
CS-TR-4997

Specifying and Verifying the Correctness of
Dynamic Software Updates?

Christopher M. Hayden1, Stephen Magill1, Michael Hicks1,
Nate Foster2, and Jeffrey S. Foster1

1 Computer Science Department, University of Maryland, College Park
{hayden,smagill,mwh,jfoster}@cs.umd.edu

2 Computer Science Department, Cornell University
jnfoster@cs.cornell.edu

Abstract. Dynamic software updating (DSU) systems allow running
programs to be patched on-the-fly to add features or fix bugs. While
dynamic updates can be tricky to write, techniques for establishing their
correctness have received little attention. In this paper, we present the
first methodology for automatically verifying the correctness of dynamic
updates. Programmers express the desired properties of an updated exe-
cution using client-oriented specifications (CO-specs), which can describe
a wide range of client-visible behaviors. We verify CO-specs automati-
cally by using off-the-shelf tools to analyze a merged program, which is
a combination of the old and new versions of a program. We formalize
the merging transformation and prove it correct. We have implemented a
program merger for C, and applied it to updates for the Redis key-value
store and several synthetic programs. Using Thor, a verification tool, we
could verify many of the synthetic programs; using Otter, a symbolic ex-
ecutor, we could analyze every program, often in less than a minute. Both
tools were able to detect faulty patches and incurred only a factor-of-four
slowdown, on average, compared to single version programs.

1 Introduction

Dynamic software updating (DSU) systems allow programs to be patched on-
the-fly, to add features or fix bugs without incurring downtime. DSU systems
were originally developed for a few limited domains such as telecommunications
networks, financial transaction processors, and the like, but are now becoming
pervasive. Ksplice, recently acquired by Oracle, supports applying Linux kernel
security patches dynamically [15]. The Erlang language, which provides built-
in support for dynamic updates, is gaining in popularity for building server
programs [2]. Many web applications employ DSU techniques to provide 24/7

? University of Maryland, Department of Computer Science Technical Report CS-TR-
4997. This paper is an extended version of the paper of the same title appearing in
Verified Software: Theories, Tools and Experiments (VSTTE) 2012. This version
includes additional discussion and proofs in the appendices.

CS-TR-4997

service to a global audience—for these systems, there is no single time of day
when taking down the service to perform upgrades is acceptable.

Given the increasing need for DSU, a natural question is: How can developers
ensure a dynamically updated program will behave correctly? Today, developers
need to reason manually about all the pieces of an updating program: the old
program version, the new program version, and code that transforms the state of
the (old) running version into the form expected by the new version. Moreover,
they need to repeat this reasoning process for each allowable “update point”
during execution. In our experience this is a tricky proposition in which it is
all too easy to make mistakes. Despite such difficulties, most DSU systems do
not address the issue of correctness, or they focus exclusively on generic safety
properties, such as type safety, that rule out obviously wrong behavior [7, 22–24]
but are insufficient for establishing correctness [11].

This paper presents a methodology for verifying the correctness of dynamic
updates. Rather than propose a new verification algorithm that accounts for the
semantics of updating, we develop a novel program transformation that produces
a program suitable for verification with off-the-shelf tools. Our transformation
merges an old program and an update into a program that simulates running
the program and applying the update at any allowable point. We formalize our
transformation and prove that it is correct (Section 3).

We are particularly interested in using our transformation to prove execution
properties from clients’ points of view, to show that a dynamic update does not
disrupt active sessions. For example, suppose we wish to update a key-value store
such as Redis [20] so that it uses a different internal data structure. To verify
this update’s transformation code, we could prove that values inserted into the
store by the client are still present after it is dynamically updated. We call such
specifications client-oriented specifications (or CO-specs for short).

We have identified three categories of CO-specs that capture most properties
of interest: backward-compatible CO-specs describe properties that are identical
in the old and new versions; post-update CO-specs describe properties that hold
after new features are added or bugs are fixed by an update; and conformable
CO-specs describe properties that are identical in the old and new versions,
modulo uniform changes to the external interface. CO-specs in these categories
can often be mechanically constructed from CO-specs written for either the old
or new program alone. Thus, if a programmer is inclined to verify each program
version using CO-specs, there is little additional work to verify a dynamic up-
date between the two. Nevertheless, some interesting and subtle properties lie
outside these categories, so our framework also allows arbitrary properties to be
expressed (Section 2).

We have implemented our merging transformation for C programs and used it
in combination with two existing tools to verify properties of several dynamic up-
dates (Section 4). We chose the symbolic executor Otter [21] and the verification
tool Thor [16] as they represent two ends of the design space: symbolic execu-
tion is easy to use and scales reasonably well but is incomplete, while verification
scales less well but provides greater assurance. We wrote two synthetic bench-

CS-TR-4997

marks, a key-value store and a multiset implementation, and designed dynamic
patches for them based on realistic changes (e.g., one change was inspired by an
update to the storage server Cassandra [5]). We also wrote dynamic patches for
six releases of Redis [20], a popular, open-source key-value store. We used the
Redis code as is, and wrote the state transformation code ourselves.

We checked all the benchmark programs with Otter and verified several prop-
erties of the synthetic updates using Thor. Both tools successfully uncovered bugs
that were intentionally and unintentionally introduced in the state transforma-
tion code. The running time for verification of merged programs was roughly
four times slower than single-version checking. This slowdown was due to the
additional branching introduced by update points and the need to analyze the
state transformer code. As tools become faster and more effective, our approach
will scale with them. In summary, this paper makes three main contributions:

– It presents the first automated technique for verifying the behavioral correct-
ness of dynamic updates.

– It proposes client-oriented specifications as a means to specify general update
correctness properties.

– It shows the effectiveness of merging-based verification on practical examples,
including Redis [20], a widely deployed server program.

2 Defining dynamic software update correctness

Before we can set out verifying DSU correctness, we have to decide what cor-
rectness is. In this section, we first review previously proposed notions of cor-
rectness and argue why they are insufficient for our purposes. Then we propose
client-oriented specifications (CO-specs) as a means of specifying correctness
properties, and argue that this notion overcomes limitations of prior notions.
We also describe a simple refactoring that allows CO-specs to be used to verify
client-server programs that communicate over a network.

2.1 Prior work on update correctness

Kramer and Magee [14] proposed that updates are correct if they are observation-
ally equivalent—i.e., if the updated program preserves all observable behaviors
of the old program. Bloom and Day [3] observed that, while intuitive, this is too
restrictive: an update may fix bugs or add new features.

To address the limitations of strict observational equivalence, Gupta et al. [9]
proposed reachability. This condition classifies an update as correct if, after the
update is applied, the program eventually reaches some state of the new program.
Reachability thus admits bugfixes, where the new state consists of the corrected
code and data, as well as feature additions, where the new state is the old
data plus the new code and any new data. Unfortunately, reachability is both
too permissive and too restrictive, as shown by the following example. Version
1.1.2 of the vsftpd FTP server introduced a feature that limits the number of

CS-TR-4997

connections from a single host. If we update a running vsftpd server, we would
expect it to preserve any active connections. But doing so violates reachability.
If the number of connections from a particular host exceeds the limit and these
connections remain open indefinitely, the server will never enter a reachable state
of the new program. On the other hand, reachability would allow an update that
terminates all existing connections. This is almost certainly not what we want—if
we were willing to drop existing connections we could just restart the server!

We believe that the flaw in all of these approaches is that they attempt to
define correctness in a completely general way. We think it makes more sense
for programmers to specify the behavior they expect as a collection of proper-
ties. Some properties will apply to multiple versions of the program while other
properties will change as the program evolves. Because the goal of a dynamic
update is to preserve active processing and state, the properties should express
the expected continuity that a dynamic update is meant to provide to active
clients. We therefore introduce client-oriented specifications (CO-specs) to spec-
ify update properties that satisfy these requirements.

2.2 Client-oriented specifications

We can think of a CO-spec as a kind of client program that opens connections,
sends messages, and asserts that the output received is correct. CO-specs resem-
ble tests, but certain elements of the test code are left abstract for generality (cf.
Figure 1). For example, consider again reasoning about updates to a key-value
store such as Redis. A CO-spec might model a client that inserts a key-value pair
into the store and then looks up the key, checking that it maps to the correct
value (even if a dynamic update has occurred in the meantime). We can make
such a CO-spec general by leaving certain elements like the particular keys or
values used unconstrained. Similarly, we can allow arbitrary actions to be in-
terleaved between the insert and lookup. Such specifications capture essentially
arbitrary client interactions with the server.

