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Chapter 1

Introduction

1.1 Overview

The Fast Multipole Method, introduced by Rokhlin and Greengard in [1] has been

acclaimed as one of the greatest algorithms of the 20th century. The FMM algo-

rithm dramatically reduces the complexity of matrix-vector multiplication involving

a certain type of dense matrix, which can arise out of many physical systems.

FMM is a complicated algorithm. It involves many different types of opera-

tions in a recursive manner, which has made it very challenging for someone new to

the algorithm to understand.

To that end, the author has developed a set of Java-based applications that vi-

sually demonstrates the FMM algorithm. It is hoped that the animations contained

in these applications will assist future teaching and learning of the FMM algorithm.

These applications can also serve as a research tool, in that they provide user

interfaces to allow the creation of custom data, as well as a detailed break-down of

the operation counts for the regular and adaptive FMM algorithms.

Furthermore, the core functions of these Java-based applications have been
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bundled into a programming toolkit for the FMM algorithm. The toolkit is simple

to use and highly extensible, and can serve as the basis for other research projects

in this area.

1.2 The 2D Coulomb system

Given the matrix

Φ =




Φ11 Φ12 · · · Φ1N

Φ21 Φ22 · · · Φ2N

...
...

. . .
...

ΦM1 ΦM2 · · · ΦMN




, (1.1)

where

Φji = log ‖yj − xi‖, (1.2)

and y and x are arrays containing M and N points, respectively, in the complex

plane, we seek to achieve a fast computation of matrix-vector multiplications of the

form Φu = v where u is a given vector of length N .

The structured matrix Φ arises from solving the Coulomb system of charged

particles. Given a point charge of unit strength at point x0 in the complex plane,

then for any x also in the complex plane with x 6= x0, the potential at point x due

to the charge of x0 is given by

Φx0(x) = − log ‖x− x0‖. (1.3)
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For the clarity of analysis, we drop the negative sign and note the similarity of

1.3 to the elements of 1.2. Indeed, when we are given charged particles at points x1,

x2, ... , xN with charge potential of u1, u2, ..., uN respectively, in order to compute

the potentials v1, v2, ..., vM at points y1, y2, ... , yM , we would need to compute

the matrix-vector product




Φ11 Φ12 · · · Φ1N

Φ21 Φ22 · · · Φ2N

...
...

. . .
...

ΦM1 ΦM2 · · · ΦMN







u1

u2

...

uN




, (1.4)

where Φji = log ‖yj − xi‖.

Direct computation of this problem requires O(MN) operations, or, in the

case where M ∼ N , the order of complexity is O(N2). For a given precision ε, the

Fast Multipole Method can accelerate this computation substantially and achieve a

complexity of O(N log N) in the “building” step and O(N) in the “solving” step.

Since most iterative methods for solving linear systems involve matrix-vector mul-

tiplications, this accelerated algorithm can also speed up such iterative methods

involving appropriately structured matrices.

In [1, 2], Rokhlin and Greengard discussed this physical model of charged

particles with the potential and force obtained as the sum of pairwise interaction

from Coulomb’s Law. These papers presented the analysis necessary for the Fast
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Multipole Method to be applicable for this particular problem and introduced the

FMM algorithm. In [3], Tang further explained and illustrated the algorithm from

a different perspective.

1.3 Outline of the Thesis

In Chapter 2, we present the Fast Multipole Method based on [4, 5]. The key

components of the FMM are expansion (multipole and local), translation (multipole-

to-multipole, multipole-to-local and local-to-local) and space partition. We then

outline the FMM algorithm, followed by a brief complexity analysis. An adaptive

version of the FMM algorithm is then discussed in the final section of the chapter.

In Chapter 3, we state several slightly modified results from [1]. All mathe-

matical analysis needed to perform the FMM algorithm on the Coulombic system

described above is presented in this chapter, including the expansion equations and

translation matrices.

In Chapter 4, several implementation issues are discussed. Java is chosen as

the programming language for this project due to its strengths as an object-oriented

language and portability to various platforms. We then discuss the system design

of this Java-FMM implementation, especially the design and implementation of the

“FMM Blackbox” and “PotentialBuilder” objects, and present some simple code

examples that utilize the Java-FMM routine.
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In Chapter 5, we conduct several numerical experiments using code developed

in Chapter 4 to measure the performance of the FMM algorithm under various

conditions. We will see that the FMM algorithm can be made arbitrarily accurate,

subject to the limitations of machine precision, and that it indeed has an advantage

in time complexity when compared to direct computation.

In Chapter 6, we discuss and demonstrate an animated Java applet that sim-

ulates the FMM solver in action. The design, usage and limitations of this applet

is then presented in detail.
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Chapter 2

The Fast Multipole Method

2.1 Overview

The Fast Multipole Method, acclaimed as one of the ten most significant algorithms

in scientific computation discovered in the 20th century [6], represents a revolution-

ary view towards algorithm design for computational tasks. It is an example of a

class of algorithms that trades accuracy for reduced complexity. The algorithm al-

lows the product of a dense matrix and a vector to be approximated in O(N log N)

operations within a pre-established error bound ε. Since many scientific computa-

tions only require a certain accuracy (up to the machine precision), FMM is well

suited for extremely large computational problems and offer improved efficiency and

reduced memory requirement.

How does FMM reduce the computational complexity for large-scale matrix

multiplications? The following is an analogy of how FMM works.

Suppose that several customers are ordering dinner at a restaurant.

Customer A: I would like to have a beer, a salad and a steak.

Customer B: A glass of water, a salad and a steak.
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Customer C: A beer, a soup and a steak.

Customer D: A beer, a soup and a steak.

The waiter can record the orders sequentially as 12 separately prepared items,

or, as most seasoned waiters will do, will say the following:

Waiter: So that will be 3 beers, 1 water, 2 salads, 2 soups and 4 steaks.

Thus, the 12 items are partitioned into 5 groups before the waiter sends the

order to the bar and the kitchen. Multiple orders of the same food can be prepared

together, thus increasing efficiency. Once the food and drinks are ready, the waiter

un-groups the items and distributes them among the customers.

Efficiency can be further increased by performing regrouping at a higher level,

that is, if orders from multiple tables are combined and regrouped before reported

to the kitchen.

The Fast Multipole Method works in a similar fashion. It achieves regrouping

by operations called “expansions”, which expand the expression to be evaluated

at one evaluation point into the sum of a series. The terms in this series will be

similar to those of the expansions from other evaluation points and thus can be

regrouped before actual calculations are carried out. Combined with operations

called “translations”, which translates the terms in the series from one center to

another, the reduction in computational complexity is achieved by computing these

terms only once and reusing them for all points in the domain where the expansion

7



is valid.

