to handle TP-relations. Before doing this, a preliminary definition is needed.

Definition 3.8 (data-identical TP-tuples) TP-tuples tp = (d;
) and tp0 = (d0;
 0) are data-identical iff(d = d0). Note that tp and tp0 may come from different TP-relations as long as both TP-relations have the
same schema. Also, note that (d = d0) only if (d:H = d0:H). 2

Recall that without loss of generality, we interpret TP-relations under the assumption that all data-identical
TP-tuples refer to the same, unique event. If tp and tp0 are data-identical, we assume that they provide com-
plementary information for the same event. If tp and tp0 are not data-identical, we assume that they refer to
different events. Let tp 2 r. Then r[tp] denotes the multiset of all TP-tuples in r which are data-identical totp. Since “data-identical” is a reflexive, symmetric, transitive relation on TP-tuples, it is also an equivalence
relation on r where each r[tp] corresponds to an equivalence class in this relation.

A TP-relation r is compact iff for each data tuple d and each time point t there is at most one TP-tupletp = (d;
) 2 r where t 2 sol(C1 _ : : : _ Cn). Otherwise, since r contains at least two TP-tuples which
refer to the same event at the same time, r is an uncompact TP-relation. Later, we will describe a variety
of compaction operators which convert uncompact TP-relations into compact TP-relations by consolidating
probabilistic information for each r[tp] � r (e.g., x6:3).

Intuitively, a TP-tuple tp = (d;
) is consistent if there exists a satisfying assignment of probabilities for
each TP-case
i 2
. This is given formal “teeth” through the following definition.

Definition 3.9 (TP-interpretation) Let A = (A1; : : : ; Ak) be a relational schema, let � be a calendar, and
let dom(A) = dom(A1)� � � �� dom(Ak) be the domain of A. Then a TP-interpretation over the pair A; �
is a function IA;� : dom(A)� S� 7! [0; 1] such that (8d 2 dom(A))(Pt2S� IA;� (d; t) � 1). 2

Let e be the event represented by data tuple d. Then IA;� (d; t) = p says that according to TP-interpretationIA;� , the probability that e is true at time point t is p. LetD be a temporal constraint over � . Then the proba-
bility assigned by IA;� toD, denoted IA;� (d;D), is equal to

Pt2sol(D) IA;� (d; t). This intuition may be used
to explain what it means for a TP-interpretation to satisfy a TP-tuple.

Definition 3.10 (satisfaction) Let d be a tuple in relational schema A and let
i = hCi; Di; Li; Ui; �ii be a
TP-case. Then IA;� satisfies hd;
ii, denoted IA;� j= hd;
ii, iff the following conditions hold:

1. Li � IA;� (d;Di) � Ui, i.e. the probability that IA;� assigns to Di lies in the interval [Li; Ui].
2. (8t 2 sol(Ci))(IA;�(d;Di) � �i(Di; t) = IA;�(d; t)), i.e. IA;� distributes probabilities for each t 2sol(Ci) according to �i.

TP-interpretation IA;� satisfies TP-tuple tp = (d;
), denoted IA;� j= tp, iff IA;� j= hd;
ii for all
i 2
. 2
For example, let us reconsider the following TP-tuple.

Item Origin Dest H C D L U �
I1 Rome Vienna (#) day < 15^month = 11 ^ year = 1996 0.5 0.6 u(#) day � 15^month = 11 ^ year = 1996 0.4 0.4 u

17

Consider the TP-interpretation defined as follows:I(hI1,Rome,Viennai; (d; 11; 1996)) = 0:04 when d < 15:I(hI1,Rome,Viennai; (d; 11; 1996)) = 0:416 when d � 15:I(hitem,origin,dest; (d;m; y)) = 0 otherwise:
This TP-interpretation satisfies the TP-tuple above becauseI(hI1,Rome,Viennai; ft j t:day < 15^ t:month = 11^ t:year = 1996g) = 0:04� 14 = 0:56

which lies between 0:5 and 0:6.

Definition 3.11 (consistency and mutual consistency) A TP-tuple tp is consistent iff there exists a TP-
interpretation IA;� where IA;� j= tp. A TP-relation r is consistent iff (9IA;�)(8tp 2 r)(IA;� j= tp). TP-
relations r and r0 are mutually consistent iff (9IA;�)((8tp 2 r)(IA;� j= tp)^ (8tp0 2 r0)(IA;� j= tp0)). Note
that if consistent TP-relations r; r0 have different schemas, then r and r0 must be mutually consistent. 2
Later in this paper, we will provide algorithms to convert any TP-relation into a compact TP-relation. When
a TP-relation is compact, there are no two TP-tuples that are data-identical, and hence, we can check consis-
tency of a TP-relation by individuallychecking consistency of each TP-tuple. Suppose a TP-tuple tp = (d;
)
has
 = fhC1; D1; L1; U1; �1i; : : : ; hCn; Dn; Ln; Un; �nig as its TP-case statement. Then it suffices to check
that (L1 + � � �+ Ln) � min(1;�ni=1Li � �t2S� �i(Di; t)):
If this condition holds, then the TP-tuple is consistent. This forms the basis for the following claim. When
the distribution function used is determinate, then the quantity on the right side of the above inequality can
be computed in linear time because the determinacy condition guarantees constant time computation of the
sum �t2S� �i(Di; t)).
Proposition 3 Checking consistency of a compact TP-relation which uses determinate PDFs is linear in the
size of the TP-relation.

4 Annotated relations

Annotated relations are the flat, relational equivalents of TP-relations. Let TP-case statement
 =fhC1; D1; L1; U1; �1i; : : : ; hCn; Dn; Ln; Un; �nig. Then we can “flatten” TP-tuple tp = (d;
) by creating
an annotated tuple for each time point t 2 sol(C1) [: : :[sol(Cn).

Each annotated tuple (at) provides probabilistic information ([Lt; Ut]) for one data tuple (d) at one point
in time (t). According to the definition for a TP-case statement, t 2 sol(Ci) for at most one
i =hCi; Di; Li; Ui; �ii 2
 since (i 6= j)) (sol(Ci) \ sol(Cj) = ;). If t =2 S
i2
 sol(Ci), then we do
not create an annotated tuple for t. We denote the set of all annotated tuples derived from tp by ANN(tp). In
the worst case, ANN(tp) may contain jS� j tuples.

Let r be a TP-relation containing n TP-tuples and let] denote the multiset union operator (in other words,
a union operation without duplicate elimination). Then the annotated relation for r, denoted ANN(r), is de-
fined as

Utp2rANN(tp). This means that ANN(r) may contain up to n � jS� j tuples! In general, annotated

18

relations will always be finite since they are derived from a finite number of TP-cases, and each TP-case per-
tains to a finite number of time points (since � is finite). Nonetheless, we can clearly see that ANN(tp) and
ANN(r) will often be large and impractical. This is why we only use annotation for theoretical purposes
such as illustrating a process or proving equivalences between query expressions. In our implementa-
tion, we never create annotated relations.

Let r consist of one TP-tuple which contains data tuple (“D1”, EMPTY) and TP-case
1 as shown below.

Data H C D L U �
D1 (#) day � 4 ^month = 11 ^ year = 1996 0.4 0.8 u

Then ANN(r) will be

Data H Day Month Year Lt Ut
D1 1 11 1996 0.1 0.2
D1 2 11 1996 0.1 0.2
D1 3 11 1996 0.1 0.2
D1 4 11 1996 0.1 0.2

However if
1’s C1 field was \day � 3 ^month = 11 ^ year = 1996”, then ANN(r) would no longer
contain the last tuple shown above. In general, note that changing Ci only affects the number of annotated
tuples in ANN(r), not the probabilities for the remaining time points.

Notice the “0.1” and “0.2” values in the probabilistic fields above. These values were determined by uni-
formly distributing the available probability [0:4; 0:8] among the four annotated tuples in ANN(r). We were
only justified in making this uniformity assumption since �1 = \u”. In general, TP-relations will only give
us probability intervals for a range of time points, and determining (tight) probability intervals for each time
point within that range requires us to apply a distribution function �i.

In this section, we first present a more formal definition for annotated relations. We then give an example
to show how annotated relations change when we vary the distribution functions.

4.1 Formal definitions

Definition 4.1 (annotated relation for a TP-tuple) Let tp = (d;
) be a TP-tuple over relational schema(A1; : : : ; Ak) and calendar � where d = (d1; : : : ; dk). Suppose
 contains n TP-cases of the form
i =hCi; Di; Li; Ui; �ii (1 � i � n) and suppose � consists of a linear hierarchy H containing m time unitsT1 v � � � v Tm. Here, each t 2 S� will be of the form t = (v1; : : : ; vm).
Then the annotated relation for TP-tuple tp over calendar � , denoted ANN(tp), is defined asf(d; t; Lt; Ut) j t 2 sol(Ci) for some
i 2
 and [Lt; Ut] = [Li � x; Ui � x] where x = �i(Di; t)g. 2
Intuitively, in the definition above, x represents the percentage of sol(Di)’s probability which is associated

with time point t according to �i. Note that when we explicitly show all fields of an annotated tuple, at =(d1; : : : ; dk; v1; : : : ; vm; Lt; Ut) is over the schema (A1; : : : ; Ak; T1; : : : ; Tm; Lt; Ut). Here, A1 to Ak�1 are
manifest data fields, Ak is the hidden field, T1 to Tm are temporal fields, and Lt; Ut are probabilistic fields.

Definition 4.2 (annotated relation for a TP-relation) Let r be a TP-relation over � containingnTP-tuplestp1 : : : tpn. Then the annotated relation for TP-relation r over calendar � , denoted ANN(r), is defined as
the multiset (ANN(tp1)] : : :]ANN(tpn)) over � .

19

We associate with each ANN(r) the primary key which is associated with r. This key will be used when
we describe the TATA’s projection operation (x5:7). 2
4.2 Semantics and consistency of annotated relations

Our semantics for annotated relations closely parallels our semantics for TP-relations (x3:4).

Definition 4.3 (data-identical annotated tuples) Annotated tuples at = (d; t; Lt; Ut) and at0 =(d0; t0; L0t; U 0t) are data-identical iff (d = d0). 2
We interpret annotated relations under the assumption that all data-identical annotated tuples refer to the

same event. If at and at0 are not data-identical, we assume that they refer to different events. Let d be a data
tuple and let t be a time point. Then ANN(r)[d; t] denotes the equivalence class of the pair (d; t), i.e., the
multiset of all at 2 ANN(r) where (at:d = d ^ at:t = t).

Suppose at = (d; t; Lt; Ut) 2 ANN(r), at0 = (d0; t0; L0t; U 0t) 2 ANN(r), and (d = d0 ^ t = t0). Here,
since at; at0 2 ANN(r) refer to the same event at the same point in time, ANN(r) is an uncompact annotated
relation. If there are no pairs of annotated tuples at; at0 2 ANN(r) where (d = d0 ^ t = t0), then ANN(r)
is a compact annotated relation. Later, we will describe a variety of compaction operators which convert
uncompact annotated relations into compact annotated relations (e.g., x5:1). The following theorem states
that the concept of “compact relation” for TP-relations and annotated relations coincide.

Theorem 1 A TP-relation r is compact iff its annotated counterpart,ANN(r), is compact.

We may now define what is means for an annotated relation to be satisfied by a TP-interpretation.

Definition 4.4 (satisfaction of annotated tuples) Let d be a tuple in relational schema A, let t be a time
point in S� , and let [L; U] be a probability interval. Then a TP-interpretation IA;� satisfies annotated tupleat = (d; t; Lt; Ut), denoted IA;� j= at, iff Lt � IA;� (d; t) � Ut. 2
Definition 4.5 (consistency of annotated relations) An annotated tuple at is consistent iff (9IA;�)(IA;� j=at). An annotated relation ANN(r) is consistent iff (9IA;�)(8at 2 ANN(r))(IA;� j= at). Annotated re-
lations ANN(r) and ANN(r0) are mutually consistent iff (9IA;�)((8at 2 ANN(r))(IA;� j= at) ^ (8at0 2ANN(r0))(IA;� j= at0)). 2

The following theorem tells us that if r is a consistent TP-relation, then ANN(r) is also consistent.

Theorem 2 Let r be a TP-relation. If IA;� satisfies r, then IA;� also satisfiesANN(r). Hence if r is consis-
tent, so is ANN(r).

The converse of this theorem is not true, i.e., it may be the case that a TP-interpretation satisfies ANN(r),
but does not satisfy r. This is shown in the following example.

Example 4.1 (satisfaction) Let r consist of one TP-tuple (d;
) where
 = fh(#); (1 � 2); 0:4; 0:8; uig.
Then ANN(r) = fat1; at2g where at1 = (d; 1; 0:2; 0:4) and at2 = (d; 2; 0:2; 0:4).

Now consider the TP-interpretation IA;� such that IA;� (d; 1) = 0:3 and IA;� (d; 2) = 0:4. Clearly, IA;�
satisfies ANN(r), but IA;� does not satisfy r because every TP-interpretation JA;� that satisfies r must haveJA;� (d; 1) = JA;� (d; 2).

20

This occurs since the details of the distribution get lost when annotating a relation — this is not surprising
as annotated relations have no fields for including information about distributions.

Instead, we can show that if r is compact, if (d;
) 2 r, and if (d; t; Lt; Ut) 2 ANN(r), then there must be
a TP-interpretation IA;� of r such that IA;� (d; t) = Lt. A similar statement applies to Ut. This means that
the bounds contained in ANN(r) are tight, and hence, ANN(r) correctly captures the implied probability
intervals for data tuple d at time t.
Theorem 3 Let r be a compact TP-relation containing a TP-tuple (d;
), and suppose (d; t; Lt; Ut) 2ANN(r). Then there is a TP-interpretation IA;� satisfying r such that IA;� (d; t) = Lt.

Theorems 2 and 3 jointly tells us that as far as lower bounds are concerned, r and ANN(r) are equivalent
when r is known to be compact. Later, we will describe mechanisms to make compact a TP-relation r.

Note that the above result does not hold for upper bounds — the reason for this is that in a TP-tuple, the
upper bounds may often be loose (i.e., not tight). For instance, consider the following TP-tuple:

Data H C D L U �
D1 (#) (5=1=1998) 0.6 1 u(#) (6=1=1998) 0.4 1 u

It is easy to see that the upper bounds of the TP-cases above can be tightened to 0.6 and 0.4 respectively.
Hence, these upper bounds are “loose” and need to be tightened if a theorem similar to Theorem 3 is to hold.

Definition 4.6 (tightening) Let
 = f
1; : : : ;
ng be a TP-case statement where each TP-case
i =hCi; Di; Li; Ui; �ii. A tightening of
 returns a TP-case statement
 00 = f
 001 ; : : : ;
 00ng where each
 00i =hC00i ; D00i ; L00i ; U 00i ; �00i i and each U 00i � Ui for all 1 � i � n.

A TP-tuple (d;
) is said to be tight iff there is no other TP-tuple (d;
0) such that: (i)
 0 is a tightening of
 and (ii) for all TP-interpretations IA;� , IA;� j= (d;
) iff IA;� j= (d;
 0).
A TP-relation is tight iff every TP-tuple in it is tight. 2
The following theorem tells us that for tight and compact TP-relations, Theorem 3 holds for upper bounds

as well.

Theorem 4 Let r be a compact, tight, TP-relation containing a TP-tuple (d;
), and suppose (d; t; Lt; Ut) 2ANN(r). Then there is a TP-interpretation IA;� satisfying r such that IA;� (d; t) = Ut.
Theorems 3 and 4 jointly tell us that the conversion of a TP-relation r to annotated form preserves bounds

when r is tight and compact. Later, in Section 6.10, we will describe a procedure for tightening TP-relations.

4.3 Sample annotated relations

Let r consist of one TP-tuple which contains two TP-cases as shown below.

Item Origin Dest H C D L U �
I1 Rome Paris (#) day � 2 ^month = 8 ^ year = 1997 0.5 0.7 �(#) day � 5 ^ day � 7 ^month = 8 ^ year = 1997 0.3 0.6 �

21

(a) Unary Operators (b) Binary Operators

Figure 2: Commutativity between operators of the TATA and TPA algebras

Note that the variable � must be instantiated. If � = \u”, ANN(r) will be

Item Origin Dest H Day Month Year Lt Ut
I1 Rome Paris 1 8 1997 0.25 0.35
I1 Rome Paris 2 8 1997 0.25 0.35
I1 Rome Paris 5 8 1997 0.10 0.20
I1 Rome Paris 6 8 1997 0.10 0.20
I1 Rome Paris 7 8 1997 0.10 0.20

where [Lt; Ut] = 12 � [0:5; 0:7] for the first two tuples and [Lt; Ut] = 13 � [0:3; 0:6] for the remaining tuples inANN(r). However if � = \g”, ANN(r) will be

Item Origin Dest H Day Month Year Lt Ut
I1 Rome Paris 1 8 1997 0.25 0.35
I1 Rome Paris 2 8 1997 0.125 0.175
I1 Rome Paris 5 8 1997 0.15 0.30
I1 Rome Paris 6 8 1997 0.075 0.15
I1 Rome Paris 7 8 1997 0.0375 0.075

where [Lt; Ut] = 12 � [0:5; 0:7], 14 � [0:5; 0:7], 12 � [0:3; 0:6], 14 � [0:3; 0:6], and 18 � [0:3; 0:6] for the first through
fifth tuples of ANN(r) respectively. Notice that modifying � (i.e., the distribution function �) only affects
the Lt and Ut fields of ANN(r).

5 Theoretical Annotated Temporal Algebra

In this section, we define the Theoretical Annotated Temporal Algebra and provide definitions for compac-
tion, intersection, union, selection, difference, cartesian product, projection, and join on annotated relations.

Figure 2 shows what we hope to accomplish through this section. We know that every TP-relation can be
converted into a (potentially very large) annotated relation. As annotated relations are explicit representations
of TP-relations, the definition of the above operations on annotated relations can be explicitly defined and
justified — this is what we will do in this section. Then, in Section 6, we will show how these operations can
be implemented in the TP-Algebra in such a way that the TP-Algebra operations implement the annotated
algebra operations on the implicit (smaller) TP-relations, rather than their larger annotated counterparts.

22

The definitions in this section will produce a new annotated relation ANN(r00) based on input from con-
sistent annotated relations ANN(r);ANN(r0). Oftentimes, these definitions will refer to annotated tuplesat; at0 which are assumed to be of the form at = (d; t; Lt; Ut) and at0 = (d0; t0; L0t; U 0t).
Note: Our examples illustrating the Theoretical Annotated Temporal Algebra and the TP-Algebra will
be based on the relations shown in Figure 3.

5.1 Compaction of an annotated relation

The first operation we define will be compaction as this operator is needed to define other operators. Com-
paction is the TP analog of duplicate elimination in the relational algebra.

Definition 5.1 (Compaction of an annotated relation) A function � from annotated relations to annotated
relations is called a compaction operation if it satisfies the following axioms:� Compactness : �(ANN(r)) is compact for all annotated relations ANN(r).� No Fooling Around (NFA) : If ANN(r) is compact, then �(ANN(r)) = ANN(r).� Conservativeness : If at = (d; t; Lt; Ut) 2 �(ANN(r)), then 9at0 = (d; t; L0t; U 0t) 2 ANN(r). 2

The Compactness axiom assures us that the result of a compaction operation will be a compact relation.
The NFA axiom states that applying compaction operation to a compact relation should not change the rela-
tion. The Compactness and NFA axiom jointly guarantee that compaction operations are idempotent, i.e.�(�(ANN(r))) = �(ANN(r)). The Conservativeness axiom says that any information which appears
in the result of a compaction has to originate from information in the initial relation; no information about
“new” events, or events at “new” time points gets added during compaction.

It should be clear that there are many possible ways to compact a relation. One possible class of compaction
strategies involves the use of a combination function (as defined in Section 2.6).

Definition 5.2 (�-compaction of an annotated relation) Let � be a combination function. Then the�-compaction of annotated relation ANN(r), denoted ��(ANN(r)), is defined as ��(ANN(r)) =fat = (d; t; Lt; Ut) j [Lt; Ut] = �(f[L(d;t)1 ; U (d;t)1]; : : : ; [L(d;t)k ; U (d;t)k]g)g whereANN(r)[d; t] = fat(d;t)1 ; : : :at(d;t)k g and at(d;t)i = (d; t; L(d;t)i ; U (d;t)i). 2
Intuitively, in combination function based compactions, � is applied to the multiset of all [Li; Ui]s associ-

ated with (d; t). The resulting [L; U] then becomes the only probability interval associated with (d; t). The
following proposition states that an operation defined in this manner is indeed a compaction operation.

Proposition 4 Let � be any combination function. Then ��(ANN(r)) is a compaction operation.

