CSTR-4343

Online View Sdection for the Web

Alexandros Labrinidis Nick Roussopoulos®
Department of Computer Science & ISR Department of Computer Science & ISR
University of Maryland, College Park University of Maryland, College Park

| abrinid@s. und. edu ni ck@s. und. edu

March 9, 2002

Abstract

View materialization hasbeen shownto ameliorate the scal ability problemof data-intensiveweb servers.
However, unlike data warehouses which are off-line during updates, most web servers maintain their
back-end databases online and perform updates concurrently with user accesses. In such environments,
the selection of views to materialize must be performed online; both performance and data freshness
should be considered. In this paper, we discuss the Online View Selection problem: select which views
to materiaize in order to maximize performance while maintaining freshness at acceptable levels. We
define Quality of Service and Quality of Datametrics and present OV1S(9), an adaptivea gorithmfor the
Online View Sdlection problem. OVIS(#) evolves the materialization decisions to match the constantly
changing access/update patterns on the Web. The algorithm is aso able to identify infeasible freshness
levels, effectively avoiding saturation at the server. We performed extensive experiments under various
workloads, which showed that our online algorithm comes close to the optimal off-line selection algo-
rithm.

1 Introduction

Thefrustration of broken linksfrom the early Web has been replaced today by the frustration of web servers
stalling or crashing under the heavy load of dynamic content. In addition to data-rich online web services,
even seemingly static web pages are usually generated dynamically in order to include advertising features
and personalization[BBC98]. However, dynamic content has significantly higher resource demands than
static web pages and creates a huge scalability problem at web servers.

View materialization has been proposed as the solution to the scalability problem for dynamic content
[LR99, LROO, YFIV0OQ]. With view materialization, dynamic query results are cached outside the DBMS
and re-used for answering future requests. Updates on base data are performed immediately in the DBMS
and trigger a refresh on the materialized views. Although refreshes are applied immediately, the method

* Also with the Institute for Advanced Computer Studies

does not provide any hard guarantees for the freshness of the responses sent to the users. For example, if al
views were materialized, the update workload could crash the server and create a backlog, resulting in stale
responses. Fast query responseisof paramount importance only if the dataisfresh, otherwiseit may be more
harmful than slow or even no data service. Thisisespecialy true for data-intensive web servers being used
for critical applications, where serving stale data can have catastrophic consequences.

Theview selection problemaimsat bal ancing thetrade-off between performance improvement and main-
tenanceoverhead because of materiaization. View sel ection hasbeen studied extensively inrel ational databases
and datawarehouses[Rou82, Han87, Sel 88, BM90, GM 95, RCK +95, SSV 96, Gup97, CD97, KR99]. Indata
warehouses, View Selection is performed off-line during the down time of the warehouse. Web servers, on
the other hand, must remain onlineall the time and thus, updates are applied in the back-end database while
theweb server continuesto serve user requests. Therefore, inaweb server environment, view selection needs
a) a run-time method for deciding which views to materialize, and, b) a cost model that takes into account
both system performance and data freshness guarantees observed under this view selection.

In this paper weintroduce the Online View Sdlection problem: in the presence of continuous access and
update streams, dynamically select which views to materiaize, so that overall system performance is max-
imized, while a guarantee on the freshness of the served datais maintained. We define Quality of Service
(Q0S) metrics to measure system performance and Quality of Data (QoD) metrics to measure the freshness
of the served data.

An agorithm that solvesthe Online View Selection problem must

¢ beadaptive: rapidly evolve the selection decisions based on changes in the access/update patterns,

¢ recognizeinfeasible QoD guarantees, when the user-specified QoD guarantee cannot be met under the
current workload without additional resources,

¢ bescalable: handle large datasets and heavy access/update volumes.

MotivatingExample: Our motivatingexampleisadatabase-drivenweb server that providesrealtimestock
information to subscribers. Updatesto stock pricesand other market derivativesare streamed to the back-end
database and must be performed online. Theweb server isrequired to provide userswith up-to-dateinforma-
tion on specific stocks. Thisinformation includes current stock prices, moving average graphs, comparison
charts between different stocks and personalized stock portfolio summaries.

In general, we are interested in data-intensive web servers that provide mostly dynamicaly generated
web pagesto users (with data drawn from aDBMS) and al so face a significant online update workload. Sev-
eral recent studies on the access workloads of data-intensive web servers [BCF+99, PQOO, Mar01, LRO1b]
indicate that accesses are highly skewed, with a handful of pages corresponding to a big percentage of the
overall access volume.

Structure of paper: In the next section, we present our metrics for measuring system performance and
data freshness. We aso define the Online View Selection Problem. In Section 3 we describe the proposed

Online View Selection Algorithm and in Section 4 we discuss the results of our experiments. Section 5 has
abrief summary of related work. We concludein Section 6.

2 OnlineView Selection Problem

We assume a system architecture likethe onein Figure 1. The web server isresponsiblefor serving user re-
guests. Depending on the complexity of theweb site, we may have an application server responsiblefor web
workflow management. Instead of interfacing the application server directly to the database server, an asyn-
chronous cache moduleacts as anintermediary. Unliketraditional cachesinwhich dataissimply invalidated
on updates, datain the asynchronous cache can be materialized and immediately refreshed on updates. This
allowsfor significantly faster responsetimesfor materiaized data, but incursoverhead for refreshes. Finally,
the update scheduler interceptsall incoming updatesand isresponsiblefor invalidating cached content inthe
asynchronous cache, propagating the relation updates to the database server, and triggering the refreshment
of materialized datain the asynchronous cache.

accesses
web server

app server

[async cache]—(db server)

(update scheduler J -
relation

updates

Figure 1: System Architecture

2.1 Web Page Derivation Graph

We distinguish three types of data objectsin the system: relations, WebViews, and web pages.

