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The macroscopic dynamics created by complex systems of microscopic cells
can be better understood using mathematical modeling. In this dissertation, we
study the dynamics of two different biological systems: phototaxis exhibited by
cyanobacterium Synechocystis sp. and cancer immune interactions as affected by
the protein B7-H1.

Synechocystis sp., a common unicellular freshwater cyanobacterium, has been
used as a model organism to study phototaxis, i.e. motion in the direction of a light
source. This microorganism displays a number of additional characteristics such as
delayed motion, surface dependence, and a quasi-random motion, where cells move in
a seemingly disordered fashion instead of in the direction of the light source. These
unexplained motions are thought to be modulated by local interactions between
cells.

In this work, we formulate a model of local interactions between phototactic



cells in order to study the structure of their quasi-random motion. We present a
stochastic dynamic particle system modeling interacting phototactic cells. We ex-
tend our model of local interactions to include global forcing due to light. We also
add an activation process of cells as they become affected by the presence of light.
We study the parameter space of our model by deriving a system of ordinary dif-
ferential equations that describe the dynamics of the system in one dimension. The
simulations of our model are consistent with experimentally observed phototactic
motion.

The second part of this dissertation focuses on the surface protein B7-HI.
This protein, also called PD-L1 and CD274, is found on carcinomas of the lung,
ovary, colon and melanomas but not on most normal tissues. B7-H1 has been
experimentally determined to be an anti-apoptotic receptor on cancer cells, where
B7-H1-positive cancer cells have been shown to be immune resistant, and in wvitro
experiments and mouse models have shown that B7-Hl-negative tumor cells are
significantly more susceptible to being repressed by the immune system. We derive
a mathematical model for studying the interaction between cytotoxic T cells and
tumor cells as affected by B7-H1. By integrating experimental data into the model,
we isolate the parameters that control the dynamics and obtain insights on the

mechanisms that control apoptosis.
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Chapter 1

Introduction

Cells are very complex, microscopic, organic machines, composing all known
life forms. They are able to convert multitudinous biochemical reactions into func-
tional beings, from unicellular bacteria to multicellular animals. Despite the small
size of cells, many open questions exist regarding cellular interactions and how such
interactions produce observable macroscopic dynamics. Approaching these problems
within a mathematical framework allows for a qualitative understanding of the un-
derlying mechanisms. This dissertation is on mathematical models and simulations
of intercellular interactions for two open research areas in biology and biomedical

sciences:

1. Phototaxis and local interactions between cyanobacteria, and

2. Cancer-immune interactions and B7-H1, a surface protein found on some can-

cer cells.

The first topic, phototaxis, is microbiological in nature and is the primary focus of
this dissertation. It is discussed in Chapters 2-4. The second topic, which is related
to cancer dynamics, is discussed in Chapter 5. In this introduction we highlight the
biological and mathematical modeling background for both topics and provide an

overview of the original work carried out in this dissertation.



1.1 Phototaxis

1.1.1 Biological background

Unicellular microorganisms have evolved to live in variable and extreme envi-
ronments. Some are capable of intercellular signaling and appear to utilize group
dynamics to achieve desired actions, such as moving toward a food source [46] or to-
wards light [11]. These group dynamics often result in emergent patterns which can
be modeled and analyzed using mathematics. Plants, such as sunflowers, can turn
themselves to improve their ability to sense light and engage in photosynthesis, a
phenomenon known as phototrophism. Phototaxis instead involves an entire organ-
ism moving in response to light. Phototaxis allows for optimizing photosynthesis,
habitat selection and improved reproductive ability [10, 37]. A variety of unicellular
bacteria are phototactic, e.g. Chlamydomonas, Euglena, and Synechocystis [37, 9].
These different cells vary widely in size, from 1 micron to over 50 microns, and use
a variety of different photoreceptors to sense light [37]. Some cells use information
from two photoreceptors to determine the direction of a light source [50]; whereas
some phototactic cyanobacteria use one photoreceptor to sense light at different time
points, using a differencing method to identify the direction of light [39]. The process
of identifying the direction of light is not known for all species, e.g. Synechocystis
sp. Phototactic cells take many physical forms; some phototactic cells are flagel-
lar, some are ciliates, and some have pili. Different cell motility structures result
in different global movement patterns; motility produced by these various cellular

structures is studied by biologists and mathematicians alike [23, 60, 62, 76, 80).



We are primarily concerned with the common freshwater cyanobacterium Syne-
chocystis sp. Synechocystis species PCC6803 (hereafter Synechocystis sp.) displays
the ability to move toward light, forming finger-like projections in the direction of a
light source. Synechocystis sp. is a model organism for studying phototaxis in a lab-
oratory setting. Extensive genetic and microscopic analyses have been carried out
to characterize the molecular basis for motility [9]. It has been demonstrated that
this surface dependent motility requires Type IV pili, unusual photoreceptors [44]
and a host of other less well-characterized proteins [9]. The pili are long hairlike ap-
pendages of different diameters. Some pili are used as the motion apparatus, while
the role of other pili is lesser known, though it is likely that they play some role
in signaling between bacteria. The movement and pattern formations have been
experimentally shown to depend on the density of cells, wavelength of light, and
the properties of the surface [11]. Phototaxis in Synechocystis sp. is a complex and
well-regulated process. Several mutants in phototaxis have been identified [9] and
yet a complete understanding of the signals and intercellular interactions that con-
trol the emergent behaviors of phototactic cells is still lacking. When Synechocystis
sp. is exposed to light, some cells begin to move, although not immediately and
not necessarily in the direction of light. They instead form small aggregations of
cells and eventually, with a time delay, some cells may move toward light, forming
the characteristic finger-like projections or swarms of cells [15]. Yet the motion of
individual cells is not as directed toward the light source as is the observed group
behavior. Individual cells instead display a quasi-random motion, that is, they move

in seemingly random directions.



1.1.2 Mathematical models relevant to phototaxis

An extensive amount of mathematical research has been conducted in related
fields. Specifically, we would like to mention some works on animal flocking and
chemotaxis. The Couzin-Vicsek model of flocking (and its many extensions) allows
animals or individual agents to be repelled by near neighbors, align with the average
directional heading of not-so-near neighbors, and be attracted to far neighbors [17,
79]. This model has lent itself to many applications as well as thorough mathematical
analysis, for example see [22]. Cucker and Smale offer a dynamical system which
models the flocking of opinions in human networks [18, 19]; this model has also been
subjected to significant analysis, for example see [35, 36]. Similar models of flocks
and schools have been developed for a variety of self-propelling agents such as birds
and fish, e.g. [3, 43, 57, 58, 66].

Chemotaxis, i.e., motion towards a chemical attractant, is also a field that
has been extensively studied in recent decades, starting from the celebrated work of
Patlak, Keller and Segel [47, 67]. For completeness, we refer the interested reader to
the following papers and to the references therein [1, 40, 42, 65, 78|. The motion of
chemotactic cells is typically subjected to different rules of motion than those that
are obeyed by Synechocystis sp. Consequently, most of the mathematical modeling
and analysis on the topic is irrelevant in the present context.

Furthermore, phototaxis has not been extensively subjected to mathematical
modeling. Only a few models of phototaxis have been developed, for example see

[14, 59]; however, these models do not consider the intercellular group dynamics. A



recent agent-based model of phototaxis considers cell interactions by transmission
of light by individual cells [30]. Another recent ODE and statistical model of pho-
totaxis examines rotational properties of an algal colony of biflagellar V. Carter:
cells [26]. In a series of papers, my collaborators have developed several families
of mathematical models for describing phototaxis [13, 15, 54, 55, 56]. In all these
models, the primary focus was on the phase of the initiation of the motion towards
a light source (including the associated time delay) and the resulting overall mi-
gration of the colony of cells towards the light source (including the modeling of
the finger formation). The emphasis of these analyses was on the role of the group
dynamics, as opposed to what can be associated with the behavior of the individual
cell. Missing from these analyses was the description of what happens in regions of
low to medium cell density. In this our work, we seek to develop, present, and study
mathematical models for such regions and that account for experimentally observed

quasi-random motion of cyanobacteria.

1.2 B7-H1 and tumor-immunology

1.2.1 Biological background

B7-H1 is a surface protein which has been found on carcinomas of the lung,
ovary and colon and in melanomas but not on most normal tissues [25]. An un-
derstanding of a blockade of B7-H1 has been theorized to be applicable not only
to cancer, but also to viral infections and inflammatory bowel disease [16]. In the

case of tumor immunity, experiments have shown that when the B7-H1 surface pro-



tein, also referred to as PD-L1 and CD274, is present on a tumor, cytotoxic T cells
(CTLs) are less effective at inducing apoptosis in the cancer cells [25, 41]. It is
believed that B7-H1 forms a blockade against CTLs by interacting with PD-1 on
the surface of CTLs [4]. Phase I clinical trials with an antibody which blocks B7-
H1/PD-1 interactions yielded complete remission in one patient with non-Hodgkin’s
lymphoma [8]. A better understanding of the mechanism and dynamics may allow
medical researchers to develop a cancer treatment schedule specifically targeting this
molecular shield, allowing the immune system to more effectively repress a tumor.

Cytotoxic T cells interact with cancer cells as to induce apoptosis via two
mechanisms: Fas/FasL binding and perforin [82, 2]. In the case of Fas/FasL binding,
the Fas ligand (FasL), which is present on some CTLs, forms a complex with Fas,
a protein on the surface of a tumor cell. Through this complex, CTLs are able to
send apoptotic signals to the cancer cells. In the case of perforin, the CTLs produce
perforin which is thought to perforate the tumor cell surface. This allows CTLs
to inject cancer cells with granzymes which induce apoptosis. This overview of the
apoptosis mechanism is clearly oversimplified. For a more thorough biological review
of these mechanisms we refer to [70]. The Fas-FasL mechanism is theorized to be
affected by the presence of B7-H1 [25], while perforin-mediated lysis, the primary
means of lysis during the first four hours of culture, is expected to be less affected
by the presence of B7-H1 [41]. Cytotoxicity can be measured experimentally by
performing a Chromium release assay which measures percent lysis of target, or

cancer, cells by effector cells, or CTLs.



1.2.2  Models relevant to B7-H1 and cancer immunology

Many tumor-immune system interaction models have been developed to date.
None of the existing mathematical models deal directly with B7-H1. A non-comprehensive
list of references include the following. In 1994, Kuznetsov et al. developed a basic
interaction model which utilizes experimental data to determine rate parameters.
Kirschner and Panetta offer a tumor-immune interaction model which incorporates
I1L-2 [48]. DePillis et al. offer an ordinary differential equation model which utilizes
“Hill”-like terms and fits percent lysis data [24]. Thorn and Henney produced a rel-
atively simple model using Michaelis-Menten enzyme-substrate kinetics which also
utilizes percent lysis data [77]. Wilson and Levy use an ODE model, fit to experi-
mental data, to analyze the interplay of a vaccine and immunotherapy [83]. Models
using kinetic theory have even been developed [6, 20, 21]. There are a few very mech-
anistic models of CTL-induced apoptosis. Lai offers a model of the Fas-FasL trimer
complex formation biology [52]. Another model considers the effect of Fas/FasL
binding on a population scale [81]. A detailed model for the internal workings of
granzyme-induced apoptosis has also been produced [34]. However, none of these
models consider both mechanisms of CTL induced apoptosis of a target cell. The
only mathematical modeling work to date on tumor-immune interactions specifically

addressing B7-H1 is our paper [33], presented in Chapter 5.



1.3 Making the connection between phototaxis and cancer

Both phototaxis and cancer-immune interactions are characterized by inter-
cellular interactions and communications which are not thoroughly understood, and
both are amenable to mathematical modeling efforts. As research in these fields
progresses, a few other links between these fields may emerge. One of the long-term
applications of studying phototaxis is in light-directed medicine. Understanding
how certain cells move under the influence of light is critical to future technological
advancements that may allow control of this movement. We might then be able
to control cells, with drugs attached or genetic material encoded, to target specific
cancerous tissues using light. Certain related efforts are currently being undertaken
using magnetic fields and drug-coated magnetic foreign bodies [61, 74|, as well as
light-activated drugs [7, 73|. The study of phototaxis may enhance our knowledge
of such light-activatable molecules, which could be utilized to ensure drugs are only
activated in the target area, so as to not endanger healthy tissue [38]. Furthermore,
chemotaxis, the phenomenon of cells moving toward a chemoattractant, which shares
some common principles with phototaxis, plays a fundamental role in cancer growth

(68, 53, 69, 71, 75], and in immunology in general, e.g. [28, 49, 64, 84].

1.4 Overview of dissertation

In this dissertation, we develop mathematical models and simulations for two
biological topics in intercellular interactions: phototaxis and B7-H1 cancer-immune

interactions.



In our models of phototaxis, we seek to develop a better understanding of
the local interactions and global forcing effects of directed light on the phototactic
cyanobacterium Synechocystis sp. We begin in Chapter 2, by analyzing experi-
mental data which are used to develop two agent-based stochastic models of local
interactions between particles. Numerous simulations are conducted to shed light
on the role and impact of the model parameters. In Chapter 3, we extend our agent-
based model from Chapter 2 to include global forcing due to a light source. This
model accounts for the activation of motion of cells triggered by light. Such external
forcing leads to aggregations forming and moving toward a light source with their
new awareness of the direction. In Chapter 4, we reduce our original model of local
interactions to a one-dimensional discrete stochastic particle system. This is used to
derive a reaction-diffusion master equation (RDME) for the probabilistic evolution
of the system, from which we can derive a system of ordinary differential equations
(ODEs) which deterministically describe the motion due to local interactions on a
line. This system of ODEs provides us with a direct and efficient access to study
the parameter space.

The simulations of our mathematical models qualitatively replicate many ex-
perimentally observed behaviors of Synechocystis sp. Our modeling efforts support
the novel idea that not all cyanobacteria are capable of sensing the direction of a
light source, i.e., that different traits of this rather primitive organism may exist.

In our model of B7-H1 and cancer-immune interactions, we study the effect of
the presence of surface protein B7-H1 on cancer-immune interactions. In Chapter 5,

we develop a model for cancer-immune interactions which depends on the two mech-



anisms of apoptosis: perforin-mediated and Fas/Fas-L-mediated. We isolate a set
of parameters which depend on the presence of surface protein B7-H1. We fit our
model to in vitro percent lysis data and support the predicted effect of B7-H1 on the
two mechanisms of apoptosis. Finally, in Chapter 6, we discuss general conclusions

of the research contained in this dissertation.

10



Chapter 2
Modeling local interactions during motion of cyanobacteria

2.1 Introduction

In this chapter, we mathematically model the local interactions of phototactic
cyanobacterium Synechocystis sp. and observed quasi-random motion in order to

address a series of questions:

1. If motile cells are not moving exclusively toward the light, are they moving in

random directions?

2. Is there a characteristic distance, within which cells are able to sense the

presence and behavior of neighbors?

3. If such a distance exists, what are the mathematical effects and biological

implications of varying this distance?

4. Can we develop a model which explains the presence of the observed aggrega-

tions of cells?

Our mathematical models follow the time-discrete dynamics of a finite set
of particles that are interacting in a two-dimensional domain according to rules
that involve certain random terms. The rules for the local interactions between
particles are based on our experimental observations given by the analysis of time-
lapse movies of the bacteria under a plethora of controlled conditions.

11



The structure of this chapter is as follows. In Section 2.2 we present the
biological background, describe the experimental setup, demonstrate some of the
experimental results, and formulate a list of observations that lead us in devel-
oping the mathematical models. The mathematical models are then presented in
Section 2.3. Two mathematical models are described. Our first model is a discrete-
time model of local interactions that allows cells to keep moving in their previous
direction, stop moving, or move in the direction of one of their neighbors. The
second model increases the randomness in the motion. This time, cells can elect to
change their direction of motion, but only if there are other cells nearby. Simulations
of these models are then presented in Section 2.4. These simulations show that the
models, in particular the local-interactions model, provide results that replicate the

experimental observations. Concluding results are given in Section 2.5.

2.2 Biological background

In our study, we consider a phototactic microorganism Synechocystis sp. This
unicellular cyanobacterium has been studied extensively by time-lapse video mi-
croscopy (TLVM). The experimental observations that serve as the basis to the
mathematical models that follow were generated in the Bhaya lab by our collabo-
rators, Devaki Bhaya and Susanne Wisen, at the Carnegie Institute for Science at
Stanford University. Time-lapse movies of moving bacteria were acquired under an
optical microscope and then analyzed as described below.

In Figure 2.1, we show several examples of some of the experimentally ob-
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(b)

(c) (d) B2

Figure 2.1: Experimental results illustrating (a) beginnings of finger-like projec-
tion formation, (b) surface dependence, and (c¢/d) aggregation and finger formation.
The bacteria within a matrix of extracellular polysaccharides appear as white dots
or circles. The bacteria are approximately 1pum in diameter. Each image contains
wildtype cells exposed to a light source radiating from the upper left corner of each
image. Inset (a) shows the front of a spot of cells 48 hours after plating. Inset
(c) shows the exact same spot frame as (a), 24 hours later. Images (b) and (d)
depict different sections of the same spot at different times. In (b), the density of
cells is very low and surface dependence is observable—the cells are surrounded by
polysaccharides formed by the cells in the liquid cultures, a process that continues
after the cells are placed on the agarose plate. The formation of this “slime” facili-
tates motility and is necessary for the cells to move onto the non-pre-wetted surface.
In (c) (as well as in (a) and (d)), the cells are observed to form small aggregations
as a precursor to the finger of cells pushing the boundaries of wetted surface toward
the direction of light.
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served characteristics of motion. Each image contains wildtype Synechocystis sp.,
exposed to a directional light source coming from the top left of the domain. In
Fig. 2.1(a), the beginnings of finger formation are observed. In Fig. 2.1(c), the same
part of the spot is observed 24 hours after (a) with significantly more prominent
fingers. The cells observed in Fig. 2.1(b) and 2.1(d) are taken from the same ex-
periment at different time points and locations on the plate and highlight the wide
range of observable cell behavior. Fig. 2.1(b) illustrates the effect of the surface on
movement — cells preferentially move on a pre-wetted surface which contains extra-
cellular polysaccharides produced by the cells. In (d), cells form small aggregations
and move toward the light-source. Such aggregations of cells can be seen in all four
images. We also observe the tendency of cells to align along the boundary between
the pre-wetted and agarose-only surface in Fig. 2.1(a), (c), and (d). In each figure,
we note the tendency of some bacteria to move in pairs, although it is important to
note that in some cases, these pairs of cells are cells which have divided but have
not separated.