Theorem 5 indicates that ��(ANN(r)) operations also possess another important property: Reasonable-
ness. Intuitively, this property is similar to the converse of Conservativeness — every tuple in ANN(r)
leads to a corresponding tuple in the result of the compaction.

Theorem 5 If at0 = (d; t; L0t; U 0t) 2 ANN(r), then 9at = (d; t; Lt; Ut) 2 ��(ANN(r)).
23

r1 ANN(r1)

Data H C D L U �

D1 (#) (1=8=1997� 3=8=1997) 0.64 0.88 g(#) (5=8=1997� 8=8=1997) 0.40 0.80 u Data H Day Month Year Lt Ut
D1 1 8 1997 0.32 0.44
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 5 8 1997 0.10 0.20
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20r2 ANN(r2)

Data H C D L U �
D1 (#) (2=8=1997� 3=8=1997) 0.20 0.50 g(#) (6=8=1997� 9=8=1997) 0.40 0.80 u Data H Day Month Year Lt Ut

D1 2 8 1997 0.10 0.25
D1 3 8 1997 0.05 0.125
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20
D1 9 8 1997 0.10 0.20r3 ANN(r3)

Data1 Data2 H C D L U �
D1 D2 (#) (2=8=1997 � 2=8=1997) 0.20 0.40 u
D1 D3 (#) (2=8=1997 � 3=8=1997) 0.60 0.80 g Data1 Data2 H Day Month Year Lt Ut

D1 D2 2 8 1997 0.20 0.40
D1 D3 2 8 1997 0.30 0.40
D1 D3 3 8 1997 0.15 0.20r4 ANN(r4)

Data1 Data2 H C D L U �
D1 D2 (#) (2=8=1997 � 3=8=1997) 0.20 1.00 g
D1 D3 (#) (3=8=1997 � 3=8=1997) 0.50 0.50 u
D4 D5 (#) (1=8=1997 � 1=8=1997) 0.70 0.80 u Data1 Data2 H Day Month Year Lt Ut

D1 D2 2 8 1997 0.10 0.50
D1 D2 3 8 1997 0.05 0.25
D1 D3 3 8 1997 0.50 0.50
D4 D5 1 8 1997 0.70 0.80

Figure 3: Example Base TP and Annotated Relations

24

Another possible class of compaction strategies involves the use of a p-strategy � (i.e., a probabilistic con-
junction or disjunction strategy as defined in Section 2.5). These compactions, denoted ��, are defined in the

same way as ��(ANN(r)) except we let [Lt; Ut] = ([L(d;t)1 ; U (d;t)1]
� : : :
� [L(d;t)k ; U (d;t)k]) when � is a con-
junctive p-strategy, and let [Lt; Ut] =([L(d;t)1 ; U (d;t)1]�� : : :�� [L(d;t)k ; U (d;t)k]) when � is a conjunctive p-strategy.

Proposition 5 Let � be any (conjunctive or disjunctive) p-strategy. Then ��(ANN(r)) is a compaction op-
eration.

5.2 Intersection of two annotated relations

The intersection of annotated relations ANN(r) and ANN(r0) is viewed as the operation of extracting infor-
mation which is common to both relations. In our algebra, we break intersection into two suboperations:
First, a multiset intersection will extract all tuples from both ANN(r) and ANN(r0) which contain “common
information”. Then, we will use one of our previously-defined compaction operators to compact the result of
this multiset intersection. Finally, intersection will be defined as a combination of these suboperations. Note
that intersection (and multiset intersection) is only defined when both relations have the same schema.

Definition 5.3 (multiset intersection of two annotated relations) The multiset intersection of annotated
relations ANN(r) and ANN(r0), denoted ANN(r) \ ANN(r0), is defined as ANN(r00) = fat 2 ANN(r) j(9at0 2 ANN(r0))(d = d0 ^ t = t0)g [fat0 2 ANN(r0) j (9at 2 ANN(r))(d= d0 ^ t = t0)g. 2

Intuitively, ANN(r00) will contain all at 2 ANN(r) and all at0 2 ANN(r0) where at and at0 refer to
the same event at the same point in time. Recall that “(9at 2 ANN(r))” and “(9at0 2 ANN(r0))” are
shorthand for “(9(d; t; Lt; Ut) 2 ANN(r))” and “(9(d0; t0; L0t; U 0t) 2 ANN(r0))” respectively. For greater
clarity and conciseness, our definitions will make use of this implicit notation. For example, ANN(r00) =ANN(r1) \ ANN(r2) will be

Data H Day Month Year Lt Ut
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20
D1 2 8 1997 0.10 0.25
D1 3 8 1997 0.05 0.125
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20

Clearly, ANN(r00) above is uncompacted. To obtain a compact annotated relation, we may use any �� com-
paction operator. Using a �� compaction operator when defining intersection makes sense because the two
different relations r and r0 may both contain data tuple d at some time point t, but with different probabili-
ties. In this case, using a conjunction strategy is not appropriate because we are not combining probabilities
of different events — we are combining two different probabilities assigned to the same even by two different
sources (relations r and r0). This is exactly what combination functions � were designed to support.

25

Definition 5.4 (intersection of two annotated relations) The intersection of annotated relations ANN(r)
and ANN(r0) under the � combination function, denoted ANN(r)\�ANN(r0), is defined as ��(ANN(r)\ANN(r0)). 2

For example, ANN(r1) \eq ANN(r2) = �eq(ANN(r00)) will be

Data H Day Month Year Lt Ut
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20

5.3 Union of two annotated relations

Just like intersection, the union of two annotated relations will be presented as a combination of two suboper-
ations: multiset union, which combines the information from two relations together and compaction, which
compacts the result. As always, union is only defined when both relations have the same schema.

Definition 5.5 (multiset union of two annotated relations) The multiset union of annotated relations
ANN(r) and ANN(r0), denoted ANN(r) [ANN(r0), is defined as ANN(r00) = ANN(r)]ANN(r0). 2

Intuitively, ANN(r00) will contain all at 2 ANN(r) and all at0 2 ANN(r0). For example, ANN(r00) =ANN(r1) [ANN(r2) will be

Data H Day Month Year Lt Ut
D1 1 8 1997 0.32 0.44
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 5 8 1997 0.10 0.20
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20
D1 2 8 1997 0.10 0.25
D1 3 8 1997 0.05 0.125
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20
D1 9 8 1997 0.10 0.20

As in the case of intersection, ANN(r00) may overspecify probabilistic information. We can consolidate this
information by using a �� compaction operator. The reason for using the operator �� instead of a conjunction
strategy is exactly for the same reason that we used the �� compaction operator when defining intersection
(see discussion preceding Definition 5.4).

Definition 5.6 (union of two annotated relations) The union of annotated relations ANN(r) and ANN(r0)
under the � combination function, denotedANN(r)[�ANN(r0), is defined as ��(ANN(r)[ANN(r0)). 2

For example, ANN(r1) [eq ANN(r2) = �eq(ANN(r00)) will be

26

Data H Day Month Year Lt Ut
D1 1 8 1997 0.32 0.44
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 5 8 1997 0.10 0.20
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20
D1 8 8 1997 0.10 0.20
D1 9 8 1997 0.10 0.20

Note that although ANN(r1) and ANN(r2) are both consistent,ANN(r1)[eqANN(r2) above is an incon-
sistent annotated relation (since for some data tuple d, the sum of the Lt values exceeds 1.0). This occurs
since ANN(r1) and ANN(r2) are not mutually consistent (x4:2). In general, if consistent annotated relations
ANN(r) and ANN(r0) are also mutually consistent, then ANN(r) [eq ANN(r0) will always be consistent.

5.4 Selection on an annotated relation

We represent a selection condition over calendar � by the symbol C. If C is of the form (F op v) or (t1 � t2),
then C is an atomic condition over � . Let C be an atomic condition, let T1 v � � � v Tm be a linear hierarchyH of time units over � , and suppose TP-relation r is over relational schema A = (A1; : : : ; Ak). Then one
of the following cases must hold:� If F = Ai for some 1 � i < k, then C is a data condition.� If F = Tj for some time unit Tj in H or if C is of the form (t1 � t2), then C is a temporal condition.� If F = \L” or F = \U”, then C is a probabilistic condition.� Otherwise, C is an inapplicable condition. In this case, �C(r) and �C(ANN(r)) are not defined. Notice

that selections on the hidden field (i.e., F = Ak) are not permitted. Throughout this paper, we will
assume that C is not an inapplicable condition.

Definition 5.7 (selection on an annotated relation; atomic condition) The selection of atomic conditionC on annotated relation ANN(r), denoted �C(ANN(r)), is defined in the following way:� If C is a data condition,ANN(r00) = fat 2 ANN(r) j d satisfies Cg.
In this case, our selection is based on the classical relational algebra.� If C is a temporal condition,ANN(r00) = fat 2 ANN(r) j t 2 sol(C)g.� If C is a probabilistic condition, ANN(r00) = fat 2 ANN(r) j ([L; U] = [Lt; Ut]) satisfies Cg. 2

For example if C = (2=8=1997� 7=8=1997), �C(ANN(r1)) and �C(ANN(r2)) will be

Data H Day Month Year Lt Ut
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11
D1 5 8 1997 0.10 0.20
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20

Data H Day Month Year Lt Ut
D1 2 8 1997 0.10 0.25
D1 3 8 1997 0.05 0.125
D1 6 8 1997 0.10 0.20
D1 7 8 1997 0.10 0.20

27

but if C = (L 6= 0:10), �C(ANN(r1)) and �C(ANN(r2)) will be

Data H Day Month Year Lt Ut
D1 1 8 1997 0.32 0.44
D1 2 8 1997 0.16 0.22
D1 3 8 1997 0.08 0.11

Data H Day Month Year Lt Ut
D1 3 8 1997 0.05 0.125

Later, we will describe how to perform selections with non-atomic selection conditions (x6:5).

5.5 Difference of two annotated relations

As in the classical relational algebra, difference is only defined when both relations have the same schema.
There are many possible ways of defining difference, but we have chosen to base our definition on the intu-
ition that if two relations r and r0 represent the information that two different “agents” have about the same
world, then r� r0 should represent the information about the world that r has and r0 does not.

Definition 5.8 (difference of two annotated relations) The difference of annotated relations ANN(r) and
ANN(r0), denoted ANN(r) � ANN(r0), is defined as ANN(r00) = fat 2 ANN(r) j (8at0 2 ANN(r0))(d 6= d0 _ t 6= t0)g. 2

Thus, ANN(r00) will not include at 2 ANN(r) if there exists an at0 2 ANN(r0) which refers to the same
event at the same point in time. For example, ANN(r1)�ANN(r2) and ANN(r2)� ANN(r1) will be

Data H Day Month Year Lt Ut
D1 1 8 1997 0.32 0.44
D1 5 8 1997 0.10 0.20

Data H Day Month Year Lt Ut
D1 9 8 1997 0.10 0.20

Supposeat1 = (d; t; 0:2; 0:4) 2 ANN(r) and at2 = (d; t; 0; 1)2 ANN(r0). Then by definition, ANN(r00)
will not contain at1. Now suppose we removed from ANN(r0) all annotated tuples where [L0t; U 0t] = [0; 1].
Here, ANN(r00) will contain at1. Apparently, we cannot simply throw out tuples where [L0t; U 0t] = [0; 1].

Intuitively, if we do not have an annotated tuple for data tuple d at time t, then “we do not know any-
thing about (d; t)’s probability”. In this case, (d; t) is implicitly assigned a probability interval of [0; 1]. On
the other hand, at2 indicates that “we know that we do not know anything about (d; t)’s probability”. This
distinction is subtle yet important; by keeping these two cases distinct, we allow both the closed world as-
sumption (where (d; t) is implicitly assigned a probability interval of [0; 0]) and the open world assumption.

5.6 Cartesian product of two annotated relations

Each tuple in the result of a cartesian product reflects the conjunction of two events. Suppose that at timet, events e1 and e2 have probability intervals [L1; U1] and [L2; U2] respectively. In order to compute the
probability interval [L; U] for the event (e1^e2) at time t, we must apply a probabilistic conjunction strategy�, i.e., [L; U] = [L1; U1]
� [L2; U2] (x2:5). This allows users to ask queries such as “Compute the cartesian
product of annotated relationsANN(r) andANN(r0) under the assumption that there is no information about
dependencies between events in these relations.”

Definition 5.9 (cartesian product of two annotated relations) The cartesian product of annotated rela-
tions ANN(r) and ANN(r0) under the � probabilistic conjunction strategy, denoted ANN(r) �� ANN(r0),

28

is defined as ANN(r00) = f(d00; t; L00t ; U 00t) j (9at 2 ANN(r))^ (9at0 2 ANN(r0)) ^(d00 = (P(d);P(d0); h00)) ^ (h00 = (d:H k d0:H)) ^ (t = t0) ^ ([L00t ; U 00t] = [Lt; Ut]
� [L0t; U 0t])g. 2
Note that cartesian products only combine annotated tuples which refer to the same time point. It

computes the combined data tuple d00 by merging (i) manifest data fields from ANN(r) (i.e., P(d)), (ii) man-
ifest data fields from ANN(r0) (i.e., P(d0)), and (iii) h00 = d:H k d0:H (i.e., the hidden list concatenation
of d:H and d0:H). It then computes the combined probability interval by applying user selected conjunction
strategy �. This is highly appropriate because when computing Cartesian Products, we are looking at the
probability that the concatenation of the two data tuples is in the (ordinary set theoretic) cartesian product
of the two relations at a given instant of time. This is therefore a conjunctive event, and hence, the use of a
conjunctive p-strategy when performing cartesian products.

For example, ANN(r1)�ig ANN(r2) will ber1.Data r2.Data H Day Month Year Lt Ut
D1 D1 2 8 1997 0.00 0.22
D1 D1 3 8 1997 0.00 0.11
D1 D1 6 8 1997 0.00 0.20
D1 D1 7 8 1997 0.00 0.20
D1 D1 8 8 1997 0.00 0.20

but ANN(r1)�pc ANN(r2) will ber1.Data r2.Data H Day Month Year Lt Ut
D1 D1 2 8 1997 0.10 0.22
D1 D1 3 8 1997 0.05 0.11
D1 D1 6 8 1997 0.10 0.20
D1 D1 7 8 1997 0.10 0.20
D1 D1 8 8 1997 0.10 0.20

5.7 Projection on an annotated relation

A listF of fields is said to be projectable w.r.t. TP-relation r if (i) every field in F is a manifest data field ofr, and (ii) F is non-empty. F is projectable w.r.t. annotated relation ANN(r) iff F is projectable w.r.t. r. It
is important to note that hidden fields cannot be projected out.

Definition 5.10 (projection on an annotated relation) Let F be a list of fields which are projectable w.r.t.ANN(r) and let “A1; : : : ; An” be the (possibly empty) list of all manifest data fields which appear in the
primary key of ANN(r) but do not appear in F . Then the projection of field list F on annotated relation
ANN(r), denoted �F (ANN(r)), is defined as ANN(r00) = f(d00; t; Lt; Ut) j (9at 2 ANN(r)) ^ (d00 =(�F(P(d)); h00))^ (h00 = (d:H k “A1:d:A1, ..., An:d:An”))g. 2

Here, �F(P(d)) works in the same way as projection in the classical relational algebra except it does not
remove duplicates and it gracefully ignores fields in F which do not appear in P(d)’s schema.

For example if F = “Data1” and if our primary key for ANN(r3) was “Data1,Data2”, then ANN(r00) =�F (ANN(r3)) will be

29

Data1 H Day Month Year Lt Ut
D1 Data2:D2 2 8 1997 0.20 0.40
D1 Data2:D3 2 8 1997 0.30 0.40
D1 Data2:D3 3 8 1997 0.15 0.20

Notice that if we did not have the hidden field h00, then we would not be able to tell whether (D1) refers to
event (D1,D2) or to event (D1,D3). In other words, the hidden field helps us to prevent a loss of information.
Now suppose that after a projection, we wanted (D1) to refer to all events where Data1 = D1. For the example
above, this would mean that event (D1) should refer to the compound event ((D1,D2) _ (D1,D3)). This
interpretation is not directly supported by our algebras since our framework only allows instantaneous events
(x2:4). However, our algebra is rich enough to express it indirectly by (i) setting each h00 in ANN(r00) to
EMPTY and then (ii) invoking a disjunctive p-strategy based compaction (x5:1) on the result of step (i). The
resulting annotated relation may be inconsistent. All tuples in the result of this operation denote instantaneous
events.

To help reduce the size of the hidden field, projection only retains field-value pairs for fields which appear
in the relation’s primary key. Thus when the primary key is small, h00 will also be small.

5.8 Join of two annotated relations

For simplicity, this paper will only consider the “natural join” operation.

Definition 5.11 (join of two annotated relations) Let selection condition C be defined as ((ANN(r):L1 =ANN(r0):L1)^ : : :^ (ANN(r):Ln = ANN(r0):Ln)) where “L1 : : :Ln” is the list of all manifest data fields
which occur in the schema for both ANN(r) and ANN(r0). Then the join of annotated relations ANN(r)
and ANN(r0) under the � probabilistic conjunction strategy, denoted ANN(r) ./� ANN(r0), is defined as�F (�C(ANN(r)�� ANN(r0))) whereF is the list of all manifest data fields which occur in the schema for
either ANN(r) or ANN(r0) after removing duplicate field names. 2

For example, ANN(r00) = ANN(r3) ./pc ANN(r4) will be

Data1 Data2 H Day Month Year Lt Ut
D1 D2 2 8 1997 0.10 0.40
D1 D3 3 8 1997 0.15 0.20

Notice that all of the hidden fields in ANN(r00) above are EMPTY. This occurs since in our example,F = “Data1,Data2” so when we perform a projection, the list of manifest data fields not appearing in F (i.e.,
the “A1; : : : ; An” list in Definition 5.10) is empty.

Although our definition of join in this section only corresponds to a natural join, it can easily be extended
to handle other types of join. For instance, an implementation which uses an SQL-like interface may allow
users to explicitly specify appropriate values for C and F .

6 TP-Algebra

This is the most important section of the paper. As we have mentioned several times before, for every data-
tuple d and every time-point t, the TATA algebra explicitly represents the probability that a data-tuple d is in

30

a given relation at time t. As pointed out by Dyreson and Snodgrass[13], this leads to a completely unaccept-
able explosion in the size of annotated relations and leads to major scalability problems. In this section, we
will show that TP-relations, which implicitly and compactly represent temporal probabilistic data, can
be very efficiently manipulated by algebraic operations that correctly implement (as defined below)
all the operations on the TP-algebra. In other words, we can use the TP-representation to efficiently
implement operations analogous to the TATA algebra operations.

In this section, we provide definitions for TP-compression, compaction, intersection, union, selection, dif-
ference, cartesian product, projection, join, and tightening of TP-relations. With the exception of TP-
compression and tightening (which have no analogs in TATA), we will show that each of these operations
correctly implement the corresponding operations in the TATA. The advantage is immediate: as TP-relations
are relatively small when compared to their annotated counterparts, a huge savings, both in space (of stor-
ing TP- vs. annotated relations) and time (in terms of the time to process these operations) will result. The
correctness theorems are stated in this section and the proofs are given in Appendix C.

Definition 6.1 (correctly implements) Unary TPA operator opT correctly implements the semantics for
unary TATA operator opA iff ANN(opT (r)) = opA(ANN(r)) for every TP-relation r.

Furthermore, binary TPA operator opT correctly implements the semantics for binary TATA operator opA
iff ANN(r opT r0) = ANN(r) opA ANN(r0) for every pair of TP-relations r; r0. 2

Note that as usual, intersection, union, and difference are only defined when both TP-relations have the
same schema, selections are only defined when C is not an inapplicable condition, and projections are only
defined when field list F is projectable.

The definitions in this section will produce a new TP-relation r00 based on input from consistent TP-
relations r; r0. Oftentimes, these definitions will refer to TP-tuples tp; tp0 which are assumed to be of the
form tp = (d;
) and tp0 = (d0;
 0). Here, let
 contain n TP-cases of the form
i = hCi; Di; Li; Ui; �ii 2

and let
0 contain n0 TP-cases of the form
0j = hC 0j ; D0j; L0j; U 0j ; �0ji 2
 0.
6.1 TP-compression of a TP-relation

The basic idea behind TP-compression is to allow the data in a TP-relation (either base or derived) to be com-
pressed. Let N(r) and N(tp) denote the number of TP-cases in TP-relation r and TP-tuple tp respectively.
When we apply a TP-compression function to r, we may be able to reduce the size of N(r).
Definition 6.2 (TP-compression function) A TP-compression function �(r) is a function which takes TP-
relation r as input, and returns as output a TP-relation r00 where (i) N(r00) � N(r) and (ii) there exists a
bijection between ANN(r) and ANN(r00) which maps each (d; t; Lt; Ut) 2 ANN(r) to a (d; t; Lt; U 00t) 2ANN(r00) such that Lt � U 00t � Ut. 2

In other words, ANN(r00) and ANN(r) must have the same data tuples, time points, and lower bounds...but
we allow TP-compressions to tighten upper bounds. Note that there are many functions which satisfy the
definition of a TP-compression function given above. For instance, the following TP-compression function
combines TP-cases which share the same distribution.

