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In stable solar systems, planets remain in nearly elliptical orbits around their stars.

Over longer timescales, however, their orbital shapes and sizes change due to mutual

gravitational perturbations. Orbits of satellites around a planet vary for the same

reason. Because of their interactions, the orbits of planets and satellites today are

different from what they were earlier. In order to determine their original orbits,

which are critical constraints on formation theories, it is crucial to understand how

orbits evolve over the age of the Solar System. Depending on their timescale, we

classify orbital interactions as either short-term (orbital resonances) or long-term

(secular evolution). My work involves examples of both interaction types.

Resonant history of the small Neptunian satellites In satellite systems, tidal

migration brings satellite orbits in and out of resonances. During a resonance passage,

satellite orbits change dramatically in a very short period of time. We investigate

the resonant history of the six small Neptunian moons. In this unique system, the

exotic orbit of the large captured Triton (with a circular, retrograde, and highly



tilted orbit) influences the resonances among the small satellites very strongly. We

derive an analytical framework which can be applied to Neptune’s satellites and to

similar systems. Our numerical simulations explain the current orbital tilts of the

small satellites as well as constrain key physical parameters of both Neptune and its

moons.

Secular orbital interactions during eccentricity damping Long-term periodic

changes of orbital shape and orientation occur when two or more planets orbit the

same star. The variations of orbital elements are superpositions of the same number

of fundamental modes as the number of planets in the system. We investigate how

this effect interacts with other perturbations imposed by external disturbances, such

as the tides and relativistic effects. Through analytical studies of a system consisting

of two planets, we find that an external perturbation exerted on one planet affects

the other indirectly. We formulate a general theory for how both orbits evolve in

response to an arbitrary externally-imposed slow change in eccentricity.
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Napoleon: They tell me that you have written this huge book on the system
of the universe without once mentioning its Creator.

Laplace: I have no need for that hypothesis.



Preface

I had hoped that I could have arranged each chapter more carefully. I had hoped
that I could write a better story-telling introduction about the history of celestial
dynamics. I had hoped to do many other things in this dissertation until I was at the
point of running out of time. But here it is - the work I have spent seven years on.

This dissertation is organized in four parts:
Part I is an introduction. The history of the development of celestial dynamics

and orbital dynamics is covered in Chapter 1. In Chapter 2, I review the basics of
perturbation theory, which is the foundation of my dissertation.

Part II is on the resonant interaction and evolution of the small Neptunian satel-
lites, in which I focus on the small inclinations of the blue planet’s six small satellites
and try to build a resonant history of the system based on their current orbits. Chap-
ter 3 provides background information about the moons, as well as theoretical prepa-
ration necessary for this project. In Chapter 4, two new orbital elements are defined
for resonant analysis in this system. Individual resonance passages are deciphered in
Chapter 5. Finally, several physical parameters of the system are constrained based
on dynamical evidence in Chapter 6.

Part III is on the secular evolution. A linear secular theory is derived to handle
slow eccentricity-damping. In Chapter 7, I discuss the motivation of the project and
present the standard secular theory. Eccentricity-damping is then added in Chapter 8,
and secular theory is adjusted accordingly. Lastly, the theory is applied to extrasolar
planetary systems in Chapter 9.

Part IV is the conclusion, which also includes possible future research directions
as extensions of the two projects.

Part II and Part III are only loosely related, thus the order of reading is not
important. The theoretical background in Part I, however, is helpful for the later
chapters.

Ke Zhang
August 1, 2007
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Chapter 1

Celestial Mechanics and Orbital Dynamics

Celestial mechanics has its origins in the cu-
Moon

Earth

Epicenter

Figure 1.1: The concept of epicy-
cles: the Moon orbits in a cir-
cle around an epicenter, which it-
self moves in a circle around the
Earth. For complicated orbits,
several epicycles may be required
and the epicenters may shift.

riosity that human beings display towards the

mysterious motion of objects in the sky, as well

as a practical need for accurately recording the

passage of time and predicting the seasons. It

is among the oldest fields of modern physics and

astronomy, and has been substantially developed

even since Sir Issac Newton (1643 - 1727) pub-

lished his famous Principia in 1687. Before that,

ancient theories about the Sun, Earth, Moon, and planets trace back to the Greek

astronomers Aristarchus (310 - 230 BC), Hipparchus (190 - 120 BC), and Ptolemy (90

- 168 AD) some two millennia ago. Aristarchus was the first to propose a heliocentric

model based on his estimation of a much heavier Sun than Earth. His view of the

universe was opposed by most of his contemporaries and astronomers after him be-

cause the lack of parallax of the Sun, and the absence of any perceived motion of the

Earth. Hipparchus, with data from hundreds of years of Babylonian observations,

measured the precession of the vernal equinox at a value of 46′′ per year, close to

Most material about the early history prior to Newton is based on the 1968 version of Ency-
clopaedia Britannica.
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the modern value of 50.26′′ per year. He also made an accurate measurement of the

length of a year to within 7 minutes, and the distance of the Moon to within 10%

error. He tried to create a model of the Moon’s motion with epicycles (Fig. 1.1), but

discrepancies with observations existed until the model was refined by Ptolemy. In

his book, Almagest (∼ 150 AD), Ptolemy detailed the mathematical theory about

the motions of the Sun, Moon, and planets around the Earth. Although Ptolemy

attributed much of his book to Hipparchus, including the original idea of epicycles,

he was the first to work out the big picture of a geocentric model of the universe.

As more observational data accumulated with better accuracy, more epicycles were

required for the geocentric model to match observation. By Copernicus’ time some

1400 years later (1473 - 1543), each planet could have as many as 40−60 epicycles in

order to match observations, which drove Copernicus to reconsider the heliocentric

model of the universe (De Revolutionibus Orbium Coelestium, 1543). The heliocentric

model did not gain popularity until 50 years after Copernicus’ death, not only because

it challenged the authority of the Church, but also because it used almost as many

epicycles as Ptolemy’s model did in order to precisely agree with observations. In

1609, Johannes Kepler published his famous laws on planetary orbits, which claimed

that planets, including the Earth, orbit in ellipses instead of circles, with the Sun at

one focus. Although requiring a single extra parameter for each orbit (eccentricity),

Kepler’s theory agreed with observations perfectly without the need for epicycles.

These ancient works, although accurate enough to predict the location of the

known celestial bodies, utilize mathematics no more complicated than simple alge-
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bra and geometry. The underlying physics responsible for celestial motions was not

understood even after Kepler published his laws, which were simply empirical rules

based on extremely detailed observations by Tycho Brahe and Kepler himself. Never-

theless, it was these empirical works that enabled Newton to understand the universal

law of gravity and to found modern physics. Newton’s contribution was a huge tri-

umph for astronomy, physics and mathematics. His universal law of gravity is still

used today to guide spacecraft flying to the outer Solar System and to model the

motion of the planets to exquisite accuracy. The orbital precession of Mercury, which

requires a small correction from general relativity, is the only serious shortcoming of

the theory. His invention of calculus (or co-invention with Leibniz) opened the door

of mathematical analysis and made modern science possible.

After Newton, theory on celestial mechanics was rapidly developed and reached

its zenith with the works of two 18th century mathematicians: Joseph Louis Lagrange

(1736 - 1813) and Pierre-Simon Laplace (1749 - 1827). Besides his foundational work

in classical mechanics and his creation of the variational calculus, Lagrange found

the “Lagrange” points (potential maxima or saddles, see Murray and Dermott, 1999)

while attempting to solve the three-body problem, worked out a method to determine

a comet’s orbit with only three observations, and did additional important work on

orbital precession and stability. Laplace, through a series of memoirs to the Academy

of Science in Paris, addressed the stability of the Solar System by showing that the

changes of the orbital mean motions of Jupiter and Saturn were periodic and due

to their near-resonance orbits (sometimes referred as the great inequality). He also

4



spent a significant amount of time in the study of lunar motion perturbed by a non-

spherical Earth, and of the oceanic tides induced by the Sun and the Moon. His most

significant contribution, however, was the compilation of the five volume Celestial

Dynamics (1799 - 1825), which “offer a complete solution of the great mechanical

problem presented by the Solar System, and bring theory to coincide so closely with

observation that empirical equations should no longer find a place in astronomical

tables.” In these books, Laplace included most of his work on planetary orbits and

perturbations, as well as problems solved by earlier astronomers. Research on celes-

tial dynamics achieved a real predictive triumph when the British astronomer Adams

(1846) and the French astronomer Le Verrier (1846) independently “discovered” Nep-

tune by analytical calculation of its perturbation on the orbit of Uranus. Galle (1846)

later found the planet only 1◦ off Le Verrier’s prediction.

The next hundred years of advances in the field were mathematical in nature,

and many new studies on different kinds of perturbations to the motion of planets

and satellites were conducted. Most of the analytical works during this period were

focused on three-body problems (e. g., expansion of the disturbing function by Boquet,

1889), or low-order approximations for systems with a few more objects and additional

perturbations (e.g., secular frequencies in the Solar System by Brouwer et al., 1950).