Similar to the restaurant analogy above, the efficiency of FMM can also be

increased by regrouping at a higher level. This is achieved by recursively using

translations to group together more evaluations and is commonly referred to as

Multi-Level FMM (MLFMM).

The following sections define these “expansions” and “translations” rigorously

and explain the MLFMM algorithm in greater details.

2.2 Expansions

R and S expansions are fundamental to the FMM algorithm. By “expansion”, we

attempt to rewrite the elements of the matrix Φ as the sum of an infinite series.

There are two types of expansions, far-field and near-field, each used in different

stages of the FMM algorithm.

2.2.1 Multipole Expansion (S-Expansion)

Let x∗ ∈ C be a point other than xi in the complex plane. We call the expansion

of the form

Φ(y,xi) =
∞∑

m=0

bm(xi,x∗)Sm(y − x∗),

far-field expansion (or S-Expansion) outside a circle of radius R∗ centered at x∗ if

the series converges ∀ y such that ‖y − x∗‖ > R∗, as shown in Figure 2.1.
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y

x∗
R∗

Figure 2.1: Multipole Expansion

2.2.2 Local Expansion (R-Expansion)

Let x∗ ∈ C be a point other than xi in the complex plane. We call the expansion

Φ(y,xi) =
∞∑

m=0

am(xi,x∗)Rm(y − x∗),

near-field expansion (or R-Expansion) inside a circle of radius R∗ centered at x∗ if

the series converges ∀ y such that ‖y − x∗‖ < R∗, as shown in Figure 2.2.

2.3 Translation

Translation, or re-expansion, is used to further reduce the steps required in the

computation. There are three types of translations used in FMM, namely, S|S

9



y

x∗ r ∗

Figure 2.2: Local Expansion

translation, S|R translation and R|R translation.

2.3.1 Multipole-to-Multipole (S|S) Translation

Let y − x∗ and y − x∗ + t ∈ Ωr(x∗) ⊂ C, Ωr(x∗) : |y − x∗| > r and

Sn(y − xn + t) =
∞∑

l=0

(S|S)ln(t)Sl(y − x∗).

The infinite matrix

(S|S)(t) =




(S|S)00 (S|S)10 · · ·

(S|S)10 (S|S)11 · · ·

· · · · · · · · ·




, (2.1)
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r

yΩr1
(x∗ + t)

r1

t
(S|S)

x∗ + t

x∗
r

xi

Ωr(x∗)

Figure 2.3: Multipole-to-multipole Translation

is called S|S translation matrix. The S|S translation is shown in Figure 2.3.

2.3.2 Multipole-to-Local (S|R) Translation

Let y − x∗ ∈ Ωr(x∗) ⊂ C, Ωr(x∗) : |y − x∗| > r and y − x∗ + t ∈ Ωr1(x∗) ⊂ C,

Ωr1(x∗) : |y − x∗| < r1 and Ωr1 ∈ Ωr

Rn(y − xn + t) =
∞∑

l=0

(S|R)ln(t)Rl(y − x∗).
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r

y

Ωr1
(x∗ + t)

r1

t

(S|R)

x∗ + t

x∗

xi

Ωr(x∗)

Figure 2.4: Multipole-to-local Translation

The infinite matrix

(S|R)(t) =




(S|R)00 (S|R)10 · · ·

(S|R)10 (S|R)11 · · ·

· · · · · · · · ·




, (2.2)

is called S|R translation matrix. The S|R translation is shown in Figure 2.4.

2.3.3 Local-to-Local (R|R) Translation

Let y − x∗ and y − x∗ + t ∈ Ωr(x∗) ⊂ C, Ωr(x∗) : |y − x∗| < r and

Rn(y − xn + t) =
∞∑

l=0

(R|R)ln(t)Rl(y − x∗).
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r

y

Ωr1
(x∗ + t)

r1

t
(R|R)

x∗ + t

x∗

Ωr(x∗)

Figure 2.5: Local-to-local Translation

The infinite matrix

(R|R)(t) =




(R|R)00 (R|R)10 · · ·

(R|R)10 (R|R)11 · · ·

· · · · · · · · ·




, (2.3)

is called R|R translation matrix. The R|R translation is shown in Figure 2.5.

2.3.4 Translation Error

The translation matrices presented above are infinite in dimension and the trans-

lations are exact operations. However, in the actual FMM algorithm, a truncated

matrix of size p× p is used in lieu of the actual transformation matrix, thus intro-

13



ducing an error in the computation. This truncation is desirable because it reduces

the computational complexity, and it can be shown that [7, 5, 8], for convergent

series, the error introduced in this step is bounded and can be reduced to an arbi-

trarily small number by increasing the truncation number, p. It is also possible to

determine what truncation number p to use in order to achieve a desired level of

accuracy [7, 5].

2.4 The Multilevel FMM (MLFMM) Algorithm

The multilevel FMM algorithm can be divided into four distinct steps: space parti-

tion, upward pass, downward pass and final summation.

2.4.1 Space Partition

Space partition divides the unit square in the complex plane into 4L equally sized

boxes, where L is the level of partition. With l varying between 0 and L, at level

l, there are 4l equally sized boxes, each of which is then assigned an index number

according to Morton-order (Figure 2.6) for quadtrees and 2-dimensional matrices

[9]. This way, each box in the partition is uniquely identified by l, its level, and n,

its index number at that level. Thus, we can use (n, l) as the global index of this

box. For example, the dark-shaded box in Figure 2.7 has the global index (15, 3)

and the light-shaded box is (10, 2).
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Figure 2.6: Space Partition and Morton-ordered Indices, L = 2

(15, 3)

(10, 2)

Figure 2.7: Space Partition and Box Labeling Example, L = 3
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In addition, we define the following sets for box (n, l):

Set E1(n, l) is defined as all spatial points in the domain (Figure 2.8(a))

I1(n, l) = (n, l);

Set E2(n, l) is defined as all spatial points in the domain (Figure 2.8(b))

I2(n, l) = {Neighbors(n, l) ∪ I1(n, l)};

Set E3(n, l) is defined as (Figure 2.8(c))

E3(n, l) = E1(0, 0) \ E2(n, l);

Set E4(n, l) is defined as (Figure 2.8(d))

E4(n, l) = E2(Parent(n), l − 1) \ E2(n, l).

