
Online View Selection for the Web

Alexandros Labrinidis

Department of Computer Science & ISR

University of Maryland, College Park

labrinid@cs.umd.edu

Nick Roussopoulos�
Department of Computer Science & ISR

University of Maryland, College Park

nick@cs.umd.edu

March 9, 2002

CS-TR-4343

Abstract

View materialization has been shown to ameliorate the scalability problem of data-intensiveweb servers.

However, unlike data warehouses which are off-line during updates, most web servers maintain their

back-end databases online and perform updates concurrently with user accesses. In such environments,

the selection of views to materialize must be performed online; both performance and data freshness

should be considered. In this paper, we discuss the Online View Selection problem: select which views

to materialize in order to maximize performance while maintaining freshness at acceptable levels. We

define Quality of Service and Quality of Data metrics and present OVIS(�), an adaptive algorithm for the

Online View Selection problem. OVIS(�) evolves the materialization decisions to match the constantly

changing access/update patterns on the Web. The algorithm is also able to identify infeasible freshness

levels, effectively avoiding saturation at the server. We performed extensive experiments under various

workloads, which showed that our online algorithm comes close to the optimal off-line selection algo-

rithm.

1 Introduction

The frustration of broken links from the early Web has been replaced today by the frustration of web servers

stalling or crashing under the heavy load of dynamic content. In addition to data-rich online web services,

even seemingly static web pages are usually generated dynamically in order to include advertising features

and personalization[BBC+98]. However, dynamic content has significantly higher resource demands than

static web pages and creates a huge scalability problem at web servers.

View materialization has been proposed as the solution to the scalability problem for dynamic content

[LR99, LR00, YFIV00]. With view materialization, dynamic query results are cached outside the DBMS

and re-used for answering future requests. Updates on base data are performed immediately in the DBMS

and trigger a refresh on the materialized views. Although refreshes are applied immediately, the method�Also with the Institute for Advanced Computer Studies

1

does not provide any hard guarantees for the freshness of the responses sent to the users. For example, if all

views were materialized, the update workload could crash the server and create a backlog, resulting in stale

responses. Fast query response is of paramount importance only if the data is fresh, otherwise it may be more

harmful than slow or even no data service. This is especially true for data-intensive web servers being used

for critical applications, where serving stale data can have catastrophic consequences.

The view selection problem aims at balancing the trade-off between performance improvement and main-

tenance overhead because of materialization. View selection has been studiedextensively in relational databases

and data warehouses [Rou82, Han87, Sel88, BM90, GM95, RCK+95, SSV96, Gup97, CD97, KR99]. In data

warehouses, View Selection is performed off-line during the down time of the warehouse. Web servers, on

the other hand, must remain online all the time and thus, updates are applied in the back-end database while

the web server continues to serve user requests. Therefore, in a web server environment, view selection needs

a) a run-time method for deciding which views to materialize, and, b) a cost model that takes into account

both system performance and data freshness guarantees observed under this view selection.

In this paper we introduce the Online View Selection problem: in the presence of continuous access and

update streams, dynamically select which views to materialize, so that overall system performance is max-

imized, while a guarantee on the freshness of the served data is maintained. We define Quality of Service

(QoS) metrics to measure system performance and Quality of Data (QoD) metrics to measure the freshness

of the served data.

An algorithm that solves the Online View Selection problem must� be adaptive: rapidly evolve the selection decisions based on changes in the access/update patterns,� recognize infeasible QoD guarantees, when the user-specified QoD guarantee cannot be met under the

current workload without additional resources,� be scalable: handle large datasets and heavy access/update volumes.

Motivating Example: Our motivatingexample is a database-driven web server that provides realtime stock

information to subscribers. Updates to stock prices and other market derivatives are streamed to the back-end

database and must be performed online. The web server is required to provide users with up-to-date informa-

tion on specific stocks. This information includes current stock prices, moving average graphs, comparison

charts between different stocks and personalized stock portfolio summaries.

In general, we are interested in data-intensive web servers that provide mostly dynamically generated

web pages to users (with data drawn from a DBMS) and also face a significant online update workload. Sev-

eral recent studies on the access workloads of data-intensive web servers [BCF+99, PQ00, Mar01, LR01b]

indicate that accesses are highly skewed, with a handful of pages corresponding to a big percentage of the

overall access volume.

Structure of paper: In the next section, we present our metrics for measuring system performance and

data freshness. We also define the Online View Selection Problem. In Section 3 we describe the proposed

2

Online View Selection Algorithm and in Section 4 we discuss the results of our experiments. Section 5 has

a brief summary of related work. We conclude in Section 6.

2 Online View Selection Problem

We assume a system architecture like the one in Figure 1. The web server is responsible for serving user re-

quests. Depending on the complexity of the web site, we may have an application server responsible for web

workflow management. Instead of interfacing the application server directly to the database server, an asyn-

chronous cache module acts as an intermediary. Unlike traditional caches in which data is simply invalidated

on updates, data in the asynchronous cache can be materialized and immediately refreshed on updates. This

allows for significantly faster response times for materialized data, but incurs overhead for refreshes. Finally,

the update scheduler intercepts all incoming updates and is responsible for invalidating cached content in the

asynchronous cache, propagating the relation updates to the database server, and triggering the refreshment

of materialized data in the asynchronous cache.

relation
updates

web server

app server

async cache

accesses

db server

update scheduler

Figure 1: System Architecture

2.1 Web Page Derivation Graph

We distinguish three types of data objects in the system: relations, WebViews, and web pages.� Relations are stored in the database server and are the primary “storage” for structured data. The in-

coming update stream affects relations only. Relation updates are executed in order of arrival.� WebViews [LR99] are HTML or XML fragments. WebViews are usually generated by “wrapping”

database query results (views) with HTML formatting commands or XML semantic tags (views for

the Web). A WebView can be any type of HTML or XML fragment, even if it does not include data

drawn from a database.� Web pages are composed of one or more WebViews. Web pages are what the user is served with in

response to his/her access requests.