Darwin (1879, 1880) also began to pioneer the analysis of the lower-order effects of

tides and tidal friction. The use of computers for numerical integration opened a new

window on the subject in the 1960s, and made it possible to handle more complicated

systems for a long period of time and to study the formation and evolution of the
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whole Solar System. One key numerical integration of the outer Solar System for

120,000 years was undertaken by Cohen and Hubbard (1965).

The development of numerical techniques in celestial dynamics (within the So-

lar System, to be specific) was recently reviewed by Morbidelli (2002), who divided

the numerical study of Solar System dynamics into four major periods. During the

classical period, when slow but accurate integration algorithms (Runge-Kutta and

Bulirsch-Stoer methods) were used, Cohen and Hubbard (1965) verified the analyti-

cal theory about secular interactions by Brouwer et al. (1950). Sussman and Wisdom

(1988) found the chaotic nature of Pluto’s orbit through a 845-million-year integra-

tion on a specifically constructed parallel computer called the Digital Orrery. A great

effort had also been given to understand resonance structure (Wisdom, 1983; Murray,

1986; Wisdom, 1987) and the distribution and stability of asteroids (Milani et al.,

1989; Nesvorný and Ferraz-Mello, 1997). The symplectic period in numerical Solar

System studies started with the efficient Hamiltonian-preserving algorithm proposed

by Wisdom and Holman (1991). A symplectic scheme for the solution of the equa-

tions of motion for a Hamiltonian system is able to bound the energy error with a

large timestep, typically 10-20 samplings per orbital period, thus enabling faster and

longer integrations. With this new algorithm, research was carried out to understand

the evolution and stability of the whole Solar System (Sussman and Wisdom, 1992;

Murray and Holman, 1999), as well as small-body dynamics (Holman and Wisdom,

1993; Duncan et al., 1995). The most important discovery during this period is the

phenomenon characterized as chaotic diffusion. In this regime, particles are stable

6



for billions of years, but are eventually able to escape due to long-term weak pertur-

bations (Morbidelli, 1997; Nesvorný and Roig, 2001), overturning earlier beliefs that

particles in the Solar System are either unstable in a short period of time or stable

forever.

The Wisdom and Holman (1991) symplectic scheme reaches its limit when close

encounters are involved, because the perturbing Hamiltonian dominates over the Ke-

plerian potential during a close encounter, which violates one of the algorithm’s fun-

damental assumptions. This problem was first overcome for zero-weight particles by

Levison and Duncan (1994), opening the “statistics period” when systematic studies

of comets and near-Earth asteroids (NEAs) was made possible. Based on statistics of

the lifetime of the Jupiter-family comets and the Neptune-encounter rate of Kuiper

belt objects, Levison and Duncan (1994, 1997) concluded that the Kuiper belt con-

tains 6.7 × 109 comet-sized bodies. Duncan and Levison (1997) showed further that

the Kuiper belt’s scattered disk was 100 times more populated at the beginning of the

Solar System. With similar techniques, Morbidelli and Gladman (1998) and Michel

et al. (2000) studied the distribution of NEAs from different sources, the results of

which were later used by Bottke et al. (2000, 2002) to construct a model for orbital

and magnitude distribution of NEAs.

Finally, integrations of planetary accretion involving encounters and collisions

among massive planetary bodies and planetesimals was enabled with the design of

two algorithms: Symba (Duncan et al., 1998) and Mercury (Chambers, 1999). For the

first time, the formation and evolution of the Solar System could be studied over its
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entire 4.5 billion years history. For the inner Solar System, Chambers and Wetherill

(1998, 2001) and Agnor et al. (1999) studied the formation of terrestrial planets from

lunar-mass “planetary embryos”, and found that Earth-sized planets can be formed

between 0.5 − 2.0 AU in several hundred million years, but that original embryos

in the asteroid belt are mostly scattered into unstable orbits and only 1% of the

population is left behind in the main belt (Petit et al., 2001). Progress was also made

on the formation and evolution of the giant planets. It was known (Fernandez and

Ip, 1984) that interactions with planetesimals cause giant planet to migrate: Jupiter

goes inwards, while all the other three giant planets move outwards. This procedure

produces certain observed structures in the Kuiper belt (Malhotra, 1993, 1995) and

is responsible for Pluto’s strange orbit. Recent development of the “Nice model”

suggested that the four giant planets may have formed in a much tighter group:

between 5.5 and 14 AU. This model was the first one to simultaneously reproduce

the current orbits of the giant planet (Tsiganis et al., 2005), the Trojan population

of Jupiter (Morbidelli et al., 2005) and Neptune (Sheppard and Trujillo, 2006), the

source for the Late Heavy Bombardment of the terrestrial planets (Gomes et al.,

2005), and the structure of the Kuiper belt (Morbidelli et al., 2007).

Our analytical understanding of the physics of orbital interactions and evolution

also saw many advances during the computer era, with symbolic algebra and semi-

numerical techniques in many cases. Mean-motion resonances (Section 2.3) are by

far the most popular subject. Early reviews on satellite orbital resonances were given

by Greenberg (1977) and Peale (1986), who also analyzed resonant encounters dur-
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ing tidal migration. Two basic types of behavior of the orbital elements during an

encounter were identified: kicks and trapping. Henrard (1982) and Borderies and Gol-

dreich (1984) computed the capture probabilities during a resonant encounter. More

recently, Hamilton (1994) revisited the resonant encounter problem, comparing mean-

motion resonances arising from gravitational and electromagnetic perturbations. The

analysis of the more subtle secondary resonances was first done by Malhotra (1990),

and the effect may be responsible for breaking resonant trapping in many cases. Tidal

effects in the Solar System were also investigated in great detail by Goldreich (1963)

and Goldreich and Soter (1966). A review by Burns (1986) covers most development

on how tides affect orbits. For non-resonant, or secular, evolution (long-term orbital

interactions), once the secular frequencies of the Solar System were found (see, e.g.,

Brouwer et al., 1950), research has focused on the effects of secular resonances (Ward

et al., 1976) on asteroids (Froeschle and Scholl, 1987; Scholl and Froeschle, 1990),

on Kuiper belt objects (Nagasawa and Ida, 2000), and on other minor bodies in the

Solar System including Trojan asteroids (Marzari and Scholl, 2000).

The study of planetary rings makes another important branch of the Solar System

dynamics. It has a long history that dates back to 1610 when Galileo first pointed

his telescope toward Saturn. His discovery was later interpreted by the Dutch as-

tronomer Christiaan Huygens as “a thin, flat ring, nowhere touching, and inclined to

the ecliptic”. In many regards, Saturn’s ring is the most splendid phenomenon in the

Solar System, and remained the only known ring system until the 1970s and 1980s

when a flurry of ground-based observations and space missions found new ring sys-
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tems around Uranus (Elliot et al., 1977), Jupiter (Owen et al., 1979), and Neptune

(Smith et al., 1989). Rings around Mars were first suggested by Soter (1971) and

their properties were predicted by Hamilton (1996) and others. Ring dynamics expe-

rienced renewed interest with the discovery of a wide variety of rings around the giant

planets. Saturn’s F-ring and the Uranian rings are narrow with sharp edges, unlike

the broad main rings of Saturn. Jupiter’s entire ring system is composed of micron-

sized dust, and there are additional examples of dusty rings belonging to each of the

other giant planets. A review by Cuzzi et al. (1984) showed that various features

in the broad main ring of Saturn result from gravitational interactions between ring

particles and embedded moonlets and among the ring particles themselves. Burns

et al. (1984) reviewed the effects of electromagnetic perturbations with a focus on

the vertical structure of the Jovian rings. A follow-up by Hamilton (1994) provided

more details on how planetary magnetic fields interact with micron-sized ring parti-

cles. Showalter and Burns (1982) showed numerically that sharp ring edges could be

confined and wakes and spokes inside the narrow rings might be excited by nearby

shepherd moons. Since 2004, the Cassini spacecraft has sent back the most detailed

data on the Saturnian rings, which confirms some earlier theories about ring-moon

interactions, and also shows a number of interesting new features. This has led to

active and ongoing numerical and analytical exploration of ring dynamics. Several

recent books (Planetary Rings by Esposito (2006), Planetary Ring Systems by Miner

et al. (2007)) and articles (e.g. Porco and Hamilton, 2007), cover both observational

and theoretical developments in planetary ring systems.
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Research on orbital dynamics is not limited to the Solar System. With the

discoveries of dusty disks (Aumann, 1985) and extrasolar planets (Wolszczan and

Frail, 1992; Mayor and Queloz, 1995), a lot of effort has been spent in understand-

ing the different orbital statistics of planets (the Extrasolar Planet Encyclopaedia,

http://exoplanet.eu/) and planet-disk interactions (Ward, 1988). The most signif-

icant difference between the orbits of extrasolar planets and planets in the Solar