¢ Reationsare stored in the database server and are the primary “storage” for structured data. The in-
coming update stream affects relations only. Relation updates are executed in order of arrival.

o WWEbViews [LR99] are HTML or XML fragments. WebViews are usually generated by “wrapping”
database query results (views) with HTML formatting commands or XML semantic tags (views for
the Web). A WebView can be any type of HTML or XML fragment, even if it does not include data
drawn from a database.

o \\Eb pages are composed of one or more WebViews. Web pages are what the user is served with in
response to his/her access requests.

We assumethat we are given adirected acyclic graph, the Web Page Derivation Graph, which represents
the derivation pathsfor al web pages. The nodes of the graph correspond to data objectsin the system. An
edge from node a to node b existsonly if node b isderived directly from node«. A node b can have multiple
“parents’, therefore thein-degree of anode can be bigger than one. Relations are theroots of the graph, with
zero in-degree, whereas the web pages are the leafs of the graph, with zero out-degree.

O—0 =
O 5

o el
O O
O O

Figure 2: Web Page Derivation Graph

!

Figure 2 has an example of a Web Page Derivation Graph. We assume a database with three relations
(R1, Ra, R3), four WebViews (W, Wo, W3, W,) and two web pages (P, and).

WebViewsare derived by querying relational dataand are generated by “webifying” relationa views. We
imposethe requirement that WebViews must either be derived from relational dataor from other WebViews.
This means that for multi-source WebViews which are generated from other WebViews and also using rela
tiona data, we must first “wrap” the relationa data with additional WebViews before using them to derive
the multi-source WebViews.

Figure 2 isavery small example of an actual Web Page Derivation Graph. In practice, we usualy have
thousandsof web pagesin aweb site, with dozensof HTML/XML fragments on each page[CIW*00]. How-
ever, we a so expect to have a significant amount of WebView “sharing” among these web pages. Imagine,
for example, a personalized newspaper site. Each user selects the type of news to be included (e.g. local,
national, economy), specifies a city for the weather forecast, and gives a list of stock symbols along with
the purchase price and quantities for calculating his/her portfolio value. Although the combination of the
above elementsis most probably unique, thereis clearly afinite number of cities/stock symbols, which will
be shared among thousands of users (in addition to the standard navigati on/presentation fragments).

2.2 The Asynchronous Cache

All requests that require dynamically generated content (through database queries) are intercepted by the
Asynchronous Cache (ASC). ASC deals with objects that can be maintained under the following policies:

o Virtual WebViews are aways executed on demand and are not cached. Intercepted queries against
Virtual WebViews are simply forwarded to the database server. Database updates do not affect Virtual

4

WebViews. However, accessing them is 1-2 orders of magnitude slower than cached or materialized
WebViews.

¢ Non-Materialized WebViews are cached in ASC, in anticipation of future requests. While they are
fresh, they are served very efficiently from the cache. When an update affects a WebView, itisinval-
idated and needs to be re-generated on afollowing request. Thisissimilar to traditional caching with
invalidation rather than Time-to-Live (expiration) time. Caching WebViews is always a better policy
than Virtual, since, without any lossin datafreshness, one obtainssignificant improvement in response
timefor all the times that a fresh version of the WebView isin the ASC.

e Materialized WebViews are materialized and continuously maintained under updates in the back-
ground. Accesses to them are always served from the ASC. The response time is similar to a fresh
non-materialized WebView and remains amost constant sincea Materialized WebView is served from
ASC even if itisinvalidated. However, thereis alimit as to how many WebViews should be materi-
alized. More materialized WebViews means an increase in the overhead of refreshing them and has a
negative effect on both server performance and WebView freshness.

The big difference between materialized and non-materialized WebViews is the decoupling of serving
access requests from handling updates. With materialization, updates are not in the critical path of serving
user requests. Without materialization, updates must be taken care of while serving user requests (i.e. by
bringing the fresh version of a stale WebView before responding).

In addition to providing data storage, the asynchronous cache module is responsible for automatically
selecting which WebViews to materidize. In this work we consider HTML WebViews only. We plan to
study XML WebViews in the future. Dealing only with HTML WebViews means that the cost to generate
any WebView from other WebViewswill be negligible (simple embedding or concatenation of HTML frag-
ments). Therefore, in thiswork we only consider materializing WebViewswhich are generated directly from
relational data (stored in the database server). Response times for such WebViews can be reduced by up to
two orders of magnitude if materialized [LR0OO] and thus are the only ones that could offset the overhead of
keeping them up to date in the background.

2.3 Measuring Quality of Service

In order to measure the performance of a data-intensiveweb server, we observe the incoming access request
stream for acertain timeinterval 7'. We define Quality of Service (QoS) as the average responsetimefor user
reguests, which corresponds to the average time required to service a web page access request. Therefore,
improving the QoS is equivaent to reducing the average response time. Note that we record the request
arrival and completion times at the server (and not at the client) in order to factor out the network latency
from our measurements.

24 Measuring Quality of Data

We define Quality of Data (QoD) for data-intensiveweb servers as the average freshness of the served web
pages. When an update to a relation is received, the relation and al data objects that are derived from it
become stale. Database objects remain stale until an updated version of them is ready to be served to the
user.