3

We assume that we are given a directed acyclic graph, the Web Page Derivation Graph, which represents

the derivation paths for all web pages. The nodes of the graph correspond to data objects in the system. An

edge from node a to node b exists only if node b is derived directly from node a. A node b can have multiple

“parents”, therefore the in-degree of a node can be bigger than one. Relations are the roots of the graph, with

zero in-degree, whereas the web pages are the leafs of the graph, with zero out-degree.

W2

W3

W4
R3

R2

R1

1

2P

1W
P

Figure 2: Web Page Derivation Graph

Figure 2 has an example of a Web Page Derivation Graph. We assume a database with three relations

(R1; R2; R3), four WebViews (W1;W2;W3;W4) and two web pages (P1 and P2).

WebViews are derived by querying relational data and are generated by “webifying” relational views. We

impose the requirement that WebViews must either be derived from relational data or from other WebViews.

This means that for multi-source WebViews which are generated from other WebViews and also using rela-

tional data, we must first “wrap” the relational data with additional WebViews before using them to derive

the multi-source WebViews.

Figure 2 is a very small example of an actual Web Page Derivation Graph. In practice, we usually have

thousands of web pages in a web site, with dozens of HTML/XML fragments on each page [CIW+00]. How-

ever, we also expect to have a significant amount of WebView “sharing” among these web pages. Imagine,

for example, a personalized newspaper site. Each user selects the type of news to be included (e.g. local,

national, economy), specifies a city for the weather forecast, and gives a list of stock symbols along with

the purchase price and quantities for calculating his/her portfolio value. Although the combination of the

above elements is most probably unique, there is clearly a finite number of cities/stock symbols, which will

be shared among thousands of users (in addition to the standard navigation/presentation fragments).

2.2 The Asynchronous Cache

All requests that require dynamically generated content (through database queries) are intercepted by the

Asynchronous Cache (ASC). ASC deals with objects that can be maintained under the following policies:� Virtual WebViews are always executed on demand and are not cached. Intercepted queries against

Virtual WebViews are simply forwarded to the database server. Database updates do not affect Virtual

4

WebViews. However, accessing them is 1-2 orders of magnitude slower than cached or materialized

WebViews.� Non-Materialized WebViews are cached in ASC, in anticipation of future requests. While they are

fresh, they are served very efficiently from the cache. When an update affects a WebView, it is inval-

idated and needs to be re-generated on a following request. This is similar to traditional caching with

invalidation rather than Time-to-Live (expiration) time. Caching WebViews is always a better policy

than Virtual, since, without any loss in data freshness, one obtains significant improvement in response

time for all the times that a fresh version of the WebView is in the ASC.� Materialized WebViews are materialized and continuously maintained under updates in the back-

ground. Accesses to them are always served from the ASC. The response time is similar to a fresh

non-materialized WebView and remains almost constant since a Materialized WebView is served from

ASC even if it is invalidated. However, there is a limit as to how many WebViews should be materi-

alized. More materialized WebViews means an increase in the overhead of refreshing them and has a

negative effect on both server performance and WebView freshness.

The big difference between materialized and non-materialized WebViews is the decoupling of serving

access requests from handling updates. With materialization, updates are not in the critical path of serving

user requests. Without materialization, updates must be taken care of while serving user requests (i.e. by

bringing the fresh version of a stale WebView before responding).

In addition to providing data storage, the asynchronous cache module is responsible for automatically

selecting which WebViews to materialize. In this work we consider HTML WebViews only. We plan to

study XML WebViews in the future. Dealing only with HTML WebViews means that the cost to generate

any WebView from other WebViews will be negligible (simple embedding or concatenation of HTML frag-

ments). Therefore, in this work we only consider materializing WebViews which are generated directly from

relational data (stored in the database server). Response times for such WebViews can be reduced by up to

two orders of magnitude if materialized [LR00] and thus are the only ones that could offset the overhead of

keeping them up to date in the background.

2.3 Measuring Quality of Service

In order to measure the performance of a data-intensive web server, we observe the incoming access request

stream for a certain time interval T . We define Quality of Service (QoS) as the average response time for user

requests, which corresponds to the average time required to service a web page access request. Therefore,

improving the QoS is equivalent to reducing the average response time. Note that we record the request

arrival and completion times at the server (and not at the client) in order to factor out the network latency

from our measurements.

5

2.4 Measuring Quality of Data

We define Quality of Data (QoD) for data-intensive web servers as the average freshness of the served web

pages. When an update to a relation is received, the relation and all data objects that are derived from it

become stale. Database objects remain stale until an updated version of them is ready to be served to the

user.

