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As a result of recent successes in genome scale studies, especially genome 

sequencing, large amounts of new biological data are now available. This naturally 

challenges the computational world to develop more powerful and precise analysis 

tools. In this work, three computational studies have been conducted, utilizing 

complete microbial genome sequences: the detection of operons, the composition of 

protein families, and the detection of the lateral gene transfer events.

In the first study, two computational methods, termed the Gene Neighbor Method 

(GNM) and the Gene Gap Method (GGM), were developed for the detection of 

operons in microbial genomes. GNM utilizes the relatively high conservation of order 

of genes in operons, compared with genes in general. GGM makes use of the 

relatively short gap between genes in operons compared with that otherwise found 

between adjacent genes. The two methods were benchmarked using biological 



pathway data and documented operon data. Operons were predicted for 42 microbial 

genomes. The predictions are used to infer possible functions for some hypothetical 

genes in prokaryotic genomes and have proven a useful adjunct to structure 

information in deriving protein function in our structural genomics project. 

In the second study, we have developed an automated clustering procedure to classify 

protein sequences in a set of microbial genomes into protein families. Benchmarking 

shows the clustering method is sensitive at detecting remote family members, and has 

a low level of false positives. The aim of constructing this comprehensive protein 

family set is to address several questions key to structural genomics. First, our study 

indicates that approximately 20% of known families with three or more members 

currently have a representative structure. Second, the number of apparent protein 

families will be considerably larger than previously thought: We estimate that, by the 

criteria of this work, there will be about 250,000 protein families when 1000 

microbial genomes are sequenced. However, the vast majority of these families will 

be small. Third, it will be possible to obtain structural templates for 70 – 80% of 

protein domains with an achievable number of representative structures, by 

systematically sampling the larger families. 

The third study is the detection of lateral gene transfer event in microbial genomes. 

Two new high throughput methods have been developed, and applied to a set of 66 

fully sequenced genomes.  Both make use of a protein family framework. In the High 

Apparent Gene Loss (HAGL) method, the number and nature of gene loss events 



implied by classical evolutionary descent is analyzed. The higher the number of 

apparent losses, and the smaller the evolutionary distance over which they must have 

occurred, the more likely that one or more genes have been transferred into the 

family. The Evolutionary Rate Anomaly (ERA) method associates transfer events 

with proteins that appear to have an anomalously low rate of sequence change 

compared with the rest of that protein family. The methods are complementary in that 

the HAGL method works best with small families and the ERA method best with 

larger ones. The methods have been parameterized against each other, such that they 

have high specificity (less than 10% false positives) and can detect about half of the 

test events. Application to the full set of genomes shows widely varying amounts of 

lateral gene transfer. 
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Chapter 1: Introduction

1.1 Motivation

The explosion of knowledge of genome sequences offers us tremendous new 

opportunities for addressing questions of major biological interest. However, most of 

the corresponding proteins have not been experimentally characterized. The challenge 

of understanding the role of these proteins has led to the development of  a range of 

functional genomics methods, which generate various types of information 1. 

Structural Genomics is one of such approach which aims to provide structure for a 

high fraction of natural proteins. The general intent of Structure Genomics is not to 

obtain an experimental structure for each protein. Rather, protein sequences are 

clustered into families, and one or more representative structures are determined for 

each protein family. Computational comparative modeling is then used to provide 

model structures for other family members. In this sense, current Structural Genomics 

is a combined experimental and computational effort. 

Protein structure provides a very powerful means of understanding aspects of protein 

function. Generally, during evolution, structure is well conserved and can be used to 

detect remote evolutionary relationships between proteins that are often not detectable 

by current sequence alignment methods. Therefore, when the structure of a 
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‘hypothertical’ protein is obtained experimentally, its newly revealed structural 

homologues can sometimes be used to help identify the function. In cases where a 

function cannot be identified by homology, clues such as potential active sites and the 

location of conserved residues can provide a starting point for more conventional 

methods of function determination. 

In our center (Center for Advanced Research in Biotechnology, CARB), a structural 

genomics project (http://s2f.umbi.umd.edu/) was initiated in 1998. The initial goal 

was to determine structures of hypothetical proteins from Haemophilus influenzae

and then combine structure information with computational analysis to predict the 

protein function. So in my first project – detection of operons in microbial genomes, I 

have developed two methodologies to identify operons, with the aim of providing 

function clues for hypothetical proteins, using the strong relationship between the 

operon structure and function relatedness. Prediction results were successfully 

utilized to infer the possible biological function of some hypothetical proteins. 

The second project - protein family clustering for structural genomics, aims to 

provide a complete and reliable set of families for all the proteins in a set of microbial 

organisms. A multi-linkage clustering scheme was developed to facilitate family 

construction. The families were thoroughly benchmarked using SCOP 2; 3 and PFAM 

4 data, and it was shown that the clustering method is more sensitive in detecting 

remote evolutionary relationships than other alignment methods, when the false 

positive rate low is low. The completeness of this set makes it possible to obtain 
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improved estimates of the number and diversity of families in the prokaryotic 

kingdom. Several important questions related to structural genomics strategy were 

addressed using this family set: (1) What is the structure coverage for currently 

known families? (2) How will the number of known apparent families grow as more 

genomes are sequenced? (3) What is a practical strategy for maximizing structure 

coverage in future? Our study indicates that approximately 20% of known families 

with three or more members currently have a representative structure. The number of 

apparent protein families will be considerably larger than previously thought: The 

estimate is that, by the criteria of this work, there will be about 250,000 protein 

families when 1000 microbial genomes have been sequenced. However, the vast 

majority of these families will be small, and it will be possible to obtain structural 

templates for 70 – 80% of protein domains with an achievable number of 

representative structures, by systematically sampling the larger families.

The third project, detection of lateral gene transfer in microbial genomes, originated 

with the idea of estimating the age distribution of protein folds, a fundamental 

question in Structural Genomics. Sequence analysis of bacterial genomes reveals a 

large number of apparent singletons – proteins found in one organism, but with no 

detectable relatives in any other organism 5; 6; 7. These proteins, together with a large 

number of protein families that appear to have members in a very few genomes, 

dominate protein family space, and suggest that new protein folds may arise 

frequently in evolution. To test this possibility, we began investigating the apparent 

age of protein families. It quickly became clear that no analysis of family age is 
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possible without taking into account the occurrance of lateral gene transfer. Further, 

LGT is in itself a central issue in the evolution of bacteria.  

Thus, the LGT project became a project on its own right. In this study, we have 

developed two methods to observe lateral gene transfer events in genome scale. The 

High Apparent Gene Loss (HAGL) method detects LGT events by counting the 

minimum number of losses necessary to explain the phyletic pattern of a protein 

family. LGT events are likely when there are a large number of losses in a family 

over a small evolutionary distance. The Evolutionary Rate Anomaly (ERA) method 

finds LGT events by identifying genes which have statistically different rates of 

sequence change from the family average. Because of the different signals utilized, 

each method detects a largely different set of LGT events. The two methods 

combined do not cover the whole spectrum of LGT possibilities, but do provide a 

useful sampling, and confirm that LGT is very widespread. Grouping laterally 

transferred genes in terms of genomes and families shows the distribution terms are 

uneven. 
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1.2 Background

1.2.1 Operon

An operon is a set of adjacent genes that share the same regulatory machinery and are 

transcribed into a single mRNA molecule. A well known example is the lac operon in 

Escherichia coli. This operon includes three genes: lacA, lacY and lacZ, sharing the 

same promoter and terminator, so that transcription produces a single mRNA 

molecule. Operons are widespread in prokaryotic organisms and are also found in 

some eukaryotes such as C.elegans. An important characteristic is that genes in an 

operon are very likely to have related functions. For example, the three genes in the 

lac operon all play roles in the lactose metabolic pathway in E.coli. For this reason, 

we can use a predicted operon to infer the function of hypothetical proteins, when 

other genes in the same operon have clear function annotation. 

1.2.2 Protein Families for Structural Genomics

As we explained in the Motivation, the ultimate goal of structural genomics is to 

provide structures for all biological proteins. Although there have been enormous 

improvements in experimental methods for determining structure, these still lag 

behind the genome sequencing by orders of magnitude. As a result, currently only 

about 1% of proteins with known sequence also have an experimentally known 

structure. Structural genomics proposes to efficiently provide structural coverage for 
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proteins by experimentally determining one representative structure for each family 

and using comparative modeling methods to obtain model structures for other family 

members. To implement this strategy, a set of protein families is required.

Many protein classification schemes have already been developed, for various 

purposes. For example, SCOP 2; 3 and CATH 8 classify proteins in terms of the 

structural similarity. Pfam 4 groups proteins based on Hidden Markov Model 

sequence profiles. None of these classifications is ideal for structural genomics, and 

an automated procedure which can classify all of known sequence space is needed. 

1.2.3    Lateral Gene Transfer

Lateral gene transfer, also called horizontal gene transfer, is the process of transfer of 

genetic information between different species. The significance of lateral gene 

transfer was not appreciated until the 1950s, when resistance to penicillin class 

antibiotics spread rapidly through many pathogens as a result of plasmid transfer 9. As 

we now know, two processes act together to shape genome in the evolution of 

prokaryotic organisms: direct gene inheritance and lateral gene transfer. However, for 

a long time, it was commonly believed that lateral gene transfer was rare and the 

dominant process in evolution is inheritance. With the development of genome 

sequencing, it becomes more and more obvious that lateral gene transfer is also a very 

significant force. 
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1.3 Overview

The dissertation is organized as follows. Chapter 2 describes the detection of operons 

in microbial genomes. Two prediction methods were developed and the results were 

benchmarked using function pathway data and documented operon data. The 

prediction results were used to provide function clues for some of the hypothetical 

proteins in these organisms. Chapter 3 describes the generation of a set of protein 

families which classify all the proteins in a set of microbial genomes. The family set 

was thoroughly benchmarked with SCOP data and PFAM data. This set of families 

was used to answer several important questions of structural genomics. Chapter 4 

describes the detection of lateral gene transfer in microbial genomes. Two methods 

were developed, the HAGL method (High Apparent Gene Loss) and the ERA method 

(Evolutionary Rate Anomaly). In the absence of an experimental gold standard to use 

as a benchmark, the prediction results of the two methods were compared. The results 

were grouped in terms of genomes. Chapter 5 summarizes the conclusions of the 

three projects and discusses prospects for further work in these areas. 
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Chapter 2: Detection of Operons

2.1 Introduction

Knowledge of the complete genome sequences of multiple prokaryotic organisms 

provides many opportunities for analysis. 10 Here we focus on the detection of 

operons, sets of adjacent genes that share the same regulatory machinery and are 

transcribed into a single mRNA molecule. Operons are widespread and frequent in 

prokaryotic organisms, and are also found in some eukaryotes such as C. elegans 11; 

12.

Analysis of operons of known function, primarily in E.coli, has established that genes 

in an operon are very likely to have related functions 13; 14; 15. For this reason, a 

number of operon detection methods have already been developed. One approach 

uses nucleotide sequence patterns that are conserved across multiple genomes to 

identify gene expression regulatory sites, such as promoters and terminators, and so 

find transcriptional units 16,17. These sequence motifs are short and can be highly 

variable, limiting the prediction capability of this method. The method can be 

extended by also considering conservation of functional class within operons 18.



9

Machine learning methods have been used to develop predictive models based on a 

variety of information,  including sequence data, gene expression data, and functional 

annotations associated with genes 19. These authors built separate models for the 

prediction of promoters, terminators and operons. The separate predictions were then 

combined with a dynamic programming method to map every known and putative 

gene in a given genome into its most probable operon. The full power of this method 

is only applicable to very well-studied systems such as E. coli. 

An alternative approach, which we have also used, is to search for pairs of 

homologous genes that are adjacent in multiple, phylogenetically well separated 

prokaryotic genomes 20; 21; 22. As discussed later, gene shuffling is relatively rapid 

during evolution, so that a strong selective force is required to maintain gene order 

over long periods of evolutionary time. Operons provide such a selective pressure 23; 

24. Thus, conservation of gene pairing across many genomes is evidence of operon 

structure. Several different algorithms have been developed to make use of this 

signal. Overbeek et al. 14 considered all gene pairs conserved in at least two of 30 

included genomes to be in operons.  The results were used to predict the function of 

some genes by association with their conserved neighbors. This pioneering method 

was not benchmarked in any way, however. Wolf and colleagues 25 developed a local 

gene-by- gene genome alignment method similar to a sequence local alignment tool. 

Pairs of genes aligned across two genomes are assigned a score of 1, and all other 

gene pairs are assigned a score of zero. All consecutive runs of two or more scores of 

‘1’ are then considered to form operons. The statistical significance of the local 
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alignments was evaluated by using Monte Carlo simulations to obtain an estimate of 

the random expectation for each score value. The method provided the first measure 

of prediction reliability. Ermolaeva et al. 21 developed a method which estimates the 

likelihood that a conserved gene pair could be in an operon and benchmarked the 

result with the RegulonDB data set. The method uses an ingenious but indirect 

statistical model, and has relatively low sensitivity, in the 30 – 50% range. 

Yet another approach is to detect operons on the basis of a short inter-gene gap 

between neighboring genes. Salgado et al. 26 combined this approach with function 

class information to predict operons in E.coli. We have also developed a version of 

this method.

The work reported here builds on the earlier results for the gene neighbor and gene 

gap models, using a larger set of genomes, combining the conserved neighbor and 

inter-gene gap methods, and carefully benchmarking the results against two sources. 

One benchmark makes use of the fact that genes in the same operon are very likely to 

have related functions, and therefore to belong to the same KEGG 27 pathway, 

allowing us to determine the specificity of the methods. That is, the fraction of genes 

predicted to be in operons that are correct. The second benchmark allows us to 

determine the sensitivity of the method, that is, the fraction of operons in a genome 

that are detected, using known E.coli operons in the RegulonDB database 28. 
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With optimum parameters, the specificity of the gene neighbor method is 93% and 

the sensitivity is 70%. For the gene gap method the specificity is 95% and the 

sensitivity is 68%. 87% of all operons in the test set are predicted by one or both 

methods.  A higher specificity of 98% is obtained by considering only those operon 

predictions for which the methods agree, at the expense of a lower sensitivity of 50%.

We have used both methods to predict operons in a set of 42 microbial genomes, and 

thus provide some indications of function for a large number of hypothetical proteins. 

The primary motivation for the work and major use of the results is to obtain insight 

into the function of previously unannotated proteins in Haemophilus influenzae and 

E.coli, by combining operon prediction with information from structure obtained as 

part of a structural genomics project (http://s2f.umbi.umde.edu). 
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2.2 Methods

Database: All downloaded and generated information was stored in a MySQL 

relational database running on a Linux server.

Genome Data: The complete genome sequences together with open reading frame 

annotations were retrieved from the NCBI genome sequence database 

(http://www.ncbi.nlm.nih.gov/Genomes/index.html).

Homolog detection: The sequence of each protein in the set of genomes was 

compared with all others, using three rounds of PSI-BLAST 29; 30. A pair of proteins 

A and A’ in two different organisms are considered homologous if there is a PSI-

BLAST hit with an E-value of 0.001 or lower for A’ when A is used as the search 

sequence, and for A, using A’ as the search sequence. 

Adjacent Gene Pair: Any pair of adjacent genes on the same strand in a genome 

is defined as an adjacent gene pair.

Conserved Gene Pair: an adjacent gene pair is considered to be conserved 

across two genomes if the following conditions hold:

1.  Genes A and B form an adjacent  gene pair in Genome 1 and genes A’ and B’ 

form an adjacent gene pair in Genome 2.

2.  Genes A’ and B’ are homologs of genes A and B respectively.
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     A                         B 

Genome 1

homology

Genome 2 

              A’          B’

Figure 2.1. Conserved gene pair.  A and A’ and B and B’ are pairs of homologous 

proteins. A and B form an adjacent gene pair in Genome 1 and A’ and B’ form an 

adjacent gene pair in Genome 2. 

Conserved gene pairs may be observed for three possible reasons: (1) The genes are 

part of an operon present in both genomes – the signal we seek to detect. (2) 

Insufficient time has elapsed since the genomes diverged for gene shuffling to be 

complete. We greatly reduce these incidences by only comparing well diverged 

genomes. (3) The pair order occurs by chance. For typical genomes, with more than 

1000 genes, the probability of chance pairing across two genomes is less than 0.001.



14

Genome Separation: The relative divergence of pairs of genomes is measured in 

terms of the completeness of gene shuffling, using the Common Neighbor Fraction 

(CNF) within a genome pair.

CNF = Number of conserved gene pairs/ genome size

where ‘genome size’ is the number of genes in the smaller of the two genomes 

compared. Two well shuffled genomes will have a low CNF value, but greater than 

zero primarily because of the effect of neighbor conservation in operons, while 

recently diverged or slowly shuffling ones will have a larger value. 

Common Neighbor Fraction Tree: An inter-genome distance matrix was 

constructed for the 42 genomes, with elements 

D(I,J) = [1 – CNF(I,J)]

where CNF(I,J) is the common neighbor fraction between genomes I and J. A 

neighbor joining tree was built from this distance matrix, using the NEIGHBOR 

program in PHYLIP package (Felsenstein 1989) 31, and using Saccharomyces 

cerevisiae as the outgroup. The resulting tree is shown in Figure 2.2A. The more 

shuffled a pair of genomes with respect to each other, the further up the tree the 

branch point between them. Shuffling was considered incomplete for genomes linked 

by branch points above the vertical green line. Each set of genomes diverging from
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one of the 30 branches crossing the green line was defined as a single Genome 

Group.

Common Gene Fraction Tree: A Common Gene Fraction (CGF) tree was built 

using an inter-genome distance matrix composed of elements [1 – CGF(I,J)], where 

CGF(I,J) is the common gene fraction between genomes I and J, and: 

CGF = Number of homologous pairs/ genome size

This tree, shown in figure 2.2B, represents the relationship between genomes in terms 

of the number of detectable homologous gene pairs between them.

16S ribosomal RNA Tree: A standard 16S ribosomal RNA neighbor joining 

tree 32 was also constructed, and is shown in Figure 2.2C. 16S ribosomal RNA data 

was retrieved from NCBI Genbank. The RNA distance matrix was built using the 

DNADIST program in the PHYLIP package (Felsenstein 1989)31. This tree represents 

the relationship between genomes in terms of sequence conservation. Properties of all 

the trees are discussed in the Results section.
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Figure 2.2A. Common Neighbor Fraction (CNF) phylogenetic tree for 42 fully 

sequenced prokaryotic genomes. Relationships in the tree are determined by the 
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matrix of [1-CNF(I,J)] values,  where CNF(I,J) is the common neighbor fraction 

between genomes I and J – a measure of the extent of gene order conservation. On 

this basis, genomes are segregated into the standard large groups such as Archaea, 

Proteobacteria, Firmicutes and so on. Each of these groups is shown in a different 

color.  The relative closeness of most branch-points to the tree root is an indication of 

rapid shuffling of gene order during evolution of these organisms. For operon 

identification purposes, pairs of genomes with branch points above the vertical green 

line were considered incompletely shuffled. The tree was built using the neighbor 

joining method, with Saccharomyces cerevisiae as the outgroup.
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Figure 2.2B. Common Gene Fraction (CGF) phylogenetic tree for the same set of 

genomes as figure 2.2A. Here, relationships in the tree are determined by the value 

[1-CGF(I,J)] where CGF(I,J) is the common gene fraction between genomes I and J –
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a measure of the extent of gene homology. The same major subgroupings as in figure 

2.2A are observed, but branch points are usually further from the root, indicating that 

apparent gene gain and loss are slower processes than gene shuffling. The tree was 

built in the same manner as that in figure 2.2A, with the same color scheme, 

indicating the major microbial genome groups. 
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Figure 2.2C. 16S ribosomal RNA phylogenetic tree for the same set of genomes as 

figures 2.2A and 2.2B. Here, relationships in the tree are determined by the extent of 

sequence identity in 16S ribosomal RNA between pairs of genomes. The bar shows 

the scale in units of accepted base substitutions. The same major subgroupings as in 

2a and 2b are observed, but the positions of branch points are farther away from the 

root than in the other trees. The tree was built in the same manner as that in figure 

2.2A, with the same color scheme, indicating major microbial genome groups.