System is that the former usually have much larger eccentricities. Several mecha-

nisms were proposed to produce these eccentric orbits, including Kozai resonances

(Holman et al., 1997), planet-planet scattering (Ford et al., 2001), planet-disk inter-

action (Goldreich and Sari, 2003), and stellar encounters (Zakamska and Tremaine,

2004). In Part III of this dissertation, we will study how very close giant planets

(“hot-Jupiters”) may retain their eccentricities against tidal circularization. Studies

in planet-disk interactions are usually orientated towards understanding the features

seen in the spatially-resolved disks (Holland et al., 1998; Wilner et al., 2002; Greaves

et al., 2005), and towards predicting possible planetary masses and orbits based on

these disk patterns (Kuchner and Holman, 2003).
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Chapter 2

Perturbation Theory

Gravity from a massive central body usually determines planetary and satellite sys-

tems, resulting in elliptical orbits with the dominate mass at one focus, as stated

by Kepler’s first law. The largest planet in the Solar System, Jupiter, is a thousand

times less massive than the Sun, and the most extreme satellite-planet mass ratio,

excluding Pluto-Charon, is about 1% for the Moon-Earth pair. Thus, any effects

from forces other than central gravity can be treated as small perturbations to the

otherwise Keplerian orbits. In this chapter, we summarize the basics of perturbation

theory, with emphasis on results relevant to the later chapters.

2.1 Definition of Orbits

In a system of two perfect spherical bodies (ideal planets, stars, satellites, etc.), the

orbit of each object is an ellipse with their common center of mass at one focus, as

is determined by the Keplerian potential. In the case of a hierarchical star-planet

or planet-satellite system, the orbit of the secondary body is usually measured in a

body-centric frame with the dominant mass at the center, and is also a closed ellipse.

We will call the dominant mass a planet (mp) and the secondary mass a satellite (ms)

throughout this chapter.
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Figure 2.1: Definition of orbital elements. A Keplerian orbit is a closed ellipse with
the dominate mass at one focus. The location of the secondary in space can be
determined by 6 orbital elements: the semi-major axis a, eccentricity e, inclination i,
longitude of ascending node Ω, argument of pericenter ω, and true longitude f . The
longitude of pericenter $ = Ω + ω is a bent angle measured in two different planes.

The elliptical orbit of a satellite is well-defined geometrically by five constant

Keplerian orbital elements (Fig. 2.1): the semi-major axis a, the eccentricity e, the

inclination i, the longitude of ascending node Ω, and the argument of pericenter ω.

The last one is often replaced by the longitude of pericenter $ = Ω + ω, which is

a bent angle measured partly in the reference plane and partly in the orbital plane.

The semi-major axis a is sometimes replaced by orbital mean motion n, which is the

average angular velocity of the satellite:

n =

√
G(mp +ms)

a3
,

where G is the gravitational constant. To determine the location of the satellite

in space, a sixth element is required to describe its position along the orbit. This

element takes many forms; for example, the true anomaly f is the angle between the
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directions from the central star to the planet and its orbital pericenter (Fig. 2.1). A

more commonly used angle, although without a simple geometric representation, is

the mean longitude λ, which is a longitude measured in two planes from the reference

direction, much like $. It has the important property of increasing linearly in time.

In contrast to the other five elements, the true anomaly or mean longitude changes

periodically over time to represent a dynamical system instead of a static one.

With two or more satellites in the system, or if the shapes of the objects deviate

from perfect spheres, satellite orbits are not closed eclipses any longer. In the most

common cases, the additional forces are much weaker than the Keplerian potential

and the orbits differ only slightly from perfect eclipses. For each instant in time,

an imaginary orbit for each satellite can still be defined by the so-called osculating

elements transformed from its location and velocity vectors, assuming a Keplerian

orbit (Murray and Dermott, 1999, §2.9). As a result of the extra perturbations, the

first five osculating elements (a, e, I, Ω, and $) vary only slowly with time, while the

true anomaly f (and similarly the mean longitude λ) still change quickly. In some

aspects of our work, we will average the orbits over f to study the long-term evolution

of the orbital size, shape, and orientation.

2.2 Disturbing Function

If a system contains more than one satellite (Fig. 2.2), the orbits can behave in a

rather complicated manner because of mutual perturbations between the two objects,

as we pointed out in last section. It is not difficult to write down the equations of
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motion of the satellites based only on Newton’s laws:

r̈1 = −G(mp +m1)
r1

r3
1

−Gm2

(
r1 − r2

|r1 − r2|3
+

r2

r3
2

)
= ∇r1K1 +∇r1R1, (2.1)

r̈2 = −G(mp +m2)
r2

r3
2

−Gm1

(
r2 − r1

|r1 − r2|3
+

r1

r3
1

)
= ∇r2K2 +∇r2R2. (2.2)

Here r1 and r2 are the position vectors of the inner satellite m1 and the outer satel-

lite m2, respectively, and K1 and K2 are the Keplerian potentials due to the central

planet, which alone would cause each satellite to orbit in an ellipse. The two addi-

tional potentials, R1 and R2, are the disturbing functions arising from the satellites’

perturbation on each other; they can be written explicitly as

R1 = Gm2

(
1

|r1 − r2|
− r1 · r2

r3
2

)
, (2.3)

R2 = Gm1

(
1

|r1 − r2|
− r1 · r2

r3
1

)
. (2.4)

Despite the concise look of Eqs. (2.1-2.4), it

r2

r1

r2 r1−

m1

m2

mp

Figure 2.2: A two-satellite sys-
tem. Position vectors are mea-
sured in the planet-centric frame.
By convention, the inner satellite
has subscript “1”, and the outer
one has subscript “2”.

is conceptually simpler to consider the evolution

of orbits in terms of orbital elements rather than

the more rapidly-varying position and velocity

vectors. A significant effort has been devoted to-

ward this end, starting with Peirce (1849) who

derived a series expansion of Eqs. (2.3) and (2.4)

to sixth order in the eccentricities and mutual in-

clination. Le Verrier (1855) published the most commonly-used expansion to seventh-

order, which was later expanded to eighth order by Boquet (1889). All these expan-

sions are carried out in terms of the mutual inclination and ascending node, which
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simplifies the calculation and is useful for many situations. When strong perturba-

tions from rotational deformation of the planet (Section 2.4) or from a massive foreign

object exist, however, inclinations measured from the planet’s equatorial plane or the

Laplace plane (Chapter 4) are more useful. Thus an expansion in individual orbital

inclinations is necessary. Such an expansion to fourth order can be found in the

appendix of Murray and Dermott (1999), and Murray and Harper (1993) have per-

formed an error-free eighth-order expansion relying extensively on two independent

computer algebra codes.

Once we have written a disturbing function in terms of orbital elements, we can

determine the effect of the corresponding perturbation on the orbit by solving La-

grange’s planetary equations:

dε

dt
= − 2

na

∂R
∂a

+

√
1− e2(1−

√
1− e2)

na2e

∂R
∂e

+
tan(i/2)

na2
√

1− e2

∂R
∂i
, (2.5)

da

dt
=

2

na

∂R
∂ε

, (2.6)

de

dt
= −
√

1− e2

na2e

[
(1−

√
1− e2)

∂R
∂ε

+
∂R
∂$

]
, (2.7)

di

dt
= − tan(i/2)

na2
√

1− e2

[
∂R
∂ε

+
∂R
∂$

]
− 1

na2
√

1− e2 sin i

∂R
∂Ω

. (2.8)

d$

dt
=

√
1− e2

na2e

∂R
∂e

+
tan(i/2)

na2
√

1− e2

∂R
∂i
, (2.9)

dΩ

dt
=

1

na2
√

1− e2 sin i

∂R
∂i
. (2.10)

The angle ε = λ − nt is defined as the mean longitude at epoch. Brouwer and

Clemence (1961) and Danby (1988) both give detailed derivations of these equations.

Disturbing functions are not limited to two-satellite systems. For a system with

many satellites, each satellite raises perturbation potentials, in the form of Eqs. (2.3)
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or (2.4), on all other satellites, and the disturbing function of a satellite can be

calculated by summing perturbation potentials from all other satellites. In addition,

any other potentials leading to additional disturbing forces can be treated in this way,

as we shall see in Section 2.4.