We illustrate this with an example. Let us assume the Web Page Derivation Graph of Figure 2, and that
only WebViews W, and W, are materialized. If an update onrelation R, arrivesat timet,, then relation R,
will be staleuntil timet, > ¢;, thetime when the update on R, is completed (Figure 3). On the other hand,
materialized WebView W, will be stale from time ¢; until time¢s > t,, when itsrefresh is completed. If
an updateon relation R arrives at alater time, ¢4, then relation Rs will be stalefor the [z4, t5] timeinterval,
until ¢5, when the updateon R iscompleted (Figure 3). Also, non-materialized WebViews W5 and W, will
be stale for the same interval [t4,t5]. On the other hand, materialized WebView W, will be stale from time
t4 until timetg > t5, when itsrefresh is completed.

R4 R3 update arrival times
Wll Wzi triggered updates
= 1=
i Ri, F‘Wl. R3»I WZ, update completion times
ty! t, tg! ty ts tg!
~— -~
' relation 'R3, W3, W4
'is stale ! rare stale
‘materialized W2 is stale

WebView is stale

Figure 3: Staleness Example (W7, W, assumed materialized)

We have four types of data objectsthat can be stale:
¢ relations, when an update for them has arrived, but not yet executed,
¢ non-materialized WebViews, when an update for a parent relation has arrived, but not yet executed,

o materialized WebViews, if the WebViews have not been refreshed yet (after an updateto a parent rela-
tion),

¢ Web pages, if a parent WebView is stale.

In order to measure freshness, we observe the access request stream and the update stream for a certain
timeinterval T. We view the access stream during an observation interval T as a sequence of n access re-
quests:

cees Apy Apity Apaos ooy Apinet, -

Access requests A, are encoded as pairs (P}, ¢,), where ¢, isthe arrival time of the request for web page
P;. Notethat each web page P; consistsof multiple HTML fragments (WebViews). Similarly, we view the
update stream during an observation interval 7' as a sequence of m updateinstructions:

s Uys Uygts Uysas oo Uyt -

Update instructions U, are encoded as pairs (R4, 1,), where t,, isthe arrival time of the update instruction
for relation R;. Notethat we are only interested in the portion of the update stream that arrived concurrently
with the access requests under observation, or t, < t, < ty4m—1 < tpqn—_1.

We define the freshness function for a WebView W; at time ¢, asfollows:

1, if W, isfreshattimety
(W te) = { 0, if W;isstleat timet, @
A WebView W; isstale, if W; ismaterialized and has beeninvalidated, or if 1, isnot materialized and there
exists a pending update for a parent relation of W;. A WebView W, isfresh, otherwise.

In order to quantify the freshness of individual access requests, we recognize that web pagesare based on
multipleWebViews. A simpleway to determine freshnessis by requiring that all WebViews of aweb pagebe
freshin order for the web pageto befresh. Thismeansthat even if oneWebView isstale, the entire web page
will be marked as stale. In most occasions, a strict boolean treatment of web page freshnesslike thiswill be
inappropriate. For example a personalized newspaper page with stock information and weather information
should not be considered completely staleif all the stock prices are up to date but the temperature reading is
afew minutesstale.

Sincea strict boolean treatment of web page freshnessisimpractical, we adopt a proportional definition.
Web page freshness can be a rational number between 0 and 1, with 0 being completely stale and 1 being
completely fresh. To calculatefreshness of web page P; at timet;,, wetake theweighted sum of thefreshness
values of the WebViews that compose the web page:

ny
F(AR) = f(Py,tk) = ai; x f(Wi) ()
i=1
where n; isthe number of WebViewsin page F;, and a; ; isaweight factor.

Weight factors «; ; are defined for each (WebView, web page) combination and are used to quantify the
importance of different WebViews within the same web page. Weight factors for the same web page must
sumuptol,or Y17, a;; = 1,Y web page P;. When aWebView W; is not part of web page P;, then the
corresponding weight factor is zero, or a; ; = 0. The weight factors can be user-specified or one can simply
usethedefault valueof a; ; = % wheren ; isthe number of WebViewsin page P;, thusgiving all WebViews
equal importance within the same page. For example, from Figure 2, the default weight factors will be: %
for P, WebViews (Wy, Wy, and W3) and % for P, WebViews (W5 and W,).

Let f(Ay) be the freshness value of web page P; returned by access request A, = (P},). Thenthe

overall Quality of Datais:
r+n—1

QD =~ x 3 f(Ay) ©)
k=x

3|

where n isthe total number of access requests.

2.5 OnlineView Sdection Problem

Clearly, the choice of WebViewsto materialize will have abigimpact on QoS and QoD. On the one extreme,
materializing all WebViewswill give high QoS, but can have low QoD (i.e. viewswill be served very fast,
but can be stale). On the other hand, keeping al views non-materialized will give high QoD, but low QoS
(i.e. viewswill be as fresh as possible, but the response time will be high).

We define the Online View Selection problem asfollows: in the presence of continuousaccess and up-
date streams, dynamically select which WebViewsto materialize, so that overall system performance (QoS)
is maximized, while a guarantee on the freshness of the served data (QoD) is maintained. In addition to the
incoming access/update streams, we assume that we are given a web page derivation graph, and the costs to
access/update each rel ation/WebView.

Given the definition of QoD from Section 2.4, a freshness guarantee will be athreshold 6 € [0, 1]. For
example, athreshold vaue of 0.9 will mean that roughly 90% of the accesses must be served with fresh data
(or that al web pages served are composed of about 90% fresh WebViews).

The view selection problem is necessarily an online process for two reasons. First, since updates are
performed online, concurrently with accesses, we must consider the freshness of the served data (QoD) in
addition to the QoS. Second, since the accesses/updates are continuously streaming into the system, any al-
gorithm that provides a solution to the view selection problem must decide at runtime and have the ability
to adapt under changing workloads. Off-line view selection cannot match the wide variations of web work-
loads.