Conservation level: As noted above, the set of 42 genomes is divided into 30 

genome groups. The conservation level of a conserved gene pair is defined as the 

number of genome groups in which one or more instances of the pair are found. The 

higher the conservation level, the more likely that the gene pair is in an operon. 

Inter-gene Gap: The length of the non-coding region between two genes which 

are adjacent to each other on the same strand is obtained by subtracting the position 

of the last base in the first gene from the position of the first base in the second gene, 

using NCBI nucleotide indexing. Since two adjacent genes may have overlapping 

coding regions, this length can be negative. 

Operon gene pair: Any adjacent gene pair considered to be part of operon is 

termed an operon gene pair. Presence in an operon is defined by a conservation level 

above a specified threshold or an inter-gene non-coding region length below some 

threshold, or by both. 
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Accuracy measures: The accuracy of the two operon prediction methods is 

expressed in terms of specificity (fraction of true negatives correctly identified in a 

test set) and sensitivity (fraction of true positives correctly identified in a test set). I.e.

Specificity (Sp) = TN / (TN + FP)

Where TN is the number of true negatives in a test set, FP is the number of false 

positives, and (TN + FP) is the total number of points in the set.

Sensitivity (Sn) = TP/ (TP + FN)

Where TP is the number of true positives in a test set, FN is the number of false 

positives, and (TP + FN) is the total number of points in the set.

Test sets: Constructing suitable test sets is a key component of the statistical 

evaluation of any prediction method. Ideally, one test set should be used for 

calculating all accuracy measures. No such comprehensive test set exists for operon 

evaluation, so we have used separate sets for measuring specificity and sensitivity. 

For specificity, we require a test set where true negatives and false positives can be 

counted. That is, a set where we have knowledge of which pairs of genes are not in 

the same operon, but not necessarily knowledge of which pairs of genes are in the 

same operon. We have used data from KEGG pathways for this. KEGG (Kyoto 
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Encyclopedia of Genes and Genomes) (http://www.genome.ad.jp/kegg/kegg2.html)

33; 34; 35 contains hand-curated data from the literature, identifying which genes are in 

the same functional pathway. The data are most extensive and reliable for E.coli K-

12, and the genes in this organism that are assigned to a KEGG pathway form the 

basis of the test set. We assume that any adjacent gene pair where the genes are 

assigned to different KEGG pathways cannot be in the same operon. Therefore, any 

adjacent gene pair predicted to be in an operon and for which the member genes are 

assigned to different KEGG pathways is counted as a false positive. While this 

definition is imperfect (see below), it is likely to result in an over-estimate of false 

positives, rather than an under-estimate. Conversely, any adjacent gene pair for which 

the genes are assigned to different KEGG pathways and which is not predicted to be 

in an operon is counted as a true negative. Thus, true negatives (TN) and the false 

positives (FP) are given by:

TN = number of adjacent gene pairs assigned to different KEGG pathways and not 

predicted to be in the same operon. 

FP = number of adjacent gene pairs assigned to different KEGG pathways and 

predicted to be in the same operon.

There are a total of 4287 adjacent gene pairs in the E.coli K-12 genome 18, of  which 

599 have both member genes assigned to KEGG pathways. 161 of these pairs are 

assigned to different pathways, and form the potential test set. A check of these gene 
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pairs against the literature revealed that, contrary to expectation, 35 of the 161 are 

known to be in the same operon 28; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 

56 These gene pairs were removed, leaving 126 pairs for the specificity test. We also 

observed 438 cases where adjacent gene pairs are in the same KEGG pathway. 

However, two genes may be in the same pathway without being in the same operon, 

so these data are not suitable for use in a specificity assessment.

For sensitivity evaluation, we require a test set where true positives and false 

negatives can be counted. That is, a test set where we have knowledge of which pairs 

of adjacent genes are in the same operon, but not necessarily knowledge of which 

pairs are not in the same operon. RegulonDB 28, a collection of experimentally 

determined E. coli K-12 operons from the literature, was used as the source of 

adjacent gene pairs in the same operon (Version 3.2, with 240 operons containing a 

total of 593 pairs, and in all including 830 genes). The set of adjacent gene pairs form 

the test set. Any predicted operon gene pair which matches one of these 

experimentally determined pairs is counted as a true positive, and any experimentally 

known operon gene pair not predicted is counted as a false negative. That is:

True positives (TP) = number of gene pairs which are in both the RegulonDB 

experimentally determined operon set and the prediction set.

False negatives (FN) = number of gene pairs which are in the RegulonDB operon set 

but not in the prediction set.
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2.3 Results

2.3.1 Gene Neighbor Method

Gene Shuffling is a relatively rapid process

The Common Neighbor Fraction (CNF) phylogenetic tree, the Common Gene 

Fraction (CGF) tree and the 16S ribosomal RNA tree are shown in Figure 2. All three 

trees show the expected approximate topologies. For example, archaea and bacteria 

are on separate branches and bacteria are divided into Proteobacteria, Gram-positive, 

Chlamydia, Spirochete and Hyperthermophilic bacteria. The Proteobacteria are 

further separated into four subdivisions and Gram positive bacteria are separated into 

two subdivisions. The key difference between these trees is that the branching points 

in the CNF tree are closer to the root node. This indicates that the rate of gene 

shuffling is much faster than the rate of loss of orthologs between genomes (captured 

by the CGF tree) and the rate of sequence change in conserved bio-molecules, such as 

16S ribosomal RNA. Similar observations have been made by Bork and colleagues 57; 

58. Rapid shuffling facilitates a low false positive rate of operon identification. 

An example of pair conservation in an operon
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Conserved gene pairs were identified using gene neighbor conservation in the 30 

genome groups. At a conservation level of 3 or above, E. coli has 1077 conserved 

gene pairs. Figure 2.3 and table 2.1 show an example, the E.coli K-12 histidine

operon with its gene members hisG,D,C,B,H,A,F and I. This well established operon 

59 contains eight genes, and hence seven adjacent gene pairs. Table 2.2 shows the 

conservation level for each of these pairs. 

Figure 2.3. Gene order in the E.coli K-12 histidine operon.

gene1 Gene2
Conservation level

hisG hisD 11

hisD hisC 8

hisC hisB 7

hisB hisH 13

hisH hisA 13

hisA hisF 20

hisF hisI 10

hisG      hisD       hisC        hisB        hisH       hisA        hisF         hisI
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Table 2.1. Gene pair conservation for the histidine operon. The conservation level for 

each adjacent gene pair is shown. The genes in this operon belong to the Histidine 

metabolism pathway in E.coli (KEGG pathway eco00340).  

All gene pairs within this operon are supported by a substantial conservation level, 

although the level varies quite widely, from a low of seven to a high of 20 (i.e.

adjacent homologs of these pairs are found in between seven and 20 other genome 

groups). Varied conservation may arise from a number of factors. First, complete 

pathways may not be conserved across all bacterial genomes. Second, there may be 

gene reordering within an operon, not tracked by the present method. Third, for 

rapidly evolving genes, remote orthologs may not be detected.

Specificity and Sensitivity of the Gene Neighbor Method

As described in methods, the specificity is given by:

Sp = TN/126

Where TN (true negatives) is the number of the 126 E.coli adjacent gene pairs in 

different E.coli KEGG pathways that are not predicted to be in the same operon.  It is 

expected that the higher the conservation level required to define an operon gene pair, 

the higher the specificity. Figure 2.4A shows specificity as a function of the minimum 

required conservation level. 
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Figure 2.4A. Specificity of the Gene Neighbor Method as a function of the minimum 

conservation level required. The higher the conservation level, the greater the 

specificity (i.e the fewer false positives). At a conservation level of three, the 

specificity is 93%. 

Sensitivity is measured as

Sn = TP/593
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Where TP (true positives) is the number of the 593 RegulonDB operon gene pairs 

identified. We expect the sensitivity to decrease with increase in the conservation 

level required for an operon gene pair. Figure 2.4B shows the sensitivity as a function 

of the minimum required conservation level. 
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Figure 2.4B. Sensitivity of the Gene Neighbor Method as a function of the minimum 

conservation level required. As the conservation level increases, the sensitivity falls 

rapidly (i.e. fewer true operon gene pairs are included). At a conservation level of 

three, the sensitivity is 70%. 



30

Choice of a higher minimum conservation level will result in fewer incorrect 

assignments of operon gene pairs, but also fewer of the true pairs will be identified. 

Based on the data in Figure 2.4, we chose a conservation level of three as the 

minimum. I.e. an adjacent gene pair must be present in at least three genome groups 

to be considered part of operon. With this threshold, the specificity is 93% and the 

sensitivity is 70%. In E.coli, with this threshold, 1073 operon gene pairs are 

predicted. The numbers of predicted operon gene pairs in all 42 microbial genomes 

are listed in Table 2.3. 

2.3.2 Gene Gap Method

The principle of the Gene Gap Method is that a short non-coding region between two 

genes is too small to hold any regulatory machinery, such as a promoter and 

terminator. Figure 2.5 illustrates this principle for a known E.coli histidine operon 59.

sbcB         hisG    hisD    hisC     hisB     hisH    hisA     hisF      hisI           yegH

              6010bp      5bp      -4bp    -4bp     -1bp     -4bp    -19bp   -7bp     40612bp      
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Figure 2.5. Example of an E.coli operon conforming to the expectations of the gene 

gap method. The inter-gene gaps in this operon range from -19 to 5bp, much smaller 

than the non-coding regions flanking this operon, 6010bp and 40612bp.

Specificity and Sensitivity of the Gene Gap Method

All intergene non-coding region lengths were calculated in E.coli. Figure 2.6A shows 

the distribution of inter-gene gaps over the range -50 to 100 base pairs. (A value of -

50 indicates that the first gene’s open reading frame overlaps the second one’s by 50 

base pairs). There is a concentration of values between -10 and 20 base pairs, with the 

peak value at -4. Most cases with a value of -4 have an overlap sequence of ATGA, 

with TGA acting as the stop codon for the upstream gene and ATG as the start codon 

for the downstream one. A gap of -1 is also common, and here the sequence bridging 

the two genes is usually T(A/G)ATG, with TAA/TGA as the stop codon for the 

upstream gene and ATG as the start codon for the downstream one. No gaps of length 

–3 or of multiples of –3 are observed. Such an arrangement would imply that the stop 

codon of the upstream codon be in frame in the downstream gene, obviously non-

viable. 

The method was benchmarked in a similar manner to the Gene Neighbor Method. 

The specificity and sensitivity were evaluated as a function of the maximum gap 

length allowed between members of an operon gene pair. Figures 2.6B and 2.6C

show these results. As expected, the sensitivity increases (fewer false negatives) and 
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the specificity decreases (more false positives) as the allowed gap increases. A 

threshold of +25 provides the best compromise between specificity and sensitivity, 

with values of 95% and 68% respectively. This value was used for predictions of 

operon gene pairs. In E.coli, 1357 operon gene pairs are predicted. The number of 

predictions for all microbial genomes is listed in Table 2.3. 
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Figure 2.6A. Distribution of intergene gap lengths in E.coli. Negative values indicate 

overlapping genes. There is a concentration of gaps between -10 and 20 nucleotides, 

with the peak value at -4.  
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Figure 2.6B. Specificity of the Gene Gap method in E.coli, as a function of the 

maximum gap length allowed between members of an operon gene pair. The higher 

the threshold, the lower the specificity (i.e. there are more false positives). For a 

threshold of 25 nucleotides, the specificity is 95%.

. 
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Figure 2.6C. Sensitivity of the Gene Gap method in E.coli, as a function of the 

maximum gap length allowed between members of an operon gene pair. The higher 

the threshold, the higher the sensitivity (i.e. there are fewer false negatives). For a 

threshold of 25 nucleotides, the sensitivity is 68%.

2.3.3 Methods Comparison

The conserved gene pair and intergene gap method provide independent sets of 

predictions. Thus, we would expect that consensus results, where the two methods 

agree, will be more reliable. Specificity should increase (fewer false positives), offset 

by lower sensitivity (fewer true positives). Figure 2.7 shows the results for the 
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common predictions, compared with those for the individual methods. As with the 

individual methods, specificity and sensitivity of the combined predictions were 

defined as:

Sp = TN/126

Where TN is the number of the 126 KEGG experimentally determined negatives 

identified by both methods. A value of 98% is obtained. That is, for cases where the 

two methods agree, there is only a 2% false positive rate.

Sn = TP/593

Where TP is the number of RegulonDB true positives identified by both methods. 

The two methods agree in 50% of these cases. Although this is a low coverage, as 

noted above, the reliability is high.

If increased sensitivity is desired, the methods can be used combined. One or both 

methods identify a true positive for 87% of cases, with a specificity of 94%.

Comparison of the two methods also provides a mechanism for independently 

evaluating the accuracy of the specificity and sensitivity. Given these values for two 

independent methods, we can calculate the expected values for the consensus method. 

For sensitivity, if P1(T) is the probability of identifying a true positive for method 1 
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and P2(T) is the corresponding for method 2, and these probabilities are independent, 

then the probability of both methods identifying the same true positive is:

P12(T) = P1(T).P2(T) = 0.70*0.68 = 0.49

The actual rate for the joint method is 0.50, a satisfactory result. 

Expected specificity for the joint method is calculated as follows: The probability of 

method 1 producing a false positive as P1(F) = (1-Sp1), and similarly, P2(F) = (1-Sp2) 

for method 2, where Sp1 and Sp2 are the specificities of the two methods. Then the 

probability of both methods identifying the same false positive is

P12(F) = P1(F). P2(F) = 0.07*0.05 = 0.0035

yielding an expected specificity of 99.65% The actual value is a little lower, at 98.5%, 

but still reasonably consistent with the benchmark results. 

GNM: 
Sp 93%
Sn 70%

Joint:
 Sp 98%
Sn 50%

GGM: 
Sp 95% 
Sn 68%
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Figure 2.7. Comparison of operon gene pair predictions by the two methods, 

Specificity (Sp) and sensitivity (Sn) for the two methods are discussed as above, 

(GNM: gene neighbor method, GGM: gene gap method) Values for the overlap 

region are for cases where the predictions from the two methods agree. This yields a 

higher specificity (only 2% false positives) at the expense of lower coverage 

(sensitivity of 50%), quantitatively consistent with the sensitivity and specificity of 

the separate methods.

A further test of the operon prediction methods was obtained by predicting operons in 

the complete genome of Saccharomyces cerevisiae, a eukaryotic organism without 

operons. The gene neighbor method predicts only 32 operon gene pairs in this 

genome and gene gap method predicts only three.

2.3.4 Prediction of Protein Function

A primary motivation for predicting operons is to permit inference of the function of 

hypothetical protein. The idea 14 is that when an operon contains one or more genes 

with clear function assignment, that provide clues to the function of its other genes. 

Table 2.2 shows an example. An H.influenzae operon (predicted by both methods) 

that yields some functional insight. 
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Gene Position
   in 
operon   

Function Annotation Conservati
on level to 
the 
previous / 
following 
gene

Inter-gene 
gap to the 
previous / 
following 
gene

Homolog
in Ecoli

HI1129 1 HYPOTHETICAL PROTEIN 0/13 201/30 YabB
HI1130 2 HYPOTHETICAL PROTEIN 13/15 30/2 YabC
HI1131 3 CELL DIVISION PROTEIN 

FTSL
15/15 2/12 FtsL

HI1132 4 PENICILLIN-BINDING 
PROTEIN 3

15/10 12/9 FtsI

HI1133 5 UDP-N-
ACETYLMURAMOYLALAN
YL-D-GLUTAMATE--2,6-
DIAMINOPIMELATE LIGASE

10/17 9/13 MurE

HI1134 6 UDP-N-
ACETYLMURAMOYLALAN
YL-D-GLUTAMYL-2,6-
DIAMINOPIMELATE--D-
ALANYL-D-ALANYL 
LIGASE

17/11 13/-7 MurF

HI1135 7 PHOSPHO-N-
ACETYLMURAMOYL-
PENTAPEPTIDE-
TRANSFERASE

11/13 -7/122 MraY

HI1136 8 UDP-N-
ACETYLMURAMOYLALANI
NE--D-GLUTAMATE LIGASE

13/9 122/21 MurD

HI1137 9 CELL DIVISION PROTEIN 
FTSW

9/13 21/11 FtsW

HI1138 10 UDP-N-
ACETYLGLUCOSAMINE--N-
ACETYLMURAMYL-
(PENTAPEPTIDE) 
PYROPHOSPHORYL-
UNDECAPRENOL N-
ACETYLGLUCOSAMINE 
TRANSFERASE

13/13 11/137 MurG

HI1139 11 UDP-N-
ACETYLMURAMATE--
ALANINE LIGASE

13/5 137/71 MurC

HI1140 12 D-ALANINE--D-ALANINE 
LIGASE

5/7 71/-1 DdlB

HI1141 13 CELL DIVISION PROTEIN 7/8 -1/18 FtsQ
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FTSQ HOMOLOG
HI1142 14 CELL DIVISION PROTEIN 

FTSA
8/16 18/83 FtsA

HI1143 15 CELL DIVISION PROTEIN 
FTSZ

16/4 83/38 FtsZ

HI1144 16 UDP-3-O- [3-
HYDROXYMYRISTOYL] N-
ACETYLGLUCOSAMINE 
DEACETYLASE

4/0 38/126 LpxC

Table 2.2. An example of a predicted operon in H.influenzae, yielding some 

functional insight. Genes are listed in the first column, and their positions in the 

operon are in the second column. The conservation levels of each gene with those 

before and after it are shown in the fourth column. The intergene gaps on either side 

of each gene are also shown, in the fifth column. Function annotations are taken from 

the Swiss-Prot database. (http://www.expasy.ch/sprot/sprot-top.html). The functions 

of the first and second genes in this operon are unknown. From the annotation of the 

other genes, it is clear that the operon is involved in cell wall structure formation and 

cell division. Thus it is likely that the two hypothetical proteins, HI1129 and HI1130, 

are also involved in these processes. 

Table 2.3 lists the number of hypothetical proteins in each of the 42 genomes 

considered, and the total number of these that can potentially be partly annotated by 

the operon predictions. ‘Hypothetical’ are those proteins for which SwissProt release 

40 annotation contains the words ‘hypothetical’, ‘unknown’ or ‘orf’. A hypothetical 

protein is considered partly annotatable if it is predicted to be in the same operon as 

one or more non-hypothetical proteins. Less well studied genomes tend to have a 
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larger fraction of hypothetical proteins, and so are less likely to have the required 

combination in an operon. 

