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Abstract

Dyreson and Snodgrass have drawn attention to the fact that in many temporal database applications,
there is often uncertainty present about the start time of events, the end time of events, the duration of
events, etc. When the granularity of time is smal (eg. milliseconds), a statement such as “Packet p
was shipped sometime during thefirst 5 days of January, 1998” |eads to a massive amount of uncertainty
(5x24x60x60x 1000) possibilities. Asnotedin[53], past attemptsto deal with uncertainty indatabases
have been restricted to relatively small amounts of uncertainty in attributes. Dyreson and Snodgrass have
taken an important first step towards solving this problem.

In this paper, we first introduce the syntax of Temporal-Probabilistic (TP) relations and then show
how they can be converted to an explicit, significantly more space-consuming form called Annotated
Relations. We then present a Theoretical Annotated Temporal Algebra (TATA). Being explicit, TATA is
convenient for specifying how the a gebraic operations should behave, but isimpractical to use because
annotated relations are overwhelmingly large.

Next, we present a Temporal Probabilistic Algebra (TPA). We show that our definition of the TP-
Algebraprovides a correct implementation of TATA despitethe fact that it operates on implicit, succinct
TP-relations instead of the overwhelmingly large annotated relations. Finally, we report on timings for
an implementation of the TP-Algebra built on top of ODBC.

1 Introduction

Theworld welivein evolves dynamically over time. Furthermore, our knowledge about what istrue in the
world at afixed point in timeis highly uncertain. Databases that attempt to capture temporal aspects of the
world encounter uncertainty in avariety of applications.

¢ Scheduling: Consider the databases maintained by atransportation provider such as CSX or Federal
Express. When a packageisdelivered to such an organi zation for shipping, atentative shipping sched-
uleiscreated for the package. The transportation provider must maintain such schedulesfor millions
of packages. Such schedules specify which flight (or truck) the shipment is scheduled to leave on,
when the shipment will reach a waypoint, and so on. However, there is uncertainty about how long a
particular part of the schedule will actually take. For example, Federal Express may ship a package
from Boston to Chicago viaAlbany, NY. They havereliable statisticson how long the Boston-Albany
leg takes, and how long the Albany-Chicago leg takes. A user who wantsto know when his shipment
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islikely to reach him usually gets an uncertain answer of the form “Either today (36%) or tomorrow
(64%).” A database system used by such atransportation vendor must have the ability to handle tem-
poral modes of uncertainty.

e Weather Applications. Consider aweather database that tracks the weather at a fixed location (e.g.
Washington). Such aweather database contains not only information about the weather in Washington
inthe past, but a so containsprojectionsfor the future. Needlessto say, any prediction about the future
isliableto be uncertain. How often have we heard a TV newscaster say “Thereis a 39% probability
of rain this afternoon”?

o Time-Series Stock Applications: There are awide variety of programs that analyze the behavior of
stocks, and predict their riseand fall inthe future. Most such programs associate with their predictions
alevel of uncertainty. Such programs may say “We expect, with 60-70% certainty, that IBM stock will
fal by 30% sometime in the next 2 weeks.” When the output of such programsis to be stored in a
relational database system, we must have the ability to represent and manipulate such statements.

¢ Video Extraction: A completely different application arisesin the case of feature extraction in video
databases [49]. A video may be viewed as a sequence of frames (still images). A video feature ex-
traction algorithm attemptsto identify objectsand activities occurring in these frames. However, most
image processing algorithms are uncertain in their identifications. Thus, the statement “Darth Vader
appearsin frames 26 and 27” is an uncertain statement about uncertainty and time (frame numbers are
correlated tightly with time as most video playersin the market today playback video at arate of 15to
30 frames per second). Thus, the creation of avideo database which automatically identifies features
and/or gestures encompasses some temporal aspects as well as some uncertainty.

All the above applications require the ability to make statements of the following kind: Data tuple d isin
relation R at some point of timein theinterval [¢;, ¢;] with probability between p and p’. For example, in the
Transportation Application above, we must be able to store statements of the form “Package p will arrivein
Albany at some time between 9am and 5pm on Nov. 8 with probability 50-60%." Similarly, in the weather
application, we must be able to store statements of the form “Rain is expected to begin sometime between
2pm and 12 midnight on Nov. 8 with probability 5-20%." In the case of the stock market application, we
must be able to store statements of theform “IBM stock will reach $300 per share some time during thetime
interval Nov 1-10 with probability 90-100%.”

The main contributionsof this paper may now be summarized as follows.

o We first introduce the concept of a temporal-probabilistic tuple or TP-tuple, for short. Intuitively, a
TP-tupleallows usto augment classical relationa database tupleswith temporal -probabilistic data, as
well asarbitrary probability distributions. For example, not only can wesay “Datatupled isinrelation
r at some point of timein the interval [¢;, ¢;] with probability between p and p’” but we can also say
that the probability mass is distributed over [¢;, ¢;] according to an arbitrary probability distribution.
Throughout this paper, we will introduce definitions which allow us to make such statementsina TP-
relation and which allow us to manipulate such TP-relations algebraically.

¢ Wethen show how givenany TP-tupletp, wemay “flatten” ¢p into aset of annotated tuples. In general,
the set of annotated tuples associated with a single TP-tuple can be very large — hence, annotated
tuples serve as a purely theoretical device.

¢ We then define a Theoretical Annotated Temporal Algebra (TATA) and show how the classical rela-
tional algebra operations can be extended to the case of annotated tuples. Intuitively, the Theoretical
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Annotated Temporal Algebra provides a theoretical specification of how the TP-Algebra operations
must be defined.

¢ We then define a Temporal -Probabilistic Algebra (TPA) which directly manipulates TP-tuples with-
out converting them to annotated tuples. This has a great advantage, as TP-tuples are very succinct
objects. We show that for each operation « in the Theoretical Annotated Temporal Algebra, thereisa
corresponding operation «’ in the Temporal -Probabilistic Algebra which precisely capturesit. Thus,
the Temporal -Probabilistic Algebrais a sound and complete way of implementing the declarative se-
mantics for tempora probabilistic data prescribed by the Theoretical Annotated Temporal Algebra.
The correctness results are formally proved for every operation.

¢ We show that each operator, whether in the TP-Algebra, or in the Theoretical Annotated Temporal
Algebra, can be parametrized by the user’s knowledge of the dependencies between events. Thisis
important because, as shown in [30], the probability of acomplex event like (e, V e ) depends upon
our knowledge of the dependencies between ¢, and es.

o We present an implementation of the TP-Algebra on top of ODBC and provide a set of experimental
results.

Theideaof handling uncertainty in temporal databases was first addressed by Dyreson and Snodgrass[13].
They proposed the concept of an indeter minateinstant wherewe know that an event occurs at some pointina
set of time points, but we do not know exactly when. However, a probability distributionisknown. Dyreson
and Snodgrass[13] propose an extension of SQL to handleindeterminate valid-time, and show that their im-
plementationis*“reliable” (correct). They provide el egant data structuresto represent probability mass func-
tions, and a gorithmsto compute temporal rel ationships between indeterminate events. The authors provide
impressive experimental results. Themodel presented in [13] proceeds under the following assumptions, all
of which are removed in our framework.

o “All indeterminate instances are considered to be independent” [13, p.7]. In our paper, we show how
the user can explicitly specify in his query, his knowledge of the dependency or lack thereof between
events. Thus, thisassumption iseliminated by us.

e “...wedo not alow partially known distributions” [13, p.8]. In this paper, we will alow partia dis-
tributionsto be specified.

e “We could not adopt the PDM approach or its successors to support tempora indeterminacy, since
there might be several million elements in a set of possible chronons. Representing each alternative
with an associated probability isimpractical.” [13, p.46]. Our TP-Algebraexplicitly showshow to get
around this problem.

Last but not least, our paper provides an extension of the relational algebrato handle temporal probahilistic
data— the contributionsof [13] present an extension of SQL, thus neatly complementing our work. Aswe
will seein Section 8, there are many other interesting and important contributionsmade in [13] that comple-
ment the work reported here, leading to the potential for avery powerful system obtained by combining the
two frameworks.

Therelationship between relational, temporal, and TP-databases may be briefly summed up asfollows. In
classical relational databases [51] a data-relation R over schema (A4, ..., A,) contains a set of tuples, as
shown in Figure 1(8). In contrast, a temporal database relation R may be thought of as shorthand for a set
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of snapshots B(1), R(2),...— intuitively, given atimeinstant 7, £() is a data-relation that specifies what
tuplesare truew.r.t. relation R at time:. Thisisshown in Figure 1(b).

In contrast, a TP-relation is much more complicated, as shown in Figure 1(c). For every given point ¢ in
time, we cannot specify R(:) precisely as we are uncertain about what isin R at time . Thus, for each time
instant ¢, a TP-relation specifies a set of relations, { B(¢,1), ..., R(¢, k;)} for some k; > 0, together with a
probability assignment, p on{ R(¢, 1), ..., R(z, k;)}. Intuitively, p( (7, j)) = 0.3 meansthat thereisa30%
probability that the content of relation R at time: is R(¢, ).

2 Preliminariesand Basic definitions

In this section, we provide some basic definitionsthat are used in the algebras we devel op later in the paper.
The work reported in Subsections 2.1, 2.2, 2.3 and refsec:ProbStrat is not new work, but form the basic
definitions needed to describe our algebras. Other parts of this section describe new work.

o Wefirst define (Sec. 2.1) acalendar, borrowing from definitionsin [29]. Calendars are needed because
al TP-relations will assume that time is specified with respect to an arbitrary but fixed calendar.

e Then, we define (Sec. 2.2) what atemporal constraint over an arbitrary but fixed calendar is. As spec-
ified earlier in the paper, our algebras use constraintsto describe sets of time points.

e We then define (Sec. 2.3) what distribution functionsare.

¢ Next, we define (Sec. 2.4) what a probabilistictupleis. Thisdefinition will serve as a “ springboard”
for the later definitions.



e In Section 2.5, we specify a set of axiomsthat a function must satisfy for it to be considered a prob-
abilistic conjunction or disjunction strategy. For example, when we compute the cartesian product of
two TP-relations R and .5 where TP-tuplesr € R and s € 5 at time: with probabilitiesin theinterval
[pr1, pra] @nd [psy, psy] respectively, then a probabilistic conjunction strategy alows us to compute
the probability that the concatenation » © s isin the cartesian product of R, 5. Clearly, this proba-
bility depends upon our knowledge (if any) of the dependencies between the events denoted by these
tuples. Section 2.5 specifies axioms that a function must satisfy for it to be considered a probahilistic
conjunction or disjunction strategy. When a user of a TP-database asks a query, he may ask the sys-
tem to execute the operationsin his query under a probabilistic strategy (or strategies) that he believes
captures the rel ationship between the events invol ved.

¢ Finally, in Section 2.6, we specify the means by which conflicting information about the probability
of an event (which must be true at a certain time point) can be combined together. We introduce the
concept of a combination function as a function that combines a set of probability intervalsinto one
interval while satisfying a prerequisite set of axioms.

2.1 Calendars

In this section, we define the concept of acalendar that is used by a TP application. In our architecture, aTP
application assumes the existence of an arbitrary but fixed calendar. The definitionsin this section are not
new, but taken from [29].

Definition 2.1 (timeunit) A time unit consists of a name and a time-value set. The time-value set has a
linear order, denoted <7, where 1" is the name of the time unit. As usual, we let < denote the reflexive
closure of the < relation. A time unit is either finite or infinite, depending on whether itstime-value set is
finite or infinite; an infinite time-value set is assumed to be countable. a

For instance, the time units named day, month, and year may have the time-value sets {1,...,31},
{1,...,12}, and {all integers} respectively.

Definition 2.2 (linear hierarchy) A linear hierarchy of time units, denoted H, is afinite collection of dis-
tinct time units with alinear order C among those time units. The greatest time unit according to C may be
either finite or infinite, while all other time unitsin the hierarchy must be finite. a

For instance, H; = day C month C year, H, = minute C hour C day C month C year, and H; =
hour C day C month are al linear hierarchies of time units.

Definition 2.3 (time point) Suppose?; C --- C T, isalinear hierarchy H of time units. A time pointt in
H isan n-tuple(vq,...,v,) suchthatforal 1 < i < n, v; isatime-valuein the time-value set of 7;. Let
(v1/.../v,) be an abbreviation for time point ¢.

Time points are ordered according to the lexicographic ordering <z which is defined in the usual way.
Thus, timepointt = (vy,...,v,) <g ' = (v],..., o)) iff thereexistsan i (1 < i < n) suchthat v; <7, v}
andv; = v} foralj = i41,...,n. Notethatif i = n, then the (v; = v}) statement is vacuously true.
Whent <y t', wesay that t occurshbeforet’, and conversely, ¢’ occurs after ¢. If ¢ = ¢/, we say that ¢ occurs

simultaneouslywith ¢'. O



A time point in linear hierarchy H is simply an instantiation of each time unit in A (a specific point in
timewithrespect to H). For instance, using hierarchy H, given above, “March 16, 1997” could be specified
by the time point (16/3/1997). By using hierarchy H, given above, “3:45pm on March 12, 1997” could be
specified by the time point (45, 15, 12, 3, 1997). For hierarchy H, given above, time point ¢ occurs before
or simultaneously with ¢/, denoted ¢ = (v4ay, Vmonth, Vyear) <m, ¥ = (vgay,v;wmh,v;em), is true iff

! ! ! ! ! !
((vyew < vyear)\/(vyefw = vyear /\vmmﬂfh < Umomgh)\/(vyear = vyear /\vmmﬂfh = Vnonth /\Uday S vday))'

Definition 2.4 (calendar) A calendar 7 consistsof alinear hierarchy H of timeunitsand avalidity predicate
denoted valid;; (or simply valid if H isclear from context). A vaidity predicate specifies a non-empty set
of valid time points; validy (¢) istrueiff ¢ isavalid time point. The set of all time pointsover calendar T,
denoted 5, isdefined as {7 | ¢ isatimepointin H and validg (t) istrue}. O

For instance, if we arerepresenting the Gregorian calendar by hierarchy H, givenabove, asuitablevalid-
ity predicate states that valid(14/3/1996) = true but valid(29/2/1997) = false. (29/2/1997) isnot avalid time
point since February of 1997 only contains 28 days. Note that a calendar for the hierarchy dayOf\Week C
day C month C year should have only onevalid time point for each instantiation of (day, month, year) since
these three time units uniquely determine the valid time-value for dayOf\\eek.

Let next, (¢) denotethe next, consecutivetime point after ¢. Thus, next,(¢) denotesthetimepointt’ € 5,
where t’ occurs after ¢ and for all other ¢ ¢ S, wheret” occurs after ¢, ¢ also occurs after ¢'.

2.2 Constraints

When expressing a statement of the form “Datatupled isin relation r at sometime pointinaset T’ of time
points with probability in the interval [py, p2] and with the probability distributed according to distribution
6", we must be able to specify the set T of time points. Constraints are a natural way of specifying such
sets. In thissection, we recapitulate (from [29]) how temporal constraintscan be used to specify setsof time
points associated with a calendar.

Definition 2.5 (atomic temporal constraint) Suppose”) C --- C T, isalinear hierarchy H of time units
over calendar 7. An atomic temporal constraint over calendar = must take one of the following forms:

1. (T; op v;) where op isamember of theset { <, <, =, #, >, >} and v; isatime-valuein thetime-value
set of time unit T;. Here, (T; op v;) is caled an atomic time-value constraint.

2. (t1 ~ to) Wherety, 1, € S, andty <y t,. Here, (t; ~ t3) iscaled an atomictime-interval constraint.
For convenience, let (¢1) be an abbreviation for (1 ~ ¢1). O

For example, (day < 15), (month > 8), and (12/3/1997 ~ 10/4/1997) are al atomic temporal constraints,
but (1996 = year) is not. Also, (day < 45) isnot an atomic temporal constraint since 45 is not in the time-
value set of day. Similarly, (15/2/1997 ~ 29/2/1997) is not an atomic temporal constraint since (29/2/1997)
isnot avalid time point in 7. Furthermore, (10/4/1997 ~ 12/3/1997) is not an atomic temporal constraint
since time point (10/4/1997) occurs after (12/3/1997).

Definition 2.6 (temporal constraint) A temporal constraint (' over calendar 7 isdefinedinductivelyin the
following way:

e Any atomic temporal constraint over T isatemporal constraint over 7.
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e If 4 and (', are tempora constraints over 7, then (C7 A Cs), (C1 vV Cs), and (=) are tempora
constraintsover 7.

If temporal constraint C' is solely a boolean combination of atomic time-value constraints, then C' isatime-
value constraint. Similarly, if temporal constraint ' is solely aboolean combination of atomic time-interval
constraints, then C' isatime-interval constraint. ]

For instance, ((day > 5 A day < 15) A (month = 4 v month > 8) A year = 1996) and ((12/3/1997 ~
10/4/1997) v (10/7/1997 ~ 10/7/1997)) are temporal constraintsbut (day > 5 — A day < 15) isnot.

Definition 2.7 (solution set to an atomic temporal constraint) SupposeT; C --- C T, isalinear hierar-
chy H of time unitsover calendar 7. Then an atomic temporal constraint over 7 is of the form (7; op v;) or
(t1 ~ t3). The solution set to an atomic temporal constraint over calendar 7 isthe set S whichisdefined in
the following way:

[Case [S I
op= (L) | S={t|te S, AtT; <p, v;}
op= (<) | S={t|te S, At.T; <r, v;}
op= (=) | S={t|t €S, AtT, = v;}
op=(#) | S={t|te S, AtT, # v}
op=(>) | S={t|te S, Av <p, t.T;}
op = (Z) S = {t te S, Ay <7, tTZ}
Op—(N) Sz{t tEST/\tlgHtSth}

a

For instance, the solution set to (day > 25) over the Gregorian calendar 7 isthe set of al time points (day,
month, year) € T whereday > 25. Notethat (29, 2, 1996) isin thisset but (29, 2, 1997) isnot sincethe latter
isnotavalidtimepointin.S.. Also, thesolutionset to (1/1/1996 ~ 31/12/1996) over the Gregorian calendar
would contain 366 time points (one for each calendar day in 1996) while the solution set to (1/1/1997 ~
31/12/1997) over the same calendar would contain 365 time points.

Definition 2.8 (solution set to a temporal constraint) Let S be the set of all valid time points over cal-
endar 7. Then the solution set to a temporal constraint C' over calendar 7, abbreviated sol ('), isthe set
which isdefined inductively in the following way:

e If C'isan atomic temporal constraint, then 5" = sol (C).

o If C isof theform (Cy A Cy), then S = sol(Cy) Nsol(Cy).
o If C isof theform (Cy v Cy), then 5 = sol(Cy) U sol(Cy).
o If C'isof theform (=Cy), then S = 5. — sol(Cy).

Each time point ¢ € sol(C') iscalled a solutionto C'. ]

For example, the solution set to ((5/8/1997 ~ 10/8/1997) v (7/8/1997 ~ 12/8/1997)) would contain eight
time points.

The following well known result states that any time-value constraint can be rewritten as an equivaent
time-interval constraint (i.e., one which has an equal solution set) and vice-versa.
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Proposition 1 (Folk theorem) Time-value constraintsand time-interval constraints have the same expres-
Sive power.

Definition 2.9 (finite calendar) Caendar 7 isafinite calendar iff S, isfinite. O

Note that when the greatest time unit of a calendar isfinite, then the calendar is guaranteed to be finite. Fur-
thermore, for all temporal constraintsC' over afinite calendar 7, sol (C') must be afinite subset of 5. Givena
finite calendar 7, we uset7 to denote the smallest time point of 7 (w.r.t. the ordering < associated with the
calendar) and ¢7; to denote the largest time point. When 7 is clear from context, we will drop the superscript
7 and just writets and t .

In therest of this paper, al caendars are assumed to be finite unless we specifically state otherwise. Fur-
thermore, al of our examples will use afinite version of the Gregorian calendar.

2.3 Distribution functions

Consider asimple statement saying that datatuple d isin relation » at sometime point intheset {1, 2, 3,4}
with probability 0.7. Suppose we are now asked “what the probability that d isin r at time2?" Thereisno
way to answer this question without assuming the existence of some probability distribution. In this paper,
we wish to allow designers of TP-databases to specify probability distributionsfor each set of time points.

Definition 2.10 (probability distribution function) Let D be atempora constraint over calendar — such
that [sol(D)| > 1. Then aprobability distribution function (PDF) over calendar 7, denoted pdf( D, ¢;), is
afunction which takes D and atime point ¢; € S, asinput, and returns as output a probability p; which
satisfies the following conditions:

1. Foreacht; € 5;,0 < p; <1.
2. Foradlt; € 5. wheret; ¢ sol(D), p; = 0.
3. Xtes,(pj) < 1. Thisimpliesthat 3=, cooyp)(pdf(D,¢;)) < 1.

If the sum thes_r(p]‘) is strictly less than one, the function is called a partial PDF; if the sum is exactly
equal to one, the function is called a complete PDF. A PDF is determinate if thes_r(p]‘) iscomputablein
constant time. O

PDFs are both discrete and finite. Complete PDFs tell us what percentage of the tota probability mass
(i.e., 1.0) isassociated with each ¢; € sol( D). Partial PDFs are useful when modeling infinite distributions;
here, we are considering only afinite portion of thetotal probability mass. Determinate PDFstell us up-front
that a fixed percentage of the probability massis unassigned. Thus, every complete PDF is determinate. In
addition, apartial PDF which is known to allocate only atotal of 0.9 to thevaluesin 5, isdeterminate.

To see how specific PDFs may be defined, let us examine some examples.

Example 2.1 (PDF; uniform) The PDF for the uniformdistribution over calendar 7, denoted pdf, (D, ¢;),
isdefinedasp; = |501%—D)| if £; € sol(D) or p; = 0 otherwise. pdf,, isacomplete PDF.

Noticethat for al ¢1,t2 € sol(D), p1 = p2. In other words, we are equally dividing the probability mass
among all of the relevant time points. Also, 3=, cs (p;) = 1isclearly truesincethereare n = [sol(D )
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non-zero p;s, onefor each t; € sol(D), and n - p; = |sol(D)] - |501%—D)| = 1. Furthermore, we will never
divide by zero since by definition of PDFs, |sol(D)| > 1.

For thefollowing PDF examples, let D be atemporal constraint and let 7, . . ., t,, bealist of distinct time
pointsin 5. where sol(D) = {tg,...,%,} and t; occurs before?;,, foral 0 < ¢ < n,i.e. sol(D)isenu-
merated in ascending order of time points. For instanceif D = (1/8/1997 ~ 3/8/1997)thenn = 2,
to = 1/8/1997,1, = 2/8/1997, and t, = 3/8/1997.

Example 2.2 (PDF; geometric) Let p beaprobability where (0 < p < 1). Thenthe PDF for the geometric
distribution with parameter p over calendar 7, denoted pdf, ,(D,¢;), isdefined asp; = p - (1 — p) if
t; =t; € sol(D)orp; = 0 otherwise. pdf, isapartial PDF. Note that if [sol(D;)| isfixed (or constant time
computable), then pdf, is adeterminate PDF.

If p =1, pdf,,(D.to) = - (2)° pdfy (D, t;) = 1 -(2)" and pdf, ,(D,t;) = L - (%) Foral other
time points¢; € S, pdf, (D, ;) = 0. Noticethat if p = £, then pdf, ,(D,t,) = 1 and pdf, (D, ;) will
be half of pdf, ,(D,t;_1) foreach1 < i < n.

Let pdf, , be defined in the same way as pdf, , except pdf,, ,(D,t,) = 1if [sol(D)] = 1 or
pdf,, ,(D,t,) = 1 — (the{t07...7tn_1}(pdfg7p(D,t]‘))) otherwise. We call pdf,, , the complete correlate
of pdf, , sincepdf, ,(D,t;) = pdf, (D,t;)fordlt; € 5, —{t,} andsincepdf,, , isacomplete PDF. In
general, one can construct a complete correlate for any partial PDF in asimilar way. Note that when p = %
and [sol(D)| > 1, pdf,, , hasthe nice property that pdf,, .(D,t,) = pdf, ,(D,t,_1).

Example 2.3 (PDF; binomial) Let p be aprobability where (0 < p < 1). Then the PDF for the binomial
distributionwith parameter p over calendar r, denoted pdf, ,( D, ¢;), isdefined asp; = () - p* - (1 — p)"~"
if ; = t; € sol(D) or p; = 0 otherwise. pdf;, isacomplete PDF.

Example 2.4 (PDF; Poisson) Let (A > 0) be arate and let e be the base of the natural logarithm (i.e,
e ~ 2.71828). Then the PDF for the Poisson distribution with parameter A over calendar 7, denoted
pdf,, \(D,t;), isdefinedas p; = e=* - 21 if t; = t; € sol(D) or p; = 0 otherwise. pdf,, is a partial
PDF. When |sol(D)| isknown, then pdf,, is a determinate PDF.

Techniques that specify how to associate and store probability distributionswith events are provided by
Dyreson and Snodgrass[13, p. 8] and by Dey and Sarkar [12]. Hence, we do not discussthis matter in further
detail here.

Throughout the rest of this paper, we will use (6 =“«"), (6 =“g,p"), (6 =“g.,p"), (6 ="b,p"), and (6 =
“po, \”) to represent the distributionfunctionsfor pdf,,, pdf, ., pdf,. ,, pdf; ,, and pdf,, \ respectively. Fur-
thermore, unless we specifically state otherwise, assume that parameter p = 0.5. Thus, (6 = “g¢”) represents
the pdf, .5 function.