2.3 Secular and Resonant Perturbations

After expansion in terms of small quantities e and i, a disturbing function can be

written as a sum of a series of cosine harmonics:

R =
∑

(jk)

R(jk) cos(j1λ1 + j2λ2 + j3$1 + j4$2 + j5Ω1 + j6Ω2) (2.11)

with the strength of each harmonic given to lowest order by

R(jk) = β(a1, a2) e
|j3|
1 e

|j4|
2 (sin i1)|j5| (sin i2)|j6|. (2.12)

Here j1, · · · , j6 are integers subject to the d’Alembert relations:

j1 + j2 + j3 + j4 + j5 + j6 = 0, (2.13)

j5 + j6 = even number. (2.14)

Hamilton (1994) provides an intuitive derivation of these rules based on spatial sym-

metry. Finally, β(a1, a2) is the part of strength that is independent of orbital ec-

centricities and inclinations. It, however, depends on the six integers jk in addition

to the two semi-major axes. Ellis and Murray (2000) devised a method to find the

strength factor for a certain argument

φ = j1λ1 + j2λ2 + j3$1 + j4$2 + j5Ω1 + j6Ω2. (2.15)
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For orbital evolution studies, the fast changes of λ1 and λ2, which specify the

locations of the satellites, are less important than the change in orbital size (a),

shape (e), and orientation (i, Ω, and $). Hence, we average the disturbing function

over the two orbital periods. Consequently, most terms in Eq. (2.11) average to zero

with the following two exceptions:

i) Secular terms: j1 = j2 = 0; or

ii) Resonant terms: j1 6= 0 or j2 6= 0, but

j1λ1 + j2λ2 = constant. (2.16)

Terms that meet condition (i) cause secular perturbations, which exist for any

two interacting orbits. Since the strength of a perturbation term is proportional to

powers of e and sin i (Eq. 2.12), for orbits with small eccentricities and inclinations,

terms with large |j3|, |j4|, |j5|, or |j6| only have weak effects. For the lowest-order

terms with (j3 = 1, j4 = −1) or (j5 = 1, j6 = −1), the Lagrange equations can be

linearized and an analytical solution can be found, leading to the first-order secular

theory. Secular perturbations between planets cause periodic changes of orbital eccen-

tricities and inclinations, as well as precessions of the ascending nodes and pericenters

(Chapter 7.2). Stockwell (1873) was the first to calculate the secular variations for

all eight major planets, which was later improved by Brouwer et al. (1950). Their

method is similar to what we will use in Part III of this dissertation, where we study

how external eccentricity damping affects secular interactions.

Terms satisfying condition (ii) lead to mean-motion resonances; taking the time
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derivative of Eq. (2.16), we find

j1n1 + j2n2 = 0. (2.17)

This condition can only be met when the two mean motions have a ratio of integers

(n2/n1 = −j1/j2), hence the name “mean-motion resonance”. In general, a resonance

happens when a dynamical system is driven at one of its natural frequencies. Here

when a “commensurability” exists among the orbits (Eq. 2.17), the same orbital

configuration repeats and small perturbations between the satellites can accumulate

in phase. Following Greenberg (1977), we examine the resonance mechanism and

stability for a simple case in which two planar orbits are in 2:1 mean-motion resonance

(j1 = 1 and j2 = −2). Similar analyses can also be found in Peale (1976, 1986) and

Murray and Dermott (1999).

The system is shown in Fig. 2.3: for simplicity we assume that i)the inner orbit is

circular, ii) the outer one is eccentric, and iii) m1 � m2 so that the inner orbit is not

affected. The perturbation from m1 results in a net tangential force f on m2. During

the period when the two move from conjunction to opposition, f is in the direction of

motion and accelerates m2. During the period from opposition to next conjunction,

f is in the opposite direction of motion and decelerates m2. If the conjunction occurs

exactly at pericenter or apocenter of the outer orbit, the tangential force averages to

zero, and there is no energy or angular momentum exchange. As a result, the orbital

configuration does not change and the two satellites always line up at pericenter or

apocenter.

Conjunctions at any other location destroy this symmetry and result in a non-zero
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averaged force that adjusts the conjunction location. Fig. 2.3 shows the case in which

the two satellites line up just past m2’s pericenter. When the two satellites move

from conjunction to opposition, the average distance between them is larger than

when they move from opposition to next conjunction since m2 passes its apocenter

in the former case. As a result, the tangential force on m2 during the accelerating

phase is weaker than during the decelerating phase. Furthermore, the system spends

less time moving from conjunction to opposition (slightly less than one period of

m1) than from opposition to next conjunction (slightly longer than one period of

m1). Hence, during a full period between two successive conjunctions, the weaker

accelerating force is applied for a shorter time than the stronger decelerating force,

resulting in a net loss of energy and angular momentum for the outer orbit. The outer

satellite falls inward and its mean motion, n2, increases. The inner satellite then has

more difficulty catching up with the outer one, so subsequent conjunctions must move

towards the apocenter. Similarly, conjunctions occurring during the second half of

the outer orbit, when m2 moves from its apocenter to pericenter, also shift towards

m2’s apocenter. Thus, the outer orbit’s apocenter is a stable conjunction point, while

its pericenter is an unstable one. It can also be shown that conjunctions at the

inner orbit’s pericenter are stable, while those at its apocenter are unstable. Thus,

during a resonance, extreme close encounters (e.g. conjunction at the pericenter of

the outer orbit and the apocenter of the inner orbit) are avoided and the orbits are

stabilized, as the case of the 3:2 resonances between the Plutinos and Neptune. The

repetition of the same orbital configuration, however, allow the orbital elements to be
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systematically perturbed, leading to changes of orbital elements on short timescales.

Since mean-motion resonances

m p

m 1

m 2

Pericenter

Conjunction

Apocenter

f

Opposition

Figure 2.3: Stability of mean motion resonances.
During a resonance, the conjunction point always
moves towards the apocenter of the outer orbit
and towards the pericenter of the inner orbit.

are associated with an expansion

term of the disturbing function,

the angular parameter φ for that

term, commonly called the reso-

nant angle or resonant argument,

can be used to characterize a res-

onance. We rewrite Eq. (2.15) in

the form usually used for mean-

motion resonances:

φ = (p+ q)λ2 − p λ1 + j3 $1 + j4 $2 + j5 Ω1 + j6 Ω2. (2.18)

The new coefficients p = −j1, q = j1 + j2, and all integers are still subject to the

d’Alembert conditions (Eqs. 2.13 and 2.14). The sum |j3|+ |j4|+ |j5|+ j6|, which is

usually equal to |q|, is the order of the resonance since it represents how many small

quantities (e1, e2, sin i1, sin i2) appear in the resonant strength Eq. (2.12).

There are two possible behaviors for the resonant angle φ: circulation through

a full 360◦ when the two orbits are distant from the corresponding resonance, or

libration through a restricted range of values when the resonance is nearby. The

libration amplitude of φ decreases to zero as the resonance is approached, and at
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exact resonance, the resonant argument satisfies

φ̇ = 0. (2.19)

If the orbits do not precess, i.e., Ω̇1 = Ω̇2 = $̇1 = $̇2 = 0, this equation leads to the

resonant condition Eq. (2.17): resonances occur when the two orbital mean-motions

are an exact ratio of integers. In reality, however, both the oblateness of the planet

(Section 2.4) and secular and resonant perturbations from other satellites cause orbits

to precess, leading to resonance splitting qualitatively similar to the Zeeman effect in

which the energy levels of an atom separate when a magnetic field is applied. Since the

nodal and apsidal precession rates in Eq. (2.18) are much slower than orbital mean

motions, these resonances are still packed into a small region around the location

determined by the ratio of the satellite mean motions (Eq. 2.17). In Part II of this

dissertation, we will investigate the resonant history of the inner Neptunian system

and study how the orbits of these moons have been affected over time.

2.4 Rotational Deformation

The spin of a planet induces a bulge to appear along the planet’s equator – for

example, Earth’s equatorial radius is about 22 km bigger than its polar radius – and

this deviation from a spherical shape causes perturbations to the Keplerian orbit of a

satellite. Roy (2005) used the disturbing function and Lagrange’s planetary equations

to derive the low-order effects for small eccentricities and inclinations, which is usually

sufficient for satellite dynamics. We follow his approach here. In the ideal situation,

22



the rotational deformation is axisymmetric, and the perturbation potential, or the

disturbing function, is given by

Rrot =
Gmp

r

∞∑

k=2

Jk

(
Rp

r

)k
Pk(sinα), (2.20)

where Rp is the planetary radius, r is the distance from the center of the planet, α is

the latitude measured from the equatorial plane, Pk(sinα) is the Legendre polynomial

of degree k, and the dimensionless coefficients Jk are determined by the planet’s

shape. An arbitrary axisymmetric potential can be represented by a judicious choice

of the dimensionless coefficients Jk, which represent the magnitudes of the different

harmonics. If a planet is symmetric about its equator plane, we have J3 = J5 = J7 =

· · · = 0. To an excellent approximation, this is the case for all gaseous planets. More

general expansions are needed for terrestrial planets (Hamilton, 1994) whose mass

distributions are usually non-axisymmetric.

Assuming that the orbit differs only slightly from a Keplerian ellipse, r and sinα

can be converted to orbital elements by

r =
a(1− e2)

1 + e cos f
,

sinα = sin i sin(f + ω).