Genome Number 

of genes

Hypo-

thetical 

proteins

Hypo-

thetical 

proteins  

annotated 

by GNM

Hypo-

thetical 

proteins  

annotated 

by GGM

Total   

hypo-

thetical 

proteins  

annotated 

Percent of 

hypothetical 

proteins 

annotated in 

each 

genome

Aeropyrum pernix 2694 2065 31 89 107 5

Aquifex aeolicus 1522 663 17 254 260 39

Archaeoglobus 

fulgidus

2407 1439 59 319 334 23

Bacillus 

halodurans

4066 1925 79 319 355 18

Bacillus subtilis 4100 1912 52 163 193 10

Borrelia 

burgdorferi

1637 1099 20 143 149 14

Buchnera sp. APS 574 87 21 13 29 33

Campylobacter 

jejuni

1629 979 65 361 372 38

Caulobacter 3737 1810 55 374 387 21
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crescentus

Chlamydia 

muridarum

909 449 30 72 82 18

Chlamydia 

trachomatis

893 295 7 51 55 19

Chlamydophila 

pneumoniae

1052 435 11 72 77 18

Chlamydophila 

pneumoniae AR39

1110 632 33 95 110 17

Chlamydophila 

pneumoniae J138

1069 434 11 72 77 18

Deinococcus 

radiodurans

3102 1884 43 283 299 16

Escherichia coli 4289 1430 173 227 313 22

Escherichia coli 

O157:H7

5361 1938 180 226 313 16

Haemophilus 

influenzae Rd

1709 707 103 165 209 30

Halobacterium sp. 

NRC-1 

2605 1572 30 133 149 9

Helicobacter 

pylori 26695

1566 691 16 236 238 34

Helicobacter 1490 618 15 242 244 39
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pylori J99

Lactococcus lactis 

subsp. lactis

2266 825 21 127 144 17

Methanobacterium 

thermoautotrophic

um

1869 499 6 146 147 29

Methanococcus 

jannaschii

1770 1054 29 198 215 20

Mycobacterium 

leprae

1605 987 37 117 130 13

Mycobacterium 

tuberculosis

3918 2441 30 392 404 17

Mycoplasma 

genitalium

480 216 16 82 85 39

Mycoplasma 

pneumoniae

688 294 12 68 72 24

Neisseria 

meningitidis

2025 995 54 145 178 18

Neisseria 

meningitidis Z2491

2032 708 39 174 196 28

Pasteurella 

multocida

2014 958 120 215 262 27

Pseudomonas 5565 2545 145 298 375 15
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aeruginosa

Pyrococcus abyssi 1765 946 56 238 247 26

Pyrococcus 

horikoshii

2064 1506 68 198 223 15

Rickettsia 

prowazekii

834 340 21 65 76 22

Synechocystis 

PCC6803

3169 1748 26 138 157 9

Thermoplasma 

acidophilum

1478 963 77 149 178 18

Thermotoga 

maritime

1846 975 61 404 424 43

Treponema 

pallidum

1031 534 19 120 129 24

Ureaplasma 

urealyticum

611 299 8 70 74 25

Vibrio cholerae 3828 1846 128 312 374 20

Xylella fastidiosa 2831 1535 48 251 276 18

Table 2.3. The numbers of hypothetical proteins that can be partially annotated by the 

Gene Neighbor Method (GNM) and the Gene Gap Method (GGM), for 42 microbial 

genomes. Hypothetical proteins are those with Swiss-Prot (release 40) function 

annotation containing the word “hypothetical”, “unknown” or “orf”. A hypothetical 
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protein is considered partly annotatable if it exists in a predicted operon containing 

one or more non-hypothetical proteins. 

2.3.5 Combination of Structure and Operon Information

Operon context may provide complementary function information to that from other 

sources. We have used operon information to supplement that obtained from structure 

in a structural genomics project focused on providing functional information for 

‘hypothetical’ microbial proteins (s2f.umbi.umd.edu) 60; 61. Of 45 protein structures 

obtained, 11 (HI0065, HI0393, HI0442, HI0670, HI0817, HI1034, HI1333, HI1543, 

HI1679 in Haemophilus influenzae, YbgI, YqgF in Escherichia coli) are part of 

predicted operons where one or more proteins have assigned function (Table 2.4). 

We find that in some cases, predicted operon context provides critical extra 

information for arriving at likely function, given a structure. This is particularly true 

when structure reveals that the protein is a member of a known superfamily, and so 

provides a rough indication of likely biochemical function. For example, the structure 

of HI1679 showed it to be a member of phosphatase superfamily 62, and this protein is 

predicted to be in the same operon as HI1678. This latter protein was known to be 

arabinose-5-phosphate isomerase in the 3-Deoxy-D-manno-octulosonate (KDO) 

biosynthetic pathway 63. Together, these two pieces of information are sufficient, in 

principle, to pinpoint the function of HI1679 as 3-Deoxy-D-manno-octulosonate 8-
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phosphate (KDO 8-P) phosphatase, the only phosphatase in KDO biosynthetic 

pathway64. Even when the structure turns out not to belong to an already known 

superfamily, the operon information may still be useful. An example is the case of 

HI0442. The structure revealed a previously unknown and unusual fold, with a 

pronounced negative charge distribution on the surface 65. It occurs in a predicted 

operon with HI0443, a presumed ortholog to a known DNA repair enzyme. The 

unusual charge distribution and form of the fold, together with the operon context, led 

to the hypothesis that HI0442 is a double strand DNA mimic, sequestering DNA 

binding proteins, in a manner similar to DinI in E. coli 66. 

Genome Prediction 

Method and 

Signal

Gene name Function Annotation

ybgI* Hypothetical protein

ybgJ Putative carboxylase

Escherichia 

coli

GGM (22, -7)

ybgK Putative carboxylase

yqgF* Hypothetical protein

yqgE Hypothetical protein

gshB Glutathione synthetase

Escherichia 

coli

GNM (6,3,3)

yggJ Hypothetical protein
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HI0065* Hypothetical protein

HI0066 Probable N-acetylmuramoyl-L-

alanine amidase amiB [Precursor]

HI0067 DNA mismatch repair protein 

mutL

HI0068 tRNA delta(2)-

isopentenylpyrophosphate 

transferase

Haemophilus 

influenzae

GGM (7,0,7,5)

GNM (6,5,5,0)

HI0069 Glutamate-ammonia-ligase 

adenylyltransferase

HI0393* Hypothetical proteinHaemophilus 

influenzae

GNM (6)

HI0394 Peptidyl-tRNA hydrolase

HI0442* Hypothetical proteinHaemophilus 

influenzae

GNM (3)

HI0443 Recombination DNA repair protein

HI0669 Probable electron transporter 

required for biotin synthase activity

Haemophilus 

influenzae

GGM (-4)

HI0670* Hypothetical protein

HI0816 Proline aminopeptidaseHaemophilus 

influenzae

GGM (11)

GNM (3) HI0817* Hypothetical protein

HI1033 Phosphoserine phosphataseHaemophilus 

influenzae

GGM (17)

HI1034* Hypothetical protein
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HI1330 D-alanyl-D-alanine 

carboxypeptidase

D-alanyl-D-alanine-endopeptidase

Haemophilus 

influenzae

GNM (3)

HI1333* Hypothetical protein

HI1543* Hypothetical proteinHaemophilus 

influenzae

GGM (-1)

HI1544 Putative NAD(P)H oxidoreductase

HI1678 Probable phosphosugar isomeraseHaemophilus 

influenzae

GGM (5)

GNM (9) HI1679* Hypothetical protein

Table 2.4. Cases where operon context provides additional information for 

Hypothetical proteins whose structure has been obtained as part of a structural 

genomic project. Of 45 protein structures obtained, 11 (HI0065, HI0393, HI0442, 

HI0670, HI0817, HI1034, HI1333, HI1543, HI1679 in Haemophilus influenzae, ybgI, 

yqgF in Escherichia coli) are part of predicted operons where one or more proteins 

have assigned function. ‘GGM’ is the Gene Gap Method and ‘GNM’ is the Gene 

Neighbor Method. The value in brackets shows the signal supporting each predicted 

operon pair: for GGM, non-coding nucleotide intergene distance, and for GNM, the 

gene pair conservation level. Genes and their SwissProt annotation are shown in the 

last two columns. Structural genomics targets are indicatated with *s. 
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2.3.6 Extent of Operon Conservation and implications for 

Pathway Consistency

Predicted operons may also be used to compare specific pathways in different 

organisms – if the two species have a set of equivalent proteins in an operon, for 

example, that associated with cell wall synthesis, it is likely that the pathways for 

performing that function are the same. (Other methods, such as phylogenetic profiles 

67 may also be used for this purpose).  Figure 2.8 shows the distribution of operon 

gene pair conservation across the 30 genome groups, for all E.coli operon genes. The 

majority of pairs can be detected for only three groups. Very few predicted pairs 

persist across even half of the genome groups. Figure 2.9 shows the distribution of 

size and conservation level for complete E.coli operons (the conservation level of an 

operon is defined as the smallest conservation level of any gene pair it contains). 

Most predicted operons are small (less than five genes) and the larger ones are very 

unlikely to be conserved in many genomes. The low level of conservation extends to 

groups of proteins known to form physical complexes. For example, succinate 

dehydrogenase, a critical enzyme in the TCA cycle of energy metabolism. In E. coli, 

four genes (sdhC, D, A, and B) in the sdh operon encode the four subunits of this 

enzyme. However, only in seven genomes (occurring in five genome groups) is this 

operon structure conserved. In two other genomes, homologs of all four genes are 

found, but they do not form an operon. In 25 genomes, there are no homologs of C 

and D, although A and B are still found, in some cases in an operon, and in some 
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cases not. No homologs of any of the genes can be found in the remaining eight 

genomes. 
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Figure 2.8. Histogram of the conservation level of predicted operon gene pairs in 

E.coli. Most operon gene pairs are conserved across only a few genome groups. 
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Figure 2.9. Number of predicted E.coli operons as a function of operon size (number 

of genes) and conservation level of the complete operon. Most of operons are small 

and conserved in only a few genome groups. There are rare cases of large size or 

conservation across many genome groups, but no instances with both characteristics. 

(For clarity, the top of the peak is truncated).

2.4 Conclusion and Discussion

Two operon detection strategies are presented in this paper, the Gene Neighbor 

Method and the Gene Gap Method. The Gene Neighbor method (GNM) utilizes the 

relatively high conservation of gene order in operons, compared with genes in 
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general. Two new concepts, the common neighbor fraction (CNF) and the genome 

group, are introduced to allow the quantification of gene order conservation. The 

Gene Gap Method (GGM) makes use of the relatively short gap between genes in 

operons compared with that otherwise found between adjacent genes. 

Predictions made with both methods are benchmarked for E.coli operons using 

KEGG pathway data to assess specificity and RegulonDB E.coli operon data to assess 

sensitivity. For the GNM, requiring conservation of gene order in at least three 

genome groups, the specificity is 93% (7% false positives) and the sensitivity 70% 

(not detecting 30% of true operon pairs). For the GGM, selecting adjacent gene pairs 

with an inter-gene gap of less than 25 nucleotides, the specificity is 95% (5% false 

positives) and the sensitivity 68% (not detecting 32% of true operon pairs). A 

combination of the two methods boosts the specificity to 98%, at the cost of a reduced 

sensitivity of 50%. Reassuringly, predictions from the two methods agree to an extent 

very close to that expected on the basis of the individual benchmarks, providing 

independent confirmation that the specificity and sensitivity are reasonably accurate. 

A limitation of the benchmarking is that it can only be performed for E.coli operon 

pairs. It is not known to what extent gene order and intergene gap properties do or do 

not vary for different sub-groups of microbial organisms. 

Varying the threshold parameters for either method allows a higher or lower 

specificity to be selected. For example, if an application requires a very low rate of

false positives, a higher conservation level or smaller inter-gene gap may be used, or 
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only consensus predictions from the two methods accepted. Conversely, if hints of 

possible operon gene pairs are required, rather than high reliability, a conservation 

level of two or a larger inter-gene gap may be used. 

The primary use of operon predictions is to acquire functional insight for unannotated 

proteins in microbial organisms. For the genomes considered, the fraction of 

unannotated proteins (according to Swiss-Prot release 40) varies between 15% in 

Buchnera sp. APS and 73% in Pyrococcus horikoshii. (other annotation sources, such 

as 68 provide suggested functions for a higher fraction of orfs). Annotation based on 

operon prediction requires at least one member of an operon has assigned function. 

The fraction of proteins that can be partially annotated on this basis varies from a 

high of 43% for Thermotoga maritime to a low of 5% for Aeropyrum pernix. Well 

studied organisms provide more clues about function. However, functional 

information provided by this source alone is limited to the class of function that a 

protein is likely involved in, for example cell wall synthesis, and it is not possible to 

assign a molecular function. 

Other function information, such as that provided by protein structure, can interact 

synergistically with that obtained from operon context. Our experience in a structural 

genomics project has been that many hypothetical proteins turn out to belong to 

known structural superfamilies (s2f.umbi.umd.edu) 60; 61. The reason for this is that 

remote evolutionary relationships often cannot be detected at the sequence level, but 

are usually obvious at the structural level. Superfamily membership implies a low 
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resolution molecular function, such as ‘phosphatase’ or ‘GTPase’. The operon 

information provides equally imprecise clues to cellular role, such as ‘cell wall 

synthesis’ or ‘DNA repair’. As illustrated by the case of HI1679, the two different 

types of information can sometimes be combined to gain a more complete functional 

picture. Less commonly, even when the structure turns out not to be that of an already 

known superfamily or fold, the operon information may be useful, as in the case of 

HI0442. 

A surprising finding is that although there is a useful degree of conservation of 

operon pairs, that rarely extends over a large number of genomes and rarely are whole 

operons containing three or more proteins conserved over more than a few genome 

groups. Failure to detect all sequence relatives may be a complicating factor in this 

analysis although for orthologs, the fraction of relationships detected is likely to be 

high. In some cases, particularly for larger operons, shuffling of gene order may make 

the conservation undetectable by the methods used here. Nevertheless, it is clear that 

there is a very high level of pathway variation within these organisms. 

Other genome scale methods that provide some function information have been 

developed 69. These include domain fusion (some times called the  ‘Rossetta Stone’ 

method)70, which utilizes the fact that protein domains with related function may be 

found on the same polypeptide chain in some organisms, but as separate polypeptide 

chains in others; the Phylogenetic profile method67,71, which utilizes the fact that 

when two proteins from a target organism have homologs in the same subset of other 
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fully sequenced organisms, a related cellular function is suggested; and Expression 

profile comparaison 72, utilizing correlations between the expression profiles of sets 

of proteins. Our experience in the structural genomics project is that at present operon 

prediction is by far the most useful, although increasing amounts of data may in time 

make the others more competitive. 

The predicted operon pairs and operons for the 42 microbial genomes are available at 

http://moult.umbi.umd.edu/operons/. 
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Chapter 3: Protein Family Clustering for 

Structural Genomics

3.1 Introduction

The ultimate goal of structural genomics is to provide structures for all biological 

proteins. Although there have been enormous improvements in experimental methods 

for determining structure 73, these still lag behind sequencing methods by orders of 

magnitude, in both cost and speed. As a result, currently, only about 1% of proteins 

with known sequence also have an experimentally known structure. Fortunately, it is 

not essential to experimentally determine the structure of every protein –

evolutionally related proteins have similar structures 74; 75, and so comparative 

modeling methods can be used to obtain structure for any protein with a detectable 

evolutionary relationship to one with an experimental structure. This strategy has 

been widely accepted 75; 76; 77; 78; 79;7. The accuracy of comparative models depends on 

the closeness of the evolutionary relationships they are based on 80, and is never as 

high as that of a high quality X-ray structure. Nevertheless, these models are useful 

for many practical applications 81.
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The minimum number of experimental structures that will be needed in order to 

model all proteins using evolutionary relationships depends on the nature of protein 

sequence space. In particular, this number depends on how many families of 

evolutionarily associable proteins there are. The recent increase in fully sequenced 

genomes has made it possible to estimate this quantity more reliably than in the past. 

In this paper, we make use of knowledge of the full sequences for a set of 67 bacteria 

to obtain such an estimate.

No sequence based method is able to detect all evolutionary relationships: 

experimental structure determinations reveal previously undetectable relationships in 

many cases. Thus, all sequence based families are in some sense arbitrary, reflecting 

the effectiveness of current relationship detection algorithms rather than the number 

of independent evolutionary lines. From a structural genomics perspective, current 

methods are sufficiently powerful that they already represent very coarse grained 

sampling of structure space, so that models based on one experimental structure per 

family are probably at the limit of useful accuracy 82. A single family will also often 

embrace a number of functions 83. 

Clustering of proteins into families has long been used as a basis for extending 

function annotation, and so there is a history of algorithm development 84 4; 85; 86; 87; 88; 

89; 90; 91; 92; 93; 94. Many of the family sets have been developed for specific purposes, 

and there is so far no universally accepted comprehensive source. For example, 

PfamA 4, one of the best established sets, uses sensitive methods to detect remote 
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evolutionary relationships, and is hand curated, providing high reliability. As a 

consequence, coverage is incomplete. 

We have developed an automated family classification scheme, applicable to 

estimation of the number of experimental structures that will be needed for structural 

genomics. There are three main steps: identification of evolutionary relationships, 

parsing of the full proteins into probable structural domains, and clustering into 

families. Conventional PSI-BLAST searches are used to detect sequence relationships 

within a set of 67 fully sequenced bacterial genomes. List of relationships are sub-

divided on the basis of a protein domain identification method. Lists are then merged 

into families with a multi-linkage clustering procedure. Although a relatively standard 

sequence search method is used, benchmarking with SCOP structural superfamilies 3;2

shows a slightly higher sensitivity than previously reported methods including profile 

and profile-profile methods http://supfam.mrc-lmb.cam.ac.uk/PRC/ 95; 96; 97. We 

attribute this to the robust clustering step and reasonably effective parsing into 

domains.

There have been a number of studies of the number of protein families in biology.  

Estimates vary from 1000 to 30,000 7; 76; 79; 98; 99; 100; 101; 102; 103; 104. As more genome 

sequences are completed, it becomes possible to improve the reliability of the 

estimate. Our study, focusing on recently available complete genome sequences, 

leads to an estimate for the prokaryotes that is substantially higher than previous 

ones: Clustering 178,310 sequences from 67 microbial genomes already generates 
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31,874 families. A recent study of five fully sequenced eukaryotic genomes 105 has 

also led to a much large number than previously suggested, 45,000 protein families. A 

more relevant quantity for structural genomics is the number of detectable families 

there will be in future. We have developed a method of estimating growth in the 

number of families, and find there will be about 250,000 families when 1000 

genomes are sequenced. Apparent singletons (proteins with no detectable relatives 6 ) 

are the fastest growing category. 

At first glance, these increased estimates are discouraging for the structural genomics 

goal of obtaining structures for all domains. However, because most sequences are in 

relatively large families, we estimate that it will still be possible to have coverage for 

70%~80% of domains within the next decade.