Our goal is to use our program transformation, defined in Section 3, to pro-
duce a merged program that we can verify using off-the-shelf tools. But existing
tools only verify single programs in isolation, so we cannot literally write CO-
specs as client programs that communicate with a server being updated. To
verify a CO-spec in a real client-server program we replace the server’s main
function the CO-spec and call the relevant server functions directly. In doing
so, we are checking the server’s core functionality, but not its main loop or any
networking code. For example, suppose our key-value store implements func-
tions get and set to read and write mappings from the store, and the server’s
main loop would normally dispatch to these functions. CO-specs would call the
functions directly as shown in Figure 1. Here, ? denotes a non-deterministically
chosen (integer) value, and assume and assert have their standard semantics. If
updates are permitted while executing either get or set, verifying Figure 1(b)
will establish that the assertions at the end of the specification hold no matter
when the update takes place.

CS-TR-4997

1 int get(int k, int ∗v);
2 void set(int k, int v);

3

4 void arbitrary (int k1) {
5 int k2 = ?, v = ?;

6 if (k1 == k2 || ?)
7 get(k2,&v);

8 else set (k2,v);

9 }

10 void back compat spec() {
11 int k = ?, v in = ?;

12 int v out , found;

13 set(k, v in);

14 while(?) arbitrary (k);

15 found = get(k,&v out);

16 assert (found &&

17 v out == v in);

18 }

19 void post update spec() {
20 int k = ?;

21 int v out , found;

22 while(?) arbitrary (?);

23 assume(is updated);

24 delete (k);

25 found = get(k,&v out);

26 assert (!found);

27 }

(a) interface, helper (b) backward-compat. spec (c) post-update spec

Fig. 1. Sample C specifications for key-value store.

In our experience writing CO-specs for updates, we have found that they
often fall into one of the following categories:

– Backward-compatible CO-specs describe behaviors that are unaffected by an
update. For the data structure-changing update to Redis mentioned earlier,
the CO-spec in Figure 1(b) would check that existing mappings are preserved.

– Post-update CO-specs describe behavior specific to the new program version.
For example, suppose we added a delete feature to the key-value store. Then
the CO-spec in Figure 1(c) verifies that, after the update, the feature is work-
ing properly. The CO-spec employs the flag is updated, which is true after an
update has taken place, to ensure that we are testing the new or changed func-
tionality after the update. We discuss the semantics of this flag in Section 3.

– Conformable CO-specs describe updates that change interfaces, but preserve
core functionality. For example, suppose we added namespaces to our key-value
store, so that get and set take an additional namespace argument. The state
transformation code would map existing entries to a default namespace. A
conformable CO-spec could check that mappings inserted prior to the update
are present in the default namespace afterward; in essence, the CO-spec would
associate old-version calls with new-version calls at the default namespace.
(Further details are given in Appendix A.3.)

These categories encompass prior notions of correctness. Backward compatible
specifications capture the spirit of Kramer and Magee’s condition, but apply
to individual, not all, behaviors. The combination of backward-compatible and
post-update specifications capture Bloom and Day’s notions of “future-only im-
plementations” and “invisible extensions”—parts of a program whose semantics
change but not in a way that affects existing clients [3]. The combination of
backward-compatible and conformable specifications match ideas proposed by
Ajmani et al. [1], who studied dynamic updates for distributed systems and
proposed mechanisms to maintain continuity for clients of a particular version.

CO-specs can also be used to express the constraints intended by Gupta’s
reachability while side-stepping the problem that reachability can leave behavior

CS-TR-4997

under-constrained. For example, for the vsftpd update mentioned above, the
programmer can directly write a CO-spec that expresses what should happen to
existing client connections, e.g., whether all, some, or none should be preserved.
This does not fall into one of the categories above, demonstrating the utility of a
full specification language over “one size fits all” notions of update correctness.

Another feature of CO-specs in these categories is that they can be mechan-
ically constructed from CO-specs that are written for a single version. Thus, if a
programmer was inclined to verify the correctness of each version of his program
using CO-specs, the additional work to verify a dynamic update is not much
greater. For details, see Appendix A.

3 Verification via program merging

We verify CO-specs by merging an existing program version with its update, so
that the semantics of the merged program is equivalent to the updating program.
This section formalizes a semantics for dynamic updates to single-threaded pro-
grams, then defines the merging transformation and proves it correct with respect
to the semantics. Many server programs for which dynamic updating is useful
are single-threaded [12, 18, 11]. However, an important next step for this work
would be to adapt it to support updates to multi-threaded (and distributed)
programs.

3.1 Syntax

The top of Figure 2 defines the syntax of a simple programming language sup-
porting dynamic updates. It is based on the Proteus dynamic update calcu-
lus [22], and closely models the semantics of common DSU systems, includ-
ing Ginseng [18] (which is the foundation of our implementation), Ksplice [15],
Jvolve [23], K42 [13], DLpop [12], Dynamic ML [24] and Bracha’s DSU system [4].

A program p is a mapping from function names g to functions λx.e. A func-
tion body e is defined by a mostly standard core language with a few extensions
for updating. Our language contains a construct update, which indicates a posi-
tion where a dynamic update may take effect. To support writing specifications,
the language includes an expression ?, which represents a random integer, and
expressions assume v, assert v, and running p, all of whose semantics are discussed
below. Expressions are in administrative normal (A-normal) form [8] to keep the
semantics simple—e.g., instead of e1+e2, we write let x = e1 in let y = e2 in x+y.
We write e1; e2 as shorthand for let x = e1 in e2, where x is fresh for e2.

3.2 Semantics

The semantics, given in the latter half of Figure 2, is written as a series of small-
step rewriting rules between configurations of the form 〈p;σ; e〉, which contain
the program p, its current heap σ, and the current expression e being evaluated.
A heap is a partial function from locations l to values v, and a location l is either

CS-TR-4997

Prog. p ::= p, (g, λx.e) | ·
Exprs. e ::= v | v1 op v2 | v1(v2) | ? | !v | ref v |

v1 := v2 | if v e1 e2 | update |
let x = e1 in e2 | assume v |
while e1 do e2 | assert v |
running p | error

Values v ::= x | l | i | (v1, v2) | ()
Locs. l ::= a | g

Variables x, y, z
Globals f, g
Operators op
Integers i, j
Addresses a
Heaps σ ∈ Locs ⇀ Values
Patch π ::= (p, e)
Labels ν ::= π | ε

〈p;σ; v1 op v2〉 ; 〈p;σ; v′〉 v′ = [[op]](v1, v2)
〈p;σ; ref v〉 ; 〈p;σ[a 7→ v]; a〉 a 6∈ dom(σ)
〈p;σ; !l〉 ; 〈p;σ; v〉 σ(l) = v and l 6∈ dom(p)
〈p;σ; a := v〉 ; 〈p;σ[a 7→ v]; v〉 a ∈ dom(σ)
〈p;σ; g := v〉 ; 〈p;σ[g 7→ v]; v〉 g 6∈ dom(p)
〈p;σ; ?〉 ; 〈p;σ; i〉 for some i
〈p;σ; let x = v in e〉 ; 〈p;σ; e[v/x]〉
〈p;σ; f(v)〉 ; 〈p;σ; e[v/x]〉 p(f) = λx.e
〈p;σ; if 0 e1 e2〉 ; 〈p;σ; e2〉
〈p;σ; if v e1 e2〉 ; 〈p;σ; e1〉 v 6= 0
〈p;σ;while e1 do e2〉 ; 〈p;σ; let x = e1 in

if x (e2;while e1 do e2) 0〉
x 6∈ fv(e1, e2)

〈p;σ; update〉 ; 〈p;σ; 0〉
〈p;σ; update〉 π; 〈pπ;σ; (eπ; 1)〉 π = (pπ, eπ)
〈p;σ; running p〉 ; 〈p;σ; 1〉
〈p;σ; running p′〉 ; 〈p;σ; 0〉 p′ 6= p
〈p;σ; assume v〉 ; 〈p;σ; v〉 v 6= 0
〈p;σ; assert v〉 ; 〈p;σ; v〉 v 6= 0
〈p;σ; assert 0〉 ; 〈p;σ; error〉
〈p;σ; let x = error in e〉; 〈p;σ; error〉

〈p;σ; e1〉 ν; 〈p′;σ′; e′1〉
〈p;σ; let x = e1 in e2〉 ν; 〈p′;σ′; let x = e′1 in e2〉

Fig. 2. Syntax and semantics.

a (dynamically allocated) address a or a (static) global name g. Note that while
the language does not include closures, global names g are values, and so the
language does support C-style function pointers.1

Most of the operational semantics rules are straightforward. We write e[x/
v] for the capture-avoiding substitution of x with v in e. We assume that the
semantics of primitive operations op is defined by some mathematical function
[[op]]; e.g., [[+]] is the integer addition function. Loops are rewritten to condition-

1 Variables names x are values so that we can use a simple grammar to enforce A-
normal form. The downside is that syntactically well-formed programs could pass
around unbound variables and store them in the heap. The ability to express such
programs is immaterial to our modeling of DSU, and could be easily ruled out with
a simple static type system.