We illustrate this with an example. Let us assume the Web Page Derivation Graph of Figure 2, and that

only WebViews W1 and W2 are materialized. If an update on relation R1 arrives at time t1, then relationR1
will be stale until time t2 � t1, the time when the update on R1 is completed (Figure 3). On the other hand,

materialized WebView W1 will be stale from time t1 until time t3 � t2, when its refresh is completed. If

an update on relationR3 arrives at a later time, t4, then relationR3 will be stale for the [t4; t5] time interval,

until t5, when the update on R3 is completed (Figure 3). Also, non-materialized WebViews W3 andW4 will

be stale for the same interval [t4; t5]. On the other hand, materialized WebView W2 will be stale from timet4 until time t6 � t5, when its refresh is completed.

1R R3

1W W2

are stale
R3, W3, W4

update completion times

update arrival times

relation
is stale

materialized W2 is stale

triggered updates

WebView is stale

WR3 2W11R

t t t tt1 2 3 4 5 6t

Figure 3: Staleness Example (W1;W2 assumed materialized)

We have four types of data objects that can be stale:� relations, when an update for them has arrived, but not yet executed,� non-materialized WebViews, when an update for a parent relation has arrived, but not yet executed,� materialized WebViews, if the WebViews have not been refreshed yet (after an update to a parent rela-

tion),� web pages, if a parent WebView is stale.

In order to measure freshness, we observe the access request stream and the update stream for a certain

time interval T . We view the access stream during an observation interval T as a sequence of n access re-

quests: : : : ; Ax; Ax+1; Ax+2; : : : ; Ax+n�1; : : :
6

Access requests Ax are encoded as pairs (Pj ; tx), where tx is the arrival time of the request for web pagePj . Note that each web page Pj consists of multiple HTML fragments (WebViews). Similarly, we view the

update stream during an observation interval T as a sequence of m update instructions:: : : ; Uy ; Uy+1; Uy+2; : : : ; Uy+m�1 ; : : :
Update instructions Uy are encoded as pairs (Rd; ty), where ty is the arrival time of the update instruction

for relationRd. Note that we are only interested in the portion of the update stream that arrived concurrently

with the access requests under observation, or tx � ty � ty+m�1 � tx+n�1.

We define the freshness function for a WebView Wi at time tk as follows:f(Wi; tk) = (1; if Wi is fresh at time tk0; if Wi is stale at time tk (1)

A WebViewWi is stale, ifWi is materialized and has been invalidated, or ifWi is not materialized and there

exists a pending update for a parent relation of Wi. A WebView Wi is fresh, otherwise.

In order to quantify the freshness of individual access requests, we recognize that web pages are based on

multiple WebViews. A simple way to determine freshness is by requiring that all WebViews of a web page be

fresh in order for the web page to be fresh. This means that even if one WebView is stale, the entire web page

will be marked as stale. In most occasions, a strict boolean treatment of web page freshness like this will be

inappropriate. For example a personalized newspaper page with stock information and weather information

should not be considered completely stale if all the stock prices are up to date but the temperature reading is

a few minutes stale.

Since a strict boolean treatment of web page freshness is impractical, we adopt a proportional definition.

Web page freshness can be a rational number between 0 and 1, with 0 being completely stale and 1 being

completely fresh. To calculate freshness of web page Pj at time tk, we take the weighted sum of the freshness

values of the WebViews that compose the web page:f(Ak) = f(Pj ; tk) = njXi=1 ai;j � f(Wi; tk) (2)

where nj is the number of WebViews in page Pj , and ai;j is a weight factor.

Weight factors ai;j are defined for each (WebView, web page) combination and are used to quantify the

importance of different WebViews within the same web page. Weight factors for the same web page must

sum up to 1, or
Pnji=1 ai;j = 1; 8 web page Pj . When a WebView Wi is not part of web page Pj , then the

corresponding weight factor is zero, or ai;j = 0. The weight factors can be user-specified or one can simply

use the default value of ai;j = 1nj , wherenj is the number of WebViews in pagePj , thus giving all WebViews

equal importance within the same page. For example, from Figure 2, the default weight factors will be: 13
for P1 WebViews (W1, W2, and W3) and 12 for P2 WebViews (W3 and W4).

7

Let f(Ak) be the freshness value of web page Pj returned by access request Ak = (Pj ; tk). Then the

overall Quality of Data is:

QoD = 1n � x+n�1Xk=x f(Ak) (3)

where n is the total number of access requests.

2.5 Online View Selection Problem

Clearly, the choice of WebViews to materialize will have a big impact on QoS and QoD. On the one extreme,

materializing all WebViews will give high QoS, but can have low QoD (i.e. views will be served very fast,

but can be stale). On the other hand, keeping all views non-materialized will give high QoD, but low QoS

(i.e. views will be as fresh as possible, but the response time will be high).

We define the Online View Selection problem as follows: in the presence of continuous access and up-

date streams, dynamically select which WebViews to materialize, so that overall system performance (QoS)

is maximized, while a guarantee on the freshness of the served data (QoD) is maintained. In addition to the

incoming access/update streams, we assume that we are given a web page derivation graph, and the costs to

access/update each relation/WebView.

Given the definition of QoD from Section 2.4, a freshness guarantee will be a threshold � 2 [0; 1]. For

example, a threshold value of 0.9 will mean that roughly 90% of the accesses must be served with fresh data

(or that all web pages served are composed of about 90% fresh WebViews).