3.2 Methods

Protein sequences

All identified protein sequences in 140 genomes were retrieved from Genbank 

(http://www.ncbi.nlm.nih.gov/Genomes/index.html). 67 of these were used for 

building the family estimate model, and the rest were reserved for testing the 

projections of the model. All downloaded and generated information were stored in a 

MySQL relational database running on a Linux server. 
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Genome Number of 
proteins

Aeropyrum pernix 2694
Agrobacterium tumefaciens str. C58 (Dupont) 5402
Aquifex aeolicus 1553
Archaeoglobus fulgidus 2407
Bacillus halodurans 4066
Bacillus subtilis 4100
Borrelia burgdorferi 1637
Brucella melitensis 3198
Buchnera sp. APS 574
Campylobacter jejuni 1629
Caulobacter crescentus 3737
Chlamydia muridarum 916
Chlamydophila pneumoniae AR39 1110
Chlamydophila pneumoniae CWL029 1052
Chlamydophila pneumoniae J138 1069
Clostridium acetobutylicum 3672
Clostridium perfringens 2723
Corynebacterium glutamicum 3040
Deinococcus radiodurans 3102
Escherichia coli 4289
Escherichia coli O157:H7 5361
Haemophilus influenzae Rd 1709
Halobacterium sp. NRC-1 2605
Helicobacter pylori 26695 1566
Helicobacter pylori J99 1490
Lactococcus lactis subsp. lactis 2266
Listeria innocua 3043
Listeria monocytogenes EGD-e 2846
Mesorhizobium loti 7275
Methanobacterium thermoautotrophicum 1869
Methanococcus jannaschii 1770
Mycobacterium leprae 1605
Mycobacterium tuberculosis 3869
Mycobacterium tuberculosis CDC1551 4187
Mycoplasma genitalium 480
Mycoplasma pneumoniae 688
Mycoplasma pulmonis 782
Neisseria meningitidis 2025



60

Neisseria meningitidis Z2491 2032
Nostoc sp. PCC 7120 6129
Pasteurella multocida 2014
Pseudomonas aeruginosa 5565
Pyrobaculum aerophilum 2605
Pyrococcus abyssi 1765
Pyrococcus horikoshii 2064
Ralstonia solanacearum 5116
Rhizobium sp. NGR234 416
Rickettsia conorii 1374
Rickettsia prowazekii 834
Salmonella enterica subsp. enterica serovar 
Typhi

4749

Salmonella typhimurium LT2 4553
Sinorhizobium meliloti 6205
Staphylococcus aureus subsp. aureus Mu50 2748
Staphylococcus aureus subsp. aureus N315 2624
Streptococcus pneumoniae 2094
Streptococcus pyogenes 1696
Sulfolobus solfataricus 2977
Sulfolobus tokodaii 2826
Synechocystis PCC6803 3169
Thermoplasma acidophilum 1478
Thermoplasma volcanium 1526
Thermotoga maritima 1846
Treponema pallidum 1031
Ureaplasma urealyticum 611
Vibrio cholerae 3828
Xylella fastidiosa 2831
Yersinia pestis 4039
Table 3.1. 67 fully sequenced microbial genomes used for protein family 

construction, and the number of proteins in each genome. 12 are archaeal, and 55 are 

bacterial. In total there are 178,310 protein sequences.

Genome Number of 
proteins

Agrobacterium tumefaciens str. C58 (Cereon) 5299
Bacillus anthracis str. Ames 5311
Bacillus cereus ATCC 14579 5255
Bacteroides thetaiotaomicron VPI-5482 4778
Bifidobacterium longum NCC2705 1729
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Bordetella bronchiseptica 4994
Bordetella parapertussis 4185
Bordetella pertussis 3446
Bradyrhizobium japonicum USDA 110 8317
Brucella suis 1330 3264
Buchnera aphidicola str. Bp (Baizongiapistaciae) 504
Buchnera aphidicola str. Sg (Schizaphisgraminum) 546
Candidatus Blochmannia floridanus 583
Chlamydia trachomatis 893
Chlamydophila caviae GPIC 1005
Chlamydophila pneumoniae TW-183 1113
Chlorobium tepidum TLS 2252
Chromobacterium violaceum ATCC 12472 4407
Clostridium tetani E88 2373
Corynebacterium efficiens YS-314 2950
Coxiella burnetii RSA 493 2009
Enterococcus faecalis V583 3113
Escherichia coli CFT073 5379
Escherichia_coli_O157H7_EDL933 5349
Fusobacterium nucleatum subsp. nucleatum ATCC25586 2067
Haemophilus ducreyi 35000HP 1717
Helicobacter hepaticus ATCC 51449 1875
Lactobacillus plantarum WCFS1 3009
Leptospira interrogans serovar lai str. 56601 4727
Methanopyrus kandleri AV19 1687
Methanosarcina acetivorans C2A 4540
Methanosarcina mazei Goe1 3371
Mycobacterium bovis subsp. bovis AF2122/97 3920
Mycoplasma gallisepticum R 726
Mycoplasma penetrans 1037
Nitrosomonas europaea ATCC 19718 2461
Oceanobacillus iheyensis HTE831 3500
Pirellula sp. 7325
Porphyromonas gingivalis W83 1909
Prochlorococcus marinus str. MIT 9313 2265
Prochlorococcus marinus subsp. marinus str.CCMP137 1882
Prochlorococcus marinus subsp. pastoris str.CCMP13 1712
Pseudomonas putida KT2440 5350
Pseudomonas syringae pv. tomato str. DC3000 5471
Pyrococcus furiosus DSM 3638 2065
Salmonella enterica subsp. enterica serovarTyphi T 4323
Shewanella oneidensis MR-1 4472
Shigella flexneri 2a str. 2457T 4068
Shigella flexneri 2a str. 301 4180
Staphylococcus aureus subsp. aureus MW2 2632
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Staphylococcus epidermidis ATCC 12228 2419
Streptococcus agalactiae 2603V/R 2124
Streptococcus agalactiae NEM316 2094
Streptococcus mutans UA159 1960
Streptococcus pneumoniae R6 2043
Streptococcus pyogenes MGAS315 1865
Streptococcus pyogenes MGAS8232 1845
Streptococcus pyogenes SSI-1 1861
Streptomyces avermitilis MA-4680 7575
Streptomyces coelicolor A3(2) 8154
Synechococcus sp. WH 8102 2517
Thermoanaerobacter tengcongensis 2588
Thermosynechococcus elongatus BP-1 2475
Tropheryma whipplei str. Twist 808
Tropheryma whipplei TW08/27 783
Vibrio parahaemolyticus RIMD 2210633 4832
Vibrio vulnificus CMCP6 4537
Wigglesworthia glossinidia endosymbiont ofGlossina 611
Wolinella succinogenes 503
Xanthomonas axonopodis pv. citri str. 306 4312
Xanthomonas campestris pv. campestris str. ATCC339 4181
Xylella fastidiosa Temecula1 2036
Yersinia pestis KIM 4090
Table 3.2. 73 recently sequenced microbial genomes used to test the family growth 

projections. In all, the 140 genomes code for 405,709 proteins. 

Generation of Homolog Lists 

For each protein, a six round PSI-BLAST search 29; 30 was performed against the set 

of all other sequences in the genome set. Low complexity regions were omitted, using 

the default SEG 106 option. Homologs with an E-value 10-4 or lower to the search 

sequence were collected, creating a homolog list for each protein.

Domain Parsing
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Each homolog list was examined for domain structures, as described below. A 

number of domain parsing methods have been developed 87; 92; 107. In the present work, 

domain boundaries are identified based on the location of indels in the PSI-BLAST 

sequence alignment. Indel locations are found by counting the number of sequences 

with an amino acid at each position in the alignment. Figure 3.1 shows an example.
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Figure 3.1.  An example of domain parsing, for the multiple sequence alignment of E. 

coli ARGA (swissprot ID P08205, Amino-acid acetyltransferase). The domain 

splitting algorithm produces two domains, residues 20-294, and 295- 443. Pfam and 

InterPro also split this protein into two domains. Domain 1 (26-269) belongs to Pfam 

PF00696, an amino acid kinase family, and domain 2 (338-414) belongs to PF00583, 

an acetyltransferase family. 



64

Domain boundaries are defined as positions in the multiple alignment where there are 

relatively deep minima in the number of sequences with residues. The detailed 

procedure is as follows:

1. Calculate the slope of the alignment count for each position in the alignment.

2. Find all the turning points (positions where the sign of the slope changes).

3. Discard the trough points which make a domain too short to be viable (less 

than 40 residues between turning points).

4. Discard the trough points where a trough is not significantly lower than the 

surroundings (Trough height more than 60% of the peaks on either side).

5. Divide the proteins in the homolog list into domains by cutting at each 

remaining trough point, to create homolog domain lists. 

As described later, comparison of the results of this procedure with a set of PfamA 

domains in 50,000 randomly chosen Pfam sequences shows it is very conservative: 

96% of single domain PfamA proteins are predicted as such, but only 24% of PfamA 

two domains proteins are predicted correctly. Other domain parsers have similar 

accuracy, but adopt a different balance of false positives and false negatives 105. 
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While this and other parsers are far from satisfactory, domain parsing does improve 

the quality of the families.

Merging of Domain Lists 

Domain lists are highly redundant in that many domains appear in multiple lists. A 

key step is merging of the lists to form non-redundant domain-based protein families. 

Merging also increases the range of evolutionary relationships that are clustered: A 

PSI-BLAST search starting from protein A may find a relative B, but not relative C. 

On the other hand, PSI-BLAST started from protein B may have found relative C, but 

not relative A. Merging of the A and B hit lists places A, B and C in one family.

The simplest clustering procedure is to iteratively merge all pairs of lists that contain 

at least one common domain, and then eliminate redundancies from the merged sets. 

Notoriously, this single linkage procedure leads to over-clustering, even when the 

false positive rate for inclusion of a domain in a single list is small. A number of 

strategies have been suggested for overcoming this problem 93; 108. We have 

developed a variable linkage procedure. Short domain lists are merged on the basis of 

a single common entry. The longer the lists, the more common entries are required. 

Merging proceeds by selecting a first list, comparing it to all others, combining where 

the merge rules are satisfied, then picking a next so far unconsidered list, and so on, 
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until all lists have been considered. The process is repeated a maximum of three 

times. 

Further Domain Boundary Checking

  A

  B

   C

Figure 3.2. Domain Merging Check. 

Incomplete domain parsing can occasionally lead to the merging of proteins that have 

no significant alignment. This is illustrated in figure 3.2. An unparsed two domain 

protein (B) in list I has a region of alignment with protein C in a second list, II. 

Sequence C shares no significant relationship with the primary domain in list I, but 

will be merged into that list. To reduce this effect, each candidate sequence in list II is 

II

I
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checked for alignment overlap with the first sequence in list I. List II entries with less 

than a 40 residue overlap are not merged. 

Selection of Parameter Values 

Results are dependent on a number of parameters. Parameters were optimized by 

building a set of families for proteins with domains in PfamA, varying parameter 

values to maximize the agreement between the generated and Pfam families, as others 

have done 109. A set of 50,000 full length SwissProt protein sequences including all 

the domains present in a 721 family subset of PfamA version 9.0 was used. Use of 

full length protein sequences allows the domain parsing procedures to be tested. 

Each generated family was compared with all the PfamA families, and the most 

similar one (most common sequences) was considered the best match. Two measures 

are used to assess the quality of the built families:

False negative fraction FN = (P - O) / P 

False positive fraction FP = (M - O) / M

where P is the Pfam family size, M the generated family size, and O the common 

sequences between the two. FN is the false negative rate for a generated family – the 

fraction of correct domains omitted. FP is the false positive rate for a family – the 

fraction of incorrect domains included. 
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These ratios were determined for a range of PSI-BLAST conditions, with and without 

domain checks, and with different linkage rules, in order to optimize the procedure. 

Details are given in the ‘Results’ section.

The final choice of parameters was up to 6 rounds PSI-BLAST with an E-score 

threshold of 10-4, and a maximum of three rounds of merging. Lists are merged into a 

family using the following merging rules: 

For lists with four or fewer members: at least one common entry required for 

merging.

For lists with 5 to 10 members: at least two common entries.

For lists with more than 10 members: at least 40% common entries.

Evaluation of Domain Family Construction

Effectiveness of the family building procedure was assessed in terms of its ability to 

pair all members of SCOP superfamilies, and not to pair domains in different folds. 

SCOP (Structural Classification of Proteins, http://scop.mrc-lmb.cam.ac.uk/scop/) is a 

hierarchical organization of proteins based on evolutionary and structural

relationships 2; 3. Since structural similarity provides a much more sensitive test of 

evolutionary relationships between proteins than does sequence, SCOP has been 

widely used as a benchmark for evaluating sequence alignment, clustering, and 

evolutionary relationship detection methods 108; 110. We have used SCOP40 (no 
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sequence relationships higher than 40% identity) version 1.63, which contains 5226 

domains, 1224 superfamilies, and 760 folds. 

The 5226 domains were clustered into families, as described above:  PSI-BLAST was 

run for each domain against the NR sequence database, augmented with the SCOP 

domain sequences. No domain parsing was performed, as SCOP is already domain 

based. PSI-BLAST generated homolog lists were merged using the linkage rules, to 

form a set of generated families. 

The set of generated families was compared with the SCOP superfamilies in terms of 

all the possible pairwise relationships between domains. Any pair of domains found 

both in a generated family and a SCOP superfamily is considered a true positive. A 

pair of domains presented in a generated family set, but not assigned the same SCOP 

fold is considered a false positive, as it is unlikely to represent a homology 

relationship. SCOP40 version 1.63 was used, with 50,374 pairs of domains within the 

same superfamily, and more than 600,000 pairs of domains with each member in a 

different fold. True positives detected as a function of the false positives incurred 

were plotted in a ROC curve. A 1% false positive to true positive ratio was chosen as 

an overall measure of quality, as used by others 111; 112; 113; 114. 

For comparison, several other alignment and family clustering methods were also 

tested using the same set of SCOP domains. These are BLAST, PSIBLAST, SAM-

T99 (HMM) (http://www.soe.ucsc.edu/research/compbio/sam2src/) 115 and PRC 

(http://supfam.mrc-lmb.cam.ac.uk/PRC/) (a profile to profile method). Software was 

downloaded from the authors’ web sites. 
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Programs and parameters used for SAM-99 were:

1. target99 –seed [sequence fasta file] –out [output file] –db [nr+scop40] –iter 4;

2. fw0.7 [sequence.a2m file] [sequence.mod file];

3. hmmscore [sequence name] –i [sequence.mod file] –sw 2 –db [scop40]

Programs and parameters used for PRC were:

Prc –Emax 10 [sequence.mod file] [mod library] [sequence name]

Transmembrane protein determination

Proteins with one or more transmembrane helical segments were identified using 

TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) 116. 

Structure coverage determination

Domain families with known structures were identified as follows. A sequence profile 

(Position Specific Scoring Matrix, PSSM) was obtained from the multiple sequence 

alignment of a protein family, using blastpgp 29. Each protein sequence in the PDB 

(June 15, 2003 release) was run against the set of family sequence profiles, using 

RPS-BLAST (Reverse Position Specific BLAST) 117. Any profile to sequence 

comparison with an E value of 10-2 or lower was considered to represent a family 

which could be modeled based on the corresponding structural template. Such 

families were considered to be structurally covered. 
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3.3 Results

3.3.1 Protein Family Clustering

Domain-based protein family set

Following the clustering procedure described in Methods, 178,310 sequences from 67 

sequenced prokaryotic genomes were parsed to 249,574 domain sequences and then 

clustered into 31,874 sequence families. Figure 3.3A shows the distribution of family 

sizes. Small families predominate. There are 20,992 singletons (families with only 

one member), about 2/3 of the total, and 4810 doubletons (family size 2). At the other 

end of the spectrum, there are only 263 families larger than 100.
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Figure 3.3A. Distribution of Domain Family Size. Note the log scale. There is an 

approximately power law relationship between the number of families and family 

size: 20,992 of the 31,874 families have only a single member, while only 263 

families are larger than 100. 

From the point of view of structural genomics, this result is discouraging: even this 

small number of genomes would require over 30,000 experimental structure 

determinations in order to provide templates for complete modeling. However, 

consideration of the high fraction of proteins in the larger families leads to a different 

view. Figure 3.3B compares the number of families of size 1, 2 and larger with the 

total number of domains those categories contain. Although about 2/3 of the families 

are singletons, they represent only 8% of the domains. Families of size 3 and larger 

contain 88% of the domains, and there are only just over 6000 of those. Thus, 88% 
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structural coverage of these 67 genomes would be provided by about 6000 

experimental structure determinations. 

8.4
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20992 4810 6072
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Figure 3.3B. Number of singletons (family size 1), doubletons (family size 2), 

tripletons and larger (top bar), and the percentage of sequence space covered by each 

of the three categories. Although there are 20,992 singletons and 4,810 doubletons, 

these two categories only represent about 12% of sequence space. The 6,072 larger 

families make up the rest. 

Optimization of Protein Family Construction
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As discussed in Methods, parameters for protein family construction were optimized 

by comparison of generated families with those in PfamA 4. 

Families were built for 50,000 full length protein sequences covering 721 PfamA 

(release 9) families. The full sequences were clustered into new families, and each 

such family was best matched to a PfamA family. Each generated family was 

compared with the corresponding PfamA one using the false positive (FP) and false 

negative (FN) fractions. The smaller these values, the better the family building 

procedure.

Table 3.3 shows the level of agreement between the generated and PfamA families as 

a function of the E-value threshold for accepting PSI-BLAST relationships. Families 

are obviously over-clustered with a cutoff of 10-2, judging by the high level of false 

positives (FP). A threshold of 10-4   produces many fewer false positives than 10-2 and 

a lower number of false negatives than 10-6, so was chosen as the final value. (Final 

values of the other parameters were used for these tests.)

PSI-BLAST 

E-score  

Threshold

Number of   

families

FN(false 

negatives)

FP(false 

positives)

Number of 

Identical families

10-2 569 0.087 0.325 204

10-4 744 0.079 0.180 276

10-6 788 0.087 0.176 273
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Table 3.3. Agreement between generated and PfamA families, as a function of the 

PSI-BLAST E score threshold.

Table 3.4 shows the agreement between the generated and PfamA families as a 

function of the linking procedure, domain parsing and checking, and the number of 

merging rounds. A maximum of six rounds PSI-BLAST with an E score threshold of 

10-4 was used. Three rounds of single linkage clustering with no domain processing 

dramatically over-clusters compared with PfamA, compressing the sequences into 

285 families, as opposed to the ideal 721, with a false positive rate of 79%. Domain 

parsing increases the number of families to 427, at the expense of a minor increase in 

false negatives, from 6.9% to 8.0%. Domain checking produces a further minor 

improvement. 

Introduction of the family size dependent linkage scheme further improves agreement 

with PfamA. Three rounds of merging generate 785 families with a false positive rate 

of 17.9%. Merging for 5 rounds slightly increases the false positive rate to 19.7%.  

On the basis of these tests, the final protocol adopted was six rounds of all against all 

PSI-BLAST using a 10-4 threshold, followed by three rounds of hierarchical linkage. 

These conditions produce 785 families, of which 278 are identical to the 

corresponding PfamA ones, with an average false positive rate of 17.9% and a false 

negative rate of 7.4%. PfamA families are assembled using sensitive sequence 

methods and are hand curated to reduce false negatives, so that a good clustering 
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method should have a low false negative rate, as seen here. The higher false positive 

rate may partly reflect the fact that Pfam does not cluster some real relationships.

Clustering method

Number of 

generated 

families FN FP

Number of 

Identical families 

Single linkage w/o domain 

splitting or domain check

285 0.069 0.792 154

Single linkage w/o domain check 427 0.080 0.415 244

Single linkage w/ domain check 480 0.079 0.377 255

Hierarchical merging, 3 rounds 785 0.074 0.179 278

Hierarchical merging, 5 rounds 744 0.079 0.197 276

Table 3.4. Agreement between generated and PfamA families as a function of linkage 

protocol, domain parsing and checking, and the number of rounds of merging. 

Domain parsing, domain checking, and hierarchical linkage all improve the quality of 

the generated families. On the basis of these results, a protocol of three rounds of 

hierarchical merging, with domain parsing and checking, was adopted. 