Not illustrated in Fig. 2.1, the wavelength of light and density of cells also
impact finger formation and general cellular movement. Additionally, directional
cell movement is typically delayed; i.e. after cells are plated, they do not appear to
start moving in the direction of light until a few hours have passed. Furthermore,
cells have been observed to sense the presence of and move toward other cells over
a large distance, as is shown in [55]. This seems to imply the existence of at least
one communication mechanism between cells.

To analyze the experimental data, we used ImagelJ, a public domain image

14



processing software produced by the National Institutes of Health, and a plug-in
called Particle Tracker developed by Shalzarini and Koumoutsakos [72]. In Fig. 2.2,
we demonstrate the cell-position-identifying capabilities of Particle Tracker. We

observe that most of the cells in the image are correctly identified.

Force due
to light

Figure 2.2: An example of using the Particle Tracker plugin for ImagelJ. Cells that
were identified in this frame have red circles around them. The light source imposes
a force on the cells in the direction indicated on the picture. This same directional
force is also present in the series of images in Fig. 2.3.

After the cells have been identified in a series of images, we further use the
plug-in to track cells as they move. In Fig. 2.3, the different subfigures are shown
at consecutive times, taken 50 frames, or 100 seconds, apart. These cells, observed
under an optical microscope, are exposed to a directional light source, the force
pointing toward the upper left corner of the each image, as illustrated in Fig. 2.2
and Fig. 2.3(g). Particle Tracker is used to identify trajectories over 453 images,
taken at 5 second intervals. In Figure 2.3, we show the 44 trajectories which are at
least 100 frames in length.

In Figure 2.3, a few patterns of motion can be identified using the trajectory
analysis. In Fig. 2.3(a), a couple of cells are identified as stationary. The small

dot-like trajectories of these cells illustrate that these cells do not move significantly
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ovestoward
eighbor™ |

Figure 2.3: Example of trajectories produced using Particle Tracker. (a) Indicates
cells which were stationary for the entire 2000 s. (c) Illustrates a pair of cells
which move together for frames (a)-(e). (e) Highlights a cell which turns to move
toward a neighbor. (g) Shows the direction of light for the course of the experiment.
Trajectories were only included if they were more than 100 frames (500 seconds) in
length. Also, note that the different colors allow for optical differentiation of cell
trajectories and do not indicate anything about the cells or their motion.
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from their original positions. Cells moving as a pair are marked in Fig. 2.3(c).
In Fig. 2.3(e), we see a cell that abruptly changes its direction to move toward a
neighboring cell. Additionally, in comparing the series of figures, it is possible to
identify at least one cell moving in the direction of light, although this is clearly not
the case for the majority of cells.

It is clear from Fig. 2.3 that the particles do not obey a simple rule of motion.
They do not all move towards the light source. Is there any bias in the direction of
their motion? To study this question we use numerical data generated by Particle
Tracker to compute a histogram illustrating the distribution of angular direction of
cellular movement. The data set we considered this time is shown in Fig. 2.4(a).
We cropped this picture to the small rectangle shown in the northeast corner of the
picture and used Particle Tracker to detect and track particles. The light source
in this picture is to the northwest, or %7? radians (about 2.4), and directly above
and to the left of the small selection, in the region with a visibly higher cellular
density, is a finger moving toward the light. A scatter plot of the distances and di-
rections travelled by the particles from the selected rectangle is shown in Fig. 2.4(b).
Fig. 2.4(c) is a histogram for angular directional movement of cells between time
frames. One might expect that the cells in the selected area would also be traveling
in the direction of the finger, however, as can be seen in the histogram in Fig. 2.4(c)
this is not the case. The cellular movement is almost uniformly distributed with
no apparent bias toward light and possibly a slight bias toward moving to the right
during this 10 minute interval.

The focus of this work is on regions of low to medium density, where we observe
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Histogram of angles

(b)

Figure 2.4: An example of using Particle Tracker data to determine the direction
of the cells. In (a), we see a large mass of cells with a smaller region selected. This
figure shows one image taken from a sequence of 301 with 2 seconds between each
frame and spanning a total of 10 minutes. (b) Scatter plot showing the direction
and how far each cell travels. (c) Histogram of the angular movement (in radians)
between frames from the selected region in (a). The direction of light is to the upper
left corner, or approximately 2.4 radians; however, note that the histogram in (c)
does not indicate any preference of cells to move in that direction.
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a quasi-random motion. Cells do not necessarily move only towards light, but also
in a different, seemingly random motion as demonstrated by the particle trajectories
in Fig. 2.3. Even at the base of a directed finger as seen in Figure 2.4, the overall
movement of cells is not directed toward the light source. This quasi-random motion
has also been observed within fingers on short time scales.

The basic characteristics of the observed dynamics of the cells in the low to

medium density area can be described follows:

1. At any time, cells that are moving may stop moving. Conversely, at any time,
stationary cells may start moving. This is not clear from the tracking example

in Fig. 2.3, but has been observed in movies.

2. There is a clear persistence in the direction of the movement. Cells that
move in a given direction may continue moving in the same direction. This is

apparent in Fig. 2.3 with the relatively straight tracks that the cells follow.

3. The duration of the time in which a cell persists moving in a given direction
is not fixed. It can vary over a large range of values. This is also evident from

Fig. 2.3 as the cells travel different distances before turning.

4. The direction of the motion of a cell may change at any time. While this is

illustrated in Fig. 2.3, it is more obvious in the TLVM movies.

5. When the direction of the motion changes, there is some tendency of moving
in the direction of a neighboring cell. One example of this was highlighted in

Fig. 2.3.
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While analysis of time-lapse movies and snapshots of Synechocystis sp. is useful
to characterize general movement of cells, it is still quite difficult to understand the
fundamental interactions that are taking place between cells that allows for the

observed movements and patterns.

2.3 A mathematical model for local interactions of Synechocystis sp.

In this section we present mathematical models of the quasi-random motion
of cells. Two models are discussed: a local-interactions model and a neighbor-
dependent random motion model.

In exploring local interactions between cells, it is important to note that simple
random motion does not elucidate the patterns we observe experimentally. This is

evident, e.g., by the nature of the particle trajectories shown in Fig. 2.3.

2.3.1 Model assumptions

We begin by stating our formative assumptions.

1. Neighbor detection. We assume that cells not only can detect the presence
of neighbors within a given radius but also can detect the relative location
of neighbors within that radius. The radius of a neighbor detection will be
considered to be a model parameter. This assumption is motivated by a few
biological observations. First, the pili which grow on the cell are known to
get longer with time. Cells have been observed to make connections through

these pili. These connections are not easily observed with an optical micro-
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scope and are, hence, not shown in our images illustrating typical cell behavior
in Fig 2.1. The length of the pili could be directly related to the neighbor de-
tection distance. Second, a signaling molecule, which quickly degrades, could
have a similar effect. A larger neighbor detection distance could be observed
over longer time scales or for differing agarose densities. Lower densities may
allow for faster diffusion of a signaling molecule. Such a signaling molecule has
not yet been experimentally identified for this bacterium, but it is reasonable
to assume one may exist. Overall, not that much is known about either mech-
anism biologically, and therefore we assume the existence of a finite neighbor
detection distance without making any further assumptions about the under-

lying biological mechanism, leading to our next assumption.

. Communication mechanism unknown. As mentioned, we do not make
any assumptions about the specifics of the communication mechanisms which
allows cells to locate neighbors; though various mechanisms are feasible, in-
cluding chemical signaling, local force sensing, and physical interaction. While
these mechanisms are of interest, they will not play any role in our model, at

least at this stage.

. Cell density. We also assume that cell density is relatively low and that

spatial hindrance effects are negligible so that we can use a particle model.

. Movement. Regarding the motion of cells, we assume cells may follow one

of the following rules:
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(i) A cell may continue moving in the direction it was previously moving,
(ii)) A cell may stop moving, or

(iii) A cell may orient itself to move in a different direction. For our local
interaction model, we will assume that the new direction is set toward
a neighboring cell. For the two random models discussed above, any

direction is equally viable.

5. Memory. One of the key assumptions embedded in the model is that cells
have very long memory (in fact, the way the rules are formulated, the memory
lasts forever). This means, for example, that a cell that became stationary still
remembers the direction of the motion that brought it to its state, and hence
motion in the same direction can resume at a later point in time. In such a
way, particles that aggregate and stick together can find themselves separated
at a later time. While this has not yet been shown for Synechocystis sp., the
Muyzxococcus bacterium has been observed to leave a polarized trail of slime,
detectable by the cell, which supports the idea of a cell having a long-lasting

memory [85].

6. No directional persistence with change of direction. We also observe
that, unlike flagellar chemotactic cells, Synechocystis sp. have no visually
apparent directionality. That is, the cells do not have an obvious head or
tail which indicates the preferred directionality of the cell and whether the
cell is moving forward or turning. We model this by assuming that if a cell
turns, the turning angle is not biased based on the previous direction. Other
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mathematical models have included a bias in which agents, when turning,
tend to choose new directions that are similar to the current forward-moving
direction, e.g. [63]. That is, we assume our cells have no inherent directionality
as we do not have experimental evidence to justify imposing such a bias,
especially in the phase of cells at the base of a finger where quasi-random
motion is prevalent. Note that this type of bias is different from considering

global forcing on the cells due to a directed light source.

2.3.2 Model A: A local-interactions model

Given the three rules of motion, we formulate our model as a discrete-time dy-
namical particle system. Our approach resembles the method used to study persis-
tence in chemotaxis in [63]. The state of the system at time ¢ is {x;(t), v;(t), 0:(t) } ¥,
where N is the number of cells, v;(t) € {0,1} is the velocity of cell ¢, 6;(t) € [0, 2)
is the angular direction of cell 7, and z;(t) € R? is the position of cell i calculated
using v;(t), 0;(t) and x;(t — 1). Note that the velocity of each cell can be either 1 or
0. In this way, we are assuming that a cell can either move at constant velocity or
stop, as discussed in the assumptions above.

In this model, we allow cells to move in the direction of a neighboring cell. We
define a neighboring cell to be any cell 7 which is within an interaction distance D

from the cell 7 of interest. In this stochastic model, we only allow a cell to change
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direction with probability 1 — a. We formulate this as:

0;(t), with probability a,
0:i(t+1) = (2.1)

iy with probability &2 for j s.t. ; € Bp(x;),

where Bp(x;) is a ball of radius D centered at x;, n; is the number of cells with
position x; contained in Bp(x;), i.e. ||z;(t) —x;(t)||, < D, and n; is the angle of
the vector pointing from particle ¢ to particle j. In this way, when a cell changes
direction, with probability 1 — a, the direction presented by each neighboring cell
J has an an equal probability, (1 — a)/n;, of being selected as the new directional
heading for cell 7. Note that if n; = 0, a cell does not have any neighbors. In this
case the variable ; remains unchanged, i.e., 6;(t + 1) = 6,(t).

The velocity in our model (which is either 0 or 1) is determined independently
of the choice of direction. It remains unchanged with probability 0. It switches to

the other state with probability 1 — b. This is formulated as

v;(t), with probability b,
vi(t+1) = (2.2)

1 —w(t), with probability 1 — b.

Finally, after updating the velocity and angle associated with each cell, all cell

positions are updated according to

cos(6; 1
zi(t + 1) = x;(t) + vi(t + 1) (Bile+ 1)) : (2.3)

sin(6;(t + 1))
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2.3.3 Model B: Random neighbor-dependent movement model

In the random neighbor-dependent movement model, a cell is only allowed to
change direction if there is a neighbor within an interaction distance D. In this case,

the direction is chosen randomly. We formulate this as:

0;(t), with probability a,

n(t), with probability 1 — a if there exists z; € Bp(x;).

Here, for any time ¢, n(t) is a uniform random variable distributed in [0, 27). The

position and velocity are calculated in the same way as in Section 2.3.2.

2.4  Simulations

To justify the complexity of the Models A and B, let us first consider a simpler
model. Consider a discrete-time model of random motion where cells are allowed to
change direction to a uniformly chosen random variable on [0, 27) with probability
0.2 for each time step; we refer to this as Model R. We compare this random motion
Model R with a the neighbor-dependent random model, Model B, where, for each
time step with probability 0.2, cells are allowed to change direction to an angle
chosen uniformly from [0, 27), but only if there is a neighboring cell within 5 pixels
distance. In Figure 2.5, we compare the random model, shown in Fig. 2.5(a)—(c),
to Model B, where a directional change in movement depends on the presence of a

neighbor within D = 5 pixels. Clearly, Model B, which is a rather simple neighbor-
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dependent model, yields results that better match the experimental data, compared
with the random model. This is manifested in the cells in Fig. 2.5(d)—(f) that tend

to align along the boundary (similar to what is experimentally observed).
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Figure 2.5: (a)—(c) Random motion model (Model R) and (d)—(f) Random motion
with neighbor dependence model (Model B) on changing direction for N = 250 cells
at times t=0, 350, and 1000 time steps. The red circle around the cell in the upper
left hand corner of each image represents the interaction distance D. For (a)—(c),
there is no relevant D and b = 0.5. For (d)—(f), D =5, a = 0.8 and b = 0.5. The
particles are constrained to a circle with a radius of 100.

We quantify this behavior in Figure 2.6. To do this, we partitioned the 100
pixel radius circle into 169 equal area sections. The sections are labeled in Fig. 2.6(a).
For each model, we then identified the numbered partition for each cell in space and
times from start to 1000 time steps. This data was then compiled into a histogram
counting how many cells fall into each section for each model. In this way, each
cell is counted 1001 times. In Fig. 2.6(b), we show a histogram of the cell locations

for the random motion Model R. We observe that the cells are relatively uniformly
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distributed in space-time. In contrast, in Fig. 2.6(c), we show a histogram of the
cell locations over each time step for the neighbor-dependent random motion, Model
B. In this case, we observe that cells are gathering on the boundary, partitions 122
through 169, with approximately twice the probability of them falling in the interior
of the circle, partitions 1 through 121. This ratio is likely parameter dependent.

Qualitatively, this agrees with the experimental observations.

16015915815715615
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114113 1059 I5p
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4000 4000

4000
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Figure 2.6: (a) Partitioning the domain into 169 equal area sections. The numbers
represent partition number labels. (b) A histogram of the number of cells in each
partition over time for the random motion model (Model R). (c¢) A histogram of
the number of cells in each partition over time for the neighbor-dependent model
(Model B) (d) A histogram of the number of cells in each partition over time for
the local-interactions model (Model A) Each histogram includes N = 250 cells and
counts the number of cells over ¢ = 1000 time steps. For Model A and B, the
parameters are D = 5, a = 0.8 and b = 0.5. For Model R, a = 0.8 and b = 0.5.
Cells are clearly observed forming aggregations on the boundary in (c) and (d).
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We now consider a few simulations comparing Model A, the local-interactions
model, from Section 2.3.2, to Model B, the neighbor-dependent random movement
model, from Section 2.3.3.

In Fig. 2.7, we see a comparison of Models A and B in which cells are con-
strained to a circle with a diameter of 200. We compare the effect of varying inter-
action distance and consider the cases of D = 5 and D = 10. The length scale of
interaction distance D is shown in the upper left corner of each picture around a
stationary cell. This cell, contained in a circle of radius D, is not included in any
of the simulations. Each simulation is run with N = 250 cells and can be seen at
t = 0,50, and 350 increments. The initial conditions, seen in 2.7(a), 2.7(d), 2.7(g),
and 2.7(j), are identical in all simulations. We observe that for the local interaction
model in 2.7(c) and the random neighbor-dependent motion model in 2.7(i), the
same cells tend to stay around the border, similarly to what is seen in experiments.
We recall that there is no mechanism that is embedded into the model that forces
cells to stay on the boundary of the domain once the boundary is reached. Indeed,
occasionally, individual particles return back into the domain. The cells appear to
be slightly more uniformly distributed in 2.7(i) than in 2.7(c). In 2.7(f), Model A
with D = 10 yields cells aggregating in small clumps of 5 to 15 cells. The simu-
lated cells in Fig. 2.7(1) appear to be distributed uniformly with little cohesion to
the boundary. In fact, the motion observed in the simulation depicted in 2.7(j)—(1)
is very similar to the random motion model from Figure 2.5 because the chosen
surface density and interaction distance are such that, on average, each cell has 1.5

neighbors, effectively removing the neighbor-dependence from this model.

28



PR S RV . . LN .
o . . ot . -
S e e . 4 . o L4 "o .:..o.
S . Gl T S T
o . o o .
PR : K UL TN s . . Cec e o, )
. : . s St B . . v, ¢ e
TR e P G * e $°3 :
. . " ) . ® . ] ..
% 2 o M Y - LN
K % B .
J.O. P Ceene . h '.“" - ". . A K
¢ . . . . ’ L
. FA - | LA -~ 'y = ety
o * &, “ E . .
- ¢ %
(a) (b) (c)
) ()
3° e ~ . >
° T e . e . .f
3 * 1]
L4 - o, .
vy ‘e, . AT
U W " i ¢ o .0'
o . [ . - .,
A A v PR
. - - o . .« .
e L Y ¥ 4 * pJ
- ® ? o < . & £
v W ’ p N
. 'o' . A 3 -+ o. ot
, e * ‘AT
® . ®
’ -
* ®w .
LI
A
PRI I .
verl e e :
. o )
s W™ . .
e ene .
d .
. LR
* R
a, ‘. .
(i)
) ()
s e > L e .
o e .
Lt :".,'° se e N .'
e ot N N ..
< .
. oo LA s, " set,
yh o el SRR T : R
T R cr L el e 2 .l
(.) * e ° (k) : d (l) Seo e

Figure 2.7: (a)—(f) Model A; (g)—(1) Model B. N = 250 Particles are constrained
to a circle or diameter 200. Shown are simulation results at times ¢t = 0, 50, 350.
The interaction distance is D = 5 for (a)—(c), (g)—(i) and D = 10 for (d)—(f),(j)—
(). Identical initial conditions are used in all simulations as well as parameters
a = 0.8 and b = 0.5. Note the different aggregation patterns and their dependence
on parameter D.
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In Figure 2.6, we offer a quantitative comparison of Models A and B for D = 5.
We partition the domain into 169 equal-area sections and count the total number
of particles that are present in each cell over 1000 time steps. We observe that for
Model A, in Fig. 2.6(d), the boundary, partitions 122 through 169, has more cells
on it with larger variability than for Model B (shown in Fig 2.6(c)). We suspect
that this is due to the formation of aggregations on the boundary. As previously
stated, cells have been experimentally observed to collect along the boundary.