The view selection problem is necessarily an online process for two reasons. First, since updates are

performed online, concurrently with accesses, we must consider the freshness of the served data (QoD) in

addition to the QoS. Second, since the accesses/updates are continuously streaming into the system, any al-

gorithm that provides a solution to the view selection problem must decide at runtime and have the ability

to adapt under changing workloads. Off-line view selection cannot match the wide variations of web work-

loads.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

Q
ua

lit
y

of
 D

at
a

(b
es

t=
1)

Average Response Time (ms)

Figure 4: All Materialization Plans in QoD/QoS space

We will use the term materialization plan to denote possible solutions to the Online View Selection prob-

8

lem. A materialization plan simply lists which WebViews should be materialized, while the remaining Web-

Views should be just cached. We do not consider the virtual policy for WebViews, since caching will always

give as fresh data as the virtual policy and will reuse results, giving better QoS.

To visualize the solution space for the Online View Selection Problem we enumerate all possible materi-

alization plans for a small workload and compute the QoS and QoD (Figure 4). The different materialization

plans can provide big variations in performance and Quality of Data. For example, plans in the bottom left

corner of Figure 4 correspond to materializing most WebViews (with very low average response time and

low QoD), whereas plans in the top right corner of the plot correspond to non-materializing most WebViews

(with very high average response time and high QoD).

3 Online View Selection Algorithm

Traditional view selection algorithms work off-line and assume knowledge of the entire access and update

stream. Such algorithms will not work in an online environment, since the selection algorithm must decide

the materialization plan in realtime. Furthermore, updates in an online environment occur concurrently with

accesses, which makes the freshness of the served data an important issue. Finally, the unpredictable nature

of web workloads mandates that the online view selection algorithm be adaptive in order to evolve under

changing web access and update patterns.

In this section we describe OVIS(�), a benefit-based Online VIew Selection algorithm, where � is a user-

specified QoD threshold. OVIS(�) strives to maintain the overall QoD above the user-specified threshold �
and keep the average response time as low as possible. OVIS also monitors the access stream in order to

prevent server backlog.

OVIS(�) is inherently adaptive. The algorithm operates in two modes: passive and active. While in

passive mode, the algorithm collects statistics on the current access stream and receives feedback for the

observed QoD. Periodically, the algorithm goes into active mode, where it will decide if the current materi-

alization plan must change and how.

QoD

0

1

time

−
+ +

−

QoD surplus

QoD deficit

decision points

threshold

Figure 5: OVIS(�) Algorithm

The main idea behind the OVIS(�) algorithm is illustrated in Figure 5. By constantly monitoring the QoD

for the served data, the algorithm distinguishes between two cases when it must decide on the materializa-

tion plan. When the observed QoD is higher than the threshold �, OVIS(�) identifies a QoD surplus, which

9

chooses to “invest” in order to improve the average response time. On the other hand, when the observed

QoD is less than the threshold �, the algorithm identifies a QoD deficit, for which it must compensate.

In the next paragraphs we explain the statistics that are maintained during the algorithm’s passive mode,

and present the pseudocode for the OVIS(�) algorithm.

3.1 OVIS(�) Statistics

The OVIS(�) algorithm maintains statistics in order to accurately observe the QoD for the served data, and,

to predict the effects on the QoD and average response time from changes in the materialization plan.

We have three counters for every WebViewWi. N acc(Wi), is the total number of accesses toWi,N fresh(Wi)
is the number of those accesses that were served fresh back to the user, and N hits(Wi) is the number of ac-

cesses that found a fresh version of WebView Wi in the cache. The difference between N fresh() and N hits()
is that N fresh() counts freshness on the final, served results, whereas N hits() counts freshness based on the

first attempt to read from the Asynchronous Cache (ASC).

version in version in
cache is fresh cache is stale

WebView N acc(Wi)++ N acc(Wi)++Wi is N fresh(Wi)++
materialized N hits(Wi)++

WebView N acc(Wi)++ N acc(Wi)++Wi is N fresh(Wi)++ N fresh(Wi)++
non-materialized N hits(Wi)++

Table 1: OVIS(�) Counters

Table 1 illustrates the differences between the three counters. Accesses to web pages are translated to

WebView accesses for all the WebViews that are part of a web page. We assume that WebViews are invali-

dated whenever updates to their parent relations are received. N hits(Wi) is incremented on an access to Wi
only if the WebView is materialized and fresh, or if non-materialized, but the cached version is fresh. It will

not be incremented if the cached copy of the WebView is stale, even if eventually the Asynchronous Cache

will compute a fresh version ofWi and serve it to the user. The purpose of theN hits(Wi) counter is to help us

predict the effects of changing the materialization plan (if a non-materialized WebView becomes materialized

and vice-versa).

All counters are kept up to date for the duration of passive mode and are initialized every time the OVIS(�)

algorithm goes into active mode. The three aforementioned counters monitor the access and update workload

for the immediate past and are used by the OVIS(�) Algorithm to estimate the access and update patterns for

the immediate future.