Definition 6.3 (TP-compression of a TP-relation; same-distribution) The same-distribution TP-
compression of TP-relation r, denoted �sd(r), is equal to the multiset S which can be constructed in the

31

following way: Initially, let S = r00. Then for each (d;
00) 2 r00 and for each pair of TP-cases
i =hCi; Di; L; U; �i;
j = hCj; Dj; L; U; �i 2
 00 where sol(Di) = sol(Dj), remove
i;
j from
00 and add
TP-case h(Ci _ Cj); Di; L; U; �i to
 00. 2

Another possible TP-compression function takes advantage of the uniform distribution’s regularity.

Definition 6.4 (TP-compression of a TP-relation; u-based) The u-based TP-compression of TP-relationr, denoted �u(r), is equal to the multiset S which can be constructed in the following way: Initially,
let S = r00. Then for each (d;
00) 2 r00 and for each pair of TP-cases
i = hCi; Di; Li; Ui; ui;
j =hCj ; Dj; Lj; Uj ; ui 2
 00 where ni = jsol(Di)j, nj = jsol(Dj)j, and ([Lt; Ut] = 1ni �[Li; Ui] = 1nj �[Lj; Uj]),
remove
i;
j from
 00 and add TP-case h(Ci _ Cj); (Di _ Dj); Lij;min(1; Uij); ui to
 00 where nij =jsol(Di _Dj)j and [Lij; Uij] = nij � [Lt; Ut]. 2

Note that when Uij > 1, the upper bounds in ANN(r00) will be tighter than the ones in ANN(r).

Definition 6.5 (TP-compression of a TP-relation; hybrid) The hybrid TP-compression of TP-relation r,
denoted �hy(r), is defined as �sd(�u(r)). 2

The following theorem indicates that the functions above satisfy our definition for a TP-compression.

Theorem 6 �sd(r), �u(r) and �hy(r) are all TP-compression functions.

More sophisticated TP-compression operators are also possible. For instance, let p 2 (0; 1) be a probabil-
ity and let t1; : : : ; tn be a list of (consecutive) time points in S� where for each 1 � i < n, ti+1 = next� (ti).
Then if
 00 contains n TP-cases of the form h(#); (ti); L00ti; U 00ti; ui where ([L00ti+1 ; U 00ti+1] = p � [L00ti ; U 00ti] for
all 1 � i < n) and (U 00t1 � p � 1), apply an operator which replaces these n TP-cases with the TP-caseh(#); (t1 � tn); L00; U 00; �00i where [L00; U 00] = [L00t1 � p; U 00t1 � p] and �00 = \g; p”.

The aforementioned operator performs a g-based TP-compression. Note that for any distribution function�, one can define a corresponding �-based TP-compression operator. Also note that one can obtain optimal
TP-compression (i.e., the smallest possible value for N(r00)) by allowing a TP-compression operator to dy-
namically create new distribution functions which fit the resulting data.

6.2 Compaction of a TP-relation

As in the case of the TATA, the compaction operation in the TPA will be used to define the operations of
intersection, union and projection.

Definition 6.6 (Compaction of a TP-relation) A function � from TP-relations to TP-relations is called a
compaction operation if it satisfies the following axioms:� Compactness : �(r) is compact for all TP-relations r.� No Fooling Around (NFA) : If r is compact then ANN(�(r)) = ANN(r).� Conservativeness : If at = (d; t; Lt; Ut) 2 ANN(�(r)), then 9at0 = (d; t; L0t; U 0t) 2 ANN(r). 2

32

The Compactness, NFA, and Conservativeness axioms for TP-relations are similar in spirit and intu-
ition to the same concepts defined earlier for annotated relations.

As in the case of TATA, there are many different compaction operations on TP-relations. Below, we present
the TP analogs of �-compactions and p-strategy based compactions.

Definition 6.7 (�-compaction of a TP-relation) Let � be a combination function. Then the�-compaction of TP-relation r, denoted ��(r), is defined as ANN(��(r)) =fat = (d; t; Lt; Ut) j [Lt; Ut] = �(f[L(d;t)1 ; U (d;t)1]; : : : ; [L(d;t)k ; U (d;t)k]g)g whereANN(r)[d; t] = fat(d;t)1 ; : : :at(d;t)k g and at(d;t)i = (d; t; L(d;t)i ; U (d;t)i). 2
The following lemma states that an operation defined in this manner is indeed a compaction operation.

Lemma 1 Let � be a combination function. Then ��(r) is a compaction operation.

Note that some parts of Definitions 6.6 and 6.7 were presented in a declarative manner — via the contents
of the annotation of the result. Algorithm Compute-Compaction shown below provides a mechanism to
efficiently compute compactions without resorting to annotation. This algorithm can perform compactions
using either a combination function� or a p-strategy �. The boxed line in this algorithm shows exactly where
a combination function or p-strategy is applied to compact data-identical tuples. Note that when f is a p-
strategy, the application of f to a set X of intervals merely represents the iterative application of f to pairs
of intervals in X — as p-strategies are associative and commutative, this is well defined.

The following states that this algorithm correctly computes a ��(r) compaction.

Theorem 7 Let � be a combination function. Then algorithm Compute-Compaction(r; �) correctly com-
putes the ��(r) compaction operation.

We define p-strategy based compactions of TP-relations in the same way as ��(r) except we let [Lt; Ut] =([L(d;t)1 ; U (d;t)1]
: : :
[L(d;t)k ; U (d;t)k]) and let [Lt; Ut] = ([L(d;t)1 ; U (d;t)1]�: : :�[L(d;t)k ; U (d;t)k])when defining�
(r) and ��(r) respectively.

Lemma 2 Let � be a p-strategy. Then ��(r) is a compaction operation.

As p-strategy based compaction of TP-relations is defined declaratively, we need an explicit algorithm
(mentioned above) to compute it. The following result states the correctness of this algorithm.

Theorem 8 Let � be a (conjunctive or disjunctive) p-strategy. Then algorithm Compute-Compaction(r; �)
correctly computes the ��(r) compaction operation.

Thus far, we have separately defined compaction operators on annotated relations and on TP-relations. The
following definition specifies when a compaction operator on the annotated side corresponds to a compaction
operator on the TP-side.

Definition 6.8 (compatible pair of compactions) A pair h�A(ANN(r)); �T(r)iof compaction operators is
a compatible pair iff for every TP-relation r, �A(ANN(r)) = ANN(�T (r)). 2

33

Algorithm Compute-Compaction(r,f):
Input: TP-relation r and combination function or p-strategy f
Output: TP-relation r00 = �f (r)
01. r00 := ;; // Initialize the resulting relation

02. r0 := r; // Obtain a working copy of the initial relation

03. // For each (maximal) multiset S of data-identical TP-tuples in r

04. while (r0 6= ;) do f
05. Select a TP-tuple tp 2 r0;
06. S := r0[tp]; // Extract the next equivalence class from r’

07. r0 := r0 � S;
00 := ;;
08. �S := U(d;
)2S
; �I := �S ;
09. foreach
i = hCi; Di; Li; Ui; �ii 2 �I f
10. Remove
i from �I and �S ; CS := WhC;D;L;U;�i2�S C;
11. if sol(Ci ^ :Cs) 6= ; then Add h(Ci ^ :Cs); Di; Li; Ui; �ii to
00;
12. if sol(Ci ^ Cs) 6= ; then Add h(Ci ^ Cs); Di; Li; Ui; �ii to �S ; g
13. CS := WhC;D;L;U;�i2�S C;
14. // Note: Each t 2 sol(CS) will refer to more than one TP-case

15. foreach t 2 sol(CS) f
16. X := ;; // X will contain the probability intervals to be combined

17. �t := fhC;D;L; U; �i 2 �S j t 2 sol(C)g;
18. foreach hC;D;L; U; �i 2 �t f
19. xt := �(D; t); [Lt; Ut] := [L � xt; U � xt];
20. X := X [f[Lt; Ut]g; g
21. [L00t ; U 00t] := f(X);
22. Add TP-case h(#); (t); L00t ; U 00t ; ui to
00; g
23. Add TP-tuple (d;
00) to r00; g
24. return r00;
End-Algorithm

The following two theorems say that for any arbitrary combination function � and for any arbitrary p-
strategy �, h��(ANN(r)); ��(r)i and h��(ANN(r)); ��(r)i are compatible pairs.

Theorem 9 Let � be any combination function. Then h��(ANN(r)); ��(r)i is a compatible pair.

Theorem 10 Let � be any p-strategy. Then h��(ANN(r)); ��(r)i is a compatible pair.

6.3 Intersection of two TP-relations

In this section, we show how we can correctly implement the intersection of two TP-relations. Intersection
consists of of two suboperations — multiset intersection and combination function based compaction.

Definition 6.9 (multiset intersection of two TP-relations) The multiset intersection of TP-relations r andr0, denoted r\r0, can be constructed in the following way: Initially, let r00 = ;. Then for each tp = (d;
) 2 r
and each tp0 = (d0;
 0) 2 r0 where (d = d0),

1. Let � = �0 = ;.

34

2. For each
i 2
 and each
0j 2
 0 where jsol(Ci^C0j)j � 1, add TP-case h(Ci^C0j); Di; Li; Ui; �ii to� and add TP-case h(Ci ^ C 0j); D0j; L0j; U 0j; �0ji to �0. Note that (Ci ^ C 0j) is shared by both TP-cases.

3. If � 6= ;, add TP-tuples (d;�) and (d;�0) to r00. Note that � 6= ;) �0 6= ;. � will be empty if there
are no overlapping time points. 2

For example, r00 = r1 \ r2 will be

Data H C D L U �
D1 (2=8=1997 � 3=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g(6=8=1997 � 8=8=1997) (5=8=1997 � 8=8=1997) 0.40 0.80 u
D1 (2=8=1997 � 3=8=1997) (2=8=1997 � 3=8=1997) 0.20 0.50 g(6=8=1997 � 8=8=1997) (6=8=1997 � 9=8=1997) 0.40 0.80 u

As in the case of the TATA, we apply a �� compaction operator to the result of a multiset intersection.

Definition 6.10 (intersection of two TP-relations) The intersection of TP-relations r and r0 under the �
combination function, denoted r \� r0, is defined as ��(r \ r0). 2
In order to keep the size of r \� r0 manageable, we usually perform a TP-compression on the result of a
compaction.

For example, �hy(r \eq r0) = �hy(�eq(r00)) will be

Data H C D L U �
D1 (#) (2=8=1997 � 2=8=1997) 0.16 0.22 u(#) (3=8=1997 � 3=8=1997) 0.08 0.11 u(#) (6=8=1997 � 8=8=1997) 0.30 0.60 u

The following shows that our definition of intersection correctly implements the TATA semantics. This lets
us completely avoid the construction of the (huge) annotated expansion while preserving the same semantics.

Theorem 11 (Correctness of intersection) ANN(r \� r0) = ANN(r) \� ANN(r0).
6.4 Union of two TP-relations

In this section, we show how we can correctly implement the union of two TP-relations. Union consists of
two suboperations – multiset union and combination function based compaction.

Definition 6.11 (multiset union of two TP-relations) The multiset union of TP-relations r and r0, denotedr [r0, is defined as r00 = r] r0. 2
Intuitively, r00 will contain all tp 2 r and all tp0 2 r0. For example, r00 = r1 [r2 will be

Data H C D L U �
D1 (#) (1=8=1997 � 3=8=1997) 0.64 0.88 g(#) (5=8=1997 � 8=8=1997) 0.40 0.80 u
D1 (#) (2=8=1997 � 3=8=1997) 0.20 0.50 g(#) (6=8=1997 � 9=8=1997) 0.40 0.80 u

35

As in the case of the TATA, we apply a �� compaction operator to the result of a multiset union.

Definition 6.12 (union of two TP-relations) The union of TP-relations r and r0 under the � combination
function, denoted r [� r0, is defined as ��(r [r0). 2

For example, �hy(r [eq r0) = �hy(�eq(r00)) will be

Data H C D L U �
D1 (1=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g(#) (2=8=1997 � 2=8=1997) 0.16 0.22 u(#) (3=8=1997 � 3=8=1997) 0.08 0.11 u(#) (5=8=1997 � 9=8=1997) 0.50 1.00 u

The following shows that our definition of union correctly implements the TATA semantics.

Theorem 12 (Correctness of union) ANN(r [� r0) = ANN(r) [� ANN(r0).
6.5 Selection on a TP-relation

In this section, we show how we can correctly implement selection on a TP-relation. The TP-filter operator
defined below will help us handle selections of probabilistic conditions (x5:4) on TP-relations.

Definition 6.13 (TP-filter) Let
i = hCi; Di; Li; Ui; �ii be a TP-case, let C = (F op v) be a probabilistic
condition, and let x = Li if F = \L” or let x = Ui otherwise. Then a TP-filter is a function which takes
i
and C as input, and returns as output a temporal constraint C00i where

1. sol(C 00i) � sol(Ci)
2. For each time point t 2 sol(C00i), (xt op v) must be true when xt = �i(Di; t) � x
3. There is no temporal constraintC0i where (sol(C0i) � sol(C 00i)) and C 0i satisfies the previous cases.

Intuitively, a TP-filter returns a temporal constraint whose solution set consists of all time points t 2 sol(Ci)
where [Lt; Ut] = [Li � �i(Di; t); Ui � �i(Di; t)] satisfies C. If no t 2 sol(Ci) satisfies this condition, TP-
filter(
i; C) returns an inconsistent temporal constraint. 2

For example if
i = h(#); (5=8=1997 � 8=8=1997); 0:4; 0:8; gi and C = (U > 0:15), TP-filter(
i; C)
will be C00i = (5=8=1997� 6=8=1997) since (0:4 > 0:15) for 5=8=1997 and (0:2 > 0:15) for 6=8=1997.

In general, n = jsol(Ci)jmay be a large number. With arbitrary distributionfunctions, this can be problem-
atic since the TP-filter function may have to test all n time points. Fortunately, this problem can be alleviated
by exploiting regularities in our distribution functions. For instance if �i = \u”, then we only need to test
one time point t 2 sol(Ci); if t should be in sol(C 00i), then C00i = Ci or C 00i = ; otherwise. This “all or none”
behavior occurs since each t 2 sol(Ci) will have the same probability value after distributing uniformly.

Implementations of TP-filters can also exploit regularities in the geometric PDF by searching sol(Ci) in
chronological (or reverse chronological) order and then ending the search after finding the first twhich should
not be in
sol(C00i). The exact search method to use will, of course, depend on which op is present in C. For instance ifop = (6=), it may be cheaper to let C0i = TP-filter(
i;:C) and then return C00i = (Ci ^ :C 0i).

We are now ready to define selection using atomic selection conditions.

36

Definition 6.14 (Selection on a TP-tuple; atomic condition) The selection of atomic condition C on TP-
tuple tp = (d;
), denoted �C(tp), can be constructed in the following way: Initially, let
 00 = ;.� If C is a data condition, let
00 =
 if d satisfies C.� If C is a temporal condition, then for each
i 2
 where C00i = (Ci ^ C) is consistent, add TP-casehC 00i ; Di; Li; Ui; �ii to
00.� If C is a probabilistic condition, then for each
i 2
 where C00i = TP-filter(
i; C) is consistent, add

TP-case hC 00i ; Di; Li; Ui; �ii to
00.
If
00 = ; then �C(tp) = ;. Otherwise, �C(tp) = (d;
 00). 2
Definition 6.15 (Selection on a TP-relation; atomic condition) The selection of atomic condition C on
TP-relation r = ftp1; : : : ; tpng, denoted �C(r), is defined as (�C(tp1)] : : :] �C(tpn)). 2

Note that for all tpi; tpj 2 r, �C(tpi) does not affect the results of �C(tpj) when computing �C(r).
For example if C = (2=8=1997� 7=8=1997), �C(r1) will be

Data H C D L U �
D1 (2=8=1997 � 3=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g(5=8=1997 � 7=8=1997) (5=8=1997 � 8=8=1997) 0.40 0.80 u

and �C(r2) will be

Data H C D L U �
D1 (2=8=1997 � 3=8=1997) (2=8=1997 � 3=8=1997) 0.20 0.50 g(6=8=1997 � 7=8=1997) (6=8=1997 � 9=8=1997) 0.40 0.80 u

but if C = (L 6= 0:10), �C(r1) will be

Data H C D L U �
D1 (#) (1=8=1997� 3=8=1997) 0.64 0.88 g

and �C(r2) will be

Data H C D L U �
D1 (3=8=1997) (2=8=1997 � 3=8=1997) 0.20 0.50 g

We can extend selection to handle non-atomic selection conditions by using the following definition.

Definition 6.16 (Selection on a TP-relation) The selection of conditionC on TP-relation r, denoted �C(r),
is defined inductively in the following way:� If C is an atomic condition, then r00 = �C(r) by way of our previous definition.� If C is of the form (C1 ^ C2), then r00 = �C1(�C2(r)).

37

� If C is of the form (C1 _ C2), then r00 = �C1(r) [eq �C2(r). (Note that as long as r is compact, it
follows by the Identity axiom that irrespective of which combination function is used, we obtain the
same results, i.e. “eq” in the above definition can be replaced with any other combination without the
result being changed.)� If C is of the form (:C1), then

– If C1 is of the form (C2 ^ C3), (C2 _ C3), or (:C2), then r00 = �C4(r) whereC4 = (:C2 _ :C3), C4 = (:C2 ^ :C3), or C4 = (C2) respectively.

– If C1 is a data, temporal, or probabilistic condition, then r00 = �C4(r) whereC4 is the atomic, logical negation of C1.

– Otherwise, C1 is an inapplicable condition and so r00 is not defined.

To perform selections with non-atomic conditions on annotated relations, use the definition above except
replace all instances of r and r00 with ANN(r) and ANN(r00) respectively. 2

For example if C1 = (2=8=1997� 7=8=1997), C2 = (L 6= 0:10), and C = (C1 ^ C2), then �C(r1) will be

Data H C D L U �
D1 (2=8=1997� 3=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g

and �C(r2) will be

Data H C D L U �
D1 (3=8=1997) (2=8=1997 � 3=8=1997) 0.20 0.50 g

but if C = (C1 _ C2), �hy(�C(r1)) will be

Data H C D L U �
D1 (1=8=1997 � 3=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g(5=8=1997 � 7=8=1997) (5=8=1997 � 8=8=1997) 0.40 0.80 u

and �hy(�C(r2)) will be

Data H C D L U �
D1 (2=8=1997 � 3=8=1997) (2=8=1997 � 3=8=1997) 0.20 0.50 g(6=8=1997 � 7=8=1997) (6=8=1997 � 9=8=1997) 0.40 0.80 u

The following theorem states that our definition of selection preserves commutativity.

Theorem 13 �C1(�C2(r)) = �C2(�C1(r)).
The following table shows how one may generate queries on TP-relation r which correspond to seven of

J. F. Allen’s thirteen possible temporal relationships [1]. The six remaining possibilities correspond to the
inverses of these original seven (the inverse of “equal” is identical to “equal” so it is not counted). Here, we
assume that r uses two TP-tuples for each event e; one for st(e) (where the value of the “Kind” field is “S”),
and one for end(e) (where the value of the “Kind” field is “E”). Assume that for for each event e, if st(e)
or end(e) satisfies the selection condition, then the TP-tuples for both st(e) and end(e) should be included
in the result. Our queries will return every event e which satisfies some relationship w.r.t. event eq wherest(eq) = t1 and end(eq) = t2.