The boundary conditions in Fig. 2.7 simulate a setup that is similar to the
experimental setup focusing on short-time dynamics of cells. In experiments lasting
relatively short periods of time (on the order of hours), cells are confined to a given
area due to the properties of the underlying surface. However, in experiments lasting
longer periods of time (on the order of days), cells overcome the underlying surface
and, in the absence of a directional global light source, spread out on the surface of
the agarose.

In contrast, we consider large-time simulations of cells that are free to move
anywhere in R%. Such simulations are shown in Fig. 2.8. The initial conditions
are identical to the initial circular drop of cells seen in Fig. 2.8(a). The local-
interactions model, Model A, is shown in Fig. 2.8(a) with D = 5 and Fig. 2.8(b) with
D = 10. The random neighbor-dependent model, Model B, is shown in Fig. 2.8(c)
with D = 5 and Fig. 2.8(d) with D = 10. All results are shown at ¢t = 1000.
Clearly, in Figs. 2.8(a),(c),(d), the majority of cells have dispersed. Fig. 2.8(b)
stands different. In this case, of Model A, with the longer interaction distance, few

aggregations still remain after these rather long-time simulations, in spite of the
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particles not being confined to the domain that is shown in the figure.
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Figure 2.8: (a), (b) Model A; (c), (d) Model B. Both models are simulated in R?
at t = 1000 for N = 250 particles. The interaction distance is D = 5 for (a), (c)
and D = 10 for (b), (d). The initial conditions and parameters a, b are identical to

those used in Fig. 2.7. More particles stay within the shown domain for simulations
of Model A.

To complement the previous cases, we also consider periodic boundary condi-
tions. In Fig. 2.9, we show results obtained from simulations of cells on a 240 x 240 re-
gion with periodic boundary conditions. The same initial conditions as in Fig. 2.7(a)
are used. The results are shown at time ¢ = 3000. Model A is shown in Fig. 2.9(a)
with D = 5 and in Fig. 2.9(b) with D = 10. Model B is shown in Fig. 2.9(c) with
D =5 and in Fig. 2.9(d) with D = 10. In these snapshots, aggregations are visible
in Fig. 2.9(b) for D = 10 in Model A. There appears to be slightly more white space

in Fig. 2.9(a) than in Fig. 2.9(c) and Fig. 2.9(d). In order to quantitatively com-
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pare this clumping effect seen in Fig. 2.9(a) and Fig. 2.9(c), we show a histogram
of how many neighbors are found within a distance of 5 or 10 pixels of each cell
in Fig. 2.10. For Model A with D = 5, we observe in Fig. 2.10(a) that within 5
pixels of each cell, there are more cells with two or more neighbors than in Model
B shown in Fig. 2.10(c). In comparing the same histograms, there are also slightly
more cells with no neighbors for Model B than for Model A. Within 10 pixels, the
phenomenon is slightly reversed; that is, within 10 pixels, in Fig. 2.10(b) there are
more cells with no neighbors for Model A than for Model B, in Fig. 2.10(d). This
trend reversal implies that the aggregates seen in simulations of Model A may be
tighter, as there are more isolated cells, meaning the other cells must be packed into
a slightly smaller space.

In Fig. 2.11, the trajectories of five cells, with identical initial conditions and
the same model and interaction distance conditions as in Fig. 2.9, are illustrated for
t = 1000. These trajectories are plotted on top of the final locations of the other
245 cells at time ¢ = 1000. Note that the distance travelled by the particles is longer
in both models when the local interaction distance is smaller.

We further explore properties of Model A by considering multiple runs with
the same initial conditions and setup. In Fig. 2.12, we consider six different runs, all
with an interaction distance D = 10 pixels and N = 250 cells at ¢ = 1000 time steps.
Note that in comparing the six images the resulting distribution of cells and the size
and number of aggregations are similar, but there do not appear to be any stable
aggregations which routinely form in the same location. In fact, the aggregations

which form move over time as well as dissociate and form new aggregations.
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Figure 2.9: (a), (b) Model A; (c), (d) Model B. Periodic boundary conditions;
t = 1000; N = 250 particles. The interaction distance is D = 5 for (a), (c) and
D =10 for (b), (d). The initial conditions and parameters a, b are identical to those
in Fig. 2.7.
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Figure 2.10: Histogram illustrating how many cells have 0 to 10 neighbors within 5
or 10 pixels. Subfigures (a), (b) correspond to the simulation of Model A with D =
5 in Fig. 2.9(a). Subfigures (c), (d) correspond to the simulation of Model B with
D =5 in Fig. 2.9(c). In (a) and (c), we graph the number of neighbors that are
within 5 pixels of each cell. In (b) and (d), we graph the number of neighbors that
are within 10 pixels of each cell.
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Model A

Model B

Figure 2.11: The same five cells traced over 1000 time steps for (a), (b) Model A,
and (c), (d) Model B. Periodic boundary conditions; ¢ = 1000; N = 250 particles.
The interaction distance is D = 5 for (a), (¢) and D = 10 for (b), (d). The initial
conditions and parameters a, b are identical to those in Fig. 2.7. Model A allows for
more persistence in directed movement.
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Figure 2.12: (a)—(f) Six realizations of Model A with the same initial conditions and
parameters a and b, using D = 10 and N = 250 cells at time ¢ = 1000 time steps.
While precise locations of aggregations vary, the aggregation sizes and numbers are
similar.

Varying the interaction distance D, we can gain further insight about the
properties of this model. In Fig. 2.13, we consider three different interaction dis-
tances D =10, 20, and 40 at ¢ = 1000 time steps with the same initial conditions
but different boundary conditions. In Fig. 2.13(a)—(c), cells are constrained to a
circle, whereas in Fig 2.13(d)—(f), cells are simply restricted to R? (note that in
these cases not all cells are necessarily visible in the viewing window). In comparing
the results for D = 10 and D = 20, we observe that the distribution and number
and size of aggregations of cells is very similar. For D = 40, even the locations of
the aggregations is almost identical. This is typical for simulations where D = 40;
however, it is also possible for three aggregations of cells to form. The positions of

the four aggregations and the distances between aggregations are generally slightly
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different. In both cases, all cells for D = 40 typically end up in an aggregation.
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Figure 2.13: A study on the effect of interaction distance D. We consider (a), (d)
D =10, (b), (e) D = 20, and (c), (f) D = 40 with the same initial conditions and
same parameter a, b and N = 250 cells at time t=1000. For (a)-(c), the cells are
constrained to a 200 pixel diameter circle. For (d)-(f), the cells are allowed to move
anywhere in the R? plane. As D increases, we observe fewer aggregations but with
more particles.

2.5 Conclusions

In this chapter, we sought to answer a series of four questions regarding the
seemingly random motion of and communication between cyanobacteria. In our at-
tempt to answer these questions, we presented two mathematical models for study-
ing the local interactions during the motion of Synechocystis sp. One model (B)
assumed that a cell chooses to move in random directions and another model (A)
assumed that a cell may choose to move in the direction of ones of its neighbors.

Comparing these models, we can discuss question 1. While we were not able to
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completely isolate whether the chosen direction of cellular movement is completely
random or not, in model A, we do observe aggregations and interactions slightly
more consistent with experiments. Additionally, our assumptions of model A offer
a plausible mechanism by which aggregations form, a possible answer to question 4.
To approach questions 2 and 3, for both models we assumed that cells only move if
a cell has a neighbor within some interaction distance D. We briefly compared this
to a model of completely random motion as well as varied the interaction distance D
to study the effect of such a distance. The movement observed with models A and
B was much more consistent with experimentally observed cell movement than with
the purely random model. However, it is still possible that the interaction distance
D should instead be modeled as an independent property of each cell, possibly even
varying with time.

Beyond these questions, there are similar characteristics of the model simula-
tions and experimentally observed cell movement. True to the experimental obser-
vations, both models never reach a stationary steady state. The cells, unless stuck
to the boundary with no neighbors within interaction distance D, are in a constant
state of motion. Cells that do not permanently adhere to the boundary are capable
of moving again at a later time. Both models include the persistence in the motion;
yet, it is the possible that the direction of motion will change at any time.

While the intercellular signaling in Synechocystis sp. is not well understood,
it is thought to be present. The local interaction model we have developed does
not specify how the signaling takes place. It is possible that signaling depends on
the proximity or connectedness of pili of individual cells. Additionally, cells might
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release compounds which signal to other cells which direction to move. For instance,
it has been shown that cAMP may be part of the signaling pathway required for
motility [12]. The interaction distance in our model could be related to the time scale
for diffusion of such a molecule, or possibly be related to the length of a pilus. If the
latter is true, our model suggests that cells that have been genetically modified to
have longer pili might form larger aggregates of cells, a possible biological implication
to answer question 3.

Both models, the local-interactions model and the neighbor-dependent random
model, produce results that better capture the experimental results than a model
of a simple random motion. These models provide a possible explanation of the ob-
served quasi-random behavior. The interaction distances for simulations considered
in this paper seem to provide upper and lower bounds for reasonable behavior. Fur-
ther study of this parameter, in connection with density and experimental results,
may provide more insight into the relevant communication length-scale between
cells. Understanding the local interactions between cells may turn out to be the key
ingredient in understanding the mechanisms that control phototaxis. This might ul-
timately lead to understanding the source of the observed dynamical patterns (such
as the finger formation, delayed motion, etc.). We have carried out a preliminary
study of the integration of local-interaction models with global forcing (due to the

light source) in [32], which we discuss further in the next chapter.
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Chapter 3
Phototaxis: incorporating global forcing due to the light source

3.1 Introduction

In this chapter, we extend our model of local interactions from Chapter 2 to
include global forcing due to light. This is done by studying an activation process
of cells as they become affected by the presence of light.

Several published mathematical models of phototaxis focused on light, in ef-
forts to replicate the experimentally observed emerging dynamical patterns of cells.
Burriesci and Bhaya derived an agent-based model where cells follow a biased ran-
dom walk in the direction of light with preferential movement toward regions previ-
ously occupied by cells [15]. They also analyzed experimental data to determine the
average velocity of cells in various phases of their motion, i.e. at the front of a finger,
back of a finger, or along an edge, and determined that at least one cell is motile
in 100% of aggregates of 8 or more cells, about 70% for groups of 4 to 6 cells, and
less than 10% for groups of 3 or fewer cells. The model in [15] did not incorporate
group size or any form of quorum sensing. All cells ultimately move in the direction
of light, producing finger-like projections. Levy and Requeijo derived a cellular au-
tomaton model and a related system of stochastic differential equations that model
the position of particles, the surface on which the particles move, and the excitation

level of particles, a novel concept where cells become excited based on the average
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excitation of their neighbors [55]. The excitation level determined the ability of
a cell to sense light. Once the excitation of cells passes a critical threshold, their
motion is directed towards the light source with the addition of a two-dimensional
Brownian motion. Levy and Requeijo also were able to derive the continuum limit
in the form of a system of partial differential equations from their stochastic particle
system [54]. Ha and Levy extended the Cucker-Smale flocking model to produce a
particle system accounting for cell position, velocity and excitation [36]. With their
particle model, they are able to derive a kinetic model, from which they are able
to derive a Vlasov-McKean equation coupled to a reaction diffusion equation. They
proved that flocking behavior occurs for the particle model as well as for the kinetic
model (under the assumption that all particles are fully excited).

While the previous works capture the formation of finger-like projections, they
do not capture the observed quasi-random motion of cells. In fact, these models typ-
ically produce simulations where all cells ultimately move toward light or remain
stationary, contrary to what is experimentally observed. Typically cells do not all
flock together, and some cells become stationary singlets or align along edges. There
may be various reasons why cells do not to migrate towards light; for instance, it
is possible that not all cells are capable of identifying the direction of light. Alter-
natively, it is possible that cells might “prefer” to move in different directions than
the direction of light, due to signaling from neighboring cells, e.g. In this chapter,
we extend our mathematical model of local interactions from Chapter 2 to include
global forcing due to a light source. Instead of focusing on finger formation, we
examine the emerging behavior in the entire population.
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This chapter is organized as follows. We begin in Section 3.2 by extending the
model of Chapter 2 to include the possibility of a cell sensing a global force due to
light. We then hypothesize that not all cells are able to identify the direction of the
light source and rewrite our model accordingly. Simulations of these global forcing
models are presented in Section 3.3; these results are published in a conference
proceedings [32]. In Section 3.4, we develop a new model of the activation process
by which cells become excited and develop the ability to preferentially move in the
direction of light. The results obtained with this model are provided in Section 3.5.
Finally, in Section 3.6 we discuss the biological and mathematical implications of

our models.

3.2 Global forcing model for phototaxis

We start by overviewing several experimental observations that supplement

what we presented in Section 2.2.

1. Finger formation and global forcing due to light. The dominant char-
acteristic of phototaxis is the formation of finger-like projections. These pro-
jections typically, for phototactic cells, reach out in the direction of the light
source. In this way, light can be thought of acting as a global force on the

system. Examples of these finger-like projections can be seen in Figure 2.1.

2. Activation process. Before any cell begins moving in the direction of light,
it undergoes an activation process. Cells are observed to form aggregations.

When these aggregations reach critical sizes, cells are able to sense the direction
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of light and move in that direction. For small aggregations of cells, little

movement is observed [15].

3. Inhomogeneity. We observe that not all cells respond identically to the light
source. While we assume that the cells under consideration, Synechocystis sp.,
all have the same genome (with minor mutations), it is possible that they
display different phenotypes, having different ages or light-sensing abilities.
This might be a possible explanation to why not all cells necessarily move in

the direction of light, as we demonstrated in Chapter 2.

3.2.1 Model assumptions

We begin by making the same assumptions as we did for our model of local
interactions (the so-called Model A in Chapter 2). We assume that cells can identify
the locations of their neighbors, but we do not assume anything about underlying
communication mechanisms between cells — possibly by signaling, local force sensing,
or physical interaction. For the purpose of this model, the actual mechanism of
communication is of no interest. Again, the size of the neighborhood, in which cells
can communicate with each other, will be taken as one of the model parameters.
Additionally, we assume that cells are not necessarily all alike, i.e., it is possible for
cells to have different traits. It is experimentally observed that not all cells move
in the direction of the light, even after long periods of time and especially when
cells are in isolation. This implies the possibility that not all cells are capable of

identifying the direction of the light.
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Global forcing can be incorporated into our stochastic model of local interac-
tions in different ways.

Accordingly, we propose two models that incorporate the individual response
of cells to the light. In the first model (Model H) we assume that all cells are capable
of identifying the direction of the light; that is, the cells are homogeneous in their
directional light sensitivity. In the second model (Model I) we assume that only
a subset of the colony is capable of identifying the direction of light; that is, the
cells are inhomogeneous in their directional light sensitivity. In both models, cells
that are capable of sensing the direction of light are not assumed to automatically
move in that direction. Rather, when moving, in addition to the local-interactions
rules, they have the additional option of moving towards light with a fixed small

probability. We illustrate the four possible cellular motions in Figure 3.1.

(a) (b) (c) (d)
_Q_ I 0
4 % <O __ o °
® e . O0a--® j o e
L . o
L -~ Q Q
o o o

Figure 3.1: (a)—(c) Local interaction model and (d) Global forcing in direction
of light. Model particles can exhibit (a) persistence, (b) stationary behavior, (c)
movement toward neighboring cells, and (d) movement in the direction of a light
source.
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3.2.2 Model H: Homogeneous response to directional light force

In this model, every cell is capable of sensing the direction of light. We modify
equation (2.1) to allow the cells to move in the direction of light, 6y, with probabil-
ity c. Additionally, each cell can choose to persist in its previous direction of motion
with probability a. Cells can also change their velocity from stationary to moving,
or moving to stationary, with probability 1 — b.

To formulate the model, we consider N particles in R?. Each particle i has a
direction 0;(t) € (—m, 7] and a velocity v;(t) € {0,1}. The time is assumed to be
discrete with ¢t € N. The position of particle i at time ¢ is denoted by x;(¢). Similar
variables are considered in a recent discrete model of chemotaxis [63]. We update

the direction of each particle ¢ according to

(

0;(t), with probability a,

O;(t+1) = b0, with probability c, (3.1)

Njs with probability % for j s.t. z; € Bp(z),

\

where Bp(x;) is a ball of radius D centered at x;, n; is the number of particles with
position z; contained in Bp(x;), i.e. ||x;i(t) —zx(t)||, < D, and n; is the angle of
the vector pointing from particle ¢ to particle 7. When a particle chooses to move in
the direction of a neighboring particle, the probability of choosing any neighboring
particle is equal. The velocities are updated according to the following rule: wv;

does not change with probability b. With probability 1 — b the velocity v; switches
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between 0 and 1. This is formulated as

v;(t), with probability b,

1 —w;(t), with probability 1 —b.

In this way, the velocity is either 1 (in which case the cell continues to move) or 0
(in which case it stays in place). After calculating the angle and the velocity for
every particle, the positions {x;} of the cells are updated according to

cos(6; 1
zi(t + 1) = x;(t) + vi(¢) Gde+1) : (3.3)

sin(0;(t + 1))
Note that in this case, we assume that the light source is far away so that the

direction of light is identical for all cells on the plate.

3.2.3 Model I: Inhomogeneous response to directional light force

In the model of inhomogeneous light sensitivity, only a subset of particles are
capable of sensing the direction of the light source. To model this, particles are
randomly assigned to be of type leader or type normal. A particle of the leader
subtype updates its angle of motion according to equation (3.1). A particle of
the normal subtype updates its angle of motion according to the rules of motion
from the local interaction Model A in equation (2.1). Note that by setting ¢ = 0,
equation (3.1) reduces to equation (2.1). The ratio of leader to normal cells is a

model parameter. Its effect is studied in the numerical simulations in the next
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section.

3.3  Simulation results of the models of Section 3.2

In this section we present results of simulations of our global forcing models.
In all cases, we assume that the cells are constrained to a 200 pixel diameter disc in
R2. Cells are allowed to move in any direction that is allowed by the model within
the disc but are not allowed to cross its boundary to the exterior of the domain.
Such a constraint is consistent with the observed behavior of cells on the wetted area
of a plate on small time-scales. On larger time-scales, in the absence of a directed
light source, cells diffuse radially. In each simulation, we set the number of particles
N to be either 250 or 500. The particles are represented in each simulation by circles
of radius 2 pixels. For each set of parameters, we consider two different interaction
distances: D =5 and D = 10 pixels. The interaction distance is shown with a red
bar of the appropriate pixel length in the upper left corner of each figure. In all
simulations we assume that the probability of directional persistence, a, is 0.8. The
probability of switching velocity from 1 to 0 or 0 to 1, 1 — b is set as 0.5. For both
global interaction models H and I, the probability of a cell moving in the direction
of light at any time step, ¢, is 0.005. For the global interaction Model I, unless
otherwise stated, the probability of a cell being able to sense the direction of light
is 0.5, i.e., the ratio of leader to normal cells is 1:1. The group of leader cells are
identified as unfilled circles in the simulations.