°
° ° Q
o o $° 0 9 4®e o’
08 X3 o8 o0 o o 0° o Sop il
. °
B O BEINE D SN
o 4
&

=1)
o5

0.6 -

0.4

Quality of Data (best:
<
8 09
<
s
0P of
°

0.2 -

5 10 15 20 25 30 35 40
Average Response Time (ms)

Figure 4: All Materialization Plans in QoD/QoS space

Wewill usetheterm materialization plan to denote possibl e sol utionsto the Online View Selection prob-

lem. A materialization plan simply listswhich WebViews should be materialized, while the remaining Web-
Views should bejust cached. We do not consider the virtual policy for WebViews, since caching will always
give as fresh data as the virtual policy and will reuse results, giving better QoS.

To visuaizethe solution space for the Online View Selection Problem we enumerate al possible materi-
alization plansfor asmall workload and compute the QoS and QoD (Figure 4). Thedifferent materialization
plans can provide big variations in performance and Quality of Data. For example, plansin the bottom left
corner of Figure 4 correspond to materializing most WebViews (with very low average response time and
low QoD), whereas plansin the top right corner of the plot correspond to non-materializing most WebViews
(with very high average response time and high QaD).

3 OnlineView Selection Algorithm

Traditional view selection algorithms work off-line and assume knowledge of the entire access and update
stream. Such algorithmswill not work in an online environment, since the selection algorithm must decide
the materialization plan in realtime. Furthermore, updatesin an online environment occur concurrently with
accesses, which makes the freshness of the served data an important issue. Finally, the unpredictable nature
of web workloads mandates that the online view selection agorithm be adaptive in order to evolve under
changing web access and update patterns.

In this section we describe OV 1 S(6), abenefit-based OnlineVlew Selection algorithm, where 6 isauser-
specified QoD threshold. OVIS(#) strivesto maintain the overall QoD above the user-specified threshold 6
and keep the average response time as low as possible. OVIS aso monitors the access stream in order to
prevent server backlog.

OVIS(#) isinherently adaptive. The agorithm operates in two modes. passive and active. While in
passive mode, the algorithm collects statistics on the current access stream and receives feedback for the
observed QoD. Periodically, the algorithm goes into active mode, where it will decide if the current materi-
alization plan must change and how.

QoD surplus

QoD
1

+
threshold [~~~ 77 T[22 T T LT T T

.

QoD deficit

decision points
Figure 5: OVIS(#) Algorithm

Themainideabehindthe OVIS(#) agorithmisillustratedin Figure 5. By constantly monitoring the QoD
for the served data, the algorithm distinguishes between two cases when it must decide on the materializa-
tion plan. When the observed QoD is higher than the threshold 8, OVIS(#) identifiesa QoD sur plus, which

9

chooses to “invest” in order to improve the average response time. On the other hand, when the observed
QaD islessthan thethreshold 4, the agorithm identifies a QoD deficit, for which it must compensate.

In the next paragraphs we explain the statisticsthat are maintained during the a gorithm’s passive mode,
and present the pseudocode for the OVI1S(F) agorithm.

3.1 OVIS(h) Statistics

The OVI1S(F) agorithm maintains statisticsin order to accurately observe the QoD for the served data, and,
to predict the effects on the QoD and average response time from changes in the materialization plan.

We havethreecountersfor every WebView W;. N acc(W), isthetotal number of accessesto W, N gresn(;)
is the number of those accesses that were served fresh back to the user, and N nits(;) is the number of ac-
cesses that found afresh version of WebView W; in the cache. The difference between N gresn() and N pits()
isthat N fresn() counts freshness on the final, served results, whereas N pits() counts freshness based on the
first attempt to read from the Asynchronous Cache (ASC).

versionin versionin
cacheisfresh | cacheisstae
WebView NaceWi)++ | Naee(W))++
W;is N fresn(W;)++
materialized Nits(W;)++
WebView NaceWi)++ | Naee(W))++
W;is Neresh(Wi)++ | Neresn(W;)++
non-materialized | N pis(W;)++

Table1l: OVIS(H) Counters

Table 1 illustrates the differences between the three counters. Accesses to web pages are translated to
WebView accesses for al the WebViews that are part of aweb page. We assume that WebViews are invali-
dated whenever updates to their parent relations are received. N pirs(W;) isincremented on an access to I,
only if the WebView is materialized and fresh, or if non-materialized, but the cached version isfresh. It will
not be incremented if the cached copy of the WebView is stale, even if eventually the Asynchronous Cache
will compute afresh version of W; and serveit to the user. The purposeof the NV pnits(1W;) counter isto help us
predict the effects of changing thematerialization plan (if anon-materialized WebView becomes materialized
and vice-versa).

All countersare kept upto datefor theduration of passivemode and areinitialized every timethe OVIS(6)
algorithmgoesinto active mode. The three af orementioned countersmonitor the access and updateworkload
for theimmediate past and are used by the OVIS(¢) Algorithm to estimate the access and update patternsfor
theimmediate future.

Calculating the QoS Benefit We usethe term materialize aWebView to denotethat a WebView gets ma-

terialized and the term dematerialize a WebView when we stop materializing it. Using a simple cost model
we can estimate the QoS differentials of materializing or dematerializing a WebView W;.