Evaluation of the Protein Families

The final family building procedure was benchmarked against SCOP40 (a subset of 

SCOP containing no sequence identities greater than 40%) version 1.63. The SCOP 

set includes 5226 domain sequences grouped into 1226 superfamilies and 760 folds. 
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As explained in methods, all pairwise detected relationships between proteins in the 

same superfamily were considered true positives, and all apparent relationships 

between proteins in different folds were considered false positives. Several other 

methods for detecting evolutionary relationships, BLAST, PSI-BLAST, SAM-T99 (a 

Hidden Markov Model method 115

(http://www.soe.ucsc.edu/research/compbio/sam2src/)), and PRC (a profile to profile 

method)    (http://supfam.mrc-lmb.cam.ac.uk/PRC/), were also evaluated. 

The results are shown in Figure 3.4. Overall, the new family building procedure 

delivers a higher fraction of true positives at low false positive rate. At the commonly 

adopted threshold of 1% false positives/true positives111; 112; 113; 114, BLAST only 

detects 9% of true positives. PSI-BLAST doubles the level of detection to 18%. 

SAM-T99, the Hidden Markov Model Method, and PRC, a profile to profile method, 

both detect about 28% of true positives. Our method finds 32%, a modest but useful 

improvement. Note that at a higher false positive rate (above 5%, not shown in the 

figure), the profile-profile method performs the best.  The results for BLAST, PSI-

BLAST and SAM-T99 are very similar to those obtained by Park et al. 118. Their 

study showed that, using the PDBD40-J dataset (similar but smaller than SCOP40), 

BLAST is able to detect 14% of homologous relationships and the two profile 

methods, PSI-BLAST and SAM-T98, can detect 27% and 29% respectively.
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Figure 3.4. Benchmarking of the family building procedure, together with BLAST, 

PSI-BLAST, SAM-T99 and PRC; using SCOP40. ‘True Positive Pairs’ are the 

fraction of pairwise relationships within superfamilies that are detected, out of 50,374 

possible. ‘False Positive Pairs’ are the fraction of apparent pair-wise relationships 

between folds. The more true positives detected at a given false positive rate, the 

better the method. At a 1% ratio of false positives versus true positives, PSI-BLAST 

has approximately double the sensitivity of BLAST, the simple pair-wise method. 

The Hidden Markov Model, SAM-T99 and the profile-profile method (PRC) improve 

the sensitivity to 28%. The new method achieves a modest but useful improvement to 

32%. Improved sensitivity is attributed to the hierarchical linkage procedure.
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3.3.2 Structural Genomics Analysis

Structure Coverage of Current Protein Families

A long term of aim of structural genomics is to obtain an experimentally determined 

structure for at least one protein in every family. We now ask to what extent that is 

already the case for the set of 67 bacterial protein families. We consider only families 

with three or more members, and exclude membrane protein families, since this class 

of structure is not yet amenable to high throughput experimental techniques. There 

are 4907 non-membrane protein families with three or more members. Figure 3.5 

shows the fraction of families with one or more known structures (the structure 

coverage). About 80% of families larger than 60 have a structural representative. 

Coverage drops with decreasing family size, to around 5% for families with only 

three members. Overall, 20% of all families size three or larger have one or more 

representative structures. A further 3926 structures would be required to complete the 

coverage.   
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Figure 3.5. Fraction of the non-membrane protein families with three or more 

members for which there is at least one experimentally determined structure, as a 

function of family size (blue line).  The purple line shows the coverage of all families 

that size and larger. Coverage is much larger for the larger families, approaching 80% 

for the biggest. The overall average coverage is 20%.  

Estimation of the number of Families in a large number of Genomes

The previous section provides an estimate of the number of structures needed to 

complete coverage of a set of already fully sequenced genomes. Of more interest in 

structural genomics is the number of structures that will be needed as a function of 
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the number of sequenced genomes, and in particular, the limit of that quantity, I.e. the 

number of structures that will be needed to provide coverage of all protein families. 

We have examined the increase in the number of detectable protein families as the 

number of fully sequenced genomes increases, using the following procedure. One of 

the 67 prokaryotic genomes is chosen at random, and the number of families it 

contains noted. A second genome is randomly selected, and the additional families 

present in that are added. This process is continued until all 67 have been selected. 

The whole procedure was repeated 100 times, and the average number of families for 

each number of genomes calculated. 

The result is shown in Figure 3.6A. Total bar heights represent all families in the 

corresponding number of genomes. Subdivisions show the number of families in 

different size ranges, with smallest families lowest. The number of protein families is 

still growing rapidly up to inclusion of 67 genomes, and is far from saturation, though 

the rate of increase is slowing.  Clearly there will eventually be many more than 

30,000 detectable families. A log-log representation of these data (Figure 3.6B) is 

close to linear, providing a basis for extrapolation to a larger number of genomes. 

Figure 3.6C shows the projected number of families up to a total of 1000 genomes, 

using that relationship. This model predicts a total of about 250,000 families at that 

point, a much higher estimate than any previous ones. 
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The log of the number of apparent singletons also grows approximately linearly with 

the log of the number of genomes, with a reliability coefficient of 0.9993, and a slope 

of 0.704. The projected number of singletons out to 1000 genomes is shown in figure 

3.6D. For a 1000 genomes, the estimate is 140,000 singletons.

The rapid growth of singletons in Figure 3.6A and the prediction made in Figure 3.6D 

clearly suggest their growth is also far from complete. This observation is 

contradictory to our earlier view that aggregation of homologs between genomes will 

lead to singletons’ rapid disappearance 7. 

It should be born in mind that, because of the limited sensitivity of sequence methods 

for detecting relationships, the large number of families does not imply a similar 

magnitude of independent evolutionary lines.

To test the extrapolation model, we have extended the study to include 140 

prokaryotic genomes (the 67 used for the extrapolation plus 73 new ones, see 

Methods) and built families for this set using the same procedure. The 405,709 

sequences in these genomes produce 54,234 families of which 36,457 are apparent 

singletons. The extrapolation models predict 54,910 families and 35,807 singletons, 

within 1% and 2% respectively of the actual values. 
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Figure 3.6A. Number of families as a function of the number of genomes. Full 

columns show the total families in the corresponding number of genomes, and 

subdivisions show the number of families in the following size ranges: 1,2,3,4-5,6-

10,11-20,21-40,41-70,71-100,101-1000. Smaller families are in the lower 

subdivisions. The total number of families is still increasing rapidly up to 67 

genomes, and is far from saturation, though there is some decrease in the rate of 

growth. The singleton group is the fastest grower. 
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Figure 3.6B. Log-log view of the relationship between the number of families and 

number of genomes considered. The linear model with the slope 0.729 and the 

intercept 7.311 is an excellent fit to the data and the reliability coefficient is 0.9999.
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Figure 3.6C. Predicted number of families as a function of the number of fully 

sequenced prokaryotic genomes, based on the log linear fit in Figure 3.6B. The model 

predicts there will be about 250,000 families when 1000 genomes sequences are 

available. 
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Figure 3.6D. Predicted number of apparent singletons as a function of the number of 

fully sequenced prokaryotic genomes. The model predicts that there will be about 

140,000 when the sequences of 1000 genomes are available. 

Structural Coverage for the 67 Genome Set

The previous analysis shows that it will not be possible to obtain complete structural 

coverage of protein family space in the near future. However, as noted earlier, a 

relatively small fraction of the families contain a large fraction of all the sequences. 

For the 67 genome analysis, 19% of the families are size 3 and larger, but contain 

88% of the proteins. This suggests a strategy of obtaining representative structures for 

the largest families first. Figure 3.7 shows an exploration of this idea for the 67 

genome set. We assume that a representative structure is first obtained for the largest 
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family, then the next largest, and so on. The blue curve shows the result for all non-

membrane protein families with three or more members. The purple curve shows the 

number of structures needed, taking into account the already available structures. 

Because of existing high coverage, very few additional ones will be needed for large 

families. Altogether, about 4000 structures are required to obtain complete coverage 

of all families with three or more members, covering 88% of the domains in these 

genomes. (As discussed earlier, about 20% of these families already have 

representative structures).1000 structures will complete coverage for all non-

membrane families with more than 10 members, covering 80% of the domains in 

these genomes.
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Figure 3.7. Cumulative number of experimental structures needed to obtain complete 

coverage of families size 3 and larger, starting with large families (right side of the 
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plot). The blue curve is for all non-membrane protein families, and the purple one for 

those families with no current structural coverage. Very few additional structures are 

needed to complete coverage of large families: 1000 optimally selected ones would 

complete coverage of all non-membrane families larger than 10, including 80% of all 

the domains. About 4000 would be needed to provide one structure per family size 

three or larger, and would cover 88% of all the domains. (These numbers are for the 

set of 67 genomes analyzed in this work). 

Achievable Structural Coverage for 1000 Genomes

We now examine how many structures will be needed to achieve a given level of 

protein coverage, as the number of fully sequenced genomes grows. For that purpose, 

a similar extrapolation procedure to that described earlier was used.  A genome was 

picked at random from the set of 67. The number of families was then calculated for 

that genome alone. The number of structures needed to obtain coverage of various 

fractions of all the proteins in that genome was calculated, assuming structures for the

largest families are obtained first. Another genome was then randomly selected, and 

the number of structures needed to obtain various fractions of domain coverage for 

the two genomes was calculated, and so on, up to 65 genomes. The simulation was 

repeated 100 times, and the results averaged, to remove bias in genome order. 
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Figure 3.8A shows the results. Here, 100% coverage implies models for all domains 

in all families, 90% that 90% of the domains will have models, and so forth. The 

general trend is that the lower the domain coverage required, the slower the growth of 

the number of structures needed, as a function of the number of genomes. The growth 

rates for 80 and 90% coverage are already decreasing when 65 genomes are 

considered, and growth has almost ceased for 50% and 60% coverage. Figure 3.8B 

shows the estimates for up to 1000 genomes, based on log linear models. At that 

stage, less than half of the number of structures are needed for 90% coverage as for 

100%, and the growth rate for 70% or lower coverage is slow. Figure 3.8C shows an 

expansion of the region below 80% coverage. Representative structures for about 

8000 families will provide 70% coverage of all the domains in a 1000 genomes. This 

is a reasonable expectation for the next decade, given the rate of accumulation of new 

experimental structures. 
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Figure 3.8A. Number of families with representative structures needed to provide 

structural coverage for different fractions of protein domains, as a function of the 

number of fully sequenced genomes.  The lower the domain coverage required, the 

slower the growth in the number of families. 
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Figure 3.8B. Projection of the number of families with representative structures 

needed to obtain structural coverage of different fractions of protein domains, up to 

1000 genomes. 250,000 structures would be required to obtain 100% coverage of 

these families, but 90% coverage would be obtained for less than half of that number.
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Figure 3.8C. Expansion of Figure 3.8B for coverage between 50% and 80%. For 1000 

genomes, approximately 8,000 structures are needed to provide 70% domain 

coverage, achievable in the next decade, considering the rate of accumulation of 

solved structures. 
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3.4 Conclusion and Discussion

A principal goal of structure genomics is to obtain structures for a large fraction of 

naturally occurring proteins. This goal can be achieved by experimentally 

determining at least one structure for each protein family and building structure 

models for all other proteins, using comparative modeling methods 119. The minimum 

number of experimental structures required for complete structural coverage of 

protein space is then equal to the number of apparent protein families. In a previous 

study 7, we estimated this number by analyzing PfamA families 4, and making a very 

simple extrapolation of likely future growth in the number of families.

In the present study, we have based the analysis on all families in a set of fully 

sequenced prokaryotic genomes, rather than the contents of PfamA. A major 

difference is the inclusion of all proteins, not just those in the larger families typically 

collected in PfamA. With this more realistic view of the protein universe, we find 

there are a very large number of such small families: for the set of 67 genomes 

analyzed, there are 25,802 families with only one or two members, out of a total of 

31,874. Overall, there is an approximately power law relationship between the 

number of families and family size. 

Use of complete genome sequence sets has also allowed us to use a more realistic 

extrapolation method, in order to estimate the future growth in the number of 
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families, as the number of fully sequenced genomes grows. We find that when 1000 

genomes are available, there will about 250,000 detectable protein families. Further, 

the number of families will still be growing at that point. 

The large number of families makes it clear that complete structural coverage of 

protein space will not be possible in the near future. Nevertheless, it will be possible 

to obtain structural models for a high fraction of proteins. This is because most 

proteins belong to large families – for the 67 sequenced genomes, 88% of the proteins 

fall into just 6,072 families. Further, the extrapolation model shows that this trend 

will continue, so that, considering all sequences, 80% structural coverage of the 

proteins in 1000 genomes can be obtained with 25,000 structures, and 70% coverage 

with 8,000. The primary conclusion from this work is that a strategy of obtaining 

structural representatives for the largest families first will lead to high fraction of 

structural coverage of protein space within the next decade. This strategy will also 

lead to early structural coverage of the families that perform more universal 

biological functions, and will provide the most leverage of experimental effort, by 

creating models for the largest number of proteins from each experimental structure. 

We envisage that when structures for proteins in small families are needed, they will 

typically be obtained one at a time, using conventional structural biology, rather than 

high throughput methods. 

The number of apparent protein families depends on the effectiveness of each of the 

steps in building them. There are three keys steps in our procedure. The first step uses 
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PSI-BLAST to search for relatives of each protein. Other methods, in particular well 

tuned Hidden Markov Models 115 and profile-profile methods 95;97; 96 are more 

sensitive for this purpose 118;95. It turns out that the later merging step compensates for 

PSI-BLAST’s relative insensitivity. 

The second step of family building is parsing of proteins into domains. We have used 

a sequence profile based approach, relying on the fact that the most insertions and 

deletions occur between domains 88; 92. We apply the procedure very conservatively to 

minimize splitting within domains. As a consequence, this step has many false 

negatives – it does not split at many domain boundaries that are obvious at the 

structure level.  The accuracy of the method is similar to that of CHOP 120, although 

those authors chose a different compromise between false negatives and false 

positives in their analysis. Two additional procedures might further improve our 

method: Mapping known structural domains and PfamA (hand curated) domains onto 

the proteins. We have not done that because the majority of these families have not 

yet been studied structurally, and many are not yet in PfamA, so that use of these 

signals may distort the choice of parameters for family building. 

The third step in family building is merging lists of related domains and filtering out 

redundant entries, to create domain families. As noted earlier, over-merging is a well 

known problem in protein family building – a small number of incorrect entries in the 

initial lists of relatives can easily lead to substantial over-merging. To avoid this, we 
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use a procedure that requires an increasing number of common entries as a function 

of alignment size. 

The rules for merging and other steps were tuned by reconstructing a set of PfamA 

domains from the corresponding full length sequences, and comparing the generated 

families with the PfamA ones. The final procedure was benchmarked by comparing 

pair-wise relationships within a set of generated families with those in a set of SCOP 

superfamilies. While these testing methods are very useful, they are not ideal. PfamA 

is a sequence based family set, and so omits a large number of evolutionary 

relationships (placing related proteins in different families). A more sensitive method 

may therefore appear to have an excessively large number of false positives, and 

consequently may be detuned to reduce these. PfamA also focuses on larger families, 

whereas the genome data is dominated by smaller families. As a result, a better 

method for PfamA may not necessarily be optimum on genome data, and 

performance may be different from that suggested by quality measures on PfamA. 

Similarly, SCOP contains only proteins with known structure, and these may be 

unrepresentative of proteins in genomes as a whole, for example not included proteins 

with significant inherent disorder, and under-representing proteins that form part of 

complexes. Nevertheless, PfamA and SCOP are probably the best training and test 

sets available. As in most of computational biology, the lack of a gold standard for 

methods development and evaluation is an inherent limitation.
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According to our and other benchmarking, at a 1% ratio of false positives versus true 

positives, only about 30% of the pair-wise evolutionary relationships implied by 

structure can be recovered with present sequence comparison methods. A 

consequence is that families built with those methods do not approximate 

independent evolutionary lines. As more structures are available, the number of 

families will decrease very substantially, because of merging on the basis of structural 

similarity, rather than sequence. For the purposes of structural genomics, a single 

representative structure for very large families containing very remote relatives is not 

particularly desirable. As the remoteness of the relationship between proteins 

increases, the quality of a model built on the basis of a relative with an experimental 

structure decreases. In particular, a substantial fraction of residues (up to 50%) will 

have no equivalent in the modeling template 121. Thus, although families generated 

from sequence relationships are suboptimal from an evolutionary standpoint, they are 

very suitable for structural genomics.

Contrary to our earlier expectation 7, the number of apparent singletons and other 

small families will continue to increase. Siew and Fischer also found the number of 

singletons is steadily growing, though the percentage of singletons as a fraction of all 

sequences is decreasing 5. Because of the limited sensitivity of sequence methods, it 

is not possible to judge the biological significance of this at present. Many singletons 

may in fact have unrelated folds, as one estimate of the total number of folds suggests 

122. Or, most may turn out to be members of larger superfamilies, too remotely related 
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for sequence methods to detect. A larger set of experimental structures of small 

families will settle this issue. 

This work assessed how many experimental structures will be needed to provide 

models of a given fraction of all naturally occurring domains, based on one 

representative structure per family. Under this strategy, the majority of structures will 

be domain models, based on a single experimental within a protein family. While 

such a structure set will revolutionize our view of proteins in many ways, it is only 

the first step in providing complete structural information for natural proteins. Many 

proteins are multi-domain, particularly in higher eukaryotes 123; 124, and the function 

of a domain assembly is not always a simple combination of that in the constituent 

domains 124.  Generating reliable multi-domain structures will sometimes involve 

docking of domain models, requiring improvements in computational methods, or 

further experimental structures. Second, the relationships within families on which 

models will be based are often fairly distant, with sequence identities well below 

30%. Models based on such sequence relationships contain substantial errors, 

primarily arising from mistakes in aligning the sequence of interest with those of 

available templates, and because significant parts of the structures will differ from 

that of the templates 82. Nevertheless, these low accuracy models will be adequate for 

establishing membership of a superfamily, and thus useful for a variety of purposes, 

including providing approximate molecular function information, guiding site 

directed mutagenesis experiments, and choosing likely antigenic peptides. Other uses, 

such as identification of ligand specificity 125 and interpretation of the effect of 



99

disease related mutations 126, require higher accuracy, only possible by modeling 

against a template with 30% or higher sequence identity. Comprehensive structural 

information at that level will require many more structures. 
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Chapter 4: Lateral Gene Transfer between 

Prokaryotic Genomes

4.1 Introduction

Lateral gene transfer, also called horizontal gene transfer, is the process of transfer of 

genes between different species. Its significance was not appreciated until the 1950s, 

when resistance to penicillin class antibiotics spread rapidly through many pathogens as a 

result of plasmid transfer 9. For many years thereafter it was still commonly believed that 

lateral gene transfer was rare, and did not play a significant role in evolution. As 

sequenced-based genomics has developed, it has become more and more obvious that the 

process is very common and plays an important role in evolution. It is now clear that in 

prokaryotes, it acts as a significant force in the diversification of species 127.  

Successful lateral gene transfer requires three steps. First, donor DNA must be delivered 

to a recipient cell. There are several possible mechanisms:

1. Transformation. The uptake of naked DNA from the environment. 128; 129; 130. 

Transformation is likely very inefficient comparing with other processes. 
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2. Phage transduction. Phage replication in a donor cell results in the incorporation of 

some donor genome fragments. Subsequently, the phage is transmitted and absorbed by 

the recipient cell. This can only happen between two species both within the infection 

spectrum of the phage. The size of fragments transferred is limited by the size of the 

phage capsid, but can be up to 100kb 131; 132; 133; 134. As with transformation, phage 

transduction does not require physical contact between donor and recipient cells. 