38

Description Specification Query Conditionse before eq end(e) � st(eq) �C(r) C = ((tS � t1) ^ (Kind = E))e equal eq st(e) = st(eq) ^ �C1(r) \eq �C2(r) C1 = ((t1 � t1) ^ (Kind = S))end(e) = end(eq) C2 = ((t2 � t2) ^ (Kind = E))e meets eq end(e) = st(eq) �C(r) C = ((t1 � t1) ^ (Kind = E))e overlaps eq st(e) � st(eq) ^ �C1(r) \eq �C2(r) C1 = ((tS � t1) ^ (Kind = S))st(eq) � end(e) C2 = ((t1 � tE) ^ (Kind = E))e during eq st(eq) � st(e) ^ �C1(r) \eq �C2(r) C1 = ((t1 � tE) ^ (Kind = S))end(e) � end(eq) C2 = ((tS � t2) ^ (Kind = E))e starts eq st(e) = st(eq) ^ �C1(r) \eq �C2(r) C1 = ((t1 � t1) ^ (Kind = S))end(e) � end(eq) C2 = ((tS � t2) ^ (Kind = E))e finishes eq st(eq) � st(e) �C1(r) \eq �C2(r) C1 = ((t1 � tE) ^ (Kind = S))end(e) = end(eq) C2 = ((t2 � t2) ^ (Kind = E))
The following shows that our definition of selection correctly implements the TATA semantics.

Theorem 14 (Correctness of selection) ANN(�C(r)) = �C(ANN(r)).
6.6 Difference of two TP-relations

In this section, we show how we can correctly implement the difference of two TP-relations.

Definition 6.17 (difference of two TP-relations) The difference of TP-relations r and r0, denoted r � r0,
can be constructed in the following way: Initially, let r00 = r. Then for each tp = (d;
) 2 r00 and eachtp0 = (d0;
 0) 2 r0 where (d = d0),

1. Let
 00 = ; and let C0 = (C 01 _ : : :_ C 0n0). Recall that tp0 contains exactly n0 TP-cases.

2. For each
i 2
 where C00i = (Ci ^ :C0) is consistent, add TP-case hC00i ; Di; Li; Ui; �ii to
 00.
3. Remove tp from r00. Then if
00 6= ;, add TP-tuple (d;
 00) to r00. 2

For example r1 � r2 will be

Data H C D L U �
D1 (1=8=1997) (1=8=1997 � 3=8=1997) 0.64 0.88 g(5=8=1997) (5=8=1997 � 8=8=1997) 0.40 0.80 u

and r2 � r1 will be

Data H C D L U �
D1 (9=8=1997) (6=8=1997 � 9=8=1997) 0.40 0.80 u

The following shows that our definition of difference correctly implements the TATA semantics.

Theorem 15 (Correctness of difference) ANN(r � r0) = ANN(r)� ANN(r0).
39

6.7 Cartesian product of two TP-relations

In this section, we show how we can correctly implement the cartesian product of two TP-relations. Recall, as
in the annotated case, that when taking the cartesian product of two relations, we must know the relationship,
if any, between the events denoted by the tuples in the two relations because the probability of a concatenated
tuple being present in the result of the Cartesian Product is the probability of a conjunctive event. Thus,
conjunction strategies parametrize the Cartesian Product operation.

Definition 6.18 (cartesian product of two TP-relations) The cartesian product of TP-relations r and r0
under the � probabilistic conjunction strategy, denoted r �� r0, can be constructed in the following way:
Initially, let r00 = ;. Then for each tp = (d;
) 2 r and each tp0 = (d0;
 0) 2 r0,

1. Let
 00 = ;.

2. For each time point t where t 2 sol(Ci) for some
i 2
 and t 2 sol(C0j) for some
0j 2
 0,
(a) Let [Lt; Ut] = [Li � xt; Ui � xt] where xt = �i(Di; t).
(b) Let [L0t; U 0t] = [L0j � x0t; U 0j � x0t] where x0t = �0j(D0j ; t).
(c) Let [L00t ; U 00t] = ([Lt; Ut]
� [L0t; U 0t]).
(d) Add TP-case h(#); (t); L00t ; U 00t ; ui to
 00.

3. If
 00 6= ;, add TP-tuple (d00;
 00) to r00 where d00 = (P(d);P(d0); h00) and h00 = (d:H k d0:H). 2
For example, �hy(r1 �ig r2) will ber1.Data r2.Data H C D L U �

D1 D1 (#) (2=8=1997 � 2=8=1997) 0.00 0.22 u(#) (3=8=1997 � 3=8=1997) 0.00 0.11 u(#) (6=8=1997 � 8=8=1997) 0.00 0.60 u
but �hy(r1 �pc r2) will ber1.Data r2.Data H C D L U �

D1 D1 (#) (2=8=1997 � 2=8=1997) 0.10 0.22 u(#) (3=8=1997 � 3=8=1997) 0.05 0.11 u(#) (6=8=1997 � 8=8=1997) 0.30 0.60 u
The use of a TP-compression operation when executing a Cartesian product operation is important because
sometimes, Cartesian product can produce a large number of TP-cases when an existing tp-case gets broken
into “pieces.” TP-compressions prevent this from happening. The following shows that our definition of
cartesian product correctly implements the TATA semantics.

Theorem 16 (Correctness of cartesian product) ANN(r�� r0) = ANN(r)�� ANN(r0).
40

6.8 Projection on a TP-relation

In this section, we show how we can correctly implement projection on a TP-relation.

Definition 6.19 (projection on a TP-relation) LetF be a list of fields which are projectable w.r.t. r and let
“A1; : : : ; An” be the (possibly empty) list of all manifest data fields which appear in the primary key of r but
do not appear in F . Then the projection of field list F on TP-relation r, denoted �F (r), can be constructed
in the following way: Initially, let r00 = ;. Then for each (d;
) 2 r, add TP-tuple (d00;
) to r00 whered00 = (�F(P(d)); h00) and h00 = (d:H k “A1:d:A1, ..., An:d:An”). 2

Recall that the �F(P(d)) operator was defined in section 5.7.

For example if F = “Data1” and our primary key for r3 was “Data1,Data2”, r00 = �F(r3) will be

Data1 H C D L U �
D1 Data2:D2 (#) (2=8=1997 � 2=8=1997) 0.20 0.40 u
D1 Data2:D3 (#) (2=8=1997 � 3=8=1997) 0.60 0.80 g

The following shows that our definition of projection correctly implements the TATA semantics.

Theorem 17 (Correctness of projection) ANN(�F(r)) = �F(ANN(r)).
6.9 Join of two TP-relations

In this section, we show how we can correctly implement the join of two TP-relations.

Definition 6.20 (join of two TP-relations) Let selection condition C be ((r:L1 = r0:L1) ^ : : : ^ (r:Ln =r0:Ln)) where “L1 : : :Ln” is the list of all manifest data fields which occur in the schema for both r and r0.
Then the join of TP-relations r and r0 under the � probabilistic conjunction strategy, denoted r ./� r0, is
defined as �F(�C(r��r0)) whereF is the list of all manifest data fields which occur in the schema for eitherr or r0 after removing duplicate field names. 2

For example, r3 ./pc r4 will be

Data1 Data2 H C D L U �
D1 D2 (#) (2=8=1997) 0.10 0.40 u
D1 D3 (#) (3=8=1997) 0.15 0.20 u

The following shows that our definition of join correctly implements the TATA semantics.

Theorem 18 (Correctness of join) r ./� r0 = ANN(r) ./� ANN(r0).
6.10 Tightening of a TP-relation

Recall that TP-tuples can be “loose” in the sense that a TP-tuple may, for example, have two TP-cases,
1;
2
with [L1; U1] = [0:3; 0:6] and [L2; U2] = [0:5; 0:8]. In this case, it is easy to see that we can tighten the
upper bounds of these ranges, and reset them to [0:3; 0:5] and [0:5; 0:7] respectively. The reason is that the

41

two lower bounds sum up to 0:8, thus allowing us an upper bound in each case that is no more than 0:2 more
than the lower bound. This is a simple example of tightening. Recall that tightening played in establishing
Theorem 4, which showed that the annotated expansion of a TP-relation faithfully represents the TP-relation
as long as the TP-relation is compact and tight.

In this section, we describe a procedure for tightening a compact TP-relation r. Tight TP-relation r00 can
be constructed from r in the following way: Initially, let r00 = ; and let r = ��(r) for some combination
function �. Then for each tp 2 r, add Tighten-TP-Tuple(tp) to r00. An algorithm for Tighten-TP-Tuple is
presented below.

Note that for each tp1; tp2 2 r, Tighten-TP-Tuple(tp1) and Tighten-TP-Tuple(tp2) do not affect each other
since r is compact and hence tp1 and tp2 must refer to different events. Also note that Tighten-TP-Tuple
works much faster when the distribution functions are uniform since here, all upper bounds for a single TP-
case will be tightened by the same amount.

Algorithm Tighten-TP-Tuple(tp):
Input: TP-tuple tp = (d;
) where
 = f
1; : : : ;
ng and for all 1 � i � n,
i = hCi; Di; Li; Ui; �ii
Output: Tight TP-tuple tp00 which is a tightening of tp
Note: In this algorithm, let �(D;C) be a “shortcut” for the following expression: �t2sol(C)�(D; t)
01. L := 0; U := 0; // [L;U] will hold the sum of the lower and upper bounds

02. for i := 1 to n do f
03. L0i := �i(Di; Ci) � Li; L := L + L0i;
04. U 0i := �i(Di; Ci) � Ui; U := U + U 0i ; g
05. if U � 1:0 then return tp00 := tp; // If U � 1:0, then tp was already tight

06.
00 = ;;
07. for i := 1 to n do f
08. if �i 6= u then f
09. foreach t 2 sol(Ci) f
10. Lt := �i(Di; t) � Li; Ut := �i(Di; t) � Ui; U 0 := 1� (L � Lt);
11. if U 0 < Ut then Ut := U 0;
12. Add TP-case h(#); (t); Lt; Ut; ui to
00; g g
13. else f
14. m = jsol(Di)j; Lt = Lim ; Ut = Uim ;
15. U 0 := 1� (L � Lt); U 00i := m �min(Ut; U 0);
16. Add TP-case hCi; Di; Li; U 00i ; �ii to
00; g g
17. return tp00 := (d;
00);
End-Algorithm

7 Implementation and Experiments

All of the TPA operators described in this paper have been implemented under Borland C++ version 5.01.
Our code can run on any 32 bit Windows platform (i.e., Win95, Win98, and WinNT). This code commu-
nicates with standard, relational databases by using the Borland Database Engine’s API (BDE version 3.0).
Here, the same API can be used to interface with a variety of databases including Paradox, dBASE, Oracle,
Microsoft SQL Server, InterBase, Sybase, and any ODBC (Open Database Connectivity) data source. Note
however that the underlying, relational database should (i) be capable of storing 32 bit integers and (ii) be
able to process basic SQL queries. A demonstration of this implementation can be accessed from the web by

42

clicking on the “TP-Databases” link in the “http://bester.cs.umd.edu” page — our user interface
is fully compatible with the Internet Explorer 4.0 browser. A sample screen dump is shown in Figure 4.

In the implementation, a TP-database is a collection of TP-relations which have the same chronon. Each
TP-relation r is actually stored as two tables; the data-table rd stores r’s data-items and hidden fields while
the case-table rc stores r’s TP-cases. Both of these tables have an indexed “Id” field which stores an integer
used to reconstruct r from the join of rd and rc. Basically, if two tuples have the same “Id”, then we assume
that both tuples refer to the same event. Note however that unless we just performed a compaction, two tuples
which refer to different events may have different “Id”s.

Temporal constraints are represented by an array of integers. Basically, each temporal constraintC is bro-
ken up into a set ofn disjoint, non-adjacent ranges of time points. Each range consists of two time points (the
starting and ending time) and each time point consists of two integers (the first represents the number of mil-
liseconds since the start of a day while the second represents the number of days since some fixed reference
date). Thus, the first element of C’s array will hold n, the next four elements will hold C’s first range, the
next four elements will holdC’s second range, etc. Here, ranges are stored in chronological order. Note that
temporal constraints can be indexed by using an auxiliary data structure, e.g. a segment tree [40] or constraint
indexing methods such as those in [5, 6, 22].

7.1 Experiments

We conducted two sets of experiments. The first set of experiments was intended to demonstrate the rela-
tive efficiency of TP-algebra operations when compared to TATA algebra operations. In addition, this set of
experiments was designed to study how different distribution functions affected the efficiency of operations.
The second set of experiments tested scalability of the TP-algebra operations. The TATA algebra was imple-
mented for these experiments by forcing TP-tuples to have only one TP-case withC = D =, jsol(D)j == 1.
and � =“u”.

We should mention that all our experiments were conducted by executing queries “as is.” Once a query
optimizer for TP-databases is built (which we are currently working on [10]), the timings reported should
improve substantially. With hand-optimized versions of some of the queries, we noticed significant improve-
ments in running time. However, due to space reasons, we have chosen to defer the important topic of query
optimization and probabilistic indexes to a future paper [10]. In some of the charts shown in Appendix B
reflecting the results of the experiments, readers may sometimes see only two lines instead of eight, because
the four lines denoting the TP-computations and the four lines denoting the TATA-computations are almost
identical.

7.1.1 Comparing TATA vs. TP-Algebra

Our experiments were conducted as follows. We generated TP-relations containingnTuplesTP-tuples wherenTuples 2 f100; 500; 1000g. Each TP-tuple had one TP-case hCi; Di; Li; Ui; �ii where Ci = Di = (t1 �t2), t1 = random(ft 2 sol(1=1=1998 � 31=12=1998)g), t2 is the time point which occurs nTimePoints
days after t1. Probabilities were assigned randomly. We allowed different probability distributions (inde-
pendence, geometric, binomial,or a mix of these three) in TP-relations. Using these relations, we calculated
the (median of 3) computation times for each of the following operations:

1. Intersection and Union Computations�hy(r \eq r0), ANN(r) \eq ANN(r0), �hy(r [eq r0), and ANN(r) [eq ANN(r0).
Chart (a) in Appendix B shows that intersection takes time that is more or less linear in the number of

43

Figure 4: Screen dump of query interface

44

tuples. Furthermore, as the number of TP-tuples increases, the savings rendered by using TP-tuples
instead of annotated tuples increases significantly. Chart (b) in Appendix B shows that increasing the
total number of time-points (i.e. increasing the effect of uncertainty) has no effect whatsoever on TP-
tuples, but the effect on annotated tuples is very significant.

Charts (a) and (b) jointly show that as far as intersection is concerned, the distributions used have no
significant impact on the efficiency of computing intersection.

Similar results hold for union as seen from Charts (c) and (d).

2. Selection Computations�C(r) and �C(ANN(r)) for each type of selection condition C (i.e., data, temporal, and probabilistic).
We ran three types of experiments with selections involving conditions on data attributes (Charts (e)
and (f)), temporal attributes (Charts (g) and (h)), and probabilistic attributes (Charts (i) and (j)), re-
spectively.

When we held the average number of time points per TP-case constant to 16, and increased the number
of tuples, we notice that the TP-algebra significantly outperforms the TATA algebra. Furthermore, as
the number of data tuples increases, there is very little increase in time on the TP-side, in contrast to
the much larger increase on the TATA side. The same phenomenon may be noted when the number of
tuples is held constant, but the amount of uncertainty is increased.

An important point to note is that Charts (i) and (j) indicate that performing probabilistic selections
on TP-databases that use uniform distributions is faster than on identical TP-databases that use other
distributions !

3. Difference and Projection Computationsr � r0, ANN(r)�ANN(r0), �F(r), and �F (ANN(r)).
Charts (k) and (l) show what happens with Difference, while Charts (m) and (n) show what happens
with Projection. The results mirror those in the case of union and intersection.

4. Join Computations�hy(r ./� r0) and ANN(r) ./� ANN(r0) for each conjunction strategy � 2 fig; pc; nc; ing.
We first studied what happens with join under the positive correlation conjunction strategy (Charts (o)
and (p)). Subsequently, we studied what happens with join when we vary the conjunction strategy
used. In the first case, we noticed that the performance of TP-join is affected relatively little when
we increase number of tuples and/or the the amount of uncertainty. However, as seen in charts Charts
(q) and (r), using negative correlation as the conjunction strategy is actually much more efficient than
using the other strategies, both on the TP and the TATA side — an observation that we have not seen
made before. (This is in interesting contrast to previous beliefs that using independence assumptions
leads to greater efficiency).

7.1.2 Scalability of TP-Algebra Operations

We studied the performance of two operations in the TP-algebra — selection, and join, as these are two of
the most widely used operations. Our interest was to see what happens to the performance of the TP-algebra
operations when we execute queries with massive amounts of uncertainty.

Charts (s) and (t) show what happens when we use a mix of distribution functions, and use either 100 or
1000 TP-tuples per TP-relation, and vary the number of solutions to TP-cases over the set 4, 96, 5760 and345; 600. Due to the size of these numbers, the charts shown use a log-scale. Chart (s) shows the results of
performing both selects and joins when we are looking at the case of 100 TP-tuples.

45

As the reader can see, temporal selections are almost completely unaffected by the amount of uncertainty
both in the case of 100 TP-tuples and 1000 TP-tuples (where the time taken stays constant). However, prob-
abilistic selects are expensive to compute (almost as expensive as joins), because they require that the dis-
tribution function be applied to all time points in a TP-case. Notice that even when we have 345,600 time-
points inside each of these 100 tuples (making up a “flat relation” of size 34,560,000), it takes only about
60 seconds to evaluate the probabilistic select. When we have 345,600 time-points inside each of the 1000
TP-tuples shown in Chart (t) (making a flat relation of size 3.5 billion approximately), we see that the time
taken is about 125 seconds, reflecting a doubling in the time, though the data increased in size by a factor of
10. We feel this is quite efficient.

Our framework is also quite efficient for computing TP-joins. As can be seen from Chart (s), when we
compute a join of two relations consisting of 100 TP-tuples each and 345,600 time-points inside each of
these 100 TP-tuples, the join takes about 75 seconds — a bit more expensive than a probabilistic select, but
not too bad. When we use a 1000 TP-tuples (and the same 345,600 time-points inside each of these 1000
TP-tuples), the join takes about 580 seconds — a five fold increase when the data tuples in the two joined
relations were both increased ten fold.

8 Related Work

There has been almost no work to date on the integration of probabilistic databases and temporal reasoning.
A notable exception is the work of Dyreson and Snodgrass [13]. We therefore organize this section into three
parts — the first part compares our work with that of Dyreson and Snodgrass, the second part compares our
work with existing work on probabilistic databases, and the third part compares our work with relevant work
on temporal indeterminacy.

8.1 Comparison with Dyreson and Snodgrass

Dyreson and Snodgrass [13] were one of the first to model temporal uncertainty using probabilitiesby propos-
ing the concept of an indeterminate instant. Intuitively, an indeterminate instant is an interval of time-points
with an associated probability distribution. They propose an extension of SQL that supports (i) specifying
which temporal attributes are indeterminate, (ii) correlation credibility which allows a query to use uncer-
tainty to modify temporal data — for example, by using an EXPECTED value correlation credibility, the
query will return a determinate relation that retains the most probable time point for the event, (iii) ordering
plausibility which is an integer between 1 and 100 where 1 denotes that any possible answer to the query
is desired while 100 denotes that only a definite answer is desired, and (iv) specifying that certain tempo-
ral intervals are indeterminate. Dyreson and Snodgrass [13] develop a semantics for their version of SQL.
In addition, they show how to compute probabilities of temporal relationships such as “event e1 occurs be-
fore event e2,” ‘event e1 occurs at the same time as event e2,” etc., and provide efficient data structures to
represent probability mass functions.

Our framework may be viewed as in improvement over the the Dyreson-Snodgrass framework in the man-
ner described below. In addition, there is an important philosophical difference between our work and theirs
— we are adding time to “kosher” probabilistic databases, while they are adding probability to “kosher”
temporal databases.

1. SQL vs. Algebra. First and foremost, Dyreson and Snodgrass present a version of SQL for temporally
indeterminate databases. In contrast, we present an algebra and prove that all our algebraic operations
are correct. Both are clearly needed for a database that supports probabilities over temporal attributes.

46

2. Base Relations. In the Dyreson and Snodgrass [13] framework, the base relations are temporal rela-
tions. In effect, base relations in [13] may be viewed as special cases of TP-relations where the C andD fields are atomic time-interval constraints. In contrast, our framework:

(a) AllowsC andD to be arbitrary temporal constraints, thus generalizing their approach. As a con-
sequence, TP-relations can be much more succinct than the base relations used in [13]. This is
because a single TP-tuple can often express information about a union of disjoint time intervals.

(b) In [13], no explicit lower/upper bounds are considered; all probabilities used are point probabili-
ties. This is a special case of our framework, and as we have already seen. Recall that in 1854 [7],
Boole noticed that we must use probability intervals whenever we are ignorant of the relationship
between events.

Conversely, there are some things that can be expressed in the Dyreson-Snodgrass framework [13]
which we do not handle — for example, in the current paper, we have assumed tuples have only one
indeterminate temporal attribute while [13] allows more than one. Furthermore, we have no analog of
correlation credibility or ordering plausibility.