24 P-tuples

In this section, we will briefly introduce the concept of a probabilistictuple— onethat extendsthe notion of
an ordinary tupleto include probabilistic information.

Definition 2.11 (P-tuple) Let D be atemporal constraint over = where |sol(D)| > 1. Furthermore, let
L,U € [0, 1] be probabilitieswhere I < U, and let é be adistribution function over 7. Then the quadruple
(D, L,U,é)iscalled aprobabilistictuple or P-tuple. O



A P-tuple pt isusually associated with an event e. Here, pt hasthefollowinginterpretation: “ The probabil -
ity that e occured during thetime periods described by sol (D) lieswithintheinterval [ L, U] and isdistributed
according to 6”. Thusfor each ¢ € sol(D), pt indicates that event e occurred at time ¢ with probability
Py e [Ly, Uy

For instance, let e be the event “packet_47 arrivesin Rome”, let D = (1/8/1997 ~ 3/8/1997), and let
pt = (D,0.4,0.8,g). Here, pt indicates that we should distribute [0.4, 0.8] among the members of sol( D)
according to the geometric PDF. Thus, packet_47 arrived at timet = (1/8/1997) with L, U,] = [0.2,0.4],
at=(2/8/1997)with[L;, U;] = [0.1,0.2],0rat ¢ = (3/8/1997) with [L;, U] = [0.05,0.1].

An event isinstantaneousif it can only occur at a single point in time. For example, consider the event
“Tosstoss_id of coin C' comes up heads.” Thisisan instantaneousevent sinceit can only betrue at asingle
point in time — the same coin cannot be tossed twice at the same time and two different tosses of the same
coin represent two distinct events. It isimportant to note that areal world event e (which has a continuous
duration) may be modeled in our framework through two instantaneous events — the event st(e) denoting
the start of ¢ and the event end(e) denoting the end of e. Thusin this paper, without loss of generality, we
only consider eventsthat are instantaneous. A similar assumption is made by Dyreson and Snodgrass[13].

2.5 Probabilistic strategies

Given the probabilities p; and p, of events ey and e, how do we compute the probability p of compound
event (e; A ez)? Asargued in [30], the answer depends on the rel ationship between e, and e,. For instance
if e; and eo are mutually exclusive, p should be zero; if e; and e5 areindependent of each other, p should be
(p1-p2). A similar situation ariseswhen computing the probability of (e; Ve, ). We addressthese problemsby
consulting probabilistic conjunction strategiesand probabilisticdisunctionstrategies. Both of these concepts
were originally defined in [30] and are recapitul ated bel ow.

Before proceeding, recall that intervals obey the following definitions/properties:

L [Ly,Uy] < [Lo, U] iff (L1 < Ly AUy < Uy
2. [Ly, U1] > [La, U] iff (Ly > Ly AUy > Us

).
).
3. [Ll,Ul] - [LQ,UQ] iff (Ll > L2 A U1 < UQ)
(

4. [L, U] = ([Ll, Ul] N [LQ, UQ]) iff (L = Inmax Ll,Lg) ANU = min(Ul, UQ) AL S U)

Definition 2.12 (probabilistic conjunction strategy) Leteventse,,es haveprobabilisticintervals[Ly, U]
and [ L5, Us] respectively. Then a probabilistic conjunction strategy is a binary operation @ which usesthis
information to compute the probabilisticinterval [L, U] for event (e; A e3). When the eventsinvolved are
clear from context, we use“[L, U] = [L1,U1] @ [L2, Us]” todenote“(ey A eq,[L,U]) = (e1,[L1, U1]) ®
(eq,[L2, Us])”. Every conjunctive strategy must conform to the following probabilistic postul ates:

1. Bottomline: ([Ll, Ul] 0% [LQ, UQ]) < [min(Ll, Lg),min(Ul, UQ)]

2. Ignorance: ([L1,U1] ® [Lq,Us]) C [max(0, Ly + Ly — 1), min(Uy, Uz)]. A brief explanation of
thisaxiom isin order. Boole proved in 1854 [7] that if events ¢, e5 are known to have probabilities
intheintervals[Ly, Ui], [ L2, Us], and we do not know anything about the relationship between these
two events, then the best that can be said about the probability for (eq A e ) isthat it liesin theinterval
shown above. This forms the basis for numerous pieces of work in the Al and deductive database
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literature ([19, 34, 36] to name a few). Thisaxiom merely saysthat if we know something about the
dependency between ey, e-, then we must be able to infer a tighter probability interval than complete
ignorance about dependencieswould alow usto infer.

Identity: When (e; A eg) isconsistentand [Lq, Us] = [1, 1], ([L1, U1] ® [L2, Us]) = [L1, U1].
Annihilator: ([L1, U] ® [0,0]) = [0, 0].

Commutativity: ([L1, U1] @ [Le, Us)) = ([Le, Us) @ [L1, Ur]).

Associativity: (([L1, U1] @ [La, U3]) @ [L3, Us]) = ([L1, U1] @ ([ L2, U3) @ [L3, U3))).
Monotonicity: ([L1, U1] ® [Lz2, Us]) < ([L1, U1] ® [Ls, Us)) if [Lg, U] < [Ls, Us]. 0

N o a0 &~ W

The following are some sample conjunctive strategies:

e Usethe ©;, (ignorance) operator when we do not know the dependencies between e; and e;.
([Ll, Ul] ®ig [LQ, UQ]) = [maX(O, Ll —|— L2 — 1),min(U1, UQ)]

o Usethe ,. (positive correlation) operator when the overlap between e; and e, is maximal.
([Ll, Ul] ®pc [LQ, UQ]) = [min(Ll, LQ), min(Ul, UQ)]

¢ Usethe @, (negative correlation) operator when the overlap between e¢; and e, isminimal.
([Ll, Ul] ®nc [LQ, UQ]) = [maX(O,Ll + L2 — 1),max(0, U1 + U2 — 1)]

¢ Usethe @,, (independence) operator when e and e, are independent.
([L1, U1) @4 [L2, Ug)) = [Ly - Lo, Uy - Ugl.

Note that we use the more general notion of a probability interval [L, U] C [0, 1] instead of apoint proba-
bility p € [0, 1]; intervalsalow usto reason about the probabilities of compound events (through operators
such as ©;,) without making traditional assumptionslike independence[30].

Probabilistic conjunctionswill be useful when describing TATA and TPA semanticsfor cartesian products
(§5.6, §6.7).

Definition 2.13 (probabilistic digunction strategy) Let eventse,, ¢ have probabilisticintervals|[ Ly, U]
and [L,, Us] respectively. Then a probabilistic disjunction strategy is a binary operation ¢ which uses this
information to compute the probabilisticinterval [ L, U] for event (e; V e3). When the eventsinvolved are
clear from context, we use“[L, U] = [L1, U] & [L2, Us]” todenote“(eq V eq, [L,U]) = (e1,[L1, U1]) &
(ea,[L2, Us])”. Every disjunctivestrategy must conform to the following probabilistic postul ates:

1. Bottomline: ([Ll, Ul] © [LQ, UQ]) > [maX(Ll, Lg),maX(Ul, UQ)]

2. Ignorance: ([L1,U1] & [L2, Us]) C [max(Lq, Ly), min(1, Uy + Usz)]. The rationalefor thisaxiom
issimilar to that described for Ignorance in conjunction strategies earlier. This expression was aso
derived by Boolein 1854 [7].

3. Ildentity: ([Ll, Ul] S3] [0, 0]) = [Ll, Ul]
4. Annihilator: ([Ly, U] & [1,1]) = [1,1].

5. Commutativity: ([Ll, Ul] © [LQ, UQ]) = ([LQ, UQ] @ [Ll, Ul])
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6. Associativity: (([L1, U1] & [L2, Us]) @ [Ls, Us]) = ([L1, U1]) @ ([L2, Us] & [Ls, Us])).
<

7. MonotoniCity: ([Ll, Ul] @ [LQ, UQ]) ([Ll, Ul] @ [Lg, Ug]) if [LQ, UQ] < [Lg, Ug] a

The following are some sampl e disjunctive strategies:

e Usethe @;, (ignorance) operator when we do not know the dependencies between e; and e;.
([Ll, Ul] @ig [LQ, UQ]) = [maX(Ll, Lg),min(l, U1 —|— UQ)]

e Usethe @, (positivecorrelation) operator when the overlap between e; and e, is maximal.
([Ll, Ul] @pc [LQ, UQ]) = [maX(Ll, LQ), maX(Ul, UQ)]

e Usethe &, (negative correlation) operator when the overlap between e¢; and e, isminimal.
([Ll, Ul] @nc [LQ, UQ]) = [min(l,L1 + Lg),min(l, U1 + UQ)]

¢ Usethe &,,, (independence) operator when e and e, are independent.
([L1, Ur] ®in [L2,Uz]) = L1+ Lo — (L1 - L), Uy + Uy — (Uy - Uy)].

Asconjunctiveand disjunctive probabilistic strategiesare commutative and associ ative, we can extend the
definition of either strategy to apply to more than two arguments. We adopt the notations ([ L1, U1] ® ... ®
Ly, Ux])and ([L1, U] & ... & [ L, Ux]) to represent this generalization.

2.6 Combination functions

Supposethat we are trying to determine the probability that asingle event e istrue at time point . Occasion-
ally, wemay have multiple sources of information where each source providesadifferent probability interval
for e at timet. Here, combinationfunctionscan be used asageneric mechanismfor combiningtheseintervals
intoasingle[L, U] result.

Definition 2.14 (combination function) Let S = {[L1,U4],...,[Lx, Ux]} be a non-empty multiset of
probabilistic intervals. Then a combination function y is a function which takes $' as input, and returns as
output a probabilisticinterval [, /] which satisfies the following axioms:

1. Identity: If [L1, U] = ... = [Lg, Ug], then x(5) = [L1, U1]. In other words, when all input intervals
are equal, the output interval isalso equal to all of theinput intervals.

2. Bottomline: . < max{L; | [L;,U;] € S}. In other words, the lower bound of the result cannot
exceed the largest lower bound of theintervalsin . O

Combination functions will be useful when describing TATA and TPA semantics for intersection (§5.2,
§6.3) and union (§5.3, §6.4). For instance, after a union merges all tuples from two relations, the resulting
relation may contain more than one tuple for a single event. Here, we could compact (merge) these tuples
into a single tuple by applying a combination function.

Definition 2.15 (conflict) A multiset 5 of probability intervals conflict iff ﬂ[LU]eS[L, Ul=10. O
Notethat all combination functionsmust find away to remove conflicts. A class of combination functions
called equity combination functions prescribe to the view that if S = {[L1, U1], [ L2, U3]} does not conflict,

then x(.9') shouldequal [ L1, U1]N[ L2, Us]. However, if theseinterval s conflicted, then different equity com-
bination functions may resolve the conflict in different ways.

12



Definition 2.16 (equity combination function) An equity combination function vy, isacombination func-
tionwhere (N7, ijeslL, Ul # 0) = (xe(S) = Niz,ujeslL: UD). o

The following exampl e shows a variety of equity combination functions.

Example 2.5 (example equity combination functions) :

Name Interval Returned when (), ;1. 5[, U] =0

Optimistic Equity Xeq(S) = [max({L; | [L;, U;] € S}), max({U; | [L;, U;] € S})]
Enclosing Equity Xee(S) = [min({L; | [Ls, U;] € S}),max({U; | [Ls, U] € S})]
Pessimistic Equity Xep(S) = min({L; | [L;, U] € S}), min({U; | [L;, Us] € S})]
Rejecting Equity Xer(S) = [0,0]

Skeptical Equity Xest(S) = [0, 1]

Quasi-independence Equity | x.c.(S) = iz, ves Li, Uiz, v,1es Uil

Note that when (7, ;e sl L, U] # 0, al of thefunctionsabove return (7, 71es[ L, U]

Proposition 2 Every function listed in Example 2.5 is an equity combination function.

3 TP-relations

In this section, we define the syntax and semantics of a Temporal-Probabilistic relation. Intuitively, a TP-
relationisamultiset of TP-tuples. Each TP-tupleconsistsof a“data’ part and a“probabilistic-tempora” part.
Thislatter part iscalled a TP-case statement and it intuitively specifies the probability with which the “ data’
part of the tupleisin the relation at different instances of time. Once TP-cases are defined in Section 3.1
below, we will provide aformal definition of TP-tuplesand TP-relationsin Sections 3.2 and 3.3.

3.1 TP-casestatements

We are now ready to define a TP-case statement and its constituent TP-cases.

Definition 3.1 (TP-case statement over calendar 7) A TP-case statement over calendar 7, denoted v, is
an expression of theform‘ {C1, D1, L1,U1,61),....(Cpy Dy L, Uy, 6) } ‘wheren >1,C;and D; area
temporal constraintsover 7, /,; and U; are probabilities, ¢; isadistributionfunction over 7, and thefollowing
conditionsare satisfied for al 1 < 7 < n:

(OgLigUigl).
sol(C};) C sol(D;). Thisensuresthat ¢;(D;,t) is defined for each time point ¢ € sol(C;).

|sol(C;)| > 1. In other words, C; and D; each have at |east one solutionin 5.

A W doPF

Forall 1 < j < mn,i# j=sol(C;)Nsol(C;)= 0. Inother words, (C; A C;) isalwaysinconsistent.
This ensures that each TP-case statement specifies at most one probability interval for eacht € 5.
Note that we do not have a similar requirement for (D; A D;).
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Foreach1 <i <mn,vy;, = (C;, D;, L;, U;, 6;) iscalled a TP-case of . On occasion, we may want to assign
probabilitiesto every timepointin ;. Here, sol(C',,) = sol(-Cy A =Cy A ... A =C,—1) and ~,, iscalled the
catch-all case. For brevity, when ~,, isa catch-all case, we may use “(x)” to represent C',,.

Note: If sol(C;) = sol(D;), welet “(#)” be an abbreviation for ;. O

Thereader may wonder about theoccurrence of two constraints(C; and D;)inaTP-casey; = (C;, D;, L;, U;, 6;).
Intuitively, sol(C;) isthe set of time pointswhich ~; is“interested in” while sol(D;) isthe set of time points
used when distributing the probability interval [L;, U;] according to é;. When the above TP-case is associ-
ated with adata-tuple d, it saysthat d isin some relation at some time point ¢ that is a solution of the con-
straint ;. The probability that d istruein therelation at suchat isé;(D;, t). In other words, the constraint
D; is used to specify the set of time points used when distributing the probability interval [L;, U;] accord-
ing to ¢;. Thisisan important distinction which is critically necessary. Why ? Suppose that originally,
sol(Cy) = sol(D;) = 5 = {1,2,3,4}and §; = “b,0.5". Thus, the probabilities associated with time
points 1,2,3,4 are 0.125, 0.375, 0.375, 0.125. Now suppose we perform a selection operation (§5.4) which
only asksfor timepointsintheset 5’ = {2,3} C 5. If wehad no D; field in our TP-cases, then we would
merely carry over the fact that .5’ has the binomial distribution on it. But applying the binomial distribution
to this set yieldsa probability of 0.5 to both 2 and 3 which isincorrect because sel ections should not change
the probabilities assigned to time points¢ € .5”. Thus, some mechanism is needed to correctly compute the
probabilities of relations resulting from algebraic operations executed.

Thus, in order to accurately compute probabilities, we must do one of two things:

¢ Carry with usthe origina set of values over which a probability distribution was defined, or

o Determine how to accurately refine an arbitrary distribution to apply to a subset of the set to which
the distribution was originally applicable.

The latter option requires a complex algebraic theory of distributionsand itsimplementation islikely to be
extremely expensive. For this reason, we have chosen the first option above.

For another (simpler) example, consider a TP-case statement with one TP-case v, :

{((1/8/1997 ~ 5/8/1997),(1/8/1997 ~ 10/8/1997),0.4,0.8,u)} Intuitively, v; says that some event
occurred during thefirst five days of August 1997 (in other words, it occurred during one of the time points
insol(Cy)). Since é; = “u”, the probability that it occurred on any of these daysis the same. Specificaly,
this probability is [{5 - 0.4, 75 - 0.8] = [0.04, 0.08] since we are uniformly distributing the probability mass
[0.4,0.8] between al of the (10) time pointsin sol( Dy). In genera, the probability interval for some time
pointt € sol(C;)is[L; - 6;(D;, 1), U; - 6;(D;,t)]. Here, we see that aTP-case (C;, D;, L;, U;, 6;) issimply
an extension to the P-tuple (D;, L;, U, 6;).

Comment 3.1 Even though TP-cases contain two distinct constraint fields, viz. ' and D, this distinction
can be hidden from the user, especially in base relations where ¢ and D are equal .

The expression on the left below is a TP-case statement. However, the expression on the right is not a
TP-case statement as the solution set to €'y (and D;) isempty.

{{(#), (month < 6 A year = 1997),0.4,0.8, 9), || {{(#), (year = 1996 A year = 1997),0.4,0.8, g},
((#), (month > 6 A year = 1997),0.6,0.6,u)} || {(#), (year = 1998),0.0,0.0,u)}

Furthermore,

{{(#), (month < 6 A year = 1997),0.4,0.8, g},
((#), (month > 3 A year = 1997),0.6,0.6,u) }
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is not a TP-case statement as (C; A () isnot inconsistent (i.e., the probabilities for the overlapping time
points are overspecified).

We reiterate that each temporal constraint in a TP-case statement must have a finite number of solutions
(since S isfinite). Werestrict oursel vesto finite calendars and sol ution setsto avoid the complicationswhich
arise when trying to determine whether a constraint using negationsis infinite or not.

3.2 TP-tuples

In this section, we will define the important concept of a Tempora Probabilistic tuple (TP-tuple for short).
We will require that all TP-tuples contain a specia field called a“hidden field.” Intuitively, two TP-tuples
with equal “data’ parts may represent two different events. The hidden field (similar in function, but easier
to implement than the concept of a path introduced in[30]) keegpstrack of how these TP-tupleswere derived
in order to determine whether or not two TP-tuplesrefer to the same event.

Definition 3.2 (hidden field) A hidden field holdsalexicographically sorted hidden list of field-value pairs
(i.e, “<fidd; >:<vaue, >, ..., <fidd,>:<vaue,>"). If there are no pairs to store, the hidden list will be
EMPTY. a

In baserelations, the contents of the hidden field will be EMPTY (since no fields have been projected out).
For intermediate relations, the hidden field holds values of the form “ <field>:<value>" for fields which
have been projected out. Although these vaues should be hidden from the user, we shall see that they are
important in determining whether two TP-tuples refer to the same event or not.

Definition 3.3 (TP-tuple) Let 7y C --- C T, bethelinear hierarchy of time units over calendar = and
suppose A = (Ay,..., Ay) isarelationa schemawhereforal 1 < i < k, A4, ¢ {*C",“D",“L","U”",
“on, Ly, U "R, and fordl 1 < j < om, A; # T;. Furthermore, let Aj, be the hidden field “H”, let
d = (dy,...,d;) bea(data) tupleover A, and let v be a TP-case statement over 7. Thentp = (d,v)isa
TP-tuple over relational schema A and calendar . Intuitively, v givesthe probability for each ¢ € .5 that
d occurs at time . O

For instance, suppose our relational schemais A = (Item, Origin, Dest, H). Then

[ Item | Origin| Det [H[ C [D Il LU/ é]
1 | Rome | Vienna (#) | day < 15 Amonth = 11 A year = 1996 || 0.5 | 0.6 | u
(#) | day > 15 Amonth = 11 A year = 1996 || 0.4 | 04 | u

isaTP-tuplewhichindicatesthat item“11” left from “Rome” and will arrivein “Vienna’ in November 1996
at some time before the 15th (with 50 — 60% probability) or on/after the 15th (with 40% probability). This
TP-tupleisnot concerned with I 1’sarrival before or after November 1996 since no probabilitiesare assigned
to thistime range.

If we were sure that 11 did not arrive in Vienna before or after November 1996, we could add the TP-
case ((#).(*),0,0,u) to the TP-tuple above. If we had no information regarding | 1's arrival before or after
November 1996 but we were assuming that the distribution function for thistimewas“«”, we could add the
TP-case ((#), (*),0, 1, u) to the TP-tuple above.
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Finally, if we had no information whatsoever regarding 11's arrival before or after November 1996, we
would not change the TP-tuple above. Here, we are implicitly assigning a probability interval of [0, 1] to
each time point ¢ which lies outside of November 1996 sincefor al 1 < ¢ < n, ¢ ¢ sol(C}).

Some of our definitionsin the following sectionswill rely upon the following operators which manipulate
hidden lists.

Definition 3.4 (manifest projection) Let A = (Aq,..., A;) bearelationa schemawhere A;, isthe hidden
field(“H") andlet d = (dy,...,d;) bea(data) tuple over A. Then the manifest projection of data tuple d,
denoted P(d), isdefined as (dy, . .., dx_1). In other words, the tuple P(d) containsevery valuein d except
the hidden list (d.H). Here, A, to A;_, are known as manifest data fields. O

Intuitively, the manifest projection of a TP-relation simply eliminates the hidden field of the TP-relation.
The following definition specifies how hidden lists are concatenated.

Definition 3.5 (hidden list concatenation) Theconcatenationof hiddenlistsd.H andd’.H, denoted (d.H ||
d'.H), isahiddenlist »”" which can be constructed by lexicographically merging every field-valuepairind.H
and d’.H. For instanceif d.H = “FId3:Va3, FId6:Va6” and d’.H = “Fld4:Val4, FId8:Val8, FId9:Val9”, then
R =“Fld3:Va3, Fld4:Val4, FId6:Val6, FId8:Val8, FId9:Va 9”. O

Intuitively, the concatenation of two hidden lists can be obtained by taking the union of the two hidden
lists, and then sorting them in lexicographic order.

3.3 TP-relations

We may now define a TP-relation in terms of TP-tuples.

Definition 3.6 (TP-relation) A TP-relation over relational schema A and calendar 7, denoted r, isamul-
tiset of TP-tuples over relational schema A and calendar 7. Intuitively, a base TP-relation is a TP-relation
which did not result from a query. If » is abase TP-relation, then for each TP-tupletp = (d,v) € r, (i)
d.H = EMPTY and (i) for each TP-case (C;, D;, L;, U;, 6;) € v,C; = D;.

We associate with each TP-relation a primary key. This key will be used when we describe the TPA's
semantics for projection (§6.8). O

Recall that a primary key isaminimal set of fields which, taken collectively, allow usto uniquely identify
atuplein areation [25]. In the worst case, a primary key may need to contain every manifest datafield in
arelation. In practice, well designed databases use tuple ids, transaction ids, SSNs, timestamps, etc. to help
keep the primary keyssmall.

Definition 3.7 (TP-database) A TP-database over calendar 7 isapair (Base, M View) where Base isa
set of base TP-relationsover r and M V iew isa set of non-base TP-relations over 7. a

For simplicity, werequireall TP-relationsin aTP-databaseto usethe same calendar. Notethat thisrequire-
ment does not force usto loseany expressional power. Throughout thispaper, weassumethat all TP-relations
are in the same TP-database unless we specifically state otherwise.
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34 Semanticsand consistency of TP-relations

We are now ready to define the formal semantics of TP-relations. In order to provide such a semantics, we
will extend classical logic [44] to the case of TP-relations, by extending the concept of an interpretation in
classical logic [44] to handle TP-relations. Before doing this, a preliminary definition is needed.

Definition 3.8 (data-identical TP-tuples) TP-tuplestp = (d,y) and tp’ = (d’,~’) are data-identical iff
(d = d'). Notethat tp and tp’ may come from different TP-relations as long as both TP-relations have the
same schema. Also, notethat (d = d') only if (d.H = d'.H). 0

Recall that without | oss of generality, weinterpret TP-relationsunder the assumptionthat all data-identical
TP-tuplesrefer to the same, uniqueevent. If ¢p and ¢p’ are data-identical, we assume that they provide com-
plementary information for the same event. If ¢p and ¢p’ are not data-identical, we assume that they refer to
different events. Let tp € r. Then r[¢p] denotes the multiset of all TP-tuplesin » which are data-identical to
tp. Since “data-identical” is areflexive, symmetric, transitiverelation on TP-tuples, it isalso an equivalence
relation on » where each r[¢p] correspondsto an equivalence classin thisrelation.

A TP-relation r is compact iff for each data tuple d and each time point ¢ there is at most one TP-tuple
tp = (d,y) € rwheret € sol(Cy V...V (). Otherwise, since r contains at least two TP-tuples which
refer to the same event at the same time, » is an uncompact TP-relation. Later, we will describe a variety
of compaction operators which convert uncompact TP-relationsinto compact TP-relations by consolidating
probabilistic information for each r[tp] C r (e.g., §6.3).

Intuitively, a TP-tupletp = (d,~) is consistent if there exists a satisfying assignment of probabilitiesfor
each TP-case v; € v. Thisisgiven formal “teeth” through the following definition.

Definition 3.9 (TP-interpretation) Let A = (A, ..., A;) bearelationa schema, let = be a calendar, and
let dom(A) = dom(Ay) X - - - X dom(Ay,) bethedomain of A. Then aTP-interpretation over thepair A, 7
isafunction 14 ; : dom(A) x 57 — [0, 1] suchthat (Vd € dom(A))(} s, La,-(d,t) < 1). a

Let e bethe event represented by datatupled. Thenl, ;(d,t) = p saysthat according to TP-interpretation
14, theprobability that e istrue at timepoint ¢ isp. Let D beatemporal constraint over 7. Then the proba-
bility assigned by 1.4, to D, denoted /4 - (d, D), isequal to 3, o1 py L4,-(d, ). Thisintuitionmay be used
to explain what it means for a TP-interpretation to satisfy a TP-tuple.