We also define the potentials due to sources in each of the domains above:

Φ
(n,l)
1 (y) =

∑

xi∈E1(n,l)

uiΦ(y,xi);

Φ
(n,l)
2 (y) =

∑

xi∈E2(n,l)

uiΦ(y,xi);

Φ
(n,l)
3 (y) =

∑

xi∈E3(n,l)

uiΦ(y,xi);

Φ
(n,l)
4 (y) =

∑

xi∈E4(n,l)

uiΦ(y,xi).

Since sets E2(n, l) and E3(n, l) are complementary, for arbitrary n and l,

Φ(y) =
N∑

i=1

uiΦ(y,xi)

=
∑

xi∈E2(n,l)∪E3(n,l)

uiΦ(y,xi)

= Φ
(n,l)
2 (y) + Φ

(n,l)
3 (y).
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(a) E1(n, l) (b) E2(n, l)

(c) E3(n, l) (d) E4(n, l)

Figure 2.8: Hierarchial Spatial Domains
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xc(n, l)

xi

yj

Figure 2.9: Multilevel FMM Algorithm, Upward Pass Step 1

2.4.2 Upward Pass

Step 1. Multipole Expansion

At the finest level of space subdivision, build multipole expansion for source points

inside each box (n, L) near x(n,L)
c , the center of that box (Figure 2.9):

Φ
(n,L)
1 (y) = C(n,L)S(y − x(n,L)

c ),

and

C(n,L) =
∑

xi∈E1(n,l)

uiB(xi,x
(n,L)
c ).
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Figure 2.10: Multilevel FMM Algorithm, Upward Pass Step 2

Step 2. Multipole-to-Multipole Translation

For l = L − 1, . . . , 2, recursively form Φ
(n,l)
1 (y) by translating Φ

Children(n),l+1
1 (y) to

near the center of the parent box and summing up the contributions of all child

boxes (Figure 2.10):

Φ
(n,l)
1 (y) = C(n,l)S(y − x(n,l)

c ),

where

C(n,l) =
∑

n′∈Children(n)

(S|S)
(
x(n′,l+1)

c − x(n,l)
c

)
C(n′,l+1).
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2.4.3 Downward Pass

During the downward pass, steps 1 and 2 should be performed recursively for levels

l = 2, . . . , L of space subdivision.

Step 1. Multipole-to-Local Translation

At this step, form coefficients of regular expansion for function Φ
(n.l)
4 (y) (Figure

2.11).

Φ
(n,l)
4 (y) = D̃n,lR(y − x(n,l)

c ),

where

D̃n,l =
∑

m∈E4(n,l)

S|R
(
x(n,l)

c − x(m,l)
c

)
C(m,l).

Step 2. Local-to-local Translation

At l = 2, we have

Φ
(n,2)
3 (y) = Φ

(n,2)
4 (y),

and

D(n,2) = D̃(n,2).

Form Φ
(n,l)
3 (y) by adding Φ

(Parent(n),l−1)
4 (y) to (R|R)-translated coefficients of

the parent box to the child center (Figure 2.12):

Φ
(n,l)
3 (y) = D(n,l)R(y − x(n,l)

c ),
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Figure 2.11: Multilevel FMM Algorithm, Downward Pass Step 1

where

D(n,l) = D̃(n,l) + (R|R)
(
x(n,l)

c − x(m,l−1)
c

)
D(m,l−1),

and m = Parent(n).

2.4.4 Final Summation

As soon as coefficients D(n,L) are determined, total potential can be computed for

any point yj ∈ E1(0, 0), where Φ
(n,l)
2 (y) can be computed directly (Figure 2.13).

Therefore,

vj = Φ(yj)

=
∑

xi∈E2(n,L)

uiΦ(yj,xi) + D(n,L)R(yj − x(n,L)
c ),
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Figure 2.12: Multilevel FMM Algorithm, Downward Pass Step 2

where yj ∈ E1(n, L).

2.4.5 Complexity of the Multilevel FMM Algorithm

Assuming that there are approximately as many source (X) points as there are target

(Y) points, i.e., N ∼ M , the overall time complexity of the multilevel FMM algo-

rithm is O(NlogN), as is rigorously proven in [8]. This is considerable improvement

over the regular O(N2) operations needed by direct multiplication.

In practice, the FMM algorithm is often used in two steps and can enjoy even

further optimization in certain applications:

• MLFMM Constructor
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yj

Contribution of E2

(Direct Summation)

Contribution of E3

Figure 2.13: Multilevel FMM Algorithm, Final Summation

In this step, the expansion and translation coefficients for each level of space

partition are computed and stored in appropriate data structures. No knowl-

edge about the vector u being multiplied is required at this step. The com-

plexity of this step is shown [5] to be O(NlogN).

• MLFMM Solver

Once the vector u is known, we can perform the upward and downward passes

as outlined above. It can be shown [5] that the complexity for the upward and

downward passes are O(N).

In situations when we need to repeatedly compute the product of a matrix with dif-

ferent vectors, we can perform the operations in “MLFMM Constructor” only once
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and invoke the “MLFMM Solver” repeatedly. With a large number of repetitions,

the time complexity of MLFMM approaches O(N). This is particularly useful in

iterative methods for solving linear systems and eigenvalues.

2.5 Adaptive Multilevel FMM

The Multilevel FMM algorithm above partitions the domain into a tree-like structure

that can be classified as a complete quad-tree, that is, all branches and leaves of the

tree are present. This works well for problems with uniformly distributed source and

target points in the domain because most boxes at the finest level are populated.

However, for other problems this may not always be true, and further optimization

can be achieved by partitioning the domain adaptively. For regions with fewer

points, the level of partitioning can be smaller than those with a higher density of

points.

Many variations of the adaptive FMM algorithm have been proposed. We

briefly introduce one of them as follows. A more detailed treatment of the subject

can be found in [10].

2.5.1 Space Partition: D-Tree and C-Forest

To reduce the number of partitions while maintaining the efficiency of FMM, we

require that each leaf node in the upward-pass tree, which we will call ”D-Tree”, to
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satisfy the following requirement: the number of target points in the neighborhood

of this leaf box must be less than a pre-established clustering parameter, q. That

is, for box (n, l), we require that

Nn < q,

where Nn is the number of Yi such that Yi ∈ E1(n, l).

It is shown ([10] that the optimum clustering parameter is

qopt = 3d2−dlopt
maxN,

where d is the dimension of the problem, N is the problem size, and lopt
max is the

optimal number of levels as determined in the regular multilevel FMM algorithm.

The algorithm for space partitioning according to this rule is a recursive one.

Step 1. Partition the domain according to the non-adaptive algorithm using

lmax = 2.

Step 2. For each leaf-node (n, 2) in the tree from Step 1, compute Nn as

specified above.