3. Distribution Functions. In [13], all PDFs are assumed to be complete. In contrast, in this paper, we
allow both complete and incomplete PDFs. In fact, we noticed for the first time that determinate PDFs
(all complete PDFs are determinate) guarantee linear time consistency checks for TP-databases.

4. Independence Assumptions. In [13], all indeterminate events are assumed to be independent. This
assumption is valid for many applications, and invalid for others. For instance, a transportation plan
that involves shipping a packet and then trucking it involves two dependent events — changes in the
ship’s arrival time will change the time at which the packet is loaded onto the truck. The independence
assumption allows for efficient computation of temporal relationships such as “event e1 occurs before
event e2.” In contrast, in our paper, we allow users to specify in their query what the relationship
between events is. Thus, independence can be used in our framework when appropriate, and other
dependencies can be used when deemed appropriate by the user. Our framework supports computation
of the probabilistic versions of all 13 operators postulated by Allen [1].

5. Operators developed. Our algebra supports a host of operations that do not appear to be supported
in the Dyreson-Snodgrass framework [13]. For instance, we provide whole families of compaction
methods, combination functions, and compression functions.

6. Semantics. We provide formal, model-theoretic descriptions of consistency in our paper for TP-
relations, and provide very efficient means to check consistency (linear time) when determinate PDFs
are used. When indeterminate PDFs are used, consistency checking is more complex.

7. Prototype Implementation. We have implemented our framework on top of the Borland Database
Engine, and our experiments complement those of Dyreson and Snodgrass in the sense that we examine
how different distributions fundamentally affect the efficiency of the algebraic operations. Note that
distribution functions can be stored according to the methods described in [13].

8.2 Relationship with work in Probabilistic Databases

Dyreson and Snodgrass [13, p.46] stated that they “could not adopt the PDM approach or its successors to
support temporal indeterminacy, since there might be several million elements in a set of possible chronons.
Representing each alternative with an associated probability is impractical.” This statement is certainly cor-
rect if PDM is taken to mean the TATA approach. In fact, our experiments on the TATA validate Dyreson and

47

Snodgrass’ concern — TATA should be used only for theoretical purposes and should not be implemented.
However, as we have seen, the TP-Algebra is a much more succinct PDM representation of temporal prob-
abilistic data which can efficiently deal with large sets of chronons.

Kiessling and his group [23, 50, 41] have developed a framework called DUCK for reasoning with uncer-
tainty. They provide an elegant, logical, axiomatic theory for uncertain reasoning in the presence of rules. In
the same spirit as Kiessling et al., Ng and Subrahmanian [34, 36] have provided a probabilistic semantics for
deductive databases — they assume absolute ignorance, and furthermore, assume that rules are present in the
system. In contrast, in our framework, rules are not present; rather, our interest is in extending the relational
algebra to capture probabilistic and temporal information. Time is not handled by the DUCK approach.

In an important paper, Lakshmanan and Sadri [32] show how selected probabilistic strategies can be used
to extend the previous probabilistic models. Lakshmanan and Shiri [33, 43] have shown how deductive
databases may be parametrized through the use of conjunction and disjunction strategies, an approach also
followed by Dekhtyar and Subrahmanian [11]. While the ideas behinds these frameworks have been used
here through the notions of conjunction and disjunction strategies, no notion of time is discussed.

Barbara et al. [3] develop a probabilistic data model and propose probabilistic operators. Their work is
based on the assumption that probabilities of compound events can always be precisely determined, an as-
sumption valid for few combination strategies. In contrast, we allow interval probabilities which permit mar-
gins of error in the probability data. In addition, when performing joins, they assume that Bayes’ rule applies
(and hence, as they admit up front, they make the assumption that all events are independent). Also, as they
point out, unfortunately their definition leads to a “lossy” join. No temporal data is handled.

Cavallo and Pittarelli [9] propose a model for probabilistic relational databases. In their model, tuples
in a probabilistic relation are interpreted using an exclusive or, meaning at most one of the data-tuples is
assumed to be present in the underlying classical relation. This is a rather restrictive assumption, and we make
no such assumptions. Furthermore, due to the above assumptions, Cavallo and Pittarelli [9] only propose
probabilistic projection and join operations, but the other relational algebra operations are not specified.

An important paper on the topic is by Dey and Sarkar [12] who propose an elegant 1NF approach to han-
dling probabilistic databases. Their paper is a significant improvement to the work of Barbara et al. [3]. In
particular, their framework (i) supports having uncertainty about some objects but certain information about
others, (ii) uses first normal form which is easy to understand and use, (iii) introduces elegant new opera-
tions like conditionalization, and (iv) removes assumptions about deterministic keys prevalent in previous
approaches. The 1NF representation used by them is a special case of the annotated representation in this
paper — as discussed in Section 8.2 and as pointed out by Dyreson and Snodgrass [13], this representation
is not suitable for directly representing temporal indeterminacy. Dey and Sarkar’s approach does not handle
time explicitly. Many of our operators generalize theirs — for instance, their notion of union clusters together
all data-identical tuples and takes theirmax, difference clusters together all data-identical tuples and subtracts
probability values, and their notion of projection clusters together all data-identical tuples and takes the sum
of the tuples’ probabilities (or 1, whichever is smaller) to be the probability. These computations are proba-
bilistically legitimate only under some assumptions on the dependencies between the events involved. Our
notion of combination functions generalize these substantially. In addition, their notion of join only applies
under an independence assumption, which we have been able to remove through the notion of p-strategies.
Similarly, our notion of compaction operations may be viewed as extensions of the two coalesce operations
proposed by them — we propose whole families of coalesce operations in contrast, and our algebra uses
such operations as parameters. Dey and Sarkar [12] propose some operations such as conditionalization andN th-Moment that have no analogs in our paper, and deserve further study.

This paper builds on top of the ProbView system for probabilistic databases[30]. ProbView extends the

48

classical relational algebra by allowing users to specify in their query, what probabilistic strategy (or strate-
gies) should be used to parametrize the query. ProbView removed the independence assumption from pre-
vious works. However, ProbView has no notion of time, and it was noted by Snodgrass [46] that though
ProbView scaled up well to massive numbers of tuples, it did not scale up well when massive amounts of un-
certainty are present as is the case with temporal probabilisticdatabases, where saying that an event sometime
between Jan 1-4 yields a total of 4� 24� 60� 60 = 345; 600 seconds. Thus, if our temporal database uses
seconds as it lowest level of temporal granularity, this gives rise to 345; 600 cases to represent just one state-
ment — something that would quickly overwhelm ProbView. As the reader can see and as our experiments
indicate, TP-databases were specifically designed to eliminate this problem.

Several other authors have handled uncertainty in databases through the use of fuzzy sets [15, 24, 38, 39]
— as the differences between probabilities and fuzzy sets are well known, we do not address these works
extensively here. In addition, uncertainty has been extensively studied in the context of deductive databases
and logic programming [11, 24, 28, 32, 31, 33, 34, 36, 37, 42, 52] as well as probabilistic logic [18, 19, 37].

8.3 Relationship with work in Temporal Databases

As stated by Dyreson and Snodgrass [13, p.45], “Despite the wealth of research on adding incomplete in-
formation to databases,there are few efforts that address incomplete temporal information.” Snodgrass was
one of the first to model indeterminate instances in his doctoral dissertation [45] — he proposed the use of a
model based on three valued logic. Dutta [17] later proposed a fuzzy logic based approach to handle gener-
alized temporal events — events that may occur multiple times (notice that our framework allows an event
to occur multiple times, but each occurrence must be somehow distinguished from other occurrences so that
they can be represented by TP-tuples which are not data-identical). This approach is also used by Dubois
and Prade [15].

Gadia [20] proposes an elegant model to handle incomplete temporal information as well. He models val-
ues that are completely known, values that are unknown but are not to have occurred, values that are known
if they have occurred, and values that are unknown even if they occurred. Gadia [20] shows that his model
is sound. However, he makes no use of probabilistic information.

An important body of work is that of Koubarakis [26, 27] who proposes the use of constraints for repre-
senting temporal data. In this sense, our work is directly related and builds upon Koubarakis’ work. Like
us, Koubarakis uses constraints to represent when an even occurs. Koubarakis’ framework allows stating
the facts that event e1 occurred between 8 and 11 AM, and that event e2 occurs after 12pm. ¿From this, we
may conclude that event e2 occurs after e1 — our framework can support this conclusion as well. However,
inside our TP-tuples, we cannot state that event e2 occurs after e1 — something we can do in a query, but
which Koubarakis [26, 27] can explicitly encode in his tuples.

Another important body of work is that of Brusoni et al.[8] who developed a system called LaTeR. LaTeR
restricts constraints to conjunctions of linear inequalities, as does Koubarakis’ work. LaTeR makes a com-
promise — when tuples are inserted, it builds a constraint network (which increases insertion time), but this
pays off because at query time, queries can be efficiently processed. We can benefit from this strategy in
our work — as constraint networks are main memory data structures, an adaptation to disk-based structures
would greatly enhance scalability. We will report on such efforts in part II of this series of papers [10].

49

9 Conclusions and Future Work

There are a large variety of applications where there is uncertainty about when certain real-world events oc-
curred, or are predicted to occur. Such applications range from shipping and transportation applications,
where extensive statistical data is available about shipping times for packages from one location to another,
to data mining and time series applications where predictions about when certain stock market activity may
occur is inherently uncertain. The same is true of weather applications where predictions about the likelihood
of rain in a certain time interval also has probabilistic attributes. A variety of other important applications
involving uncertainty about when events occur have been identified in an important paper by Dyreson and
Snodgrass[13].

The only previous work whose explicit goal was to incorporate uncertainty into temporal databases is due
to Dyreson and Snodgrass [13]. In this paper, we choose a philosophically different approach to incorpo-
rating probabilistic temporal reasoning in relational databases — instead of adding probabilities to temporal
databases, we instead add time to probabilistic databases. Our approach allows us to make the following
important contributions over and above the important work of Dyreson and Snodgrass [13].� We propose what is, to our knowledge, the first extension of the relational algebra that integrates both

probabilities and time. This nicely complements the probabilistic temporal SQL language designed by
Dyreson and Snodgrass [13].� Second, our framework removes several assumptions made in previous work. First, our framework
allows users to specify in their (algebraic) queries, what dependencies (if any) they assume between
indeterminate instances. No conditional independence assumptions are required unless desired by the
user. Instead, the user can parametrize his query with a variety of other probabilistic assumptions.
Second, we allow the database to associate partial distributions with uncertain data. This is certainly
very practical. Most statistical sampling methods do not provide total distributions, but distributions
with associated margins of error. Third, by introducing the TP-Algebra, we show how the PDM model
can be modified to support temporal indeterminacy, even if there might be several million elements in
a set of possible chronons. This was an important open problem raised by Snodgrass in [53].� We propose two algebras in this paper. The TATA-Algebra is intended for purely theoretical purposes.
As the TATA-Algebra explicitly specifies the probability of an event occurring at any given time point,
it leads to unacceptably large relations. However, the explicit specification allows us to easily specify
how the relational operations should be defined, i.e. what their behavior should be so as to be “proba-
bilistically and temporally kosher.”

The TP-Algebra on the other hand is an implementation oriented algebra. First, TP-relations are very
small compared to annotated relations. Second, for every operation op defined on the TATA-Algebra,
we show how to define an analogous operation that directly manipulates the succinct TP-relations.
We show that these TP-operations are all correct in the sense that they correctly implement the TATA-
Algebra operations. Thus, there is no need to implement the TATA-Algebra because the TP-
Algebra can realize it in a sound, complete, and much more efficient manner.� We provide a host of new algebraic operations that have not been introduced before. These include
a variety of compaction operators, compression operators, combination operators, and a tightening
operator.� We have conducted experiments on the feasibility of our approach by building a prototype TP-Algebra
system on top of ODBC. Our experiments show that the distributions that are used definitely impact

50

the performance of the system. TP-relations are shown to be far more scalable than their annotated
counterparts.

This is the first in a long term research effort we have on probabilistic temporal databases. Our long term
research program involves enhancing the framework of TP-programs in the following ways.

1. First, due to space reasons, we have not been able to study query optimization in this paper. We are
working on establishing a set of rewrite rules, and a set of cost models for TP-databases. Preliminary
test runs with optimized versions of some queries show far superior performance than indicated in the
experiments in this paper.

2. Second, we are working on the problem of incremental view maintenance in TP-databases. This is
an important problem because in many TP applications (such as stock applications and transportation
applications), updates occur all the time. Handling these updates efficiently is critical.

3. A third important point is that of integrity constraints. What does it mean for a database state to
satisfy an integrity constraint, when in fact, the contents of the database is uncertain and reflects a set
of possible states, together with an associated probability distribution.

4. A fourth major research topic is on indexing TP-databases. While extensive work has been carried
out on indexing constraints, and indexing relational databases, the problem of indexing TP-cases in-
troduces new twists when we wish to support efficient probabilistic queries.

5. A fifth major research topic is that of supporting probabilistic aggregate operations. For instance,
this is needed to support queries of the form Find the ten most probable events to occur at time t.

Concurrently with the above, we are involved in continuously improving our implementation through the
addition of a variety of features.

Acknowledgements

Different parts of this work were supported by the Army Research Office under Grants DAAH-04-95-10174,
DAAH-04-96-10297, DAAG-55-97-10047 and DAAH04-96-1-0398, by the Army Research Laboratory un-
der contract number DAAL01-97-K0135,by an NSF Young Investigator award IRI-93-57756, and by a grant
from Lockheed Martin Advanced Technology Laboratories.

References

[1] J.F. Allen. (1984) Towards a General Theory of Time and Action, Artificial Intelligence, 23, pps 123–
154.

[2] J.F. Baldwin. (1987) Evidential Support Logic Programming, J. of Fuzzy Sets and Systems, 24, pps
1-26.

[3] D. Barbara, H. Garcia-Molina and D. Porter. (1992) The Management of Probabilistic Data, IEEE
Trans. on Knowledge and Data Engineering, Vol. 4, pps 487–502.

51

[4] A. Belussi, E. Bertino, B. Catania. (1998) An Extended Algebra for ConstraintDatabases, IEEE Trans.
on Knowledge and Data Engineering, Vol.10, No.5, pp. 656-665, September/ October 1998.

[5] E. Bertino, B. Catania, B. Shidlosvky. (1997) Towards Optimal Two-Dimensional Indexing for Con-
straint Databases, Information Processing Letters, Vol.64, No.1, October 1997.

[6] E. Bertino, B.C. Ooi, R. Sacks-Davis, K.L.Tan, J.Zobel, B.Shidlovsky, B.Catania. (1997) Indexing
Techniques for Advanced Database Systems, Kluwer Academic Publishers, 1997.

[7] G. Boole. (1854) The Laws of Thought, Macmillan, London.

[8] V. Brusoni, L. Console, P. Terenziani and B. Pernici. (1995) Extending temporal relational databases
to deal with imprecise and qualitative temporal information, Proc. Intl. Workshop on Recent Advances
in Temporal Databases (eds. S. Clifford and A. Tuzhilin), pps 3–22, Springer Verlag.

[9] R. Cavallo and M. Pittarelli. (1987) The Theory of Probabilistic Databases, Proc. VLDB 1987.

[10] A. Dekhtyar, R. Ross and V.S. Subrahmanian. (1998) Probabilistic Temporal Databases, II: Indexes,
Query Optimization and Updates, in preparation.

[11] A. Dekhtyar and V.S. Subrahmanian. (1997) Hybrid Probabilistic Logic Programs, Proc. 1997 Intl.
Conf. on Logic Programming (ed. L. Naish), MIT Press.

[12] D. Dey and S. Sarkar. (1996) A Probabilistic Relational Model and Algebra, ACM Transactions on
Database Systems, Vol. 21, 3, pps 339–369.

[13] C. Dyreson and R. Snodgrass. (1998) Supporting Valid-Time Indeterminacy, ACM Transactions on
Database Systems, Vol. 23, Nr. 1, pps 1—57.

[14] D. Dubois and H. Prade. Certainty and Uncertainty of Vague Knowledge and Generalized Dependen-
cies in Fuzzy Databases. In Proceedings International Fuzzy Engineering Symposium, pp. 239–249,
Yokohama, Japan, 1988.

[15] D. Dubois and H. Prade. (1989) Processing Fuzzy Temporal Knowledge, IEEE Transactions on Sys-
tems, Man and Cybernetics, 19, 4, pps 729–744.

[16] R. O. Duda, P. E. Hart and N. J. Nilsson. (1976) Subjective Bayesian Methods for Rule-based Inference
Systems, Proceedings of National Computer Conference, pp 1075–1082.

[17] S. Dutta. (1989) Generalized Events in Temporal Databases , in: Proc. 5th Intl. Conf. on Data Engi-
neering, pps 118–126.

[18] R. Fagin and J. Halpern. (1988) Uncertainty, Belief and Probability, in Proc. IJCAI-89, Morgan Kauf-
man.

[19] R. Fagin, J. Y. Halpern and N. Megiddo. (1988) A logic for reasoning about probabilities, Information
and Computation, 87(1/2):78-128, July/August 1990.

[20] S. Gadia, S. Nair and Y.C. Poon. (1992) Incomplete Information in Relational Temporal Databases,
Proc. Intl. Conf. on Very Large Databases.

[21] U. Guntzer, W. Kiessling and H. Thone. (1991) New Directions for Uncertainty Reasoning in Deduc-
tive Databases, Proc. 1991 ACM SIGMOD, pp 178–187.

52

[22] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. (19960 Indexing for data models
with constraints and classes. Journal of Computer and System Sciences, 52(3), 1996.

[23] W. Kiessling, H. Thone and U. Guntzer. (1992) Database Support for Problematic Knowledge, Proc.
EDBT-92, pps 421–436, Springer LNCS Vol. 580.

[24] M. Kifer and A. Li. (1988) On the Semantics of Rule-Based Expert Systems with Uncertainty, 2-nd
Intl. Conf. on Database Theory, Springer Verlag LNCS 326, (eds. M. Gyssens, J. Paredaens, D. Van
Gucht), Bruges, Belgium, pp. 102–117.

[25] Henry Korth and Abraham Silberschatz. (1991) Database System Concepts, Second Edition,McGraw-
Hill Inc.

[26] M. Koubarakis. (1994) Database Models for Infinite and Indefinite Temporal Information, Information
Systems, Vol. 19, 2, pps 141–173.

[27] M. Koubarakis. (1994) Complexity Results for First Order Theories of Temporal Constraints, Proc.
4th Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany,
pps 379–390.

[28] M. Kifer and V. S. Subrahmanian. (1992) Theory of Generalized Annotated Logic Programming and
its Applications, JOURNAL OF LOGIC PROGRAMMING, 12, 4, pps 335–368, 1992.

[29] S. Kraus, Y. Sagiv and V.S. Subrahmanian. (1996) Representing and Integrating Multiple Calendars.
University of Maryland Technical Report CS-TR-3751. Submitted for journal publication.

[30] V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. ProbView: A Flexible Probabilistic
Database System. ACM TRANSACTIONS ON DATABASE SYSTEMS, Vol. 22, Nr. 3, pps 419–469,
Sep. 1997.

[31] V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, Proc. Int. Conf.
on Database Expert Systems and Applications, (DEXA’94), September 7-9, 1994, Athens, Greece,
Lecture Notes in Computer Science, Vol. 856, Springer (1994), pp. 724-733.

[32] V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, Proc. Int. Logic Program-
ming Symp., (ILPS’94), November 1994, Ithaca, NY, MIT Press.

[33] V.S. Lakshmanan and N. Shiri. (1997) A Parametric Approach with Deductive Databases with Un-
certainty, accepted for publication in IEEE Transactions on Knowledge and Data Engineering.

[34] R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, INFORMATION AND COM-
PUTATION, 101, 2, pps 150–201, 1993.

[35] R. Ng and V.S. Subrahmanian. A Semantical Framework for Supporting Subjective and Conditional
Probabilities in Deductive Databases, JOURNAL OF AUTOMATED REASONING, 10, 2, pps 191–235,
1993.

[36] R. Ng and V.S. Subrahmanian. (1995) Stable Semantics for Probabilistic Deductive
Databases, INFORMATION AND COMPUTATION, 110, 1, pps 42-83.

[37] N. Nilsson. (1986) Probabilistic Logic, AI Journal 28, pp 71–87.

[38] H. Prade and C. Testemale. (1984) Generalizing Database Relational Algebra for the treatment of
Uncertain Information and Vague Queries, Information Science, Vol. 34, pps 115–143.

53

[39] K.V.S.V.N. Raju and A.K. Majumdar. (1988) Fuzzy Functional Dependencies and Lossless Join De-
composition of Fuzzy Relational Database Systems, ACM Transactions on Database Systems, 13, 2,
pps 129–166.