For convenient reference and comparison, we again display one figure with
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= RSk
. ..‘. -,

N= 250 t=350

Figure 3.2: Local interaction Model A at ¢ = 0,50,350 time steps with (a)-(c)
D =5, N =250, (d)-(f) D = 10, N = 250, (g)-(i) D = 5, N = 500, and (j)-(1)
D =10, N = 500.
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results from the local interaction Model A from Chapter 2. In the local interaction
model, cells are capable of moving toward a random neighbor, persisting in their
chosen direction, or being stationary. Simulations of the local interactions base
model for N = 250 and 500 and for D = 5 and 10 are shown in Figure 3.2. The
snapshots for each simulation are taken at times t = 0,50, and 350. The initial
positions, directions, and velocities of the cells are identical for Fig. 3.2(a) and
Fig. 3.2(d) with N = 250 and for Fig. 3.2(g) and Fig. 3.2(j) with N = 500. The
same initial conditions are used in all of the following simulations. Note that in
the case D = 5, cells become temporarily fixed on the edge of the circle, visible in
Fig. 3.2(b), Fig. 3.2(c), Fig. 3.2(h) and Fig. 3.2(i). These cells occasionally move
back into the domain, but generally, spend most of the time on the boundary. We
also observe large aggregations forming for D = 10 in Fig. 3.2(f) and Fig. 3.2(1)
and small aggregations forming for D = 5 in Fig. 3.2(c) and Fig. 3.2(i). All images
illustrate the observed quasi-random motion of cells that is observed experimentally.

In the global Model H, all cells are aware of the direction of light but only
have a 0.5% chance of choosing to orient in the direction of the light at each time
step. Note that if a particle is moving in the direction of light (or in any other
direction), with each progressive time step, the cell will persist in that direction
with probability 0.8. Simulations of this joint global-local interaction model are
shown in Figure 3.3. The initial conditions {z;(0), 6;(0),v;(0)} are the same for each
set of values of N and D as in Figure 3.2 (see Figs. 3.3(a), 3.3(d), 3.3(g) and 3.3(j)).
The direction of light in these simulations is at the lower right corner (§ = —n/4).
For D = 5, we still see cells that become fixed on the edge of the circle, even for
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t = 1000 (see Figs. 3.3(b), 3.3(c), 3.3(h) and 3.3(i)). For D = 10, we still observe
the formation of large aggregations. In comparing Fig. 3.3(c) with Fig. 3.3(f) and
Fig. 3.3(i) with Fig. 3.3(1) at ¢ = 1000, the mass movement in the direction of light
is clearly observable for D = 5 but not in the case of a larger neighborhood, i.e.,
D = 10. The migration toward light appears to be greater for the smaller number of
particles N = 250 compared with N = 500 as can be seen in Figs. 3.3(c) and 3.3(i).

The global Model I combines the local interaction model with only a fraction
of cells that are allowed to intentionally pursue the direction of the light source as
in global Model H. Simulations of this global model with leader to normal cell ratio
of 1:1 are shown in Figure 3.4. The initial conditions of variables {z;(0), 6;(0),v;(0)}
are identical to those in Figs. 3.4(a), 3.4(d), 3.4(g), and 3.4(j). The cells which are
aware of the direction of light are identified in the simulation as open red circles. In
these simulations, as the number of time steps increases, one expects to see general
migration of cells toward the lower right hand quadrant of each circle as happened
with H. Similar to Figure 3.3, this trend is not apparent at ¢ = 500, in Figs. 3.4(b),
3.4(e), 3.4(h) and 3.4(k), or at ¢ = 1000 and D = 10, in Figures 3.4(f) and 3.4(1).
It can be observed in the distribution of red leader cells for D = 5 at ¢t = 1000 in
Fig. 3.4(c) and Fig. 3.4(i). The distribution of normal cells appears to be uniform
in each of these snapshots.

Large time simulations of each model are shown in Figure 3.5. Note that for the
local interaction model alone, in Figs. 3.5(a), 3.5(d), 3.5(g) and 3.5(j), even though
cells are still moving, the pattern of cells does not change significantly between

t = 3000 and ¢t = 9999. In the global Model H (shown in Figs. 3.5(b) and 3.5(e)
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with D = 5), while most of the cells aggregate along the side arc of the circle that is
closest to the light source, cells are still capable of escaping back into the domain.
Whereas, in Fig. 3.5(h) and Fig. 3.5(k) with D = 10, most of the cells aggregate
along the leading edge as the number of time steps increases. In the global Model I
with D = 5 (shown in Figs. 3.5(c) and 3.5(f)), the leader-type cells move towards the
leading edge but do not appear to gather along the edge in large numbers. Instead,
they end up spreading throughout the domain. The normal-type cells are spread
somewhat uniformly. These patterns are indicative of the observed quasi-random
motion of cells. For D = 10 at t = 3000, the aggregations of leader- and normal-
type cells are somewhat uniform in Fig. 3.5(i), but most aggregates tend towards
the light source as t increases as can be seen in Fig. 3.5(1).

Finally, we study the impact of the ratio of leader to normal cells in the global
Model I. Simulations are shown in Figure 3.6. We consider three cases in which the
ratios are 3:1, 1:1, and 1:3. In addition, we consider the case where all cells are leader
cells, as in global Model H. The initial conditions {x;(0),6;(0),v;(0)} are taken to
be the same as before. They are shown in Figs. 3.6(a), 3.6(d), 3.6(g), and 3.6(j). In
all simulations, D = 5 and N = 250. The results of the simulations are consistent
with the characterization of the quasi-random motion. We also observe that cells
get stuck along the entire edge of the circle. A migration of leader cells toward
light, in all three ratios, (shown in Figs. 3.6(b), 3.6(e), and 3.6(h)) is somewhat
visible and is very apparent in Figs. 3.6(c), 3.6(f), and 3.6(i). In each of these
cases, the distribution of normal cells appears to be uniform. Comparisons of these

simulations with experimental data to the simulation where all cells are leader-type
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cells supports the hypothesis that cells may not be all alike. It seems feasible that

only a portion of the cells are capable of identifying the direction of the light source.

3.4 An activation model for phototaxis

In Section 3.3, we illustrated the possible implications of assuming an inho-
mogeneous light sensitivity. In this section, we consider incorporating an activation
process in which particles can self-propel their motion or follow other particles based
on an internal excitation process. During the activation process, cells become ex-
cited by the presence of light and aggregate prior to moving in the direction of light.
Aggregations seem to enhance the apparent excitement level and sensitivity of a cell
to light, as indicated by the data analysis in [15]. Following [55], we model this
process by assigning each particle i an internal excitation, denoted S;(t), at each
time t. The criteria we follow when constructing S;(¢) are different than in [55]. We

construct the excitation process as a positive value that meets the following criteria:

1. All particles are initiated in an unexcited normal state, where the internal exci-
tation is below a critical threshold, K. Above this critical threshold, particles

become “excited” and switch to the leader subtype.

2. Excitation of particles builds in the presence of light and decays in the absence

of light.

3. The excitation values must saturate. Furthermore, the excitation level of single

isolated particles, with no detectable neighbors, should saturate below the
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Figure 3.6: Simulations of global Model I at ¢ = 0,1000, and 3000 time steps for
D = 5 with various ratios of leader (red o) to normal (black e) cells: (a)-(c) 1 leader
: 3 normal, (d)-(f) 1 leader : 1 normal, (g)-(i) 3 leader : 1 normal and (j)-(1) All
leader cells, i.e. global Model H. The direction of light is § = —m /4.
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critical threshold. The excitation of particles in aggregations, with detectable

neighbors, should saturate at a level above the critical threshold.

Previous models of activation were developed such that the excitation of a
given particle is driven towards the mean excitation of neighboring particles. In-
stead of being able to determine the mean excitation of surrounding particles, we
assume that a particle can determine the total excitation of surrounding particles
and compare this sum to its internal excitation. To account for this, we define a

quantity u; as

Zj,x]' €Bp (IZ) S]
Hi = S. )

(3.4)

where Bp(x;) is a disc of radius D of centered at the location of particle 4, x;. Note
that this disc always contains x; and, hence, yu; is always greater than or equal to
one. We can interpret u; to be the effective number of neighbors that a particle ¢
senses relative to the excitement levels of surrounding particles and the internal
excitement of particle i.

We describe the activation process by an ordinary differential equation. Sup-
pose the maximum constant rate of excitation production is «j and that this is
attenuated based on the effective number of neighbors of a particle p; and based on
the total excitation level within detection distance D. The total excitation surround-
ing a particle is calculated by p;S;. To attenuate this maximum rate, we multiply
by Michaelis-Menten terms in p; and u;S;, with Michaelis constants K; and Kj,
respectively. By definition, the Michaelis constant is the value at which the system

attains half of the maximum rate. We also allow the excitation S; to decay at a rate
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proportional to S; — Sy, with rate constant (3, where Sj is a baseline, below which,
the excitation increases and above which the excitation decreases. The resulting

ODE for the excitation is

%Si = oy (Klfi M) <K2/iS;iSi> — B(S; — So). (3.5)

Since accuracy is of no concern, we use a simple forward Euler solver to ap-
proximate the solution of (3.5), allowing the unit time step to match our increments

used in other simulations. Accordingly, the expression we evaluate is

pa(t) )( pa(t)5i(t)

Si(t+1) = Si(t) + O‘L<K1 + pi(t) ) N Ky + p3(1) Si(t)

) = B(SiH) = So). (36)

In the simulations shown in Section 3.5, we fix a few of the parameter values
and explore reasonable ranges for the other parameters. We set the production rate
at ay = 0.1 and the decay rate as § = 0.02. The ratio of these parameters, as
well as the baseline Sy, determines the maximum attainable value of S;. We fix the
baseline at Sy = 1. In this way, the maximum saturation value of .S; for all particles
is 6. In the absence of light, we can set a;, = 0, but in the simulations of Section 3.5,
we always assume that a light source is present. We initialize the excitation values
at S;(0) = 1.1. For the Michaelis constant K, we consider the values 2, 4, and
8. The value of K represents the ability of particles to move in the direction of
light based on the effective number of neighbors. We justify our chosen range of

values by noting that, experimentally, cells are observed to have a high probability
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of moving in the direction of light after aggregating in groups of size 6 or larger and
a low probability of moving in the direction of light if it is in a small aggregation of
3 or fewer cells [15]. We fix the second Michaelis constant K, = 10; in this way, if
a particle is surrounded by multiple excited particles, it may attain the maximum
rate of excitation production. Being surrounded by a few unexcited particles will
reduce the rate of excitation production. For the excitation threshold we consider
the values K = 1.5 and 2.5. Note that we do not assign units to excitation. While
there are some biological systems for which excitation is well-established, in our
context its existence is speculative, and therefore it does not correspond directly to

any physical or measurable quantity.

3.5 Simulation results of activation model

We perform multiple simulations using our activation model (3.5). The initial
conditions used in all simulations of our activation model are identical to those used
in Figure 2.5 and throughout Chapter 2, with the additional constraint that the
initial excitation S;(0) = 1.1 for all i. Furthermore, we fix the persistence probability
a = 0.8, the stopping probability b = 0.5, and the light detection probability, when
applicable, ¢ = 0.01. We compare the effect of varying the interaction distance and
consider the cases of D = 5 and D = 10. The length scale of the interaction distance
D is shown in the upper left corner of each picture around a stationary cell (which is
part of the legend and not part of the simulation). In each simulation, as before, the

unexcited normal particles are shown as black dots and the excited leader particles
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are illustrated with red open circles. The direction of light in each simulation is
towards the bottom left-hand corner of each image; that is, 6y = —3x /4.

In the first simulation of our activation model, we consider the evolution of
our particle system for the various values of the effective neighbor number Michealis
constant K = 2, 4, and 8. In Figure 3.7, we simulate 250 particles, constrained to a
circle of diameter 200, with a neighbor detection distance D = 5 and an excitation
cutoff K = 1.5 at times t = 50, 350, and 1000. We observe that for K; = 2 in
Fig. 3.7(a)—(c), approximately half of the particles become excited (the particles
shown in red circles) and move in the direction of light. For K; =4 in Fig. 3.7(d)—
(f), less than one quarter of particles become excited and move in the direction of
light. For K; = 8 in Fig. 3.7(g)—(i), very few particles become excited; this is most
likely due to the relatively low number of particles present in the small aggregations.

Next, we consider the long-time behavior of our particle system for the various
values of the effective neighbor number Michealis constant K; = 2, 4, and 8, two
excitation cutoffs K = 1.5 and 2.5, and two interaction distances D = 5 and 10.
In Figure 3.8, we simulate 250 particles, constrained to a circle of diameter 200 at
time step ¢ = 3000. For the lower cutoff K = 1.5 in Figures 3.8(a)—(f), we observe
that particles are able to aggregate and move in the direction of light in all but
one simulation. For the larger neighbor detection distance D = 10, more particles
form aggregations, resulting in more particles becoming leaders. For the higher
cutoff K = 2.5 in Figures 3.8(g)-(1), particles are able to aggregate and activate for
D = 10 in (j)—(1), but the threshold K = 2.5 is clearly too high for particles to
detect the light in any reasonable manner.
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Figure 3.7: The activation model with (a)-(c) K; = 2, (d)—(f) K1 =4, and (g)—(i)
K, = 8 for excitation cutoff K = 1.5. N = 250 particles are constrained to a circle
of diameter 200. Shown are simulation results at times ¢t = 50, 350, 1000. Identical
initial conditions are used in all simulations as well as parameters D = 5, a = 0.8,

¢ =0.01 and b = 0.5. The direction of light is § = —37/4.
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Figure 3.8: The activation model with at long-time ¢ = 3000 for (a)—(f) cutoff
K =1.5and (g)-(1) K = 2.5. The detection distance is D =5 in (a)—(c) and (g)—(i)
and D = 10 in (d)—(f) and (j)—(1). The first column has K; = 2, the second column
has K, = 4, and third column has K; = 8. In each simulation, N = 250 particles
are constrained to a circle of diameter 200. Identical initial conditions are used in
all simulations as well as parameters a = 0.8, ¢ = 0.01 and b = 0.5. The direction

of light is § = =37 /4.
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In Figure 3.9, we illustrate that the excitation values S;(t) are in fact bounded.
Each figure shows the time dynamics of the excitation of all particles. The parame-
ters and locations of each image correspond to the plots in Fig. 3.8. As you can see,
for systems where many particles become excited, here D = 10 in Fig. 3.9(d)—(f) and
(j)—(1), the excitation levels do in fact saturate at a value below 6.5, the expected
maximum. Note that they saturate below this level because the Michaelis-Menten
terms reduce the excitation production rate. Furthermore, for parameter sets where
relatively few particles become excited, the particles in the system do not reach
the saturation level; instead, we observe oscillations of particles alternating between
excited and unexcited states.

Finally, we study the trajectories of individual particles. In Figure 3.10, we
illustrate the trajectories of 5 particles over 1000 time steps for various parameter
values. We only consider the excitation threshold K = 1.5. In a few of these images
we are able to observe trajectories of particles moving in the direction of light as
part of an aggregation of particles; for instance, see the green and pink trajectories
of (a) and the pink and blue trajectories of (d) and (e). These patterns of motion

are coherent with the experimental observations.

3.6  Conclusions and future directions

In this chapter we extended the discrete-time, stochastically interacting par-
ticle model from Chapter 2, which described local interactions between phototactic

cells in which cells can stochastically choose a neighboring cell to follow, to include
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Figure 3.9: Scatter plot of the excitation levels at long-time ¢ = 3000 for (a)—(f)
cutoff K = 1.5 and (g)—(1) K = 2.5. The y-axis is excitation value S;(¢) and the
zr-axis is time t. In each figure, the excitations for all 250 cells are plotted. The
detection distance is D = 5 in (a)—(c) and (g)—(i) and D = 10 in (d)—(f) and (j)—(1).
The first column has K; = 2, the second column has K; = 4, and third column
has K; = 8. In each simulation, N = 250 particles are constrained to a circle
of diameter 200. Identical initial conditions are used in all simulations as well as
parameters a = 0.8, ¢ = 0.01 and b = 0.5. The direction of light is § = —37/4.
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Figure 3.10: Examples of cell trajectories over t = 1000 time steps for the activation
model. The detection distance is D =5 in (a)-(c) and D = 10 in (d)—(f). The first
column has K7 = 2, the second column has K; = 4, and third column has K; = 8.
In each simulation, N = 250 particles are constrained to a circle of diameter 200.
Identical initial conditions are used in all simulations as well as parameters K = 1.5,
a=0.8, ¢c=0.01 and b = 0.5. The direction of light is § = —3n7 /4.

65



global forcing due to light. We varied several factors in each simulation: the inter-
action distance, D, the number of particles in simulation, N, and the fraction of
cells which were sensitive to moving in the direction of light. We also developed a
mathematical model of the activation process, by which cells aggregate and become
capable of moving in the direction of light. In simulations of this model we vary the
model parameters for the interaction distance D, a Michaelis constant for effective
aggregate size Ky, and the excitation cutoff K, a threshold for determining whether
or not a particle is capable of sensing the direction of light.

We incorporated global forcing due to a light source into our local interaction
model from Chapter 2 by stochastically allowing cells to move in the direction of
light (in addition to the other local rules of motion). We considered two scenarios:
one in which all cells are capable of identifying the direction of light and a second
case in which only a fraction of the cells are capable of identifying the direction of
light. When all cells are capable of identifying the direction of light, they all tend
to migrate in that direction. However, on large time scales, for a smaller interaction
distance it is still possible to see some quasi-random motion. This is consistent with
the experimental data.

When comparing all models on large time scales, a quasi-random motion seems
to be more present in the models where not all particles are capable of detecting the
direction of light. This issue should be further investigated experimentally, but the
evidence presented in this chapter strongly suggests that there may be a substantial
subpopulation of cells that is not capable of detecting the direction of the light

source.
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Our activation model, under certain parameter sets, is able to replicate the
experimentally observed process of activation, where cells aggregate before moving
in the direction of light. Furthermore, the internal excitation of each model particle
saturates, a property which was not attained by previously developed models. With
a relatively simple model using Michaelis-Menten kinetics, we are able to vary the
relative size of aggregates in which particles must reside in order to identify and
move in the direction of light.