CS-TR-4997

als, where in both cases a non-zero guard is treated as true and zero is treated as
false. Addresses a for dynamically allocated memory must be allocated prior to
assigning to them, whereas a global variable g is created when it is first assigned
to. This semantics allows state transformation functions, described below, to
define new global variables that are accessible to an updated program.

The update command identifies a position in the program at which a dynamic
update may take place. Semantically, update non-deterministically transitions
either to 0, indicating that an update did not occur, or to 1 (eventually), indi-
cating that a dynamic update was available and was applied.2 In the case where
an update occurs, the transition arrow is labeled with the patch π; all other
(unadorned) transitions implicitly have label ε. A patch π is a pair (pπ, eπ) con-
sisting of the new program code (including unmodified functions) pπ and an
expression eπ that transforms the current heap as necessary, e.g., to update an
existing data structure or add a new one for compatibility with the new program
pπ. In practice, eπ will be a call to a function defined in pπ. The transformer
expression eπ is placed in redex position and is evaluated immediately; to avoid
capture, non-global variables may not appear free in eπ. Notice that an update
that changes function f has no effect on running instances of f since evaluation
of their code began prior to the update taking place.

The placement of the update command has a strong influence on the se-
mantics of updates. Placing update pervasively throughout the code essentially
models asynchronous updates. Or, as prior work recommends [14, 1, 18, 11], we
could insert update selectively, e.g., at the end of each request-handling function
or within the request-handling loop, to make an update easier to reason about

The constructs running p, assume v, and assert v allow us to write specifica-
tions. The expression running p returns 1 if p is the program currently running
and 0 otherwise; i.e., we encode a program version as the program text itself.
(In Figure 1(c) the expression is updated is equivalent to running p where p is the
new program version.) The expression assert v returns v if it is non-zero, and
error otherwise, which by the rule for let propagates to the top level. Finally, the
expression assume v returns v if v is non-zero, and otherwise is stuck.

3.3 Program merging transformation

We now present our program merging transformation, which takes an old pro-
gram configuration 〈p, σ, e〉 and a patch π and yields a single merged program
configuration, written 〈p, σ, e〉 � π. We present the transformation formally and
then prove that the merged program is equivalent to the original program with
the patch applied dynamically. While we focus on merging a program with a sin-
gle update, the merging strategy can be readily generalized to multiple updates
(we sketch the generalization in Appendix B).

The definition of 〈p, σ, e〉� π is given in Figure 3(e). It makes use of functions
[[·]]· and {| · |}·, defined in Figure 3(a)–(d). We present the interesting cases; the

2 In practice, update would be implemented by having the run-time system check for
an update and apply it if one is available [12].

CS-TR-4997

[[p′, (g, λy.e)]]p,π ,
[[p′]]p,π, (g, λy.[[e]]p,π),
(gptr , λy.let z = isupd() in if z g′(y) g(y))

[[·]]p,π , (·, (isupd , λy.let z = !uflag in z > 0))

{|p′, (g, λy.e)|}p ,
{|p′|}p, (g′, λy.{|e|}p)

{| · |}p , ·

(a) Old version programs (b) New version programs

[[g]]p,π ,{
gptr if p(g) = λx.e

g otherwise

[[running p′′]]p,(pπ,eπ) ,
let z = isupd() in z = 0 if p = p′′

isupd() if pπ = p′′

0 otherwise

[[update]]p,(pπ,eπ) ,
let z = isupd() in
if z 0 (uflag := ?;

let z = isupd() in if z ({|e|}pπ ; 1) 0)

{|g|}p ,{
g′ if p(g) = λx.e

g otherwise

{|running p′′|}p ,{
1 if p = p′′

0 otherwise

{|update|}p , 0

(c) Old version expressions (d) New version expressions

〈p;σ; e〉 � π , 〈p, σ[uflag 7→ i], e〉
where (pπ, eπ) = π p = {|pπ|}pπ , [[p]]p,π e = [[e]]p,π

i ≤ 0 σ = {l 7→ [[v]]p,π | σ(l) = v}
(e) Merging a configuration and a patch

Fig. 3. Merging transformation (partial).

remaining cases are translated structurally in the natural way. For simplicity, the
transformation assumes the updated program pπ does not delete any functions
in p. Deletion of function f can be modeled by a new version of f with the same
signature as the original and the body assert(0).

The merging transformation renames each new-version function from g to g′,
and changes all new-version code to call g′ instead of g (the first rewrite rules in
Figure 3(b) and (d), respectively). For each old-version function g, it generates
a new function gptr whose body conditionally calls the old or new version of g,
depending on whether an update has occurred (Figure 3(a)). The transformation
introduces a global variable uflag (Figure 3(e)) and a function isupd to keep track
of whether the update has taken place (bottom of Figure 3(a)). All calls to g in
the old version are rewritten to call gptr instead (top of Figure 3(c)).

The transformation rewrites occurrences of update in old-version code into
expressions that check whether uflag is positive (bottom of Figure 3(c)). If it is,
then the update has already taken place, so there is nothing to do. Otherwise,
the transformation sets uflag to ?, which simulates a non-deterministic choice
of whether to apply the update. If uflag now has a positive value, the update

CS-TR-4997

path was chosen, so the transformation executes the developer-provided state
transformation e, which must also be transformed according to {| · |}· to prop-
erly reference functions in the new program. While this transformation results
in multiple occurrences of the expression e, in practice e is a call to a state
transformation function defined in the new version and so does not significantly
increase code size.

Version tests running p are translated into calls to isupd in the old version,
and to appropriate constants in the new code (since we know the update has
occurred if new code is running).

3.4 Equivalence

We can now prove that an update to an old-program configuration is correct if
and only if the result of merging that configuration and the update is correct.
This result lets us use stock verification tools to check properties of dynamic
updates using the merged program, which simulates updating, instead of having
to develop new tools or extend existing ones.

We say that a program and a sequence of updates are correct if evaluation
never reaches error (i.e., if there are no assertion failures). More formally:

Definition 1 (Correctness) A configuration 〈p;σ; e〉 and an update π are cor-
rect, written |= 〈p;σ; e〉, π, if and only if for all p′, σ′, e′ it is the case that

〈p;σ; e〉 π;∗ 〈p′;σ′; e′〉 implies e′ is not error.

The expression e at startup could be a call to an entry-point function (i.e., main).
A correct program need not apply π, though no other update may occur. When
no update is permitted we write |= 〈p;σ; e〉.

Theorem 1 (Equivalence) For all p, σ, e, π such that dom(pπ) ⊇ dom(p) we
have that |= 〈p;σ; e〉, π if and only if |= (〈p, σ, e〉 � π).

The proof is by bisimulation and is given in Appendix C along with proof sketches
of key supporting lemmas.

Observe that type errors result in stuck programs, e.g., !1 does not reduce,
while the above theorem speaks only about reductions to error. We have chosen
not to consider type safety in the formal system to keep things simple; adding
types, we could appeal to standard techniques [22–24, 7]. Our implementation
catches type errors that could arise due to a dynamic update by transforming
them into assertion violations. In particular, we rename functions and global vari-
ables whose type has changed prior to merging, essentially modeling the change
as a deletion of one variable and the addition of another. Deleted functions are
modeled as mentioned above, and deleted global variables are essentially as-
signed the error expression. Thus, any old code that accesses a stale definition
post-update (including one with a changed type) fails with an assertion violation.