[40] H. J. Samet. (1989) The Design and Analysis of Spatial Data Structures, Addison Wesley.

[41] H. Schmidt, W. Kiessling, U. Guntzer and R. Bayer. (1987) Combining Deduction by Uncertainty with
the Power of Magic, Proc. DOOD-89, pps 205–224, Kyoto, Japan.

[42] E. Shapiro. (1983) Logic Programs with Uncertainties: A Tool for Implementing Expert Systems,
Proc. IJCAI ’83, pps 529–532, William Kauffman.

[43] N. Shiri. (1997) On a Generalized Theory of Deductive Databases, Ph.D. Dissertation, Concordia Uni-
versity, Montreal, Canada, August 1997.

[44] J. Shoenfield. (1967) Mathematical Logic, Addison Wesley.

[45] R.T. Snodgrass. (1982) Monitoring Distributed Systems: A Relational Approach, PhD dissertation,
Carnegie Mellon University.

[46] R.T. Snodgrass. (1996) Personal communication to V.S. Subrahmanian.

[47] V.S. Subrahmanian. (1987) On the Semantics of Quantitative Logic Programs, Proc. 4th IEEE Symp.
on Logic Programming, pps 173-182, Computer Society Press. Sep. 1987.

[48] V.S. Subrahmanian. (1988) Generalized Triangular Norm and Co-Norm Based Semantics for Quan-
titative Rule Set Logic Programming, Logic Programming Research Group Technical Report LPRG-
TR-88-22, Syracuse University.

[49] V.S. Subrahmanian. (1998) Principles of Multimedia Database Systems, Morgan Kaufmann.

[50] H. Thone, W. Kiessling and U. Guntzer. (1995) On Cautious Probabilistic Inference and Default De-
tachment, Annals of Operations Research, 55, pps 195–224.

[51] J.D. Ullman. (1989) Principles of Database and Knowledge Base Systems, Computer Science Press,
1989.

[52] M.H. van Emden. (1986) Quantitative Deduction and its Fixpoint Theory, Journal of Logic Program-
ming, 4, 1, pps 37-53.

[53] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V.S. Subrahmanian, and C. Zicari. (1997) Advanced
Database Systems, Morgan Kaufman.

54

A Appendix: Notation tables

Symbol Meaning xT Time unit e.g. (day, f1; : : : ; 31g) 2.1H = T1 v � � � v Tn Linear hierarchy of time units 2.1t = (v1= : : :=vn) Time point e.g. (2/3/1996) 2.1t <H t0 Time point t occurs before t0 2.1� Calendar e.g. Gregorian 2.1next� (t) Next, consecutive time point after t 2.1C, D Temporal constraints e.g. (t1 � t2) 2.2S� = sol(tS � tE) Set of all valid time points over � 2.2sol(C) = S � S� Solution set for temporal constraint C 2.2
pdf(D; tj) Determines probability �j for tj 2 sol(D) 2.3� Distribution function (names a family of PDFs) 2.3� = u, g, gc, b, po Uniform, geometric, complete g, binomial, Poisson 2.3pt = hD;L; U; �i P-tuple; determines [Lt; Ut] for each t 2 sol(D) 2.4st(e); end(e) Instantaneous start/end events which bounding event e 2.4
�;�� Probabilistic conjunction/disjunction strategy 2.5�=� = ig; pc; nc; in Ignorance, positive/negative correlation, independence 2.5�(S) Combination function; combines each [Li; Ui] 2 S 2.6�eq Optimistic equity combination function 2.6
i = hCi; Di; Li; Ui; �ii TP-case; Ci may be “(#)” if sol(Ci) = sol(Di) 3.1
 = f
1; : : : ;
ng TP-case statement; each TP-case
i 2
 3.1d = (d1; : : : ; dk) Data tuple over relational schema A = (A1; : : : ; Ak) 3.2tp = (d;
) 2 r TP-tuple in TP-relation r 3.2P(d) Manifest projection of data tuple d; removes d:H 3.2d:H k d0:H Hidden list concatenation; merge of field-value pairs 3.2r[tp] Multiset of all TP-tuples in r which are data-identical to tp 3.4dom(A) Domain of relational schema A; dom(A1)� � � � � dom(Ak) 3.4IA;�(d; t) TP-Interpretation; probability that d’s event is true at time t 3.4IA;� (d;D) Probability assigned by IA;� to temporal constraintD 3.4IA;� j= tp TP-Interpretation IA;� satisfies TP-tuple tp 3.4ANN(tp);ANN(r) Annotated relations for tp and r 4.1at = (d; t; Lt; Ut) Annotated tuple for tp = (d;
) at time t 4.1ANN(r)[d; t] Multiset of all at 2 ANN(r) where (at:d = d ^ at:t = t) 4.2

55

Symbol Meaning x��(ANN(r)); ��(ANN(r)) Combination function/p-strategy based compaction 5.1ANN(r) \ ANN(r0) Multiset intersection 5.2ANN(r) \� ANN(r0) Denotes �\�(ANN(r) \ANN(r0)) 5.2ANN(r) [ANN(r0) Multiset union 5.3ANN(r) [� ANN(r0) Denotes �[�(ANN(r) [ANN(r0)) 5.3�C(ANN(r)) Selection of condition C 5.4ANN(r)�ANN(r0) Difference 5.5ANN(r)�� ANN(r0) Cartesian product under � 5.6�F(ANN(r)) Multiset projection of projectable field list F 5.7ANN(r) ./� ANN(r0) Join; �F (�C(ANN(r)�� ANN(r0))) 5.8N(r), N(tp) Number of TP-cases in r=tp 6.1�sd(r);�u(r);�hy(r) Same distribution/uniform/hybrid TP-compression 6.1��(r); ��(r) Combination function/p-strategy based compaction 6.2r \ r0 Multiset intersection 6.3r \� r0 Denotes �\�(r \ r0) 6.3r [r0 Multiset union 6.4r [� r0 Denotes �[�(r [r0) 6.4C00i = TP-filter(
i; C) TP-filter of
i w.r.t. probabilistic condition C 6.5�C(tp), �C(r) Selection of condition C on tp=r 6.5r � r0 Difference 6.6r �� r0 Cartesian product under � 6.7�F(r) Multiset projection of field list F 6.8r ./� r0 Join; �F (�C(r�� r0)) 6.9

B Appendix: Experimental results

56

Intersection when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

0.20 0.40 0.60 0.80 1.00

Intersection when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(a) (b)

57

Union when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

0.20 0.40 0.60 0.80 1.00

Union when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(c) (d)

58

Selection (data condition) when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.20 0.40 0.60 0.80 1.00

Selection (data condition) when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(e) (f)

59

Selection (temporal condition) when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

0.20 0.40 0.60 0.80 1.00

Selection (temporal condition) when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(g) (h)

60

Selection (probabilistic condition) when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

0.20 0.40 0.60 0.80 1.00

Selection (probabilistic condition) when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(i) (j)

61

Difference when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

0.20 0.40 0.60 0.80 1.00

Difference when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints
20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(k) (l)

62

Projection when nTimePoints = 16

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

3nTuples x 10
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.20 0.40 0.60 0.80 1.00

Projection when nTuples = 1000

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time

nTimePoints5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(m) (n)

63

Join when nTimePoints = 16, conjStategy = pc

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time x 103

3nTuples x 10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

0.20 0.40 0.60 0.80 1.00

Join when nTuples = 1000, conjStategy = pc

 TP-u

 TP-g

 TP-b

 TP-mix

 ANN-u

 ANN-g

 ANN-b

 ANN-mix

time x 103

nTimePoints

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(o) (p)

64

Join when nTimePoints = 16, delta = mix

 TP-pc

 TP-ig

 TP-nc

 TP-in

 ANN-pc

 ANN-ig

 ANN-nc

 ANN-in

time x 103

3nTuples x 10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

0.20 0.40 0.60 0.80 1.00

Join when nTuples = 1000, delta = mix

 TP-pc

 TP-ig

 TP-nc

 TP-in

 ANN-pc

 ANN-ig

 ANN-nc

 ANN-in

time x 103

nTimePoints

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

4.00 6.00 8.00 10.00 12.00 14.00 16.00

(q) (r)

65

TPA performance for varying chronons; nTuples = 100, delta = mix

 Selection (temporal condition)

 Selection (probabilistic condition)

 Join (conjStategy = pc)

time (log scale)

nTimePoints (log scale)
5

7

1e+00

1.5

2

3

5

7

1e+01

1.5

2

3

5

7

1e+02

1e+02 1e+04

TPA performance for varying chronons; nTuples = 1000, delta = mix

 Selection (temporal condition)

 Selection (probabilistic condition)

 Join (conjStategy = pc)

time (log scale)

nTimePoints (log scale)
5

7

1e+01

1.5

2

3

4

5

7

1e+02

1.5

2

3

4

5

7

1e+02 1e+04

(s) (t)

66

C Appendix: Proofs of results

Proof of Proposition 1.

Let � be a calendar and (name1; : : : ; namek) be the list of the names of its time units.

To prove this proposition it suffices to show that (i) every atomic time-value constraint can be represented
as a time-interval constraint and (ii) every atomic time-interval constraint can be represented as a time-value
constraint.

We do just that below:

1. For every atomic time-interval constraint C there exists a time-value constraint C 0 such thatsol(C) = sol(C 0).
LetC = (t1 � t2) be an atomic time-interval constraint. Let t1 = (v1; : : : ; vk) and t2 = (v01; : : : ; v0k).
Now, let sol(C) = fs1; : : : ; smg.

Let s = (vs1; : : :vsk) be a time point. We construct a time-value constraintCs as follows:Cs = (name1 = vs1 ^ name2 = vs2 ^ : : : ^ namek = vsk)
By defintion of solution set for a temporal constraint sol(Cs) = fsg. But then for a time-value con-
straint C0 = Cs1 _ Cs2 _ : : :_ Csk
the solution set is defined as the union of solution sets of Csi (1 � i � k), i.e.:sol(C 0) = sol(Cs1) [: : :[sol(Csk) = fs1g [: : :[fskg = fs1; : : : ; skg = sol(C):
Note: C 0 constructed as described above is going to be a very large constraint. In practice it is always
possible to construct much more compact time-value constraints for representing a time period.

2. For every atomic time-interval constraint C there exists a time-value constraint C 0 such thatsol(C) = sol(C 0).
Let C = (nameiopvi) be an atomic time-value constraint. We construct an equivalent time-interval
constraint as follows.

Let t be a timepoint and let Ct be a time-interval constraint defined as follows:Ct = (t � t)
By definition of the solution set of a temporal constraint, sol(Cs) = fsg.

Now, let sol(C) = ft1; : : : ; tmg. The solution set of a time-interval constraintC0 defined asC0 = Ct1 _ Ct2 _ : : :_ Ctm
will be equal tosol(C 0) = sol(Ct1) [: : :[sol(Ctm) = ft1g [: : :[ftmg = ft1; : : : ; tmg = sol(C)
Note: C 0 constructed as described above is going to be a very large constraint. In practice it is always
possible to construct much more compact time-value constraints for representing a time period. 2

67

Proof of Proposition 2.
If S is such that \[L;U]2S[L; U] 6= ; then the values of all functions defined in the example 2.5 will co-
incide on S, as they are all defined to be equal to the intersection. Clearly,\[L;U]2S [L; U] satisfies Iden-
tity as [L; U] \ [L; U] = [L; U]. Also, since \[L;U]2S[L; U] = [max[L;U]2S(L);min [L; U] 2 S(U)] and[max[L;U]2S(L);min [L; U] 2 S(U)] � [max[L;U]2S(L); 1] the Bottomline is satisfied. We also notice that
when S = f[L; U]g, \[L;U]2S[L; U] 6= ;, i.e. Identity need not be considered when \[L;U]2S[L; U] = ;.

Let now \[L;U]2S[L; U] = ;. We prove Bottomline for all six functions:� Optimistic Equity�eq(S) = [max[L;U]2S(L);max[L; U] 2 S(U)] � [max[L;U]2S(L); 1] i.e. �eq sat-
isfies Bottomline.� Enclosing Equity �ec(S) = [min[L;U]2S(L);max[L; U] 2 S(U)] � [max[L;U]2S(L); 1] i.e. �ec sat-
isfies Bottomline.� Pessimistic Equity �ep(S) = [min[L;U]2S(L);min [L; U] 2 S(U)] � [max[L;U]2S(L); 1] i.e. �ep sat-
isfies Bottomline.� Rejecting Equity �er(S) = [0; 0] � [max[L;U]2S(L); 1] i.e. �er satisfies Bottomline.� Skeptical Equity �er(S) = [0; 1] � [max[L;U]2S(L); 1].� Quasi-Independence Equity �eqi(S) = [�[L;U]2SL;�[L;U]2SU] � [max[L;U]2S(L); 1]. 2

Proof of Theorem 1.� r is compact =) ANN(r) is compact.

As r is compact, for each data tuple d and timepoint t there is at most one tp-tuple tp = (d;
) 2 r,
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, for 1 � i � k such that t 2 sol(C1 _ : : :_ Ck.

Let d be some data tuple such that there exists a tuple tp = (d;
) 2 r. We show that ANN(r[tp]) is
compact. Let r[tp] = ftp1; tp2; : : : tpmg. Let Cj be the disjunction of all C-temporal constraints intpj . As r is compact, we know that (81 � i 6= j � m)(sol(Cj)\sol(Ci) = ;). Let t be a timepoint insol(C1_ : : :_Cm). Then there exists a unique 1 � h � m such that t 2 sol(Ch). Consider tp-tupletph = (d;
 0) where
0 =
 01; : : : ;
 0k and
 0i = hCi; Di; Li; Ui; �ii for all 1 � i � k. By the definition
of a TP-tuple, (81 � i 6= j � k)sol(Ci) \ sol(Cj) = ;. This means that for each tinsol(C1 _ : : : _Ck) there will be only one annotated tuple (d; t; Lt; Ut;) added to ANN(tp), i.e., ANN(tph) has
at most one tuple (d; t; Lt; Ut;) for each timepoint t. The latter means that ANN(r[tp]) is compact,
since for two tuples tp0; tp00 2 r[tp], and two tuples at0 = (d; t0; L0; U 0) 2 ANN(tp0) and at00 =(d; t00; L00; U 00) 2 ANN(tp00) it will never be the case that t0 = t00. Compactness of ANN(r[tp]) for
any tp 2 r yields the compactness of ANN(r), as for any two not data-identical tuples tp and tp0 inr, no two tuples at 2 ANN(r[tp]) and at0 2 ANN(r[tp0]) will be data-identical.� ANN(r) is compact =) r is compact.

Let r be a tp-relation. Consider an arbitrary annotated tuple at = (d; t; Lt; Ut) 2 ANN(r). AsANN(r) is compact, ANN(r)[d; t] = farg, i.e. no other annotated tuple in ANN(r) is data-time
identical to at. By definition of the operator ANN(�), there exists a tp-tuple tp 2 r such that, tp =(d;
),
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, for 1 � i � k and at 2 ANN(tp), i.e. t 2sol(C1 _ : : :Ck).
As ANN(r)[d; t] = fatg, for any other tp-tuple tp0 = (d;
 0) 2 r such that
 0 =
01; : : : ;
 0l,
 0i =hC 0i; D0i; L0i; U 0i ; �0ii we will have t 62 sol(C01 _ : : : _ C 0l). Therefore, by definition 6.6, r is a compact
tp-relation. 2

68

Proof of Theorem 2. We show a stronger result, viz. that if I j= r then also I j= ANN(r).Let tp = (d;
) 2r be some tp-tuple and at = (d; t; L; U) 2 ANN(r). Since I j= r, I j= tp. We need to show that I j= at.
Let
 =
1; : : : ;
k, and
i = hCi; Di; Li; Ui; �ii for 1 � i � k. Since at = (d; t; L; U) 2 ANN(r),

there exists some 1 � j � k such that, t 2 sol(Cj) and [L; U] = [�(Dj; t)Li; �(Dj; t)Ui].
Since I j= tp, I j= hd;Dj; [Lj; Uj]; �ji. By the definition of satisfaction, I(d;Dj) 2 [Lj ; Uj] andI(d; t) = �j(Dj ; t)I(d;Dj). But thenL = �j(Dj; t)Lj � �j(Dj; t)I(d;Dj) = I(d; t) � �j(Dj ; t)Uj = U ,

i.e., I(d; t) 2 [L; U]. From the latter ot follows that I j= (d; t; L; U) = at. 2
Proof of Theorem 3. Let IA;�(d; t) be computed as follows. As r is compact, all tuples of the form (d;�;�;�)2 ANN(r)are derived fromANN(tp)where tp = (d;
)where
 = hC1; D1; L1; U1; �1i; : : : ; hCm; Dm; Lm; Um; �mi.
Let ANN(tp) consist of (d1; t1; L1; U1); : : : ; (dk; tk; Lk; Uk). We know that �ki=1Li � 1. Without loss
of generality, suppose t is a solution of Ci for some 1 � i � m. Clearly, exactly one such i exists. Letft01; : : : ; t0r; t0r+1; : : : ; t0r+sg be all other solutions of Di, and let sol(Ci) = ft; t01; : : : ; t0rg. For all 1 � i � r,(d; t0i; L0i; U 0i) is in ANN(r). We know that Li � L+L01+ � � �+L0r � Ui. We now construct an interpreta-
tion IA;� that satisfies r and which assignsL to IA;� (d; t) as follows. We know that x �IA;� (d; y) = �i(Di; y)
for some x > 0. By setting IA;�(d; t) = L, we know that x = �i(Di;t)L . Therefore, we may setIA;� (d; t0i) = �i(Di; t0i)� L�i(Di; t) :
The same procedure may be used to extend IA;� to other tuples that are not data-identical to (d;�;�;�). 2
Proof of Theorem 4. Similar to the proof of Theorem 3. 2
Proof of Proposition 3.
Suppose r is compact. As r contains no distinct data-identical tuples, r is consistent iff all tp-tuples in r are in-
dividuallyconsistent. Suppose a TP-tuple tp = (d;
)has
 = \hC1; D1; L1; U1; �1i; : : : ; hCn; Dn; Ln; Un; �ni”
as its TP-case statement. Then it suffices to check that(L1 + � � �+ Ln) � min(1;�ni=1Li � �t2S� �i(Di; t)):
If this condition holds, then the probabilistic interpretation IA;� defined as follows satisfies tp.IA;� (d; t) = (Li � �i(Di; t) if t 2 sol(Ci); 1 � i � n0 otherwise.

As all the distributions �i are determinate, it is easy to see that this check is linear in the size of the relationr. 2
Proof of Proposition 4.
Let � be a combination function and let ANN(r) be an annotated relation. We show that �� satisfies the
properties of compaction operations.

1. Compactness. By definition 5.2 ��(ANN(r)) contains only one annotated tuple for each pair (d; t)
where d is data tuple and t is a timepoint. Therefore, ��(ANN(r)) is compact.

2. No Fooling Around. LetANN(r)be compact. Then for any data tupled and timepoint t,ANN(r)[d; t]
will contain at most one tuple. LetANN(r)[d; t] = f(d; t; Lt; Ut)g. Then, by definition 5.2, �chi(ANN(r))

69

will contain a tuple (d; t; �(f[Lt; Ut]g). As � is a combination function, it satisfies the Identity prop-
erty of combination functions, i.e. �(fd; t; Lt; Utg) = [Lt; Ut], i.e., (d; t; Lt; Ut) 2 ��(ANN(r)) orANN(r) � ��(ANN(r)).
To prove that��(ANN(r))� ANN(r)we observe that by definition 5.2, the only tuples in��(ANN(r))
are those inserted there by applying� to the sets f[Lt; Ut]g of probabilisticintervals fromANN(r)[d; t]
equivalence classes. As we have shown above, all such tuples will be the tuples from the original re-
lation ANN(r).

3. Conservativeness. We notice that if there exists a tuple at = (d; t; Lt; Ut) 2 ��(ANN(r)), then
by definition 5.2 there had to be a nonempty set ANN(r)[d; t]� ANN(r), which means that for any
such tuple in ��(ANN(r)) there is always at least one tuple at0 = (d; t; L0t; U 0t) in ANN(r). 2

Proof of Theorem 5. Let � be a combination function and ANN(r) be an annotated relation. Let at0 =(d; t; L0; U 0) 2 ANN(r). ThenANN(r)[d; t] 6= ;. LetANN(r)[d; t] = fat01; : : : ; at0kg, at0i = (d; t; L0i; U 0i)
for 1 � i � k. By definition of combination function-based compaction,��(ANN(r))will contain the tupleat = (d; t; L; U) where [L; U] = �(f[L01; U 01]; : : : ; [L0k; U 0k]g). 2
Proof of Proposition 5. We need to show that �
 satisfies the three axioms defining compaction operators.