Calculating the QoS Benefit We use the term materialize a WebView to denote that a WebView gets ma-

terialized and the term dematerialize a WebView when we stop materializing it. Using a simple cost model

we can estimate the QoS differentials of materializing or dematerializing a WebView Wi.
10

Let us assume that the cost to access a WebView Wi from the ASC isAmat(Wi) and the cost to compute

a WebView Wi on demand is A virt(Wi). The benefit on QoS from materializing WebView Wi is� cost(mat) = cost(Wi is not mat.)� cost(Wi is mat.)= N hits(Wi)� Amat(Wi)+ (N acc(Wi)�N hits(Wi))� A virt(Wi)� N acc(Wi)�Amat(Wi) (4)

In the estimation of the cost of accessing a materialized WebView, we do not consider the cost for refreshing

the WebView in the background upon updates. When estimating the cost of accessing a non-materialized

WebView, we useN hits(Wi) to determine how many times the cached version was used, whereas for the rest

of the times, (N acc(Wi)�N hits(Wi)), a fresh version needs to be generated at a greater cost.

The benefit on QoS from dematerializing Wi is� cost(demat) = �� cost(mat) (5)

Calculating the QoD Benefit Having kept statistics on the freshness of the served data, we can accurately

determine the change in QoD induced by materializing or dematerializing a WebView Wi.
Let us assume that N fresh(Wi j Pj) is the number of fresh accesses to WebView Wi that originated from

requests to page Pj . Clearly,
Pj N fresh(Wi j Pj) = N fresh(Wi), for each WebView Wi. The overall QoD

definition from Eq. 3 can be rewritten as follows:

QoD = 1n �Xi Xj [ai;j �N fresh(Wi j Pj)]
where n is the total number of page accesses.

Instead of keeping separateN fresh(Wi j Pj) counters for all (WebView, page) combinations, we maintain

one, weighted counter, N fresh/a(Wi). Instead of incrementing by one, we increment N fresh/a(Wi) using the

weight ai;j in order to record a fresh access on Wi originating from page Pj . We have that N fresh/a(Wi) =Pj [ai;j �N fresh(Wi j Pj)]. Therefore, the QoD definition can be simplified as follows:

QoD = 1n �Xi N fresh/a(Wi) (6)

Based on Eq. 6, we compute the impact on QoD from materializing or dematerializing one WebView, as

follows: �QoD(Wi) = 1n � [N fresh/a(Wi)�N est
fresh/a(Wi)] (7)

where N fresh/a(Wi) is the current weighted counter and N est
fresh/a(Wi) is the estimate for the counter after

materializing or dematerializing WebView Wi.
If we assume that the access and update patterns of the immediate past hold for the immediate future,

when materializing a previously non-materialized WebView Wi, the number of fresh accesses onWi will be

11

equal to the number of attempts to access a fresh version of Wi, or N est
fresh/a(Wi) = N hits/a(Wi). Thus Eq. 7

is written: �QoD(mat Wi) = 1n � [N fresh/a(Wi)�N hits/a(Wi)] (8)

where N hits/a(Wi) is the weighted version of N hits(Wi).
On the other hand, if dematerializing a WebView Wi, it will become non-materialized. In that case, the

number of fresh accesses onWi will be equal to the number of accesses toWi, or N est
fresh/a(Wi) =N acc/a(Wi).

Thus Eq. 7 is written: �QoD(demat Wi) = 1n [N fresh/a(Wi)�N acc/a(Wi)] (9)

where N acc/a(Wi) is the weighted version of N acc(Wi).
3.2 OVIS(�) Algorithm

The OVIS(�) Algorithm constantly monitors the QoD of the served data and adjusts the materialization plan

(i.e. which WebViews are materialized and which ones are non-materialized). By maintaining the statis-

tics presented in the previous section, OVIS(�) has a very good estimate of how big an effect on the overall

QoD/QoS the changes in the materialization plan will have.

QoD surplus When the observed QoD Q is higher than the threshold �, the algorithm will “invest” the

surplus QoD (Q��) in order to decrease the average response time. This is achieved by materializing Web-

Views that were previously non-materialized (but in the cache). For the algorithm to take the most profitable

decision, we just need to maximize the QoS benefit, � cost , for the WebViews that become materialized,

while the QoD “losses”, �QoD , remain less than Q� �. A greedy strategy, that picks WebViews based on

their � cost = �QoD ratio, provides a good solution.

QoD deficit When the observed QoDQ is less than the threshold �, the algorithm will have to compensate

for the QoD deficit (� � Q). In this case, OVIS(�) will dematerialize WebViews thus increasing QoD, at

the expense of increasing the average response time. For the algorithm to take the most profitable decision,

we just need to minimize the QoS “losses”, � cost , for the WebViews that become cached, while the QoD

benefits (�QoD) eliminates ��Q. A greedy strategy, that picks WebViews based on their� � cost = �QoD

ratio, provides a good solution.

Pseudocode The OVIS(�) algorithm is in Passive Mode most of the time, collecting statistics. Periodically,

OVIS(�) enters Active Mode in order to make changes to materialization decisions. Figures 6 and 7 present

the active mode of the OVIS(�) algorithm under QoD surplus and QoD deficit conditions.