Further controlled experimental and numerical studies should be performed in
order to determine what parameter set best describes the motion of phototaxis in
Synechocystis sp. It is likely that such a parameter set would vary in time as cells

display different motion characteristics in different regions.
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Chapter 4
One-dimensional local interaction models

4.1 Introduction

In this chapter, we consider a one-dimensional model of the local interactions
model presented in Chapter 2. One-dimensional models are often used to simplify
systems and make problems more tractable. Simulations of one-dimensional models
are typically less computationally intensive. In addition, analytical techniques are
more accessible in one-dimensional problems.

Throughout the chapter, we follow the ideas of Baker, Yates and Erban who
developed a microscopic model for studying cell migration on growing domains in
one dimension [5]. Starting from a set of basic rules of motion, they develop a
reaction diffusion master equation (RDME), from which they derive a system of
ordinary differential equations (ODEs) describing the cell populations along an in-
dexed number line. Finally a partial differential equation is obtained as a limit of
the ODEs. Baker et al. focused on a variety of signaling patterns and boundary
conditions to study cell migration on growing domains.

Following the methodology in Baker et al. [5], we derive a system of ODEs
from a one-dimensional version of our stochastic discrete model from Chapter 2.
We compare simulations of our stochastic 1-D particle system and the new system

of ODEs to illustrate the strengths and weaknesses of each model. We also utilize
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the system of ODEs to explore the parameter space, which we can now do more thor-
oughly because solving the system of ODEs requires less computational resources

than solving the corresponding stochastic particle system.

4.2 Local interaction model for two populations in one dimension

We consider a set of particles which are constrained to a one-dimesional array:.
In order for this model to resemble our previous two-dimensional models, we allow
particles to sense neighbors within a given distance and to choose a direction for their
motion that is based on their neighbors. In the one-dimensional case, our model
becomes a system of right-moving and left-moving particles on a line, as particles
can only move to the right or to the left of their current positions. At every time
step, each particle can move one bin to the left or to the right. We will later allow
the particles to remain stationary. We begin our model development by looking at
a set of particles, each with a given initial position and initial preferred direction.

First, let us consider the effective transitional probabilities for particles moving
between bins indexed along a number line. Suppose that right-moving particles, that
is, those that came to be in their current position by moving to the right, persist in
their motion and continue to move to the right with probability a. With probability
1 — a, a particle may choose a new direction of motion (which can be either to
the right or to the left). The likelihood of a right-moving particle i at position z;
moving left is weighted by the number of detectable neighboring particles located to

the left, normalized by the total number of particles in both directions. Assume that
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particles can detect particles located within distance D to the left or to the right.
We let v, denote the number of particles located within the neighbor detection
distance D to the left of particle i and v;~ denote the number of particles within
the detection distance D to the right of particle 7. We illustrate this setup in
Figure 4.1. Accordingly, the probability of a right-moving particle choosing to move
left is (1 —a)v; /(v;"+v;) and the probability of a right-moving particle choosing to
move right is (1 —a)v;" /(v;" +v; ). Similarly, the likelihood of a left-moving particle
1 at position z; moving right is weighted by the number of detectable neighbor cells
located to the right v;", divided by the total number of its neighboring particles
moving in either direction (v; + v;"). The probability of a left-moving particle
persisting to the left at the next time step is a. The probability of a left-moving
particle choosing to move left is (1 —a)v; /(v;" +v; ). We note that we differentiate
between a particle persisting to move in a direction and a particle choosing in which
direction to move (which can still be the old direction of motion). By adjusting
the probabilities, we could limit the particles to persist in their direction or choose
a new direction. Also note that the probability of choosing to move left and the

probability of choosing to move right depend only on the location of neighboring

particles and not on the previous direction of motion of the particle.

<
|

<
t

Y

l

Figure 4.1: A number line illustrating the cell position z; of particle ¢ with detectable
neighbors being the total number of particles which fall in the regions indicated by
v;” and v; . In this particular image, the neighbor detection distance D = 6.
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To formulate a model, consider a set of N particles. The position of each
particle ¢ at time t is denoted by z;(t). We start by assuming that all particles
are moving at a fixed speed v, so that at every time step At the displacement
is Ax = vAt. In the next section, we will relax this condition. At every time-
step, a particle can either persist in its previous direction of motion or choose a new
direction; in the latter case the new direction can be either right or left, one of which
must be its previous direction. When a particle moves to the right, its position is
increased by Az. When a particle steps to the left, its position is decreased by Ax.
Suppose that the probabilities of choosing either direction are proportional to the

number of neighbors in the D > 0 neighboring bins in either direction. Scaling At

= 1, we have
(
zi(t) + [v:(t) — 2:(t — 1)], with probability a,
v
zi(t +1) = < z;(t) + Ax, with probability (1 — a)#, (4.1)
Vi TV
V.
(1) — A, ith probability (1 — a)——i—.
\:L‘() x with probability ( G)V;r—i—V;

where the number of particles to the right of bin z; that can be sensed by particle

7 18

NE
WE

5xj,xi+mAx7 (42)
1

3
[

Ly

and the number of particles to the left of bin x; that can be sensed by particle 7 is

NE
] =

6zj,mifmAz- (43)

=1

3
I
1
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Here 0, ., is the Kronecker delta function; that is, d,,., is 1 if z; = x;, and 0
otherwise. Note that this discrete stochastic system (4.1) is not Markovian; the
position at time £ + 1 depends on the position at time ¢ — 1, not just the position at
time t.

For this setup, a variety of boundary conditions can be considered. In this
chapter, we consider a fixed number of particles on a fixed interval with periodic

boundary conditions.

4.2.1 Derivation of the Reaction-Diffusion Master Equation (RDME)

We begin by considering the number of particles in each bin, as opposed to
the position of each particle; the former is more practical for systems with large

numbers of particles. The number of particles n;(t) in bin i at time ¢ is given by

Suppose that the particles are distributed between k bins. The number of

particles in bins ¢ = 1,..., k is given by the vector:

=[Ny, Ng, ..., Ny .., Nl (4.5)

Note that the vector 77 and each of its components n; are functions of time ¢, which
has been suppressed here for the sake of brevity.

At every time step, each particle has a preferred direction, in which it can
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persist with probability a. Let us divide the particles into two populations: right-
moving and left-moving. Let r;(¢) denote the number of particles in bin ¢ at time
t that moved to the right to enter bin i. That is, ;(¢) is the number of particles
which were in bin 7 — 1 at the previous time step ¢t — 1 and are in bin ¢ at the current
time ¢. Let [;(t) denote the number of particles in bin ¢ that moved to the left to
enter bin 7. These particles were in bin ¢ + 1 at the previous time t — 1. Observe
that at each time step, the total number of particles in bin 7 is given by the sum of

the right-moving particles and the left-moving particles:

We can now use eqs. (4.2), (4.3) and (4.4) to rewrite our expressions for

the number of detectable neighboring particles in each direction: v, = ZZZI Ni—m

and vt = 22:1 Ni+m- Lo simplify the notations, we define neighbor-weighted
probabilities ¢ = (1 — a)v; /(v; +v) and ¢ = (1 — a)v; /(v; + v;t), which are
the probabilities of a particle choosing to move to the right or the left, respectively.

These notations are summarized in Figure 4.2.

7 a+c
i

; 1‘Ci/ \”-1
l_blc/lrl-i_

i

Figure 4.2: A sketch of the notation used for describing the motions of particles.
Not shown in this figure are the arrows showing particles in bin ¢ — 1 moving into
population r; and showing particles in bin 7 + 1 moving into population /;. a is the
persistence probability and ¢/ and ¢ are the neighbor-weighted probabilities of a
particle in bin ¢ choosing to move to the right and left, respectively.
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We define a joint probability density function, P(7,(,t), which describes the
probability of the system attaining each state {7, l_: t} for a given set of initial con-
ditions. To describe the evolution of P(F,lﬁ7 t) we must consider all ways in which
particles can enter and leave the state {7, Et} This is done by summing over all of
the bins 7, accounting for methods by which a particle can leave a bin 7. Motion of a
particle in either direction results in a change in the state of the system. Depending
on the present state of this system, this may affect evolution into or out of the state
{F,Z t}. We account for these items separately in Eq. (4.7) with items @ particles
moving to the right to enter state {F,f, t}, @ particles moving to the right to leave
state {f’,l_:t}, @ particles moving to the left to enter state {7, L. t}, and @ particles

moving to the left to leave state {F,Et}. Item ® is in place to account for the

boundary conditions.

oP (7 7 ) § [ Probability a particle moves out of bin ¢
— (7 — R
ot ’ — to right to enter state {7, [,t}

®

Probability a particle moves out of bin ¢ }
to right to leave state {7, [, ¢}

&)
F [ Probability particle moves out of bin
— to left to enter state {7, [, ¢}

-~

®
Probability a particle moves out of bin ¢ }
to left to leave state {7, 1, ¢}

[ J/
-~

@

- (4.7)

(3 N

+ Boundary terms.

v~

®
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To define each term in the RDME (4.7), we first formulate particle-transposing
operators which allow us to examine states that are adjacent to the state {7, l_; t}.
That is, only one particle is displaced from the state {F,ﬁ t}. For this to happen,
an additional particle must be present in some position ¢ and absent from bin 7 — 1
or © + 1. We denote these particle-transposing operators with J;“T and J;;; the
operators are maps from RF to R* operating on the distribution of particles 7
or [ and producing a new distribution where the number of particles in bin ¢ has
increased by one and the number of particles in bin ¢ + 1 or ¢ — 1, respectively,
has decreased by one. As just stated, the particle-transposing operator for a right-
moving particle moving to the right is J;LT. The first subscript indicates the position.
The second subscript indicates the particle type that is moving. The superscript
indicates the direction in which the particle is moving, right with + or left with —.
In equation (4.8) for operator J;. acting on 7= [ry,...,7,..., 7], there is an extra

particle in bin ¢ and one less particle in bin ¢ + 1 compared with 7.

Ji,t, [7:] = [7’17 oo T, L — v, ,rk}. (4.8)

Similarly for the operator J;,, which allows a left-moving particle in bin ¢ to move to
the left, there is an extra particle in bin ¢ and one less particle in bin ¢ — 1 compared

with {. This is expressed as

szl [ﬂ == [ll, ‘e ,li,Q, li,1 - 1, lz + 1, li+l7 ey lk:j| . (49)
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Note that the particle-transposing operators in eqs. (4.8) and (4.9) map from R*
to R* and act only on vectors 7 and [. We need two more operators which allow
particles to move between right-moving and left-moving populations. Such operators
account for particles that change the direction of their motion. In equation (4.10),
describing operator J;Ll, one additional left-moving particle is located in bin ¢ so that

it can move to the right into bin ¢ + 1.

J;?[F,ZJ = [7“1,...,7“1'+1—1,...,7’k,l1,...,li+1,...,lk]. (410)

To describe the operator J.

i,r)

one additional right-moving particle is located in bin

7 and moves left to bin 7 — 1.

Jz,_r[F’ﬂ = [7"1,...,7“,‘—f-l,...,?“k,ll,...,li_l—1,...7lk]. (411)

—=
—

Note that particle-transposing operators J;, and .J;} act on [, [], mapping from R**
to R?.

With the above operators and probabilistic rates of transitioning to the right
or left defined, we are able to determine each component of the RDME (4.7). For @,
we want to account for the probability of a particle in bin ¢ moving to the right to
enter state {7,[,t}. The rate at which a right-moving particle moves right is a + ¢’
Note that ¢ depends on the position of other particles and so we need to be a little
more careful in handling this term. For a particle to move out of bin ¢ to the right

so that the new state is {7, l_:t}, the particles must be arranged as in Figure 4.3.
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Right-moving particles || ... | 71 | i+ 1 | rip1 — 1 | 740

Left-moving particles || ... | l;_1 l; liv1 lito

Total H ‘ n;—1 ‘ ’I”Lz—i‘l ‘ ni+1—1 ‘ Niy2 ‘
Figure 4.3: Setup of particles for .J;',[7]

To calculate the neighbor-dependent weight which would allow a particle in bin 7 to
move to the right, we sum over the neighbors to the right within neighbor detection
distance D and normalize by dividing by the total number of neighbors within
neighbor detection distance D. If we use the previous formula v;" = Zle n;y; with
values from the current state, the number of neighbors to the right of bin ¢ is exactly
vt — 1. The number of neighbors to the left, v;, has not changed. Hence, for this
setup, the weight for moving to the right is (v;" — 1)/(v;" + v, — 1). We can now
calculate the probability of a right-moving particle moving to the right out of bin
1. The probability that the particles are in the configuration shown in Fig. 4.3 is
P(J [, [,t). The number of particles which could move to the right is 7; + 1. The
rate at which these particles could move to the right is the sum of the persistence
probability and the neighbor-weight probability, i.e., a+(1—a)(v;" —1)/(v;" +v; —1).

The other way for a particle to be located in bin ¢ and move to the right is for a
left-moving particle to choose to move to the right. This setup is shown in Fig. 4.4.
Note that the total number of particles in each bin is the same and hence this setup
produces the same neighbor weight as for a right-moving particle choosing to move

to the right. These two options account for all possible ways for an extra particle

to be present in bin ¢ and move to the right to bin ¢ + 1 with the system entering
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the state {7, 1, ¢}. Accordingly, the term @ in eq. (4.7) is given by

oF [a+1- @L} (ri + DP(JE (A1)
. I/:_—I—VZ_—l 7 ir 3 Uy
V;L—l

+ [(1 —a) ](zi + 1) P, 1),

vi+u —1

To explain @ in eq. (4.7), we need to account for particles that are present in
bin 7, move right to the bin ¢ 4+ 1, and leave the state {F,Zt}. In this setup, the
neighbor-weight probability ¢! is exactly what we expect: (1 —a)(v;")/(v;" + ;).
Again we attain the expressions in item @ by taking the product of the probability
of the system being setup in the appropriate state, P(7, E t), the number of particles
available to move, either r; or [;, and the probabilistic rate of particles moving to

the right. This rate is the neighbor weight probability for both particles, with the

persistence probability a added for right-moving particles. Hence,

By following similar reasoning, we can express @ in eq. (4.7), accounting for

Right-moving particles || ... | r;_1 T; Tiz1 — 1 | Tiyo
Left-moving particles || ... | l;_1 | ; +1 liv1 lito
Total || ... [ n1 | ni+1 | ngr —1 | njuo

Figure 4.4: Setup of particles for J;[7, []
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particles entering state {7, Et} when a particle in bin ¢ moves to the left as

v, —1 o 7
N e LA LU
o [ oz

and for @ in eq. (4.7), accounting for particles leaving the state {F,Zt} when a

particle in bin ¢ moves to the left, as

When the boundary conditions are periodic, the term ® in eq. (4.7) has an
obvious structure. Adjustments should be made for different types of boundary

conditions.

4.2.2 Deriving a system of ODEs

Using the RDME (4.7), we define new variables which represent the average
state of the system. We let R;(t) = (r;(t)) = ZFZfTiP(F,Zt), where (-) denotes
expected value. Similarly, we define L;(t) = (I;(t)) and M;(t) = (n;(t)). By taking
the partial derivative with respect to time ¢ of each R; and L; and by following the
methodology of [5] and [29], we develop a system of ordinary differential equations
which describe our system. The resulting differential equation for R;, the right-

moving particles in bin 7, consists of particles entering from bin ¢ — 1 and exiting to
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the right or to the left. Denoting the transition rates with 7', the ODE for R; is:

dRZ-_<
dt

riay )+ D) — () — (T, (4.12)

The equation for L;, the left-moving particles in bin 7, consists of particles that enter

from bin 7 + 1 and exit to the left or right:

dL;

= (rin T, ) + (i Ty, ) — WT)) — (UGT)). (4.13)

The transition rates are

T, = ¢ +a, (4.14)
r = d, (4.15)
T, = d+a, (4.16)
T, = d, (4.17)

where ¢ = (1 —a)y; /(v; +v) and ¢k = (1 —a)v; /(v; +v}1).

Note that the rate at which particles move to the left or to the right depends on
whether a particle is left-moving or right-moving. As defined, the transition rate 7 ,,T
is the ‘Rate of right-moving particles moving to the right’ and the transition rate 7

is the ‘Rate of left-moving cells moving to the left’. Substituting eqs. (4.14)—(4.17)
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in (4.12)—(4.13), we have

dR:
ng = CLR¢,1 - Rz + <ni,1c§71>, (418)
dL;
dt aLiJrl — Lz + <7’Li+1C§+1>. (419)

Observe that the differential equations (4.18)—(4.19) contain terms with an expected

value. Our computational treatment of these terms will be discussed in Section 4.4.

4.3 An extended one-dimensional model of local interactions

We now want to relax the assumption that all particles move at every time
step. We still allow particles to persist in their direction of motion with probability
a, and particles use neighbor-based weight to determine the probability of choosing
the direction of motion; however, we now allow a particle or remain stationary with
probability b. Hence, for a particle ¢ with position z;(t) at time ¢, we calculate the

new position at the next time step according to

(

z;(t) + pi(t), with probability a,

z;(t), with probability b,
zi(t+1) = .\ (4.20)
z;(t) + Az,  with probability %(1 —a—0b),
v+
z;(t) — Az,  with probability %(1 —a—"0),
v, + v,

\ ) i
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where p;(t) = x;(t — k) — z;(t — k — 1) is the previous direction in which the particle
moved with k& = minfargmaz;|z;(t — j) — z;(t — 7 — 1)|], the length of time since

the particle last changed its bin position.

4.3.1 Derivation of the Reaction-Diffusion Master Equation

The number of particles n;(t) in bin ¢ at time ¢ can be calculated from our

previous system of N particles as

nit) =Y 0u - (4.21)

At every time step, each cell has a preferred direction. In this extended model,
an individual particle may stop. Consequently, there are four types of particles:
right-moving, left-moving, right-stationary, and left-stationary. A particle is con-
sidered to be right- (or left- )stationary if it moved to the right (or to the left) to
enter the current bin but remained stationary during the previous time step. Note
that a stationary particle remembers its previous direction. This memory allows for
continued persistence in the preferred direction when the particle resumes moving.