1. Compactness. By the definition of a p-strategy based compaction, for any given pair (d; t), �� com-
putesANN(r)[d; t]consistingof all tuples inANN(r)of the form (d; t;�;�). All tuples inANN(r)[d; t]
are combined into one by the construction of the definition of a p-strategy based compaction.

2. No Fooling Around. If ANN(r) is compact, then for all (d; t), ANN(r) contains at most one tuple
of the form (d; t;�;�). In this case, the definition of �� returns that tuple unchanged.

3. Conservativeness. Suppose ��(ANN(r)) contains a tuple of the form (d; t;�;�). Then it is easy
to see that by the definition a of p-strategy based compaction there must exist at least one tuple inANN(r) of the form (d; t;�;�). 2

Proof of Theorem 6. We need to show that �sd(r);�u(r) and �hy(r) are all TP-compression functions.

To see that �sd(r) is a TP-compression function, we must demosntrate that N(�sd(r) � N(r) and that
there exists a bijection, � from ANN(r) to ANN(sd(r)). In fact we will show that a stronger statement
holds: ANN(r) = ANN(sd(r)).

1. N(�sd(r) � N(r).
Let r = ftp1; : : : ; tpsg. Clearly, N(r) = N(tp1) + : : :+N(tps).
By definition of �sd, for every tp-tuple tp 2 r, exactly one tp-tuple tp0 is added to �sd(r). Thereforejrj = j�sd(r)j. Let now �sd(r) = ftp01; : : : ; tp0sg where tp0i = �sd(tpi), 1 � i � s. As N(�sd(r)) =N(tp01) + : : :+N(tp0s), it suffices to show that for all 1 � i � s N(tp0i) � N(tpi).
The latter statement is clearly true as by definition of �sd either tpi = tp0i (in the case when no tp case
statements were deleted) or, for every two tp-case statements deleted from the tp-tuple tpi during its
conversion into tp0i only one tp-case statement is added.

2. ANN(r) = ANN(�sd(r)).
Let tp 2 r. We will show that ANN(tp) = ANN(�sd(tp)).
Let tp0 = �sd(tp). Let tp = (d;
);
 =
1; : : : ;
n,
i = hCi; Di; Li; Ui; �i, 1 � i � n and lettp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; D0i; L0i; U 0i ; �0i, 1 � i � m.

Consider some tp-case
 0j from tp0. By the definition of �sd, one of two cases is possible:

70

(a) There exists some 1 � k � n,
 0j =
k (i.e., during the application of �sd tp-case gammak did
not change). In this case clearly ANN((d;
k)) = ANN((d;
0j)).

(b)
 0j is not equal to any
i 2
, but, there exist 1 � k1; : : :kq � n such that Dk1 = : : : =Dkq = D0j , Lk1 = : : : = Lkq = L0j , Uk1 = : : : = Ukq = U 0j , �k1 = : : : = �kq = �0j andCk1 _ : : :_ CkqC0j .
Let now at = (d; t; L; U) 2 ANN(d; (
k1; : : : ;
k2)). Clearly, there exists some 1 � h � q,
such that t 2 sol(Ckh) and [L; U] = [�kh(Dkh ; t) � Lkh ; �kh(Dkh ; t) � Ukh]. Since t 2 sol(Ckh),t 2 sol(Ck1 _ : : : _ Ckq) = sol(C 0j). Therefore, at0 = (d; t; �0j(D0j ; t) � L0j ; �0j(D0j; t) � U 0j) 2ANN(d;
0j). But since Dkh = D0j, Lkh = L0j , Ukh = U 0j and �kh = �0j , [L; U] = [�0j(D0j ; t) �L0j ; �0j(D0j; t)�U 0j] and therefore at = at0. Hence,ANN(d; (
k1; : : : ;
k2)) � ANN(ANN(d;
0j).
The proof that ANN(d; (
k1; : : : ;
k2)) � ANN(ANN(d;
0j) is analagous.

This establishes that ANN(d; (
k1; : : : ;
k2)) = ANN(ANN(d;
0j).
Combinting the results from above together we conclude that ANN(tp) � ANN(�sd(tp)).
To show that ANN(tp) � ANN(�sd(tp)) it suffices to notice that for any 1 � i � n and tp-case
i
there exists such 1 � j � m and tp-case
 0j that sol(Ci) � sol(C 0j).

The proofs for�u(r) and �hy(r) are similar. 2
Proof of Lemma 1.
Similar to the proof of Proposition 4. 2
Proof of Theorem 7.

Let us look at the relation r00 which is returned by Compute-Compaction(r; �). The main loop of the algo-
rithm (lines 04.–23.) works in the following way:� In lines 05.–08. of the algorithm the initial relation r is broken into the equivalence classes by the

relation of data-identicity. Lines 05.–0.6 select the next unprocessed equivalence class, and lines 07.–
08. prepare the data for the next step. In particular, �I (and initially �S) are set to be equal to the set
of all tp-cases found in the tp-tuples of the current equivalence class.� The foreach loop in lines 09.–12. then separates all timepoints which are in solution of some tp-case
i 2 �I into two categories: timepoints that are referred to only by
 and timepoints referred to by
more than one tp-case. The timepoints referred to only by one tp-case are handled by line 11. in which
a new tp-case that contains only such timepoints from
i and adds it to the final tp-tuple.� Line 13. collects together in one temporal constraintCS all the timepoints that are referred to by more
than one original tp-case.� In the foreach loop in lines 15.–22. each timepoint t from sol(CS) gets processed. Lines 17.–20. col-
lect together the set X of all intervals [L; U] which are the probabilities associated with the timepointt by all original tp-cases which refer to t.� In line 21. the combination function � is applied to the set X to obtain the interval [L00t ; U 00t], which
will become the part of the tp-case ((t); (t); L00t ; U 00t ; u) which is added to the final tp-tuple tp00.� In line 23. the tp-tuple tp00 constructed for the current equivalence class is added to the resultingrelationr00.

71

Now, let some annotated tuple at = (d; t; L; U) 2 ANN(r00). Then there exists a tp-tuple tp 2 r00, such
that at 2 ANN(tp). Let us examine the values of L and U .

Since at 2 ANN(tp), tp = (d;
),
 =
1; : : :
n,
i = hCi; Di; Li; Ui; �ii, 1 � i � n and there exists1 � j � n, t 2 sol(Cj) and [L; U] = [�j(Dj; t) �Lj ; �j(Dj ; t) � Uj].
Let us look at how tp-case
j could have been added to tp. ¿From the analysis of the algorithm above, it

is clear that there are only two possiblilties:

1.
i had been added to tp in line 11. Let us look at the equivalence class of tp in r (although tp itself is not
in r it must be data-identical to some tp-tuples of r and hence r[tp] makes sense even if tp 62 r). After
line 08. is executed while the algorithm is processing r[tp], �I will contain the (multi)set of all tp-cases
from the tuples in r[tp]. Since
i had been added to tp in line 11., it means that there exists such a tp-
case
 0 = hC 0; D0; L0; U 0i 2 GammaI1 that sol(Cj) � sol(C 0), Dj = D0, Lj = L0, Uj = U 0 and�j = �0. Also this means that no other tp-case in�I refers to any timepoints in sol(Cj), in particular, no
other tp-case in �I refers to timepoint t. Clearly thenANN(r)[d; t] = ANN(r[tp])[d; t]will contain
one and only one annotated tuple: at0 = (d; t; �(D0; t) � L0; �(D0; t) � U 0). But from the equalities
established above, at0 = (d; t; �j(Dj; t) � Lj ; �j(Dj ; t) � Uj) = (d; t; L; U) = at. Now we notice that�(f[L; U]g) = [L; U] as it is required by the definition of �-compaction, since � as a combination
function satifies Identity postulate.

2.
i had been added to tp in line 22. In this case in the set �I built in line 08. for the equivalence class oftp in r there will be more than one tp-case which refers to t. From the analysis of the algorithm above
we conclude that in this case t 2 sol(CS) after CS had been computed in line 13. Let us consider the
iteration of the foreach loop 15.–22. which processes t. In line 17. �t gets assigned the value of the
set of all tp-cases
i = hC 0i; D0i; L0i; U 0i ; �0ii that t 2 sol(C 0i). foreach loop in lines 18.–20 builds the setX = f[L�i ; U�i]gwhere [L�i ; U�i] = [�i(D0i; t) �L0i; �i(D0i; t) �U 0i] are the probabilistic intervals assigned
to d; t by each tp-case
i.
In line 21. [L; U] = �(X) is computed. Now, all we have to prove is that X = f[L(d;t)1 ; U (d;t)1]; : : : ;[L(d;t)k ; U (d;t)k]g such thatANN(r)[d; t] = fat(d;t)1 ; : : :at(d;t)k g and at(d;t)i = (d; t; L(d;t)i ; U (d;t)i). Let �t = f
01; : : :
 0sg. Since�t contains all tp-cases of r[tp] (and hence, all tp-cases of r) which refer to timepoint t for the data d,ANN(r)[d; t] = ANN(r[tp])[d; t]will be equal to the set: fat01; : : :at0sg, where at0i = (d; t; �i(Di; t)�Li; �i(Di; t)�Ui) = (d; t; L�i ; U�i), 1 � i � s. But then we also know thatX = f[L�1; U�1]; : : : [L�1; U�1]g.
This proves the theorem. 2

Proof of Lemma 2.
Similar to the proof of Proposition 5. 2
Proof of Theorem 8.
Similar to the proof of Theorem 7. 2
Proof of Theorem 9.
By definition 6.7ANN(��(r)) = fat = (d; t; L; U)j[L;U] = �(f[L1;(d;t) ; U1;(d;t)]; : : : ; [Lk;(d;t) ; Uk;(d;t)]g);
where (81 � i � k)(at(d;t)i = (d; t; L(d;t)i ; U (d;t)i) and fat(d;t)1 ; : : :at(d;t)k g = ANN(r)[d; t]g. But by defi-
nition 5.2 ��(ANN(r)) is equal to the same expression. Therefore, ANN(��(r)) = ��(ANN(r)). 2
Proof of Theorem 10.
By the definition of a p-strategy based comapction of TP-relationsANN(��(r)) = fat = (d; t; L; U)j[L; U] =

1here and further when we mention �I we refer to its initial value assigned in line 08.

72

[L(d;t)1 ; U (d;t)1] �� : : : �� [L(d;t)k ; U (d;t)k];
where (81 � i � k)(at(d;t)i = (d; t; L(d;t)i ; U (d;t)i); fat(d;t)1 ; : : :at(d;t)k g = ANN(r)[d; t]g and � = � if � is
a disjunctive p-strategy and � =
 if � is a conjunctive p-strategy.

But by the definition of a p-strategy based comapction of annotated relations ��(ANN(r)) is equal to the
same expression. Therefore, ANN(��(r)) = ��(ANN(r)). 2
Proof of Theorem 11.
By definition r \� r0 = ��(r \ r0). Our proof consists of three parts. show that:

1. Claim 1: ANN(r\ r0) � ANN(r) \ANN(r0).
Let at00 = (d; t; L; U) 2 ANN(r \ r0). We show that at00 2 ANN(r)\ANN(r0). By definition ofANN , at00 2 ANN(r\ r0) implies that there exists a tp-tuple tp00 2 r \ r0 such that:tp00 = (d;
 00);
 00 =
 001 ; : : :
 00k(81 � i � k)
 00i = hC 00i ; D00i ; L00i ; U 00i ; �00i i and(9i 2 f1; : : :kg)(t 2 sol(C 00i) ^ [L; U] = [�00i (D00i ; t) � L00i ; �00i (D00i ; t) � U 00i]).
As tp00 2 r\ r0, by definition of intersection of two tp-relations, there exist tp-tuples tp = (d;
) 2 r)
and tp0 = (d;
 0) 2 r0) where:
 =
1; : : : ;
n
 0 =
 01; : : : ;
n0
i = hCi; Di; Li; Ui; �ii
 0i = hC0i; D0i; L0i; U 0i ; �0ii
In addition, there exist integers i1 2 f1; : : : ; ng and i2 2 f1; : : : ; n0g such that eitherC 00i = (Ci1 ^ C0i2) andD00i = Di1 and�00i = �i1 and�L00i ; U 00i � = [Li1 ; Ui1] :
or C 00i = (Ci1 ^ C0i2) andD00i = Di2 and�00i = �i2 and�L00i ; U 00i � = [Li2 ; Ui2] :
Without loss of generality, assume that the first case holds (the reasoning for the other case is sym-
metric). As t 2 sol(Ci1) and t 2 sol(C 0i2), by definition of ANN , we may say that ANN(tp) 3at = (d; t; L1; U1) and ANN(tp) 3 at0 = (d; t; L2; U2) where [L1; U1] = [�(Di1 ; t) �Li1 ; �(Di1; t) �Ui1] and [L2; U2] = [�(0i2Di1 ; t) � Li1 ; �0i2(Di2 ; t) � Ui2] Therefore, by definition of intersection of
two annotated relations, we conclude that fat; at0g � ANN(r) \ ANN(r0). It follows that at00 =(d; t; L; U) = at = (d; t; Li1; Ui1); because [L; U] = [Li1 ; Ui1].

73

2. Claim 2: ANN(r\r0) � ANN(r)\ANN(r0). Suppose at = (d; t; L; U) 2 ANN(r)\ANN(r0).
Hence, by definition of intersection there exists an annotated tuple at0 = (d; t; L0; U 0) 2 ANN(r) \ANN(r0), such that� either at 2 ANN(r); at0 2 ANN(r0)� or at0 2 ANN(r); at 2 ANN(r0)
Without loss of generality we will assume that at 2 ANN(r); at0 2 ANN(r0) (the other case is
symmetric).

As at 2 ANN(r)we conclude by definition ofANN that there exists a tp-tuple tp = (d;
) 2 r such
that
 =
1; : : : ;
n(81 � i � n)(
i = hCi; Di; Li; Ui; �ii)
and (9i 2 f1; : : : ; ng)(t 2 sol(Ci) ^ [L; U] = [�i(Di; t)Li; �i(Di; t)Ui]).
Now from at0 2 ANN(r0), we know that there exists a tp-tuple tp0 = (d;
 0) 2 r0 such that htp; tp0i 2m and
 0 =
 01; : : : ;
 0n(81 � i � n0)(
 0i = hC 0i; D0i; L0i; U 0i ; �0ii)
and (9j 2 f1; : : : ; n0g)(t 2 sol(C 0j) ^ [L0; U 0] = [�0j(D0j; t)L0j ; �0j(D0j; t)U 0j]).
As tp and tp0 are data identical, there exists such a tp-tuple tp00 = (d;
 00) 2 r \ r0 that
 00 =
 001 ; : : : ;
 00n00
and (91 � k � n00)(
 00k = hC 00k ; D00k; L00k; U 00k ; �00ki ^ C00k = (Ci ^ C0j) ^ D00k = Di ^ [L00k; U 00k] =[Li; Ui] ^ �00k = �i).
As t 2 sol(Ci) and t 2 sol(C 0j), t 2 sol(Ci ^ C 0j) = C 00k . Therefore, ANN(t00) will contain a tupleat00 = (d; t; L00; U 00) where[L00; U 00] = [�00k(D00k ; t) � L00k; �00k(D00k ; t) �U 00k] = [�i(Di; t) �Li; �i(Di; t) �Ui].
We can see that [L00; U 00] = [L; U] and therefore, at00 = at and thereforeat 2 ANN(tp00), from which it follows that at 2 ANN(r \m r0).

3. Claim 3: ANN(r\� r0) = ANN(r) \� ANN(r0).
By definition of the intersection of two TP relationsANN(r\� r0) = ANN(��(r\ r0)). As h�\�(:);�\�(ANN(:))i is a compatible pair,we haveANN(�\�(r\r0)) = �\�(ANN(r\r0)) = �\�(ANN(r)\ANN(r0)) = ANN(r)\� ANN(r0). 2

Proof of Theorem 12.
Let r and r0 be two tp-relations and � be a combination function. By definition of union r[� r0 = ��(r[r0)
andANN(r)[�ANN(r0) = ��(ANN(r)[ANN(r0)). Since �chi(r) and ��(ANN(r)) is a compatible
pair of compaction operations, it is sufficient to prove that ANN(r [r0) = ANN(r)[ANN(r0).� ANN(r[r0) � ANN(r) [ANN(r0). Let at 2 ANN(r [r0). Then there exists a tp-tuple tp 2r [r0, such that at 2 ANN(tp). By definition of multiset union of two tp-relations, either tp 2 r ortp 2 r0. If the former holds, at 2 ANN(r) and if the latter holds, at 2 ANN(r0). In either case,at 2 ANN(r)[ANN(r0) as ANN(r)[ANN(r0) consists of all annotated tuples in ANN(r) and

all annotated tuples in ANN(r0).� ANN(r[r0) � ANN(r) [ANN(r0). Let at 2 ANN(r)[ANN(r0). Then, either at 2 ANN(r)
or at 2 ANN(r). Assume the former is true (the other case is symmetric). Then, by def. of annotation
operation, there exists a tp-tuple tp 2 r, such that at 2 ANN(tp). But, since by definition of multiset
union of two tp-relations tp 2 r [r0, we also get at 2 ANN(r [r0). 2

74

Proof of Theorem 13.
Let C1 and C2 be two atomic selection constraints. We will consider a number of cases, each for each pair of
constraint types.� If both C1 and C2 are data constraints, then the statement of the theorem follows from the similar result

in relational algebra.� If both C1 and C2 are temporal constraints, the statement of the theorem will be true because of com-
mutativity of the conjunction of boolean temporal constraints.� If both C1 and C2 are probabilistic constraints, the statement of the theorem will be true because of
commutativity of the conjunction of boolean probabilistic constraints.� Let C1 be a data constraint and C2 be a temopral constraint.

First we prove �C1(�C2(r)) � sigmaC2(�C1(r)). Let tp 2 �C1(�C2(r)). Then, (a) tp satisfies the
data constraint C1 and (b) tp 2 �C2(r). By definition of selection on atomic temporal constraint, there
exists a tp-tuple tp0 2 r such thattp = (d;
);
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k;tp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; Di; Li; Ui; �ii, 1 � i � m and

1. m � k;

2. and there exists a mapping f : f1; : : : ; kg ! f1; : : : ; mg such that f(i) = f(j) iff i = j andCi = C0f(i) ^ C2.

3. If for some 1 � l � m, C 0l ^ C2 is consistent, then there exists such number 1 � j � k, thatf(j) = l.
Since tp and tp0 are data-identical, tp0 2 �C1(r), since tp0 must also satisfy C1. But then, by the defini-
tion of selection on temporal constraint sigmaC2(�C1(r))will contain the tuple tp00 defined as follows:tp00 = (d;
 00),
 00 =
 001 ; : : :
 00n,
 00i = hC 00i ; Di; Li; Ui; �ii, 1 � i � n and for each 1 � j � m such
that C0j ^ C2 is consistent, there exists a unique 1 � i � n such that C00i = C 0j ^ C2.

But the latter description is equivalent to the description of tp, i.e. tp00 = tp, i.e. tp 2 �C2(�C1(r)).
Now we prove that �C1(�C2(r)) � �C2(�C1(r)). Let tp 2 �C2(�C1(r)). This means that (�C1(r))
contains a tuple tp0 such that tp = (d;
);
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k;tp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; Di; Li; Ui; �ii, 1 � i � m and

1. m � k;

2. and there exists a mapping f : f1; : : : ; kg ! f1; : : : ; mg such that f(i) = f(j) iff i = j andCi = C0f(i) ^ C2.

3. If for some 1 � l � m, C 0l ^ C2 is consistent, then there exists such number 1 � j � k, thatf(j) = l.
Since tp0 2 �C1(r) and C1(r), tp0 2 r. Then �C2(r) will contain a tuple tp00 such that tp00 = (d;
00),
 00 =
 001 ; : : :
 00n,
 00i = hC00i ; Di; Li; Ui; �ii, 1 � i � n and for each 1 � j � m such that C 0j ^ C2 is
consistent, there exists a unique 1 � i � n such that C00i = C 0j ^ C2. Clearly, tp = tp00. Since tp00 andtp0 are data-identical, tp00 2 �C1(�C2(r)), i.e., tp 2 �C1(�C2(r)).
The proof for the case whan C1 is a temporal constraint and �C2 is a data constraint is symmetric.

75

� C1 is a data constraint and �C2 is a probabilistic constraint.