Step 3. If Nn <= q, then no further partitioning is required on this node.

Otherwise equally divide this box into 2d child boxes, where d is the dimension of

this problem.

Step 4. Perform steps 2 and 3 on each of the newly created child boxes from

Step 3.
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The resulting “D-tree” is the tree that the Adaptive FMM algorithm will follow

during the downward pass.

The “C-Forest”, the structure that the Adaptive FMM algorithm follows dur-

ing the upward pass, is derived from the “D-Tree” as the following: For each node

in the D-Tree, mark nodes in its E4 neighborhood as a member of the “C-Forest” if

they contain source points. After such all such nodes are located and marked, tra-

verse through them to identify any parent-child relationship. The resulting structure

is a collection of trees, i.e., a forest structure which we call the “C-Forest.”

2.5.2 Upward Pass, Downward Pass and the Final Summation

Upward Pass is performed in the same manner as in the regular non-adaptive FMM

algorithm but using the “C-Forest” as the path of traversal, skipping over all nodes

that are not in the forest. Downward Pass is carried out similarly with the “D-Tree”

as the traversal path.

Final summation is performed on each leaf node of the “D-Tree” in exactly

the same way as the non-adaptive FMM algorithm.

2.6 Structured Matrices and Related Algorithms

The Fast Multipole Method is one of many algorithms designed to work with a class

of matrices called “structured matrices” [3]. A dense matrix of order N × N is
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called “structured” if its entries depend on only O(N) parameters. As we can see,

the matrix derived from the Coulomb problem depends on M + N parameters and

is indeed a structured matrix. Other commonly seen structured matrices include:

• Fourier Matrix




1 1 1 · · · 1

1 wn w2
n · · · wn−1

n

1 w2
n w4

n · · · w2(n−1)
n

...
...

...
. . .

...

1 wn−1
n w2(n−1)

n · · · w(n−1)(n−1)
n




,

where

wn = e−
2πi
n .

• Toeplitz Matrix




x0 x1 x2 · · · xn−1

x−1 x0 x1 · · · xn−2

x−2 x−1 x0 · · · xn−3

...
...

...
. . .

...

x−n+1 x−n+2 x−n+3 · · · x0




,
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• Hankel Matrix




x−n+1 x−n+2 x−n+3 · · · x0

x−n+2 x−n+3 x−n+4 · · · x1

x−n+3 x−n+4 x−n+5 · · · x2

...
...

...
. . .

...

x0 x1 x2 · · · xn−1




,

• Vandermonde Matrix




1 1 · · · 1

x0 x1 · · · xn−1

...
...

. . .
...

xn−1
0 xn−1

1 · · · xn−1
n−1




,

One of the best-known matrix-related algorithm is the Fast Fourier Transform

(FFT) [11]. FFTs were first discussed by Cooley and Tukey [12], although Gauss

had actually described the critical factorization step as early as 1805 [13, 14]. The

FFT algorithm also reduces the complexity for an N-point problem from O(N2) to

O(N log N).

Another related algorithm is the Fast Gauss Transform (FGT). Introduced

by Greengard and Strain [15], it is an important variant of the more general fast
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multipole method. It efficiently evaluates the sum of Gaussians:

G(yj) =
N∑

i=1

qie
− ‖yj−xi‖2

h2 , j = 1, . . . , M,

which is equivalent to the matrix-vector product




G(y1)

G(y2)

...

G(yM)




=




Φ11 Φ21 · · · ΦN1

Φ12 Φ22 · · · ΦN2

...
...

. . .
...

Φ1M Φ2M · · · ΦNM







q1

q2

...

qN




,

where

Φij = e−
‖yj−xi‖2

h2 .

The fast Gauss transform is widely applied in many areas including option pricing,

computer vision and pattern recognition [16, 17, 18].

29



Chapter 3

Mathematical Analysis

3.1 Basic Requirements for the FMM Algorithm

For the FMM algorithm to be applicable to a matrix-vector multiplication, the

following requirements must be satisfied:

• We have two sets of points in a vector space:

X = {x1,x2, . . . ,xN},xi ∈ Rd, i = 1, . . . , N,

Y = {y1,y2, . . . ,yN},yj ∈ Rd, j = 1, . . . , M ;

• We have potentials functions (or, “mother functions”):

Φ(xi,y) : Rd → R, y ∈ Rd, i = 1, . . . , N ;

• These functions have multipole expansion:

Φ(xi,y) = A(xi,x∗) ◦R(y − x∗), |y − x∗| < r < |xi − x∗|, i = 1, . . . , N ;

• These functions have local expansion:

Φ(xi,y) = B(xi,x∗) ◦ S(y − x∗), |y − x∗| > r > |xi − x∗|, i = 1, . . . , N ;
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• The product ◦ is distributive operation with respect to addition:

(u1A1 + u2A2) ◦ F = u1A1 ◦ F + u2A2 ◦ F, F = S, R;

• The local expansion coefficients can be R|R-translated (i.e., local-to-local

translation):

|x− x∗2| < |xi − x∗1| − |x∗1 − x∗2|,

A(xi,x∗2) = (R|R)(x∗2 − x∗1)A(xi − x∗1);

• The multipole expansion coefficients can be S|S-translated (i.e., multipole-to-

multipole translation):

|x− x∗2| > |xi − x∗1|+ |x∗1 − x∗2|,

B(xi,x∗2) = (S|S)(x∗2 − x∗1)B(xi − x∗1);

• The multipole expansion coefficients can be S|R-translated (i.e., multipole-to-

local translation):

|x− x∗2| < |xi − x∗1|+ |x∗1 − x∗2|,

A(xi,x∗2) = (S|R)(x∗2 − x∗1)B(xi − x∗1);

• We would like to compute the sum:

vj =
N∑

i=1

uiΦ(yj,xi), j = 1, . . . , M.
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• Some generalizations are possible. For example, instead of Φ(yj,xi) we can

rewrite as Φi(yj), etc.

3.2 Expansion and Translation Equations for the Coulombic System

Below we will simply state the relevant results discussed in [1].

• Mother function

The so-called “mother function” is

Φji = Φ(yj,xi)

= log
√

(<(yj)−<(xi))2 + (=(yj)−=(xi))2,

where < and = stand for the real and imaginary parts of a complex number,

respectively.

Note that the right-hand side of the equation above is equivalent to <(log (yj − xi)),

therefore, we can follow the standard practice and write the mother function

as:

Φji = log (yj − xi).