Definition 3.10 (satisfaction) Let d beatupleinrelational schema A andlet v, = (C;, Dy, L;, U;, 6;) bea
TP-case. Then I4 ; satisfies(d, v;), denoted 1 4 » |= (d, v;), iff thefollowing conditionshold:

1 L; <I4.(d,D;) <U,i.e theprobability that /4 . assignsto D; liesintheinterval [L;, U;].

2. (Vt € sol(Cy)Uar(d,D;) - 6:(Ds,t) = 14,.(d,t)),i.e. 14, distributes probabilitiesfor each ¢ €
sol(C;) according to ¢;.

TP-interpretation 4 , satisfiesTP-tupletp = (d,v),denoted I 4 ; |= tp, iff I4 . = (d,v;) foral v, € v. O

For example, let usreconsider the following TP-tuple.

[ltem [ Origin| Dest |H[ C | D LU 6]
1 | Rome | Vienna (#) | day < 15 Amonth = 11 A year = 1996 || 0.5 | 0.6 | u
(#) | day > 15 Amonth = 11 A year = 1996 || 0.4 | 04 | u
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Consider the TP-interpretation defined as follows:

I((11,Rome\Vienna), (d,11,1996)) = 0.04whend < 15.

. 4
I((11,Rome\Vienna), (d, 11,1996)) = 01_6 whend > 15.
I((item,origin,dest, (d, m,y)) = 0 otherwise.

This TP-interpretation satisfies the TP-tuple above because
I({I1,Rome\Vienna), {t | t.day < 15 At.month = 11 At.year = 1996}) = 0.04 x 14 = 0.56

which lies between 0.5 and 0.6.

Definition 3.11 (consistency and mutual consistency) A TP-tuple ¢p is consistent iff there exists a TP-
interpretation I4  where I4 . |= tp. A TP-relation r isconsistent iff (374 -)(Vip € r)(Ia - = tp). TP-
relationsr and r’ are mutually consistent iff (314 ;- )((Vip € 7)(1a - = tp) A(Vtp' € 7')(14,; E tp')). Note
that if consistent TP-relations r, »’ have different schemas, then » and »’ must be mutually consistent. a

Later in this paper, we will provide algorithmsto convert any TP-relation into a compact TP-relation. When
aTP-relationiscompact, there are no two TP-tuplesthat are data-identical, and hence, we can check consis-
tency of aTP-relation by individually checking consistency of each TP-tuple. SupposeaTP-tupletp = (d, )
hasy = {(C1, D1, L1, U1, 61),...,(Cyn, Dy, L, Uy, 6,,) } asits TP-case statement. Thenit sufficesto check
that

(In+--+Ly) < min(1,X5, L - Yes, 6(D;,1)).

If this condition holds, then the TP-tuple is consistent. Thisforms the basis for the following claim. When
the distribution function used is determinate, then the quantity on the right side of the above inequality can
be computed in linear time because the determinacy condition guarantees constant time computation of the
sum Etesréi(Dia t))

Proposition 3 Checking consistency of a compact TP-relation which uses deter minate PDFsislinear inthe
sSize of the TP-relation.

4 Annotated relations

Annotated relations are the flat, relational equivalents of TP-relations. Let TP-case statement v =
{C1, D1, L1,U1,61), ..., (Cpy Dy, L,,, Uy, 6,,) }. Thenwe can “ flatten” TP-tupletp = (d, ) by creating
an annotated tuplefor each time point ¢ € sol(Cy) U ... U sol(C)).

Each annotated tuple («t) provides probabilistic information ([ L., U;]) for one data tuple (d) at one point
in time (¢). According to the definition for a TP-case statement, ¢ € sol(C;) for a most one y;, =
(Ci, Dy Ly, Ug, 6;) € ysince (i # j) = (sol(Cy) Nsol(Cy) = 0). I1f ¢ ¢ |U,,e,s0l(C;), then we do
not create an annotated tuplefor ¢. We denotethe set of all annotated tuplesderived from ¢p by ANN(p). In
the worst case, ANN(¢p) may contain |5 ;| tuples.

Let » beaTP-relation containing » TP-tuplesand let & denote the multiset union operator (in other words,
aunion operation without duplicate elimination). Then the annotated relation for », denoted ANN(r), isde-
fined as4;,c, ANN(tp). This means that ANN(r) may contain up to n - |.S,| tuples! In general, annotated
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relationswill always befinite sincethey are derived from afinite number of TP-cases, and each TP-case per-
tains to afinite number of time points (since 7 isfinite). Nonetheless, we can clearly see that ANN(?p) and
ANN(r) will often belarge and impractical. Thisiswhy we only use annotation for theoretical purposes
such asillustrating a process or proving equivalences between query expressions. I n our implementa-
tion, we never create annotated relations.

Let r consist of one TP-tuple which contains datatuple (“*D1”, EMPTY) and TP-case v, as shown below.

[Daa[H[C [D [ L [U[4]
|| D1 | || (#) | day < 4 Amonth = 11 A year = 1996 || 04 | 0.8 | u ||

Then ANN() will be

| Data [ H || Day | Month | Year || L, | U; |

D1 1 11 1996 || 0.1 | 0.2
D1 2 11 1996 || 0.1 | 0.2
D1 3 11 1996 || 0.1 | 0.2
D1 4 11 1996 || 0.1 | 0.2

However if v1's (' field was “day < 3 A month = 11 A year = 1996”, then ANN(r) would no longer
contain the last tuple shown above. In general, note that changing C; only affects the number of annotated
tuplesin ANN(r), not the probabilitiesfor the remaining time points.

Noticethe“0.1" and “0.2” valuesin the probabilistic fields above. These values were determined by uni-
formly distributing the available probability [0.4, 0.8] among the four annotated tuplesin ANN(r). We were
only justified in making this uniformity assumption since é; = “u”. In general, TP-relationswill only give
us probability intervalsfor arange of time points, and determining (tight) probability intervalsfor each time
point within that range requires us to apply a distribution function ;.

In this section, wefirst present amore formal definition for annotated relations. We then give an example
to show how annotated relations change when we vary the distribution functions.

4.1 Formal definitions

Definition 4.1 (annotated relation for a TP-tuple) Let ¢p = (d,v) be a TP-tuple over relational schema
(Ay,...,Ay) and calendar - where d = (dy,...,dy). Supposey contains n TP-cases of the form v, =
(Ci, Dy, Li, U 6) (1 < @ < n) and suppose 7 consists of alinear hierarchy H containing m time units
T, C.--CT,.Here eacht € 5. will beof theform¢ = (vy,...,v,).

Then the annotated relation for TP-tupletp over calendar 7, denoted ANN(p), isdefined as
{(d,t, L, U;) | t € sol(C;) forsome~; € yand [L;, U] = [L; -z, U; - x] wherez = 6,(D;, t)}. a

Intuitively, in the definition above, « represents the percentage of sol( D;)’s probability whichisassociated
with time point ¢ according to 4;. Note that when we explicitly show all fields of an annotated tuple, at =
(di,...,dg,v1,. . 0m, Ly, Up) isover theschema( Ay, ..., Ak, 11, ..., Ty, Ly, Uy). Here, Ay to Ay are
manifest data fields, A, isthe hiddenfield, 7 to T;,, are temporal fields, and 7.;, U; are probabilisticfields.

Definition 4.2 (annotated relation for a TP-relation) Letr beaTP-relation over r containingn TP-tuples
tpy .. .tp,. Thenthe annotated relation for TP-relation r over calendar =, denoted ANN(r), is defined as
themultiset (ANN(tpy) W ... W ANN(¢p,,)) over T.
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We associate with each ANN(r) the primary key which is associated with ». This key will be used when
we describe the TATA's projection operation (§5.7). O

4.2 Semantics and consistency of annotated relations

Our semantics for annotated relations closely parallels our semanticsfor TP-relations (§3.4).

Definition 4.3 (data-identical annotated tuples) Annotated tuplesat = (d,t, L, U;) and at’ =
(d',t', L}, U]) are data-identical iff (d = d’). 0

We interpret annotated relations under the assumption that all data-identical annotated tuples refer to the
same event. If at and at’ are not data-identical, we assume that they refer to different events. Let d be adata
tuple and let ¢ be atime point. Then ANN(r)[d, t] denotes the equivalence class of the pair (d, t), i.e, the
multiset of al at € ANN(r) where (at.d =d Aat.t =1t).

Suppose at = (d,t, Ly, Uy) € ANN(r), at’ = (d',t', L}, U]) € ANN(r),and (d = d' At = t'). Here,
sinceat, at’ € ANN(r) refer tothe same event at the same point intime, ANN(r) is an uncompact annotated
relation. If there are no pairs of annotated tuplesat, at’ € ANN(r) where(d = d’ At = t'), then ANN(r)
is a compact annotated relation. Later, we will describe a variety of compaction operators which convert
uncompact annotated relations into compact annotated relations (e.g., §5.1). The following theorem states
that the concept of “compact relation” for TP-relations and annotated rel ations coincide.

Theorem 1 A TP-relation r is compact iff its annotated counterpart, ANN(r), is compact.
We may now define what is means for an annotated relation to be satisfied by a TP-interpretation.

Definition 4.4 (satisfaction of annotated tuples) Let d be atuplein relational schema A, let ¢t be atime
pointin S, and let [L, U] be aprobability interval. Then a TP-interpretation / 4 - satisfies annotated tuple
at = (d,t, Lt, Ut), denoted IAJ |I at, iff Lt S IAﬂ—(d,t) S Ut. d

Definition 4.5 (consistency of annotated relations) Anannotatedtupleat isconsistentiff (374 ;)(14,; =
at). An annotated relation ANN(r) is consistent iff (314 - )(Vat € ANN(r))(14,. | at). Annotated re-
lations ANN(r) and ANN(r") are mutually consistent iff (374 - )((Yat € ANN(r))(La - |= at) A (Vat' €
ANN()(L4,r | at')). O

The following theorem tellsus that if r isaconsistent TP-relation, then ANN(r) isalso consistent.

Theorem 2 Let r bea TP-relation. If 14 , satisfiesr, then 14 ; also satisfiesANN(r). Henceif r isconsis-
tent, SOiISANN(r).

The converse of thistheoremisnot true, i.e., it may be the case that a TP-interpretation satisfies ANN(r),
but does not satisfy ». Thisis shown in the following example.

Example 4.1 (satisfaction) Let » consist of one TP-tuple (d,v) wherey = {{(#),(1 ~ 2),0.4,0.8,u)}.
Then ANN(r) = {aty, aty} whereat; = (d,1,0.2,0.4)and aty = (d,2,0.2,0.4).

Now consider the TP-interpretation /4 - suchthat /4 ,(d,1) = 0.3 and 14 .(d,2) = 0.4. Clearly, 14 ;
satisfies ANN(r), but 14 . does not satisfy r because every TP-interpretation ./ 4 , that satisfies must have
Jar(d,1)=Ja,(d,2).
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Thisoccurs since thedetails of the distribution get lost when annotating arelation — thisis not surprising
as annotated relations have no fields for including information about distributions.

Instead, we can show that if » is compact, if (d,v) € r,andif (d,t, L;, U;) € ANN(r), thenthere must be
aTP-interpretation I 4 ~ of » such that /4 ;(d,t) = L. A similar statement appliesto U;. This means that
the bounds contained in ANN(r) are tight, and hence, ANN(r) correctly captures the implied probability
intervalsfor datatupled at timet.

Theorem 3 Let » be a compact TP-relation containing a TP-tuple (d, ), and suppose (d,t, Ly, U;) €
ANN(r). Thenthereisa TP-interpretation / 4 . satisfying r suchthat /4 -(d,t) = L;.

Theorems2 and 3jointly tellsusthat asfar aslower bounds are concerned, » and ANN(r) are equivalent
when r is known to be compact. Later, we will describe mechanisms to make compact a TP-relation r.

Note that the above result does not hold for upper bounds — the reason for thisis that in a TP-tuple, the
upper bounds may often beloose (i.e., not tight). For instance, consider the following TP-tuple:

[Daa[H]C [D [Z 0]
D1 ) | 5/L/1098) [ 06| 1 | u
(#) | (6/1/1998) || 04 | 1 | u

It is easy to seethat the upper bounds of the TP-cases above can be tightened to 0.6 and 0.4 respectively.
Hence, these upper boundsare “loose” and need to betightened if atheorem similar to Theorem 3isto hold.

Definition 4.6 (tightening) Let v = {v4,...,7,} be a TP-case statement where each TP-case v, =
(Ci, Dy, L;, Uy, 8;). A tightening of y returns a TP-case statement v = {7, ...,7/} where each v/ =
(cr, Dy LY Ul ey andeach U < U foradl 1 < i < n.

A TP-tuple(d,v) issaid to betight iff thereis no other TP-tuple (d, v’
v and (i) for al TP-interpretations 4 -, L4, = (d,7)iff I4; E (d,7).

A TP-relation istight iff every TP-tupleinitistight. O

) such that: (i) 7’ is atightening of

Thefollowing theorem tells usthat for tight and compact TP-relations, Theorem 3 holds for upper bounds
aswell.

Theorem 4 Let r bea compact, tight, TP-relation containinga TP-tuple (d, v ), and suppose(d, t, L, U;) €
ANN(r). Thenthereisa TP-interpretation / 4 » satisfying r suchthat 74 (d,t) = Uy;.

Theorems 3 and 4 jointly tell usthat the conversion of aTP-relation r to annotated form preserves bounds
when r istight and compact. Later, in Section 6.10, we will describe a procedure for tightening TP-rel ations.

4.3 Sampleannotated relations

Let » consist of one TP-tuple which contains two TP-cases as shown bel ow.

[1tem [ Origin | Det [H[ C | D LU 6]
1 | Rome | Paris (#) | day <2 A month = 8 A year = 1997 05|07 |
(#) | day > 5 Aday <7 Amonth =8 Ayear =1997 || 0.3 | 06 | @

21



— > ANND

r % ANN() gZ(ANN 1), ANN())
ANN(f2 .r)
\ \ / /

£, % i;\‘(:NN(f)) — A S e
(1)
(8) Unary Operators (b) Binary Operators

Figure 2: Commutativity between operators of the TATA and TPA agebras

Note that the variable & must be instantiated. If & = “u”, ANN(r) will be

[ Item [ Origin | Dest | H || Day [ Month | Year || L, | U, |
11 Rome | Paris 8 1997 || 0.25 | 0.35
11 Rome | Paris 1997 || 0.25 | 0.35
11 Rome | Paris 1997 || 0.10 | 0.20
11 Rome | Paris 1997 || 0.10 | 0.20
11 Rome | Paris 1997 || 0.10 | 0.20

~N| OO N -
00| 00| OO 00

where (L, U;] = 5 - [0.5,0.7] for thefirst two tuplesand [L;, U;] = £ - [0.3, 0.6] for the remaining tuplesin
ANN(r). However if & = “¢”, ANN(r) will be

| Item | Origin [ Dest | H [ Day | Month | Year || L, | U, |
11 Rome | Paris 8 1997 0.25 0.35
11 Rome | Paris 8 1997 0.125 | 0.175
11 Rome | Paris 8 1997 0.15 0.30
11 Rome | Paris 8 1997 0.075 0.15
11 Rome | Paris 8 1997 || 0.0375 | 0.075

~N| OO N -

where[L,;, U;] = §-[0.5,0.7], £ -[0.5,0.7], 5 - [0.3,0.6], 1 - [0.3,0.6],and £ - [0.3, 0.6] for thefirst through
fifth tuples of ANN(r) respectively. Notice that modifying ¢ (i.e., the distribution function é) only affects
the L, and U, fields of ANN(r).

5 Theoretical Annotated Temporal Algebra

In this section, we define the Theoretical Annotated Temporal Algebraand provide definitionsfor compac-
tion, intersection, union, selection, difference, cartesian product, projection, and joinon annotated relations.

Figure 2 shows what we hope to accomplish through this section. We know that every TP-relation can be
convertedintoa(potentialy very large) annotated rel ation. Asannotatedrelationsare explicitrepresentations
of TP-relations, the definition of the above operations on annotated relations can be explicitly defined and
justified — thisiswhat we will do in thissection. Then, in Section 6, we will show how these operationscan
be implemented in the TP-Algebrain such a way that the TP-Algebra operations implement the annotated
algebra operations on the implicit (smaller) TP-relations, rather than their larger annotated counterparts.
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The definitionsin this section will produce a new annotated relation ANN(r") based on input from con-
sistent annotated relations ANN(r), ANN(r'). Oftentimes, these definitions will refer to annotated tuples
at, at’ which are assumed to be of theformat = (d,t, L, U;) and at’ = (d', ', L}, U]).

Note: Our examplesillustratingthe Theoretical Annotated Temporal Algebraand the TP-Algebrawill
be based on the relations shown in Figure 3.

5.1 Compaction of an annotated relation

The first operation we define will be compaction as this operator is needed to define other operators. Com-
paction isthe TP analog of duplicate elimination in therelational algebra.

Definition 5.1 (Compaction of an annotated relation) A function x from annotated rel ationsto annotated
relationsis called a compaction operationiif it satisfies the following axioms:

e Compactness : x(ANN(r)) is compact for all annotated relations ANN(r).
¢ No Fooling Around (NFA) : If ANN(r) iscompact, then x(ANN(r)) = ANN(r).

o Conservativeness : If at = (d,t, Ly, Uy) € k(ANN(r)), thenJat’ = (d,t, L}, U]) € ANN(r). O

The Compactness axiom assures us that the result of a compaction operation will be acompact relation.
The NFA axiom states that applying compaction operation to a compact relation should not change therela
tion. The Compactness and NFA axiom jointly guarantee that compaction operations are idempotent, i.e.
k(k(ANN(r))) = k(ANN(r)). The Conservativeness axiom says that any information which appears
in the result of a compaction has to originate from information in the initia relation; no information about
“new” events, or eventsat “new” time points gets added during compaction.

It should be clear that there are many possiblewaysto compact arelation. Onepossibleclassof compaction
strategies involves the use of a combination function (as defined in Section 2.6).

Definition 5.2 (y-compaction of an annotated relation) Let y be a combination function. Then the

x-compaction of annotated relation ANN(r ), denoted . (ANN(r)), isdefined as x, (ANN(r)) =
{at = (d,t. Lo, U) | [Le, U = XIS 07 [0, 077]))) where
ANN(r)[d, 1] = {at'™ .. ™} and at!™) = (d, 1, LD, 7)), O

?

Intuitively, in combination function based compactions, y isapplied to the multiset of all [L;, U;]s associ-
ated with (d, ¢). Theresulting [L, U] then becomes the only probability interval associated with (d, ¢). The
following proposition states that an operation defined in this manner isindeed a compaction operation.

Proposition 4 Let y be any combination function. Then x, (ANN(r)) isa compaction operation.

Theorem 5 indicatesthat ., (ANN(r)) operations al so possess another important property: Reasonable-
ness. Intuitively, this property is similar to the converse of Conservativeness — every tuplein ANN(r)
leads to a corresponding tuple in the result of the compaction.

Theorem 5 If at’ = (d,t, L}, U]) € ANN(r), then3at = (d,t, Ly, U) € k (ANN(7)).
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144

1

ANN(r)
[ Data|H || Day | Month | Year || L, | U, |

D1 1 8 1997 ] 032 | 044

oL T AE ENEE e
D1 (#) | (1/3/1997 ~ 3/8/1997) || 0.64 | 0.88 | ¢ : :

(#) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u D1 5 | 8 |1997)010)020
: : D1 6 8 | 1997 || 0.10 | 0.20

D1 7 8 | 1997 || 0.10 | 0.20

D1 8 8 | 1997 || 0.10 | 0.20

T2 ANN(TQ)

[Data|H | Day [ Month | Year | L, | U; |
D1 2 8 1997 | 0.10 | 0.25
[Daa[H]C [D I £ [ U J[&] D1 3 8 | 1997 || 0.05 | 0.125
D1 ) | (2/8/1997 ~ 3/8/1997) || 0.20 | 050 | ¢ D1 6 8 | 1997 || 0.10 | 0.20
#) | (6/8/1997 ~ 9/8/1997) || 0.40 | 0.80 | u D1 7 8 | 1997 || 0.10 | 0.20
(#) | (6/8/ /8/1997)
D1 8 8 | 1997 || 0.10 | 0.20
D1 9 8 | 1997 || 0.10 | 0.20

T3 ANN(Tg)

T T P77 [ DALl Da: [ Da [Wown] Yea [ L [ Ui |
DI | D2 @) | (2/8/1997 ~ 2/8/1997) || 020 | 040 | u Bi Bg ; g igg; 8‘38 8‘38
D1 | D3 (#) | (2/8/1997 ~ 3/8/1997) || 0.60 | 0.80 | ¢ S E— = -

T4 ANN(T4)

eIl B P75 [l Da@ [H [ Day [ Momh | Ver [ L | U |
DI | D2 @) | (2/8/1997 ~ 3/8/1997) || 020 | 2.00 | ¢ Bi B; g g igg; g'ég g'gg
D1 | D3 (#) | (3/8/1997 ~ 3/8/1997) || 050 | 050 | u s - o oo | ose oo
D4 | D5 (#) | (1/8/1997 ~ 1/8/1997) || 0.70 | 0.80 | u = - -

Figure 3: Example Base TP and Annotated Relations




Another possible class of compaction strategiesinvolvesthe use of ap-strategy p (i.e., aprobabilistic con-
junction or disjunction strategy as defined in Section 2.5). These compactions, denoted « ,, are defined inthe
sameway as k., (ANN(r)) except welet [ Ly, U] = ([, v\ @, .. .0, L), U/"]) when p isacon-
junctive p-strategy, and let [L¢, U] =
(L v g, L, (2D 7D]) when p isa conjunctive p-strategy.

Proposition 5 Let p be any (conjunctive or disjunctive) p-strategy. Then x,(ANN(r)) isa compaction op-
eration.

5.2 Intersection of two annotated relations

The intersection of annotated relations ANN(r) and ANN(r") is viewed as the operation of extracting infor-
mation which is common to both relations. In our algebra, we break intersection into two suboperations:
First, a multiset intersectionwill extract all tuplesfrom both ANN(r) and ANN(r") which contain “common
information”. Then, we will useone of our previously-defined compaction operatorsto compact the result of
this multiset intersection. Finally, intersectionwill be defined as a combination of these suboperations. Note
that intersection (and multiset intersection) is only defined when both rel ations have the same schema.

Definition 5.3 (multiset inter section of two annotated relations) The multiset intersection of annotated
relations ANN(r) and ANN(~’), denoted ANN(r) N ANN(r’), is defined as ANN(r"’) = {at € ANN(r) |
(Jat" € ANN(#"))(d=d' ANt =1t)} U{at’ € ANN(+') | (Fat € ANN(r))(d=d At =1)}. 0

Intuitively, ANN(r"") will contain all at € ANN(r) and al at’ € ANN(+') where at and at’ refer to
the same event at the same point in time. Recall that “(Jat € ANN(r))” and “(dat’ € ANN(+'))” are
shorthand for “(3(d, ¢, Ly, U;) € ANN(r))” and “(3(d’, t', L}, U]) € ANN(r"))" respectively. For greater
clarity and conciseness, our definitions will make use of thisimplicit notation. For example, ANN(r") =
ANN(Tl) N ANN(TQ) will be

| Data| H[ Day | Month | Year || L, | U, |

D1 2 8 1997 || 0.16 | 0.22
D1 3 8 1997 || 0.08 | 0.11
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20
D1 2 8 1997 || 0.10 | 0.25
D1 3 8 1997 || 0.05 | 0.125
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20

Clearly, ANN(r") aboveisuncompacted. To obtainacompact annotated relation, wemay useany ., com-
paction operator. Using a ~,, compaction operator when defining intersection makes sense because the two
different relations r and ' may both contain data tuple d at some time point ¢, but with different probabili-
ties. Inthis case, using a conjunction strategy is not appropriate because we are not combining probabilities
of different events— we are combining two different probabilitiesassigned to the same even by two different
sources (relations r and r’). Thisis exactly what combination functions y were designed to support.
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Definition 5.4 (inter section of two annotated relations) The intersection of annotated relations ANN(r)
and ANN(r’") under the x combination function, denoted ANN(r) N, ANN(r'), isdefined as x, (ANN(r) N
ANN(r")). O

For example, ANN(71) Ny ANN(72) = key (ANN(#”)) will be

| Data | H [[ Day | Month | Year [ L, | U: |

D1 2 8 1997 || 0.16 | 0.22
D1 3 8 1997 || 0.08 | 0.11
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20

5.3 Union of two annotated relations

Just likeintersection, the union of two annotated relationswill be presented as a combination of two suboper-
ations: multiset union, which combines the information from two relationstogether and compaction, which
compacts theresult. Asaways, unionis only defined when both rel ations have the same schema.