CS-TR-4997

4 Experiments

To evaluate our approach, we have implemented the merging transformation for
C programs, with the additional work to handle C being largely routine. We
merged several programs and dynamic updates and then checked the merged
programs against a range of CO-specs. We analyzed the merged programs using
two different tools: the symbolic executor Otter, developed by Ma et al. [21], and
the verification tool Thor, developed by Magill et al. [17]. The tools represent a
tradeoff: Otter is easier to use and more scalable but provides incomplete assur-
ance, while Thor can guarantee correctness but is less scalable and requires more
manual effort. Overall, both tools proved useful. Otter successfully checked all
the COs-specs we tried, generally in less than one minute. Thor was able to fully
verify several updates, though running times were longer. Both tools found bugs
in updates, including mistakes we introduced inadvertently. On average, verifi-
cation of merged code took four times longer than verification of a single version.
Since our approach is independent of the verification tool used, its performance
and effectiveness will improve as advances are made in verification technology.

4.1 Programs

We ran Otter and Thor on updates to three target programs. The first two
are small, synthetic examples: a multiset server, which maintains a multiset of
integer values, and a key-value store. For each program, we also developed a
number of updates inspired by common program changes such as memory and
performance optimizations and semantic changes observed in real-world systems
such as Cassandra [5]. The third program we considered is Redis [20], a widely
used open-source key-value server. At roughly 12k lines of C code, Redis is
significantly larger that our synthetic examples, and is currently not tractable
for Thor. We developed six dynamic patches for Redis that update between each
pair of consecutive versions from 1.3.6 through 1.3.12, and we also wrote a set
of CO-specs that describe basic correctness properties of the updates.

As we mention in Section 2, we join each CO-spec with the server code
and have the main function invoke the CO-spec after it initializes server data
structures. The new-version source code includes the state transformation code,
which is identified by a distinguished function name recognized by the merger.

Synthetic Examples. Figure 4 lists the synthetic benchmarks we constructed for
our multiset and key-value store programs. Each grouping of rows shows a dy-
namic update and a list of CO-specs we wrote for that update. The multiset
program has routines to add and delete elements and to test membership. The
updates both change to a set semantics, where duplicate elements are disal-
lowed. The first (correct) state transformer removes all duplicates from a linked
list that maintains the current multiset. The second update has a broken state
transformer that fails to remove duplicates.

The key-value store program also implements its store with a linked list. The
updates are inspired by code changes we have seen in practice and include a bug

CS-TR-4997

Program – change Thor time (s) Otter time (s)
CO-specs old new mrg old new mrg

Multiset – disallow duplicates (correct)

mem-memb 90.11 121.27 1003.22 6.29 9.72 49.37

add-memb 64.17 89.71 537.01 3.26 10.48 50.84
add-add-del-setg – 4.04

Multiset – disallow duplicates (broken)

mem-memb 25.33 57.78 133.68 6.28 9.77 42.5

add-memb 15.68 33.50 80.07 3.25 9.94 33.53
add-add-del-set-failsg 122.71 5.49

Key-value store – bug fix

put-getb 27.01 26.13 41.62 3.28 2.54 18.42
new-def-shadowsg – 4.19

new-def-shadows-bc-failsb 38.97 41.52 117.56 3.88 2.06 19.03

Key-value store – added namespaces
new-def-shadows-postp – – 1.02 2.99
put-getp – – 18.32 228.69
new-def-shadows-confc – – – 1.19 1.93 7.53
put-get-confc – – – 4.23 7.09 61.41

Key-value store – optimization (broken)

put-get-backb 42.133 – – 2.08 11.01 56.44

new-def-shadows-backb 15.344 – – 2.14 11.33 56.03

Key-value store – optimization (correct)

put-get-backb 41.87 – – 2.07 10.87 69.31

new-def-shadows-backb 15.72 – – 2.14 10.96 68.95

b – backward compatible p – post update c – conformable g – general
A dash indicates that the example could not be verified.

Fig. 4. Synthetic examples.

fix (bindings could not be overwritten), a feature addition (adding namespaces),
and an optimization (removing overwritten bindings), where for this last update
the state transformer was broken at first.

The properties span all the categories of CO-specs that we outlined in Sec-
tion 2. Backward compatible specs, such as add-mem, check core functionality
that does not change between versions (add actually adds elements, delete re-
moves elements, etc.). Post-update and general CO-specs are used to check that
functionality does change, but only in expected ways. For example, new-def-
shadows in the bug-fix update checks that, following the update, new key-value
bindings properly overwrite old bindings (which was not true in the old version).

We wrote specifications to be as general as possible. For example, add-mem,
on the second line of the table in Figure 4, checks that after an element is added,
it is reported as present after an arbitrary sequence of function calls that does
not include delete(). The code for our synthetic examples and their associated
CO-specs is available on-line.3

3 http://www.cs.umd.edu/projects/PL/dsu/data/dsumerge-examples.tar.gz

CS-TR-4997

Redis. Figure 5 lists the updates and CO-specs for Redis. Four of the six updates
required writing state transformers, often just to initialize added fields but some-
times to perform more complex transformation, e.g., the update to 1.3.9 required
some reorganization of data structures storing the main database.

We found that across these updates, there were four different kinds of behav-
ioral changes, each of which suggested a certain strategy for developing CO-specs;
we employed CO-specs in each of the classes described in Section 2:

– Unmodified behavior : We adapted two CO-specs from our synthetic key-value
store example (Figure 4), put-get and new-def-shadows, to check correct be-
havior of Redis’ SET and GET operations over string values. As these CO-specs
concern behavior that all versions of Redis should exhibit, we applied them as
backward compatible CO-specs.

– New operations: The HASHINCRBY operation, which adds to the numeric
value stored for a hash key, first appeared in version 1.3.8. We check the
operation’s correctness using a post-update CO-spec, hashincrby. The HASH-
INCRBY operation is supported by all later versions, and so we also developed
a backward compatible hashincrby CO-spec for subsequent updates.

– Modified semantics: Before Redis version 1.3.8, a set whose last element was
removed would remain in the database. We use the backward compatible CO-
spec empty-set-exists to check this property against the patch to 1.3.7. Then
for the patch to 1.3.8, which causes the server to remove a set when it becomes
empty, we use a general CO-spec empty-set-notexists to ensure that sets are
removed if they become empty after the update. Subsequent versions preserve
this behavior, which we specify using a backward compatible CO-spec.

– Conformable changes: Redis’s ZINTER operation, which computes the inter-
section of two sorted sets, was renamed to ZINTERSTORE in version 1.3.12.
We use a conformable CO-spec, zinter, to specify correct behavior regardless
of when an update occurs.

To make symbolic execution tractable for Redis, we had to bound the non-
determinism in our CO-specs, e.g., by limiting “arbitrary behavior” to a single
operation, non-deterministically chosen from a subset of commands that relate
to the specified property (rather than from the full set of Redis operations).

4.2 Effectiveness

In most cases, checking CO-specs validated the correctness of our dynamic
patches. In some cases the checking found bugs. For example, in the state trans-
former for the multiset-to-set update, we inadvertently introduced a possible null
pointer dereference when freeing duplicates. Verification with Thor discovered
this problem. For Redis, we experimented with omitting state transformation
code or using code with a simple mistake in it. In all cases, checking our speci-
fications with Otter uncovered the mistakes.

Figures 4 and 5 show the running times for each of the update/CO-spec/tool
combinations, listed under the mrg heading. As a baseline, we also list the

CS-TR-4997

Otter time (s)
Specification old new mrg

→
1
.3

.7 put-getb 9.76 9.52 24.99

new-def-shadowsb 2.19 2.19 3.97

empty-set-existsb 9.95 9.92 29.15

→
1
.3

.8
∗ put-getb 9.20 9.58 28.53

new-def-shadowsb 2.17 2.27 4.14
hashincrbyp 3.02 14.81
empty-set-notexistsg 27.58

→
1
.3

.9
∗ put-getb 9.14 9.31 48.08

new-def-shadowsb 2.27 2.66 5.46

hashincrbyb 14.23 14.83 77.14

empty-set-notexistsb 10.56 11.13 62.88

b – backward compatible p – post update
c – conformable g – general ∗ – xform

Otter time (s)
Specification old new mrg

→
1
.3

.1
0 put-getb 9.22 10.05 27.37

new-def-shadowsb 2.70 2.69 4.79

hashincrbyb 14.86 15.26 46.74

empty-set-notexistsb 11.14 11.36 35.01

→
1
.3

.1
1
∗ put-getb 9.85 10.04 50.73

new-def-shadowsb 2.69 2.77 6.30

hashincrbyb 15.19 15.51 77.80

empty-set-notexistsb 11.33 11.57 72.40

→
1
.3

.1
2
∗ put-getb 10.32 9.72 49.23

new-def-shadowsb 2.85 2.92 6.27

hashincrbyb 15.20 14.79 77.27

empty-set-notexistsb 11.58 11.67 72.16
zinterc 60.30 59.73 294.05

Fig. 5. Otter checking times for Redis

running times for the backward-compatible specifications on both individual
program versions, and for post-update specifications on the new version—this
lets us compare the relative slowdown incurred by reasoning about updates.