Substituting these expressions into Eq. (2.20), dropping terms of J6 and higher, and

averaging over an orbital period, we get, to second-order in e and sin i,

〈Rrot〉 =
1

2
n2a2

[
3

2
J2

(
Rp

r

)2

− 9

8
J2

2

(
Rp

r

)4

− 15

4
J4

(
Rp

r

)4
]
e2

−1

2
n2a2

[
3

2
J2

(
Rp

r

)2

− 27

8
J2

2

(
Rp

r

)4

− 15

4
J4

(
Rp

r

)4
]

sin2 i. (2.21)
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Table 2.1: Gravitational properties of major planets

Planet R (km) J2(10−5) J4(10−5) k2 Q
Mercury 2,440 6 - - ≤ 190
Venus 6,052 0.4 0.2 0.25 ≤ 17
Earth 6,378 108.3 -0.2 0.299 12
Mars 3,394 196 -1.9 0.14 86
Jupiter 71,398 1473.6 -58.7 0.58 (0.6− 20)× 105

Saturn 60,330 1629.8 -91.5 0.40 ≥ 16, 000
Uranus 26,200 334.3 -2.9 0.36 11,000 - 39,000
Neptune 25,225 341.1 -3.5 0.41 9,000 - 36,000

References: The Love numbers k2 for the giant planets are from Burša
(1992); their tidal Q’s are from Table 6.2 of this dissertation; Q’s of
Mercury and Venus are from Goldreich and Soter (1966); all other data
are from Murray and Dermott (1999).

Since neither Ω nor $ appears in 〈Rrot〉, planetary oblateness does not affect e and

i (see Eqs. 2.7 and 2.8). Nevertheless, it causes precessions of both the ascending node

and the pericenter. The precession rates come from combining Lagrange’s equations

(Eqs. 2.9 and 2.10) with Eq. (2.21):

$̇ = + n

[
3

2
J2

(
Rp

r

)2

− 9

8
J2

2

(
Rp

r

)4

− 15

4
J4

(
Rp

r

)4
]
, (2.22)

Ω̇ =− n
[

3

2
J2

(
Rp

r

)2

− 27

8
J2

2

(
Rp

r

)4

− 15

4
J4

(
Rp

r

)4
]
. (2.23)

The signs of the two expressions indicate that, for a prograde satellite, the pericen-

ter precesses, while the ascending node regresses. For a retrograde satellite, however,

the opposite is true, as we shall see in Section 4 for Neptune’s large satellite Triton.

Table 2.1 lists the J2 and J4 parameters for the major planets. Giant planets have

much larger J2 and J4 values due to their faster rotation rates.
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2.5 Tides

Planets and satellites are not rigid

f 2

f 1

f

Satellite

Planet

δ

Figure 2.4: Tidal torque. Because the near
tidal bulge pulls the satellite more strongly
than the far one does, the net force f does
not point exactly toward the center of the
planet, resulting in a tangential component
of the total force along the direction of the
satellite’s velocity.

bodies. Because the gravitational pull

from a satellite differs at different loca-

tions around the planet, the shape of

the planet is changed: it elongates along

the planet-satellite line and forms two

tidal bulges (Fig. 2.4). In exactly the

same way, a planet also raises tides on its

satellites. Tidal deformation perturbs

orbits of satellites just as planetary oblateness does; the effect was first discussed

by Darwin (1879, 1880), and later expanded and systematized by Kaula (1964) and

MacDonald (1964). Following Goldreich and Soter (1966) and Burns (1977), we show

how tides affect orbits physically. An excellent summary of tides and tidal interactions

is also given by Murray and Dermott (1999).

If a satellite moves along a circle at the same angular rate as the spin of its planet,

the tidal bulge on the planet always aligns with the planet-satellite line. As a result,

the total gravitational torque on the satellite is zero and the satellite’s orbit is not

affected. When this happens, the satellite is synchronized. Given a planet’s spin rate

Ωp, its synchronous radius for satellites can be easily calculated:

rsyn =

(
Gmp

Ω2
p

)1/3

.
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When a prograde satellite is away from the synchronous orbit, however, the plan-

etary tidal bulge can apply a net torque on the satellite as illustrated in Fig. 2.4. This

figure shows the case when a satellite is outside of the synchronous orbit, where it

orbits more slowly than the planet spins. Because of internal friction, tides take some

time to develop and the planet’s fast spin carries along the tidal bulge ahead of the

satellite. Subsequently, because of the difference between the gravitational pulls from

different side of the planet (Fig. 2.4), a tangential component of the gravitational

force is applied in the direction of the satellite’s motion and accelerates it. As energy

is pumped into the satellite’s orbit, the orbit expands away from the planet and its

mean motion decreases. On the other hand, since energy is drained from the planet,

lost both to the satellite and to internal frictions, the planet’s spin slows down. The

opposite is true if a satellite is inside the synchronous orbit: the tidal bulge lags

behind the satellite and energy is transferred from the satellite’s orbit to the planet’s

spin and to tidal dissipation. The satellite migrates towards the planet, its orbital

velocity speeds up, and the planetary rotation rate increases. Finally, if a satellite

is in a retrograde orbit in which it revolves in the opposite direction of the planet’s

spin, like Neptune’s Triton, the tidal bulge always lags behind the satellite, and the

satellite’s orbit always decays inward.

The tidal migration rate of the satellite and the despin rate of the planet have

been calculated by many authors. Here we adapt the equations given by Murray and
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Dermott (1999):

ṅ = sign(Ωp − n)
9

2

k2p

Qp

(
Rp

a

)5

µs n
s, (2.24)

Ω̇p = − sign(Ωp − n)
15

4

k2p

Qp

(
Rp

a

)3

µ2
s n

2. (2.25)

Here µs = ms/mp � 1 is the satellite-to-planet mass ratio, and k2p is the Love

number of the planet (Table 2.1), which is a dimensionless parameter characterizing

a planet’s tides-raising ability and determined only by the planet’s internal structure.

It is usually less dependent on planetary composition than Qp is and can be estimated

based on planetary models (see Gavrilov and Zharkov, 1977; Burša, 1992). The tidal

dissipation factor Qp quantifies the ability of the planet to dissipate energy; a smaller

Qp means stronger tidal friction and higher energy loss rate. Qp generally depends on

the amplitude and frequency of tides (Goldreich and Soter, 1966), but this dependence

is thought to be very weak for the low-frequency tides with small amplitudes, expected

on most planets and satellites. There is a simple relation between Qp and the tidal

lag angle δ (Fig. 2.4):

sin 2δ = 1/Qp.

Note that Eqs. (2.24) and (2.25) change sign at the synchronous orbit as described

earlier. The dissipation factor Qp is usually estimated through dynamical constraints

(see Goldreich and Soter, 1966; Yoder and Peale, 1981; Peale et al., 1980; Tittemore

and Wisdom, 1989; Banfield and Murray, 1992). In Chapter 6 we use new dynamical

arguments to constrain Neptune’s Q.
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Effects from satellite tides are similar:

ṅ = sign(Ωs − n)
9

2

k2s

Qs

(
Rs

a

)5
1

µs
n2 (2.26)

Ω̇s = −sign(Ωs − n)
15

4

k2s

Qs

(
Rs

a

)3
1

µ2
s

n2, (2.27)

where Rs is the satellite radius, and k2s and Qs are the Love number and tidal dissi-

pation factor of the satellite, respectively. Among the four rates Eqs. (2.24 - 2.27), Ω̇s

is by far the largest (Table 2.2). Thus, satellites usually despin to a synchronous state

so that one face is locked toward the planet as is the case for our Moon. All regular

satellites in the Solar System are currently spin-synchronized. As a result, satellite

tides are not important for circular orbits, and satellite migrations are mostly deter-

mined by planetary tides. Table 2.2 shows the tidal migration timescale of satellites.

Satellites of all giant planets have probably migrated by less than a few planet radii

over the age of the Solar System. Because of small Qp values for terrestrial planets,

both the Moon and Phobos have migrated substantially. During tidal migration, the

planet continues to transfer angular momentum and energy to the satellite’s orbit un-

til the planetary spin is also synchronized fully to the satellite mean motion and the

system reaches double synchronization, as is the case for the Pluto-Charon system.