10

Let usassume that the cost to access a WebView W; from the ASC is A (W) and the cost to compute
aWebView W; on demand is A irt(W;). The benefit on QoS from materializing WebView W is

Acogt(mat) = cost(W; isnot mat.) — cost(V; ismat.)
= Nhis(Wi) X Amar(W;)
+ (NaceWi) = Nnits(We)) x Avie(W3)
= Nace(Wi) X Amar(W;) (4)

In the estimation of the cost of accessing a materialized WebView, we do not consider the cost for refreshing
the WebView in the background upon updates. When estimating the cost of accessing a non-materialized
WebView, we use N pits(W;) to determine how many times the cached version was used, whereasfor therest
of thetimes, (N acc(W;) — Nnits(W;)), afresh version needs to be generated at a greater cost.

The benefit on QoS from dematerializing W is

Acost(demat) = —Acost(mat) (5)

Calculating the QoD Benefit Having kept statistics on the freshness of the served data, we can accurately
determine the change in QoD induced by materializing or dematerializing a WebView W;.

Let usassumethat N fresn(W; | P;) isthe number of fresh accesses to WebView W; that originated from
requests to page P;. Clearly, °, Neesh(W: | Pj) = Neesn(W;), for each WebView ;. The overall QoD
definition from Eq. 3 can be rewritten as follows:

QoD = % XY laig X Nesn(W; | Py)]
vy

where n isthe total number of page accesses.

Instead of keeping separate N fren(W, | P;) countersfor all (WebView, page) combinations, we maintain
one, weighted counter, N fegva(;). Instead of incrementing by one, we increment N fresa(W;) using the
weight «; ; in order to record afresh access on W; originating from page P;. We have that N freqva(;) =
>ojla:; X Nesn(W; | P;)]. Therefore, the QoD definition can be simplified as follows:

QoD = % X Z N fresva(W5) (6)

Based on Eq. 6, we compute the impact on QoD from materiaizing or dematerializing one WebView, as
follows: .
Aqoo(Wi) = — x [Niretva(W) = N fresval W3] (7)

where N gresva(W;) is the current weighted counter and N {?ﬁ,a(wi) is the estimate for the counter after
meaterializing or dematerializing WebView W;.

If we assume that the access and update patterns of the immediate past hold for the immediate future,
when materializing a previously non-materialized WebView W;, the number of fresh accesses on W; will be

11

equal to the number of attempts to access afresh version of W;, or N8 (W;) = Niwa(W;). ThusEq. 7
iswritten: .
A gop(mat W;) = — X [N tresvia(W5) — N nitga(W3)] 8

where N hitga(W;) isthe weighted version of N pits(W;).

On the other hand, if demateriaizing a WebView W;, it will become non-materialized. In that case, the
number of fresh accesseson W; will beequal tothe number of accessesto IW;, or N ?esh,a(wi) =N acea(W2).
ThusEq. 7 iswritten:

L[V feva(W) = N acea(W) ©

n

A QoD(demat W;) =

where N aea(W) isthe weighted version of N gee(;).

3.2 OVIS(#) Algorithm

The OVIS(¢) Algorithm constantly monitorsthe QoD of the served dataand adjuststhe materialization plan
(i.e. which WebViews are materialized and which ones are non-materialized). By maintaining the statis-
tics presented in the previous section, OVI1S(6) has a very good estimate of how big an effect on the overall
QoD/QoS the changes in the materialization plan will have.

QoD surplus When the observed QoD ¢ is higher than the threshold ¢, the agorithm will “invest” the
surplusQoD () — #) in order to decrease the average responsetime. Thisisachieved by materializing Web-
Viewsthat were previously non-materialized (but in the cache). For thealgorithm to take the most profitable
decision, we just need to maximize the QoS benefit, A g , for the WebViews that become materialized,
whilethe QoD “losses’, A qop , remain lessthan) — 6. A greedy strategy, that picks WebViews based on
their A cost / A qop rétio, provides agood solution.

QoD deficit When the observed QoD ¢) islessthan the threshold ¢, the algorithm will have to compensate
for the QoD deficit (# — @)). In this case, OVIS(#) will dematerialize WebViews thus increasing QoD, at
the expense of increasing the average response time. For the algorithm to take the most profitable decision,
we just need to minimize the QoS “losses”, A ¢4 , for the WebViews that become cached, while the QoD
benefits (A gop) €liminatesd — (). A greedy strategy, that picks WebViews based ontheir — A cog / A gob
ratio, provides agood solution.

Pseudocode TheOVIS(F) adgorithmisin Passive Modemost of thetime, collecting statistics. Periodicaly,
OVIS(#) enters Active Mode in order to make changes to materialization decisions. Figures 6 and 7 present
the active mode of the OVIS(#) algorithm under QoD surplus and QoD deficit conditions.

3.3 Detecting Server Lag

From elementary queueing theory [Jai91] we know that system performance worsens significantly as we ap-
proach 100% utilization. In practice, there can be cases where the incoming access and update workload

12

QoD surplus: QoD > 6 QoD deficit: QoD < 6

0. qgoddiff=QoD — 0 0. qoddiff=60 — QoD

1. select cached WebViewswith A gog(mat) > 0 1. select materialized WebViews

2. materidizeal WebViewswith Agep(mat) =0 2. find W; withmax — A cog(demat) / A gop(demat)
3. find W; withmax A cog(mat) / A gop(mat) 3. if (— A gop(demat) < god_diff)

4. if (Agop(mat) < qod_diff) 4. god_diff + = A gop(demat)

5. god_diff — = A gop(mat) 5. stop materiaizing W,

6. materialize W, 6. goto 2

7. goto 3 7. dse

8. dse 8. stop

9. stop

Figure 6: Pseudocode for OVIS(#) - QoD surplus Figure 7: Pseudocode for OVIS(#) - QoD deficit

generate more load than what the server can handle, resulting in backlog, which we refer to as server lag.
Figure 8 has an example of server lag, which isvisible on the access stream.