Otter. We performed experiments with Otter on a machine with a dual-core
Pentium-D 3.6GHz processor and 2GB of memory. The running times range
from seconds to a few minutes, depending on the complexity of the specification
and the program. For example, the CO-specs for the multiset-to-set example
were expensive to symbolically execute because each set insertion checks for
duplicates, which induces many branches when symbolic values are involved.

We also see that, across the synthetic examples and Redis, it takes four times
longer to analyze merged programs versus individual versions on average, and
6.4 times longer in the worst case. We investigated the source of the slowdown,
and found it was due to the extra time required to model update points and
state transformers, which is fundamental to verifying updating programs, rather
than an artifact of our merging strategy. In particular, Otter runs on the merged
versions, so it must explore additional program paths to model each possible up-
date timing; on average, CO-specs reached 3.7 update points during execution
and, loosely speaking, each update point could induce another full exploration
through the set of non-updating program paths. State transformation is also exe-
cuted following updates, so the expense of symbolically executing the transformer
is multiplied by the number of times an update point is reached. Nevertheless,
despite this slowdown, total checking time was rarely an impediment to checking
useful properties.

Thor. We ran Thor on a 2.8GHz Intel Core 2 Duo with 4GB of memory. The
average slowdown was 3.9 times, and ranged from 1.5 times to 8.3 times. Much of
the slowdown derived from per-update-point analysis of the state transformation

CS-TR-4997

function; tools that compute procedure summaries or otherwise support modular
verification would likely do better. Thor could not verify all our examples, owing
to complex state transformation code and CO-specs that specify very precise
properties. For example, for the multiset-to-set example, Thor was able to prove
that the state transformer preserves list membership (used to verify mem-mem),
but not that it leaves at most one copy of any element in the list (needed for
add-add-del-set).

The CO-specs we considered lie at the boundary of what is possible for cur-
rent verification technology. To verify all our examples requires a robust treat-
ment of pointer manipulation, integer arithmetic, and reasoning about collec-
tions. We are not aware of any tools that currently offer such a combination.
However, we hope that the demonstrated utility of such specifications will help
inspire further research in this area.

5 Related work

This paper presents the first approach for automatically verifying the correctness
of dynamic software updates. As mentioned in the introduction, prior automated
analyses focus on safety properties like type safety [22], rather than correctness.
As described in Section 2, our notion of client-oriented specifications captures
and extends prior notions of update correctness.

Our verification methodology generalizes our prior work [10, 11] on system-
atically testing dynamic software updates. Given tests that pass for both the
old and new versions, the tool tests every possible updating execution. This ap-
proach only supported backward-compatible properties and does not extend to
general properties (e.g., with non-deterministically chosen operations or values).

The merging transformation proposed in this paper was inspired by KISS [19],
a tool that transforms multi-threaded programs into single-threaded programs
that fix the timing of context switches. This allows them to be analyzed by non–
thread-aware tools, just as our merging transformation makes dynamic patches
palatable to analysis tools that are not DSU-aware.

An alternative technique for verifying dynamic updates, explored by Charlton
et al. [6], uses a Hoare logic to prove that programs and updates satisfy their
specifications, expressed as pre/post-conditions. We find CO-specs preferable to
pre/post-conditions because they require less manual effort to verify, and because
they naturally express rich properties that span multiple server commands.

6 Summary

We have presented the first system for automatically verifying dynamic-software-
update (DSU) correctness. We introduced client-oriented specifications as a way
to specify update correctness and identified three common, easy-to-construct
classes of DSU CO-specs. To permit verification using non-DSU-aware tools, we
developed a technique where the old and new versions are merged into a single
program and proved that it correctly models dynamic updates. We implemented

CS-TR-4997

merging for C and found that it enabled the analysis tool, Thor, to fully verify
several CO-specs for small updates, and the symbolic executor, Otter, to check
and find errors in dynamic patches to Redis, a widely-used server program.

Acknowledgements. We thank Elnatan Reisner, Matthew Parkinson, Nishant
Sinha, and the anonymous reviewers for helpful comments on drafts of this pa-
per. This research was supported by the partnership between UMIACS and the
Laboratory for Telecommunications Sciences, by ONR grant N00014-09-1-0652,
and NSF grants CCF-0910530, CCF-0915978 and CNS-1111698. Any opinions,
findings, and recommendations are those of the authors and do not necessarily
reflect the views of the ONR or NSF.

References

1. S. Ajmani, B. Liskov, and L. Shrira. Modular software upgrades for distributed
systems. In ECOOP, July 2006.

2. J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent program-
ming in ERLANG (2nd ed.). Prentice Hall International Ltd., 1996.

3. T. Bloom and M. Day. Reconfiguration and module replacement in Argus: theory
and practice. Software Engineering Journal, 8(2):102–108, March 1993.

4. G. Bracha. Objects as software services.
http://bracha.org/objectsAsSoftwareServices.pdf, Aug. 2006.

5. Cassandra API overview. http://wiki.apache.org/cassandra/API.
6. N. Charlton, B. Horsfall, and B. Reus. Formal reasoning about runtime code

update. In HOTSWUP, 2011.
7. D. Duggan. Type-based hot swapping of running modules. In ICFP, 2001.
8. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling

with continuations. In PLDI, 1993.
9. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version

change. IEEE TSE, 22(2), 1996.
10. C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S. Foster. Efficient Systematic

Testing for Dynamically Updatable Software. In HOTSWUP, 2009.
11. C. M. Hayden, E. K. Smith, E. A. Hardisty, M. Hicks, and J. S. Foster. Evaluating

dynamic software update safety using systematic testing, Mar. 2011.
12. M. Hicks and S. Nettles. Dynamic software updating. ACM TOPLAS, 27(6), 2005.
13. The K42 Project. http://www.research.ibm.com/K42/.
14. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change

management. IEEE TSE, 16(11), 1990.
15. Never reboot Linux for Linux security updates : Ksplice. http://www.ksplice.com.
16. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for reasoning about

shape and arithmetic. In CAV, LNCS 5123, pages 428–432. Springer, 2008.
17. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Automatic numeric abstractions for

heap-manipulating programs. In POPL, 2010.
18. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software updating

for C. In PLDI, 2006.
19. S. Qadeer and D. Wu. KISS: Leep it simple and sequential. In PLDI, 2004.
20. The Redis project. http://code.google.com/p/redis/.
21. E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using symbolic evalu-

ation to understand behavior in configurable software systems. In ICSE, 2010.

CS-TR-4997

22. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:
Safe and flexible dynamic software updating. ACM TOPLAS, 29(4), 2007.

23. S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software updates for
Java: A VM-centric approach. In PLDI, 2009.

24. C. Walton. Abstract Machines for Dynamic Computation. PhD thesis, University
of Edinburgh, 2001. ECS-LFCS-01-425.

A Client-oriented update specifications

In Section 2 We introduced three categories of CO-spec for verifying dynamic
updates: backward compatible specifications, post-update specifications, and con-
formable specifications. In this section we discuss the specification categories
in more detail and show how they can be constructed mechanically given CO-
specs that apply to either the old or new program version. As such, we believe
that verifying a dynamic patch should add little work beyond the work already
needed to verify the old and new program versions in isolation.

A.1 Backward compatible CO-specs

Most programs satisfy many of the same properties before and after a dynamic
update—e.g., most of a server’s behavior that the client observes is often un-
changed between versions. For instance, Hayden et al. observed that OpenSSH’s
test suite only grew between versions—all of the old tests continued to hold as
time went on [11]. This makes intuitive sense: many updates simply add new
features, leaving the old features (and properties about them) unchanged, or
refactor the program to improve non-functional aspects such as performance.

A backward-compatible CO-spec φ is one that holds for both the old and new
versions independently. Such CO-specs are immediately usable. For example,
the CO-spec in Figure 1(b) might apply to the old and new program version,
and thus it immediately applies to an updating execution; assuming the update
could take place during calls to get or set, we would verify that the update does
not drop mappings from the store.