First we prove �C1(�C2(r)) � �C2(�C1(r)). Let tp 2 �C1(�C2(r)). Then, (a) tp satisfies the data
constraint C1 and (b) tp 2 �C2(r). By definition of selection on atomic probabilistic constraint, there
exists a tp-tuple tp0 2 r such thattp = (d;
);
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k;tp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; Di; Li; Ui; �ii, 1 � i � m and

1. m � k;

2. and there exists a mapping f : f1; : : : ; kg ! f1; : : : ; mg such that f(i) = f(j) iff i = j andCi = TP � filter(
f(i); C2).
3. If for some 1 � l � m, sol(TP � filter(
f(i); C2)) 6= ; then there exists such number 1 � j �k, that f(j) = l.

Then by definition of selection on atomic data constraint,�C1(r) will contain tp0 as tp and tp0 are data-
identical and tp satisfies C1. Therefore, �C2(�C1(r)) will contain a tp-tuple tp00 = (d;
 00) constructed
as follows: for each
0i 2
 0 such that sol(TP � filter(
 0i; C2)) 6= ;, there will be a case hTP �filter(
 0i; C2); Di; Li; Ui; �ii in
 00 and there will be no other cases in
00. But it is clear that in this
case tp00 = tp and therefore tp 2 �C2(�C1(r)).
To prove that �C1(�C2(r)) � �C2(�C1(r)) now let tp 2 �C2(�C1(r)).
In this case, �C1(r) will conatin a tp-tuple tp0 such thattp = (d;
);
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k;tp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; Di; Li; Ui; �ii, 1 � i � m and

1. m � k;

2. and there exists a mapping f : f1; : : : ; kg ! f1; : : : ; mg such that f(i) = f(j) iff i = j andCi = TP � filter(
f(i); C2).
3. If for some 1 � l � m, sol(TP � filter(
 0f(i); C2)) 6= ; then there exists such number 1 � j �k, that f(j) = l.

Then by definition of selection on atomic data constraint, tp0 must satisfy C1(r) and therefore tp0 2 r.
But then C2(r) will contain tp (see the construction of tp00 above to see why this is true). And since tp
and tp0 are data-identical, tp will satisfy C1(r) and therefore tp 2 �C1(�C2(r)).
The proof for the case when C1 is a probabilistic constraint and C2 is a data constraint is symmetric.� C1 is a temporal constraint and C2 is a probabilistic constraint.

First we prove �C1(�C2(r)) � �C2(�C1(r)). Let tp 2 �C1(�C2(r)). Then, by definition of a selection
on an atomic temporal condition, �C2(r) will contain a tuple tp0 such thattp = (d;
);
 =
1; : : : ;
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k;tp0 = (d;
 0);
 0 =
 01; : : : ;
 0m,
 0i = hC0i; Di; Li; Ui; �ii, 1 � i � m and

1. m � k;

2. and there exists a mapping f : f1; : : : ; kg ! f1; : : : ; mg such that f(i) = f(j) iff i = j andCi = C0f(i) ^ C2.

3. If for some 1 � l � m, C 0l ^ C2 is consistent, then there exists such number 1 � j � k, thatf(j) = l.
76

Since tp0 2 �C2(r), by definition of selection on atomic probabilistic conditionm there exists a tupletp00 2 r such thattp00 = (d;
 00);
 00 =
 001 ; : : : ;
 00n,
 00i = hC 00i ; Di; Li; Ui; �ii, 1 � i � n and

1. n � m;

2. and there exists a mapping g : f1; : : : ; mg ! f1; : : : ; ng such that g(i) = g(j) iff i = j andC 0i = TP � filter(
 00g(i); C2).
3. If for some 1 � l � n, sol(TP�filter(
g(i); C2)) 6= ; then there exists such number 1 � j � k,

that g(j) = l.
From the above we obtain that Ci = TP � filter(
(g(f(i)); C2) ^ C1.

Since tp00 2 r, we know that �C1(r) will contain a tp-tuple tp000 = (d;
 000) such that
 000 =
 0001 ; : : :
 000r ,
 000i = hC 000i ; Di; Li; Ui; �ii, 1 � i � r and for each 1 � j � n such that C 00j ^ C1 is consistent, there
exists a unique 1 � i � r such that C 000i = C 00j ^ C2.

Finally, �C2(�C1(r)) will containt a tp-tuple tp� = (d;
�) such that for each
 000i 2
 000 such that
sol(TP � filter(
 000i ; C2)) 6= ;, there will be a case hTP � filter(
 000i ; C2); Di; Li; Ui; �ii in
� and
there will be no other cases in
�.
Now we will show that tp indeed is equal to tp�. As we noticed, every case in tp had its C constraint
have a form Ci = TP � filter(
 00g (f(i)); C2) ^ C1.

Now, it is easy to notice that since every constraint in tp000 had a form C 000j = C 00l ^C1, every constraint
is tp� will be of the form C�i = TP �filter(
 000j ; C2) = TP �filter(hC 00l ^C1; D00l ; L00l ; U 00l ; �00l i; C2).
Clearly, if for some 1 � j � n, there was such 1 � i � k that Ci = TP � filter(
 00j ; C2) ^ C1 thenTP � filter(hC 00j ^ C1; D00j ; L00j ; U 00j ; �00j i; C2) will be the value of some C�l from
�.
We now show that TP � filter(
00j ; C2) ^ C1 = TP � filter(hC 00j ^ C1; D00j ; L00j ; U 00j ; �00j i; C2)).
Let t 2 sol(TP � filter(
 00j ; C2) ^ C1). In this case, t 2 sol(C 00j) and �00j (D00j ; t) satisfies C2. Also, t
satisfies C1. But then, t satisfies C 00j ^ C1. Since this does not affect the probability estimate for t, we
obtain that t 2 sol(TP � filter(hC 00j ^ C1; D00j ; L00j ; U 00j ; �00j i; C2)).
Conversely, if t 2 sol(TP � filter(hC 00j ^ C1; D00j ; L00j ; U 00j ; �00j i; C2)) then (a) �00j (D00j ; t) satisfies C2
and (b) t satisfies C 00j ^ C1. Thereofore t satisfies C00j and t satisfies C1. Then clearly, t 2 sol(TP �filter(hC 00j ; D00j ; L00j ; U 00j ; �00j iC2)). Therefore, t 2 sol(TP�filter(hC 00j ; D00j ; L00j ; U 00j ; �00j iC2))\sol(C1),
i.e. t 2 sol(TP � filter(
 00j ; C2) ^ C1).
This proves the desired inclusion.

The proof that �C1(�C2(r)) � �C2(�C1(r)) is symmetric to the proof above. Similarly, the proof of the
statement of the theorem for the case when C1 is a probabilistic condition and C2 is a temporal condition
is symmetric to the proof above.

The list enumerates all possible pairs of types of constraints, therefore the theorem is proven. 2
Proof of Theorem 14.
We will prove this theorem for the case when C is an atomic predicate (constraint). Then, by theorem 13 this
theorem will be true for arbitrary constraints as well.

So, assume C is atomic preticate. We have to consider three cases:

1. C is a predicate on the data part of the relational schema of r.

In this case we notice that �C(r) � r, i.e. only tuples from r can be found in �C(r).
77

Let at = (d; t; L; U) 2 ANN(�C(r)). C. By definition of annotation operation, there must be a tupletp = (d;
) 2 �C(r), such that at 2 ANN(tp). Since C
is a predicate on the data part, it must be the case that d satisfies C.

But since �C(r) � r, we know that tp 2 r, therefore, since at 2 ANN(tp), at 2 ANN(r). Finally,
as d satisfies C we get at 2 �C(ANN(r)).
To prove the inclusion the other way around, let us consider the tupleat = (d; t; L; U 2 �C(ANN(r)).
Since C is a predicate on the data part d satisfies C.

By definition of selection on annotated tuples, at 2 ANN(r). But then, there must be a tp-tupletp = (d;
) 2 r such that at 2 ANN(tp). since d satisfies C, tp 2 �C(r), and therefore, at 2ANN(�C(r)).
2. C is a temporal predicate.� ANN(�C(r)) � �C(ANN(r))

Let at = (d; t; L; U) 2 ANN(�C(r)). We show that at 2 �C(ANN(r)).at 2 ANN(�C(r)) implies that there exists a tp-tuple tp = (d;
) 2 �C(r), such that
 =
1; : : : ;
n;at 2 ANN(tp) and(9i 2 f1; : : : ; ng)(
i = hCi; Di; Li; Ui; �ii ^ t 2 sol(Ci) ^ [L; U] = [�i(Di; t)Li; �i(Di; t)Ui].
Since tp 2 �C(r), by definition of selection on a TP-relation, there must exist a tp-tuple tp0 2 r,
such that:tp0 = (d;
 0);
0 =
 01; : : : ;
 0k and(9j 2 f1; : : : ; kg)(
 0j = hC 0j; D0j; L0j ; �0ji) such thathD0j; L0j ; U 0j; �0ji = hDi; Li; Ui; �ii andCi = C0j ^ C.

Since t 2 sol(Ci), t 2 sol(C 0j) and t 2 sol(C). The former means that at 2 ANN(tp0),
i.e., at 2 ANN(r). The latter means that by definition of selection on annotated relation, at 2�C(ANN(r)).� ANN(�C(r)) � �C(ANN(r))
Let at = (d; t; L; U) 2 �C(ANN(r)). We show that at 2 ANN(�C(r)).
Since at 2 �C(ANN(r)), by definition of selection on annotated relations
(i) at 2 ANN(r)
(ii) t 2 sol(C)
Since at 2 ANN(r), there exists a tp-tuple tp = (d;
) 2 r, such that
 =
1; : : : ;
n;at 2 ANN(tp) and(9i 2 f1; : : : ; ng)(
i = hCi; Di; Li; Ui; �ii ^ t 2 sol(Ci) ^ [L; U] = [�i(Di; t)Li; �i(Di; t)Ui].
We know that t 2 sol(Ci) and t 2 sol(C), therefore t 2 sol(Ci ^ C). This means that there
exists a tp-tuple tp0 2 �C(r) such that,tp0 = (d;
 0);
0 =
 01; : : : ;
 0k and(9j 2 f1; : : : ; kg)(
 0j = hC 0j; D0j; L0j ; �0ji) such thathD0j; L0j ; U 0j; �0ji = hDi; Li; Ui; �ii andC 0j = Ci ^ C.t 2 sol(C 0j) and therefore, at 2 ANN(tp0), i.e., at 2 ANN(�C(r)).

3. C is a probabilistic predicate.

78

� ANN(�C(r)) � �C(ANN(r))
Let at = (d; t; L; U) 2 ANN(�C(r)). We show that at 2 �C(ANN(r)).at 2 ANN(�C(r)) implies that there exists a tp-tuple tp = (d;
) 2 �C(r), such that
 =
1; : : : ;
n;at 2 ANN(tp) and(9i 2 f1; : : : ; ng)(
i = hCi; Di; Li; Ui; �ii^ t 2 sol(Ci)^ [L; U] = [�i(Di; t)Li; �i(Di; t)Ui]).
Since tp 2 �C(r), by definition of selection on a TP-relation, there must exist a tp-tuple tp0 2 r,
such that:tp0 = (d;
 0);
0 =
 01; : : : ;
 0k and(9j 2 f1; : : : ; kg)(
 0j = hC 0j; D0j; L0j ; �0ji) such thathD0j; L0j ; U 0j; �0ji = hDi; Li; Ui; �ii andCi = TP-filter(
 0j; C)
Since t 2 sol(Ci), i.e, t 2 sol(TP-filter(
 0j; C)), we have, [L; U] 2 sol(C) and also, t 2 sol(Cj)
The latter means that at 2 ANN(tp0), i.e., at 2 ANN(r). The former means that by definition
of selection on annotated relation, at 2 �C(ANN(r)).� ANN(�C(r)) � �C(ANN(r))
Let at = (d; t; L; U) 2 �C(ANN(r)). We show that at 2 ANN(�C(r)).
Since at 2 �C(ANN(r)), by definition of selection on annotated relations
(i) at 2 ANN(r)
(ii) [L; U] 2 sol(C).
Since at 2 ANN(r), there exists a tp-tuple tp = (d;
) 2 r, such that
 =
1; : : : ;
n;at 2 ANN(tp) and(9i 2 f1; : : : ; ng)(
i = hCi; Di; Li; Ui; �ii^ t 2 sol(Ci)^ [L; U] = [�i(Di; t)Li; �i(Di; t)Ui]).
Let us consider tuple tp0 = �C(tp) i.e.,tp0 = (d;
 0);
0 =
 01; : : : ;
 0k and(9j 2 f1; : : : ; kg)(
 0j = hC 0j; D0j; L0j ; �0ji) such thathD0j; L0j ; U 0j; �0ji = hDi; Li; Ui; �ii andC 0j = TP-filter(
i; C)
Since [L; U] 2 sol(C), and t 2 sol(Ci), we know that t 2 sol(TP-filter(
i; C)) and therefore,at 2 ANN(tp0), i.e., at 2 ANN(�C(r)). 2

Proof of Theorem 15.
We break the proof into two parts:

1. ANN(r � r0) � ANN(r)� ANN(r0).
Let at = (d; t; L; U) 2 ANN(r � r0). We will show that at 2 ANN(r) � ANN(r0). As at 2ANN(r � r0), by definition of ANN , there exists such a tuple tp00 = (d;
00) 2 r � r0 such thatat 2 ANN(tp). Two cases have to be considered here:

(a) tp00 is in (r�r0) because tp00 2 r and there is no tp-tuple in r0 which is data identical to it. In this
case, there is no annotated tuple in ANN(r0) which is data identical to ANN(tppp) and hence,at 2 ANN(r)� ANN(r0).

(b) Otherwise, tp00 is in (r� r0) because there is a tp-tuples tp = (d;
) 2 r and a tp0 = (d;
 0) in r0
and tp00 is constructed from these two tp-tuples using the construction shown in Definition 6.17.
Let (tp; tp0) be any such pair of tp-tuples.

79

As at = (d; t; L; U) 2 ANN(r � r0), it follows that there is a unique integer i such that the
constraint of the formCi ^:C 0 in Step (2) of Definition 6.17 is satisfied. This means that the time
point t is a solution of one of the C-constraints of tp and none of the C-constraints of tp0. This
holds for all tp-tuples in r0 that have an annotated tuple of the form (d; t;�;�) in their annotated
expansion. Hence, independently of how we choose a tuple tp� from r0, if tp and tp� are data-
identical, then no tuple of the form (d; t;�;�) can be inANN(tp)�ANN(tp�). It follows that
there can be no annotated tuple of the form (d; t;�;�) can be in ANN(r0). If the C-constraint
of tp alluded to above is hCi; Di; Li; Ui; �ii, then we know that (d; t; L; U) 2 ANN(r) whereL = �i(Di; t) � Li and U = �i(Di; t) � Ui. Hence, at 2 ANN(r)�ANN(r0).

2. ANN(r)� ANN(r0) � ANN(r� r0).
Let at = (d; t; L; U) 2 ANN(r) � ANN(r0). By definition, at 2 ANN(r) and there is no at0 =(d0; t0; L0; U 0) 2 ANN(r0) such that d = d0 and t = t0. It follows by definition of ANN that
there exists tp 2 r such that at 2 ANN(tp) and there is no tp0 2 r0 such that ANN(tp0) is of
the form (d; t;�;�). It follows immediately from the construction of r � r0 (Definition 6.17) thatat 2 ANN(r� r0).

Proof of Theorem 16.

The proof will consist of two parts

1. ANN(r�� r0) � ANN(r)�� ANN(r0).
Let at00 = (d00; t00; L00; U 00) 2 ANN(r�� r0). We will show that at00 2 ANN(r)�� ANN(r0). By
the definition of an annotated relation, there exists a tp-tuple tp00 2 r��r0 such that at00 2 ANN(tp00).
This means that tp00 = (d00;
 00);
 00 =
 001 ; : : : ;
 00n,
00i = hC00i ; D00i ; L00i ; U 00i ; �00i i, 1 � i � n and there
exists a number 1 � j � n such that sol(C 00j) = ft00g and [L00; U 00] = [L00j ; U 00j].
Since tp00 2 r �� r0, by the definition of cartesian product of two tp-relations, there exists such a tp-
tuple tp 2 r and a tp-tuple tp0 2 r0 that:tp = (d;
) tp0 = (d0;
 0)d00 = d; d0
 =
1; : : :
k
 0 =
 01; : : :
 0m
i = hCi; Di; Li; Ui; �ii, 1 � i � k
 0i = hC 0i; D0i; L0i; U 0i ; �0ii, 1 � i � m(9h 2 f1; : : :kg)(t00 2 sol(Ch)) (9l 2 f1; : : :mg)(t00 2 sol(C 0l))
and [L00j ; U 00j] = [L00; U 00] = [�h(Dh; t00) � Lh; �h(Dh; t00) � Uh]
� [�0l(D0l; t00) �L0l; �0l(D0l; t00) � U 0l].
But in this case, by the definition of annotated relation, there will be an annotated tupleat = (d; t00; �h(Dh; t00)�Lh; �h(Dh; t00) � Uh) 2 ANN(tp) � ANN(r) and an annotated tuple at0 = (d0; t00; �0l(D0l; t00) �L0l; �0l(D0l; t00) � U 0l) 2 ANN(tp0) � ANN(r0). Then by the definition of a caresian product of anno-
tated relations and since [L00; U 00] = [�h(Dh; t00)�Lh; �h(Dh; t00)�Uh]
� [�0l(D0l; t00)�L0l; �0l(D0l; t00)�U 0l],at00 = (d; d0; t00; L00; U 00) 2 ANN(r)�� ANN(r0).

2. ANN(r)�� ANN(r0) � ANN(r�� r0).
Let at00 = (d00; t00; L00; U 00) 2 ANN(r) �� ANN(r0). We will show that at00 2 ANN(r �� r0).
By the definition of crtesian product of two annotated relations there exists an annotated tuple at =(d; t00; L; U) 2 ANN(r) and an annotated tuple at0 = (d0; t00; L0; U 0) 2 ANN(r0) such that d00 =d; d0 and [L00; U 00] = [L; U]
� [L0; U 0].

80

Since at 2 ANN(r), there exists a tp-tuple tp 2 r such that at 2 ANN(tp), i.e., tp = (d;
),
 =
1; : : :
k,
i = hCi; Di; Li; Ui; �ii, 1 � i � k and (9h 2 f1; : : :kg)(t00 2 sol(Ch)) such that[L; U] = [�h(Dh; t00) � Lh; �h(Dh; t00) �Uh].
Similarly, there exists a tp-tuple tp0 2 r0 such that at0 2 ANN(tp0), i.e., tp0 = (d0
 0),
 0 =
 01; : : :
 0m,
 0i = hC 0i; D0i; L0i; U 0i ; �0ii, 1 � i � m and (9l 2 f1; : : :mg)(t00 2 sol(C 0l)) and [L0; U 0] = [�0l(D0l; t00) �L0l; �0l(D0l; t00) � U 0l].
Since t00 2 Ch and t00 2 C 0l, by definition of cartesian product of two tp-relations, r�� r0 will contain
a tp-tuple tp00 = (d; d0;
 00),
 00 =
001 ; : : : ;
 00n,
00i = hC00i ; D00i ; L00i ; U 00i ; �00i i, 1 � i � n such that there
exists a number 1 � j � n such that sol(C00j) = ft00g and [L00j ; U 00j] = [L; U]
� [L0; U 0] = [L00; U 00].
But then ANN(r�� r0) will contain the tuple at00 = ((d; d0); t00; L00; U 00). 2

Proof of Theorem 17.
As usual the proof has two parts.

1. ANN(�F;�(r)) � �F;�(ANN(r)).
Suppose at = (d; t; L; U) 2 ANN(�F;�(r)). By definition, there is a tp-tuple in �F;�(r) of the formtp = (d;
) in �F;�(r) such that at 2 ANN(tp). Let
 =
1; : : : ;
n and let
i = hCi; Di; Li; Ui; �ii
— hence, there is a unique integer 1 � j � n such that t 2 sol(Dj), and L = �j(Dj ; t) � Lj andU = �j(Dj; t) �Uj . As TP-projection is a multiset operation, there is a unique tuple, tp? in r such thattp:H = tp?:H k “A1 : d:A1; :::; An : d:An” and for all attributes in F, tp?’s attribute values and those
of tp coincide. Hence, at 2 �F;�(ANN(tp?)).

2. �F;�(ANN(r)) � ANN(�F;�(r)).
Suppose at = (d; t; L; U) 2 �F;�(ANN(r)). Then there is an annotated tuple, at? 2 ANN(r)
such that at = �F;�(ANN(at?)). But then there is a TP-tuple tp? in r such that at? 2 tp?. Hence,at 2 �F;�(ANN(tp?)). 2

Proof of Theorem 18.
As join is a derived operation defined in terms of selection, projection and cartesian product operations, the
result follows immediately from Theorems 14, 17 and 16. 2

81