Satellite tides, however, can circularize an eccentric orbit very effectively even

when the satellite has reached near-synchronization. This is because tides on the

satellite are stronger when it is near pericenter and weaker when it is near apocenter,

so tides rise and fall with the orbital period. Because the tidal force is nearly radial,

the orbital angular momentum is conserved, but the orbital energy decreases. Thus
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Table 2.2: Tidal timescales for natural satellites

Satellite Ωs/Ω̇s (yr) −e/ė (yr) Rp/ȧ (yr) i/i̇ (yr)
Moon 2× 107 2× 1010 2× 108 −2× 1011

Phobos 3× 105 5× 109 −1× 108 1× 109

Io 2× 103 6× 106 1× 1010 −2× 1011

Europa 4× 104 3× 108 2× 1011 −1× 1013

Mimas 1× 103 3× 108 5× 1010 −5× 1010

Titan 3× 104 2× 109 5× 1011 −3× 1013

Miranda 8× 103 3× 108 2× 1010 −4× 1011

Ariel 1× 104 6× 107 1× 1010 −2× 1011

Triton 4× 104 9× 107 −1× 1010 7× 1011

Proteus 1× 103 9× 107 1× 1010 −2× 1011

Larissa 2× 102 9× 107 −2× 1010 1× 1011

These timescales are rough estimates: we use k2p and Qp from Table 2.1;
k2s and µ̃s are estimated by Eq. 2.29 and µ̃s ≈ (104 km/Rs)

2 given in
Murray and Dermott (1999); Qs are all assumed to be 100 except for
the Moon, for which Yoder (1995) estimates QM = 27.

a satellite’s eccentricity is forced to decrease at a rate given by Goldreich (1963):

ė

e
= −63

4

1

µ̃sQs µs

(
Rs

a

)5

n, (2.28)

where µ̃s is the ratio between elastic and gravitational forces, another measure of the

internal strength. For a homogeneous solid body, k2s and µ̃s are related by

k2s =
3/2

1 + µ̃s
. (2.29)

Tidal circularization timescales for satellites are listed in Table 2.2. The eccentric-

ities of most satellites have damped away over the age of the Solar System, except,

again, for those of the Moon and Phobos. The former is too far away for Earth to

raise strong tides while the latter is simply too small for tides to be effective.

Jeffreys (1961) found that, in addition to causing outward satellite migration,

planetary tides also act to increase the orbital eccentricity. The effect can be under-
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stood by considering the tidal force to be applied as an impulse at pericenter – if a

rises, e must rise as well. Goldreich (1963) showed that, however, this effect is usually

much weaker than eccentricity damping by satellite tides. Orbital inclination can also

be affected by tides because the rotation of the planet shifts the tidal bulge off the

satellite’s orbital plane. Kaula (1964) found that, for small orbital tilts, inclinations

change at nearly the migration rate:

1

i

di

dt
= − 1

4a

da

dt
. (2.30)

Since satellite inclinations are usually very small, this effect can be ignored in most

cases, as the long timescales in Table 2.2 indicate. For most satellites, the changes

of inclination are less than a tenth of their current tilts over the history of the Solar

System. In Part II, we use this evidence to argue that all past inclination excitations

of the small Neptunian satellites are retained until today.
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Part II

Orbital Resonances in the Neptunian System
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Chapter 3

Background

The investigation of the resonant history among the small inner Neptunian satellites

is motivated by the study of the resonant excitation of the inclinations of Amalthea

and Thebe by Hamilton and Proctor (unpublished). In this chapter, we provide

some background information about the Neptunian satellites and their tidal migration

history, as well as about the numerical tools and techniques we will use to carry out our

simulations. In Chapter 4, we define two proper orbital elements that are necessary

to analyze resonances in the system. Then, in Chapter 5, we detail various Proteus

resonance passages and discuss their immediate implications. Finally, in Chapter 6,

we give constraints on several physical parameters for the system. Part of this research

is published as Zhang and Hamilton (2007); the remainder has also been submitted

to Icarus for publication.

3.1 The Neptunian Satellites

Prior to the Voyager 2 encounter, large icy Triton and distant irregular Nereid

were Neptune’s only known satellites. Triton is located where one usually finds reg-

ular satellites (close moons in circular equatorial orbits, which are believed to have

formed together with their parent planets). The moon follows a circular path, but
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its orbit is retrograde and significantly tilted, which is common only among irreg-

ular satellites (small distant moons following highly inclined and elongated paths,

thought to be captured objects). Triton’s unique properties imply a capture origin

followed by orbital evolution featuring tidal damping and circularization. Although

different capture mechanisms have been proposed (McKinnon, 1984; Goldreich et al.,

1989; Agnor and Hamilton, 2006), in all scenarios Triton’s post-captured orbit is ex-

pected to be remote and extremely eccentric (e > 0.9). During its subsequent orbital

circularization, Triton forced Neptune’s original regular satellites to collide with one

another, resulting in a circum-Neptunian debris disk. Most of the debris was probably

swept up by Triton (Ćuk and Gladman, 2005), while some material close to Neptune

survived to form a new generation of satellites with an accretion timescale of tens of

years (Banfield and Murray, 1992). Among the survivors of this cataclysm are the

six small moonlets discovered by Voyager 2 in 1989 (Smith et al., 1989, see Fig. 3.1).

Voyager 2 also found several narrow rings interspersed amongst the satellites

within a few Neptune radii, and found the ring arcs hinted at by stellar occultation

years earlier. Karkoschka (2003) reexamined the Voyager images later, and derived

more accurate sizes and shapes of the new satellites. Proteus, the largest one, is only

about 400 kilometers in diameter, tinier than even the smallest classical satellite of

Uranus, Miranda. Owen et al. (1991) used Voyager data to calculate the orbital ele-

ments of these small satellites, which were later refined by Jacobson and Owen (2004)

with the inclusion of recent data from the Hubble Space Telescope and ground-based

observations. Both analyses show that all the small moons are in direct near-circular
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Table 3.1: Inner Neptunian satellites and Triton

Name R̄ (km) a (km) e (×10−3) iLap (◦) ifr (◦)
Naiad 33± 3 48,227 0.4± 0.3 0.5118 4.75± 0.03
Thalassa 41± 3 50,075 0.2± 0.2 0.5130 0.21± 0.02
Despina 75± 3 52,526 0.2± 0.2 0.5149 0.06± 0.01
Galatea 88± 4 61,953 0.04± 0.090 0.5262 0.06± 0.01
Larissa 97± 3 73,548 1.39± 0.08 0.5545 0.205± 0.009
Proteus 210± 7 117,647 0.53± 0.09 1.0546 0.026± 0.007
Triton 1353 354,759 0.0157 - 156.83

Average radii of the small satellites (R̄) are from Karkoschka (2003); their orbital
elements (semi-major axis a, eccentricity e, inclination of local Laplace plane iLap,
and free inclination ifr) are from Jacobson and Owen (2004). Neptune’s equator
plane is tilted by ε = 0.5064◦ from the invariable plane (see Fig. 4.1); these small
satellites lie nearly in the equator plane. Orbital data of Triton are from Jacobson
et al. (1991).

orbits with small, but non-zero, inclinations. Their parameters are listed in Table 3.1.

Smith et al. (1989) estimated

Figure 3.1: Voyager 2 images of the six small in-
ner Neptunian satellites. Their sizes are roughly to
scale. Images courtesy of NASA.

the cometary bombardment rate

near Neptune and pointed out

that, of the six small satellites,

only Proteus was likely to sur-

vive disruptive collisions over the

age of the Solar System. The in-

nermost and smallest satellite,

Naiad, might not last much longer

than 2 to 2.5 billion years, while the intermediate objects might have been destroyed

during an early period of heavy bombardment. In any case, all six small satellites

probably formed only after Triton’s orbital migration and circularization was nearly
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complete and the large moon was close to its current circular tilted retrograde orbit

(Hamilton et al., 2005). Triton’s large orbital tilt induces a strong forced component

in the inclination of each satellite’s orbit (see Chapter 4). These forced inclinations

define the location of the warped Laplace plane, about whose normal the satellite’s

orbital plane precesses. Measured from their local Laplace planes, the current free

orbital inclinations (ifr) of the small satellites are only a few hundredths to tenths of

a degree, with one exception (4.75◦ for tiny Naiad). It is the contention of this work

that these free tilts, despite being very small, arose from dynamical excitations during

orbital evolution. Physically, the debris disk from which the satellites formed should

have damped rapidly into a very thin layer lying in the warped Laplace plane. Satel-

lites formed from this slim disk should initially have free inclinations ifr � 0.001◦,

perhaps similar to the thickness of Saturn’s ring. A reasonable explanation for the

current non-zero tilts of the satellites thus requires an examination of their orbital

evolution history.

3.2 Tidal Evolution and Mean-Motion Resonance Passage

Tidal friction between a satellite and its parent planet determines the satellite’s orbital

evolution over a long time span (Darwin, 1880; Burns, 1977). The physical effects

of tides have been discussed in Section 2.5. Satellite orbits migrate due to planetary

tides according to

ȧ

a
= ±3k2N

QN

µs

(
RN

a

)5

n, (3.1)
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where we have rewritten Eq. (2.24) in terms of ȧ, and the sign in Eq. (3.1) depends on

the satellite’s location relative to the synchronous orbit. For the Neptunian system,

the synchronous orbit lies between the orbits of Proteus and Larissa, which means

that Proteus’ orbit has expanded over time while the orbits of the other satellites have

shrunk. The large gap between the orbits of Proteus and Larissa may be evidence for

this divergence (Fig. 3.2).