A.2 Post-update CO-specs

Another common category of properties consists of those that apply to the new
version but not the old version. An example was given in Figure 1(c): after
dropping line assume on line 23, we could apply this CO-spec directly to the new
version, to verify the behavior of a newly added delete command. By adding this
line, we are able to verify executions in which arbitrary operations are performed
by the old version, but delete is not tested until after the update takes place.

Given a new-version CO-spec φ, we can mechanically transform it into a post-
update CO-spec φ′, as follows. We can prefix φ with an arbitrary sequence of calls
into the old program version, ending with the assumption assume (running p1)
to ensure the new version p1 is running when φ is checked. Figure 6(a) formally

CS-TR-4997

P[[φ]] = while ? do

assume (running p0);

if ? then f0(?) else if ? then f1(?) else . . .

;

assume (running p1);

φ

(a) Post-update function P[[·]]

C[[f(v)]] = if (running p0) then F [[f(v)]] else f(v)

if F [[f(v)]] defined

C[[f(v)]] = assume (running p1); f(v)

if F [[f(v)]] undefined

C[[let x = e in e′]] = let x = C[[e]] in C[[e′]]
C[[while e do e′]] = while C[[e]] do C[[e′]]
C[[φ′]] = φ′ for all other φ′

(b) Conformance function C[[·]]

φ C[[φ]]

let k = ? in

let x = ? in

set(d, k, x);

del(d, k);

let x′′ = get(d, k) in

assert (x′′ = error)

let k =? in

let x =? in

if (running p0) then set(k, v)

else set(d, k, v);

assume (running p1); del(d, k);

let x′′ = (if (running p0) then get(k)

else get(d, k)) in

assert (x′′ = error)

(c) Conforming new-version spec φ using C[[·]] defined in (b)

Fig. 6. Transforming new-version specifications

CS-TR-4997

defines this transformation as the post-update CO-spec P[[φ]], where p0 defines
the functions f0, f1, Thus, P[[φ]] can now be checked against an update from
p0 to p1.

Post-update CO-specs often make sense for updates that add features or fix
bugs. However, in general only CO-specs that assume the server could be in
an arbitrary initial state are suitable for the post-update transformation. As a
trivial example, the CO-spec assert (get(?) = error) explicitly checks that our
key-value store starts empty, and may not hold immediately after an update.

A.3 Conformable CO-specs

In some cases, updates change the behavior of existing features in a systematic
way. For example, the Cassandra distributed database [5] added namespaces to
its key-value store when moving from version 0.3 and 0.4. Thus, the new set of
server functions now take a namespace identifier as an initial parameter, i.e.,
set(d,k,v) associates key k to value v in namespace d, and likewise get(d,k) re-
trieves the value associated with k in namespace d. After making this change,
the developer adapts the existing single-version specifications for the old version
to be compatible with the new version. For example, the specification in Fig-
ure 1(b) would be adjusted so that calls to get and set are made using some
default namespace identifier.

To perform this update dynamically, the developer must write a patch π
whose state transformation expression e adjusts the key-value store to be com-
patible with the new code—e.g., any existing key-value pairs already in the
server heap could be placed in a default namespace. A reasonable choice is to
have e add a default namespace d to each existing key-value pair. To test that
this update provides reasonable continuity, we can take a new-version specifica-
tion φ that uses this default namespace and adapt it so that it starts by using
the old versions of the changed functions, and then changes to the new version
midstream.

We can mechanize this process as follows. We assume we are given a new spec-
ification φ, as well as a meta-function F [[f(v)]] that takes a call to a new-version
function and transforms it to an appropriate call to an old-version function. As
this may not always be possible, F [[·]] may be partial. Then we can define the
meta-function C[[φ]] that conforms φ as shown in Figure 6(b). For our example,
the developer would define F [[get(d, k)]] = get(k) and F [[set(d, k, v)]] = set(k, v).
Note that F [[·]] bears some resemblance to Ajmani et al.’s future simulation ob-
jects [1], which are bits of code added to old-version servers whose aim is to
convert calls from new clients to work with the old code. We are not deploying
these conformance functions on-line, but rather are using them to adjust existing
specifications to check proper continuity following an update.

Now suppose that the new version also adds a new function that permits a
client to delete an entry: del(d, k) removes any association with k from names-
pace d. Since there is no analogue to del defined in the old version, there is no
backward translation for calls del(d, k) that could appear in new-version spec-
ifications. To see how C[[·]] works in this case, consider the example given in

CS-TR-4997

Figure 6(c), which shows φ and C[[φ]] side by side. Here, C[[φ]] permits updates
to happen up until the del call, at which point we assume the update has taken
place. (This means that the running p0 check that follows it will always be false.)

B Handling multiple updates

The merging transformation in Figure 3 merges a program with a single up-
date. This transformation can be generalized to prove properties about multi-
ple updates. To see the basic idea, consider a process 〈p, σ, e〉 and a sequence
of two updates π1 and π2. We would first merge 〈p, σ, e〉 and π1, producing
〈p, σ, e〉 � π1. Then we would merge the result with π2, essentially producing
(〈p, σ, e〉 � π1) � π2. To do this properly requires some small changes to the
transformation. First, we need additional bookkeeping information to be passed
between iterations of the transformation, e.g., instead of just g and g′ as the
old and new function names, we would have g0, g1, g2, etc., and likewise uflag
becomes uflag1, uflag2, etc. (Interestingly, no changes are needed to translations
of running p, essentially since functions that have not changed are redundantly
included in the patch and distinguished by the transformation.) Second, we must
change {|update|}p to be the identity, i.e., to leave the new version’s update key-
word in place, so that it can be used to update to the next version to be merged.

With a more general merging transformation we can prove properties about
multiple updates. For backward-compatible CO-specs there is no additional work
since they are the same across all versions. For post-update specifications, we
could generalize the transformation in Figure 6(a) so that the assumption in
the loop is assume (running p0 ∨ · · · ∨ running pn−1) and the assumption after
the loop is assume (running pn), where the post-update CO-spec spans versions
p0 through pn. We can make a similar generalization of the transformation in
Figure 6(c) (composing multiple conformance functions together).

C Equivalence Proof

This appendix presents a formal proof of Theorem 1 from Section 3, which
states that a configuration 〈p, σ, e〉 updated by patch π is correct if and only
if the merged configuration 〈p, σ, e〉 � π is correct. Note that the definition of
correctness given in the paper specifies only a single patch π to be applied. For
our proof, we generalize to correctness over sequences of patches ~π.

C.1 Overview

The proof is structured in three parts: First, we prove a soundness lemma show-
ing that the merged program simulates every step of execution in the old and
new programs, as well as the updating step from old to new. Second, we prove a
completeness lemma showing that every execution in the merged program corre-
sponds to an execution in the original program, the new program, or the updated
program. Finally, we use these results to prove the main equivalence result.

CS-TR-4997

[[x]]p,π , x

[[a]]p,π , a

[[g]]p,π ,

{
gptr if p(g) = λx.e

g otherwise

[[i]]p,π , i

[[(v1, v2)]]p,π , ([[v1]]p,π, [[v2]]p,π)

[[()]]p,π , ()

[[v1 op v2]]p,π , [[v1]]p,π op [[v2]]p,π

[[v1(v2)]]p,π , [[v1]]p,π([[v2]]p,π)

[[?]]p,π , ?

[[v1 := v2]]p,π , [[v1]]p,π := [[v2]]p,π

[[!v]]p,π , ![[v]]p,π

[[ref v]]p,π , ref [[v]]p,π

[[if v e1 e2]]p,π , if [[v]]p,π [[e1]]p,π [[e2]]p,π

[[let x = e1 in e2]]p,π , let x = [[e2]]p,π in [[e2]]p,π

[[while e1 do e2]]p,π , while [[e1]]p,π do [[e2]]p,π

[[update]]p,(pπ,eπ) , let z = isupd() in

if z 0 (uflag := ?; let z = isupd() in if z ({|eπ|}p
′
; 1) 0)

[[assume v]]p,π , assume [[v]]p,π

[[assert v]]p,π , assert [[v]]p,π

[[running p′′]]p,(pπ,eπ) ,


let z = isupd() in z = 0 if p′′ = p

let z = isupd() in z 6= 0 if p′′ = pπ

let z = 0 in z otherwise

[[error]]p,π , error

[[p, (g, λy.e)]]p,π , [[p]]p,π,

(g, λy.[[e]]p,π),

(gptr , λy.let z = isupd() in if z g′(y) g(y))

[[·]]p,π , (·, (isupd , λy.let z = !uflag in z > 0))

Fig. 7. Merging old version code.