Definition 5.5 (multiset union of two annotated relations) The multiset union of annotated relations
ANN(r) and ANN(r"), denoted ANN(r) U ANN(7), isdefined as ANN(7") = ANN(r)w ANN(+/). O

Intuitively, ANN(»") will contain @l at € ANN(r) anddl at’ € ANN(r'). For example, ANN(r") =
ANN(Tl) U ANN(TQ) will be

[ Data| H[ Day | Month | Year | L, | U, |

D1 1 8 1997 || 0.32 | 0.44
D1 2 8 1997 || 0.16 | 0.22
D1 3 8 1997 || 0.08 | 0.11
D1 5 8 1997 || 0.10 | 0.20
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20
D1 2 8 1997 || 0.10 | 0.25
D1 3 8 1997 || 0.05 | 0.125
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20
D1 9 8 1997 || 0.10 | 0.20

Asinthecase of intersection, ANN(r"") may overspecify probabilisticinformation. We can consolidatethis
information by using a«, compaction operator. Thereason for using the operator «., instead of aconjunction
strategy is exactly for the same reason that we used the ., compaction operator when defining intersection
(see discussion preceding Definition 5.4).

Definition 5.6 (union of two annotated relations) The union of annotated relations ANN(») and ANN(r")
under the y combination function, denoted ANN(r)U, ANN(r'), isdefined as x, (ANN(7) UANN(r')). O

For example, ANN(71) Uy ANN(72) = Key (ANN(#”)) will be
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| Data| H || Day | Month | Year || L, [ U; ||

D1 1 8 1997 || 0.32 | 0.44
D1 2 8 1997 || 0.16 | 0.22
D1 3 8 1997 || 0.08 | 0.11
D1 5 8 1997 || 0.10 | 0.20
D1 6 8 1997 || 0.10 | 0.20
D1 7 8 1997 || 0.10 | 0.20
D1 8 8 1997 || 0.10 | 0.20
D1 9 8 1997 || 0.10 | 0.20

Notethat although ANN(r;) and ANN(r;) are both consistent, ANN(ry)U., ANN(r;) aboveisan incon-
sistent annotated relation (since for some data tuple d, the sum of the I.; values exceeds 1.0). This occurs
since ANN(r) and ANN(r5) are not mutually consistent (§4.2). In generd, if consistent annotated relations
ANN(r) and ANN(r’) are aso mutually consistent, then ANN(r) U., ANN(r’) will dways be consistent.

5.4 Selection on an annotated relation

We represent a selection condition over calendar = by thesymbol C. If C isof theform (F op v) or (1 ~ t3),
then € isan atomic conditionover 7. Let C be an atomic condition,let 7 C - - - C T1,, bealinear hierarchy
H of time units over 7, and suppose TP-relation r is over relational schema A = (A4,..., Ax). Thenone
of the following cases must hold:

o If /' = A, forsomel < i < k, thenC isadata condition.
o If /=T for sometimeunit”; in I orif C isof theform (¢; ~ t), then C isatemporal condition.
o If F=“L"0r F =*“U", thenC isaprobabilistic condition.

¢ Otherwise, C isaninapplicablecondition. Inthiscase, o¢(r) and o¢ (ANN(r)) arenot defined. Notice
that selections on the hidden field (i.e., F' = Ay) are not permitted. Throughout this paper, we will
assumethat C is not an inapplicable condition.

Definition 5.7 (selection on an annotated relation; atomic condition) The selection of atomic condition
C on annotated relation ANN(r), denoted o¢ (ANN(r)), is defined in the following way:

o If C isadatacondition, ANN(7") = {at € ANN(r) | d satisfiesC}.
In this case, our selection is based on the classica relational algebra.

e If C isatemporal condition, ANN(r") = {at € ANN(r) |t € sol(C)}.
o If Cisaprobabilisticcondition, ANN(7") = {at € ANN(r) | ([L,U] = [L, Uy]) satisfiesC}. O

For exampleif C = (2/8/1997 ~ 7/8/1997), 0¢c(ANN(rq)) and o¢c (ANN(r3)) will be

| Data| H [ Day | Month | Year || L, | U, |

[ Data|H | Day [ Month | Year || L, | U; ]

D1 2 8 1997 || 0.16 | 0.22

D1 2 8 1997 || 0.10 | 0.25
D1 3 8 1997 || 0.08 | 0.11

D1 3 8 1997 || 0.05 | 0.125
D1 5 8 1997 || 0.10 | 0.20

D1 6 8 1997 || 0.10 | 0.20
D1 6 8 1997 || 0.10 | 0.20 D1 = 3 1997 11020 | 020
D1 7 8 1997 || 0.10 | 0.20
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butif C = (L # 0.10), o¢(ANN(ry)) and o¢ (ANN(72)) will be

| Data| H [[ Day | Month | Year | L, [ U, |

D1 1 8 1097 [[032 ] 044 | || Data|H | Day | Month | Year | L, | U, |
D1 2 8 [1997[016] 022 [ DL | [ 3 | 8 |1997 ] 005] 0125
D1 3 8 | 1997 || 0.08 | 0.11

Later, we will describe how to perform sel ections with non-atomic selection conditions (§6.5).

5.5 Differenceof two annotated relations

Asintheclassical relational algebra, difference is only defined when both relations have the same schema.
There are many possible ways of defining difference, but we have chosen to base our definition on the intu-
itionthat if two relations r and ' represent the information that two different “agents’ have about the same
world, then r — " should represent the information about the world that » has and »” does not.

Definition 5.8 (difference of two annotated relations) The difference of annotated relations ANN(») and
ANN(r"), denoted ANN(7) — ANN(7'), isdefined as ANN(+") = {at € ANN(r) | (Vat’ € ANN(+"))
(d#£d Vvt#£t)}. O

Thus, ANN(7") will not include at € ANN(r) if thereexistsan at’ € ANN(+") which refers to the same
event at the same point intime. For example, ANN(r;) — ANN(rz) and ANN(rz) — ANN(r1) will be

| Data| H [ Day [ Month | Year || L, | U, | i
D1 1 8 1997 || 0.32 | 0.44
D1 5 8 1997 || 0.10 | 0.20

| Data|H [[ Day | Month | Year || L, | U; ||
DI | || 9 | 8 |1997]010]020]

Supposeat; = (d,t,0.2,0.4) € ANN(r)andat, = (d,t,0,1) € ANN(+'). Thenby definition, ANN(+")
will not contain at;. Now suppose we removed from ANN(r’) all annotated tupleswhere [ L}, U/] = [0, 1].
Here, ANN(r") will contain at,. Apparently, we cannot simply throw out tupleswhere [ L}, U] = [0, 1].

Intuitively, if we do not have an annotated tuple for data tuple d at time ¢, then “we do not know any-
thing about (d, t)’sprobability”. Inthiscase, (d, t) isimplicitly assigned a probability interval of [0, 1]. On
the other hand, at, indicates that “we know that we do not know anything about (d, t)’s probability”. This
distinction is subtle yet important; by keeping these two cases distinct, we alow both the closed world as-
sumption (where (d, ¢) isimplicitly assigned a probability interval of [0, 0]) and the open wor|d assumption.

5.6 Cartesian product of two annotated relations

Each tuple in the result of a cartesian product reflects the conjunction of two events. Suppose that at time
t, events ey and e, have probability intervals [L, U] and [L4, Us] respectively. In order to compute the
probability interval [L, U] for theevent (e; A ey ) at timet, wemust apply a probabilistic conjunction strategy
a,i.e,[L, U] =[11,U1]@a [ L2, Us] (§2.5). Thisalowsusersto ask queries such as“ Compute the cartesian
product of annotated relations ANN(r) and ANN(r’) under the assumptionthat thereisno information about
dependencies between events in these relations.”

Definition 5.9 (cartesian product of two annotated relations) The cartesian product of annotated rela-
tions ANN(r) and ANN(r") under the o probabilistic conjunction strategy, denoted ANN(r) x, ANN(r'),
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isdefined as ANN(+") = {(d”,t, L", U!') | (3at € ANN(r)) A (3at’ € ANN(+')) A
(d" = (P(d), P(d), k")) A (B = (d.H || d"H)) A (8 = ') A([LY, U] = [Le, Ud] @a [L3, U]} =

Notethat cartesian products only combine annotated tuples which refer to the same time point. It
computes the combined datatuple d”” by merging (i) manifest datafieldsfrom ANN(r) (i.e., P(d)), (i) man-
ifest data fields from ANN(r’) (i.e, P(d")), and (iii) »” = d.H || d".H (i.e., the hidden list concatenation
of d.H and d’.H). It then computes the combined probability interval by applying user selected conjunction
strategy «. Thisis highly appropriate because when computing Cartesian Products, we are looking at the
probability that the concatenation of the two data tuplesisin the (ordinary set theoretic) cartesian product
of the two relations at a given instant of time. Thisistherefore a conjunctive event, and hence, the use of a
conjunctive p-strategy when performing cartesian products.

For example, ANN(ry) x;, ANN(72) will be

| ri.Data | ro.Data | H || Day | Month [ Year | L, | U; |

D1 D1 2 8 1997 || 0.00 | 0.22
D1 D1 3 8 1997 || 0.00 | 0.11
D1 D1 6 8 1997 || 0.00 | 0.20
D1 D1 7 8 1997 || 0.00 | 0.20
D1 D1 8 8 1997 || 0.00 | 0.20

but ANN(Tl) Xpe ANN(TQ) will be

| ri.Data | ro.Data | H || Day | Month [ Year | L, | U; |

D1 D1 2 8 1997 || 0.10 | 0.22
D1 D1 3 8 1997 || 0.05 | 0.11
D1 D1 6 8 1997 || 0.10 | 0.20
D1 D1 7 8 1997 || 0.10 | 0.20
D1 D1 8 8 1997 || 0.10 | 0.20

5.7 Projection on an annotated relation

A list F of fieldsissaid to be projectablew.r.t. TP-relation r if (i) every field in F isamanifest datafield of
r, and (ii) F isnon-empty. F is projectablew.r.t. annotated relation ANN(r) iff F is projectablew.r.t. r. It
isimportant to note that hidden fields cannot be projected out.

Definition 5.10 (projection on an annotated relation) Let F bealist of fieldswhich are projectablew.r.t.
ANN(r)andlet“Aq,..., A" bethe (possibly empty) list of al manifest data fields which appear in the
primary key of ANN(r) but do not appear in . Then the projection of field list 7 on annotated relation
ANN(r), denoted 7-(ANN(r)), isdefined as ANN(r") = {(d",t, L, Uy) | (Fat € ANN(r)) A (d" =
(mr(P(d), k") A (R = (dH || “Ay:d. Ay, ..., Anid AL™)) Y. O

Here, 7+ (P(d)) worksin the same way as projectionin the classical relational algebraexcept it does not
remove duplicates and it gracefully ignoresfieldsin F which do not appear in P(d)’s schema

For example if F =“Datal” and if our primary key for ANN(r3) was “Datal,Data2”, then ANN(r") =
7r(ANN(r3)) will be
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[Daal| H | Day | Month | Year | L, | U, |

D1 | Data2:D2 2 8 1997 || 0.20 | 0.40
D1 | Data2:D3 2 8 1997 || 0.30 | 0.40
D1 | Data2:D3 3 8 1997 || 0.15 | 0.20

Noticethat if we did not havethe hidden field 2", then we would not be ableto tell whether (D1) refersto
event (D1,D2) or to event (D1,D3). In other words, the hidden field helpsusto prevent aloss of information.
Now supposethat after a projection, wewanted (D1) to refer to al eventswhere Datal = D1. For theexample
above, this would mean that event (D1) should refer to the compound event ((D1,D2) v (D1,D3)). This
interpretationis not directly supported by our agebras since our framework only allows instantaneousevents
(§2.4). However, our agebrais rich enough to express it indirectly by (i) setting each 2" in ANN(r") to
EMPTY and then (ii) invoking a disjunctive p-strategy based compaction (§5.1) on theresult of step (i). The
resulting annotated relationmay beinconsistent. All tuplesintheresult of thisoperation denoteinstantaneous
events.

To help reduce the size of the hidden field, projection only retainsfield-value pairs for fields which appear
in the relation’s primary key. Thus when the primary key issmall, 2" will aso be small.

5.8 Join of two annotated relations

For simplicity, this paper will only consider the “natural join” operation.

Definition 5.11 (join of two annotated relations) Let selection conditionC bedefined as ((ANN(r).Ly =
ANN(r").L1)A...A(ANN(r).L, = ANN(+').L,,)) where“L; ... L,” isthelist of al manifest datafields
which occur in the schema for both ANN(r) and ANN(r’). Then the join of annotated relations ANN(r)
and ANN(r") under the  probabilistic conjunction strategy, denoted ANN(r) o<, ANN(r'), isdefined as
Tr(oc(ANN(r) x, ANN(r'))) where F isthelist of al manifest datafields which occur in the schemafor
either ANN(r) or ANN(r’) after removing duplicate field names. O

For example, ANN(7") = ANN(r3) v<,. ANN(r4) will be

[ Datal [ Data2 | H || Day | Month | Year || L, | U, |
D1 D2 2 8 1997 || 0.10 | 0.40
D1 D3 3 8 1997 || 0.15 | 0.20

Notice that all of the hidden fields in ANN(r"") above are EMPTY. This occurs since in our example,
F ="Datal,Data2” so when we perform aprojection, thelist of manifest datafields not appearingin F (i.e.,
the“Aq,..., A,"” listin Definition 5.10) isempty.

Although our definition of joinin this section only correspondsto anatural join, it can easily be extended
to handle other types of join. For instance, an implementation which uses an SQL-like interface may allow
users to explicitly specify appropriate valuesfor C and F.

6 TP-Algebra

Thisisthe most important section of the paper. Aswe have mentioned severa timesbefore, for every data
tuple d and every time-point ¢, the TATA algebraexplicitly representsthe probability that adata-tupled isin
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agivenrelationat timet. Aspointed out by Dyreson and Snodgrass[13], thisleadsto acompl etely unaccept-
able explosionin the size of annotated relations and leads to major scalability problems. In thissection, we
will show that TP-relations, which implicitly and compactly represent temporal probabilistic data, can
be very efficiently manipulated by algebraic operations that correctly implement (as defined below)
all the operations on the TP-algebra. In other words, we can use the TP-representation to efficiently
implement oper ations analogousto the TATA algebra operations.

In this section, we provide definitionsfor TP-compression, compaction, intersection, union, selection, dif-
ference, cartesian product, projection, join, and tightening of TP-relations. With the exception of TP-
compression and tightening (which have no analogsin TATA), we will show that each of these operations
correctly implement the corresponding operationsin the TATA. Theadvantageisimmediate: as TP-relations
are relatively small when compared to their annotated counterparts, a huge savings, both in space (of stor-
ing TP- vs. annotated relations) and time (in terms of the time to process these operations) will result. The
correctness theorems are stated in this section and the proofs are given in Appendix C.

Definition 6.1 (correctly implements) Unary TPA operator op? correctly implements the semantics for
unary TATA operator op” iff ANN(op” (7)) = op®(ANN(r)) for every TP-relation r.

Furthermore, binary TPA operator op” correctly implementsthe semantics for binary TATA operator op”
iff ANN(r op” r') = ANN(r) op® ANN(+') for every pair of TP-relationsr, .

Note that as usual, intersection, union, and difference are only defined when both TP-relations have the
same schema, selections are only defined when C is not an inapplicable condition, and projections are only
defined when field list F is projectable.

The definitions in this section will produce a new TP-relation " based on input from consistent TP-
relations r, v'. Oftentimes, these definitions will refer to TP-tuples ¢p, tp’ which are assumed to be of the
formtp = (d,y)andtp’ = (d’,~’). Here, let v contain n TP-cases of theform vi =(Ci, Dy, L, Ui, 6;) € v

and let 7' contain n’ TP-cases of theform«; = (C}, D%, L}, U7, 8%) €

6.1 TP-compression of a TP-relation

The basicideabehind TP-compressionisto allow thedatain a TP-relation (either base or derived) to be com-
pressed. Let N(r)and N (¢p) denote the number of TP-casesin TP-relation » and TP-tuple¢p respectively.
When we apply a TP-compression functionto r, we may be able to reduce the size of N(r).

Definition 6.2 (TP-compression function) A TP-compression function =(r) isafunction which takes TP-
relation r as input, and returns as output a TP-relation » where (i) N (") < N(r) and (ii) there exists a
bijection between ANN(r) and ANN(r"") which maps each (d, ¢, L;, U;) € ANN(r)toa(d,t,L;,U}') €
ANN(r")suchthat L, < U/ < U,. a

In other words, ANN(7"") and ANN(r) must have the same datatuples, time points, and lower bounds...but
we alow TP-compressions to tighten upper bounds. Note that there are many functions which satisfy the
definition of a TP-compression function given above. For instance, the following TP-compression function
combines TP-cases which share the same distribution.

Definition 6.3 (TP-compression of a TP-relation; same-distribution) The same-distribution TP-
compression of TP-relation r, denoted Zsd (r), isequa to the multiset S which can be constructed in the
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following way: Initidly, let S = r”. Then for each (d,+"”) € r” and for each pair of TP-cases y; =
(Ci, D, L,U,8),v; = (C;,D;,L,U,b) € v" wheresol(D;) = sol(D;), remove v;,v; from " and add
TP-case ((C; Vv C;), Dy, L, U, 6)to~". ]

Another possible TP-compression function takes advantage of the uniform distribution’sregul arity.

Definition 6.4 (TP-compression of a TP-relation; u-based) The u-based TP-compression of TP-relation
r, denoted =¥(r), is equal to the multiset .5 which can be constructed in the following way: Initialy,
let S = r”. Thenfor each (d,v”) € " and for each pair of TP-cases y;, = (C;, D;, L, Uj,u),v; =
(Cj, Dj, L, Ujyu) € " wheren; = [sol(Dy)|, n; = [sol(D;)], and ([Ly, U] = o+ [Li, Ui] = 5=+ [L;. Uj]),
remove v;, vy, from v” and add TP-case <(CZ vV C]‘), (DZ vV D]‘), Lij,min(l, UZ']‘), u> to v where Ni; =
|SOl(DZ' V D])| and [LZ']‘, Uij] = ng; - [Lt, Ut]. (N

Note that when U;; > 1, the upper boundsin ANN(r") will be tighter than the onesin ANN(r).

Definition 6.5 (TP-compression of a TP-relation; hybrid) The hybrid TP-compression of TP-relation r,
denoted =¥ (), isdefined as =54 (=4 (r)). O

The following theorem indicates that the functions above satisfy our definition for a TP-compression.
Theorem 6 =*¢(r), Z¥(r) and Z"¥(r) are all TP-compression functions.

More sophisticated TP-compression operators are also possible. For instance, let p € (0, 1) beaprobabil-
ityandletty, ..., 1, bealistof (consecutive) timepointsin S whereforeach 1 < i < n,t;41 = next (t;).
Then if 4" contains n TP-cases of the form ((#). (t:), LY., _Ut’;, u) where ((L{,, . U/, ] = p- (L}, U{] for
all < i < n)and (U] +p < 1), apply an operator which replaces these » TP-cases with the TP-case
((#), (0 ~ 1), L, U",6") where [L", U"] = [L, +p, Ufl + pl and 8" = “g,p".

The aforementioned operator performs a g-based TP-compression. Note that for any distribution function
4, one can define a corresponding é-based TP-compression operator. Also note that one can obtain optimal
TP-compression (i.e., the smallest possible value for N (7)) by alowing a TP-compression operator to dy-
namically create new distribution functions which fit the resulting data.

6.2 Compaction of a TP-relation

As in the case of the TATA, the compaction operation in the TPA will be used to define the operations of
intersection, union and projection.

Definition 6.6 (Compaction of a TP-relation) A function x from TP-relations to TP-relationsis called a
compaction operation if it satisfies the following axioms:

e Compactness : x(r) is compact for al TP-relations r.
¢ No Fooling Around (NFA) : If r is compact then ANN(x(r)) = ANN(r).

o Conservativeness : If at = (d,t, Ly, Uy) € ANN(k(r)),then3at’ = (d,t, L}, U]) € ANN(r). O
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The Compactness, NFA, and Conservativeness axioms for TP-relations are similar in spirit and intu-
ition to the same concepts defined earlier for annotated relations.

Asinthecaseof TATA, thereare many different compaction operationson TP-rel ations. Below, we present
the TP analogs of y-compactions and p-strategy based compactions.

Definition 6.7 (y-compaction of a TP-relation) Let x be acombination function. Then the

x-compaction of TP-relation r, denoted «. (1), isdefined as ANN(x,(r)) =
{at = (d.t. L, U) | [Le U = XU 0] (0. 0} where
— LldD) (d.t) (dt) _ (dit) 7r(dii)
ANN(r)[d,t] = {aty"", .. .aty "y and at; = (d,t, L;77, U;). ]

? e

The following lemma states that an operation defined in this manner isindeed a compaction operation.
Lemmal Let y bea combinationfunction. Then «, () isa compaction operation.

Note that some parts of Definitions 6.6 and 6.7 were presented in a declar ative manner — viathe contents
of the annotation of the result. Algorithm Compute-Compaction shown below provides a mechanism to
efficiently compute compactions without resorting to annotation. This algorithm can perform compactions
using either acombinationfunction y or ap-strategy p. Theboxed linein thisalgorithm showsexactly where
a combination function or p-strategy is applied to compact data-identical tuples. Note that when f isa p-
strategy, the application of f to aset X of intervals merely represents the iterative application of f to pairs

of intervalsin X — as p-strategies are associative and commutative, thisis well defined.
Thefollowing states that this algorithm correctly computes a «, () compaction.

Theorem 7 Let y be a combination function. Then algorithm Compute-Compaction(r, x) correctly com-
putesthe x, () compaction operation.

We define p-strategy based compactionsof TP-relationsinthesameway as ., (r) except welet L, U] =
(L8 0@ o[, o) andlet (L, U] = (L, 0f*)e. e [L{", U] when defining

Ke(r) and kg (r) respectively.
Lemma?2 Let p be ap-strategy. Then «,(r) isa compaction operation.

As p-strategy based compaction of TP-relations is defined declaratively, we need an explicit agorithm
(mentioned above) to computeit. The following result states the correctness of this a gorithm.

Theorem 8 Let p bea (conjunctive or disjunctive) p-strategy. Then algorithm Compute-Compaction(r, p)
correctly computesthe « ,(r) compaction operation.

Thusfar, we have separately defined compaction operators on annotated rel ationsand on TP-relations. The
following definition specifieswhen acompaction operator on the annotated side correspondsto acompaction
operator on the TP-side.

Definition 6.8 (compatible pair of compactions) A pair (x*(ANN(r)), x”(r)) of compaction operatorsis
acompatible pair iff for every TP-relation r, 4 (ANN(r)) = ANN(xT(r)). O
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Algorithm Compute-Compaction(r,f):

Input: TP-relation » and combination function or p-strategy f

Output: TP-relation r" = k(r)

0l +":=0; // Initialize the resulting relation

02.7":=r; // Obtain a working copy of the initial relation

03.// For each (maximal) nultiset S of data-identical TP-tuples inr
04. while (+ # §) do {

05. Select aTP-tupletp € v/;

06. S:=7v[tp]; // Extract the next equival ence class fromr’

07. ri=r" =S, ¥ =0

08. I's = Lﬂ(d,’y)ES Vs I'y =Ts;

09. foreach v; = (Cy, Dy, L;, Ui, 6;) € T'r {

10. Removey; fromI'; andI's; C's :=Vc p 1 v syers O

11. ESO](CZ A —|Cs) 3& Q)th_enAdd <(CZ A —|CS), Di, Li, UZ', 62) to ’y”;

12. ESO](CZ A CS) 3& Q)th_enAdd <(CZ A CS), Di, Li, UZ', 62) tol's; }

13. Cs :=Vi¢p L uvsers ¢

14. /'l Note: Each tesol(Cs) will refer to nore than one TP-case
15. foreach ¢ € sol(C's) {

16. X:=0;// X will contain the probability intervals to be conbined
17. I'v:={(C,D, LU eTs |t esol(C)};

18. foreach (C, D, L,U,8) € T'; {

19. 2y = 0(D,t); [Le, Us] = [L - a4, U - a4];

20. X = X U{[L;, U]} }

21. [[LY, U1 := F(X);]

22. Add TP-case ((#), (t), LY, U.’, u) to~"; }

23. Add TP-tuple (d, ") to #"; }

24. return »";

End-Algorithm

The following two theorems say that for any arbitrary combination function y and for any arbitrary p-

strategy p, (k(ANN(7)), k(7)) and (k,(ANN(r)), x,(r)) are compatible pairs.
Theorem 9 Let x be any combination function. Then (., (ANN(r)), s, (r)) isa compatible pair.

Theorem 10 Let p beany p-strategy. Then (k,(ANN(r)), x,(r)) isa compatiblepair.

6.3 Intersection of two TP-relations

In this section, we show how we can correctly implement the intersection of two TP-relations. Intersection

consists of of two suboperations— multiset intersectionand combination function based compaction.

Definition 6.9 (multiset intersection of two TP-relations) The multiset intersection of TP-relations r and

7', denoted r N7/, can be constructedinthefollowingway: Initidly, let»” = (). Thenforeachtp = (d,y) € r
andeach tp’ = (d',7') € v’ where (d = d'),

1 LetT =T"=0.
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2. Foreachy; € v andeach v} € " where[sol(C; A C%)| > 1,add TP-case ((C; A CY), Dy, Li, Uy, 6;) to

I' and add TP-case ((C; A C%), D%, LY,

U s

3777

) toI". Notethat (C; A C?) is shared by both TP-cases.