3.3 Detecting Server Lag

From elementary queueing theory [Jai91] we know that system performance worsens significantly as we ap-

proach 100% utilization. In practice, there can be cases where the incoming access and update workload

12

QoD surplus: QoD > �
0. qod diff = QoD � �
1. select cached WebViews with � cost(mat) > 0
2. materialize all WebViews with �QoD(mat) = 0
3. find Wi with max � cost(mat) =�QoD(mat)
4. if (�QoD(mat) < qod diff)
5. qod diff � = �QoD(mat)
6. materialize Wi
7. goto 3
8. else
9. stop

Figure 6: Pseudocode for OVIS(�) - QoD surplus

QoD deficit: QoD < �
0. qod diff = � �QoD
1. select materialized WebViews
2. find Wi with max � � cost(demat) =�QoD(demat)
3. if (� �QoD(demat) < qod diff)
4. qod diff + = �QoD(demat)
5. stop materializing Wi
6. goto 2
7. else
8. stop

Figure 7: Pseudocode for OVIS(�) - QoD deficit

generate more load than what the server can handle, resulting in backlog, which we refer to as server lag.

Figure 8 has an example of server lag, which is visible on the access stream.

It is crucial to detect server lag in an online system. Failure to identify server lag can lead to long, ever-

increasing backlogs which will eventually bring the server to a halt with catastrophic consequences. In our

system, we detect server lag by instrumenting the incoming access stream with special markers which are

inserted in the access stream at regular intervals.

iA... AAA i+2A i+1 i+3 i+4

completion times

arrival times...

...
iA A A A Ai+1 i+2 i+3 i+4

...

Figure 8: Server Lag Example

In order to identify server lag for an observation windowT , we compare the arrival and completion times

of the markers closer to the observation start/end-points. If the beginning marker is Ai and the end marker

is Ai+n, we have that:

lag = ta(Ai+n)� ta(Ai)tc(Ai+n)� tc(Ai) (10)

where ta is the arrival time for the marker, and tc is the completion time. Markers have zero processing cost,

so tc � ta is just the current queueing time for access requests. In a stable system, we expect lag to be equal

or very close to 1. When the processing demands exceed the processing capacity, lag will be significantly

lower than 1 and eventually approach 0.

Server lag can be used to detect infeasible QoD thresholds. For example a QoD threshold very close to 1

will most likely lead to a server meltdown, since no WebView can be materialized (for the system to support

such a strong freshness guarantee).

13

4 Experiments

In order to study the online view selection problem, we built osim, a data-intensive web server simulator

in C++. The database schema, the costs for updating relations, the costs for accessing/refreshing views, the

incoming access stream, the incoming update stream and the level of multitasking are all inputs to the simula-

tor. The simulator processes the incoming access and update streams and generates the stream of responses

to the access requests, along with timing information. Among other statistics, the simulator maintains the

QoD metric for the served data.

Our online simulator, osim, runs in two modes: static mode and adaptive mode. In static mode, the

materialization plan is pre-specified and is fixed for the duration of the simulation. In adaptive mode, the

materialization plan is modified at regular intervals using the OVIS(�) algorithm (Figure 6 and Figure 7).

For each experiment we report the average response time and the observed QoD.

In order to detect server lag and be able to prevent server backlogs, we instrument the access stream with

special markers as explained in Section 3.3. These markers are inserted at regular intervals in the incoming

access stream as access requests for a special web page. In a real system, the markers can be added at run-time

without the need to modify the incoming access stream.

Workload Characteristics In all experiments we used synthetic workloads. The accesses were distributed

over web pages following the Zipf distribution [BCF+99] and the updates were distributed uniformly among

relations. Interarrival rates for the access and the update stream approximated a uniform distribution. The

cost to update a relation was 100 ms, the cost to access a WebView from the Asynchronous Cache was 10 ms

and the cost to generate/refresh a WebView was 100 ms in all experiments. The database size, the number

of accesses, the number of updates and the duration varied in each experiment.

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12 13 14

Q
ua

lit
y

of
 D

at
a

(b
es

t=
1)

Average Response Time (ms)

QoD=theta

optimal plan

Figure 9: Off-line Optimal Computation

4.1 Computing the Off-line optimal

In order to compute the off-line optimal materialization plan for the given workload, we first enumerate all

possible materialization plans. Each WebView can either be materialized or non-materialized, therefore we

14

have 2N possible plans, whereN is the number of WebViews in the system (Figure 9). Out of the 2N plans,

we pick the ones that have QoD > �, where � is the user-specified QoD threshold. These plans are the ones

above the QoD = � line in Figure 9. Finally, out of the plans with QoD > � we identify the one with the

lowest average response time, which will be the optimal plan.

4.2 Comparing the Off-line optimal to OVIS(�)

In order to compare our algorithm with the off-line optimal (OPT), we used a relatively small database schema,

of 5 relations, 12 WebViews, and 30 web pages. This configuration generates 212 = 4096 materialization

plans which the optimal algorithm must check, which makes the solution tractable. The workload consisted

of 10,000 web page accesses and 3,000 relation updates over a period of 140,000 ms.

Optimal OVIS(�)� QoD resp. time QoD resp. time

0.95 - - 0.94 11.7 ms
0.90 0.90 9.5 ms 0.90 10.0 ms
0.85 0.85 8.4 ms 0.85 8.9 ms
0.80 0.81 7.8 ms 0.80 8.2 ms
0.70 0.71 6.5 ms 0.72 6.8 ms
0.60 0.61 5.4 ms 0.65 5.9 ms
0.50 0.55 4.2 ms 0.59 4.8 ms

Table 2: Comparison with Optimal

Table 2 has the results of our experiments for various QoD thresholds. For example, for a QoD threshold

of 0.70, the optimal materialization plan would have QoD of 0.71 and an average response time of 6.5 ms,

whereas OVIS(�) has QoD 0.72 and a slightly worse average response time of 6.8 ms.