3. Conjugation. Genetic material is transferred between donor and recipient when two 

cells are in physical contact. This can happen between distantly related species 134. 

Second, the acquired genetic information must be incorporated into the recipient cell’s 

genome. Mechanisms involved include: 

1. Transposon mediated transfer. A transposon contains of segments of nucleotide 

sequence flanking the two ends of the transferred material and can help move it to 

different locations in a genome or different genomes. Transposons are generally moved 

in a “cut and paste” way: the transposon is cut out of its original location and inserted 

into a new location. This process requires an enzyme, a transposase, encoded within some 

transposons. 135; 136; 137. 

2. Phage transduction. A phage may also assist the integration of foreign DNA segments 

into a chromosome, using an integrase.
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Third, the transferred sequence must be expressed in the recipient cell in a manner that 

potentially benefits the recipient organism. While the first two steps are largely unrelated 

to the function and properties of the transferred genes, the third step is subject to natural 

selection. 

Many previous analyses have identified individual examples of lateral gene transfer 

(LGT) 138; 139. Knowledge of the complete genome sequences of a large number of 

organisms provides new opportunities for a more global view of the extent and nature of 

the process. It has been estimated that between 8% and 18% of the E.coli genome was 

acquired by lateral gene transfer 127; 140; 141. In other genomes, the estimated extent of 

transfer varies over a wide range, from almost none in small genomes such as 

Mycoplasma genitalium, Rickettsia prowazekii and Borrelia burgdorferi, to about 24% in 

Thermotoga maritima 134; 142; 143. Studies have shown that lateral gene transfer events can 

happen across large phylogenetic distances, for example, isoleucyl-tRNA synthetases, 

whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance 

144. Transfers from eukaryotic to prokaryotic organism happen rarely. Transfers from 

prokaryotes to eukaryotes are even less likely, presumably because only transfers into 

eukaryotic germlines are potentially viable 126; 145. 

Transferred genetic material may help a host acquire new function capabilities, and 

thereby promote fitness and adaptation 146. Well-known cases include antibiotic 

resistance 9, pathogenecity islands 133; 147, novel metabolic capabilities 15; 134; 148 and non-
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orthologous gene replacement 148. Furthermore, accumulated differences introduced by 

lateral gene transfer can prompt species divergence and new species formation 134; 140.

Two methods for identification of lateral gene transfer have been developed. The first 

makes use of the fact that gene compositions such as GC content and codon usage bias 

vary significantly between species 149. Thus, it is in principle possible to detect genes that 

have recently been transferred to an organism with sufficiently different GC and codon 

properties 140; 150; 151. Statistical methods have been employed to quantitatively assess the 

composition of individual genes against the genome signature. Garcia-Vallve et al 151

considered genes as foreign when their whole GC content deviated by > 1.5σ from the 

genome mean value or when the GC content in the first and third codon positions have 

the same deviation direction from the genome mean and at least one of them is > 1.5σ. 

Lawrence and Ochman 127 and Sharp et al. 152 made use of abnormal patterns of codon 

usage to identify transfer events. A limitation of these methods is that laterally transferred 

genes cannot be identified if the donor and recipient organisms have similar GC and 

codon use profiles. Although the methods are simple and straightforward, Koski et al. 

found that composition measures may not be a reliable indicator of horizontal 

transmission 153. These authors observed that a number of E.coli native genes with 

intrinsic atypical compositions were incorrectly classified as lateral transferred. Lawrence 

and Ochman also pointed out the difficulty of identifying ancient transfers by 

composition methods, since the nucleotide composition and codon use of transferred 

genes drifts towards that of the new host, so called “amelioration” 134; 141. 
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The second existing method for identifying lateral gene transfer is analysis of 

incongruence between the phylogenetic trees of genes. 154; 155 Generally, a lateral gene 

transfer event within a protein family can be inferred when two of the sequences have 

anomalously high sequence identity, resulting in a family phylogenetic tree that differs 

from the species based one. Comparison of tree topologies is a manual process, 

prohibiting large scale lateral transfer screens by this method, and the lack of a 

quantitative measure further complicates the approach. 

We have developed two new methods for identifying lateral transfer events. The first, the 

High Apparent Gene Loss method (HAGL), makes use of the fact that a lateral transfer 

event will introduce a number of apparent gene losses in the conventional phylogenetic 

tree of a protein family. To appreciate this, consider a case of transfer of a proteobacterial 

gene into a single genome in the archaeal kingdom. A conventional evolutionary 

inheritance interpretation will imply that the ancestral gene has been lost in all other 

archaeal genomes. The higher the number of implied losses relative to the protein family 

size, the more likely that a lateral gene transfer event has occurred.  The minimum 

number of losses needed to explain the observed distribution of family members over 

genomes is derived using the Dollo Maximum Parsimony algorithm 156(Farris, JS. 

Phylogenetic analysis under Dollo’s law. 1977. Syst Zool, 26, 77-88)(Le Quesne, WJ. 

1974. The uniquely evolved character and its cladistic application. Syst. Zool. 23 513-

517). This method is particularly effective at identifying transfer within small protein 

families. 
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The second new method, termed the Evolutionary Rate Anomaly method (ERA), 

identifies LGT events by finding those proteins which exhibit an anomalous rate of 

sequence change. Sequence differences between pairs of proteins in different species are 

used to derive an estimated number of accepted substitutions per amino acid position 

since species divergence. These accepted substitution levels are converted to relative 

rates of substitution by dividing by the corresponding mean substitution level in a set of 

highly conserved protein families. Gene transfer between species results in a lower 

apparent rate of accepted substitution, providing a means of identifying LGT events. Two 

factors complicate interpretation: Accepted substitutions between proteins that are in 

paralogous subfamilies are typically larger than expected, and the rate of evolution within 

particular protein families is not always constant. We largely eliminate the first factor by 

only performing the analysis on apparently orthologous subfamilies. We identify uneven 

evolutionary rate cases by examining the consistency of pairwise substitution levels using 

a modified version of a robust linear regression procedure: Least Median of Squares 157. 

The new methods have been applied to analysis of lateral gene transfer using 66 fully 

sequenced prokaryotic genomes. Both methods require that proteins be grouped into 

families. For this purpose, we make use of family building procedures described 

elsewhere (Yan and Moult, Protein Family Clustering for Structural Genomics, 

submitted) to establish a set of protein families. The High Apparent Gene Loss method 

works best for small families where there has been transfer over large phylogenetic 

distances. The Evolutionary Rate Anomaly method works best for larger families with a 
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steady rate of evolution. In the absence of a reliable set of known LGT cases, the methods 

have been calibrated and evaluated against each other. 

Results from both methods confirm that lateral gene transfer events are widespread in 

prokaryotic genomes. Over-all, 18% of the genes analyzed are classified a transferred. 

Together, the two methods only identify a subset of all LGT events, suggesting that the 

scale of lateral transfer events is even larger. Analysis of the results in terms of families 

and genomes indicate that transfer has occurred unevenly. Many large protein families 

appear to have no lateral transfer events, whereas transfer was found in many small 

protein families. For genomes. values vary greatly, from 3% of analyzed proteins  in 

Mycoplasma genitalium and Buchnera sp. APS, to 33% in Nostoc sp. PCC7120, a 

Cyanobacterium and Halobacterium sp. NRC-1, an archaon. 

4.2 Methods

Protein Sequences in microbial genomes: 

Complete sets of protein sequences for all genomes were retrieved from Genbank 

(http://www.ncbi.nlm.nih.gov/Genomes/index.html). All downloaded and generated 

information were stored in a MySQL relational database running on a Linux server.
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Genome Genome 

abbreviation

Number of 

proteins

Aeropyrum pernix Aero 2694

Agrobacterium tumefaciens str. C58 (Dupont) Atum_D 5402

Aquifex aeolicus Aquae 1553

Archaeoglobus fulgidus Aful 2407

Bacillus halodurans Bhal 4066

Bacillus subtilis Bsub 4100

Borrelia burgdorferi Bbur 1637

Brucella melitensis Bmel 3198

Buchnera sp. APS Buch 574

Campylobacter jejuni Cjej 1629

Caulobacter crescentus Ccre 3737

Chlamydia muridarum ctraM 916

Chlamydophila pneumoniae AR39 cpneuA 1110

Chlamydophila pneumoniae CWL029 cpneuC 1052

Chlamydophila pneumoniae J138 cpneuJ 1069

Clostridium acetobutylicum Cace 3672

Clostridium perfringens Cper 2723

Corynebacterium glutamicum Cglu 3040

Deinococcus radiodurans Dra 3102

Escherichia coli Ecoli 4289

Escherichia coli O157:H7 ecoliO157 5361
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Haemophilus influenzae Rd Hinf 1709

Halobacterium sp. NRC-1 Hbsp 2605

Helicobacter pylori 26695 Hpyl 1566

Helicobacter pylori J99 Hpyl99 1490

Lactococcus lactis subsp. lactis Llact 2266

Listeria innocua Linn 3043

Listeria monocytogenes EGD-e Lmon 2846

Mesorhizobium loti Mlot 7275

Methanobacterium thermoautotrophicum Mthe 1869

Methanococcus jannaschii Mjan 1770

Mycobacterium leprae Mlep 1605

Mycobacterium tuberculosis Mtub 3869

Mycobacterium tuberculosis CDC1551 Mtub_cdc 4187

Mycoplasma genitalium Mgen 480

Mycoplasma pneumoniae Mpneu 688

Mycoplasma pulmonis Mpul 782

Neisseria meningitidis Nmen 2025

Neisseria meningitidis Z2491 nmenA 2032

Nostoc sp. PCC 7120 Nost 6129

Pasteurella multocida Pmul 2014

Pseudomonas aeruginosa Paer 5565

Pyrobaculum aerophilum Paero 2605

Pyrococcus abyssi Pabyssi 1765
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Pyrococcus horikoshii Pyro 2064

Ralstonia solanacearum rsol 5116

Rickettsia conorii Rcon 1374

Rickettsia prowazekii Rpxx 834

Salmonella enterica subsp. enterica serovar Typhi Sent 4749

Salmonella typhimurium LT2 Styp 4553

Sinorhizobium meliloti Smel 6205

Staphylococcus aureus subsp. aureus Mu50 Saur_mu50 2748

Staphylococcus aureus subsp. aureus N315 Saur_n315 2624

Streptococcus pneumoniae Spneu 2094

Streptococcus pyogenes Spyo 1696

Sulfolobus solfataricus Ssol 2977

Sulfolobus tokodaii Stok 2826

Synechocystis PCC6803 Synecho 3169

Thermoplasma acidophilum Tacid 1478

Thermoplasma volcanium Tvol 1526

Thermotoga maritima Tmar 1846

Treponema pallidum Tpal 1031

Ureaplasma urealyticum Uure 611

Vibrio cholerae Vcho 3828

Xylella fastidiosa Xfas 2831

Yersinia pestis ypes 4039
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Table 4.1. The 66 fully sequenced microbial genomes used in the Lateral Gene Transfer 

analysis, and the number of proteins in each genome. 12 are archaeal, and 55 are 

bacterial. In total there are 178,310 protein sequences.

Generation of a Domain-based Protein Family Set

Following the procedure described in [Yan and Moult, Protein Family Clustering for 

Structural Genomics, submitted], the 178,310 sequences proteins were parsed to 249,574 

domains, and then clustered into 31,874 homologous sequence families. Small families 

predominate. In particular, there are 20,992 singletons (families with only one member), 

about 2/3 of the total. The 6072 protein families containing three or more members are 

used in this analysis.

Extraction of Orthologous subfamilies

In many cases, a single family represents more than one function, as a result of gene 

duplication and specialization (for example, malate and lactate dehydrogenases are 

grouped in a single family). These paralogous subfamilies may evolve at different rates 

and there are often rapid sequence adaptations associated with function change, so it is 

desirable to divide families into orthologous subfamilies.

Orthologous subfamilies were extracted as follows:
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1. A sequence identity matrix is generated for each family. Multiple sequence alignments 

are generated using CLUSTALW 158. Pair-wise sequence identities are calculated from 

the alignments, providing the matrix elements.

2. A kernel protein is chosen. For each sequence in the family, sequence identities scores 

to all other sequences were summed. The kernel protein is the one with the highest score, 

at the arithmetic center of the family. The kernel protein provides the starting sequence 

for building an orthologous subfamily.

3. Additional proteins are added iteratively. The closest protein sequence (highest 

sequence identity to the kernel protein) from another genome is first added to the 

orthologous group. Then the average sequence identity of each protein in the remaining 

genomes to those already in the subfamily is calculated, and the closest one added. This 

step is repeated until a representative sequence from each genome is included or the 

average sequence identity between any remaining candidate protein and the orthologous 

group is less than 15%. (The 15% threshold reduces the possibility of including poor 

alignments or incorrect family members). 

4. Steps 1 through 3 may be repeated for the remaining proteins, until none are left, to 

generate further orthologous sub-families. The first sub-families extracted are the most 

reliable. So lateral gene transfer analysis has been performed only on these. The 6072 

initial families with three or more members produced 4856 orthologous families size 

three or larger.
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Phylogenetic Tree Construction

A universal phylogenetic species tree provides an approximation to the true evolutionary 

relationships among species, and is a useful reference in our analysis of LGT events. In 

the HAGL method, the topology of the species tree is used to estimate the minimum 

number of gene loss events required to explain the phyletic pattern (presence and absence 

in phylogenetic lineages) 159 of a protein family. 

A number of inter-species metrics have been adopted in constructing species trees, 

including the widely used 16S ribosomal RNA sequence identity 160, the Common Gene 

Fraction and Common Neighbor Fraction (Yan and Moult, ‘Operon Predictions in 

Microbial Genomes’, submitted) 57 and the average sequence identities over a set of 

conserved orthologous protein families 161; 162. Two reference trees were considered in 

this work: the 16S rRNA tree and a conserved protein families tree. 16S ribosomal RNA 

sequence data were downloaded from the Ribosomal Database Project 

(http://rdp.cme.msu.edu/) and a 16S rRNA distance matrix was built using the DNADIST 

program in the PHYLIP package, release 3.6 (Felsenstein 1989)31 For the conserved 

protein families tree, a set of fourteen conserved orthologous protein families (listed in 

Table 4.2), all with members in each of the 66 genomes, were chosen. Interspecies 

protein distance matrices were calculated for each family, using the PROTDIST program 

in PHYLIP package (Felsenstein 1989)31. The Jones-Taylor-Thornton matrix amino acid 

substitution model 163 was used to obtain the estimated average substitution per amino 
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acid from sequence identities. Matrices for the 14 families were averaged to obtain the 

final interspecies matrix.  

Protein Amino Acids

Ribosomal protein L14 125

Ribosomal protein L13 149

Ribosomal protein S17 93

Ribosomal protein L2 271

Ribosomal protein S2 254

Ribosomal protein L5 181

DNA-directed RNA polymerase, alpha 

subunit

333

Ribosomal protein L10 200

Ribosomal protein S13 128

Ribosomal protein S5 185

Ribosomal protein L15 147

Preprotein translocase secY subunit 447

Ribosomal protein S3 234

Ribosomal protein S11 130

Table 4.2. Fourteen well conserved orthologous protein families used to generate the 

average interspecies distance matrix. Most are ribosomal proteins. The average number 

of amino acids in each protein family is also shown. 
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Several tree building methods are available. Brown et al 161 compared trees constructed 

using Maximum Likelihood, Neighbor-Joining, Maximum Parsimony  and a Minimum 

Evolution method for 16S rRNA and a set of conserved orthologous protein families. 

Their study found these trees to have highly congruent topologies. We built  protein and

16S rRNA species trees from the distance matrices described above, using the Neighbor 

Joining method 31 as implemented in the NEIGHBOR program (Felsenstein 1989) 31. As 

shown later, the trees are very similar topologically. 

The High Apparent Gene Loss method (HAGL)

For protein families, the phyletic pattern (presence or absence of family members in the 

organisms considered) is used to deduce the minimum number of gene loss events that 

occurred during evolution, assuming only a single ancient gain event, and a classical 

pattern of inheritance for all family members. Figure 4.1 shows a schematic example, for 

a protein family with only two members. One of the members belongs to species A, the 

other belongs to species F and all other species have no members of this family. Presence 

of a family member at a node in the tree is represented by a ‘1’, and absence by a ‘0’. 

Given this phyletic pattern, and the reference phylogenetic tree, the Dollo Maximum 

Parsimony algorithm will find the minimum number of losses consistent with these data, 

assuming a single ancestral gain event. The method was first suggested by Le Quesne 

(1974) and named after Louis Dollo, since he was one of the first to assert that in 

evolution it is harder to gain a complex feature than to lose it. In this case, Maximum 
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Parsimony requires three loss events (state 1--> 0, shown by ‘X’s) to explain the phyletic 

pattern, assuming only one ancestral gain event (state 0-->1) some time prior to the 

closest common ancestor (‘CA’ in the figure). 

Figure 4.1: Phyletic pattern of a hypothetical protein family in a species tree. The family 

has two members, belonging to species A and F (indicated by ‘1’ states). Assuming a 

single ancient gain event, the minimum number losses necessary to explain the pattern in 

terms of a standard evolutionary process is three, in the branches marked with ‘x’. 1’s 

and ‘0’s on the branches show the inferred presence or absence of ancestors.  ‘CA’ 

represents the closest common ancestor of this family. 
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An alternative explanation for the observed phyletic pattern is that there have been one or 

more lateral gene transfer events. Most simply in this case, a gain event in either the A or 

F genomes was followed by a transfer to the other one. Less simply, there may have been 

two independent transfer events from a third, unsequenced genome.

The more losses required to explain a phyletic pattern in terms of evolutionary descent, 

the more likely the correct explanation involves gene transfer. The simplest possible 

model assumes a constant probability of a loss event per unit branch length in the tree. 

Then, the more ancient the common ancestor, the more losses are expected. The expected 

number of losses is proportional to the sum over all branch lengths in the species tree 

above the common ancestor in which losses may have occurred (in figure 4.1, all 

branches except those terminating in species C and D). The higher the number of losses 

per unit branch length, T, the high probability of one or more LGT events. For a protein 

family with L losses over a total branch length of B, the ratio T is simply:

T = L / B

Above some threshold minimum number of losses Lmin, the larger the value of T, the 

more likely there have been transfer events in the family. As discussed later, values of 

Lmin and Tmin were obtained by benchmarking against the most reliable predictions from 

the ERA method. This method is most sensitive for small families, with short total branch 

lengths. 
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High values of T and L identify families where transfer has taken place. To find the 

specific genes involved, we assume that the genes which require the most losses to 

accommodate by classical descent are the ones most likely to be the result of transfer. To 

identify these, each gene ‘i’ is removed from the family in turn, and the new minimum 

number of losses, Li, calculated. The larger the difference ∆Li between the numbers of 

losses required for the complete family, Lc, and Li:

∆Li = Lc - Li

the more likely that gene ‘i’ is present as the result of an LGT event. 