Itiscrucia to detect server lag in an online system. Failureto identify server lag can lead to long, ever-
increasing backlogs which will eventually bring the server to a halt with catastrophic consequences. In our
system, we detect server lag by instrumenting the incoming access stream with special markers which are
inserted in the access stream at regular intervals.

arrival times

.\ \ \ \ \
\ \ \\\ completion times
t
2 A3 Aisg

Al A A

Figure 8: Server Lag Example

In order toidentify server lag for an observation window 7', we compare the arrival and completion times
of the markers closer to the observation start/end-points. If the beginning marker is A; and the end marker
is A;1,, we have that:
ta(Aign) = ta(As)
te(Aign) — te(Ai)
wheret, isthearriva timefor the marker, and t. isthe completiontime. Markers have zero processing cost,
sot. — t, isjust the current queueing timefor access requests. In a stable system, we expect lag to be equal
or very closeto 1. When the processing demands exceed the processing capacity, lag will be significantly
lower than 1 and eventually approach 0.

Server lag can be used to detect infeasible QoD thresholds. For example a QoD threshold very closeto 1
will most likely lead to a server meltdown, since no WebView can be materiaized (for the system to support
such a strong freshness guarantee).

lag = (10)

13

4 Experiments

In order to study the online view selection problem, we built osi m a data-intensive web server simulator
in C++. The database schema, the costs for updating relations, the costs for accessing/refreshing views, the
incoming access stream, theincoming update stream and thelevel of multitaskingareall inputsto thesimula-
tor. The simulator processes the incoming access and update streams and generates the stream of responses
to the access requests, along with timing information. Among other statistics, the simulator maintains the
QoD metric for the served data.

Our online simulator, osi m runsin two modes: static mode and adaptive mode. In static mode, the
materialization plan is pre-specified and is fixed for the duration of the simulation. In adaptive mode, the
materialization plan is modified at regular intervals using the OVI1S(6) agorithm (Figure 6 and Figure 7).
For each experiment we report the average response time and the observed QoD.

In order to detect server lag and be ableto prevent server backlogs, we instrument the access stream with
special markers as explained in Section 3.3. These markers are inserted at regular intervalsin theincoming
access stream as access requestsfor aspecia web page. Inarea system, themarkers can be added at run-time
without the need to modify the incoming access stream.

Workload Characteristics Inall experimentswe used syntheticworkloads. The accesses were distributed
over web pages following the Zipf distribution [BCF99] and the updates were distributed uniformly among
relations. Interarrival rates for the access and the update stream approximated a uniform distribution. The
cost to update arelation was 100 ms, the cost to access aWebView from the Asynchronous Cache was 10 ms
and the cost to generate/refresh a WebView was 100 msin all experiments. The database size, the number
of accesses, the number of updates and the duration varied in each experiment.

1

oo&%«»{‘«»a& L4

QoD=theta () &R BEL, s ©
0.8 S & "’W&f o:‘i%; @i ° $ |

0.6

0.4 r

Quality of Data (best=1)

optimal plan
02t

0

4 5 6 7 8 9 10 11 12 13 14
Average Response Time (ms)

Figure 9: Off-line Optima Computation

4.1 Computing the Off-line optimal

In order to compute the off-line optimal materialization plan for the given workload, we first enumerate all
possible materialization plans. Each WebView can either be materialized or non-materialized, therefore we

14

have 2"V possibleplans, where IV isthe number of WebViewsin the system (Figure 9). Out of the 2V plans,
we pick the ones that have QoD > 6, where 6 is the user-specified QoD threshold. These plans are the ones
abovethe QoD = 6 linein Figure 9. Finaly, out of the plans with QoD > 4 we identify the one with the
lowest average response time, which will be the optimal plan.

4.2 Comparingthe Off-lineoptimal to OVIS(h)

In order to compare our algorithmwiththe off-lineoptimal (OPT), weused arelatively small database schema,
of 5 relations, 12 WebViews, and 30 web pages. This configuration generates 2!? = 4096 materialization
plans which the optimal agorithm must check, which makes the solution tractable. The workload consisted
of 10,000 web page accesses and 3,000 relation updates over a period of 140,000 ms.

Optimal oVIS(H)

| QoD | resp. time | QoD | resp. time
0.95 - - 094 11.7 ms
0.90 | 0.90 95ms | 0.90 10.0 ms
0.85 | 0.85 84ms | 0.85 89ms
0.80 | 0.81 7.8ms | 0.80 8.2ms
0.70 | 0.71 65ms | 0.72 6.8 ms
0.60 | 0.61 54ms | 0.65 59ms
0.50 | 0.55 42ms | 0.59 4.8ms

Table 2: Comparison with Optimal

Table2 hastheresultsof our experimentsfor various QoD thresholds. For example, for a QoD threshold
of 0.70, the optimal materialization plan would have QoD of 0.71 and an average response time of 6.5 ms,
whereas OVI15(#) has QoD 0.72 and a slightly worse average response time of 6.8 ms.