3. If T' # (), add TP-tuples (d,T") and (d,T”) tor”. Notethat ' # () = T” # (). T will be empty if there
are no overlapping time points.

For example, " = ry N ry will be

a

[Daa|H [ C | D [ L [ U 5]
D1 (2/8/1997 ~ 3/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 | 0.88 | g
(6/8/1997 ~ 8/8/1997) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u
D1 (2/8/1997 ~ 3/8/1997) | (2/8/1997 ~ 3/8/1997) || 0.20 | 050 | g
(6/8/1997 ~ 8/8/1997) | (6/8/1997 ~ 9/8/1997) || 0.40 | 0.80 | u

Asinthe case of the TATA, we apply a «,, compaction operator to the result of a multiset intersection.

Definition 6.10 (inter section of two TP-relations) The intersection of TP-relations » and ' under the y
combination function, denoted » N, 7/, is defined as ., (r N 7). a

In order to keep the size of » N, ' manageable, we usually perform a TP-compression on the result of a
compaction.

For example, 2 (r N, 7') = 2" (ko (")) will be

[Daa[H[C [D [ L [ U [é]
D1 (#) | (2/3/1997 ~ 2/3/1997) || 0.16 | 0.22 | u
(#) | (3/8/1997 ~ 3/8/1997) || 0.08 | 0.11 | u
(#) | (6/8/1997 ~ 8/8/1997) || 0.30 | 0.60 | u

Thefollowing showsthat our definition of intersection correctly implementsthe TATA semantics. Thislets
us completely avoid the construction of the (huge) annotated expansionwhile preserving the same semantics.

Theorem 11 (Correctness of intersection) ANN(r N, ') = ANN(r) N, ANN(+).

6.4 Union of two TP-relations

In this section, we show how we can correctly implement the union of two TP-relations. Union consists of
two suboperations— multiset unionand combination function based compaction.

Definition 6.11 (multiset union of two TP-relations) The multiset union of TP-relations » and r/, denoted
rUr, isdefinedasr” = r v r'. a

Intuitively, " will containal tp € r and all tp’ € +'. For example, v/ = r{ U ro will be

[Daa [H[[C [D [ L [ U [d]
D1 (#) [ (1/3/1997 ~ 3/3/1997) || 0.64 | 0.88 | ¢
(#) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u
D1 (#) | (2/3/1997 ~ 3/3/1997) || 0.20 | 050 | ¢
(#) | (6/8/1997 ~ 9/8/1997) || 0.40 | 0.80 | u
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Asinthe case of the TATA, we apply a x,, compaction operator to the result of a multiset union.

Definition 6.12 (union of two TP-relations) The union of TP-relations » and r’ under the y combination
function, denoted » U, 7/, isdefined as k., (r U r’). a

For example, =¥ (r U, ') = Z (koo (7)) will be

[Daa|H]|] ¢ [D [ L [ U [é]
D1 (1/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 | 0.88 | g
(#) (2/8/1997 ~ 2/8/1997) || 0.16 | 0.22 |
(#) (3/8/1997 ~ 3/8/1997) || 0.08 | 0.11 |
(#) (5/8/1997 ~ 9/8/1997) || 0.50 | 1.00 | u

The following shows that our definition of union correctly implements the TATA semantics.

Theorem 12 (Correctness of union) ANN(r U, ') = ANN(r) U, ANN(r").

6.5 Sdection on a TP-reation

In this section, we show how we can correctly implement selection on a TP-relation. The TP-filter operator
defined below will help us handle selections of probabilistic conditions(§5.4) on TP-relations.

Definition 6.13 (TP-filter) Let~;, = (C;, D;, L;, U;, 6;) beaTP-case, let C = (¥ op v) be a probabilistic
condition,and let x = I; if F = “L” or let = = U, otherwise. Then a TP-filter is afunction which takes ~;
and C asinput, and returns as output a temporal constraint C' where

1. sol(C¥) C sol(Cy)
2. For eachtimepointt € sol(CY), (z; op v) must betruewhen a; = 6;,(D;,t) - «
3. Thereisno temporal constraint ) where (sol(C?) D sol(C}’)) and C” satisfies the previous cases.

Intuitively, a TP-filter returnsatemporal constraint whose solution set consistsof all time points¢ € sol(C;)
where [L, U] = [Li - 6;(D;, 1), U; - 8;( Dy, t)] satisfiesC. If not € sol(C;) satisfies this condition, TP-
filter(;, C) returns an inconsistent temporal constraint. ]

For exampleif v; = ((#),(5/8/1997 ~ 8/8/1997),0.4,0.8,¢g) andC = (U > 0.15), TP-filter(~;,C)
will be C = (5/8/1997 ~ 6/8/1997) since (0.4 > 0.15) for 5/8/1997 and (0.2 > 0.15) for 6/8/1997.

Ingenera, n = |sol(C;)| may bealargenumber. Witharbitrary distributionfunctions, thiscan be problem-
atic sincethe TP-filter function may havetotest all » time points. Fortunately, thisproblem can be alleviated
by exploiting regularitiesin our distribution functions. For instanceif é; = “«”, then we only need to test
onetimepoint¢ € sol(C;); if t should beinsol(C), then C'!" = C; or C}' = ) otherwise. This“al or none”
behavior occurs since each ¢ € sol(C;) will have the same probability value after distributing uniformly.

Implementations of TP-filters can also exploit regularities in the geometric PDF by searching sol(C};) in
chronological (or reverse chronological) order and then ending the search after finding thefirst ¢ which should
not be in
sol(C!). The exact search method to use will, of course, depend on which op ispresent in C. For instanceif
op = (#), it may be cheaper to let €] = TP-filter(v;, =C) and thenreturn C? = (C; A =CY).

We are now ready to define selection using atomic selection conditions.
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Definition 6.14 (Selection on a TP-tuple; atomic condition) The selection of atomic condition C on TP-
tupletp = (d,~), denoted o¢(tp), can be constructed in the following way: Initially, let v = .

e If C isadatacondition,let " = v if d satisfiesC.

o If C isatemporal condition, then for each v; € v where C = (C; A C) is consistent, add TP-case
(CY, Dy, Li, Ui, ;) toy".

e If C isaprobabilistic condition, then for each v; € v where C'" = TP-filter(y;,C) is consistent, add
TP-case <CZU, D;, L;, U;, 6z> to ’y”.

If v = 0 then o (tp) = 0. Otherwise, oc(tp) = (d,7"). -

Definition 6.15 (Selection on a TP-relation; atomic condition) The selection of atomic condition C on
TP-relationr = {tpy,...,tp,}, denoted o¢(r), isdefined as (o¢(tpr) W ... W oc(tpy)). ]

Notethat for all ¢p;, tp; € r, oc(tp;) does not affect the results of ¢ (¢p;) when computing o¢(r).
For exampleif C = (2/8/1997 ~ 7/8/1997), o¢(r1) will be

[Daa[H [ C | D | L [ U [é6]
D1 (2/8/1997 ~ 3/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 | 0.88 | g
(5/8/1997 ~ 7/8/1997) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u

and o¢(r2) will be

[Daa[H [ C | D [ L [ U [é]
D1 (2/8/1997 ~ 3/8/1997) | (2/8/1997 ~ 3/8/1997) || 0.20 | 0.50 | g
(6/8/1997 ~ 7/8/1997) | (6/8/1997 ~ 9/8/1997) || 0.40 | 0.80 | u

butif C = (L # 0.10), o¢(r1) will be

[Data|H]C [D | L [ U [6]
[ D1 [ ) [ (1/8/1997~3/8/1997) [ 0.64 [ 0.88 | ¢ ||
and o¢(r2) will be
[Data|H[ C [ D | L [ U [¢6]
[ D1 | [ (3/8/1997) [ (2/8/1997 ~ 3/8/1997) [ 020 [ 0.50 [ ¢ ||

We can extend sel ection to handle non-atomic selection conditions by using the following definition.

Definition 6.16 (Selection on a TP-relation) Theselection of conditionC on TP-relation r, denoted o¢ (),
is defined inductively in the following way:

e If C isan atomic condition, then " = o¢ () by way of our previous definition.

o If Cisof theform (C; A Cq), thenr” = a¢, (0¢,(7)).
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o If C isof theform (Cy Vv Cy), then " = o¢,(r) Ueq oc,(r). (Note that as long as r is compact, it
follows by the Identity axiom that irrespective of which combination function is used, we obtain the
sameresults, i.e. “eq” in the above definition can be replaced with any other combination without the
result being changed.)

o If Cisof theform (=Cy), then
— If Cy isof theform (C2 A C3), (C2 V C3), or (=Cz), then v = o¢, (r) where
C4 = (_‘CQ V —|C3), C4 = (_‘CQ A —|C3), or C4 = (Cg) reSpECtIVEIy

— If C; isadata, temporal, or probabilisticcondition, then " = o¢, (1) where
C,4 isthe atomic, logical negation of C;.

— Otherwise, C; isan ingpplicablecondition and so " is not defined.

To perform selections with non-atomic conditions on annotated relations, use the definition above except
replace all instances of r and r” with ANN(r) and ANN(r"") respectively. O

For exampleif C; = (2/8/1997 ~ 7/8/1997),C, = (L # 0.10),and C = (Cy A C3), then o¢(r4) will be

[ DaaH ]| © | D | L [ U [¢]
[ DL | [ (2/8/1997 ~ 3/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 [ 0.88 [ g |

and o¢(r2) will be

[Daa|H] C | D L2 [ U [é8]
[ DL [ [ (3/8/1997) | (2/8/1997 ~ 3/8/1997) [ 020 | 050 | ¢ |

butif C = (Cl V CQ), Ehy(O'C(Tl)) will be

[Daa[H [ C | D [ L [ U [é]
D1 (1/8/1997 ~ 3/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 | 0.88 | g
(5/8/1997 ~ 7/8/1997) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u

and = (o¢(ry)) will be

[Daa[H][ C | D [ L [ U [é]
D1 (2/8/1997 ~ 3/8/1997) | (2/8/1997 ~ 3/8/1997) || 0.20 | 0.50 | g
(6/8/1997 ~ 7/8/1997) | (6/8/1997 ~ 9/8/1997) || 0.40 | 0.80 | u

The following theorem states that our definition of selection preserves commutativity.
Theorem 13 o¢,(0¢,(r)) = o¢,(oc, (7).

The following table shows how one may generate queries on TP-relation r which correspond to seven of
J. F. Allen’sthirteen possible temporal relationships[1]. The six remaining possibilities correspond to the
inverses of these origina seven (theinverse of “equa” isidentical to “equal” soitisnot counted). Here, we
assumethat r usestwo TP-tuplesfor each event e; onefor st(e) (wherethevaueof the“Kind” fieldis“S’),
and onefor end(e) (where the value of the “Kind” field is“E"). Assume that for for each event e, if st(e)
or end(e) satisfies the selection condition, then the TP-tuplesfor both st(e) and end(e) should be included
in the result. Our queries will return every event e which satisfies some relationship w.r.t. event e, where
st(ey) =ty and end(ey) = to.
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| Description | Specification I Query | Conditions |

¢ beforee, end(e) < st(ey) oe(r) C=((ts ~t1) A(Kind = F))
c equd e, st(e) = st(eg) A oc, (1) Neg 0, (1) C1 ((t1 ~t1) A(Kind = 9))
end(e) = end(ey) = ((t2 ~t2) A (Kind = F))
e MeetsSe, end(e) = st(ey) oe(r) =((t1 ~t1) A (Kind = F))
eoverlapse, | st(e) < st(eg) A oc, (1) Neg 0, (1) C1 =((ts ~t1) A (Kind = 9))
st(eq) < end(e) Cs = ((t1 ~tg) A (Kind = F))
e during e, st(eq) < st(e) A oc, (1) Neg e, (7) | C1 = ((t1 ~tg) A (Kind = 9))
end(e) < end(ey) Cs = ((ts ~ t2) A (Kind = F))
e starts e, st(e) = st(eg) A oc, (1) Neg e, (1) | C1 = ((t1 ~t1) A (Kind = 9))
end(e) < end(ey) Co = ((ts ~ t2) A (Kind = E))
e finishese, | st(e,;) < st(e) oc, (1) Neg e, (7) | C1 = ((t1 ~tg) A (Kind = 5))
end(e) = end(ey) Cs = ((tz ~t2) A (Kind = F))

The following shows that our definition of selection correctly implements the TATA semantics.

Theorem 14 (Correctness of selection) ANN(o¢(r)) = oc(ANN(r)).

6.6 Differenceof two TP-relations

In this section, we show how we can correctly implement the difference of two TP-relations.

Definition 6.17 (difference of two TP-relations) The difference of TP-relations r and »’, denoted » — 7/,
can be constructed in the following way: Initialy, let "/ = r. Then for each tp = (d,v) € " and each
tp) = (d',7") € v where(d = d'),

1 Lety”" =0andletC' = (C] V...V C!,). Recall that ¢p’ containsexactly n” TP-cases

2. Foreachv; € v where C! = (C; A =(C") isconsistent, add TP-case (C/', D;, L;, U, 6;) to~y".

3. Removetp from +”. Thenif v” # (), add TP-tuple(d, ") to r". O

For example ry — ro will be

[Daa|H] C | D [ L [ U [¢]
D1 (1/8/1997) | (1/8/1997 ~ 3/8/1997) || 0.64 | 0.88 | g
(5/8/1997) | (5/8/1997 ~ 8/8/1997) || 0.40 | 0.80 | u

and r, — r{ will be

[ Daa|H [ C | D | L [ U [4]
[ D1 | [ (9/8/1997) [ (6/8/1997 ~ 9/8/1997) ][ 040 | 0.80 | u ||

The following shows that our definition of difference correctly implementsthe TATA semantics.

Theorem 15 (Correctness of difference) ANN(r — ') = ANN(r) — ANN(+').
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6.7 Cartesan product of two TP-relations

In thissection, we show how we can correctly implement the cartesian product of two TP-relations. Recall, as
in the annotated case, that when taking the cartesian product of two relations, we must know the relationship,
if any, between the events denoted by thetuplesin the two relations because the probability of aconcatenated
tuple being present in the result of the Cartesian Product is the probability of a conjunctive event. Thus,
conjunction strategies parametrize the Cartesian Product operation.

Definition 6.18 (cartesian product of two TP-relations) The cartesian product of TP-relations r and 7’
under the o probabilistic conjunction strategy, denoted » x,, r/, can be constructed in the following way:
Initially, let #/ = (. Thenfor eachtp = (d,v) € randeach tp’ = (d',v') € +/,
1 Lety"” = 0.
2. For each time point ¢ wheret ¢ sol(C;) for somey; € y and ¢ € sol(C7}) for some ! € 7/,
(a) Let [Lt, Ut] = [LZ c Ty, Uz . $t] Where$t = (SZ(D“t)
(b) Let[Ly, U] = [L} -}, Ul-ai] wherea; = 63( D%, 1).
(©) Let[Ly, Ul = ([Lt, U] @a [Li, Uf])-
(d) Add TP-case ((#), (1), LY, U{, u) toy".
3. Ify" # 0, add TP-tuple (d”,~v") to " whered” = (P(d), P(d'),h") and b = (d.H || d' .H). 0

For example, = (ry x;, ro) will be

[r.Daa| ,Dda | H] C | D T LU 4]
D1 D1 (#) | (2/8/1997 ~ 2/8/1997) || 0.00 | 0.22 u‘

(#) | (3/8/1997 ~ 3/8/1997) || 0.00 | 0.11 | w
(#) | (6/8/1997 ~ 8/8/1997) || 0.00 | 0.60 | u

but Ehy(Tl Xpe 7‘2) will be

[r.Daa| ,Dda | H] C | D T LU 4]
D1 D1 (#) | (2/3/1997 ~ 2/3/1997) || 0.10 | 0.22 | u
(#) | (3/8/1997 ~ 3/8/1997) || 0.05 | 0.11 | u

(#) | (6/8/1997 ~ 8/8/1997) || 0.30 | 0.60 | u ‘

The use of a TP-compression operation when executing a Cartesian product operation is important because
sometimes, Cartesian product can produce a large number of TP-cases when an existing tp-case gets broken
into “pieces.” TP-compressions prevent this from happening. The following shows that our definition of
cartesian product correctly implements the TATA semantics.

Theorem 16 (Correctness of cartesian product) ANN(r x,, ') = ANN(r) x, ANN(7/).
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6.8 Projection on a TP-relation

In this section, we show how we can correctly implement projection on a TP-relation.

Definition 6.19 (projection on a TP-relation) Let F bealist of fieldswhich are projectablew.r.t. » and let
“Aq,..., A," bethe(possibly empty) list of all manifest datafields which appear in the primary key of r but
do not appear in F. Then the projection of field list 7 on TP-relation r, denoted = ~(r ), can be constructed
in the following way: Initially, let »”” = . Then for each (d,~) € r, add TP-tuple (d”,~) to " where
d" = (rr(P(d)),h"yand " = (d.H || “Ay:d.Ayq, ..., Apid AL"). O

Recall that the 7~(P(d)) operator was defined in section 5.7.
For example if F = “Datal” and our primary key for r; was “Datal,Data2”, " = 7 (rs) will be

[Daal | H [ C [D [ L [ U [¢]
D1 | Data2:D2 || (#) | (2/8/1997 ~ 2/8/1997) || 0.20 | 040 | u
D1 | Data2:D3 || (#) | (2/8/1997 ~ 3/8/1997) || 0.60 | 0.80 | ¢

The following shows that our definition of projection correctly implementsthe TATA semantics.

Theorem 17 (Correctness of projection) ANN(7£(r)) = m2(ANN(r)).

6.9 Join of two TP-relations

In this section, we show how we can correctly implement the join of two TP-relations.

Definition 6.20 (join of two TP-relations) Let selection conditionC be ((r.Ly = 7" .L1) A ... A (1L, =
r'.L,))where“Ly ...L," isthelist of all manifest data fields which occur in the schema for both » and .
Then thejoin of TP-relations » and ' under the « probabilistic conjunction strategy, denoted r >, 7/, is
defined as 7 (o¢(r X, r')) where F isthelist of all manifest datafields which occur in the schemafor either
r or r’ ater removing duplicate field names. O

For example, r3 >, 74 Will be

[Daal [Da2 [H[[ ¢ [ D [ L [ U [¢]
D1 | D2 (#) | (2/8/1997) |[ 0.10 | 0.40 | u
D1 | D3 (#) | (3/8/1997) || 0.15 | 0.20 | u

The following shows that our definition of join correctly implements the TATA semantics.

Theorem 18 (Correctness of join) r o<, ' = ANN(7) »a, ANN(7/).

6.10 Tighteningof a TP-relation
Recall that TP-tuplescan be*“loose” in the sensethat a TP-tuple may, for example, havetwo TP-cases, 71, 72

with [L1, U] = [0.3,0.6] and [L3, U] = [0.5,0.8]. In this case, it is easy to see that we can tighten the
upper bounds of these ranges, and reset them to [0.3, 0.5] and [0.5, 0.7] respectively. The reason is that the
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two lower bounds sum up to 0.8, thus alowing us an upper bound in each case that isno morethan 0.2 more
than the lower bound. Thisis asimple example of tightening. Recall that tightening played in establishing
Theorem 4, which showed that the annotated expansion of a TP-relation faithfully representsthe TP-relation
aslong asthe TP-relation is compact and tight.

In this section, we describe a procedure for tightening a compact TP-relation r. Tight TP-relation 7" can
be constructed from r in the following way: Initially, let »” = () and let r = «,(r) for some combination
function y. Then for each ¢p € r, add Tighten-TP-Tuple(tp) to . An agorithm for Tighten-TP-Tupleis
presented below.

Notethat for each tpy, tps € r, Tighten-TP-Tuple(tp,) and Tighten-TP-Tuple(tp2) do not affect each other
since r is compact and hence tp; and tp, must refer to different events. Also note that Tighten-TP-Tuple
works much faster when the distribution functions are uniform since here, al upper boundsfor asingle TP-
case will betightened by the same amount.

Algorithm Tighten-TP-Tuple(tp):

Input: TP-tupletp = (d,y) wherey = {71, ...,y tandforal 1 <i < n,v; =(Cs, D;, L;, Ui, &;)
Output: Tight TP-tuplep” which isatightening of ¢p

Note: Inthisagorithm, let 6( D, C') bea*shortcut” for the following expression: X; cqo1(c)0( D, 1)
01. Z.:=0; U:=0; // [L,U] will hold the sumof the | ower and upper bounds
02. for i := 1tondo{

03. L; = (SZ(DZ,CZ)LZ, LZIL—I—L;»;

04. Ul :=6(D;,Cy)-Us; U:=U+U;}

05.if U < 1.0thenreturn¢p” :=tp; // If U <1.0, then tp was al ready ti ght
06. v = 0;

07.for i := 1tondo{

08.  ifé #uthen{

09. foreach ¢ € sol(C}) {

10. L = (SZ'(DZ',t) - Ly Uy = (SZ'(DZ',t) -Uss U =1- (L — Lt);
11. ifU' < U thenU, :=U";

12, Add TP-case (#), (1), Li, Us, u) to7"; } }

13. dse{

14. m = [sol(D;)]; Lt:%; Ut:%;

15. U =1—=(L—=L); U:=m- -min(U;,U’);

16. Add TP-case <CZ, Dy, Ly, Uz'//’ 62) tO’y”; } }

17. return tp” = (d,"");
End-Algorithm

7 Implementation and Experiments

All of the TPA operators described in this paper have been implemented under Borland C++ version 5.01.
Our code can run on any 32 bit Windows platform (i.e., Win95, Win98, and WinNT). This code commu-
nicates with standard, relational databases by using the Borland Database Engine’'s APl (BDE version 3.0).
Here, the same API can be used to interface with a variety of databases including Paradox, dBASE, Oracle,
Microsoft SQL Server, InterBase, Sybase, and any ODBC (Open Database Connectivity) data source. Note
however that the underlying, relational database should (i) be capable of storing 32 bit integers and (ii) be
ableto processhbasic SQL queries. A demonstration of thisimplementation can be accessed from the web by
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clickingon the*“TP-Databases’ link inthe“ht t p: / / best er . ¢s. und. edu” page— our user interface
isfully compatible with the Internet Explorer 4.0 browser. A sample screen dump is shown in Figure 4.

In the implementation, a TP-database is a collection of TP-relations which have the same chronon. Each
TP-relation r isactually stored as two tables; the data-table r; stores r’s data-items and hidden fields while
the case-tabler. storesr’s TP-cases. Both of these tables have an indexed “1d” field which stores an integer
used to reconstruct » from thejoin of r; and r.. Basicaly, if two tupleshave the same*1d”, then we assume
that both tuplesrefer to the same event. Note however that unlesswejust performed acompaction, two tuples
which refer to different events may have different “1d”s.

Temporal constraintsare represented by an array of integers. Basically, each temporal constraint C' is bro-
ken upinto aset of » disjoint, non-adjacent ranges of time points. Each range consistsof two time points(the
starting and ending time) and each time point consists of two integers (the first represents the number of mil-
liseconds since the start of a day while the second represents the number of days since some fixed reference
date). Thus, the first element of (s array will hold n, the next four elements will hold C’sfirst range, the
next four elementswill hold s second range, etc. Here, ranges are stored in chronol ogical order. Note that
temporal constraintscan beindexed by using an auxiliary datastructure, e.g. asegment tree[40] or constraint
indexing methods such asthosein [5, 6, 22].

7.1 Experiments

We conducted two sets of experiments. The first set of experiments was intended to demonstrate the rela-
tive efficiency of TP-algebra operationswhen compared to TATA algebraoperations. In addition, this set of
experiments was designed to study how different distribution functions affected the efficiency of operations.
The second set of experimentstested scal ability of the TP-algebraoperations. The TATA agebrawasimple-
mented for these experimentsby forcing TP-tuplesto haveonly one TP-casewithC' = D =, |sol(D)| == 1.
and 6 ="u".

We should mention that all our experiments were conducted by executing queries “asis.” Once a query
optimizer for TP-databases is built (which we are currently working on [10]), the timings reported should
improve substantially. With hand-optimized versions of some of the queries, we noticed significant improve-
ments in running time. However, dueto space reasons, we have chosen to defer the important topic of query
optimization and probabilistic indexes to a future paper [10]. In some of the charts shown in Appendix B
reflecting the results of the experiments, reader s may sometimes see only two linesinstead of eight, because
the four lines denoting the TP-computations and the four lines denoting the TATA-computations are al most
identical.

7.11 Comparing TATA vs. TP-Algebra

Our experimentswere conducted asfollows. We generated TP-rel ationscontaining n'Tuples TP-tupleswhere
nTuples € {100,500, 1000}. Each TP-tuple had one TP-case (C;, D;, L;, U;, §;) where C; = D; = (11 ~

t2), t1 = random({t € sol(1/1/1998 ~ 31/12/1998)}), t, is the time point which occurs nTimePoints
days after ¢1. Probabilities were assigned randomly. We allowed different probability distributions (inde-

pendence, geometric, binomial,or amix of thesethree) in TP-relations. Using these relations, we cal cul ated

the (median of 3) computation times for each of the following operations:

1. Intersection and Union Computations

=M (r Ny '), ANN(7) Ny ANN(#), ZH(r U,, '), and ANN(r) U, ANN(7").
Chart (a) in Appendix B shows that intersection takes timethat is more or less linear in the number of
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Figure 4: Screen dump of query interface




tuples. Furthermore, as the number of TP-tuples increases, the savings rendered by using TP-tuples
instead of annotated tuplesincreases significantly. Chart (b) in Appendix B showsthat increasing the
total number of time-points (i.e. increasing the effect of uncertainty) has no effect whatsoever on TP-
tuples, but the effect on annotated tuplesis very significant.