Before we present these lemmas, we need a little notation. We define three
merging transformations—for old-version, new-version, and combined-version
code. The first two complete the presentation of merging given in Figure 3. Fig-
ure 7 fully defines the transformation [[·]]p,π which applies to old-version code,
and Figure 8 fully defines {| · |}p, which is used with new-version code. The
highlights of these transformations were explained in Section 3.3. For technical

CS-TR-4997

{|x|}p , x

{|a|}p , a

{|g|}p ,

{
g′ if p(g) = λx.e

g otherwise

{|i|}p , i

{|(v1, v2)|}p , ({|v1|}p, {|v2|}p)
{|()|}p , ()

{|v1 op v2|}p , {|v1|}p op {|v2|}p

{|v1(v2)|}p , {|v1|}p({|v2|}p)
{|?|}p , ?

{|v1 := v2|}p , {|v1|}p := {|v2|}p

{|!v|}p , !{|v|}p

{|ref v|}p , ref {|v|}p

{|if v e1 e2|}p , if {|v|}p {|e1|}p {|e2|}p

{|let x = e1 in e2|}p , let x = {|e1|}p in {|e2|}p

{|while e1 do e2|}p , while {|e1|}p do {|e2|}p

{|update|}p , let z = 0 in z

{|assume v|}p , assume {|v|}p

{|assert v|}p , assert {|v|}p

{|running p′′|}p ,

{
let z = 1 in z if p = p′′

let z = 0 in z otherwise

{|error|}p , error

{|p, (g, λy.e)|}p , {|p|}p, (g′, λy.{|e|}p)
{| · |}p , ·

Fig. 8. Merging new version code.

reasons, we modify the transformations slightly so that non-values (e.g., update)
map to non-values (e.g., let z = 0 in z instead of 0). The third transformation
(| · |)p,pπ combines [[·]]p,π and {| · |}p and returns a set of expressions as a result. For
example, it translates function pointers g to {g′, gptr}. The (| · |)·,· transformation
is needed because after the simulated update takes place, function pointers f
may either bind to old/new versions fptr or to new versions f ′.

CS-TR-4997

(|x|)p,pπ , {x}
(|a|)p,pπ , {a}

(|g|)p,pπ ,

{
{g′, gptr} if p(g) = λx.e

{g} otherwise

(|i|)p,pπ , {i}
(|(v1, v2)|)p,pπ , {(v′1, v′2) | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}

(|()|)p,pπ , {()}
(|v1 op v2|)p,pπ , {v′1 op v′2 | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}

(|v1(v2)|)p,pπ , {v′1(v′2) | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}
(|?|)p,pπ , {?}

(|v1 := v2|)p,pπ , {v′1 := v′2 | v′1 ∈ (|v1|)p,pπ ∧ v′2 ∈ (|v2|)p,pπ}
(|!v|)p,pπ , {!v′ | v′ ∈ (|v|)p,pπ}

(|ref v|)p,pπ , {ref v′ | v′ ∈ (|v|)p,pπ}
(|if v e1 e2|)p,pπ , {if v′ e′1 e′2 | v ∈ (|v|)p,pπ ∧ e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}

(|let x = e1 in e2|)p,pπ , {let x = e′1 in e′2 | e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}
(|while e1 do e2|)p,pπ , {while e′1 do e′2 | e′1 ∈ (|e1|)p,pπ ∧ e′2 ∈ (|e2|)p,pπ}

(|update|)p,pπ , {let z = 0 in z}
(|assume v|)p,pπ , {assume v′ | v′ ∈ (|v|)p,pπ}

(|assert v|)p,pπ , {assert v′ | v′ ∈ (|v|)p,pπ}

(|running p′′|)p,pπ ,


{let z = 0 in z, let z = isupd() in z = 0} if p′′ = p

{let z = 1 in z, isupd()} if p′′ = pπ

{let z = 0 in z} otherwise

(|error|)p,pπ , {error}

Fig. 9. Merging combined version code.

Next, using these transformations on expressions, we define a transformation
on configurations:

〈p;σ; e〉 � π , 〈p, σ[uflag 7→ i], e〉
〈p;σ; e〉 [�] π , 〈p, σ̂[uflag 7→ j], ê〉
where p = {|pπ|}pπ , [[p]]p,π

e = [[e]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}

π = (pπ, eπ) i ≤ 0

ê = (|e|)p,pπ j > 0

σ̂ = {σ′ | dom(σ′) = dom(σ) ∧ ∀l ∈ dom(σ). σ′(l) ∈ (|σ(l)|)p,pπ}

The (· � ·) and (· [�] ·) transformations simulate the behavior of the program
before and after the update occurs respectively. Note that both transformations

CS-TR-4997

describe sets of configurations: (· � ·) contains all configurations of the specified
form where uflag is bound in the heap to an integer i ≤ 0 while (· [�] ·) is a
set due to the use of (| · |)p,pπ . These sets are needed to set up the simulations
between executions in the old, new, and transformed programs. To streamline the
presentation we will occasionally abuse notation slightly, lifting various notions
from elements to sets in the obvious way. For example, we write 〈p;σ; e〉 � π ;
〈p;σ′; e′〉 [�] π to indicate that every configuration in 〈p;σ; e〉 � π steps to a
configuration in 〈p;σ′; e′〉 [�] π.

The first lemma states that any execution in an untransformed program is
matched by an execution in the transformed program.

Lemma 1 (Soundness) For all p, p′, σ, σ′, e, e′, ~ν, π with π = (pπ, eπ) we have

〈p;σ; e〉 ~ν;∗ 〈p′;σ′; e′〉 implies

1. if ~ν = ε then p′ = p and 〈p;σ; e〉 � π ;∗ 〈p;σ′; e′〉 � π
2. if ~ν = π then p′ = pπ and 〈p;σ; e〉 � π ;∗ 〈p;σ′; e′〉 [�] π.

The second lemma states that for any execution trace of the transformed
program, there is a corresponding trace of the untransformed program. However,
the transformed program may need to execute a little more to match up with
an untransformed state.

Lemma 2 (Completeness) For all p, p′, σ, σ′, e, e′, π such that π = (pπ, eπ), if
〈p;σ; e〉 � π ;∗ 〈p′;σ′; e′〉 then there exist σ′′ and e′′ such that

– 〈p′;σ′; e′〉;∗ 〈p;σ′′; e′′〉 � π and 〈p;σ; e〉;∗ 〈p;σ′′, e′′〉 ; or

– 〈p′;σ′; e′〉;∗ 〈p;σ′′; e′′〉 [�] π and 〈p;σ; e〉 π;∗ 〈pπ;σ′′, e′′〉 ; or

Using these lemmas, we prove the main result:

Proof (of Theorem 1). Recall the statement of the theorem:

For all p, σ, e, π with π = (pπ, eπ) and dom(pπ) ⊇ dom(p) we have
|= 〈p;σ; e〉, π if and only if |= 〈p, σ, e〉 � π.

We prove each direction separately.

(⇐) Let 〈p;σ; e〉�π ;∗ 〈p′;σ′; e′〉 be an execution of the transformed program.
By Lemma 2 there exists a σ′′ and e′′ such that either:
– 〈p′;σ′; e′〉;∗ 〈p;σ′′; e′′〉� π and 〈p;σ; e〉;∗ 〈p;σ′′; e′′〉. By assumption,

we have |= 〈p;σ; e〉, π and hence e′′ is not error. Using Lemma 8 we also
have that e′ is not error.

– 〈p′;σ′; e′〉 ;∗ 〈p;σ′′; e′′〉 [�] π and 〈p;σ; e〉 π;∗ 〈p′;σ′′; e′′〉. The result
follows by a similar argument as the previous case.

(⇒) Let 〈p;σ; e〉 ~ν;∗ 〈p′;σ′; e′〉 be an execution. By Lemma 1 we have:
– ~ν = ε implies p′ = p and 〈p;σ; e〉 � π ;∗ 〈p;σ′; e′〉 � π. By assumption,

we have |= 〈p;σ; e〉, π and hence [[e′]]p,π is not error. Using Lemma 8 we
also have that e′ is not error.