0.8 [¢

=1)

06

04 r

Quiality of Data (max:

0.2 r

=1)

Quiality of Data (max:

O L L L L L L
0 20000 40000 60000 80000 100000 120000 140000

Time (ms)

Figure 10: QoD over time for the Optimal Plan

0.8

0.6
04 r

0.2 r

0
0

QoD threshold - |

TR

il &WY Ww H 4 WWWB W w YW | Uy

20000 40000 60000 80000 100000 120000 140000
Time (ms)

Figure 11: QoD over timefor OVI1S(0.8)

Overall, we see that OVIS(6) produces QoD vaues very close to those of the optimal materialization
plan. Also, the average response times under OV1S(6) are within 10% of the optimal, which isrespectableif
we consider that OV1S(f) decides on the materialization plan in an online fashion without prior knowledge

15

of the access/update stream like OPT does. Table 2 clearly illustratesthe trade-off between QoD and average
response time: when the QoD increases the average response time also increases and vice-versa.

We plot the QoD over time for the Optimal and OVIS(#) agorithm when ¢ = 0.8 in Figures 10 and
11. In both cases there is a fluctuation of the QoD, around the required threshold . However, thereis one
important difference between the two graphs. In Figure 11 the QoD aways aternates from QoD surplusto
QaD deficit states, under OVI1S(6), initsgoal of reaching the QoD threshold 4. Thereisno similar behaviour
for the Optimal case (Figure 10).

43 OVIg(h) study

For this set of experiments, we used a moderate-sized database of 100 base relations, 500 WebViews and
2000 web pages. The access workload composed of 50,000 web page accesses and the update workload had
10,000 relation updates. The duration of this experiment was 600,000 ms.

NEQ)

6 QoD | resp. time
0.97 | 0.968 15.1ms
0.95 | 0.951 158 ms
0.92 | 0.917 14.0 ms
0.90 | 0.899 12.0ms
0.85 | 0.867 9.6 ms
0.80 | 0.856 9.4 ms

Table 3: QoD for OVIS(#)

Table 3 hasthe results of our experiments for variousthreshold values. In al cases, OVIS(#) maintained
the QoD guarantee. We did not compute the optimal plan for thisworkload, since we would need to enumer-
ate and select the best out of 2°%° plans.

QoD threshold - |

1)

: 08|
x
®©
E
8 0.6 |
®©
a
©
2 04
T
>
o
0.2 |

0 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000
Time (ms)

Figure 12: QoD over time for OV15(0.9) - Static workload

Figure 12 plots the changes of QoD over time for the OV15(0.9) experiment. Clearly, despite the high

16

number of WebViews, OVIS(f) manages to maintain a QoD around the user-specified threshold of 0.9

Weran avariation of the sameworkload, to simulate changing access and update patterns. Instead of gen-
erating the entire access and update stream with one distribution function, we used two seperate functionsto
generate thefirst and second half of the streams. In other words, the access and update frequencies between
the two hafswere totally independent. Figure 13 plotsthe changes of QoD over time for the OV15(0.8) ex-
periment with the dynamic workload. Despitethe drastic changein the access and update patterns, OV I15(6)
rapidly adapts to the new workload and manages to maintain the QoD guarantee.

QoD threshold - |

1)

0.8 HiHfelkl- "!l

I Bt b ‘ &
x & &
% {
8 0.6 | ! *
= l
o
©
2 0.4
S
>
o
0.2 |

0 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000
Time (ms)

Figure 13: QoD over time for OV15(0.8) - Changing workload

44 QoSvs. QoD trade-off

For thelast set of experiments, we used a moderate-sized database of 100 base rel ations, 500 WebViews and
2000 web pages. The access workload composed of 50,000 web page accesses and the update workload had
10,000 relation updates. The duration of this experiment was 600,000 ms.

We compared three different policies: materializing all WebViews (al | - mat), not materiaizing any
WebView (none- mat), and our adaptive algorithm for dynamically selecting which WebViews to materi-
alize with a QoD threshold of 0.7 (ovi s(0. 7)).

In Figure 14 we plot the QoD over time for the three policies and in Figure 15 we plot the QoS over
time. When we do not materialize any WebView (top curvein both plots), we get the highest QoD, but aso
get the highest response times, and thusthe lowest QoS. On the other hand, if we materialize all WebViews,
then the average response time will be the lowest, but the QoD can be below the user-specified threshold.
The OVIS(#) agorithm produces QoD that is aways near the user-specified QoD threshold and has fairly
constant and small average responsetimes (near those of theal | - mat policy). In other words, OVIS(#) is
able to automatically balance the trade-off between QoS and QoD.

17

L o e e g B R T S S R 700 w w
none-mat ° none-mat
ovis(0.7) + | ovis(0.7) +

all-mat = 600 all-mat =
08, + K A thresheld)
e TR UR P E 500t
AU Faa T T wRE e TR Ty w4 [
8 - D+ + % - - *DD ;U +DD ot DE agﬂ & [}
8 06 =a, R I € 400 |
5 Fo gp = E | 8o = 2
> o] o g By o 8
= x 300 -
S 0.4 f o
3 g . e
g 200 fo © °© °
< ° o
0.2
100 L oo
0 20 40 60 80 100 120 0 20 40 60 80 100 120
simulation time simulation time
Figure 14: QoD over time Figure 15: QoS over time

5 Related Work

To the best of our knowledgethisisthefirst paper that attemptsto solve the Online View Selection problem.
Thereisalot of research on the off-line version of the view selection problem in Data Warehousing literature
[Sel88, GM 95, SSV 96, Gup97, GM99, KR99]. Materialization has also been explored in [Y FIVV00] where
multiple maintenance policies were supported, but the selection problem was not addressed. [LROO] pre-
sented acost model for the view selection problem, but did not provide an algorithm. [CIW*00] described a
systemto support caching of dynamic content, but the application or the user has to decide which data should
be cached. [LRO14] provided an agorithm for solving the constrainted version of the online view selection
problem, i.e. only when the number of viewsisgiven.