If we view yj − xi as a variable z, then Φ is a function of z with a singularity

at z = 0. The plot of this function is shown in Figure 3.1.
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Figure 3.1: Plot of the Φ function as a variable of z = yj − xi

• S-Expansion

log(y − xi) =
∑∞

m=0 bm · Sm where

bm =





1 if m = 0;

− (xi−x∗)m

m
if m ≥ 1.

Sm =





log(y − x∗) if m = 0;

− 1
(y−x∗)m if m ≥ 1.

• R-Expansion

log(y − xi) =
∑∞

m=0 am ·Rm where

am =





log(x∗ − xi) if m = 0;

− 1
m(xi−x∗)m if m ≥ 1.
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Rm =





1 if m = 0;

(y − x∗)m if m ≥ 1.

• S|S-Translation

b0 = b0,

bl =

(
l∑

k=1

bk(−t)l−kCk−1
l−1

)
− b0(−t)l

l
.

Therefore, the p-truncated translation matrix, S|S, is as follows:

SS(t) =




1 0 0 0 · · · 0

t 1 0 0 · · · 0

−1
2
t2 −t 1 0 · · · 0

1
3
t3 −t2 2t 1 · · · 0

...
...

...
...

. . .
...

1
p−1

(−t)p−1 −C0
p−2t

p−2 C1
p−2t

p−3 −C2
p−2t

p−4 · · · 1




;

• S|R-Translation

b0 =
∞∑

k=0

ak

tk
+ a0 log t,

bl =

(
1

(−t)l

∞∑

k=1

ak

tk
Ck−1

l+k−1

)
− a0

l(−t)l
.
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Therefore, the p-truncated translation matrix, S|R, is as follows:

SR(t) =




log t 1
t

1
t2

1
t3

· · · 1
tp−1

1
t

− 1
t2

− 2
t3

− 3
t4

· · · −p−1
tp

− 1
2t2

1
t3

3
t4

6
t5

· · · p(p−1)
2tp+1

1
3t3

− 1
t4

− 4
t5

−10
t6

· · · (p+1)p(p−1)
−6tp+2

...
...

...
...

. . .
...

− 1
(p−1)(−t)p−1

C0
p−1

(−1)p−1tp
C1

p

(−1)p−1tp+1

C2
p+1

(−1)p−1tp+2 · · · Cp−2
2p−3

(−1)p−1t2p−2




;

• R|R-Translation

al =
n∑

k=l

akt
k−lC l

k.

RR(t) =




1 t t2 t3 · · · tp−1

0 1 2t 3t2 · · · (p− 1)tp−2

0 0 1 3t · · · (p−1)(p−2)
2

tp−3

0 0 0 1 · · · (p−1)(p−2)(p−3)
6

tp−4

...
...

...
...

. . .
...

0 0 0 0 · · · 1




.
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Chapter 4

Implementation

4.1 Language Considerations

There are several reasons for Java to be the choice of programming language for this

project.

• Java is ideal for 2-D animated visualization thanks to its built-in GUI func-

tionalities ([19], [20]) and multi-threading capabilities.

• Applets written in Java can run on most major hardware and software plat-

forms and can be downloaded and launched with only a Web browser, thus

making this course project somewhat useful to other students.

• Java is a strongly object-oriented programming language, therefore it is very

well suited for building complex data structures, especially when compared to

Matlab.

• Java’s polymorphism feature allows an abstract and fully extensible imple-

mentation of the potential function, so that code written for this project can

serve as a basis for a future FMM application programming interface (API).
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With the benefits also come the costs. The most apparent drawback in this

case is that Java’s automated and unpredictable memory garbage collection in-

evitably affects the performance of the algorithm, and also makes it more difficult

to accurately measure and chart the CPU time it takes the program to solve prob-

lems of various sizes. Therefore, the rate of growth of computation time obtained

this way may not be exactly inline with the theoretical prediction. In addition,

Java’s limited syntax does not allow operator-overloading. This has become a no-

ticeable annoyance during the course of project development, as what could have

been a single inline operator in C++ or Matlab has to be fully spelled out with

method calls.

4.2 System Design

Figure 4.1 shows the main components of the system and their relationship between

each other. The “FMM Blackbox” takes the following arguments:

• int level

The number of levels of space subdivision for the FMM algorithm. A unit

cube with no division is at level 0. FMM requires a level of at least 2.

• Point[] X

The list of source points in the space.
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Figure 4.1: System Design
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• Point[] Y

The list of target points in the space.

• Object PotentialBuilder

An object that exposes a certain set of methods. This will be explained in

greater detail below.

• double[] U

The vector to which the matrix should be multiplied.

The blackbox returns the following output:

• double[] V

The desired matrix-vector product.

• int opCount

The number of operations used to solve this problem. In the current imple-

mentation, this is only an estimate.

4.2.1 The PotentialBuilder Object

The PotentialBuilder object (Figure 4.2) is an abstraction of the mother func-

tion of the matrices that can be evaluated using FMM. All such functions share a

common set of characteristics. Furthermore, the FMM algorithm does not require

any additional information about the mother function other than requiring that it
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Figure 4.2: The Potential Builder Object

satisfy the set of characteristics. Therefore, using a Java interface that defines these

“characteristics” as abstract methods will allow all Java classes implementing this

PotentialBuilder interface to be used with the Java-FMM package.

4.2.2 The FMM Blackbox

The FMM Blackbox can be divided into two parts: the FMM Builder and the FMM

solver (Figure 4.3).

• The FMM Builder corresponds to the step in the FMM algorithm where the

level of space subdivision is determined and the data structure is set. This

step is only required once for every matrix.
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Figure 4.3: The FMM Blackbox

• The FMM Solver handles the upward and downward passes leading to the

matrix-vector product, and is run every time a new vector (u) is sent as input.

In the actual Java-FMM implementation, the FMM Builder is encapsulated

in the constructor of the FmmTree object. This is because the constructor is called

only once during the lifespan of the object, in a way similar to the FMM Builder as

an initialization step of the data structure is only used once in the FMM algorithm.

The FMM Solver takes the form of the solve() method of the FmmTree class and

can be called repeatedly as necessary.
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4.2.3 Code Example

Below is a demonstration of how the Java-FMM package would be used in an actual

program.