The tidal migration timescale is rather

Figure 3.2: Semi-major axes of the small
inner Neptunian satellites in planetary
radii. The two arrows indicate the direc-
tion of tidal migration.

difficult to estimate. Although k2N =

0.41 is theoretically determined by Burša

(1992), the uncertainty in QN prevents a

precise calculation (Goldreich and Soter,

1966). Banfield and Murray (1992) es-

timated 12, 000 < QN < 330, 000, leading to timescales uncertain by more than an

order of magnitude. Here we note that the distances between the two satellites and

the synchronous orbit are 1.3RN for Proteus and 0.4RN for Larissa, implying that

they have migrated by no more than ∼ RN over the age of the Solar System. Triton,

due to its retrograde orbit, spirals slowly inward with a typical timescale ∼ 1010 years

(Table 2.2); this inward drift can be safely ignored in resonant studies.

Due to tidal migration, orbital periods of the small satellites change over time,

causing satellites to pass through mean-motion resonances (Section 2.3). The be-

havior of the orbital elements during resonance passage depends on whether the two

orbits are converging or diverging. For first- and second-order resonances (|j3|+ |j4|+

36



|j5|+ |j6| = 1 or 2 in Eq. 2.18), if the two orbits diverge from each other (as Proteus

and Larissa) and pass through a resonance, the orbital eccentricities and inclinations

are subject to sharp changes or kicks (Hamilton and Burns, 1993), which can be either

positive or negative. The signs and magnitudes of these kicks depend not only on

the resonant strength, but also on the exact phase (value of φ) when the resonance

is encountered (Peale, 1986). However, kick amplitudes are predictable if the two

satellites diverge so slowly that the variation of orbital elements is in the adiabatic

limit both before and after a resonance encounter. In this case, the kicks to eccentric-

ities and inclinations are always positive, and the kick magnitudes can be obtained

analytically by a Hamiltonian analysis (Peale, 1976; Murray and Dermott, 1999). In

contrast, when two converging orbits pass through a resonance, they can be captured

into a resonant state and may remain locked therein unless perturbations from other

objects or nearby resonances force them out (Greenberg et al., 1972; Malhotra and

Dermott, 1990). If tides continue to act on objects trapped in a resonance, the af-

fected eccentricities and/or inclinations keep growing on the tidal migration timescale

(Hamilton, 1994).

In addition to tidal migration of a, tides affect other orbital elements as well

(Eqs. 2.28 and 2.30). Based on reasonable assumptions for QT and µ̃T , Goldreich and

Soter (1966) estimated that the circularization timescale for Triton is of order 108

years. Triton, therefore, has followed a nearly circular path for most of Solar System

history. The eccentricity-damping timescales for the small satellites are longer because

of their small sizes, but are still significantly shorter than a billion years (Table 2.2),

37



which is consistent with the zero eccentricities of Naiad, Thalassa, Despina, and

Galatea (Table 3.1). The eccentricities of Proteus and Larissa, however, stand out as

significantly larger than zero. We will explain in Section 5.1.1 that excitations from

the recent 2:1 Proteus-Larissa mean-motion resonance passage are responsible.

For a satellite with a small tilt, the tidal effect on the inclinations is very weak

(Eq. 2.30). The inclinations of the inner Neptunian satellites should change by less

than a tenth of their current values over the age of the Solar System (Eq. 2.30).

As a result, any inclinations acquired by other means, e.g., resonant excitations, are

preserved throughout tidal evolution. This leads directly to the main idea of this

work: the small satellites’ current orbital tilts contain clues to dynamical events of

the past. We begin our investigation by an overview of possible resonances that may

have once been active among the Neptunian satellites.

3.3 Resonant History of the Neptunian System

As we mention earlier, Proteus migrates away from Neptune, while all other satellites

spiral inwards. A satellite’s migration rate is proportional to its mass, and has a

steep inverse dependence on its orbital semi-major axis (Eq. 3.1). Since Larissa,

Galatea, and Despina have comparable masses (within a factor of 2), the innermost

of these migrates most rapidly, and, hence, their orbits all diverge from one another.

Diverging orbits usually lead to resonant kicks during which satellite orbital elements

change sharply (Hamilton and Burns, 1993). Due to the much smaller masses of

the innermost satellties, Naiad and Thalassa, their orbits evolve more slowly and are
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approached by those of the next three satellites. Converging orbits typically lead to

resonant trapping, as has been suggested as the explanation for the large inclination

of Naiad by Banfield and Murray (1992).

Over the history of the Solar System, the inner Neptunian satellites migrated

slowly enough that most of the first- and second-order mean-motion resonances were

traversed in the adiabatic limit. Magnitudes of resonant kicks on satellite inclinations

are then predictable both analytically (Peale, 1976) and numerically. Higher-order

resonances are often not transversed adiabatically, but their kicks are smaller by about

an order of magnitude, and thus add negligibly to the total inclination growth.

Because satellite mean motions are much larger than orbital precession rates,

resonances cluster in discrete narrow zones near where the ratio of satellite orbital

periods is a rational number ((p + q)/p in Eq. 2.18). We integrate Eq. (3.1) for

each satellite and locate all the first- and second-order resonant zones (q = 1 and

q = 2), as shown in Fig. 3.3. We stop the integration when Larissa is fairly close to

the synchronous orbit and the unphysical discontinuity in ȧ/a becomes problematic.

Because of this over-simplification for satellites near synchronous orbit, the left-hand-

side of the plot is less accurate than the right, especially for Larissa. As the time

axis indicates, the integration is much longer than the age of the Solar System, but

the evolutionary timescale depends on Neptune’s Q and the satellite masses, all of

which are poorly constrained. Here we have usedQN = 20, 000 and a common satellite

mean density ρ̄ = 0.6 g/cm3 based on estimates for the giant planets and icy satellites.

Under these assumptions, Proteus was 0.28RN closer to Neptune 4 billion years ago
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Figure 3.3: Possible past first- and second-order mean-motion resonances among Pro-
teus (P), Larissa (L), Galatea (G), and Despina (D). We integrate Eq. (3.1) backward
until Larissa is fairly close to the synchronous orbit (SO), assuming QN = 20, 000
and a uniform satellite mean density of ρ̄ = 0.6 g/cm3. Black solid curves show the
migration tracks of the four satellites, and the dashed horizontal line denotes the
synchronous orbit. The vertical lines represent strong resonant zones for different
pairs of satellites. The time scale along the bottom axis depends on QN and ρ̄. For
different values of these parameters, multiply all times by a factor of QN/20,000

ρ̄/(0.6 g/cm3)
.

(∼ age of the small satellites) than it is today and Larissa, Galatea, and Despina

have migrated towards the planet by 0.24RN , 0.39RN , and 0.49RN , respectively. A

larger QN or a lower satellite density would result in a slower evolution, as described

in the caption of Fig. 3.3. Thus the origin of the system could occur anywhere along

the horizontal axis of Fig. 3.3, depending on the actual values of QN and ρ̄.

With our assumptions of QN = 20, 000 and ρ̄ = 0.6 g/cm3, the satellites go

through approximately 16 resonant zones involving first- and second-order mean-

motion resonances (Fig. 3.3) since the small satellites formed ∼ 4 billion years ago.
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For different QN and ρ̄, a different number of past resonances may have occurred.

Our strategy here is to work backwards in time from the present to find out which of

these resonances actually occurred and determine what their effects were. We focus on

orbital inclinations which are particularly unaffected by tides and hence accumulate

over time, leaving a “fossil record” visible in today’s orbits.

3.4 Computing Techniques

Our simulations were carried out with the HNDrag module in the HNBody package

(Rauch and Hamilton, 2002). HNBody is a general purpose, hierarchical N-body in-

tegrator, which implements both the symplectic mapping algorithms (Wisdom and

Holman, 1991) and the classical Bulirsch-Stoer and Runge-Kutta algorithms. HNDrag

expands the functionality of the original HNBody code by allowing additional drag

forces to act on the satellites, which can simulate a wide range of gravitational and

non-gravitational perturbations. Since our interest lies in long-term orbital evolution,

we use the symplectic integrator for better performance. The integration stepsize is

chosen so that there are at least 20 steps during each orbital period. We have per-

formed convergence tests for several of our simulations with the number of sampling

points per orbit ranging from 1 to 100. The results are consistent for all tests with

greater than five steps per orbit. In the results presented here, we use a cautious

20 steps per orbit to guarantee convergence. We also confirmed the stability of the

code by performing a series of simulations with slightly different initial conditions.

We conducted the test with a system consisting of a planet and two satellites, with
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an artificial drag force pulling the satellites through several mean-motion resonances.

These tests are similar to the physical problem that we are exploring, and they lead

to consistent results after 108 years.

The output of HNDrag can be set to either osculating orbital elements or Carte-

sian positions and velocities. The osculating elements are a set of projected Keplerian

orbital elements for each instant, calculated with the assumption of no extra pertur-

bations. However, perturbations from both Neptune’s oblateness and Triton cause

the osculating elements to vary artificially over a single orbital period. We minimize

this effect by using geometric elements, which define the actual shape of the orbit.