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000 140000

Q
ua

lit
y

of
 D

at
a

(m
ax

=
1)

Time (ms)

QoD threshold

Figure 10: QoD over time for the Optimal Plan

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000 140000

Q
ua

lit
y

of
 D

at
a

(m
ax

=
1)

Time (ms)

QoD threshold

Figure 11: QoD over time for OVIS(0.8)

Overall, we see that OVIS(�) produces QoD values very close to those of the optimal materialization

plan. Also, the average response times under OVIS(�) are within 10% of the optimal, which is respectable if

we consider that OVIS(�) decides on the materialization plan in an online fashion without prior knowledge

15

of the access/update stream like OPT does. Table 2 clearly illustrates the trade-off between QoD and average

response time: when the QoD increases the average response time also increases and vice-versa.

We plot the QoD over time for the Optimal and OVIS(�) algorithm when � = 0:8 in Figures 10 and

11. In both cases there is a fluctuation of the QoD, around the required threshold �. However, there is one

important difference between the two graphs. In Figure 11 the QoD always alternates from QoD surplus to

QoD deficit states, under OVIS(�), in its goal of reaching the QoD threshold �. There is no similar behaviour

for the Optimal case (Figure 10).

4.3 OVIS(�) study

For this set of experiments, we used a moderate-sized database of 100 base relations, 500 WebViews and

2000 web pages. The access workload composed of 50,000 web page accesses and the update workload had

10,000 relation updates. The duration of this experiment was 600,000 ms.

OVIS(�)� QoD resp. time

0.97 0.968 15.1 ms
0.95 0.951 15.8 ms
0.92 0.917 14.0 ms
0.90 0.899 12.0 ms
0.85 0.867 9.6 ms
0.80 0.856 9.4 ms

Table 3: QoD for OVIS(�)

Table 3 has the results of our experiments for various threshold values. In all cases, OVIS(�) maintained

the QoD guarantee. We did not compute the optimal plan for this workload, since we would need to enumer-

ate and select the best out of 2500 plans.

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000 600000 700000

Q
ua

lit
y

of
 D

at
a

(m
ax

=
1)

Time (ms)

QoD threshold

Figure 12: QoD over time for OVIS(0.9) - Static workload

Figure 12 plots the changes of QoD over time for the OVIS(0.9) experiment. Clearly, despite the high

16

number of WebViews, OVIS(�) manages to maintain a QoD around the user-specified threshold of 0.9

We ran a variation of the same workload, to simulate changing access and update patterns. Instead of gen-

erating the entire access and update stream with one distribution function, we used two seperate functions to

generate the first and second half of the streams. In other words, the access and update frequencies between

the two halfs were totally independent. Figure 13 plots the changes of QoD over time for the OVIS(0.8) ex-

periment with the dynamic workload. Despite the drastic change in the access and update patterns, OVIS(�)

rapidly adapts to the new workload and manages to maintain the QoD guarantee.

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000 600000 700000

Q
ua

lit
y

of
 D

at
a

(m
ax

=
1)

Time (ms)

QoD threshold

Figure 13: QoD over time for OVIS(0.8) - Changing workload

4.4 QoS vs. QoD trade-off

For the last set of experiments, we used a moderate-sized database of 100 base relations, 500 WebViews and

2000 web pages. The access workload composed of 50,000 web page accesses and the update workload had

10,000 relation updates. The duration of this experiment was 600,000 ms.

We compared three different policies: materializing all WebViews (all-mat), not materializing any

WebView (none-mat), and our adaptive algorithm for dynamically selecting which WebViews to materi-

alize with a QoD threshold of 0.7 (ovis(0.7)).

In Figure 14 we plot the QoD over time for the three policies and in Figure 15 we plot the QoS over

time. When we do not materialize any WebView (top curve in both plots), we get the highest QoD, but also

get the highest response times, and thus the lowest QoS. On the other hand, if we materialize all WebViews,

then the average response time will be the lowest, but the QoD can be below the user-specified threshold.

The OVIS(�) algorithm produces QoD that is always near the user-specified QoD threshold and has fairly

constant and small average response times (near those of the all-mat policy). In other words, OVIS(�) is

able to automatically balance the trade-off between QoS and QoD.

17

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Q
ua

lit
y

of
 D

at
a

simulation time

none-mat
ovis(0.7)

all-mat
threshold

Figure 14: QoD over time

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

simulation time

none-mat
ovis(0.7)

all-mat

Figure 15: QoS over time

5 Related Work

To the best of our knowledge this is the first paper that attempts to solve the Online View Selection problem.

There is a lot of research on the off-line version of the view selection problem in Data Warehousing literature

[Sel88, GM95, SSV96, Gup97, GM99, KR99]. Materialization has also been explored in [YFIV00] where

multiple maintenance policies were supported, but the selection problem was not addressed. [LR00] pre-

sented a cost model for the view selection problem, but did not provide an algorithm. [CIW+00] described a

system to support caching of dynamic content, but the application or the user has to decide which data should

be cached. [LR01a] provided an algorithm for solving the constrainted version of the online view selection

problem, i.e. only when the number of views is given.