//where the Java-FMM package is

import edu.umiacs.fmm.*;

//Some code to create the appropriate numOfLevels,

//x, y and p variables

//...(omitted)

//Build FMM Data Structure

FmmTree t = new FmmTree(numOfLevels, x, y,

new Potential(p));

//Some code to generate the u vector here

//...(omitted)

//Solve the problem, using u as the input.

double[] fmmAns = t.solve(u);
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//and count how many steps were used.

long numOfOperations = t.getNumOps();
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Chapter 5

Empirical Analysis

In the previous chapter, we mentioned that due to the choice of programming lan-

guage, it is very difficult to obtain an accurate measure of the algorithm’s running

time. The data presented below therefore may include time spent by the Java Vir-

tual Machine in memory garbage collection. However, since the real-world perfor-

mance of a Java-FMM package will inevitably be affected by Java’s built-in memory

management as well, the experiments and comparisons presented below are valid ap-

proximations of how well the FMM algorithm will perform in practice.

All data obtained from these experiments are also presented in tables in Ap-

pendices, in addition to being plotted below.

5.1 The Accuracy of FMM and the Effect of Truncation Number p

FMM is not an exact algorithm: It trades accuracy for efficiency. The error in the

Fast Multipole Method is introduced by the truncation number p in the translation

steps. Increasing p will reduce the truncation error incurred in the translation steps,

but will also increase the running time of the algorithm due to the increased size of

translation matrices, and vice versa.
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Below is an experiment designed to study the effect of varying p on the accu-

racy and running time of FMM. For this experiment, we choose a problem size (N)

of 1000 and randomly generate the 1000 source (x) and target (y) points in the unit

square. Next, we randomly generate 1000 charge potentials (u). Finally, we vary

the truncation number (p) from 2 to 50, run the FMM solver with each, and record

the following two data:

• Error. Error is computed by taking the largest element from the difference

between the directly computed result and the FMM result, i.e., if vdirect and

vfmm are the two results obtained, then the error is computed as

ε = ‖vdirect − vfmm‖∞.

Note that due to limitations of machine precision, vdirect itself is an approxi-

mation of the true value. Therefore, the error ε obtained this way is only an

estimate of the true error.

• Time. Timer is set when the FMM routine starts with building the FMM data

structure for each p. It continues through the FMM solver and is stopped when

the FMM routine produces the result. The time spent on the error calculation

above is not included. The system is forced to perform a garbage collection

immediately before the timer is set.

The errors associated with various p values are plotted in Figure 5.1. In this
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Figure 5.1: FMM accuracy with respect to various truncation numbers

log-log plot, we notice that the error decreases rapidly as p increases. For p > 31,

the error is about constant at 10−12. This is due to the limitations of the machine

precision and the gradual build-up of the loss of precision during computation.

For the same experiment, the times (in milliseconds) used by the FMM al-

gorithm for each truncation number are plotted in Figure 5.2. We find that the

computation time increases as we increase the p value. By comparison to Figure

5.1, we also find that while the error plunges from about 101 to 10−12, the compu-

tation time only increased from about 103 to under 105. The gain in computation

time is insignificant compared to the improvement in accuracy.
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Figure 5.2: FMM running time with respect to various truncation numbers

5.2 The Accuracy of FMM and the Problem Size N

N , the problem size, is fixed in the experiment above. A natural question to ask is

how will the truncation number and the error vary when the problem size increases.

For a pre-determined accuracy requirement, there should be an optimal truncation

number such that it is large enough FMM will produce a result within this toler-

ance, but just large enough so that no computation cycles are wasted in gaining

unnecessary accuracy.

In this experiment, we try to find empirically this optimal truncation number.

The tolerance is set at 10−5. For each problem size N , we begin with a truncation
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Figure 5.3: Minimum truncation numbers needed to achieve 10−5 accuracy for var-

ious problem sizes.

number of 5 and gradually increase it until the computed error first falls in the

tolerance. The result is plotted in Figure 5.3.

We see that the truncation number increases as the problem size increases,

but at a much slower rate. From N = 500 to N = 4000, the problem size grows

8-fold, but the truncation number required to maintain the same accuracy (10−5)

increases only by 2.
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5.3 The Time Complexity of FMM and Problem Size N

Having shown that FMM can be made to be arbitrarily accurate, subject to the

limitations of machine precision, we turn to study the time complexity of FMM. We

know that FMM will take longer to execute for smaller problems compared to the

direct method, since FMM requires extra steps to set up the space partition and

data structure. However, as the problem size N increases, FMM should compare

more and more favorably to the direct method. We are interested in finding out the

growth rate of both the FMM method and direct method, as well as the equilibrium

point where the two methods take about the same amount of time to solve the

problem. FMM will out-perform the direct method in problems with a size larger

than this equilibrium.

In this experiment, the truncation number is fixed at p = 10. N , the problem

size, varies between 500 and 4000 in increments of 50. For each value of N , a set of

source and target points as well as the charged potentials are randomly generated.

We then calculate the appropriate number of levels for space partition in order to

optimize the FMM algorithm as shown in [7]. With these parameters, the FMM

algorithm is performed for each N , after which the direct method is used to compute

the result again. The times it takes to complete each computation are recorded and

plotted in Figure 5.4.

In Figure 5.4, the solid lines are the actual running times for each method.
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Figure 5.4: FMM running time with respect to various problem sizes

Due to the randomness in generating the data sets for each N as well as the variance

in computer system performance, these lines are not as smooth as theoretical results

would predict. However, the growth rate, i.e., complexity, of each method is clear,

as noted in the plot by the dotted lines.

As one would expect, the dotted line representing the growth rate of the direct

method has a slop of approximately 2 in this log-log plot, corresponding to the

theoretical result of O(N2) complexity. The slope (and thus the growth rate) of the

FMM method is considerably lower and is consistent with the theoretical result of

O(N log N).
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The equilibrium point is around 800 in this experiment. For any N greater

than this equilibrium, FMM offers an advantage in computation time. At N ≈ 2000,

the FMM method uses only half of what’s needed by the direct method.

We also note that the FMM method appears to have more fluctuation in

computation time than the direct method as N increases. This is likely due to the

nature of space partitioning. Since the number of levels of partition is always an

integer and is therefore discrete, the computation time will vary by a somewhat

large amount when the number of levels needed by the FMM algorithm increases

from L to L + 1 as N increases.
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Chapter 6

Visualizing the FMM Algorithm

The Fast Multipole Method is a complex algorithm and understanding it can be

a daunting task to someone new to this algorithm. Being able to visualize and

interactively explore how FMM performs space partition, expansion and translation

at different levels will undoubtedly assist in the learning process. To that end, we

developed the following application.

6.1 The Animated Visualization

The software is implemented with the programming interface described in Chapter 4.

It visualizes the process of solving the two-dimensional Coulombic problem outlined

in Chapter 1, with the source and target points being generated randomly. Problem

size (N) and truncation number (p) are specified by the user, with default values

being 500 and 15, respectively.