Charts (a) and (b) jointly show that as far as intersection is concerned, the distributions used have no
significant impact on the efficiency of computing intersection.

Similar results hold for union as seen from Charts (c) and (d).

2. Selection Computations
oc(r)and o¢c(ANN(r)) for each type of selection conditionC (i.e., data, temporal, and probabilistic).
We ran three types of experiments with selections involving conditions on data attributes (Charts (€)
and (f)), temporad attributes (Charts (g) and (h)), and probabilistic attributes (Charts (i) and (j)), re-
spectively.

When we held the average number of time pointsper TP-case constant to 16, and increased the number
of tuples, we notice that the TP-algebra significantly outperforms the TATA agebra. Furthermore, as
the number of data tuplesincreases, thereisvery littleincrease in time on the TP-side, in contrast to
the much larger increase on the TATA side. The same phenomenon may be noted when the number of
tuplesis held constant, but the amount of uncertainty isincreased.

An important point to note is that Charts (i) and (j) indicate that performing probabilistic selections
on TP-databases that use uniform distributionsis faster than on identical TP-databases that use other
distributions!

3. Difference and Projection Computations
r— 7', ANN(r) — ANN(+'), 72(r), and 72 (ANN(r)).
Charts (k) and (I) show what happens with Difference, while Charts (m) and (n) show what happens
with Projection. The results mirror thosein the case of union and intersection.

4. Join Computations

=M (7 ba,, ') and ANN(7) 1, ANN(7/) for each conjunction strategy o € {ig, pc, nc,in}.

We first studied what happens with join under the positive correl ation conjunction strategy (Charts (0)
and (p)). Subsequently, we studied what happens with join when we vary the conjunction strategy
used. In thefirst case, we noticed that the performance of TP-join is affected relatively little when
weincrease number of tuplesand/or the the amount of uncertainty. However, as seen in charts Charts
(q) and (r), using negative correl ation as the conjunction strategy is actually much more efficient than
using the other strategies, both on the TP and the TATA side — an observation that we have not seen
made before. (Thisisin interesting contrast to previous beliefs that using independence assumptions
leads to greater efficiency).

7.1.2 Scalability of TP-Algebra Operations

We studied the performance of two operationsin the TP-algebra— selection, and join, as these are two of
the most widely used operations. Our interest was to see what happensto the performance of the TP-algebra
operations when we execute queries with massive amounts of uncertainty.

Charts (s) and (t) show what happens when we use a mix of distribution functions, and use either 100 or
1000 TP-tuples per TP-relation, and vary the number of solutionsto TP-cases over the set 4, 96, 5760 and
345, 600. Dueto the size of these numbers, the charts shown use a log-scale. Chart (s) shows the results of
performing both selects and joins when we are looking at the case of 100 TP-tuples.
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Asthereader can see, tempora selectionsare almost compl etely unaffected by the amount of uncertainty
bothin the case of 100 TP-tuplesand 1000 TP-tuples (where the time taken stays constant). However, prob-
abilistic selects are expensive to compute (almost as expensive as joins), because they require that the dis-
tribution function be applied to all time pointsin a TP-case. Notice that even when we have 345,600 time-
points inside each of these 100 tuples (making up a “flat relation” of size 34,560,000), it takes only about
60 seconds to evaluate the probabilistic select. When we have 345,600 time-points inside each of the 1000
TP-tuples shown in Chart (t) (making aflat relation of size 3.5 billion approximately), we see that the time
taken isabout 125 seconds, reflecting adoubling in the time, though the dataincreased in size by afactor of
10. Wefed thisis quite efficient.

Our framework is aso quite efficient for computing TP-joins. As can be seen from Chart (s), when we
compute a join of two relations consisting of 100 TP-tuples each and 345,600 time-points inside each of
these 100 TP-tuples, the join takes about 75 seconds— abit more expensive than a probabilistic select, but
not too bad. When we use a 1000 TP-tuples (and the same 345,600 time-points inside each of these 1000
TP-tuples), the join takes about 580 seconds — afive fold increase when the data tuples in the two joined
relations were both increased ten fold.

8 Related Work

There has been almost no work to date on the integration of probabilistic databases and temporal reasoning.
A notableexceptionisthework of Dyreson and Snodgrass[13]. We therefore organize thissectioninto three
parts — thefirst part compares our work with that of Dyreson and Snodgrass, the second part compares our
work with existing work on probabilistic databases, and the third part compares our work with relevant work
on temporal indeterminacy.

8.1 Comparison with Dyreson and Snodgrass

Dyreson and Snodgrass[13] were oneof thefirst to model temporal uncertainty using probabilitiesby propos-
ing the concept of an indeterminateinstant. Intuitively, an indeterminate instant is an interval of time-points
with an associated probability distribution. They propose an extension of SQL that supports (i) specifying
which tempora attributes are indeterminate, (ii) correlation credibility which alows a query to use uncer-
tainty to modify tempora data— for example, by using an EXPECTED value correlation credibility, the
query will return adeter minate relation that retains the most probable time point for the event, (i) ordering
plausibility which is an integer between 1 and 100 where 1 denotes that any possible answer to the query
is desired while 100 denotes that only a definite answer is desired, and (iv) specifying that certain tempo-
ral intervals are indeterminate. Dyreson and Snodgrass [13] develop a semantics for their version of SQL.
In addition, they show how to compute probabilities of temporal relationships such as “event e, occurs be-
fore event e,” ‘event e; occurs at the same time as event e,,” etc., and provide efficient data structures to
represent probability mass functions.

Our framework may be viewed asinimprovement over the the Dyreson-Snodgrass framework in the man-
ner described below. In addition, thereis an important philosophical difference between our work and theirs
— we are adding time to “kosher” probabilistic databases, while they are adding probability to “kosher”
temporal databases.

1. SQL vs. Algebra. First and foremost, Dyreson and Snodgrass present aversion of SQL for temporally
indeterminate databases. In contrast, we present an algebra and prove that all our algebraic operations
are correct. Both are clearly needed for adatabase that supports probabilitiesover temporal attributes.
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2. Base Relations. In the Dyreson and Snodgrass [13] framework, the base relations are temporal rela-
tions. In effect, base relationsin [13] may be viewed as special cases of TP-relationswherethe ' and
D fields are atomic time-interval constraints. In contrast, our framework:

(& AllowsC'and D to bearbitrary temporal constraints, thus generalizing their approach. Asacon-
sequence, TP-relations can be much more succinct than the base relations used in [13]. Thisis
because a single TP-tuple can often express information about a union of digjoint timeintervals.

(b) In[13], no explicitlower/upper boundsare considered; all probabilitiesused are point probabili-
ties. Thisisaspecial case of our framework, and aswehave already seen. Recall thatin 1854 [7],
Bool e noticed that we must use probability intervalswhenever we areignorant of therelationship
between events.

Conversely, there are some things that can be expressed in the Dyreson-Snodgrass framework [13]
which we do not handle — for example, in the current paper, we have assumed tuples have only one
indeterminate temporal attributewhile [13] alows more than one. Furthermore, we have no anal og of
correlation credibility or ordering plausibility.

3. Distribution Functions. In[13], al PDFs are assumed to be complete. In contrast, in this paper, we
allow both complete and incomplete PDFs. In fact, we noticed for thefirst timethat determinate PDFs
(al complete PDFs are determinate) guarantee linear time consistency checks for TP-databases.

4. Independence Assumptions. In[13], al indeterminate events are assumed to be independent. This
assumptionis valid for many applications, and invalid for others. For instance, a transportation plan
that involves shipping a packet and then trucking it involves two dependent events — changesin the
ship’sarriva timewill change thetime at which the packet isloaded onto thetruck. Theindependence
assumption allowsfor efficient computation of temporal relationshipssuch as “event ¢; occurs before
event e,.” In contrast, in our paper, we allow users to specify in their query what the relationship
between eventsis. Thus, independence can be used in our framework when appropriate, and other
dependenci es can be used when deemed appropriate by the user. Our framework supportscomputation
of the probabilistic versionsof all 13 operators postulated by Allen [1].

5. Operators developed. Our algebra supports a host of operations that do not appear to be supported
in the Dyreson-Snodgrass framework [13]. For instance, we provide whole families of compaction
methods, combination functions, and compression functions.

6. Semantics. We provide formal, model-theoretic descriptions of consistency in our paper for TP-
relations, and provide very efficient meansto check consistency (linear time) when determinate PDFs
are used. When indeterminate PDFs are used, consistency checking is more complex.

7. Prototype Implementation. We have implemented our framework on top of the Borland Database
Engine, and our experiments complement those of Dyreson and Snodgrassin the sensethat we examine
how different distributionsfundamentally affect the efficiency of the algebraic operations. Note that
distribution functions can be stored according to the methods described in [13].

8.2 Relationship with work in Probabilistic Databases

Dyreson and Snodgrass [13, p.46] stated that they “could not adopt the PDM approach or its successors to
support temporal indeterminacy, since there might be several million elementsin aset of possiblechronons.
Representing each alternative with an associated probability isimpractical.” This statement is certainly cor-
rect if PDM istakento mean the TATA approach. Infact, our experiments onthe TATA validate Dyreson and
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Snodgrass concern — TATA should be used only for theoretical purposes and should not be implemented.
However, as we have seen, the TP-Algebrais a much more succinct PDM representation of temporal prob-
abilistic data which can efficiently deal with large sets of chronons.

Kiessling and hisgroup [23, 50, 41] have devel oped aframework called DUCK for reasoning with uncer-
tainty. They providean elegant, logical, axiomatic theory for uncertain reasoning in the presence of rules. In
the same spirit asKiessling et a ., Ng and Subrahmanian [ 34, 36] have provided a probabilistic semanticsfor
deductive databases— they assume absoluteignorance, and furthermore, assumethat rulesare presentin the
system. In contrast, in our framework, rules are not present; rather, our interest isin extending the rel ational
algebrato capture probabilistic and temporal information. Time is not handled by the DUCK approach.

In an important paper, Lakshmanan and Sadri [32] show how selected probabilistic strategies can be used
to extend the previous probabilistic models. Lakshmanan and Shiri [33, 43] have shown how deductive
databases may be parametrized through the use of conjunction and disjunction strategies, an approach aso
followed by Dekhtyar and Subrahmanian [11]. While the ideas behinds these frameworks have been used
here through the notions of conjunction and disjunction strategies, no notion of timeis discussed.

Barbara et a. [3] develop a probabilistic data model and propose probabilistic operators. Their work is
based on the assumption that probabilities of compound events can always be precisely determined, an as-
sumptionvalid for few combination strategies. In contrast, we alow interval probabilitieswhich permit mar-
ginsof error intheprobability data. 1n addition, when performing joins, they assumethat Bayes' rule applies
(and hence, as they admit up front, they make the assumption that al events are independent). Also, asthey
point out, unfortunately their definition leadsto a“lossy” join. No temporal dataishandled.

Cavdllo and Pittarelli [9] propose a model for probabilistic relational databases. In their model, tuples
in a probabilistic relation are interpreted using an exclusive or, meaning at most one of the data-tuplesis
assumed to be presentintheunderlying classical relation. Thisisarather restrictiveassumption, and wemake
no such assumptions. Furthermore, due to the above assumptions, Cavallo and Pittarelli [9] only propose
probabilistic projection and join operations, but the other relational al gebra operations are not specified.

An important paper on thetopicis by Dey and Sarkar [12] who propose an elegant 1NF approach to han-
dling probahilistic databases. Their paper is a significant improvement to the work of Barbara et a. [3]. In
particular, their framework (i) supports having uncertainty about some objects but certain information about
others, (ii) uses first normal form which is easy to understand and use, (iii) introduces elegant new opera-
tions like conditionalization, and (iv) removes assumptions about deterministic keys prevalent in previous
approaches. The 1NF representation used by them is a specia case of the annotated representation in this
paper — as discussed in Section 8.2 and as pointed out by Dyreson and Snodgrass [13], this representation
isnot suitablefor directly representing temporal indeterminacy. Dey and Sarkar’s approach does not handle
timeexplicitly. Many of our operators generalizetheirs— for instance, their notion of union clusterstogether
all data-identical tuplesand takestheir max, difference clusterstogether all data-identical tuplesand subtracts
probability values, and their notion of projection clusterstogether all data-identical tuplesand takesthe sum
of thetuples' probabilities (or 1, whichever is smaller) to be the probability. These computations are proba
bilistically legitimate only under some assumptions on the dependencies between the events involved. Our
notion of combination functions generalize these substantially. In addition, their notion of join only applies
under an independence assumption, which we have been able to remove through the notion of p-strategies.
Similarly, our notion of compaction operations may be viewed as extensions of the two coal esce operations
proposed by them — we propose whole families of coalesce operations in contrast, and our agebra uses
such operationsas parameters. Dey and Sarkar [12] propose some operations such as conditionalizationand
N*-Moment that have no analogsin our paper, and deserve further study.

This paper builds on top of the ProbView system for probabilistic databases[30]. ProbView extends the
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classical relational algebra by allowing usersto specify in their query, what probabilistic strategy (or strate-
gies) should be used to parametrize the query. ProbView removed the independence assumption from pre-
vious works. However, ProbView has no notion of time, and it was noted by Snodgrass [46] that though
ProbView scaled up well to massive numbers of tuples, it did not scale up well when massive amounts of un-
certainty are present asisthe casewith temporal probabilisticdatabases, where saying that an event sometime
between Jan 1-4 yieldsatotal of 4 x 24 x 60 x 60 = 345, 600 seconds. Thus, if our temporal database uses
secondsasit lowest level of temporal granularity, thisgivesriseto 345, 600 cases to represent just one state-
ment — something that would quickly overwhelm ProbView. Asthereader can see and as our experiments
indicate, TP-databases were specifically designed to eliminate this problem.

Severa other authors have handled uncertainty in databases through the use of fuzzy sets[15, 24, 38, 39]
— as the differences between probabilities and fuzzy sets are well known, we do not address these works
extensively here. In addition, uncertainty has been extensively studied in the context of deductive databases
and logic programming [11, 24, 28, 32, 31, 33, 34, 36, 37, 42, 52] aswell as probabilisticlogic[18, 19, 37].

8.3 Relationship with work in Temporal Databases

As stated by Dyreson and Snodgrass [13, p.45], “Despite the wealth of research on adding incomplete in-
formation to databases,there are few efforts that address incomplete temporal information.” Snodgrass was
one of thefirst to model indeterminate instancesin hisdoctora dissertation [45] — he proposed the use of a
model based on three valued logic. Dutta[17] later proposed a fuzzy logic based approach to handle gener-
alized temporal events — events that may occur multipletimes (notice that our framework allows an event
to occur multipletimes, but each occurrence must be somehow distinguished from other occurrences so that
they can be represented by TP-tuples which are not data-identical). This approach is also used by Dubois
and Prade [15].

Gadia[20] proposes an elegant model to handleincompl ete temporal information aswell. He modelsval-
uesthat are completely known, values that are unknown but are not to have occurred, valuesthat are known
if they have occurred, and values that are unknown even if they occurred. Gadia [20] shows that his model
is sound. However, he makes no use of probabilisticinformation.

An important body of work isthat of Koubarakis[26, 27] who proposes the use of constraintsfor repre-
senting temporal data. In this sense, our work is directly related and builds upon Koubarakis’ work. Like
us, Koubarakis uses constraints to represent when an even occurs. Koubarakis' framework allows stating
the facts that event ¢, occurred between 8 and 11 AM, and that event e, occurs after 12pm. ¢From this, we
may concludethat event e, occurs after e; — our framework can support this conclusion aswell. However,
inside our TP-tuples, we cannot state that event e, occurs after e; — something we can do in a query, but
which Koubarakis[26, 27] can explicitly encodein histuples.

Another important body of work isthat of Brusoni et al.[8] who developed asystem called LaTeR. LaTeR
restricts constraintsto conjunctions of linear inequalities, as does Koubarakis' work. LaTeR makes a com-
promise — when tuples are inserted, it buildsa constraint network (which increases insertiontime), but this
pays off because at query time, queries can be efficiently processed. We can benefit from this strategy in
our work — as constraint networks are main memory data structures, an adaptation to disk-based structures
would greatly enhance scalahility. We will report on such effortsin part 11 of this series of papers[10].
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9 Conclusionsand Future Work

There are alarge variety of applicationswhere there is uncertainty about when certain real-world events oc-
curred, or are predicted to occur. Such applications range from shipping and transportation applications,
where extensive statistical datais available about shipping times for packages from one location to another,
to data mining and time series applications where predictions about when certain stock market activity may
occur isinherently uncertain. Thesameistrue of weather applicationswhere predictionsabout thelikelihood
of rain in a certain time interval aso has probabilistic attributes. A variety of other important applications
involving uncertainty about when events occur have been identified in an important paper by Dyreson and
Snodgrass[13].

The only previouswork whose explicit goal wasto incorporate uncertainty into temporal databasesis due
to Dyreson and Snodgrass [13]. In this paper, we choose a philosophically different approach to incorpo-
rating probabilistic temporal reasoning in relational databases — instead of adding probabilitiesto temporal
databases, we instead add time to probabilistic databases. Our approach alows us to make the following
important contributions over and above the important work of Dyreson and Snodgrass [13].

e We proposewhat is, to our knowledge, thefirst extension of the relational algebrathat integrates both
probabilitiesand time. Thisnicely complementsthe probabilistictemporal SQL languagedesigned by
Dyreson and Snodgrass[13].

e Second, our framework removes severa assumptions made in previous work. First, our framework
allows usersto specify in their (algebraic) queries, what dependencies (if any) they assume between
indeterminateinstances. No conditional independence assumptionsare required unlessdesired by the
user. Instead, the user can parametrize his query with a variety of other probabilistic assumptions.
Second, we allow the database to associate partial distributionswith uncertain data. Thisis certainly
very practical. Most statistical sampling methods do not provide total distributions, but distributions
with associated margins of error. Third, by introducing the TP-Algebra, we show how the PDM model
can be modified to support temporal indeterminacy, even if there might be several million elementsin
aset of possible chronons. Thiswas an important open problem raised by Snodgrassin [53].

o We proposetwo algebrasin thispaper. The TATA-Algebraisintended for purely theoretical purposes.
Asthe TATA-Algebraexplicitly specifiesthe probability of an event occurring at any given time point,
it leads to unacceptably large relations. However, the explicit specification allows usto easily specify
how the relational operations should be defined, i.e. what their behavior should be so asto be “proba-
bilistically and temporally kosher.”

The TP-Algebra on the other hand is an implementation oriented algebra. First, TP-relationsare very
small compared to annotated relations. Second, for every operation op defined on the TATA-Algebra,
we show how to define an analogous operation that directly manipulates the succinct TP-relations.
We show that these TP-operationsare al correct inthe sensethat they correctly implement the TATA-
Algebra operations. Thus, there is no need to implement the TATA-Algebra because the TP-
Algebra can realizeit in a sound, complete, and much more efficient manner.

¢ We provide a host of new agebraic operations that have not been introduced before. These include
avariety of compaction operators, compression operators, combination operators, and a tightening
operator.

¢ We have conducted experiments on the feasibility of our approach by building aprototype TP-Algebra
system on top of ODBC. Our experiments show that the distributionsthat are used definitely impact
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the performance of the system. TP-relations are shown to be far more scalable than their annotated
counterparts.

Thisisthefirst in along term research effort we have on probabilistic temporal databases. Our long term
research program involves enhancing the framework of TP-programsin the following ways.

1. First, due to space reasons, we have not been able to study query optimization in this paper. We are
working on establishing a set of rewrite rules, and a set of cost modelsfor TP-databases. Preliminary
test runs with optimized versions of some queries show far superior performance than indicated in the
experimentsin this paper.

2. Second, we are working on the problem of incremental view maintenance in TP-databases. Thisis
an important problem because in many TP applications (such as stock applications and transportation
applications), updates occur al the time. Handling these updates efficiently is critical.

3. A third important point is that of integrity constraints. What does it mean for a database state to
satisfy an integrity constraint, when in fact, the contents of the database is uncertain and reflects a set
of possible states, together with an associated probability distribution.

4. A fourth major research topic is on indexing TP-databases. While extensive work has been carried
out on indexing constraints, and indexing relational databases, the problem of indexing TP-cases in-
troduces new twists when we wish to support efficient probabilistic queries.

5. A fifth mgor research topic is that of supporting probabilistic aggregate operations. For instance,
thisis needed to support queries of the form Find the ten most probabl e events to occur at time?.

Concurrently with the above, we are involved in continuously improving our implementation through the
addition of avariety of features.
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A Appendix: Notation tables

| Symbol | Meaning Il
T Timeuniteg. (day, {1,...,31}) 21
H=1TC...-C1T, Linear hierarchy of time units 2.1
t=(v1/.../vn) Time point e.g. (2/3/1996) 21
t<gt Time point ¢ occurs before ¢/ 2.1
T Calendar e.g. Gregorian 21
next,(t) Next, consecutive time point after ¢ 21
c,D Tempora constraintse.g. (11 ~ t3) 22
S =sol(ts ~ tg) Set of al valid time pointsover + 2.2
sol(C)=5C S5, Solution set for temporal constraint ' 2.2
pdf(D, ;) Determines probability p; for t; € sol(D) 2.3
é Distribution function (names a family of PDFs) 2.3
6 =u,g,qge b, po Uniform, geometric, complete ¢, binomial, Poisson 2.3
pt =(D,L,U,¥) P-tuple; determines [ L., U,] for each ¢ € sol(D) 24
st(e), end(e) I nstantaneous start/end events which bounding event e 24
Qa, Dp Probabilistic conjunction/digunction strategy 25
alp =ig,pe,ne,in Ignorance, positive/negative correlation, independence 25
X(9) Combination function; combineseach [L;, U;] € S 2.6
Xeq Optimistic equity combination function 2.6
Yi = <C“ D;, L;, U;, 6z> TP-case, C; may be "(#)” if SO|(CZ) = SO|(DZ) 31
Y=Y Vn} TP-case statement; each TP-case ; € v 31
d=(dy,...,dg) Datatupleover relational schema A = (A4,..., Ag) 32
tp=(d,y)€er TP-tuplein TP-relation r 3.2
P(d) Manifest projection of datatuple d; removesd.H 3.2
dH| dH Hidden list concatenation; merge of field-value pairs 32
r[tp] Multiset of al TP-tuplesin » which are data-identical to tp 34
dom(A) Domain of relational schema A; dom(A;) X --- X dom(Ay) | 3.4
I4-(d,t) TP-Interpretation; probability that d’sevent istrueat timet | 3.4
Is-(d,D) Probability assigned by 14 - to temporal constraint 34
Ia-FEtp TP-Interpretation /4 , satisfies TP-tuple ¢p 34
ANN(tp), ANN(r) Annotated relationsfor ¢p and 4.1
at = (d,t, L, Uy) Annotated tuplefor tp = (d,v) at timet 41
ANN(r)[d, ] Multiset of al at € ANN(r) where (at.d = d Nat.t =1t) 4.2
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| Symbol | Meaning | § |
Ky (ANN(7)), k,(ANN(r)) | Combination function/p-strategy based compaction | 5.1
ANN(r) N ANN(r) Multiset intersection 52
ANN(r) Ny ANN(r) Denotes {/(ANN(r) N ANN(r')) 5.2
ANN(r) U ANN(r') Multiset union 53
ANN(r) U, ANN(r") Denotes «/(ANN(r) U ANN(r')) 53
oc(ANN(r)) Selection of conditionC 54
ANN(r) — ANN(+") Difference 55
ANN(r) xo ANN(7) Cartesian product under o 5.6
Tr(ANN(r)) Multiset projection of projectablefield list 7 5.7
ANN(r) <y ANN(7') Join; mr(o¢(ANN(r) X, ANN(7'))) 5.8
N(r), N(tp) Number of TP-casesinr/tp 6.1
=5d(r), Z%(r), ZM(r) Same distribution/uniform/hybrid TP-compression | 6.1
Fo (1), B (1) Combination function/p-strategy based compaction | 6.2
0! Multiset intersection 6.3
70y 1! Denotes x{(r N ') 6.3
ryUr! Multiset union 6.4
r Uy ! Denotes w7 (r U ') 6.4
C! = TP-ilter(v;,C) TP-filter of 4; w.r.t. probabilistic conditionC 6.5
oc(tp), oc(r) Selection of conditionC ontp/r 6.5
r—r Difference 6.6
T X T Cartesian product under o 6.7
Tr(r) Multiset projection of field list 7 6.8
T <y Join; T r(oc(r Xo 1)) 6.9

B Appendix: Experimental results
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Union when nTimePoints= 16 Union when nTuples = 1000
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Selection (data condition) when nTimePoints = 16 Selection (data condition) when nTuples = 1000
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Selection (temporal condition) when nTimePoints= 16 Selection (temporal condition) when nTuples= 1000
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Selection (probabilistic condition) when nTimePoints = 16
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Difference when nTimePoints = 16 Difference when nTuples= 1000
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Projection when nTimePoints = 16 Projection when nTuples= 1000
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C Appendix: Proofsof results

Proof of Proposition 1.

Let 7 beacaendar and (namey, .. ., namey) bethelist of the names of itstime units.