– ~ν = π implies p′ = pπ and 〈p;σ; e〉 � π ;∗ 〈p;σ′; e′〉 [�] π. The result
follows by a similar argument as the previous case. 2

CS-TR-4997

C.2 Soundness Lemmas

The main soundness lemma follows from the three lemmas proved in this sec-
tion. The first shows that the simulation between the original and transformed
programs holds before to an update when taking a single step.

Lemma 3 For all p, σ, σ′, e, e′, π, if 〈p;σ; e〉; 〈p;σ′; e′〉 then 〈p;σ; e〉 � π ;+

〈p;σ′; e′〉 � π.

Proof. Let (pπ, eπ) = π and define p, σ, and σ′ as follows:

p = {|pπ|}p, [[p]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}[uflag 7→ i]

σ′ = {l 7→ [[v]]p,π | σ′(l) = v}[uflag 7→ i′]

where i ≤ 0 and i′ ≤ 0.
The proof is by induction on 〈p;σ; e〉 ; 〈p;σ′; e′〉. Most cases are straight-

forward calculations using the definition of the transformation. We show just a
few of the most interesting cases.

Case 〈p;σ; v1 op v2〉; 〈p;σ; v′〉 where v′ = [[op]](v1, v2):
For this case, we must assume that [[op]](v1, v2) = v′ implies [[op]]([[v1]]p,π, [[v2]]p,π) =
[[v′]]p,π. This rules out operators such as < on function pointers (which makes
intuitive sense, because relative ordering on pointers will not be preseved by
the transformation in general). We calculate as follows,

〈p;σ; v1 op v2〉 � π = 〈p;σ; [[v1 op v2]]p,π〉
= 〈p;σ; [[v1]]p,π op [[v2]]p,π〉
; 〈p;σ; [[op]]([[v1]]p,π, [[v2]]p,π)〉
= 〈p;σ; [[v′]]p,π〉 � π by assumption

= 〈p;σ; v′〉 � π

and obtain the required result.
Case: 〈p;σ; update〉; 〈p;σ; 0〉

We calculate as follows,

〈p;σ; update〉 � π

= 〈p;σ; [[update]]p,π〉
= 〈p;σ; let z = isupd() in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉
; 〈p;σ; let z = let z = !uflag in z > 0 in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉
;+ 〈p;σ; (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉 as σ(uflag) = i ≤ 0

;+ 〈p;σ[uflag 7→ i′]; 0〉 where i′ ≤ 0

= 〈p;σ[uflag 7→ i′]; [[0]]p,π〉
= 〈p;σ; 0〉 � π

CS-TR-4997

and obtain the required result.
Case: 〈p;σ; update〉 π; 〈p′;σ; (e; 1)〉 where π = (p′, e)

Can’t happen, as ~ν = ε by assumption.
Case: 〈p;σ; running p〉; 〈p;σ; 1〉

We calculate as follows,

〈p;σ; running p〉 � π = 〈p;σ; [[running p]]p,π〉
= 〈p;σ; let z = isupd() in z = 0〉
; 〈p;σ; let z = let z = !uflag in z > 0 in z = 0〉
;+ 〈p;σ; 1〉 as σ(uflag) = i ≤ 0

= 〈p;σ; [[1]]p,π〉
= 〈p;σ; 1〉 � π

and obtain the required result.

The next lemma proves the simulation is also preserved by updates.

Lemma 4 For all p, p′, σ, σ′, e, e′, π with π = (pπ, eπ) we have 〈p;σ; e〉 π; 〈p′;σ′; e′〉
implies p′ = pπ and 〈p;σ; e〉 � π ;+ 〈p;σ′; e′〉 [�] π.

Proof. Let (pπ, eπ) = π and define p, σ, and σ̂′ as follows.

p = {|pπ|}p, [[p]]p,π

σ = {l 7→ [[v]]p,π | σ(l) = v}[uflag 7→ i]

σ̂′ = {σ′[uflag 7→ j] | dom(σ′) = dom(σ) ∧ ∀l ∈ dom(σ). σ′(l) ∈ (|σ(l)|)p,pπ}

where i ≤ 0 and j > 0.
The proof is by induction on 〈p;σ; e〉 π; 〈p′;σ′; e′〉. We show just one case:

Case: 〈p;σ; update〉 π; 〈pπ;σ; (eπ; 1)〉
We calculate as follows,

〈p;σ; update〉 � π

= 〈p;σ; let z = isupd() in

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉
;+ 〈p;σ; let z = 0 in as σ(uflag) = i ≤ 0

if z 0 (uflag :=?; let z = isupd() in if z ({|eπ|}p; 1) 0)〉
;+ 〈p;σ[uflag 7→ j]; let z = isupd() in if z ({|eπ|}p; 1) 0〉 where j > 0

;+ 〈p;σ[uflag 7→ j]; ({|eπ|}p; 1)〉
∈ 〈p; σ̂[uflag 7→ j]; (|eπ; 1|)p,pπ 〉
⊆ 〈p;σ; (eπ; 1)〉 [�] π

and obtain the required result.

The third lemma proves that the simulation is preserved following an update.

Lemma 5 For all p, σ, σ′, e, e′, π with π = (pπ, eπ) we have 〈pπ;σ; e〉; 〈pπ;σ′; e′〉
implies 〈p;σ; e〉 [�] π ;+ 〈p;σ′; e′〉 [�] π.

Proof. Similar to the previous soundness lemmas.

CS-TR-4997

C.3 Completeness Lemmas

The main completeness lemma follows from repeated applications of the next
two lemmas.

Lemma 6 For all p, p′, σ, σ′, e, e′, π where π = (pπ, eπ), if

〈p;σ; e〉 � π ;+ 〈p′;σ′; e′〉

and there does not exist σ0 and e0 such that either

〈p;σ; e〉; 〈p;σ0; e0〉 and 〈p;σ; e〉 � π ;+ 〈p;σ0; e0〉 � π ;+ 〈p′;σ′; e′〉

or

〈p;σ; e〉 π; 〈p′;σ0; e0〉 and 〈p;σ; e〉 � π ;+ 〈p;σ0; e0〉 [�] π ;+ 〈p′;σ′; e′〉

then there exists σ′′ and e′′ such that either

– 〈p′;σ′′; e′′〉 = 〈p;σ′; e′〉 � π and 〈p;σ; e〉; 〈p;σ′′; e′′〉 ; or

– 〈p′;σ′′; e′′〉 ∈ 〈p;σ′; e′〉 [�] π and 〈p;σ; e〉 π; 〈pπ;σ′′; e′′〉; or

– 〈p′;σ′; e′〉 ν; 〈p′;σ′′; e′′〉 for some ν.

Intuitively, this lemma states that if the transformed program can take some
number of steps, then either that state corresponds to a reachable untransformed
state, or can take another step, eventually reaching a corresponding state.

The second lemma is similar, but considers post-update states:

Lemma 7 For all p, p′, σ, σ′, e, e′, π where π = (pπ, eπ), if

〈p;σ; e〉 [�] π ;+ 〈p′;σ′; e′〉

and there do not exist σ0 and e0 such that

〈pπ;σ; e〉; 〈pπ;σ0; e0〉 and 〈p;σ; e〉 [�] π ;+ 〈p;σ0; e0〉 [�] π ;+ 〈p′;σ′; e′〉

Then there exist σ′′ and e′′ such that either

– 〈p′;σ′; e′〉 ∈ 〈p;σ′′; e′′〉 [�] π and 〈pπ;σ; e〉; 〈pπ;σ′′; e′′〉 ; or
– 〈p′;σ′; e′〉; 〈p′;σ′′; e′′〉.

C.4 Auxiliary Lemmas

Lemma 8 (Error) For all p, π, e, we have e 6= error if and only if:

– [[e]]p,π 6= error;
– {|e|}p 6= error; and
– (|e|)p,π 63 error.

Lemma 9 (Non-Zero) For all p, π, v, we have v 6= 0 if and only if:

CS-TR-4997

1. [[v]]p,π 6= 0;
2. {|v|}p 6= 0; and
3. (|v|)p,pπ 63 0.

Lemma 10 (Substitution) For all p, p′, π, x, v, and e we have the following:

– [[e[v/x]]]p,π = [[e]]p,π[[[v]]p,π/x];
– {|e[v/x]|}p = {|e|}p[{|v|}p/x]; and
– (|e[v/x]|)p,pπ = (|e|)p,pπ [(|v|)p,pπ/x].