This approach can be extended to internal nodes of the tree, allowing the identification of 

some more ancient LGT events, occurring before species divergence. Each internal node 

with a value of ‘1’, representing presence of an ancestral protein, is set to ‘0’, and all its 

children nodes are also set to ‘0’. The reduction in the number losses in the family, ∆L, is 

then calculated as before. In some instances, the node resetting process may remove 

independent losses further towards the leaf nodes. To compensate for this effect, a 

modified reduction of losses, ∆L’, is used for internal nodes: 

∆L’ = ∆L – D
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where the depth D is the number of steps needed to get to this node from a leaf node. D is 

the maximum number of losses that may be affected. As a consequence, ∆L’ may be an 

underestimate of the loss reduction, and can lead to missing some more ancient events. A 

more sophisticated tree analysis might reduce this effect. 

For each gene in a family, the maximum value of ∆L obtained by removing the gene or 

any of its ancestors is used. A threshold value ∆Lmin was obtained by benchmarking 

against the most reliable predictions from the ERA method.   

The Evolutionary Rate Anomaly method (ERA)

Relative evolutionary rates of protein families. 
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Figure 4.2. Example of Evolutionary Rate analysis of an Orthologous Protein Family 

(annotated as probable alkaline shock protein).  The y value of each point is Sf(i,j), the 

number of accepted substitutions per amino acid between proteins i and j in the 

orthologous family, and the x value is Sref(i,j), the average number of accepted 

substitutions in the 14 reference protein families between the species of proteins i and j. 

The relative evolutionary rate R(i,j) is given by Sf(i,j)/Sref(i,j). The S values for one pair 

(GI:6459862 from Deinococcus radiodurans and GI:10175407 from Bacillus 

halodurans) are shown, corresponding to a relative rate of 5.05, the slope of the red 

dotted line. The relative evolutionary rate for the family, <R(i,j)> is derived from a robust 

linear regression technique – LMS (least median of squares), in this case 6.47, the slope 

of the black LMS line. Red crosses are points involving protein GI:6459862. A Student’s 
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t-test shows the rates associated with this gene to be significantly lower than all the other 

rates, with 99.95% confidence, identifying a likely LGT event. 

Rates of Amino Acid Substitution with Protein Families

Anomalous rates of change of amino acid sequences within an orthologous family are 

detected by comparing the number of accepted substitutions per amino acid between each 

pair of proteins i and j, Sf(i,j), with the corresponding average number of accepted 

substitutions in the 14 reference protein families, Sref(i,j). The ratio of these quantities, 

R(i,j) = Sf(i,j)/ Sref(i,j)

gives the relative rate of sequence change for the pair of proteins. For a protein family 

with an approximately constant rate of change throughout evolution, these ratios will be 

approximately the same for all protein pairs. A protein ‘k’ that has undergone a relatively 

recent lateral transfer will have anomalously low values of R(k,j), with respect to all other 

proteins ‘j’. Differences in these R values compared to all others can therefore be used to 

detect transfer events. 

Figure 4.2 shows an example. A line from the origin through each point has a slope 

corresponding to the R(i,j) value. The S values for one pair (GI:6459862 from 

Deinococcus radiodurans and GI:10175407 from Bacillus halodurans) are shown, 
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corresponding to a relative rate of 5.05,  the slope of the red dotted line. The black line 

shows an estimate of the relative evolutionary rate for the whole family, <R(i,j)>, derived 

from a robust linear regression technique – LMS (least median of squares), in this case 

6.47. The red crosses show all the points involving Deinococcus radiodurans. All fall 

below the family rate line.  A Student’s t-test shows the rates for this protein to be 

significantly lower than all others, with high confidence (99.95%), strongly suggesting an 

LGT event.

Multiple transfer events will lead to more complex patterns of substitution relationships. 

In well behaved families, these can sometimes be resolved. For example, in figure 4.2, 

there is another gene (GI:15025074 from Clostridium acetobutylicum) whose rates are 

consistently lower than the family average. The Student’s t-test indicates this gene is also 

transferred, with a confidence of 99.95%.

More ancient transfers, taking place before some speciation events, may result in a set of 

proteins with anomalous rates. This is most likely in regions where we have included a 

subset of genomes that have diverged relatively recently, for example, around E.coli. 

Particularly in smaller families, the present Student’s t-test may not be able to resolve 

these. A more sophisticated approach, taking into account the tree structure, might do 

better. 
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Rates of substitution within families vary for other reasons besides lateral gene transfer. 

Apparently orthologous families may in fact contain proteins that have evolved different 

molecular functions, requiring substantial changes in sequence. Changes in the life style 

of a species, for example changed salinity or pH, may require adaptation of a protein 

sequence; changes in the pathways within an organism may impose new requirements on 

molecular function, also resulting in sequence adaptation. To help deal with these noisy 

data, we make use of LMS (Least Median of Squares), a robust linear regression 

technique, to retrieve the intrinsic relative evolutionary rate of the family <R(i,j)>. 

However, the Student’s t-test may deliver a less clear result when the underlying family 

clock is irregular.

Student’s t-test for Anomolous Substitution Rates

A Student’s t-test is performed for each protein ‘k’ in the family, evaluating the 

probability that the difference between the average rate for that protein is significantly 

different from the average rate over all other proteins i’, considering the variances of the 

[R(i’,j)] and [R(k,j)] distributions. 

Points for which Sref(i,j) < 0.03 are omitted from the [R(i’,j)] set, since S values were 

observed to be more noisy for small evolutionary distances. Outliers in the [R(i’,j)] 

distribution were also omitted, based on the value of 

D = | R(i’, j) - <R(i, j)>|
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For instance, in figure 4.2, a point close to the origin has a significantly different rate 

from <R(i,j)>, and so should be omitted by the outlier filter. Benchmarking against the 

most confident set of HAGL LGT events was used to establish the optimum fraction of 

data points to omit, and the confidence threshold for the Student’s t-test. 

The Calculation of the number of accepted substitution per amino acid between 

proteins

Protein sequences in an orthologous family are aligned using ClustalW 158. Alignments 

were trimmed to include only those positions where at least 50% of the proteins in the 

family were aligned.

The Protdist module in the PHYLIP package (Felsenstein 1989)31 version 3.6 was used to 

compute a pair-wise protein distance matrix based on the truncated multiple sequence 

alignment. The amino acid substitution distance Sf(i,j) between any pair of sequence i and 

j was derived from sequence identities, using the Jones-Taylor-Thornton matrix amino 

acid substitution model 163. The sequence identities are calculated from the aligned 

regions of a pair of two sequences, and gaps in the alignment are not considered. 
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LMS (Least Median of Squares) 

The most popular linear regression technique is the Least Squares (least sum of squares) 

method. Given the data points (x1, y1) … (xn, yn), the values ‘a’ and ‘b’ in the linear 

model

 y = ax + b 

are those which give the minimum of Σ ri
2, where ri is the residual of the ith data point, 

the difference between yi and its estimated value yi’, yi’ = axi + b. Least Squares is a 

simple and powerful method, but is extremely sensitive to outliers. Even one outlier may 

change the linear model significantly. The breakdown point (the smallest fraction of 

contamination that can falsify the linear estimator, where “falsify” is defined as changing 

the regression line by 90 degrees) of the Least Squares method is 1/n, where n is the 

number of data. 

As discussed above, relative substitution rate plots for protein families may have outliers 

because of lateral gene transfer events and other causes. To obtain reliable values of the 

relative substitution rate, we require a robust linear regression method (one with a 

breakdown point larger than 1/n). LMS (Least Median of Squares) (Rousseeuw, P.J. 

1984, J. Am. Stat. Assoc., 79, 871-880.)157 is used. LMS finds a linear relationship which 

fits the majority of the data by minimizing the median of squares of residuals.  That is, by 

choosing the line with:
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min(med[ ri
2])

where ‘med’ represents the median. The breakdown point of the method is 50%.

The med[ ri
2] value is obtained for each line passing through the origin and a single data 

point (i.e. as many lines as data points). The slope of the line which minimizes the 

median of the squares of the residuals between the calculated and observed values of 

Sf(i,j) (the number of accepted substitutions per site between family members in genomes 

‘i’ and ‘j’) provides the estimate of the corresponding family’s relative evolutionary rate 

<R(i,j)>.

Calibration and Evaluation of the Methods

Accuracy Measures

The accuracy of the two methods is expressed in terms of specificity (fraction of true 

negatives correctly identified in a test set) and sensitivity (fraction of true positives 

correctly identified in a test set). I.e.

Specificity (Sp) = TN / (TN + FP)
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Where TN is the number of true negatives detected, FP is the number of false positives, 

and (TN + FP) is the total number of points in the set.

Sensitivity (Sn) = TP/ (TP + FN)

Where TP is the number of true positives detected, FN is the number of false positives, 

and (TP + FN) is the total number of points in the set.

Choice of Test Sets

Some putative lateral gene transfer events, such as those reported by 133; 142; 164 appear 

fairly certain, but at present, there is no way of compiling a highly reliable set of 

examples suitable for evaluating computational methods. Since we have developed two 

methods, we can partially evaluate them in terms of the agreement or otherwise in 

predicted LGT events. We take a subset of most reliable LGT events predicted by one 

method, and use it to obtain sensitivity data for the other. Similarly, a most reliable set of 

non-LGT events from one method is used to determine the specificity of the other. As 

noted earlier, the HAGL method performs best for small families, and the ERA method 

best for large families. The limited overlap of the methods restricts the size and reliability 

of the test sets. Low test set reliability generated by one method has the effect of causing 

the other to appear less accurate than it may be. 

Optimization of Parameters
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There are three parameters in The HAGL method (minimum number of losses (L), 

minimum rate of loss (T), and minimum reduction of losses on removing a candidate 

gene (∆L)), and two parameters in the ERA method (confidence for the Student’s t-Test, 

and fraction of distribution outliers excluded). Initial range estimates were made by 

inspection of the data, and each method was evaluated over those ranges. The most 

reliable subsets were then selected to provide the test data for final parameter choice. 

Merging of parameter calibration and method evaluation is not ideal, but unavoidable 

because of the limited test data. Since there are few parameters, and the sensitivity and 

specificity dependence are clear, it is a reasonable procedure in this case. In principle, 

this form of evaluation could lead to a false optimum in the parameter surface. That 

seems unlikely with these data, where specificity and sensitivity response to parameter 

change are straightforward.  

4.3 Results

4.3.1 Phylogenetic Tree

Figure 4.3A shows the neighbor joining tree for the 66 genomes, built with distances 

derived from the average sequence identities over the set of 14 conserved protein 

families. Figure 4.3B shows the corresponding tree built with distances derived from 16S 
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rRNA sequence identities. The topologies of the trees are similar. The major kingdoms 

are well separated: Bacteria, Archaea and Eukaryotes, and each kingdom is further 

separated into small subgroups such as Proteobacteria, Actinobacteria and so forth. The 

tree for the 14 conserved protein families was used for the lateral gene transfer study. 16S 

ribosomal RNA, though well conserved across species, may be under different selection 

forces and so have different evolutionary rate properties from protein families. 
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Figure 4.3A. The Neighbor Joining tree for 66 bacterial and Archaeal genomes, derived 

from 14 conserved protein families. Saccharomyces cerevisiae was used as an out-group. 
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Figure 4.3B. 16S ribosomal RNA Neighbor Joining tree for the 66 genomes used in this 

study. 
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4.3.2 The High Apparent Gene Loss method (HAGL)

As discussed earlier, the HAGL method relates the likelihood of Lateral Gene Transfer in 

a protein family to the apparent number of gene loss events, as determined using Dollo 

Maximum Parsimony. The primary assumption is that there is a constant probability of a 

loss event per unit branch length in the phylogenetic tree of a family, so that families with 

a large ratio of losses to total branch length are the most likely to have experienced one or 

more LGT events. 

Figure 4.4 shows the distribution of the number of orthologous families with two or more 

members, as a function of family size and number of apparent losses. There are a large 

number of small families (those with three to seven members) with many apparent losses 

(up to 15 losses is common). These are candidates for lateral gene transfer events, and are 

analyzed further. There is also a weaker concentration of families running along a 

diagonal line from top left to bottom right. This region represents ancient families with a 

relatively small number of losses. (Zero loss families present in most genomes have 

points high on the y axis. The more losses, the further down the diagonal). The HAGL 

method is not suitable for identifying LGT events in these families. 
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Figure 4.4: Distribution of protein families as a function of the number of apparent gene 

loss events in each family and family size. There are many small families with a large 

number of losses (represented by part of the red region running along the bottom right of 

the plot). Further analysis suggests many of these are not classical evolutionary descent 

families, but have undergone one or more lateral gene transfer events. The plot also 

shows a population of families along a diagonal line from top left towards the bottom 
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right. Features in this region represent classically descended families with a relatively 

small fraction of losses. 

Figure 4.5 shows the distribution of the ratio of losses to total branch length, T, in these 

families. The large bar at the lowest T value represents the 1323 protein families which 

have T values less than 0.5. There is a tail of high T values. Benchmarking (described 

later) shows that value of T greater 5 is a reliable indicator of LGT, together with 

appropriate values of the other two parameters. Large T values may result from relatively 

few losses and very small branch lengths, for example in the E.coli-Salmonelia branch of 

the tree. We eliminate these from consideration by also requiring a minimum number of 

losses, established by benchmarking. For large families, there must be relatively few 

losses, and so T values tend to be small. As a result, the HAGL method is not suitable for 

detecting transfer events in these.
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Figure 4.5. Distribution of T (ratio of losses to total branch length) for the 4856 

orthologous protein families with three or more members. There are 1323 families with 

small T values (less than 0.5). The higher the value of T, the more likely are lateral gene 

transfer events.  

4.3.3 The Evolutionary Rate Anomaly method (ERA)
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As discussed earlier, the Evolutionary Rate Anomaly method (ERA) identifies LGT 

events by detecting genes that have a significantly different evolutionary rate from the 

rest of that family. 

Figure 4.6A shows the distribution of average evolutionary rates for 4116 orthologous 

protein families, obtained using the LMS (Least Median of Squares) method. These rates 

are relative to that of the set of 14 highly conserved families. Most rates (98%) are 

between 1 and 10 times that of the reference families. 37 families with rates greater than 

20 are not shown in the plot. 

The distribution of standard deviations of evolutionary rates in families, σ[(R(i,j)-

<R(i,j)>)/<R(i,j)>], is shown in Figure 4.6B. The standard deviation is a measure of the 

irregularity of evolutionary rates within a family. A small standard deviation suggests the 

sequence changes in the corresponding family have occurred at a relatively constant rate 

throughout the history of the family. The larger the value, the more irregular the rate, and 

the less likely that the Student’s t-test will be able to detect LGT events. 
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Figure 4.6A. Distribution of evolutionary rates for 4116 orthologous protein families. 

98% of families have rates between 1 and 10 times that of the reference highly conserved 

families. There are 35 protein families with the rates less than 1, and 37 protein families 

with the rates larger than 20. 
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Figure 4.6B. Distribution of σ[(R(i,j)-<R(i,j)>)/<R(i,j)>], the relative standard deviation 

of evolutionary rates within protein families. The smaller the value, the more constant the 

apparent rate of sequence change. A standard deviation of up to half the relative rate is 

common, and there is a tail of highly variable families.

Probable lateral gene transfer events were identified in the 2964  families with more than 

five members, using the Student’s t-test to identify those proteins with anomalously low 

apparent evolutionary rates, as described in the methods section. The threshold for the t-

test and the fraction of data included were determined by benchmarking against the most 

confident HAGL predictions, as described later. 
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An example of an identified LGT event is shown earlier in figure 4.2. A second example 

is shown in Figure 4.7A, for a family with 40 members, and an evolutionary rate of 5.3. 

Annotations suggest this family is a probable mercuric resistance operon repressor 

protein (merR). All the rates for Genbank ID 2649944 from Archaeoglobus fulgidus

(shown as crosses) are anomalously low, and the Student’s t-test gives a 99.95% 

probability that the rate for this protein is different from that of the rest of the family. 

The HAGL method identifies a minimum of 10 losses in this family, over a total branch 

length of 5.39, giving a T value (ratio of the losses to the sum of branch lengths) of 1.86. 

With a T threshold of 5, this family is far from classification as involved in an LGT 

event, reflecting the insensitivity of the HAGL method with larger families.

Comparison of the topology of the phylogenetic tree of this family with the species tree 

(Figure 4.7B) shows the anomalous properties of this gene clearly. In the species tree, 

Archaeoglobus fulgidus, an archaean, is far from the bacteria. In the family tree, the gene 

from Archaeoglobus fulgidus is closer to the gene from Bacillus subtilis than the genes 

from other bacteria. This inconsistency suggests that gene 2649944 from Archaeoglobus 

fulgidus is very likely to have been lateral transferred relatively recently, after the 

divergence of Bacillus subtilis and Streptococcus pyogenes.

Function annotation for this family suggests it plays a regulatory role in mercury 

metabolism, and is one of a number of proteins needed for that function. In 

Archaeoglobus fulgidus, unlike most bacteria, only one other member of the pathway, the 
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periplasmic merP, is identifiable. The other components, such as the structural proteins 

merA and merB and the reductase merC, have not been found. So the functional role the 

transferred merR plays in Archaeoglobus fulgidus is an open question.
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Figure 4.7A. Relative rates of amino acid substitution between pairs of proteins in the 

mercuric resistance operon regulatory protein family (merR). The vertical co-ordinate of 

each point is the number of accepted substitutions per residue between a pair of proteins 
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in the family, and the horizontal axis is the corresponding number of substitutions in a 

reference set of conserved families. The family evolutionary rate is estimated to be 5.3, 

the slope of the green LMS regression line. The set of rates (‘+’ points) for the protein 

from Archaeoglobus fulgidus are significantly different from the rest of family (99.95% 

confidence on a Student’s t-test), indicating a lateral transfer event for this gene. 
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Figure 4.7B. The phylogenetic trees of the mercuric resistance operon repressor protein 

(merR) family (left) and the corresponding region of the species tree (right). In the 

species tree, Archaeoglobus fulgidus (aful), the only archaeal member of the family 

(shown in red color), is far from bacteria. In the family tree, the gene from this organism 

(‘2649944-aful’, shown in red color) is close to Bacillus subtilis. This topology difference 

suggests the gene 2649944 in Archaeoglobus fulgidus is very likely to have undergone 

lateral transfer. 
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Figure 4.8A. Example of a protein family with anomalously high rates of amino acid 

change for one of its members. This protein family has 51 members, all in bacteria. These 

proteins may act as endonucleases in recombination. The vertical co-ordinate of each 

point is the number of accepted substitutions per residue between a pair of proteins in the 

family, and the horizontal axis is the corresponding number of substitutions in a reference 

set of conserved families. The family evolutionary rate is estimated to be 4.3, the slope of 

the green LMS regression line. The set of rates (‘x’ points) for the protein from gene 

4982112 from Thermotoga maritima are significantly different from the rest (99.95% 

confidence on a Student’s t-test), showing this gene has a faster evolutionary rate than the 

rest of the family.

ERA analysis may also identify proteins with anomalously rapid rates of sequence 

change. Figure 4.8A shows an example, where all the rates for the protein from 

Thermotoga maritima in a putative endonuclease protein family have high relative rates. 

This orthologous family has 51 members, all in bacterial species, with only three 

apparent losses. The Student’s t-test returns a 99.95% confidence that the rates for this 

protein are significantly different from the others. Figure 4.8B shows that branch length 

for this protein in the family tree is anomalously long compared to the species tree. 