Let 7;(t) be the number of particles that moved into bin ¢ from bin ¢ — 1 during
the previous time step. Let r7(¢) denote the number of particles at time ¢ which have
become stationary, but previously moved to the right from bin ¢ — 1 to ¢. Similarly,
we define [;(t) as the left-moving particles in bin ¢ at time ¢, which moved left from
bin ¢ + 1 into bin ¢ during the previous time step. Finally, we define [$(¢) to be the

number of particles in bin ¢ at time ¢ which moved left in their most recent transition
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between bins, but remained stationary during the previous time step. We assume
that particles become (or remain) stationary with probability b. The governing set

of rules are shown in Figure 4.5.

t.
ci ! a+cl
b bl
ol cl Ors atc
ll—l i , 7;'+1
a+c ¢
li
a+c b c[’

Figure 4.5: A depiction of the options of motion for particles out of a right-moving r;
or left-moving [; position, with associated probabilities for a system of particles which
are either right-moving or left-moving and have the ability to become stationary with
memory of a preferred direction. Not shown are the sources of right-moving and
left-moving particles. The source of particles in r; is all particle types in bin ¢ — 1,
and the source of particles in [; is all particle types in bin ¢ + 1. The associated
probabilities of these sources can be extracted from the diagram. The probability a
denotes persistence, the probability b denotes becoming (or staying) stationary and
the probabilities ¢/ and ¢! denote choosing a direction based on neighbor weights.

In order to write a reaction-diffusion master equation describing how these
populations evolve probabilistically in time, we consider the probability density
function P(7, lj = lg, t) describing the likelihood of a system to be in a given state
{7, Z = lg, t}. For transitions between these four populations, there is the additional
possibility of particles becoming stationary or moving after having been stationary,

making the RDME slightly more complicated. Accordingly, the equation is written
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as

oP T § [ Probability that a particle moves out of bin ¢
to the right to enter the state {F,l_:r_é, 5 t}

g

@
Probability that a particle moves out of bin ¢ }
to the right to leave the state {7, L7415, t}

N J/
-

)
b (Probability that a particle moves out of bin 2)
—|— |: S 7 -
— to the left to enter the state {7, [, 75 15 t}

-~

® (4.22)
Probability that a particle moves out of bin ¢ }
to the left to leave the state {7 Lré I8, t}

N J/

s

(2 N

@
N Z Probability that a particle in bin ¢ becomes stationary
— to enter or leave the state {7, Lrs 15, t}
®
+ Boundary terms
®

To address each of the terms in (4.22), we need to define additional particle-
transposing operators. We define these operators so that they each act on the state
of the system, {F,ljr?,l;}. In Table 4.1, we define all operators, but only show
the populations which are directly affected by the operator. All other populations
remain whatever they are in the state {F,lﬂ,r_é,lg}, as this table accounts for all
possible translations which are one cell movement away from the state of interest.

Given the operators from Table 4.1, we can define the terms in the RDME
(4.22). For @ in (4.22), we consider all the terms where particles move to the

o =

right with the system entering state {f’,l_:rs,ls,t}. Note that particles from each
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Operator Result
J+ [...,Ti+17Ti+1—1,...]

Jz’J;«s ['--7Ti+1—1,...,7”?—'—1,...}
Jz'—,i_l |:"-7ri+1_1,...,li+1,...]
The | [oomm =1 B+,
Jir [~--,7’i+1,--.,li_1—1,...}
S [---Ji—l—1,...,Tf+1,...]
Jia [---yli71—1,li+1,...}

T | Ll =L+ 1]
Jir [...,Ti+1,...,rf—17,,_]
ol [ L+ =1

Table 4.1: Definitions of particle-transposition operators acting on {7, l_;T_‘é, lg}. The
first subscript indicates the bin on which the operator is acting. The second subscript
indicates the population type. The superscript indicates the direction in which that
particle is moving, right (+), left (-), or (s) if the particle is becoming stationary.

population-type in bin ¢ are capable of moving right, based on the neighbor-weight
probability, which is calculated based on the preceding state of the system. Further-
more, right-moving particles r; and right-stationary particles r; both persist in their
preferred direction with probability a. Consequently, the term @ in (4.22) takes the

form

® a+ (1 _a)ujyiu, — |+ PO L
+ 002+ P AL
v+ —1
vt — L =
+ fer -0 | (7 + DPE R T )
b faca it | @+ VPR FLY
v+, —1

For item @ in (4.22), we consider all terms where particles move right, with
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the system leaving state {7, Lré 15, t}. Hence

vt I vt I
@ :[a + (]_ — a)ﬁ} riP(f:l’rS,ls’t) + |:(1 — a)ﬁ] liP(f:l,?"S’lS’t)
vt L vt L
1- P L L) + (1 ) [ P L ).
+lat (= a) T PR E 0 + (0= a) [ PE TR

For item ® in (4.22), we consider all terms where particles move left, with the

system entering the state {7, L3 I8, t}:

® 1 —a>yi+”i;_1_ e+ VP F)
S P N | @+ 0P L L
v+ —1
+ |1 -2 — ](rf+1)P(Ji}s[f’,l,r7*,l§],t)
v+ —1 ’
ot -0 PG IR LY
V-t v 1

In item ® in (4.22), we account for the probability of moving particles be-

coming stationary, both to enter and exit the state {7, L7315, t}. Particles become
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stationary with probabilistic rate b. Hence

—

® : b(r; + 1) P(J2, (7, L3, 3], 8) + b(l; + 1) P(J5[F, 175, ), t)

— b[rﬁli}P(ﬁZﬁ,ﬁ,t}.

Finally, the boundary terms ® in eq. (4.22) take an obvious form in the case of
periodic boundary conditions. Proper adjustments should be made for other types

of boundary conditions.

4.3.2 Deriving a system of ODEs

We define the expected value of each population, e.g.

Ri=(r)=> > 3N nP(F L% F 1) (4.23)
O A

Using this definition, taking the derivative with respect to time, substituting the
RDME as appropriate and reindexing many of the summations, we obtain a new
system of ODEs that models the average behavior of the system. We denote the
transition rates with 7.

The average behavior of the right-moving particles in bin ¢, R;, consists of
particles entering from bin ¢ — 1 and leaving either to the right, to the left, or to the
stationary compartment. Consequently:

dR;
dt

= (i T )+ (T ) + (P T ) + T — (D) — (D)) — ().

(4.24)
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Similarly, the average behavior of the left-moving particles in slot ¢, L;, consists

of particles entering from bin ¢ + 1 and leaving either to the right, to the left, or to

the stationary compartment:

dL;
dt

= (ripi Ty ) + in Dy )+ (a1 ) + a1

Tit1 Tit1 lit1

) = (LT = (LT ) — (LT,

(4.25)

The right-stationary population in bin ¢, R}, increases as right-moving particles
becoming stationary and decreases as the stationary particles leave to the left or the

right.

T8 i1y — i) — ). (4.26)

The left-stationary population in bin ¢, L], increases as left-moving particles
becoming stationary and decreases as the stationary particles leave to the left or the

right.

dL
dt

= (L) = T = (GTy)- (4.27)

The transition rates T,F, T;", T,~, and T}, are redefined from (4.14)(4.17) by
substituting 1 —a — b for 1 — a in each expression. We define the transition rate for

particles going from a moving compartment to a stationary compartment as:

TS =T7 =b. (4.28)

Using the expressions for transition rates, we can simplify some of the expected

value operators. The population of right-moving particles R; simplifies to a system
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with right-moving and stationary particles in bin ¢ — 1 persisting into bin ¢ and all
particles in bin 2 — 1 moving to the right with a neighbor-weighted probability ¢} ;.
Additionally, all right-moving particles leave the system at every time step, either
by persisting, becoming stationary, or choosing to move toward a neighboring bin:

dR;
dt

= CL(Ri_l + Rf,l) + <ni_10€71> — Rz (429)

The population of right-stationary particles R consists of particles in R; becoming

stationary with stopping rate b and leaving the stationary population with rate 1—b:

dR:
o =bRi— (1-D)R;. (4.30)

The population of left-moving particles L; simplifies to a system with left-moving
and stationary particles in bin ¢+1 persisting into bin ¢ with rate a and all particles in
bin ¢ + 1 moving to the left with a neighbor-weighted probability ¢.. ;. Additionally,
all left-moving particles leave the system at every time step, either by persisting, by
becoming stationary, or by choosing to move toward a neighboring slot:

dL;
dt

= a(Liy1 + Liyy) + (niiciy) — Lic (4.31)

The population of left-stationary particles L consists of particles in L; becoming

stationary with stopping rate b and leaving the stationary population with rate 1 —b.

AL
dt

= bL; — (1 —b)L: (4.32)
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Note that this system, (4.29)—(4.32), conserves the total number of particles
in the system. We can see this by summing the differential equations (4.29)-(4.32)
over all bins and population-types. In our simulations, in the case that a particle
has no neighbors, we set the neighbor-weight to zero to avoid divide by zero errors.
This does not affect the conservative nature of the system. If particles are not
allowed to enter a slot with the neighbor-weight probability due to the absence of
neighbors, then there are no particles in that bin. Hence, no particles can leave that
bin either (at all time points, all moving-type particles must enter a new particle-
type/position). In this way, setting the neighbor-weight to zero is the appropriate
way to maintain the conservation of particles. This is typically not relevant at high
particle densities but can be important as aggregations form, leaving sections of

empty bins.

4.4 Simulations

The solution of the system of ordinary differential equations (4.29)—(4.32) is
simulated with various initial and boundary conditions. To start, we only con-
sider periodic boundary conditions. Furthermore, the four-population system can
be reduced to the two-population system by setting b = 0 and setting the initial
stationary populations to zero. For this reason, we primarily consider the more
complex system with four populations in simulations.

Observe that the ordinary differential equations (4.29)-(4.32) contain unre-

solved expected value terms. To deal with these terms in our simulations, we
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approximate each expected value term by the sum, product and quotient of the
expected value of each term contained therein; that is, we drop the expected value
operator and replace each term with its expected value. For instance, (r;r;_1) would
be estimated by R;R; ;. We do this in order to expedite computation time and
eliminate the need to calculate the probability density function P(7, l_;r_é, lg, t) for
all possible particle number and time combinations.

In the upcoming discussion of simulations, we present a large number of im-
ages, in most of which we do not display numbers along certain axes to aid in visual
discernment. We instead offer one example which illustrates these axes with more
details. In Figure 4.6, we show a sample simulation of model (4.29)-(4.32), with
persistence probability a = 0.5, stopping probability b = 0.1, and neighbor detec-
tion distance D = 7. In Figure 4.6(a), the i-axis varies from 0 (at the left) to 100
(at the right) and the t-axis ranges from 0 (at the front) to 1000 (at the back). In
Figure 4.6(b), the time is fixed at 1000 and the i-axis ranges from 0 (at the left)
to 100 (at the right). The vertical axis in each case is for M;(t), the expected total

number of particles in bin ¢ at time t.

4.4.1 Comparing the ODEs to the stochastic particle model

Our first numerical simulation compares the ODEs with the stochastic particle
model. Our results are shown in Figures 4.7 and 4.8. In both figures, we demonstrate
three different observed patterns in order to show how the ODE model (4.29)—(4.32)

can replicate the patterns obtained with the stochastic particle system (4.20). The
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25 50 75 100

Figure 4.6: A sample simulation of model (4.29)-(4.32) with model parameters
a=0.5,b=0.1and D =7. In (a), we show the evolution of the system in 100 bins
over 1000 time steps. In (b), we show the state of the system at ¢ = 1000.

three patterns shown are the formation of aggregations of particles, the lack of
aggregations, and the formation of aggregations that merge. In Fig. 4.7, we show
three-dimensional surface plots illustrating the number of particles in 100 bins from
time 0 to 1000. In Fig. 4.8, we offer the same simulations as in Fig. 4.7, except
that the number of particles in bin is only portrayed at the final time 1000. This
allows us to observe the evolution of each system as well as the final state of each
simulation after 1000 time steps.

Note that the agent based model (4.20) does not exactly replicate the predic-
tions of the ODEs. To match the behavior of the ODEs, one must perform multiple
stochastic simulations and then average over the results. In comparing the aggrega-
tion patterns produced by the particle system to the ODE, we see a similar number
of aggregations forming at approximately the same time. In the first example with

persistence parameter a = 0.3 and neighbor detection distance D = 10, four ag-
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Merging aggregations
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Figure 4.7: A comparison of the stochastic particle system to the deterministic
ODE for different scenarios: forming aggregations, the absence of aggregations,
and merging aggregations. The parameters a, the persistence probability, D, the
neighbor detection distance, and the initial data are identical in each case. The
parameters a and D are varied as indicated above each plot to capture the different
scenarios. For each of these images, the stopping probability b is 0.1 and the number
of bins k£ is 100. On these 3-D images, the i-axis is for bin number, from 1 to 100,
the t-axis is for time, from 1 to 1000, and the vertical z-axis is for particle number.
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Figure 4.8: Comparison of the stochastic particle system and the deterministic
ODE for different scenarios: aggregations, the absence of aggregations, and merging
aggregations at t = 1000. The parameters a, the persistence probability, D, the
neighbor detection distance, and the initial data are the same in each case. The
parameters a and D are varied as indicated above each plot to create the different
scenarios. In all images, the stopping probability b is 0.1 and the number of slots &
is 100. On these 2-D plots, the i-axis is for bin number, ranging from 1 to 100 and
the vertical z-axis is for the number of particles, specifically M;(1000).
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gregations are formed over the 100 bins in both the stochastic and deterministic
simulation. In Fig. 4.8, we see that the forming aggregations do not end in identical
locations and they are not the same height. Still, the patterns are similar: their
number is similar and they appear to be of approximately the same width. Similarly,
for the parameter set with persistence probability a = 0.3 and neighbor detection
distance D = 20, we observe that the aggregation patterns match in number, width,
and approximate height and location.

In the case where no aggregations form, particles are seen to be distributed
relatively uniformly, as observed in the 3-D surface evolution plots in Fig. 4.7. Upon
closer inspection of this distribution, as can be observed in Fig. 4.8, the particles
actually form a slight wave, the shape of which depends on the parameters and
the initial conditions. We initially expected that simulations without aggregations
would produce a uniform distribution of particles; however, this only appears to be
the case when a 4+ b = 1 and the initial data is uniformly distributed. We discuss
this in more detail in the next section. In comparing the deterministic model and
the stochastic model, we see that the stochastic model contains a lot of variation.
The overall wave trend of the stochastic simulation seems to match the deterministic
simulation but only loosely and not in magnitude. These wild variations in particle
number for each bin illustrate the relatively large stochastic effect of the particle
system. These effects become more important when looking at simulations with
unstable dynamics.

In the last case of simulations with merging aggregations, the merging times
and patterns are very sensitive to the exact number of particles in each location.
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In comparing the surface evolutions in Fig. 4.7 of the stochastic simulations to the
deterministic simulations, we see that the aggregations do not merge at the same
time and the larger (or smaller) aggregations are not in the same locations. However,
we do observe that the general emerging patterns of particles are somewhat similar
at the final time ¢ = 1000, especially in the first merging aggregations example with
a = 0.5 and D = 7. In the second merging aggregation example with a = 0.5 and
D = 10, it appears as though the stochastic simulation will eventually form two
large peaks, with the smaller peaks merging.

We further explore patterns of merging aggregations in Figure 4.9, where we
show four different instances of a simulation of the stochastic particle system with
the same parameters (¢ = 0.5,b = 0.1, D = 7) and initial conditions. In the
simulation of the deterministic ODE model, there are initially four aggregations.
Eventually, after approximately 900 time steps, two of these aggregations merge. Of
the resulting three aggregations, there are two relatively tall peaks and one shorter
peak. In constrast, in the four stochastic simulations, three simulations yield similar
results with three peaks, two tall and one short, at ¢ = 1000. The simulation with
four peaks at t = 1000 appears as though aggregations would be likely to merge
shortly after this time. In the stochastic model, the initial data seem to converge
quickly to five aggregations, two of which in each image merge almost immediately.
Immediate merging of two small aggregations may explain how the taller peak in
the deterministic model developed.

While a wide variation in the exact positions and heights of aggregations is
observed in many simulations, we also observe qualitatively similar general patterns,
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Deterministic model Stochastic model Stochastic model Stochastic model Stochastic model

a=05D=70 a=05Db=70 a=05Db=70 a=05Db=70 a=050Db=70
100‘ 100 100 100
wi MN‘ i Y
iy, 50 ‘ 501 M i
¥
0 0
t i t i
Deterministic model Stochastic model Stochastic model Stochastic model Stochastic model
a=05D=7.0 a=05D=7.0 a=050D=7.0 a=05D=7.0 a=05D=7.0
60 80 60 80 60
40 €0 40| €0 40|
40 40
20 20 20 20 20
0 0 0 0 0

Figure 4.9: Four simulations of the stochastic model for the same parameter set,
alongside the simulation produced by the deterministic ODE model. In all images,
the persistence probability a is 0.5, the neighbor detection distance D is 7, the
stopping probability b is 0.1, and the number of bins k£ is 100. On the 3-D plots,
the 7-axis is for bin number, ranging from 1 to 100, the t-axis is for time step, from
1 to 1000, and the vertical z-axis is for total particle number, M;(t). On the 2-D

plots, the 7-axis is for bin number and the vertical z-axis is for total particle number,
M;(1000).

such as aggregation number and peak width, emerging under similar conditions.
Due to the wide variation in patterns and the length of time to run each stochastic
simulation (varying from 2 to 10 minutes depending on our choice of parameters),
we have chosen not to perform a Monte Carlo simulation to confirm that the average
behavior of the stochastic simulation does in fact match the system of ODEs. We
are able to extract critical information from the system without performing this

exercise.

4.4.2 Uniform initial conditions

Before considering more simulations of this model, let us make a few obser-
vations about the 4-population model (4.29)—(4.32). Suppose each bin contains the

same number, x, of right-moving and left-moving particles and the same number, ¥,
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of right-stationary and left-stationary particles. Upon substitution, we observe that
the total number of particles, M;(t) = R;(t) + R (t) + L;(t) + Li(t), is not changing
with respect to time. Furthermore, the moving and stationary populations are also
at a steady state if x = IT’l’y So we expect that for uniform initial conditions, with
the same number of particles in each bin and equal left- and right-moving (and sta-
tionary) particles, the total number of particles will remain constant with a uniform
distribution.

We check this steady state in the following numerical simulation. In Fig-
ure 4.10, we illustrate simulations where each particle-type-bin combination con-
tains 2 particles, for a total of 8 particles in each bin. The simulations are run
for combinations of parameters varying the persistence probability a and stopping
probability b through a set of values (0.1, 0.3, 0.5, 0.7, 0.9). Note that a +b < 1
is a hard constraint on the system; that is, the particles can either persist, stop or
choose a new direction, but they cannot perform more than one of these actions
at a time. Observe that these simulations suggest that a uniform distribution of
particles is an unstable steady state of the system.