6 Conclusions

In this work, we have defined the Online View Selection problem: given a Quality of Data (QoD) threshold�, choose which WebViews to materialize so that QoD remains above � and the average response time is

minimized. We have also presented OVIS(�), an adaptive algorithm for solving the Online View Selection

problem. OVIS(�) recognizes QoD surplus or deficit situations and evolves the materialization plans to im-

prove the average response time. OVIS(�) is highly adaptive and does not require advance knowledge of the

access / update patterns. Simulation experiments have shown that OVIS(�) comes close to the behavior of

the optimal off-line algorithm.

One of the main advantages of OVIS(�) is that it does not require human intervention. The algorithm

automatically selects the best materialization plan under the specified QoD constraints. This makes view ma-

terialization (which has up till now only been used in data warehousing environments) an attractive method

of increasing the scalability of data-intensive web servers.

18

References

[BBC+98] Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin, Hector Garcia-

Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish, Michael Lesk, Dave Maier, Jeff

Naughton, Hamid Pirahesh, Mike Stonebraker, and Jeff Ullman. “The Asilomar Report on Data-

base Research”. SIGMOD Record, 27(4), December 1998.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. “Web Caching and Zipf-like

Distributions: Evidence and Implications”. In Proc. of IEEE INFOCOM’99, New York, USA,

March 1999.

[BM90] José A. Blakeley and Nancy L. Martin. “Join Index, Materialized View, and Hybrid-Hash Join:

A Performance Analysis”. In Proc. of the Sixth International Conference on Data Engineering,

pages 256–263, Los Angeles, California, USA, February 1990.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehousing and OLAP Tech-

nology”. SIGMOD Record, 26(1):65–74, March 1997.

[CIW+00] Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. “A Publishing

System for Efficiently Creating Dynamic Web Content”. In Proc. of IEEE INFOCOM’2000, Tel

Aviv, Israel, March 2000.

[GM95] Ashish Gupta and Inderpal Singh Mumick. “Maintenance of Materialized Views: Problems,

Techniques, and Applications”. Data Engineering Bulletin, 18(2):3–18, June 1995.

[GM99] Ashish Gupta and Inderpal Singh Mumick, editors. “Materialized Views: Techniques, Imple-

mentations, and Applications”. MIT Press, June 1999.

[Gup97] Himanshu Gupta. “Selection of Views to Materialize in a Data Warehouse”. In Proc. of the

6th International Conference on Database Theory (ICDT ’97), pages 98–112, Delphi, Greece,

January 1997.

[Han87] Eric N. Hanson. “A Performance Analysis of View Materialization Strategies”. In Proc. of the

ACM SIGMOD Conference, pages 440–453, San Francisco, California, May 1987.

[Jai91] Raj Jain. “The Art of Computer Systems Performance Analysis”. John Wiley & Sons, 1991.

[KR99] Yannis Kotidis and Nick Roussopoulos. “DynaMat: A Dynamic View Management System for

Data Warehouses”. In Proc. of the ACM SIGMOD Conference, Philadelphia, USA, June 1999.

[LR99] Alexandros Labrinidis and Nick Roussopoulos. “On the Materialization of WebViews”. In Proc.

of the ACM SIGMOD Workshop on the Web and Databases (WebDB’99), Philadelphia, USA,

June 1999.

[LR00] Alexandros Labrinidis and Nick Roussopoulos. “WebView Materialization”. In Proc. of the

ACM SIGMOD Conference, Dallas, Texas, USA, May 2000.

19

[LR01a] Alexandros Labrinidis and Nick Roussopoulos. “Adaptive WebView Materialization”. In Proc.

of the ACM SIGMOD Workshop on the Web and Databases (WebDB’2001), Santa Barbara, Cal-

ifornia, USA, June 2001.

[LR01b] Alexandros Labrinidis and Nick Roussopoulos. “Update Propagation Strategies for Improving

the Quality of Data on the Web”. In Proc. of the 27th VLDB Conference, Rome, Italy, September

2001.

[Mar01] Evangelos Markatos. “On caching search engine query results”. Computer Communications,

24(2), February 2001.

[PQ00] Venkata N. Padmanabhan and Lili Qiu. “The Content and Access Dynamics of a Busy Web Site:

Findings and Implications”. In Proc. of the ACM SIGCOMM Conference, Stockholm, Sweden,

August 2000.

[RCK+95] Nick Roussopoulos, Chungmin Melvin Chen, Stephen Kelley, Alex Delis, and Yannis Papakon-

stantinou. “The ADMS Project: Views R Us”. Data Engineering Bulletin, 18(2):19–28, June

1995.

[Rou82] Nick Roussopoulos. “View Indexing in Relational Databases”. ACM Transactions on Database

Systems, 7(2):258–290, June 1982.

[Sel88] Timos Sellis. “Intelligent caching and indexing techniques for relational database systems”. In-

formation Systems, 13(2), 1988.

[SSV96] Peter Scheuermann, Junho Shim, and Radek Vingralek. “WATCHMAN : A Data Warehouse

Intelligent Cache Manager”. In Proc. of the 22nd VLDB Conference, Bombay, India, September

1996.

[YFIV00] Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. “Caching Strategies

for Data-Intensive Web Sites”. In Proc. of the 26th VLDB Conference, Cairo, Egypt, September

2000.

20