The technical notes for acquiring and running the software are detailed in

Appendix B. Once launched, the software consists of three main visual components

(Figure 6.1): a toolbar with several buttons, a grid representing the unit square being

partitioned, and a status panel. Upon initialization, the unit square is partitioned
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Figure 6.1: Application launched and initialized

with L = 2, since this is the minimum number of levels required by the FMM

algorithm. Thicker borders divide boxes at a higher level (smaller l number), and

as the level number increases, the dividing grid-lines become thinner. The status

panel is cleared and prompts the user to click on the “generate” button to generate

source and target points to use with the FMM algorithm.

6.1.1 The FMM Builder and Space Partitioning

The FMM builder is invoked once the “generate” button is clicked. It randomly

generates the source and target points within the unit square and performs space

partitioning accordingly. Once completed, the grid area will show the newly par-

titioned unit square, along with the source and target points, represented by red
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Figure 6.2: Source and target points generated and space partition performed ac-

cordingly

and blue dots scattered across the domain (Figure 6.2. At this point, the user can

choose to either interact with the partitioned boxes, or start the animated FMM

solver.

6.1.2 Interaction with Partitions

By clicking anywhere in the grid, a series of FMM boxes are highlighted. These are

the boxes at different levels that contain the coordinates of this mouse click. Moving

the mouse over these highlighted boxes will reveal their level number and index at

that level (Figure 6.3).

Double-clicking inside a box or right-clicking then selecting from the pop-up
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Figure 6.3: User clicks inside Box (3, 27).

menu brings up the properties window of that box. Major properties of interest to

the FMM algorithm are displayed in a tree structure, including children, parent,

neighbors, E4 neighborhood, as well as source and target points contained in this

box. To aide visualization, clicking on the tree nodes will highlight the corresponding

item in the box (Figure 6.4).

6.1.3 Animation of the FMM Solver

The animation step is started by clicking on the toolbar button “run”. Starting with

the initial multipole expansions, the animation continues all the way through the

final summation step while displaying the current action in the status panel to the

right on the animation panel. You may pause, fast forward or stop the animation
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Figure 6.4: Displaying the properties of Box (3, 27). Its E4 neighborhood boxes are

highlighted.

at any time before it ends.

When the animation stops, the FMM solver is completed. The computed error

is then displayed in the status panel.

6.1.4 Animation of the Adaptive FMM Algorithm

An adaptive version of the FMM animation software has also been developed. Fig-

ures 6.7 through 6.12 show various stages of the application.
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Figure 6.5: Animated FMM solver in progress, performing multipole-to-local trans-

lation for Box (3, 27).

Figure 6.6: FMM solver completed. The computed error is displayed in the status

panel.
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Figure 6.7: Space Partitioning of Adaptive FMM: C-Forest

Figure 6.8: Space Partitioning of Adaptive FMM: D-Tree
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Figure 6.9: Adaptive FMM Algorithm: Upward Pass

Figure 6.10: Adaptive FMM Algorithm: R—R Translation
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Figure 6.11: Adaptive FMM Algorithm: S—R Translation
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Figure 6.12: Adaptive FMM Algorithm is completed. The software reports the

number of translations and re-expansions used in the adaptive algorithm as well as

what would the non-adaptive algorithm have required. In this particular example,

the adaptive version needed 3853 (re)expansions, whereas the non-adaptive version

needed 34674.
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Appendix A

Tables of Numerical Results

All experiments are performed on the same workstation with the following configu-

rations:

• CPU: Pentium III 866Mhz

• RAM: 384MB

• Swap: 1GB

• HDD: Maxtor IDE 40GB / ATA100

• OS: Mandrake Linux 10 / Kernel 2.6

• JVM: Sun J2SE 1.5.0 (build 1.5.0-b64)

To ensure best results, all non-essential tasks on this workstation are either termi-

nated or suspended before the tests. Test programs are invoked on the command

console and output is redirected to file. The results of the numerical experiments

are presented in the tables below.
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Table A.1: FMM Error and Computing Time for Various

Truncation Numbers

Truncation Number (p) Error (ε) Time (t, in milliseconds)

2 7.142040526027E+00 1414

3 6.043577294839E-01 1425

4 2.876825796328E-01 1713

5 3.922249063550E-02 1657

6 8.343043238369E-03 1811

7 3.098313853513E-03 1957

8 1.035121598079E-03 2230

9 3.842355300776E-04 2437

10 1.065776338578E-04 2661

11 4.750127436637E-05 3033

12 1.389593575141E-05 3246

13 6.558698032677E-06 3640

14 2.730674736995E-06 4209

15 9.589101637175E-07 4452

16 3.706864504238E-07 5984

Continued on next page
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Table A.1 – continued from previous page

Truncation Number (p) Error (ε) Time (t, in milliseconds)

17 1.380445837640E-07 5730

18 7.775400945320E-08 5625

19 2.478225269442E-08 6070

20 1.027478901960E-08 6573

21 4.609830739355E-09 7024

22 2.194781245635E-09 7550

23 7.699441084696E-10 8102

24 5.256310942059E-10 8751

25 2.732463144639E-10 9274

26 8.924416761147E-11 9983

27 2.921751729446E-11 10550

28 1.529087967356E-11 11200

29 1.017497197608E-11 12458

30 3.069544618484E-12 13047

31 1.705302565824E-12 13558

32 1.364242052659E-12 15031

33 1.364242052659E-12 14980

Continued on next page
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Table A.1 – continued from previous page

Truncation Number (p) Error (ε) Time (t, in milliseconds)

34 1.364242052659E-12 16054

35 1.364242052659E-12 16824

36 1.364242052659E-12 17950

37 1.364242052659E-12 18617

38 1.364242052659E-12 20492

39 1.364242052659E-12 21397

40 1.364242052659E-12 21978

41 1.364242052659E-12 23790

42 1.364242052659E-12 24985

43 1.364242052659E-12 25997

44 1.364242052659E-12 27468

45 1.364242052659E-12 28000

46 1.364242052659E-12 29750

47 1.364242052659E-12 31538

48 1.364242052659E-12 34620

49 1.364242052659E-12 34929
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Table A.2: Minimum truncation number required to

achieve 10−5 accuracy for various problem sizes

Problem Size (N) Truncation Number (p) Error (ε)

200 11 7.041187330969E-06

250 11 7.022761707276E-06

300 12 8.927634837619E-06

350 12 9.605649154310E-06

400 12 6.352896605222E-06

450 12 7.953947601891E-06

500 12 9.396703944731E-06

550 13 3.366135246097E-06

600 13 5.787635871002E-06

650 12 8.341518551447E-06

700 13 6.307310741249E-06

750 14 4.432796686160E-06

800 13 2.432844325995E-06

850 13 3.595948214752E-06

900 13 8.110734142974E-06

Continued on next page
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Table A.2 – continued from previous page