To demonstrate that the uniform steady state is unstable, we perform the
calculations with tighter integration error tolerances. The simulations are per-
formed using ODE45 in MATLAB. The default integration error tolerances, used
in Fig. 4.10, are ‘RelTol’ = 1e-3 and ‘AbsTol’ = le-6. In Figure 4.11, the error
tolerances have been adjusted by over two orders of magnitude; we use ‘RelTol’
= le-5 and ‘AbsTol’ = 1e-8. Comparing Fig. 4.10 and Fig. 4.11, we observe that

the solution diverges more slowly for stricter error tolerances. More specifically for
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a=0.1,b=09

8.0001

8.0000

7.9999

a=09Db=0.1

Figure 4.10: Exploration of parameter space for parameters a, the persistence prob-
ability, and b, the stopping probability, for uniform initial conditions (M;(0) = 8 for
all 7). Note that there is a hard constraint that a+b < 1. For cases where a+b = 1,
particles do not have the ability to choose to move in a new direction; they can
only stop or persist in their initially preferred direction. In all cases, the interaction
distance D is 10 and the number of bins k is 100. The ¢-axis is the bin number,
ranging from 1 to 100, the t-axis is for time, from 1 to 1000, and the vertical z-axis
is for total particle number, M;(t).
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Figure 4.11: Exploration of parameter space for parameters a, the persistence prob-
ability, and b, the stopping probability, for uniform initial conditions (M;(0) = 8
for all 4). This figure has the same parameter setup and initial conditions as those
in 4.10; however, the MATLAB integration tolerances are stricter in this Figure to
illustrate the numerical instability of these simulations. Note that there is a hard
constraint that a+b < 1. For cases where a+b = 1, particles do not have the ability
to choose to move in a new direction; they can only stop or persist in their initially
preferred direction. In all cases, the interaction distance D is 10 and the number of
bins £ is 100. The ¢-axis is for bin number, ranging from 1 to 100, the t-axis is for
time, from 1 to 1000, and the vertical z-axis is for particle number.
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parameter sets (a,b) = (0.3, 0.3), (0.3, 0.5), (0.5, 0.1), and (0.5, 0.3), there is a no-
ticeable delay in aggregation formation. Furthermore, for the parameter sets (a, b)
= (0.1, 0.1) and (0.1, 0.3), we see a shift in the location of the aggregations. As
expected, for parameter values where a + b = 1, the resulting simulation still yields

a constant uniform distribution.

4.4.3 Parameter analysis by simulation

We consider the case of initial conditions that follow a Poisson distribution.
We generated a set of initial data with a Poisson distribution with mean 2 for each
population type and bin. We use the same set of initial data for each simulation.
The total number of particles for each bin, as well as a break down of particle
number by population, are shown in Fig. 4.12. The total number of particles in this

example is 820.

Initial conditions for Initial conditions for Initial conditions for Initial conditions for Initial conditions
right-moving particles right-stationary particles left-moving particles left—stationary particles for all particle types
8 8 8 8 20
6| 6 6 6 15
4 4 4 4 10
2| 2 2 2 5
0 o 0 0 0

Figure 4.12: Initial conditions for Figures 4.13-4.22. The first four plots, for right-
moving R;(0), right-stationary R$(0), left-moving L;(0) and left-stationary L7(0) are
used to initiate the ODEs (and the stochastic systems in Fig. 4.7, 4.8 and 4.9. The
last plot is the sum of these four plots, M;(0) and is what is visible in subsequent
images. Particle numbers are distributed with a Poisson distribution with mean 2
for each population-type in each bin ¢. The i-axis varies from 0 to 100. The total
number of particles is 820.

In comparing simulations for this initial data set, our objective is to develop a

better understanding of the parameter space. That is, we hope to better understand
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the effect of each parameter and their interdependencies. We begin by considering
the effect of varying both the persistence probability a and the stopping probability
b. Each probability can vary between 0 and 1. In varying both parameters, we
are constrained by a + b < 1: the probability of persisting, stopping, and changing
directions based on neighbor-weights must add up to one. In Figure 4.13, we show
how the spatial distribution of particles evolves over 1000 time steps. In Figure 4.14,
we show the distribution of particles at the final time 1000. In both figures, the
parameters a and b are chosen from the set {0.1,0.3,0.5,0.7,0.9}. We observe that
as the persistence probability a is increased, the number of aggregations decreases.
A similar trend occurs with the stopping probability. As b increases, the number
of aggregations decreases; however, this relationship appears to also depend on the
value of a. The dependence of the number of aggregations on persistence probability
a is stronger than the dependence on the stopping probability . Note that for
a = 0.1, for this set of parameters, the only effect of increasing b appears to be in
the increased width of the peaks, as shown in Fig. 4.14. The width of peaks also
increases with increased persistence probability a. Note that for simulations with
a + b = 1, we observe oscillating waves of cells in Fig. 4.13. We also observe, for
images with a +b =1 in Fig. 4.14, that the magnitude of these waves decreases for
an increase in persistence probability a. Further, note that a few of the simulations
do not appear to have reached a steady state, e.g., parameter sets (a,b) = (0.3,
0.5) and (0.7, 0.1), where nonzero dips between peaks appear as a viable source of
merging aggregations.

We next study the relation between the parameters a, the persistence prob-
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Figure 4.13: Exploring the parameter space for parameters a, the persistence prob-
ability, and b, the stopping probability. Note that a + b < 1. For cases where
a + b = 1, particles cannot change their direction; they can only stop or persist in
their initially preferred direction. In all cases, the interaction distance D is 10 and
the number of bins is 100. The i-axis is for the bin number, the t-axis is time, from
1 to 1000, and the vertical z-axis is for particle number. The initial conditions are
given in Figure 4.12.
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Figure 4.14: The final distribution at time ¢ = 1000 of the simulations shown in
Figure 4.13.
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ability, and D, the neighbor detection distance. To do this, we again allow a to
take values in the set {0.1,0.3,0.5,0.7,0.9}. We consider two ranges of values for
D: {2,5,10,20,40} and {1,3,5,7,9}. The first range allows us to consider the large
scale effects of doubling the parameter D. The second range allows us to consider
the effect of varying parameter D by relatively small increments. The second range
is more likely the biologically reasonable range to consider, but understanding the
larger scale effects of D is also important. We set the stopping probability b = 0.1.
Results are shown in Figures 4.15-4.18. There are 1000 time steps in the surface
evolution images. The snapshot of the distribution of cells is taken at the final time
t = 1000. The number of bins equals 100. Once again, increasing the persistence
probability a clearly decreases the number of aggregations and increases the width
of aggregation peaks. Increasing the neighbor detection distance D also decreases
the number of aggregations. Interestingly, the neighbor detection distance D does
not appear to affect the width of aggregations. In Figs. 4.15 and 4.16, we notice
that doubling the interaction distance yields approximately half as many aggrega-
tions. In all figures (Figs. 4.15-4.18), when the persistence probability is a = 0.7,
the system develops harmonic frequencies for a neighbor detection distance D that
is between 1 and 5. When this occurs, the magnitude of the wave (in the absence
of aggregations) becomes very small. Figures 4.17 and 4.18 also illustrate that the
number of aggregations is very sensitive to D for very low values of D, but not very
sensitive for values of D larger than 5.

Finally, we explore the dependencies between the stopping probability b and

the neighbor detection distance D. For these simulations, we set the persistence
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Figure 4.15: Exploring the parameter space for parameters a, the persistence prob-
ability, and D, the neighbor detection distance. In all images, the stopping proba-
bility b is 0.1 and the number of bins is 100. The i-axis is for the bin number, from
1 to 100, the t-axis is the time, from 1 to 1000, and the vertical z-axis is for the

particle number. The initial conditions are given in Figure 4.12.
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Figure 4.16: The final distribution at time ¢ = 1000 of the simulations shown in
Figure 4.15.
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Figure 4.17: Exploring the parameter space for parameters a, the persistence proba-
bility, and D, the neighbor detection distance. In all images, the stopping probability
b is 0.1 and the number of bins is 100. The ¢-axis is for bin number, ranging from
1 to 100, the t-axis is the time, from 1 to 1000, and the vertical z-axis is for the
particle number. The initial conditions are given in Figure 4.12.
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Figure 4.18: The final distribution at time ¢ = 1000 of the simulations shown in
Figure 4.17.
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probability a to 0.3 which results in a more interesting dynamics compared with the
case when a = 0.1. The stopping probability b takes values in {0.1,0.3,0.5,0.7}.
Two sets of values are considered for D: {2,5,10,20,40} and {1,3,5,7,9}. The
results are shown in Figures 4.19-4.22. Clearly, for the larger range of D values,
shown in Figs. 4.19-4.20, the stopping probability b only affects the simulations
when b > 0.5. This is most likely due to our choice of the persistence probability
parameter a. Once again it is observed that if the detection distance D is doubled,
the number of aggregations is approximately halved. For b = 0.7, where a + b =1,
we observe the same wave pattern to what was seen in Figs. 4.13-4.18. Similar
results are obtained for low values of D, as can be seen in Figs. 4.21 and 4.22.
There are a few interesting artifacts of these simulations that may be related
to our choice of initial data set. The aggregations appear in approximately the
same location in every simulation. This is very notable for simulations with one
or two peaks. Additionally, in cases of two aggregations, the relative size of the
peaks almost always decreases with increasing bin number. Similarly, for cases
with four aggregations, the relative height of the peaks increases with an increasing
bin number. Furthermore, for cases with no aggregations, the resulting wave is in
approximately the same phase for each simulation, although the magnitude varies.
Comparing these situations to the set produced with uniform initial data, the latter

yields shifted sets of peaks for differing simulations.
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Figure 4.19: Exploring the parameter space for parameters b, the persistence prob-
ability, and D, the neighbor detection distance. In all images, the stopping proba-
bility a is 0.3 and the number of bins is 100. The ¢-axis is for the bin number, from
1 to 100, the t-axis is for the time, from 1 to 1000, and the vertical z-axis is for the
particle number. The initial conditions are given in Figure 4.12.
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Figure 4.20: The final distribution at time ¢ = 1000 of the simulations shown in
Figure 4.19.
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Figure 4.21: Exploring the parameter space for parameters b, the persistence prob-
ability, and D, the neighbor detection distance. In all images, the stopping proba-
bility a is 0.3 and the number of slots k£ is 100. The i-axis is for bin number, from
1 to 100, the t-axis is for time, from 1 to 1000, and the vertical z-axis is for the
particle number. The initial conditions are given in Figure 4.12.
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Figure 4.22: The final distribution at time ¢ = 1000 of the simulations shown in
Figure 4.21.
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4.5 Discussion

The focus of this chapter was the development of a one-dimensional ODE
model from the original stochastic model, proposed in Chapter 2. After making mi-
nor changes to the original model, we began by developing a simple two-population
model which only accounted for right-moving and left-moving particles. We then
allowed the particles to become stationary, adding two additional populations to
the model: right-stationary and left-stationary. After deriving this four-population
model, we were able to more effectively and efficiently explore the parameter space
and develop a better understanding of our system.

We began by comparing simulations from our stochastic model to the ODE
model (4.29)—(4.32). These simulations illustrated that the general trends in both
models are the same. These trends include the number of aggregations, the width
and height of these peaks, and the dynamics of merging aggregations.

For a constant uniform initial distribution of particles, we showed that while
the ODE system is supposed to be at steady state, the numerical simulations sug-
gested that this is an unstable steady state. This reveals itself in numerical sim-
ulations where integration error accumulates, eventually causing the presence of
aggregations, though we expect a constant uniform steady state. Changing the nu-
merical integration error tolerances has a small effect on the temporal appearance
and location of aggregations produced by small disturbances due to integration error.

We analyzed the parameter space by considering a set of random initial condi-

tions with a Poisson distribution, with which we were able to examine the complex
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interplay between the persistence probability a, the stopping probability b, and the
neighbor detection distance D. In considering the parameters individually, we note
that increasing the persistence parameter a decreases the number of aggregations
and increases the width of peaks. The effect of increasing the stopping probability
b is a decrease in the number of aggregations and an increase in the width of aggre-
gations. We observed that increasing a and b effectively decreases the probability
of a particle being able to change directions in order to move toward a neighbor.
In this way, particles are unable to form as tight of aggregations and instead form
larger, less numerous peaks. Increasing the neighbor detection distance D decreases
the number of peaks but does not affect the width of peaks; instead, it appears to
affect the height of such peaks. Note that changing D does not change the total
probability with which a particle can choose to move in a new direction, and a and b
remain fixed. In this way, the width of peaks is not affected. Furthermore, doubling
D appears to halve the number of these aggregations. We expect that for neighbor
detection distances exceeding half the total number of available bins, there will ei-
ther be one or no aggregations. In such a system, all particles are able to sense all
other particles.

We also observed that when particles are only capable of persisting in their
current direction or stopping, maintained by the constraint a + b = 1, the deter-
ministic result appear periodic in nature, with the shape of the curve depending on
general shaped of the initial data. These results also occur for parameter sets where
a + b is close to one and the neighbor detection distance D is relatively small.

The biological implications of this study motivate future research directions of
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this work. We expect that the neighbor detection distance, which is possibly related
to the length of pili on the surface of cyanobacteria or the diffusion length scale of
signaling molecules, is actually fixed, or increases with time and varies from particle
to particle. The stopping and persistence probabilities may also vary from particle
to particle, and the values most likely take on a wide range, depending on temporal
characteristics, e.g., how many polysaccharides the particles have produced and how
many are in the agarose. These characteristics can be incorporated in future work.
Mathematically, this model lends itself to further analysis, by way of derivation of a
partial differential equation. It is not immediately clear how to apply approximation
theory in order to do this, as the neighbor detection distance could be allowed to
remain fixed or go to zero, while other ratios are held fixed. It is likely that deriving
such a model would produce an integro-differential equation, with integrals being
used to count neighbors within fixed distances of the particle. Furthermore, the

model can be extended to two dimensions.
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Chapter 5
B7-H1 and Cancer Immune Interactions

5.1 Introduction

B7-H1 is a surface protein which has been found on carcinomas of the lung,
ovary, and colon and in melanomas but not on most normal tissues [25]. In the case of
tumor immunity, experiments have shown that when the B7-H1 surface protein, also
referred to as PD-L1 and CD274, is present on a tumor, cytotoxic T cells (CTLs)
are less effective at inducing apoptosis in the cancer cells [25, 41]. It is believed
that B7-H1 forms a blockade against CTLs by interacting with PD-1 on the surface
of CTLs [4]. A better understanding of the mechanism and dynamics may allow
medical researchers to develop a cancer treatment schedule specifically targeting this
molecular shield, allowing the immune system to more effectively repress a tumor.

In this chapter, we present a dynamical model for the induction of apoptosis in
cancer cells by cytotoxic T cells. We consider apoptosis by two different mechanisms:
Fas/FasL binding and perforin. The model, developed in Section 5.2, is fit to percent
lysis data for B7-H1 transfected and mock protein transfected cancer cells exposed
to cytotoxic T cells for periods of 4 and 12 hours. A formula for calculating percent
lysis from cell population data is derived in Section 5.3. The results of our model
fitting and an analysis of the parameter values are presented in Section 5.4. We

were able to show how our model can be used to fit percent lysis data as well as
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capture desirable population trends. The results of this chapter were published in

the Bulletin of Mathematical Biology [33].

5.2 A Mathematical model for CTL and tumor interaction

In this section, we consider a model of cytotoxic T cells interacting with the

immune system in vitro. We also give parameter estimates for the model.

5.2.1 Model

In the experimental model of [41], activated cytotoxic T cells are cultured with
cancer cells; hence, for this model we consider possible interactions between the two
populations.

In defining the model, let C'(t) denote the “uncomplexed” cancer cells at time
t, X (t) denote complexes between cancer cells and CTLs at time ¢, and T'(t) denote
the total number of cancer cells at time ¢, i.e., C'(t)+ X (t). Let P(t) denote perforin
in solution and let E(t) denote the CTLs or effector cell population at time ¢.

First consider the kinetic equation for complexes of cancer cells and effector
cells. Assuming mass action kinetics, complexes form at a rate proportional to the
number of cancer cells C(t) and effector cells E(t), i.e. k1C(t)E(t). They dissociate
at arate ko X (t). This association and dissociation via Fas/FasL binding are depicted
in Figure 5.1. Complexes are also removed from the system when the CTL induces

apoptosis in the tumor cell via Fas/FasL binding; we assume this happens at rate
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Figure 5.1: Cartoon depiction of an effector cell, or CTL, interacting with a cancer
cell via Fas/FasL binding to form complex X

k3 X (t). Hence, the dynamic equation for X (¢) reads:

% = RO E() — kX (8) — ks X (1) (5.1)

For the kinetic equation for perforin, we will assume that perforin is produced
at a rate proportional to the number of effector cells E(t), but only when there
are very few effector cells in the system. Otherwise, we assume that the rate of
perforin production saturates with respect to £(t). To achieve this, we use Michaelis-
Menten kinetics. We also allow the presence of cancer cells to inhibit the production
of perforin if enough cancer cells are present; we account for this by dividing the
production term by k,,2+C/(t). Perforin is removed from the system when it interacts

with cancer cells; this happens at rate k,C(t)P(t). The resulting equation is:

P _ ko E(t) ~
T T T EQ) lm o)~ COPW) (5.2)

Finally, we consider the cancer cells which are not in complexes, for which we

assume a logistic tumor growth with rate constants k& and k5. Cells are removed
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from this population when a complex forms at a rate of k1C(¢)E(t) but are added
back if the complex dissociates, which happens at a rate of ky X (¢). Cells which
undergo apoptosis via the Fas/FasL binding are eliminated. The other mechanism
by which cells are induced to apoptosis is modeled by assuming mass action kinetics
for interaction between cancer cells and perforin which we consider at a rate of
kyC(t)P(t). All terms are combined into:

ac

T = kO() = ksC(0)? = iC(DE() + ks X (1) = kaC (1) P(D) (5.3)

During the first 12 hours of culturing the effector and cancer cells, we assume
the total number of effector cells does not change; that is, F(t) + X (t) is constant.
Since CTLs form complexes with cancer cells, the number of uncomplexed effector
cells E/(t) at any time is calculated as E(0)—X (¢). This assumption is experimentally
justified in [41].

Recall that the total number of cancer cells in solution T'(¢) is C'(t) + X (¢).
In order to calculate percent lysis, we must compare this cancer cell population to
one which has been cultured in the absence of CTLs, a population which we denote
by T*(t). As with the previous cancer cell population, we assume logistic growth,
giving us the following equation.

ar
dt

— KT (8) — ks (T*(1))? (5.4)

Note that the kinetic coefficients are the same for 7*(¢) and the logistic growth
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terms of C'(t).