To provethis propositionit suffices to show that (i) every atomic time-val ue constraint can be represented
asatime-interval constraint and (ii) every atomic time-interval constraint can be represented as atime-value
constraint.

We do just that bel ow:

1. For every atomic time-interval constraint C' there exists a time-value constraint ¢ such that
sol(C') = sol(C").
Let C' = (t; ~ t3) bean atomictime-interval constraint. Lett; = (vy,...,v;) andty = (vf,...,0}).
Now, let sol(C') = {s1,...,5,}.
Lets = (vf,...v]) beatime point. We construct a time-value constraint C'; asfollows:

Cs = (namey = vi A namey = v3 A ...\ namey = vj)

By defintion of solution set for atemporal constraint sol(C's) = {s}. But then for atime-value con-
straint
C'=Cs, VO, V...V,

the solution set is defined as the union of solutionsetsof ', (1 < ¢ < k), i.e:

sol(C") = sol(Cs, ) U ... U s0l(Cy, ) ={s1}U...U{sp} = {s1,..., 85} = s0l(C).

Note: €’ constructed as described above is going to be avery large constraint. In practiceitisaways
possibleto construct much more compact time-val ue constraintsfor representing a time period.

2. For every atomic time-interval constraint C' there exists a time-value constraint €’ such that
sol(C') = sol(C").

Let C' = (name;opv;) be an atomic time-value constraint. We construct an equivalent time-interval
constraint as follows.

Let ¢ beatimepoint and let C'; be atime-interval constraint defined as follows:
Ct - (t ~ t)

By definition of the solution set of atemporal constraint, sol(C) = {s}.
Now, let sol(C) = {t1,...,1,}. Thesolution set of atime-interval constraint C’ defined as

C"=Cy VO, V...vCy,
will be equal to
sol(C") = sol(Cy)U...Usol(Cy,) = {t1}U... Ut} = {t1,.. ., tm} = sol(C)

Note: € constructed as described above is going to be avery large constraint. In practiceit isaways
possibleto construct much more compact time-val ue constraintsfor representing atime period. O
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Proof of Proposition 2.

If 5" is such that Nz i1es[L, U] # 0 then the values of al functions defined in the example 2.5 will co-
incide on .5, asthey are all defined to be equal to the intersection. Clearly,Nz, ;1es[L, U] satisfies Iden-
tityas[L,U] N [L,U] = [L,U]. Also, since Ny, iesll, U] = [maxqp 1es(L), min[L, U] € S(U)] and
[maxqy, 1es( L), min [L, U] € S(U)] < [max;, 1es( L), 1] the Bottomline issatisfied. We also notice that
when S = {[L, U]}, Nz eslL, U] # 0, 1.e. Identity need not be considered when N7, i1es[L, U] = 0.

Let now Nz, i1es[L, U] = 0. We prove Bottomline for all six functions:

Optimistic Equity xc,(5) = [max(, 1es( L), max[L, U] € S(U)] < [max, 1es( L), 1]i.€ xe, SA-
isfies Bottomline.

Enclosing Equity x..(,5) = [min[;, 1es(L), max[L, U] € S(U)] < [max(p, es(L), 1]i.e x.. sat-
isfies Bottomline.

Pessimistic Equity x.,(5) = [min(z, i1es( L), min[L, U] € S(U)] < [max(p, es( L), 1]i.€. X, St-
isfies Bottomline.

Rejecting Equity x..(.5) = [0,0] < [max(z, 1es( L), 1]i.e ., satisfies Bottomline.

S<eptlca| EqUItyXBT(S) = [0, 1] < [maX[LU]eS(L), 1]

MizesU] < [maxqg, pes(L), 1]. 0

B~

Quasi-Independence Equity x4 (5) = [I[1,17es

Proof of Theorem 1.

r iscompact = AN N(r) is compact.

As r is compact, for each data tuple d and timepoint ¢ there is at most one tp-tupletp = (d,v) € r,
Y= Ve Ve Vi = <Ci,Di,Li,Ui,6i>,for 1 <i¢<ksuchthatt ¢ 801(01 V...V (.

Let d be some data tuple such that there existsatupletp = (d,~) € . We show that AN N (r[tp])is
compact. Let »[tp] = {tp1,tpa,...tp, ). Let C7 bethedigunction of al C'-temporal constraintsin
tp;. Asriscompact, weknow that (V1 < i # j < m)(sol(C7)Nsol(C*) = §). Lett beatimepointin
sol(C'v...vC™). Thenthereexistsaunique 1 < h < m suchthatt € sol(C"). Consider tp-tuple
tpr, = (d,7') wherey’ =+, ...,y and~/ = (C;, D;, L;, U;, 6;) forall 1 < i < k. By the definition
of aTP-tuple, (V1 < i # j < k)sol(C;) N sol(C;) = (). Thismeans that for each tinsol(Cy V...V
(%) there will be only one annotated tuple (d, ¢, L;, U, ) added to AN N (tp), i.e,, AN N (tpy) has
at most onetuple (d, t, L, Uy, ) for each timepoint ¢. The latter means that AN N (r[tp]) is compact,
since for two tuples tp’, tp” € r[tp], and two tuplesat’ = (d,t', L', U") € ANN(tp') and at” =
(d,t", L",U") e AN N (tp") it will never bethe casethat ¢’ = ¢"”. Compactness of AN N (r[tp]) for
any tp € r yieldsthe compactnessof AN N (r), asfor any two not data-identical tuples¢p and tp’ in
r,notwotuplesat € AN N(r[tp]) andat’ € AN N (r[tp']) will be data-identical.

AN N(r)iscompact = r iS compact.

Let » be a tp-relation. Consider an arbitrary annotated tuple at = (d,t, L, U;) € ANN(r). As
AN N (r)iscompact, AN N(r)[d,t] = {ar}, i.e. noother annotated tuplein AN N (r) is data-time
identical to at. By definition of the operator AN N (), there existsatp-tupletp € r such that, tp =
(d,’y),’y = Ve s VEr Vi = <CiaDiaLi7Ui76i>1 forl < ¢ < kandat € ANN(tp), et ¢
sol(Cy vV ...C).

AsSANN(r)[d,t] = {at}, for any other tp-tupletp’ = (d,7’) € rsuchthaty’ = ~{,....7/, 7/ =
(CL DL L UL 6 wewill havet ¢ sol(C] V...V C]). Therefore, by definition 6.6, r is a compact

tp-relation. O
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Proof of Theorem 2. We show astronger result, viz. thatif I |= r thenalsol = ANN(r).Lettp = (d,v) €

r be sometp-tupleand at = (d,t, L, U) € ANN(r). Sincel |= r, I |= tp. We need to show that / |= at.
Lety = vq,...,yr, and~y; = <CiaDiaLi7Ui76i> forl < i < k. Sinceat = (d,t,L,U) € ANN(T),

thereexistssome 1 < j < k suchthat, t € sol(C;)and [L, U] = [6(D;,t)L;,6(D;, t)U;].

Since!l = tp, I | (d,D;,[L;,U;],6;). By the definition of satisfaction, I(d, D;) € [L;,U;] and
I(d,t) = (5]‘(D]‘,t)f(d, D]‘). Butthen I = (5]‘(D]‘,t)L]‘ < (5]‘(D]‘,t)f(d, D]‘) = 1(d,t) < 0; D]‘,t)U]‘ =U,
i.e, I(d,t) € [L,U]. Fromthelatter ot followsthat I |= (d,t, L,U) = at. O

Proof of Theorem 3. Let /4 -(d, t) becomputed asfollows. Asriscompact, all tuplesof theform(d, —, —, —)

€ AN N(r)arederivedfrom AN N (tp)wheretp = (d,v)wherey = (C1, D1, L1,U1,61), .. ., {Ciny Dy Ly, Uy, 61) -
Let AN N(tp) consist of (dy,ty, L1, Uy), ..., (dx,tg, Ly, Us). Weknow that ©5_, L; < 1. Without loss

of generality, suppose ¢ is a solution of C; for some1 < ¢ < m. Clearly, exactly one such : exists. Let

{t, ...t ..., 1, } bedl other solutionsof D;, andlet sol(C;) = {¢,¢},...,t.}. Forall <i <,

(d,t,, L, U])isin AN N(r). Weknowthat L; < L+ L} +---+ L/ < U;. Wenow construct an interpreta-

tion /4 , that satisfies and whichassigns L to 1 4 - (d, t) asfollows. Weknowthat z- I 4 - (d,y) = 6:(D;, y)

for somez > 0. By setting /4 -(d, ¢) = L, weknow that = = w Therefore, we may set

L
I4.(d ) = 6;(D; t .
A, ( ) 2) ( s 2) X 52'(Di,t)
The same procedure may be used to extend /4 , to other tuplesthat are not data-identical to (d, —, —, —). O

Proof of Theorem 4. Similar to the proof of Theorem 3.

Proof of Proposition 3.

Supposer iscompact. Asr containsno distinct data-identical tuples, r isconsistentiff all tp-tuplesin r arein-
dividually consistent. SupposeaTP-tupletp = (d,y)hasy = “(C1, D1, L1, U1, 61), ..., (Chry Dy, Ly, Uy 6,)"
asits TP-case statement. Then it sufficesto check that

(L1 + -+ Ly) < min(1,X7" L; X Sies, 6;(D;, 1)).

If this condition holds, then the probabilisticinterpretation /4 , defined as follows satisfies p.

. L; x (52'(D2',t) ift € SO|(CZ), 1<t <n
Las(d,1) = { 0 otherwise.
Asal thedistributions é; are determinate, it is easy to see that this check islinear in the size of the relation
T. a

Proof of Proposition 4.
Let y be a combination function and let AN N () be an annotated relation. We show that «,, satisfies the
properties of compaction operations.

1. Compactness. By definition 5.2 x, (AN N (r)) contains only one annotated tuplefor each pair (d, ¢)
where d isdatatupleand ¢ is atimepoint. Therefore, x, (AN N(r)) iscompact.

2. NoFooling Around. Let AN N (r)becompact. Thenfor any datatupled and timepoint¢, AN N (r)[d, t]
will containatmost onetuple. Let AN N (r)[d,t] = {(d,t, Ly, U;)}. Then, by definition’5.2, k. hi( AN N(r))
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will contain atuple (d, t, x({[L¢, U¢]}). As x isacombination function, it satisfies the Identity prop-
erty of combination functions, i.e. x({d,t, Ly, U;}) = [L¢, U], 1€, (d,t, Le, Uy) € Ky (ANN(7))or
ANN (7)) C K (ANN(r)).

Toprovethat x, (AN N(r)) C AN N(r)weobservethat by definition5.2, theonly tuplesin s, (AN N (r))
arethoseinserted thereby applying x tothesets{[L,, U,]} of probabilisticintervasfrom AN N (r)[d, t]
equivalence classes. Aswe have shown above, all such tupleswill be the tuplesfrom the original re-
lation AN N (7).

3. Conservativeness. We notice that if thereexistsatuple at = (d,t, Ly, Uy) € k(ANN(r)), then
by definition 5.2 there had to be anonempty set AN N (7)[d,t] C AN N (r), which meansthat for any
suchtuplein k, (AN N (r)) thereisalwaysat least onetupleat’ = (d,t, L}, U]) In AN N(r). ]

Proof of Theorem 5. Let y be a combination function and AN N (r) be an annotated relation. Let at’ =
(d,t,L,U") € ANN(r). ThenANN(r)[d,t] # 0. L&d ANN(r)[d,t] ={at, ..., at}},at: = (d,t, L, U}
for1 < i < k. By definitionof combination function-based compaction, ., (AN N (7)) will containthetuple
at = (d,t, L, U)where[L, U] = x({[L}, U{],...,[L%, Ui]}). a

Proof of Proposition 5. We need to show that x satisfies the three axioms defining compaction operators.

1. Compactness. By the definition of ap-strategy based compaction, for any given pair (d, t), x, com-
putesAN N (r)[d, t]consistingof al tuplesin AN N (r) of theform (d, ¢, —, —). All tuplesin AN N (r)[d, t]
are combined into one by the construction of the definition of a p-strategy based compaction.

2. No Fooling Around. If AN N(r)iscompact, thenfor al (d,?), AN N (r)containsat most onetuple
of theform (d, ¢, —, —). In this case, the definition of «, returnsthat tuple unchanged.

3. Conservativeness. Supposer,(AN N(r)) containsatupleof theform (d, ¢, —, —). Thenitiseasy
to see that by the definition a of p-strategy based compaction there must exist at least one tuple in
AN N(r)of theform (d,t,—, —). ]

Proof of Theorem 6. We need to show that =*%(r), Z%(r) and Z"¥(r) are all TP-compression functions.
To see that =*4(r) is a TP-compression function, we must demosntrate that N (Z*%(r) < N(r) and that

there exists a bijection, ¢ from AN N(r) to AN N(sd(r)). In fact we will show that a stronger statement
holds: AN N(r) = AN N (sd(r)).

1. N(Z*(r) < N(7).
Letr = {tp1,...,tps}. Clearly, N(r) = N(ip1) + ...+ N(ips).
By definition of =*¢, for every tp-tupletp € r, exactly onetp-tuple tp’ is added to =*?(r). Therefore
7| = |Z%4(r)|. Let now Z%4(r) = {tp}, ..., tp,} wheretp: = 5% (tp;), 1 <i < s. ASN(Z%(r)) =
N(tp)) + ...+ N(tp,), it sufficesto show that for al 1 < ¢ < s N(tph) < N(tp;).
Thelatter statement is clearly true as by definition of =*7 either tp; = tp! (in the case when no tp case

statements were deleted) or, for every two tp-case statements deleted from the tp-tuple ¢p; during its
conversion into ¢p’ only one tp-case statement is added.

2. ANN(r)= ANN(Z*U(r)).
Let tp € r. Wewill show that AN N (tp) = AN N(Z*(tp)).

Lettp’ = =*U(tp). Lettp = (d,7),7 = Vis--or ¥ Vi = (Ciy D, Li, Uiy 6:1 < i < noand let
tp/ = (d77/)77/ = 7{7 .. ‘77;n7 72/ = <CZ/7D;7L;7 Ui/v(sz/" 1 <i<m.
Consider some tp-casey; from ¢p’. By the definition of =5, one of two casesis possible:
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(@ Thereexistssome 1 <k < n, v} = 4 (i.e, during the application of =54 tp-case gammay, did
not change). Inthiscaseclearly AN N ((d, 1)) = ANN((d,7}))-

(b) 7} isnot equal to any v; € 7, but, thereexist 1 < kq,...k, < nsuchthat Dy, = ... =
DquD;,LklI...IquIL;,Uklz. Iqu—U](,(SklI...I(Skq 6§and
Ck1 V...V quC;.

Letnow at = (d,t,L,U) € ANN(d, (Yk,,---.7k,))- Clearly, thereexistssome1 < h < ¢,
suchthat ¢ € SOZ(Ckh) and [L, U] = [6kh(th7t) . Lkh,ékh(th, ) Ukh] Sincet ¢ SOZ(Ckh),
t € s0l(Cyy V...V Cy,) = sol(C?). Therefore, at’ = (d,t,63(D%,t) - L%, 6%( D}, t) - Ul) €
ANN(d,~}). Butsince Dy, = D', Ly, = L', Uy, = Ul andéy, = &', [L,U] = [§/(D",1) -
L%, 8%( D%, t)-Ul] andthereforeat = at’. Hence, AN N (d, (7k1, . .,7k2)) C ANN(ANN(d,7}).

The proof that AN N(d, (Vky,---,7k,)) 2 ANN(ANN(d,~}) isanalagous.
Thisestablishesthat AN N(d, (7ky, - -+, 7k,)) = ANN(ANN(d,7}).

Combinting the results from above together we concludethat AN N (tp) O AN N (Z%4(tp)).

To show that AN N (tp) C AN N(Z*(tp)) it sufficesto notice that for any 1 < i < n and tp-case v;
thereexistssuch 1 < j < m and tp-casev; that sol(C';) C sol(C).

The proofsfor=*(r) and Z"¥(r) are similar. ]

Proof of Lemma 1.
Similar to the proof of Proposition 4. O

Proof of Theorem 7.

Let uslook at therelation " which isreturned by Compute-Compaction(r, x ). Themain loop of the algo-
rithm (lines 04.—23.) worksin the following way:

e Inlines 05.-08. of the agorithm the initia relation r is broken into the equivalence classes by the
relation of data-identicity. Lines 05.—0.6 select the next unprocessed equivalence class, and lines 07.—
08. prepare the data for the next step. In particular, 'y (and initially I's) are set to be equal to the set
of al tp-cases found in the tp-tuples of the current equivalence class.

e Theforeach loopinlines 09.—12. then separates all timepointswhich are in solution of some tp-case
v: € T'j into two categories: timepointsthat are referred to only by ~ and timepoints referred to by
more than onetp-case. Thetimepointsreferred to only by onetp-caseare handled by line 11. inwhich
anew tp-case that contains only such timepointsfrom ~; and addsit to thefinal tp-tuple.

¢ Line13. collectstogether in onetemporal constraint C's all the timepointsthat are referred to by more
than one original tp-case.

¢ Intheforeach loopinlines15.—22. each timepoint ¢ from sol(C's) gets processed. Lines 17.—20. col-
lect together the set X of all intervals| L, U] which are the probabilities associated with the timepoint
t by all origina tp-cases which refer to .

¢ Inline21. the combination function y is applied to the set X to obtain theinterval [L}, U/’], which
will become the part of the tp-case (), (¢), LY, U/, ) which is added to the final tp-tuplep”.

¢ Inline23. thetp-tupletp” constructedfor thecurrent equivalenceclassisadded to theresultingrelation

7.
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Now, let some annotated tupleat = (d,t, L,U) € AN N(r"). Thenthere existsatp-tupletp € r”, such
that at € AN N(tp). Let usexaminethevauesof L and U.

Sinceat € ANN(tp),tp = (d,v),y = v1,- - Yn v = (Ci, Dy, L, U, 6;), 1 < i < nand there exists
1<) <n,te SOZ(C]‘) and[L,U] = [(5]‘(D]‘,t) -LJ‘,(S]‘(D]‘,t) . U]‘].

Let uslook at how tp-case v; could have been added to ¢p. ¢From the analysis of the algorithm above, it
is clear that there are only two possiblilties:

1. ~; hadbeenaddedtotpinlinell. Let uslook at theequivaenceclassof ¢pinr (athoughtp itself isnot
inr it must be data-identical to some tp-tuplesof » and hence r[tp] makes senseevenif tp ¢ r). After
line08. isexecuted whilethea gorithmisprocessing r[¢p], I'; will contain the (multi)set of all tp-cases
from the tuplesin r[tp]. Sincey; had been added to ¢p in line 11., it means that there exists such a tp-
casey’ = (C', D', L', U") € Gammaj* that sol(C;) C sol(C'), D; = D', L; = L', U; = U' and
6; = ¢'. Alsothismeansthat no other tp-casein I'; refersto any timepointsin sol(C';), inparticular, no
other tp-caseinI'; referstotimepoint ¢. Clearly then AN N (r)[d, t] = AN N (r[tp])[d, ] will contain
one and only one annotated tuple: at’ = (d,t,6(D’,t)- L',6(D’',t) - U’). But from the equalities
established above, at’ = (d,t,6;(D;,t)- L;,6,(D;,t)-U;) = (d,t,L,U) = at. Now we notice that
x({[L,U]}) = [L,U] asitisrequired by the definition of y-compaction, since x as a combination
function satifies Identity postulate.

2. v; had beenaddedto¢p inline22. Inthiscaseintheset I'; builtinline 08. for the equival ence class of
tp in r there will be more than one tp-case which refersto ¢. From the analysis of the agorithm above
we concludethat inthiscaset € sol(C's) after C's had been computed in line13. Let us consider the
iteration of the foreach loop 15.—22. which processest. Inline 17. T'; gets assigned the value of the
setof al tp-cases; = (C!, D, Li, U/, 6!) thatt € sol(CY). foreach loopinlines18.—20 buildsthe set
X =A{[Lr, U]} where[ L, U] = [6;( D%, t)- L, 6;( D!, t)- U]] arethe probabilisticinterval sassigned
to d, ¢ by each tp-case v;.

Inline21. [L, U] = \(X) is computed. Now, all we have to proveisthat X = {[L{* v{*)) ..

(LD 791y such that

ANN(P)[d, 1] = {at{™ . atl™} and at!™? = (d, 1, 1D, U*D). LetT; = {44,...4/}. Since

I'; containsall tp-cases of r[¢p] (and hence, al tp-cases of ) which refer to timepoint ¢ for the datad,

AN N (r)[d,t] = AN N (r[tp])[d,t]will beequal totheset: {at},...at.}, whereat: = (d,t,6,(D;,t)-

Li, 8;(D;y1)-U;) = (d,t, LY, Ur),1 < i < 5. Butthenweasoknowthat X = {[L;,Uf],...[L%, Uf]}.
This proves the theorem. O

Proof of Lemma 2.
Similar to the proof of Proposition 5. O

Proof of Theorem 8.
Similar to the proof of Theorem 7. O

Proof of Theorem 9.

By definition6.7 AN N (k. (7)) = {at = (d,t, L, U)|[L, U] = x({[L1,\%), U3 (D ), .. [Ly, (40 U (D)),
where (V1 < i < k)(at!™ = (d, 1, "D Uy and {atd™ . al™P} = AN N(r)[d, 1]}. But by defi-
nition 5.2 x, (AN N (r)) isequal to the same expression. Therefore, AN N (k,(r)) = K (ANN(r)). O
Proof of Theorem 10.

By thedefinition of ap-strategy based comapctionof TP-relationsSAN N (k,(r)) = {at = (d,t, L, U)|[L, U] =

here and further when we mention T'; we refer to its initial value assignedin line 08.
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d, d,
NG

]*p...*p[ngd

7t)

b

@,

where (V1 < i < k)(at!™ = (d,t, LD, U {arl™), . all™Y = ANN(r)[d, 1]} and + = @ if pis
adigunctive p-strategy and x = @ if p isa conjunctive p-strategy.

But by the definition of ap-strategy based comapction of annotated relations s, (AN N (r)) isequal to the
same expression. Therefore, AN N (k,(7)) = k,(ANN(r)). 0

Proof of Theorem 11.

By definitionr N, v’ = x,(r N ). Our proof consistsof three parts. show that:

1. Clam1: ANN(rnr') CANN(r)N ANN(+').
Letat” = (d,t,L,U) € ANN(rnr'). Weshow that at” € ANN(r)n AN N (). By definition of
ANN,at" € ANN(rnr')impliesthat there existsatp-tupletp” € r N ' such that:

" = (d A" )" =
(V1< i<k)y’=(CV, DI L",U” 8" and

[

(Fi e {1,...k})(t € sol(CI)YN[L, U= [6] (DY, t)- LY, 6! (DY,t)-U).

T

Astp” € rnr’, by definition of intersection of two tp-relations, there exist tp-tuplestp = (d,v) € r)
andtp’ = (d,7') € r') where:

YT = Y15 Tn
Y= Ve
Yi = <Ci7Di7Li7 U2762>

vi o= (CL Dy Ly, Uj, 67)

IR

In addition, there exist integersi;, € {1,...,n}andiy € {1,...,n’} suchthat either

cy
DY

6!

(L7, U]

or

cr

DY

6!

(L7, U]

(Ci, ACY)) and
i and
(52'1 and

[(Li, Ui .

(Ci, ACY)) and
is and

(52'2 and

[Liy, Uiy] .

Without loss of generality, assume that the first case holds (the reasoning for the other case is sym-
metric). Ast € sol(C;,) and t € sol(C})), by definition of AN N, wemay say that AN N (tp) >

at = (d,t,L1,Uy)and AN N(tp) > at’ =
Ui1] and [L27 UQ] = [6(

2Di1,t) . Lil,é’»

(d, t, LQ, UQ) where [Ll, Ul] = [6(D21 R t) . Li1 R (S(D“,t) .
(Dy,,t) - U;,] Therefore, by definition of intersection of

2

two annotated relations, we conclude that {at, at’} C ANN(r) N ANN(+'). It followsthat at” =
(d,t,L,U)=at = (d,t, L;,U;),because[L, U] = [L;,, Uy].
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2. Clam2: ANN(rnr') 2 ANN(r)QANN(r'). Supposeat = (d,t, L, U) e ANN(r)NANN(r).
Hence, by definition of intersection there existsan annotated tuple at’ = (d, ¢, L', U') € ANN(r)N
AN N(r"), such that

o cither at € ANN(r);at’ € ANN(+')

e orat' € ANN(r);at € ANN(r')
Without loss of generality we will assumethat at € ANN(r); at’ € ANN(r') (the other case is
symmetric).
Asat € AN N(r)weconcludeby definitionof AN N that thereexistsatp-tupletp = (d,~) € r such

thaty = v1,.. ., 70
(V1 <i<n)(v = (Ci, D, Li, U, 6;))
and (37 € {1,...,n})(t € sol(C;) N[L,U] = [6:(D;,t)L;, 8;(D;, 1) U]).

Now fromat’ € AN N(r'), weknow that thereexistsatp-tupletp’ = (d,~') € ' suchthat (tp,p’) €

m and

7 _717" 7771

(V1< 1 < )5 = (C5 Di L, U )

and (3j € {1,...,w'})(1 € sol(CL) A [L/, U] = [85( D%, 1) 14, 84 DS, U],

Asip andip’ are data identical, there exists such atp-tupletp” = (d,y") € r N+’ that
V=

and (31 < k < 2")(yy = (CLL DY LG UL &) NCY = (CoNCE) AN DY = Dy ALY U =

[Li, U] A 81 = &).