The function of this protein remains unclear. A few members are annotated as “putative 

endonuclease involved in recombination and possible Holliday junction resolvase”. The 

likely explanation for the anomalously high rate of sequence change in the Thermotoga 

maritima protein is that it has evolved to perform a different function. Examination of the 
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sequence alignment supports this suggestion. It has 218 amino acids whereas all other 

members of the family have lengths between 119 and 184, and there are two insertions in 

the middle of the sequence, as well as a locally weak alignment, all consistent with 

adaptation to a different function. 
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Figure 4.8B. The phylogenetic tree of a putative endonuclease protein family (left) 

and the corresponding portion of the species tree (right). This family has 51 members, 

all in bacteria. The protein 4982112 (shown in red) from Thermotoga maritima has an 

anomalously long branch length in the family tree, indicating rapid rate of sequence 

change, consistent with the ERA analysis.

4.3.4 Calibration and Evaluation of the Methods

As described earlier, each method was calibrated and evaluated against test sets of the 

most reliable results from the other. For the ERA method, the false positive rate is 

estimated using a set of 691 genes, all from families which have no apparent losses 

according to maximum parsimony, and with family sizes between 6 and 10. Any 

ERA assigned LGT events in this set are assumed to be false positives. The test set 

for the ERA false negative rate is 303 genes assigned as transferred by HAGL (rate of 

loss (T) larger than 5, at least 6 losses, a minimum reduction of losses of 4, family 

size between 6 and 10). Any of these genes not classified as transferred by ERA is 

counted as a false negative. Two parameters in the ERA method, the percentage of 

outlier points omitted and the P value for the Student’s t-test, are optimized using this 

benchmarking scheme. The result is shown in table 4.3A: when 90% of data points 

used and the threshold of P value is 99.9%, 53% of LGT events are identified by ERA 

with a specificity of 95%. These parameter values were used for the genome wide 

analysis. 
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For the HAGL method, 2304 ERA non-LGT genes (Student’s t-tests show these 

genes to have rates higher than the family average, family size between 10 and 15) 

were used to estimate the false positive rate. Any of these for which HAGL identifies 

LGT is counted as a false positive. A set of 529 genes classified as laterally 

transferred by the ERA method with high confidence (> 99.95%), and omitting 10% 

of outliers, forms the false negative testing set. Any of these genes not assigned as 

laterally transferred by HAGL are counted as a false negative. The three HAGL 

parameters: the minimum number of losses per unit branch length, Tmin; the minimum 

number of losses, Lmin; and the reduction of losses ∆L on gene omission, were 

optimized with this benchmark. The results are shown in table 4.3B. With at least 6 

losses, a T value larger than 5, and the minimum reduction of losses on gene removal 

at least 4, HAGL identifies 44% of LGT events with specificity of 96%. These 

parameter values were used for the genome wide analysis.
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Percentage of 

data points for 

Student’s t-test

Threshold of 

Student’s t-test 

score

Number of 

genes correctly 

classified as 

LGT

 (out of 303) 

Sensitivity

Number of 

genes correctly 

classified as 

Non-LGT (out 

of 691) 

Specificity

90% 172 56.8% 356 51.5%

95% 167 55.1% 429 62.1%

99% 162 53.4% 533 77.1%

99.5% 149 49.2% 614 88.9%

99.9% 134 44.2% 662 95.8%

  100% 

99.95% 125 41.3% 675 97.7%

90% 207 68.3% 324 46.9%

95% 205 67.7% 408 59.0%

99% 191 63.0% 521 75.4%

99.5% 176 58.1% 609 88.1%

99.9% 160 52.8% 658 95.2%

   90% 

99.95% 141 46.5% 663 95.9%

90% 209 69.0% 282 40.8%

95% 207 68.3% 364 52.7%

99% 199 65.7% 458 66.3%

99.5% 188 62.0% 531 76.8%

99.9% 166 54.8% 589 85.2%

   75% 

99.95% 149 49.2% 629 91.0%
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Table 4.3A. Calibration and Evaluation of the ERA method. Sensitivity is 

measured by the fraction of 303 LGT events that are identified. Specificity is 

measured by the fraction of 691 genes with no LGT that are so classified. Both test 

sets are high confidence HAGL method assignments. Results for a range of Student’s 

t-test thresholds are shown, as well as three thresholds for inclusion of rate outliers. 

On the basis of these data, a Student’s t-test threshold of 99.9% and inclusion of 90% 

of the data points were chosen, yielding a sensitivity of 53% and a specificity of 95%. 

Cutoff 

Parameters Threshold

Number of genes 

correctly classified as 

LGT (out of 529) 

Sensitivity

Number of 

genes correctly 

classified as 

Non-LGT 

(out of 2304) 

Specificity

0 237 44.8% 2145 93.1%

2 237 44.8% 2187 94.9%

4 236 44.6% 2202 95.6%

6 235 44.4% 2221 96.4%

8 231 43.7% 2228 96.7%

Minimum 

losses Lmin

10 220 41.6 2233 96.9%

3 311 58.8% 1734 75.3%

4 275 52.0% 2024 87.8%Minimum 

rate of loss 5 235 44.4% 2221 96.4%
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6 163 30.8% 2238 97.1%T

7 94 17.8% 2256 97.9%

0 264 49.9% 2101 91.1%

2 248 46.9% 2169 94.1%

4 235 44.4% 2221 96.4%

6 172 32.5% 2260 98.1%

Minimumlo

ss

change ∆L 

8 40 7.6% 2292 99.4%

Table 4.3B Calibration and Evaluation of the HAGL method. Sensitivity is 

measured as the fraction of 237 LGT events identified. Specificity is measured by the 

fraction of 2304 genes with no LGT so classified. Test sets are high confidence ERA 

assignments. Results for a range of rates of apparent gene loss (T), number of gene 

losses (L), and reduction in gene loss on eliminating the candidate gene or genes (∆L) 

are shown. On the basis of these data, thresholds of at least 6 losses, a T value (rate of 

loss) of at least 5 and a reduction in losses of at least 4 were selected, yielding a 

sensitivity of 44% and a specificity of 96%. Data for each parameter were obtained 

using the final values of the other two.

4.3.5 Application to the Set of 66 Genomes

Both methods were applied to all applicable proteins in the set of orthologous 

proteins, using the parameters derived in the previous section, and requiring at least 
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three family members for the HAGL method and at least six for the ERA method. 

Table 4.4 shows the number of LGT events identified in each genome by each 

method, and the total percentage of genes involved in LGT. As noted earlier, these 

numbers do not reflect all the LGT events in these genomes, and there may also be 

some method dependent biases. Nevertheless, interesting variations can be seen. The 

number of genes involved varies over a large range, from 3% of analyzed proteins in 

Mycoplasma genitalium and Buchnera sp. APS, to 33% in Nostoc sp. PCC7120, a 

Cyanobacterium and Halobacterium sp. NRC-1, an archaon. Organisms with small 

genomes, such as Mycoplasma genitalium, tend to have acquired fewer genes by 

recent LGT. This observation may be related to the fact that organisms with small 

genomes are mostly symbionts and also reflect constraints imposed by genome size 

limits. Analysis in terms of phylogenetic divisions suggests that some subgroups are 

more likely than others to accumulate LGT genes. For example, archaeal organisms 

generally have a higher percentage of assigned LGT genes: 18-33%. It is possible that 

this is a consequence of most archaea living in extreme conditions, such as high 

temperature or high pressure environments, and adaptation to these conditions is 

aided by the acquisition of new genes. It may also be that for some reason these 

organisms are more receptive to foreign genetic material.
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Genome Genome size # of genes 

analyzed

Number of 

genes 

assigned 

LGT by 

ERA

Number of 

genes 

assigned 

LGT by 

HAGL

Total 

number of 

genes 

assigned 

LGT

%

Aeropyrum pernix 2694 552 86 49 102 18

Agrobacterium tumefaciens str. 

C58 (Dupont) 5402 1383 163 200 285 21

Aquifex aeolicus 1553 612 145 64 164 27

Archaeoglobus fulgidus 2407 712 124 131 202 28 

Bacillus halodurans 4066 1170 106 192 236 20

Bacillus subtilis 4100 1179 107 164 210 18

Borrelia burgdorferi 1637 318 69 8 70 22

Brucella melitensis 3198 1141 125 111 173 15

Buchnera sp. APS 574 346 10 5 10 3

Campylobacter jejuni 1629 661 56 20 65 10

Caulobacter crescentus 3737 1102 185 98 229 21

Chlamydia muridarum 916 489 37 30 50 10

Chlamydophila pneumoniae 

AR39 1110 612 41 31 54 9

Chlamydophila pneumoniae 

CWL029 1052 614 38 31 51 8

Chlamydophila pneumoniae 

J138 1069 614 38 31 51 8

Clostridium acetobutylicum 3672 915 87 121 159 17

Clostridium perfringens 2723 885 108 102 155 18

Corynebacterium glutamicum 3040 870 106 108 168 19
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Deinococcus radiodurans 3102 828 187 104 244 29

Escherichia coli 4289 1659 115 238 288 17

Escherichia coli O157:H7 5361 1742 117 279 331 19

Haemophilus influenzae Rd 1709 823 51 85 103 13

Halobacterium sp. NRC-1 2605 616 150 128 204 33

Helicobacter pylori 26695 1566 571 44 54 70 12

Helicobacter pylori J99 1490 569 47 54 73 13

Lactococcus lactis subsp. lactis 2266 727 63 67 88 12

Listeria innocua 3043 1027 99 135 179 17

Listeria monocytogenes EGD-e 2846 1013 96 122 164 16

Mesorhizobium loti 7275 1538 196 304 399 26

Methanobacterium 

thermoautotrophicum 1869 603 118 87 149 25

Methanococcus jannaschii 1770 606 94 75 120 20

Mycobacterium leprae 1605 756 57 88 107 14

Mycobacterium tuberculosis 3869 1119 170 176 244 22

Mycobacterium tuberculosis 

CDC1551 4187 1112 170 175 243 22

Mycoplasma genitalium 480 219 6 3 6 3

Mycoplasma pneumoniae 688 231 11 9 14 6

Mycoplasma pulmonis 782 243 23 6 24 10

Neisseria meningitidis 2025 795 59 64 81 10

Neisseria meningitidis Z2491 2032 808 59 68 84 10

Nostoc sp. PCC 7120 6129 973 144 255 323 33

Pasteurella multocida 2014 881 73 86 115 13
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Pseudomonas aeruginosa 5565 1398 164 182 248 18

Pyrobaculum aerophilum 2605 594 102 89 144 24

Pyrococcus abyssi 1765 667 121 108 173 26

Pyrococcus horikoshii 2064 642 112 112 157 24

Ralstonia solanacearum 5116 1300 177 185 259 20

Rickettsia conorii 1374 442 52 25 62 14

Rickettsia prowazekii 834 384 19 12 22 6

Salmonella enterica subsp. 

enterica serovarTyphi 4749 1696 114 251 287 17

Salmonella typhimurium LT2 4553 1728 116 258 295 17

Sinorhizobium meliloti 6205 1496 173 260 321 21

Staphylococcus aureus subsp. 

aureus Mu50 2748 930 89 82 115 12

Staphylococcus aureus subsp. 

aureus N315 2624 914 89 72 107 12

Streptococcus pneumoniae 2094 690 63 56 77 11

Streptococcus pyogenes 1696 658 64 64 85 13

Sulfolobus solfataricus 2977 707 121 105 149 21

Sulfolobus tokodaii 2826 700 125 94 144 21

Synechocystis PCC6803 3169 785 122 134 190 24

Thermoplasma acidophilum 1478 521 87 69 110 21

Thermoplasma volcanium 1526 527 89 64 107 20

Thermotoga maritima 1846 688 126 113 183 27

Treponema pallidum 1031 327 38 24 45 14

Ureaplasma urealyticum 611 218 8 8 9 4

Vibrio cholerae 3828 1171 85 190 208 18

Xylella fastidiosa 2831 818 63 77 94 11
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Yersinia pestis 4039 1392 100 164 197 14

Table 4.4. Number of analyzed genes in each of the 66 genomes that are assigned 

LGT events by each method, and the total percentage of these genes affected in each 

genome. These numbers underestimate the total amount of LGT that has taken place. 

The fraction of genes varies over a wide range, from 3% of analyzed proteins in 

Mycoplasma genitalium and Buchnera sp. APS, to 33% in Nostoc sp. PCC7120, a 

Cyanobacterium and Halobacterium sp. NRC-1, an archaon.  The second 

column shows the number of genes in each organism, and the third, the number 

analyzed (those in orthologous families with three or more members).

4.4 Conclusion and Discussion

Two new approaches for studying lateral gene transfer have been developed: the High 

Apparent Gene Loss (HAGL) method and the Evolutionary Rate Anomaly (ERA) 

method. The HAGL method identifies LGT events by counting the minimum number 

of losses needed to explain the phyletic pattern of a protein family in terms of 

classical evolutionary descent. The higher the number of apparent losses and the 

smaller the evolutionary distance over which they occurred, the more likely that one 

or more lateral gene transfer events has taken place in the family. The specific genes 

involved are then identified by considering the reduction in the number losses in the 

family when each gene or sub-tree is removed. This method works best with small 

protein families with a large number of apparent losses.  The other method, ERA, 
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detects LGT events by finding proteins with significantly slower apparent rates of 

sequence change than the rest of the family. Evolutionary rates within many families 

vary considerably for reasons other than lateral gene transfer. We reduce the impact 

of this noise by using a robust linear regression technique to find average rates for a 

family. A conventional Student’s t-test is used to measure the probability that rates 

for one protein differ significantly from those of the rest of the family. Although 

uneven evolutionary rates limit application of the method, it is able to reliably detect 

a substantial number of LGT events. The method works best for larger families, 

where many genes determine the average evolutionary rate, and there are many rates 

involving each individual gene. The two methods are complementary, since HAGL 

works best with smaller families. Together, they detect a large number of LGT 

events, but by no means all. In addition to limitations imposed by noisy data, both 

methods require that LGT has taken place from an origin in near to a sequenced 

genome, and that the events be relatively recent. Nevertheless, sampling of LGT is 

sufficiently broad that many interesting cases are revealed, and an overall pattern in 

different genomes can be seen. 

Evaluation of the methods is complicated by the absence of a known high reliability 

set of lateral gene transfer events. Some well known biologically reasonable cases, 

such as the transfer of the pathogenicity island into E.coli O157 131; 133; 146; 164, cannot 

be used because the origin of the transfer is so far unknown. We have benchmarked 

by using a more reliable subset of LGT assignments from each method as a test set 

for the other. Both methods yield high specificity (less than 10% false positives) 
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under conditions of moderate sensitivity (detecting about half of the LGT cases in the 

test set). The low sensitivity partly reflects the fact that the two methods work best 

under different circumstances – HAGL for small families and ERA for larger ones. 

For the ERA method, sensitivity is also limited by the effect of varying evolutionary 

rates within the classical evolutionary descent regions of families, some times making 

confident identification of abnormal rates difficult. As discussed below, there is a 

wide variation in the uniformity of evolutionary rates within families. For the HAGL 

method, a high apparent rate of gene loss is necessary for a confident prediction, 

reducing sensitivity.  

The Least Median Squares analysis provides a set of relative evolutionary rates for 

protein families (Figure 4.6A).  98% of families have rates between 1 and 10 times 

that of the conserved reference set, with the most common value about 2.5 times 

reference. 35 families have rates slower than the reference value. Proteins involved in 

many interactions with other molecules, such as ribosome components, typically have 

small rates, while monomeric proteins with ‘simple’ functions in general have higher 

rates. So far, there has been no systematic study of these relationships, though. The 

new data provide a basis for such an analysis. The ERA method also detects 

anomalously fast rates of change of particular proteins. These may arise from 

imperfect extraction of orthologous subfamilies, but also from the result of gene 

fusion events (which tend to be associated with rapid sequence change), or changes in 

the network environment within a particular species. We have observed very high 

rates for some small families, such as the “Gifsy-1 prophage protein, a family with 
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four members (E.coli K12, E.coli O157, Salmonella typhimurium and Salmonella 

entereria). This phage family may be under very high selective pressure and also 

subject to much higher rates of accepted substitutions than those in prokaryotes. As 

figure 4.6B shows, families also differ widely in the consistency of the rates of 

divergence over the phylogenetic tree. Some of the irregularity comes from LGT 

events, and some from the accidental inclusion of proteins with different functions. A 

number of other causes are possible, such as the, the effects of gene fusion, and 

adaptation to changes in network environment. Again, there has so far been no 

systematic study of these factors, and the new data provide a basis for that. 

A number of other LGT identification methods have been developed. Most of these 

are not easily scaled for the analysis of many genomes 165. One class of methods that 

can be applied on a genome scale are those that rely on identifying irregularities in 

gene composition. Garcia-Vallve et al suggested a method for detecting lateral gene 

transfer in terms of irregular GC content 151. They consider genes as extraneous when 

their GC content deviates by > 1.5σ from the genome mean value or when the GC 

content in the first and third codon positions deviate from the genome mean in the 

same direction and at least one of them is > 1.5σ. We implemented this method and 

found some unexpected results. For instance, the family of ribosomal protein S17 is 

an apparently strictly inherited protein family, with member in every species. 10 

genes out of 66 members in this family are assigned as having undergone LGT, which 

seems very unlikely. Indications of over-prediction of LGT are in agreement with 

other studies 153 141 which concluded that gene composition methods have low 
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reliability.  These methods do have the advantage that, unlike HAGL and ERA, they 

can detect transfer events from outside currently unsampled genome space, provided 

the events are fairly recent. 

There are a number of ways in which LGT detection methods may be improved in 

future. High confidence predictions from the HAGL and ERA methods may provide a 

test set for more reliable parameterization and testing of gene composition methods. It 

may be possible to assemble a large enough set of biologically reasonable cases to 

provide independent testing. Proper combining of available methods using a Bayesian 

approach or machine learning, such as a Support Vector Machine, would then make 

maximum use of the different signals. Increasing numbers of fully sequenced 

genomes will reduce the number of cases where the origin of a transfer cannot be 

identified, so increasing the applicability of the HAGL and ERA methods. 

All family rates and variances, and LGT events identified by the HAGL and ERA 

methods are available at http://moult.umbi.umd.edu/LGT/.
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Chapter 5 Conclusions

The overall conclusions are as follows: 

1) I have developed two methods, the Gene Neighbor Method (GNM) and the 

Gene Gap Method (GGM), to predict operon structure in microbial genomes. 

The two methods were benchmarked with function pathway data and 

documented operon data. The primary use of the predictions is to infer the 

function of hypothetical proteins in genomes. 

2) I have developed a protein family clustering procedure and successfully 

classified the proteins in a set of microbial genomes. This set of protein 

families is complete in terms of classifying all protein sequences. 

Benchmarking using SCOP data and PFAM data shows that this protein 

family set is more sensitive than sequence alignment methods, at a low false 

positive rate. 

3) The protein family set was used to address several important questions in 

structural genomics: (1) What is the structure coverage for currently known 

families? (2) How will the number of known apparent families grow as more 

genomes are sequenced? (3) What is a practical strategy for maximizing 

structure coverage in future? Our study indicates that approximately 20% of 

known families with three or more members currently have a representative 

structure. The number of apparent protein families will be considerably larger 

than previously thought: We estimate that, by the criteria of this work, there 



159

will be about 250,000 protein families when 1000 microbial genomes have 

been sequenced. However, the vast majority of these families will be small. It 

will be possible to obtain structural templates for 70 – 80% of protein domains

with an achievable number of representative structures, by systematically 

sampling the larger families. 

4) Two methods were developed to identify lateral gene transfer events in 

microbial genomes, the High Apparent Gene Loss method (HAGL) and the 

Evolutionary Rate Anomaly (ERA) method. Although the methods do not 

provide complete detection of all LGT events, together, they do give a useful 

sampling, and reveal considerable variance in the extent of LGT in different 

organisms. 
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