The initial conditions are chosen to correspond to the experimental data in
[41]. In each experiment, the initial concentration of P815 cancer cells is 10* cells
per 200 plb well. The cancer cells in each culture have either been transfected with
B7-H1 or transfected with a mock surface protein. CTLs were added to each culture
so that ratio of CTLs to cancer cells is fixed at various effector cell to target cell
ratios. We denote these fixed ratios in boldface as E/T. At the end of the culture
period, either 4 or 12 hours, the percent lysis of the tumor cells by the CTLs is then
determined by chromium release assay.

We begin fixing our initial conditions by scaling our variables so that C'(0) = 1.
The initial effector cell concentration is then determined by a scale factor E/T. To
correspond to the experimental data, values of E/T for time ¢ of 4 hours are 0.25,
0.5, 1, 2, 4, 8, and 16. Values of E/T for time ¢ of 12 hours are 0.08, 0.15, 0.25, 0.6,
1.25, and 2.5. In this way, the initial effector cell concentration £(0) is equal to E/T
times C'(0). We assume that no Fas-FasL complexes X are present in the system
at time zero, that is X (0) = 0. Hence, we also assume 7%(0) = C(0) + X(0) = 1.
We assume that the initial amount of perforin in the system is proportional to the
number of effector cells for low levels of effector cells but is constant for large levels of
effector cells. To do this, we use a Michaelis-Menten model for the initial condition
as can be seen in Table 5.1.

To check the validity of our model, we use percent lysis data found in [41].
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Description Equation

“Uncomplexed” cancer cells C(0) =
Complexes of CTLs and cancer cells X (0) =

All cancer cells in system T(0) =

CTLs, or Effector cells E(0) = (E/T)C(0)
. __keE(0)

Perforin P(0) = T+ E(0)

Cancer cells in absence of CTLs T(0) =1

Table 5.1: Initial conditions for model

Percent lysis can be calculated from our model:

T(t) = T(1)
(1)

% lysis at time ¢t = 100

Our derivation of this expression and our assumptions can be found in §5.3.

H.2.2 Parameters

In our model, we assume that all of the parameters, except for three, are
the same when considering the interactions of both B7-H1% and mock-transfected
cancer cells with cytotoxic T cells. The presence of B7-H1 is expected to reduce the
effectiveness of CTLs in inducing apoptosis in the cancer cells by means of forming
a blockade; hence, we allow k3, the rate parameter for apoptosis induced by the Fas-
FasLL mechanism and k4, the rate parameter for apoptosis induced by perforin and
granzymes, to differ depending on the presence or absence of B7-H1. Experimental
studies [27] and [45] have shown that in the presence of B7-H1, the production of
perforin is inhibited. Assuming that this has to do with the extent of the blockade

and the number of cancer cells present, we also allow k,,», the Michaelis-Menten
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term for perforin production inhibition by the presence of cancer cells, to differ
based on the presence or absence of B7-H1.

The parameter values utilized in model simulations can be found in Table 5.2.
The values were obtained by minimizing the sum of square errors between the 4 hour
and 12 hour percent lysis data and percent lysis as calculated by our model also at
the 4 and 12 hour marks. The minimization was performed using the MATLAB
function Isqnonlin. In order to obtain parameter values which fit both the B7-H1*
and B7-H1~ data, the sum of square errors being minimized was the weighted sum
of square errors over both data sets. The weight for each term in the sum is the
square of the inverse of the experimental error at that point.

Note that the parameter values for k3 and k,,» differ as expected. With k4 being
the parameter for Fas/Fas-L induced cytolysis, it has been experimentally predicted
that the presence of B7-H1 cancer cells would inhibit this pathway thus making the
value of k3 for B7-H1% less than that of k3 for B7-H1~. Hirano et al. suggest that
their results imply that the perforin/granzyme pathway of cytolysis is not inhibited
by B7-H1 [41]. Two other recent papers, [27] and [45], have experimentally shown
that perforin production is greatly decreased in the presence of B7-H1" cancer cells.
In combination, these references imply that the initial amount of perforin within
effector cells can be used to induce apoptosis in both B7-H1% and B7-H1~ cancer
cells, but after the first 4 hours or so, the effector cells in the presence of B7-H1
will not be able to produce as much perforin. This is reflected in our values of k,,».
It is interesting that the value of k4 for B7-H17" is slightly larger than that k4 for
B7-H1~. We will examine this further in the next section.
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Param. | B7-H1+ \ B7-H1~ | Interpretation Units

k 0.035 cancer growth rate hr?

k1 0.0001 complex formation 2-1072uL/(cell hr)
ko 0.0001 complex dissociation hr!

ks 0.0001 190 apoptosis by complex hr!

k4 3.0 2.2 apoptosis by perforin

ks 0.003 k/Cancer carrying capacity | 2-107?uL/(cell hr)
ke 0.63 initial ratio of P/E

k, 0.097 ratio of P/E

K 1 initial M-M term for P & E | 50 cells/uL

k1 2.2 M-M term for P & E 50 cells/puL

ko 80 ‘ 0.1 M-M term for P & C 50 cells/puL

Table 5.2: Parameter values for model simulation

5.3 Expression for percent lysis

Percent lysis experiments are done by Chromium release assay; the goal of
such an experiment is to provide a scale by which to compare the effectiveness of
different lytic agents or effector cells in lysing target cells. In order to conduct
an experiment to determine percent lysis, the target cells must be incubated with
radioactive chromium. The cells take in some of the chromium and the rest is
washed away before the experiment begins. After some period of time ¢, percent

lysis is calculated with the following formula:

% lysi 100 (experimental Loy release) — (spontaneous SLCr release)
0 lysis =

(5.6)

(maximum °'Cr release) — (spontaneous ! Cr release)

Each of the variables in the equation for percent lysis (5.6) is calculated at time
t. The spontaneous 5!Cr release at time ¢ is determined by assessing how much

chromium is in solution at time ¢ where the target cancer cells have not been in
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the presence of effector cells. This is a measure of how much chromium has been
spontaneously released by the cells after time ¢{. The maximum °!Cr release is
determined by exposing the target cancer cells, again in the absence of effector cells,
to a lytic agent and then measuring the amount of chromium in the system. The
experimental > Cr release is determined by measuring the amount of chromium in
solution in which target cells have been exposed to effector cells for a time duration
t. Mathematical formulae to predict percent lysis have been developed, e.g. see [77],
but these models do not take into account the full dynamics of the system.

To relate this to our model, we need to make a couple of assumptions. We
assume that the target cells have a uniform concentration of chromium, and let p(t)
denote the amount of chromium present per viable cell at time t. We also assume
that p(t) is identical for the two target cell populations we are considering, i.e., those
in the absence of effector cells, T*(t), and those in the presence of effector cells,
T'(t). Noting that we previously assumed that target cells have the same growth
dynamics and associated growth parameters in our model, it seems reasonable to
assume that p(t) is reduced only by spontaneous release and mitosis. If a target
cell dies, by apoptosis or otherwise, this should not affect the amount of chromium
in the remaining viable cells. In this sense, we are assuming that once chromium
leaves the cell the amount that diffuses back into the cell is negligible.

Using our assumptions, we can derive a new equation for percent lysis. The
maximum amount of chromium released minus the amount released spontaneously

is equal to the amount of chromium that is present in viable cells, which are in the
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absence of effector cells, that is,

(maximum °'Cr release) — (spontaneous > Cr release) = p(t)T*(t) (5.7)

A similar expression can be determined for the amount of chromium which
is present in viable cells that are in the presence of effector cells. If the maximum
release minus the spontaneous release tells us how much chromium could possibly
be present in the cells at time ¢ and we know how much has been removed from
the cells by lysis at time ¢ using the experimental release minus the spontaneous
release, then we can calculate the amount of chromium present in the cells at time
t by taking the difference between how much chromium could possibly be in the
cells and how much has been removed from the viable cell population as can be seen

below.

[((max. ®'Cr release) — (spont. rel.)] — [(exp. rel.) — (spont. rel.)] = p(t)T'(t) (5.8)

Combining equations (5.6), (5.7), and (5.8), we have obtained an equation for
percent lysis that we can now use with our model variables:

() - T()

% lysis at time t = 100 0

(5.9)

In the next section, we use this equation to compare our simulation results to avail-

able experimental data.
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5.4 Results and Discussion

In Figure 5.2, we present the percent lysis calculation results of our model in
comparison to experimental data. There are two noteworthy trends in the data.
First, note that the experimental data at 4 hours is not that different for B7-H1"
and B7-H17; however after 12 hours the expected percent lysis for B7-H1" is ap-
proximately half of the B7-H1~. Secondly, it is noteworthy that as E/T increases,
the experimental percent lysis appears to saturate. That is, even if the effector cells
are at a very high ratio to the cancer cells, the CTLs are not sufficiently capable
of suppressing the tumor in these ratios. This may imply the existence of another
mechanism of cancer cell avoidance of lysis by CTLs. It is important to note that
with only three parameters differing between the B7-H1™ and B7-H1~ equation sets,

our model captures both of the these desirable trends.

4 hours 12 hours
80 80
60
" (]
-
%40
— a
—— Model B7-H1~ *®
20 Model B7-H1* 20
* Experimental B7-H1~
~  Experimental B7-H1* )
0
2 4 6 8 10 12 14 16 0 05 1 15 2 25
E/T E/T

Figure 5.2: Percent lysis experimental data fit by model at 4 and 12 hours for both
B7-H1" and B7-H1~ for various effector to target cell ratios. The experimental data
is from [41].

In Figure 5.3, we observe the cell population dynamics over the course of
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12 hours. In in wvivo experiments in [41] lasting 25 to 50 days, it was observed
that a tumor cell population which was transfected with a mock protein, instead
of B7-H1, would increase in number initially, but then gradually decrease as CTLs
managed to lyse the population. In a twelve hour in vitro experiment in [41], the
mock transfected cancer cells gradually decreased in number while B7-H1-positive
cancer cells linearly increased in number. In looking at our population dynamics, we
also see this behavior as the total cancer cell population for B7-H1~ cells cultured
with cytotoxic T cells, T', decreases with time. The B7-H1" cancer cell population
decreases initially due to the large amount of perforin in the system, but then
increases gradually. Note that the amount of perforin in the system, representative
of the CTLs ability to induce apoptosis via this mechanism, decreases to a negligible
amount for CTLs in the presence of B7-H1 but does not go to zero for CTLs in the
absence of B7-H1. The complex dynamics are only significant in the presence of B7-
H1 and are shown on the corresponding graph. The negligible amount of complexes
present in the B7-H1™~ system can be accounted for by comparing the rates at which
complexes form, dissociate, and induce apoptosis via Fas/FasL binding. The rate
parameter for Fas k3 is much larger than both &y and ko, implying that almost every
complex that forms is almost immediately assigned to inducing apoptosis via the
Fas/Fasl. mechanism.

To ensure that we actually have attained reasonable parameter values for the
rate of perforin-induced apoptosis k4, we performed a Latin hypercube sampling ex-
periment varying B7-H1* and B7-H1~ k4. The parameter values for B7-H1 positive

and negative systems were allowed to vary between 1 and 4. The value plotted in
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Figure 5.3: Population dynamics for cancer cells, transfected with either B7-H1"
or a mock protein in the presence of effector cells T" and in the absence of effector
cells T*. The concentration of the Fas-Fasl complexes is also plotted but very small
relative to T'. For the initial conditions, we chose E/T = 1.

Figure 5.4 is the sum of errors squared for the plotted parameter set divided by the
sum of errors squared for the parameter set in table 5.2. The errors are the difference
in percent lysis between the experimental values and the predicted values and the
summation is over both 4 and 12 hours at their respective prescribed E/T ratios.
Values close to one are depicted by black dots, while larger relative errors are shown
with lighter dots. As can be seen in Figure 5.4, the values for perforin-induced
apoptosis rates do not necessarily have to be different in order to get a reasonable,
albeit suboptimal, fit to the percent lysis data. This supports the assumption in
[41] that B7-H1 does not affect or decrease the rate of cytolysis by perforin.

It is noteworthy that our model inaccurately treats perforin as a molecule
with some uniform concentration in solution; perforin in vivo would be localized to
neighborhoods between CTLs and cancer cells. However, given that the solution is

cultured at relatively high cell concentrations in vitro with only effector and target
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Figure 5.4: Latin hypercube sampling analysis of parameter k,, apoptosis rate for
perforin interacting with cancer cells, where all other parameters are fixed at values
given in table 5.2. The value being plotted is the weighted sum of square errors for
the plotted parameter values divided by the weighted sum of square errors for the
parameter values in the table.

cells present, a uniform perforin concentration is a reasonable first approximation to
a global average of activity due to perforin and granzymes. Regardless of the appli-
cability of this assumption, the model does provide means of considering apoptosis
by two separate mechanisms. These mechanisms are not mathematically equivalent
under quasi-steady state approximations, that is assuming dX/dt and dP/dt are
both zero. Such considerations of utilizing both apoptosis mechanisms are a likely
key to the development of a more accurate and more mechanistic model describing
CTL and cancer cell interaction.

Considering that perforin-induced apoptosis is the primary mechanism of apop-

131



tosis during the time series considered, our results seem to agree with experimental
data that B7-H1 has little effect on the rate of perforin-induced apoptosis but does
inhibit perforin production. In fact, if the parameters for k4 of B7-H1-positive and
B7-H1l-negative, are equated, the curve fits are achieved with comparable accuracy
as is displayed in Figure 5.2. It is important to note that our assumptions about
the rate limiting mechanisms, perforin production and Fas-FasL. complex formation,
might not be accurate. For instance, it is possible that apoptosis by these means is
not rate limited by binding mechanism but is instead limited by signal transduction.
Indeed, De Pillis et al. conclude in [24] that the law of mass action is not a sufficient
way to model cytolysis as a whole. Regarding the parameter estimates, considering
that the data we used is strictly in vitro and we are interested in extending our
model to fit in vivo data, a more comprehensive analysis of the parameter space
might be necessary.

The formula which we derive in Section 5.3 for calculating percent lysis from
cell population data is simple, intuitive, and computationally cheap. While the
formula may not be as precise as it could be, the development and validation of a
more involved model may require experimental research. It is also noteworthy that
accuracy associated with the use of this formula will depend on the assumed model
dynamics of cancer cells in the absence of CTLs. In our case, we modeled cancer
cell growth and death with a logistic growth model. This assumption could possibly
be improved by using a cancer growth model which more accurately fits a growth
curve for P815 cancer cells grown in wvitro; however, this data was unavailable for

the experiment.
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5.5 Conclusions

We have provided a model for CTL-induced apoptosis of cancer cells which is
more mechanistic than those currently available while still being relatively elemen-
tary. We were able to show how the model can be used to fit percent lysis data for
in vitro interactions between CTLs and cancer cells, transfected with either B7-H1
or a mock protein. Only three of the parameters were assumed to be different: the
rate parameter for Fas-mediated apoptosis, the rate parameter for perforin-induced
apoptosis and a Michaelis-Menten-like parameter for perforin production inhibition
by cancer cells. The model’s projected cell population data behaved as desired
with the mock-transfected cancer cell population decreasing in size and the B7-H1-
transfected cancer cell population increasing in size. While the model may require
more work to ensure realistic parameter values, the idea of incorporating both mech-
anisms of apoptosis and a formula for calculating percent lysis were presented.

For future work, in order to make inferences with the model at time inter-
vals longer than twelve hours, we intend to relax the assumption that the CTL
population is constant and incorporate T cell dynamics. It would also be useful
to incorporate data specifically involving perforin, Fas/FasL, and cell knockouts of
each. Additionally, it might be possible to reduce the dimension of the parameter
space by making quasi-steady state approximations for the concentrations of per-
forin and CTL-cancer complexes. We would also like to extend our model to in vivo
data, including the upregulation of B7-H1 on tumor cells and interaction with an

antibody; however, dynamic data for B7-H1 upregulation is not currently available.
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Chapter 6

General conclusions

In the first part of this dissertation, we presented mathematical models and
simulations of phototaxis and local interactions between cyanobacteria. In the sec-
ond part of this dissertation, we studied the dynamics of B7-H1 and cancer immune
interactions.

Phototaxis is the ability of certain microorganisms to migrate toward light.
This motion is typically associated with fingering patterns similar to those that
develop in unstable fronts. We focused on a common freshwater microorganism
Synechocystis sp., a cyanobacterium that has been studied in a laboratory setting in
order to understand the functionality of the cell and how the motion of individual
cells is translated into emerging patterns on macroscopic scales. Experimentally, it is
observed that a critical number of cells are necessary for the detection of the direction
of light and for initiating a directional movement. While significant advances have
been made in studying the ways by which the bacteria can detect the light and move
towards it, it is not well understood how these unicellular organisms identify the
direction of the light. It is also not understood how the motion of the individual
cells and the cell-to-cell interactions are then translated into the observed complex
patterns.

Using the experimental data of Synechocystis sp. provided by the Devaki lab,
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we were able to identify a collection of rules for the local movement of cells on
small length- and time-scales. Synechocystis displays a quasi-random motion in
which cells do not all necessarily move in the direction of light and instead form
temporary aggregations of cells. These observations were then used to develop a
series of stochastic mathematical models, which integrate the local rules of motion
(on small scales), with the global, large-scale forcing due to the light source. We
also proposed a stochastic model of local interactions in one dimension, with which
we are able to derive a system of ordinary differential equations.

Simulations of these mathematical models provide interesting insights on the
relative role of the local and global forcing. They also provide a tool for studying the
critical threshold that determines whether local aggregation patterns form or not.
The simulations of our models that incorporate global forcing by light, support the
hypothesis that not all cells are capable of independently identifying the direction
of light. Our mathematical modeling results are shown to be in agreement with the
available experimental data.

Finally, we presented a mathematical model of cancer immune interactions,
as related to B7-H1, an anti-apoptotic receptor on cancer cells. B7-H1 is found in
carcinomas of the lung, ovary, and colon and in melanomas. In mouse model and in
vitro experiments, B7-H1-positive cancer cells have been shown to be immune resis-
tant, while B7-H1-negative tumor cells are significantly more susceptible to being
repressed by the immune system [25]. In order to develop a better understanding of
this complex system, we derived a system of ordinary differential equations, model-

ing the two possible mechanisms of apoptosis of cancer cells by the immune system.
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We isolated three parameters that depend on the presence or absence of B7-H1. A
better understanding of this relationship may allow medical researchers to develop
a cancer treatment specifically targeting this molecular shield, allowing the immune

system to more effectively repress a tumor.
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