Problem Size (N) Truncation Number (p) Error (ε)

950 13 8.306316601647E-06

1000 13 6.143656037239E-06

1050 13 8.059167214469E-06

1100 13 5.035360231886E-06

1150 13 4.565287099467E-06

1200 13 4.374229092718E-06

1250 13 7.292289069483E-06

1300 13 5.577112233368E-06

1350 13 5.965986019874E-06

1400 13 9.325244263891E-06

1450 13 6.448535714298E-06

1500 14 2.431479515508E-06

1550 13 6.177602926982E-06

1600 13 9.912295695358E-06

1650 13 9.076994388124E-06

1700 13 9.722795653033E-06

1750 14 5.676148020939E-06

Continued on next page
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Table A.2 – continued from previous page

Problem Size (N) Truncation Number (p) Error (ε)

1800 14 3.213633362975E-06

1850 13 5.808242121930E-06

1900 13 7.115891435205E-06

1950 14 4.110851818950E-06

2000 14 5.324059884515E-06

2050 14 2.670802246030E-06

2100 14 3.712859324878E-06

2150 14 3.936011466976E-06

2200 14 7.168588012973E-06

2250 13 9.417148930879E-06

2300 14 8.555599606552E-06

2350 14 5.282794745654E-06

2400 13 9.833391231950E-06

2450 14 8.782166787569E-06

2500 14 3.685536512421E-06

2550 14 8.090593610177E-06

2600 14 8.278871689527E-06

Continued on next page
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Table A.2 – continued from previous page

Problem Size (N) Truncation Number (p) Error (ε)

2650 13 8.643616411064E-06

2700 14 7.967861392899E-06

2750 14 4.702105911747E-06

2800 14 5.751091748607E-06

2850 14 7.719208952039E-06

2900 13 9.443562362321E-06

2950 14 4.982841232959E-06

3000 14 8.393277084906E-06

3050 14 7.991714937816E-06

3100 14 4.433992444319E-06

3150 13 9.805245099415E-06

3200 14 6.417822760341E-06

3250 14 3.348814743731E-06

3300 14 4.433467893250E-06

3350 14 7.064818419167E-06

3400 14 4.113119757676E-06

3450 14 3.961659786000E-06

Continued on next page
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Table A.2 – continued from previous page

Problem Size (N) Truncation Number (p) Error (ε)

3500 14 6.770501613573E-06

3550 14 8.304355787914E-06

3600 14 6.189411806190E-06

3650 14 6.308871434157E-06

3700 14 7.232324833240E-06

3750 14 7.109581702025E-06

3800 14 4.792581194124E-06

3850 14 7.337976057897E-06

3900 14 3.830982905129E-06

3950 14 5.345888894226E-06

4000 14 5.211456027610E-06
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Table A.3: Comparison of computing time (in millisec-

onds) for FMM and direct methods for various problem

sizes

Problem Size (N) Time (FMM) (tfmm) Time (Direct) (tdirect)

200 531 167

250 449 260

300 539 347

350 535 485

400 627 607

450 732 770

500 866 952

550 1921 1169

600 1927 1431

650 2057 1773

700 2282 1971

750 2104 2265

800 2234 2447

850 2423 2798

Continued on next page
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Table A.3 – continued from previous page

Problem Size (N) Time (FMM) (tfmm) Time (Direct) (tdirect)

900 2422 3156

950 2545 3505

1000 2700 3879

1050 3441 4310

1100 3389 4757

1150 3211 5755

1200 3344 5651

1250 3918 6124

1300 3880 7033

1350 4110 7085

1400 4729 7685

1450 4559 10600

1500 5522 8774

1550 5276 9900

1600 5629 10336

1650 6245 13488

1700 6594 11480

Continued on next page
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Table A.3 – continued from previous page

Problem Size (N) Time (FMM) (tfmm) Time (Direct) (tdirect)

1750 6714 12194

1800 7462 13091

1850 7950 14210

1900 9749 15491

1950 8515 15587

2000 9415 16152

2050 10433 19520

2100 10196 20849

2150 11145 20302

2200 10999 19714

2250 11022 21803

2300 11216 21436

2350 11240 22387

2400 11542 23979

2450 12409 25078

2500 12676 27346

2550 12337 26424

Continued on next page
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Table A.3 – continued from previous page

Problem Size (N) Time (FMM) (tfmm) Time (Direct) (tdirect)

2600 13256 27427

2650 13463 28283

2700 13468 30227

2750 14921 31242

2800 14065 32137

2850 15891 36537

2900 14887 34834

2950 15120 40476

3000 16764 37265

3050 17923 40764

3100 16736 39213

3150 17451 41334

3200 18163 43921

3250 17955 44777

3300 18231 43978

3350 23748 50526

3400 20043 50729

Continued on next page
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Table A.3 – continued from previous page

Problem Size (N) Time (FMM) (tfmm) Time (Direct) (tdirect)

3450 23555 48413

3500 21946 51804

3550 22666 52015

3600 21538 55220

3650 23431 55358

3700 23522 58860

3750 27332 58067

3800 26828 61078

3850 27324 61723

3900 29380 63618

3950 31372 67074

4000 32281 68258
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Appendix B

Technical Notes on the Software

B.1 License

The applet accompanying this thesis is released under the LGPL license

(http://www.opensource.org/licenses/lgpl-license.php). By downloading,

compiling, executing or editing the source code, binary code or file package of the

FMM applet developed by the author, you agree to the LGPL license.

B.2 System Requirements

The software is compiled with JDK1.5.0 and requires a minimum of Java Runtime

Environment (JRE) 1.5.0 to run. It cannot be compiled or run with lower versions

of the JDK or JRE.

B.3 Obtaining and running the code

There are several ways to obtain and run the application.

• Java WebStart

For most installations of Java 1.5 and higher, the Java WebStart functionality
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is enabled by default. Simply open http://www.umiacs.umd.edu/~wpwy/fmm

in your Java-enabled browser to launch the application via Java WebStart.

• Java Archive File

If for some reason your WebStart does not execute the code (most likely due

to local security manager settings), please follow the link given in

http://www.umiacs.umd.edu/~wpwy/fmm. You will be prompted to download

a “jar” file. Once the download is complete, simply double click on the file or

run

java -jar fmm.jar

to start the program.

• Source Code

Source code is available upon request.
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