Ast ¢ sol(C;) andt € sol(C?),t € sol(C; A C?) = C}l. Therefore, AN N (¢") will contain atuple
at" = (d,t, L",U") where

[L”, U”] = [5%(Dg, t) . L%, 5%(Dg, t) . U]/g/] = [52(D2, t) - L, (52'(D2', t) . UZ]

We can seethat [ 1", U"] = [L, U] and therefore, at” = at and therefore

at € AN N(tp"), fromwhichit followsthat at € AN N(r N, 7).

3. Clam3: ANN(rn, ') = ANN(r)ny ANN(7).
By definition of theintersection of two TPrelations AN N (r N, ') = AN N (x,(r0r')). As(k])(.),
#{(ANN(.)))isacompatiblepairwehave AN N (x{(rnr')) = k(AN N(rnr')) = k(AN N(r)N
ANN(r")) = ANN(r)n, ANN(7). o

Proof of Theorem 12.

Let » and 7" betwo tp-relationsand y be acombination function. By definition of unionr U, 7' = x, (rU1’)
and ANN(r)Uy, ANN(r") = ki (ANN(r)UANN(+')). Sincer hi(r)and x, (AN N(r))isacompatible
pair of compaction operations, it is sufficient to provethat AN N(r U ') = ANN(r)U ANN (7).

o ANN(rUr') CANN(r)UANN(r"). Letat € ANN(r U r'). Thenthere existsatp-tupletp €
r U7, suchthat at € AN N(tp). By definition of multiset union of two tp-relations, either ¢p € r or
tp € r'. If theformer holds, at € AN N(r)and if the latter holds, at € AN N(+). In either case,
at € ANN(r)UANN(r')asANN(r)U AN N(r') consistsof all annotated tuplesin AN N (r) and
all annotated tuplesin AN N (7).

o ANN(rUv') D ANN(r)UANN(r').Letat € ANN(r)UANN(+'). Then, either at € ANN(r)
orat € AN N(r). Assumetheformer istrue (theother caseissymmetric). Then, by def. of annotation
operation, thereexistsatp-tuple¢p € r, suchthat at € AN N (¢p). But, since by definition of multiset
union of two tp-relationstp € r U/, wealsoget at € ANN(r U ). O
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Proof of Theorem 13.
Let C; and C, betwo atomic selection constraints. We will consider anumber of cases, each for each pair of
constraint types.

e |f both C; and C, are data constraints, then the statement of the theorem followsfrom the similar result
inrelational algebra.

¢ If both Cy and C, are temporal constraints, the statement of the theorem will be true because of com-
mutativity of the conjunction of boolean temporal constraints.

o If both €y and C, are probabilistic constraints, the statement of the theorem will be true because of
commutativity of the conjunction of boolean probabilistic constraints.

e Let(, beadataconstraint and C; be atemopral constraint.

First we prove o¢, (o¢,(r)) C sigmac,(oc,(r)). Lettp € o¢,(o¢,(r)). Then, (a) ¢p satisfies the
dataconstraint C; and (b) tp € o¢,(r). By definition of selection on atomic temporal constraint, there
existsatp-tupletp’ € r such that

tp=(d, 7).,y =71,V ¥ = (Ci; Diy L, Ui, 6), 1 < v <

tp/ = (d77/)77/ = 7{7 B ‘77;n7 72{ = <C£7DiaLi7 Ui76i>1 1 S v S m and

1. m>k;
2. and there existsamapping f : {1,...,k} — {1,...,m} suchthat f(i) = f(j)iff i = j and
3. Ifforsomel < [ < m, C] A C; isconsistent, then there exists such number 1 < j < k, that

fG)y=1

Sincetp and tp’ aredata-identical, tp’ € o¢, (), sSincetp’ must also satisfy C;. But then, by the defini-
tion of selection ontemporal constraint sigmac,(o¢, (7)) will containthetupletp” defined asfollows:
tp" = (d, "),y = Al = (CY, Dy, L, Ui, 6:),1 < i <nandforeach1 < j < m such
that C; A Cq isconsistent, thereexistsaunique 1 < ¢ < n suchthat C = C; A Ca.

But the latter description is equivalent to the description of tp, i.e. tp” = tp,i.e. tp € o¢,(o¢,(7)).
Now we prove that o¢, (o¢, (7)) 2 oc,(oc,(r)). Lettp € o¢,(o¢,(r)). This means that (o¢, (7))
containsatupletp’ suchthattp = (d,v),y = V1, -, Yk i = (Ci, Dy, L, U, ), 1 < i < k;
tp/ = (d77/)77/ = 7{7 .. ‘77;n7 72/ = <CZ/7D27L27 Ui76i>1 1 <7< mand
1. m>k;
2. and there existsamapping f : {1,...,k} — {1,...,m} suchthat f(i) = f(j)iffi = j and
R !
3. If forsomel < I < m, C] A Cy is consistent, then there exists such number 1 < 5 < £, that
fGry=1
Sincetp’ € o¢,(r)and Ci(r), tp’ € r. Then o¢,(r) will contain atuple¢p” suchthat ¢tp” = (d,~"),
Y=l A A = (CV D L, U, 6),1 <@ < nandforeach 1 < j < m such that C; ACy s
consistent, there existsaunique 1 < ¢ < n suchthat ¢’ = ' A Cy. Clearly, tp = tp”. Sincetp” and
tp" are dataridentical, tp” € o¢,(o¢, (7)), i.e, tp € o¢, (e, (1)).
The proof for the case whan C; isatemporal constraint and o, isadataconstraint issymmetric.
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¢ (; isadataconstraint and o¢, isaprobabilistic constraint.
First we prove o¢, (o¢,(r)) C o¢,(oc,(r)). Lettp € o¢,(o¢,(r)). Then, (a) tp satisfies the data
constraint C; and (b) tp € o¢,(r). By definition of selection on atomic probabilistic constraint, there
existsatp-tupletp’ € r such that
tp=(d,7),7y =715,V ¥ = (Ci, Di, Li, Ui, 6), 1 <
tp/ = (d77/)77/ = 7{7 . ‘77;n7 72( = <Czl7 Div Lia Uia 6i>1 1

1. m>k;

2. and there existsamapping f : {1,...,k} — {1,...,m} suchthat f(i) = f(j)iffi = j and
Ci =TP— f’th@T(’}/f(Z),CQ)

3. Ifforsomel <1 < m, sol(TP — filter(v43;),C2)) # 0 then there exists such number 1 < j <
k,that f(5) =1.

1 < k;
<i¢<mand

Then by definition of selection on atomic data constraint, o¢, () will contain¢p’ astp andtp’ aredata-
identical and ¢p satisfiesC;. Therefore, o¢,(o¢, (r)) will contain atp-tupletp” = (d, ") constructed
asfollows: for each 7/ € ' such that sol(T'P — filter(!,Cs)) # 0, therewill be acase (TP —
filter(y],C2), Dy, L, Us, 6;) in~" and there will be no other casesinv”. But it is clear that in this
casetp’ = tp and therefore tp € oc¢,(oc, (7).

To provethat o¢, (o¢, (7)) 2 oc,(oc,(r)) now letip € oc,(o¢, (7)).

Inthiscase, o¢, (r) will conatin atp-tuplep’ such that

tp=(d,y),y =715 Y = (Cos Diy Li, Ui, 6), 1 <t <

' =(d,v), Y =1, v 1 = (CL Dy, Li, U, 6), 1 < i < mand
1. m>k;

2. and there existsamapping f : {1,...,k} — {1,...,m} suchthat f(i) = f(j)iffi = j and
Ciy = TP — filter(v3;),C2).

3. If forsomel <! < m, sol(TP — filter(’y}(i),cg)) # () then thereexistssuchnumber 1 < j <

k,that f(j)=1.

Then by definition of selection on atomic data constraint, ¢p’ must satisfy Cy () and therefore tp’ € r.
But then Cy () will contain ¢p (seethe construction of ¢p” aboveto seewhy thisistrue). Andsincetp
and tp’ are dataridentical, tp will satisfy C; () and therefore tp € o¢, (oc,(7)).

The proof for the case when C; is a probabilistic constraint and C is adata constraint is symmetric.

¢ (C; isatemporal constraint and C; is a probabilistic constraint.
First we prove o¢, (o¢, (7)) C oc,(0¢,(r)). Lettp € a¢,(oc,(r)). Then, by definition of a selection
on an atomic temporal condition, o¢, () will contain atuple¢p’ such that
tp = (d, %),y =715+ sV Vi = (Cis D, Li, Uiy 6), 1 < i <k
tp/ = (d77/)77/ = 7{7 .. '77;n1 72/ = <Cz/7D27L27 Ui76i>1 1<i<m and
1. m>k;
2. and there existsamapping f : {1,...,k} — {1,...,m} suchthat f(i) = f(j)iffi = j and
L !
3. Ifforsomel < I < m, C] A C; isconsistent, then there exists such number 1 < j < k, that

fG)y=1
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Sincetp’ € o¢,(r), by definition of selection on atomic probabilistic conditionm there exists a tuple
tp” € r such that
' = (d, "),y =1, Al =(CF Dy, Ly, Uiy 60), 1 < i < mand

1. n>m;

2. and there existsamapping ¢ : {1,...,m} — {1,...,n} suchthat ¢(i) = ¢(j) iff i = j and
Cl=TP - filter(’y;’(i),cg).

3. Ifforsomel <1 < n, sol(T P— filter(vy(;),C2)) # 0 thenthereexistssuchnumber 1 < j < £,
that ¢(j) = I.

From the abovewe obtainthat C; = T'P — filter(v(g(f(i)),C2) A Cy.
n

Sincetp” € r, weknow that o¢, () will containatp-tupletp” = (d,~+") suchthat v = 77", ...~
v =(C", Dy, L, U, 6;),1 < i < randforeach 1 < j < n such that C;’ A Cy isconsistent, there
existsauniquel < i < rsuchthat C!" = C7 A Cy.

Finaly, oc,(oc, (7)) will containt a tp-tuple tp* = (d,~*) such that for each v/ € +"" such that

sol(TP — filter(y/,Cq)) # 0, therewill beacase (T'P — filter(v/,C3), D;, L;, U;, 6;) iny* and
therewill be no other casesin v*.
Now we will show that ¢p indeed isequal to ¢p*. Aswe nhoticed, every caseinp had its C' constraint

haveaform C; = TP — filter(y;(f(7)),Ca) A Cy.

Now, itis easy to noticethat sinceevery constraintin ¢p" had aform ¢’ = 7 A Cy, every constraint
istp™ will beof theform CF = TP — filter(v]",Cy) = TP — filter((C' NC1, DY, L', U{', 8]"),Ca).

Clearly, if forsomel < j < n,therewassuch1 < ¢ < kthat C; = TP — filter('yé’, Cz2) A Cq then
TP — filter((CY A Cy, DY, LY, UY, 6%),Cy) will be the value of some C7 from .

3777

We now show that TP — filter(",C2) A Cy = TP — filter((C? ACy, D", LY, UL, 8"),Cs)).

7777
Lett € sol(TP — filter(yY,Ca) ACy). Inthiscase, t € sol(CY) and 8%( DY, 1) satisfiesC,. Also, ¢
satisfiesC;. But then, ¢ satisfies C;’ A Cy. Since thisdoes not affect the probability estimate for ¢, we
obtainthat ¢ € sol(T'P — filter(<C§’ A Cl,D;’, L;’, U?,6",C)).

3777
Conversdly, if t € sol(TP — filter((C} A Cy, DY, LY, UT,67),Cq)) then (8) 67( DY, 1) satisfies C;
and (b) ¢ satisfies C/ A Cy. Thereoforet satisfies ¢ and ¢ satisfiesC,. Then clearly, ¢ € sol(T'P —
filter({(CY, D7, L7, UY, 6%)Cq)). Therefore, t € sol(T'P— filter((CY, DY, L, U, 87)Cy))Ns0l(Cy),
i.e.t € sol(TP — filter(y7,C2) ACy).

This proves the desired inclusion.

Theproof that o¢, (o¢, (7)) 2 oc,(o¢, (r)) issymmetric to the proof above. Similarly, the proof of the
statement of thetheorem for the case when C; isaprobabilisticconditionand C; isatemporal condition
issymmetric to the proof above.

Thelist enumerates al possible pairs of types of constraints, therefore the theorem is proven. O

Proof of Theorem 14.
We will prove thistheorem for the case when C is an atomic predicate (constraint). Then, by theorem 13 this
theorem will be true for arbitrary constraintsas well.

So, assume € isatomic preticate. We have to consider three cases:

1. C isapredicate on the data part of the relational schema of r.
In this case we noticethat o¢(r) C r, i.e. only tuplesfrom r can be foundin o¢(r).
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Letat = (d,t,L,U) € ANN(oc(r)).C. By definition of annotation operation, there must be atuple
tp = (d,v) € o¢(r), suchthat at € AN N(tp). SinceC

isa predicate on the data part, it must be the case that d satisfiesC.

But since o¢(r) C r, we know that ¢p € r, therefore, sinceat € AN N (tp),at € AN N(r). Findly,
asd satisfiesC weget at € oc(ANN(r)).

To provetheinclusionthe other way around, let usconsider thetupleat = (d,t, L, U € oc(AN N(r)).
SinceC isapredicate on the data part d satisfiesC.

By definition of selection on annotated tuples, at € AN N(r). But then, there must be a tp-tuple
tp = (d,y) € rsuchthat at € ANN(tp). since d satisfiesC, tp € o¢(r), and therefore, at €
AN N (o¢(r)).

2. Cisatemporal predicate.

o ANN(oc(r)) C oc(ANN(r))
Letat = (d,t,L,U) € ANN(o¢(r)). We show that at € o¢(ANN(r)).
at € AN N (oc(r)) impliesthat there existsatp-tupletp = (d,v) € o¢(r), such that
Y=Y Vs
at € ANN(tp) and
(Hi € {1, .. .,n})(’yi = <CiaDiaLi7 Ui76i> AT € SOZ(CZ') A [L, U] = [5i(Di,t)Li,5i(Di,t)Ui].
Sincetp € o¢(r), by definition of selection on a TP-relation, there must exist atp-tupletp’ € r,
such that:
tp' = (d,v");v" = 1., and
(37 €{l,...,k})(v} = (C}, D}, L%, é%)) such that

(D, L, U, 60y = (Di, L, Us, ;) and

C; = CiNC.

Sincet € sol(C;), t € sol(Ch)andt € sol(C). The former means that at € AN N(tp'),
i.e, at € AN N(r). Thelatter means that by definition of selection on annotated relation, at €

oc(ANN(r)).
o ANN(oc(r)) 2 oc(ANN(r))
Letat = (d,t,L,U) € o¢c(ANN(r)). We show that at € AN N (o¢(r)).
Sinceat € o¢(AN N(r)), by definition of selection on annotated relations
(i) at € ANN(r)
(i) t € sol(C)
Sinceat € AN N(r), thereexistsatp-tupletp = (d,v) € r,suchthat v = v1,...,7.;
at € ANN(tp) and
(Hi € {1, .. .,n})(’yi = <CiaDiaLi7 Ui76i> ANt € SOZ(CZ') A [L, U] = [5i(Di,t)Li,5i(Di,t)Ui].
We know that ¢ € sol(C;) andt € sol(C), thereforet € sol(C; A C). This means that there
existsatp-tupletp’ € o¢(r) such that,
' =(dy);7" =,y ad
(37 €{l,...,k})(v} = (C}, D}, L%, é%)) such that

3777

<D;,L;, U’ (5/4> = <DiaLi7 Ui76i> and

3777
Ch=C; NC.
t € sol(C?) and therefore, at € AN N (tp'),i.e, at € ANN(oc(r)).

3. C isaprobabilistic predicate.
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e ANN(o¢(r)) C oe(
Letat = (d,t,L,U)
at € ANN(o¢(r))i
Y=Y Vs
at € ANN(tp) and
(Hi € {1, .. .,n})(’yi = <C“ D;, L;, U;, (5Z> ANt € SOZ(CZ') A [L, U] = [(52'(Di,t)Li, 52(D2,t)U2])
Sincetp € o¢(r), by definition of selection on a TP-relation, there must exist atp-tupletp’ € r,
such that:
tp/ = (d77/)§7/ = 7{7 .. 77k and
(37 € {1,...,k})(v; = (C%, D, LY, 6%)) such that

(D!, L U788 = (D, L, U 6:) and

C; = TPfIIter(’yj,C)

Sincet € sol(C;), 1.6t € sol(TP-filter(y7,C)), wehave, [L, U] € sol(C)and dso, t € sol(C})
Thelatter meansthat at € AN N(tp'),i.e,, at € AN N(r). Theformer meansthat by definition

of selection on annotated relation, at € oc(ANN(r)).
o ANN(oc(r)) 2 oc(ANN(r))
Letat = (d,t,L,U) € o¢c(ANN(r)). We show that at € AN N (o¢(r)).
Sinceat € o¢(AN N(r)), by definition of selection on annotated relations
(i) at € ANN(r)
(ii) [L, U] € sol(C).
Sinceat € AN N(r), thereexistsatp-tupletp = (d,v) € r,suchthat v = v1,...,7v.;
at € ANN(tp) and
(Hi € {1, .. .,n})(’yi = <C“ D;, L;, U;, (5Z> AT E SOZ(CZ') A [L, U] = [(52'(Di,t)Li, 52(D2,t)U2])
Let us consider tupletp’ = Uc(tp) ie,
' =(dy);7" =1, ad
(37 €{l,...,k})(v} = (C}, D}, L%, é%)) such that

3777

(D, L, U760y = (Dy, L, Ui, 65) and

3777

Cl TP fllter(%»,C)

ANN(r))
€ ANN (oc(r)). Weshow that at € oc(ANN(r)).
mpliesthat there existsatp-tupleip = (d,v) € o¢(r), such that

Since [L, U] € sol(C),and t € sol(C;), weknow that ¢ € sol( TP-filter(+;,C)) and therefore,
at € ANN(tp'),i.e,at € ANN(oc(r)). O

Proof of Theorem 15.
We break the proof into two parts:

1. ANN(r — ") C ANN(r)— ANN(+').

Letat = (d,t,L,U) € ANN(r —"). Wewill show that at € ANN(r) — ANN(r'). Asat €
AN N (r — "), by definition of AN N, there exists such atuple tp” = (d,~") € r — r’ such that
at € AN N(tp). Two cases have to be considered here:

(@ tp”isin(r—r") becausetp” € r and thereisno tp-tuplein ' whichisdataidentica toit. Inthis
case, thereis no annotated tuplein AN N (') whichisdataidentical to AN N (¢p”p) and hence,
at € ANN(r)— ANN(+').

(b) Otherwise, tp” isin(r — r') becausethereisatp-tuplesip = (d,v) € randatp’ = (d,~')inr’
and tp” is constructed from these two tp-tuples using the construction shown in Definition 6.17.
Let (tp,tp’) beany such pair of tp-tuples.
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Asat = (d,t,L,U) € ANN(r — r'), it followsthat thereis a unique integer ¢ such that the
constraint of theform C'; A =C” in Step (2) of Definition6.17 issatisfied. Thismeansthat thetime
point ¢ is asolution of one of the C'-constraints of ¢p and none of the C'-constraintsof ¢p’. This
holdsfor al tp-tuplesin ' that have an annotated tuple of theform (d, t, —, — ) intheir annotated
expansion. Hence, independently of how we choose atuple tp° from ¢/, if tp and tp° are data-
identical, then notupleof theform (d, ¢, —, —) canbein AN N (tp) — AN N(tp°). Itfollowsthat
there can be no annotated tuple of theform (d, ¢, —, —) can bein AN N (+'). If the C'-constraint
of ¢p aluded to aboveis (C;, D;, L;, U;, 6;), then we know that (d, ¢, L,U) € AN N(r)where
L= (52'(D2',t) - L;and U = (52'(D2',t) - U;. Hence, at € ANN(T) — ANN(T/).

2. ANN(r)— ANN(7") C ANN(r —1/).
Letat = (d,t,L,U) € ANN(r) — ANN(+/). By definition, at € AN N(r)and thereisno at’ =
(d',t',L',U") ¢ ANN(r")suchthatd = d' andt = t'. It follows by definition of AN N that
there exists tp € r suchthat at € AN N(t¢p) and thereisno tp’ € r’ suchthat AN N(tp') is of
the form (d,¢,—, —). It followsimmediately from the construction of » — ' (Definition 6.17) that
at € ANN(r—1r').

Proof of Theorem 16.

The proof will consist of two parts

L ANN(rxq1") CANN(r) xq ANN(2').

Letat” = (d",t",L",U") € ANN(r x, r'). Wewill show that at” € AN N(r) x, ANN(r'). By
thedefinition of an annotated relation, thereexistsatp-tupletp” € r x,, r’ suchthat at” € AN N (¢p").
Thismeansthat tp” = (d",7"),y" = ~{, ...,y v = (CI', D!, LY, U",6!),1 < i < nandthere
existsanumber 1 < j < n suchthat sol(C?) = {t"} and [L", U"] = [L7, UY].

Since tp” € r x, r', by the definition of cartesian product of two tp-relations, there exists such a tp-
tupletp € r and atp-tupletp’ € ' that:

tp = (d,7) tp’ = (d',7")
d" = d,d'
Y=Y,k Y =1V
vi = (Ci, Dy, L Ui 65), 1 < i < k vi=(CLDLLLUL O, 1<i<m
(Fh e {1,...k})(" € s0l(C}h)) (A e{1,...m})(t" € sol(C)))

and [LY, UM = [L",U"] = [6p(Dp, t") + Ly p(Dp, 1) - Up] @4 [6]( D7, ") - Ly, 61( D, ") - UJ].
Butinthiscase, by thedefinition of annotatedrel ation, therewill beanannotated tupleat = (d, t”, éx( Dy, ")
Ly, 6,(Dp,t") - Up) € ANN(tp) C ANN(r)and an annotated tuple at’ = (d',t", 6;(Dj, ") -

Ly, 6)(Dj,t") - U]) € ANN(tp') C AN N(r'). Then by the definition of a caresian product of anno-

tated relationsand since[L”, U"] = [63,( Dy, ") Ly, 6p( Dy, t")- Uy @4 [6]( D}, t")- L), 6,( Dy, ") - U]],

at" = (d,d',t",L",U") € ANN(r)x, ANN(+').

2. ANN(r)xXoq ANN(r") CANN(r x4 1').

Let at” = (d",¢",L",U") € ANN(r) X, ANN(r"). We will show that at” € ANN(r x, ).
By the definition of crtesian product of two annotated relations there exists an annotated tuple at =
(d,t",L,U) € ANN(r)and an annotated tuple at’ = (d’,¢", L', U’) € AN N(r') such that d" =
d,d"and [L",U"] = [L,U] @, [L', U"].
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Sinceat € ANN(r), there existsatp-tupletp € r suchthat at € ANN(ip),i.e, tp = (d,7),
Y=V Yk Vi = <CiaDiaLi7 Ui76i>1 1 <7< kand (Hh € {1, .. .k})(t” S SOZ(C;L)) such that
[L, U] = [81(Dps ") - Ly o5 (D, 1) - Up]-

Similarly, thereexistsatp-tupletp’ € r’ suchthatat’ € AN N(tp'),i.e,tp’ = (d'v'),7 =
vi=(CLD;, L., U6, 1 <i<mand (3l € {l,...m})(t" € sol(C]))and [L',U'] =
Ly, 8{(D} 1) - Uf).

Sincet” € ¢}, andt” € €}, by definition of cartesian product of two tp-relations, » x,, " will contain
atptupletp” = (d,d', "), v" =~1,....40, v/ = (Cl, DY, LY, U/, 67,1 < i < n such that there
existsanumber 1 < j < n suchthat sol(CY) = {t"} and [LY, U] = [L, U] @, [L', U] = [L",U"].
But then AN N (r x,, ') will containthetupleat” = ((d,d’),t", L",U"). a

/
,...’}/m,

o
[6;( D}, ") -

Proof of Theorem 17.
As usual the proof has two parts.

1. ANN(7r (7)) C 7r ,(ANN(7)).

Supposeat = (d,t, L,U) € ANN(nr ,(r)). By definition, thereisatp-tuplein =+ ,(r) of theform
tp = (d,v)inmr ,(r)suchthat at € ANN(tp). Lety =71,...,v, andlety; = (C;, D;, L;, Uy, &;)
— hence, thereisauniqueinteger 1 < j < n suchthat¢ € sol(D;), and L = 6;(D;,t) - L; and
U =6;(D;,t)-U;. AsTP-projectionisamultiset operation, thereisauniquetuple, ¢p* in» such that
tp.H =tp*.H ||“Ay : d.Aq, ..., A, : d.A," andfor all attributesin F, ¢p*’ s attribute values and those
of tp coincide. Hence, at € mx ,(ANN(tp*)).

2. mr ,(ANN(r)) CANN(7r ,(r)).

Suppose at = (d,t,L,U) € 7r,(ANN(r)). Then thereis an annotated tuple, at* € ANN(r)
suchthat at = 7r ,(ANN(at*)). But then thereis a TP-tuple tp* in r such that at* € ¢p*. Hence,
at € Tr ,(ANN(tp*)). ]

Proof of Theorem 18.
Asjoinisaderived operation defined in terms of selection, projection and cartesian product operations, the
result followsimmediately from Theorems 14, 17 and 16. a
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