6 Conclusions

In thiswork, we have defined the Online View Selection problem: given a Quality of Data (QoD) threshold
6, choose which WebViews to materialize so that QoD remains above ¢ and the average response timeis
minimized. We have aso presented OVIS(¢), an adaptive agorithm for solving the Online View Selection
problem. OV1S() recognizes QoD surplus or deficit situationsand evolves the materialization plansto im-
provethe average responsetime. OVIS(#) ishighly adaptive and does not require advance knowledge of the
access / update patterns. Simulation experiments have shown that OVIS(#) comes close to the behavior of
the optimal off-line algorithm.

One of the main advantages of OVIS(F) is that it does not require human intervention. The algorithm
automatically sel ectsthebest materialization plan under the specified QoD constraints. Thismakes view ma-
terialization (which has up till now only been used in data warehousing environments) an attractive method
of increasing the scalability of data-intensiveweb servers.

18

References

[BBCt98] Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin, Hector Garcia-

[BCF+99]

[BM9O]

[CD97]

[CIW+00]

[GMO5]

[GM99]

[Gupd7]

[Han87]

[Jai91]

[KR99]

[LR99]

[LROO]

Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish, Michael Lesk, Dave Maier, Jeff
Naughton, Hamid Pirahesh, Mike Stonebraker, and Jeff Ullman. “ The Asilomar Report on Data-
base Research”. SGMOD Record, 27(4), December 1998.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. “Web Caching and Zipf-like
Distributions: Evidence and Implications’. In Proc. of IEEE INFOCOM' 99, New York, USA,
March 1999.

Jose A. Blakeley and Nancy L. Martin. “Join Index, Materiaized View, and Hybrid-Hash Join:
A Performance Analysis’. In Proc. of the Sxth International Conference on Data Engineering,
pages 256263, Los Angeles, Cadlifornia, USA, February 1990.

Surgjit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehousing and OLAP Tech-
nology”. SSGMOD Record, 26(1):65—74, March 1997.

Jim Challenger, Arun lyengar, Karen Witting, Cameron Ferstat, and Paul Reed. “A Publishing
System for Efficiently Creating Dynamic Web Content” . In Proc. of IEEE INFOCOM'’ 2000, Tel
Aviv, Isragel, March 2000.

Ashish Gupta and Inderpal Singh Mumick. “Maintenance of Materialized Views: Problems,
Techniques, and Applications’. Data Engineering Bulletin, 18(2):3-18, June 1995.

Ashish Gupta and Inderpal Singh Mumick, editors. “ Materialized Views. Techniques, Imple-
mentations, and Applications’ . MIT Press, June 1999.

Himanshu Gupta. “Selection of Views to Materiaize in a Data Warehouse”. In Proc. of the
6th International Conference on Database Theory (ICDT ’97), pages 98-112, Delphi, Greece,
January 1997.

Eric N. Hanson. “A Performance Anaysis of View Materidization Strategies’. In Proc. of the
ACM S GMOD Conference, pages 440-453, San Francisco, California, May 1987.

Rgj Jain. “ The Art of Computer Systems Performance Analysis’ . John Wiley & Sons, 1991.

Yannis Kotidisand Nick Roussopoulos. “DynaMat: A Dynamic View Management System for
Data Warehouses™. In Proc. of the ACM S GMOD Conference, Philadelphia, USA, June 1999.

Alexandros Labrinidisand Nick Roussopoul os. “ On the Materialization of WebViews’. In Proc.
of the ACM SSGMOD Wbrkshop on the Web and Databases (WebDB'99), Philadel phia, USA,
June 1999.

Alexandros Labrinidis and Nick Roussopoulos. “WebView Materidization”. In Proc. of the
ACM S GMOD Conference, Dallas, Texas, USA, May 2000.

19

[LRO14]

[LRO1b]

[Mar01]

[PQOQ]

[RCK+95]

[Rou82]

[Sel8s]

[SSV96]

[YFIVO0]

Alexandros Labrinidisand Nick Roussopoul os. “ Adaptive WebView Materiaization”. In Proc.
of the ACM SIGMOD Wbrkshop on the Web and Databases (WebDB'’ 2001), Santa Barbara, Cal-
ifornia, USA, June 2001.

Alexandros Labrinidisand Nick Roussopoulos. “Update Propagation Strategies for Improving
the Quality of DataontheWeb”. In Proc. of the 27th VLDB Conference, Rome, Italy, September
2001.

Evangelos Markatos. “On caching search engine query results’. Computer Communications,
24(2), February 2001.

VenkataN. Padmanabhan and Lili Qiu. “The Content and Access Dynamics of a Busy Web Site:
Findingsand Implications’. In Proc. of the ACM SSIGCOMM Conference, Stockholm, Sweden,
August 2000.

Nick Roussopoul os, Chungmin Melvin Chen, Stephen Kelley, Alex Delis, and Yannis Papakon-
stantinou. “The ADMS Project: Views R Us’. Data Engineering Bulletin, 18(2):19-28, June
1995.

Nick Roussopoulos. “View Indexing in Relational Databases’. ACM Transactionson Database
Systems, 7(2):258-290, June 1982.

Timos Sdllis. “Intelligent caching and indexing techniquesfor relational database systems”. In-
formation Systems, 13(2), 1988.

Peter Scheuermann, Junho Shim, and Radek Vingralek. “WATCHMAN : A Data Warehouse
Intelligent Cache Manager”. In Proc. of the 22nd VLDB Conference, Bombay, India, September
1996.

Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. “Caching Strategies
for Data-Intensive Web Sites’. In Proc. of the 26th VLDB Conference, Cairo, Egypt, September
2000.

20