Following Greenberg (1981), we take the position and velocity output from HNDrag

and convert it to geometric orbital elements, correcting for first-order J2 perturba-

tions with our conversion program cj2. This procedure greatly reduces unphysical

oscillations in the orbital elements.

To determine the evolutionary history of the two Neptunian satellites, it would

be best to follow their orbits for 4 billion years. As this is not practical with current

computing technology, we take advantage of the fact that mean-motion resonance

passages take place only at discrete locations. During most of the evolution when

the moons are not in resonance, we apply the tidal evolution equations (Eqs. 3.1 and

2.28) to damp eccentricities and move satellites away from the synchronous orbit.

Typical resonance passage times, with the slowest migration rate that we use, are on

the order of 10 million years; we only simulate these 10-million-year segments, which

greatly reduces the computational burden.
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The simulated system consists of Neptune (with an equatorial bulge), Proteus,

and Larissa, with Triton included (for our inclination study) or excluded (for our

eccentricity study). We ignore the Sun in our simulations because its perturbation

on the small satellites is much smaller than Triton’s. For simplicity, we fix the semi-

major axis of Larissa, and apply a simple drag force on Proteus to move it slowly

outward across the resonant zone. In reality, both satellites are moving at time-

dependent rates. But since most of the strong resonances are traversed slowly (in the

adiabatic limit), the kicks to the orbital eccentricities and inclinations are independent

of whether one satellite or both are migrating, the rate of migration, and even the

nature of the drag force.

Most of our simulations are performed on the Borg Beowulf cluster of 85 pro-

cessors in the Astronomy Department at the University of Maryland. HNDrag is a

single-thread program, and different simulations are dispatched to different nodes of

the cluster through the Condor job control system. With these resources, typical

simulation times range from 2 days to 2 weeks.
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Chapter 4

Perturbations from Neptune’s Oblateness and Triton

The orbital configuration of the Neptune system is different from other satellite sys-

tems in that a massive moon, Triton, orbits far from the equator plane, and its

perturbation on the inner orbits is not negligible. Hence, a mathematical preparation

for this special system is necessary before we proceed to analyze the resonances.

If Neptune were perfectly spherical, the rotational angular momentum of Neptune

(LN) and the orbital angular momentum of Triton (LT ) would both be constant with

fixed directions in space. In reality, however, the oblateness of Neptune resulting from

spin deformation causes Triton’s orbital plane to precess slowly (Section 2.4). For a

circularly-orbiting Triton, the nodal precession rate is (Danby, 1988, §11.15)

Ω̇T = −3

2
J2nT

(
RN

aT

)2

cos iT ≡ goblT . (4.1)

Compared to Eq. (2.22), we only include the second-order J2 term, and the additional

cos iT is necessary because Triton’s large inclination and retrograde orbit. Neptune’s

J2 = 0.003411. Triton’s ascending node precess rather than the more common re-

gression given in Eq. (2.22) because iT > 90◦. The precession period 2π
Ω̇T

is about 600

years, significantly longer than Triton’s 5.88-day orbital period.

Although LT is no longer a constant vector due to the precession of Triton’s orbital

plane, the system still conserves its total angular momentum Ltot = LN + LT and, as
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Figure 4.1: Laplace plane of the Neptune-Triton system. The plot shows a side view
of the invariable plane, Neptune’s equatorial plane, Triton’s orbital plane, and the
local Laplace plane of a small satellite. Here, iT and ε are the inclinations of Triton’s
orbit and Neptune’s equator, respectively. Note that they are measured from different
sides of the invariable plane due to Triton’s retrograde orbit. The inclination of the
small satellite’s local Laplace plane is given by iLap. The thin curve defines the shape
of the warped Laplace plane for satellites at different distances, or for a debris disk
inside Triton’s orbit. The whole Laplace plane precesses together with Triton’s orbit
and Neptune’s equator.

a result, the plane perpendicular to Ltot is fixed in space, which makes it a natural

reference plane for the measurement of orbital elements. This plane is usually referred

to as the invariable plane. In the Neptune-Triton system, it is tilted by ε = 0.5064◦

from Neptune’s equatorial plane (Jacobson and Owen, 2004). Neptune’s equatorial

plane is always locked with Triton’s orbital plane and the two precess together. We

ignore the spin angular momentum of Triton and the orbital angular momenta of the

other satellites since they are much smaller than |LN | and |LT |.

Small inner Neptunian satellites (ms � mT � mN ) experience secular perturba-

tions both from Neptune’s oblateness and from Triton. The overall effects of these two

perturbing components force the orbit of a small moon to precess about the moon’s
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local Laplace plane, which is distinct from both the invariable plane and Triton’s or-

bital plane. Fig. 4.1 shows the warped Laplace plane in the Neptunian system. Near

Neptune, the Laplace plane is close to the planet’s equatorial plane, near Triton it is

close to the large moon’s orbital plane, and in between the plane is tilted at different

angles. The nodes of Laplace planes at different distances, however, all lie along a

line and move slowly with Triton’s secular precession rate. Thus the whole warped

disk precesses as a rigid body along with Triton’s orbit and Neptune’s equator. The

location of the local Laplace plane at different distances from the central planet can

be determined by analyzing the two competing perturbations. We undertake this

analysis here, as it will lead to the identification of the new resonances that we will

encounter in Chapter 5.

Neptune’s oblateness causes the orbit of a small satellite to precess with a rate

gobl given by an expression similar to Eq. (4.1). Triton, as an external perturber, also

causes both the satellite’s pericenter and node to precess through secular interactions.

We will study the eccentricity secular perturbations in great detail in Part III. In the

Neptune-Triton system, however, the eccentricity effects are trivial due to Triton’s

nearly-circular orbit, but the inclination effects are important. Following similar

calculations laid out in Section 7.2, we can obtain the corresponding nodal precession

rate:

gsec = −1

4
µTnα

2b
(1)
3/2(α).

Here µT is the Triton-Neptune mass ratio, α = a/aT is the semi-major axis ratio of

the satellite and Triton, and b
(1)
3/2(α) is one of the Laplace coefficients, which depend
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only on α (Murray and Dermott, 1999, §6.4).

Combining both the perturbations from Neptune’s oblateness and the secular

effects of Triton, we obtain the disturbing function for a small satellite:

R = na2

{
1

2
(gsec + gobl)i2 − gsec(π − iT )i cos(Ω− ΩT − π)

}
,

where the extra π symbols are due to Triton’s retrograde orbit. The solution to the

corresponding Lagrange’s planetary equations for inclination (Eq. 2.8) and ascending

node (Eq. 2.10) with the above disturbing function is

i sin Ω = ifr sin Ωfr + iLap sin ΩLap, (4.2)

i cos Ω = ifr cos Ωfr + iLap cos ΩLap, (4.3)

where

Ωfr = (gsec + gobl)t+ Ωfr
0 .

The free inclination ifr and the free node at the epoch Ωfr
0 are constants deter-

mined by the initial state. The angles iLap and ΩLap define the local Laplace plane

of the satellite, as illustrated in Fig. 4.2a. The inclination of the local Laplace plane,

also called the forced inclination, is

iLap =
gsec

gsec + gobl
(π − iT ), (4.4)

and the node of the local Laplace plane, or the forced node, is

ΩLap = ΩT + π, (4.5)

both of which are independent of the initial inclination and node of the satellite. Once

the satellite’s semi-major axis is given for a nearly-circular orbit, the satellite’s local
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a b

Figure 4.2: Definition of key orbital elements. iLap, ΩLap: inclination and longitude
of ascending node of the local Laplace plane; ifr, Ωfr: free inclination and node of
the satellite’s orbit measured relative to its local Laplace plane; i, Ω: inclination and
node of the satellite’s orbit measured relative the invariable plane. The longitude of
ascending node of the orbit is defined as the bent angle Ω̃ = ΩLap + Ωfr measured in
two separate planes. a: the physical representation of the planes and orbital elements.
b: the phase diagram showing the solutions Eqs. (4.2-4.3).

Laplace plane is determined. This plane precesses together with Triton’s orbit and

Neptune’s equator. Our solution for the Laplace plane, Eqs. (4.4-4.5), is consistent

with that derived by Dobrovolskis (1993) in the case of a solar perturbation on satellite

orbits. However, his solution is simplified based on the fact that the external perturber

is much further away from the planet than the perturbed satellite, which is not the

case in the Neptune-Triton system.

Fig. 4.2b illustrates the solutions Eqs. (4.2 - 4.3) in a phase diagram of i sin Ω

versus i cos Ω. Perturbations on Triton by Neptune’s rotational bulge cause
−−→
OO′ to

precess (rotate counterclockwise) about the origin at rate |goblT |, and perturbations

on the small satellite by both Neptune’s oblateness and Triton cause
−−→
O′A to regress

(rotate clockwise) around O′ at the rate |gsec + gobl|. The vector sum of
−−→
OO′ and
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−−→
O′A represents the inclination i and the longitude of the ascending node Ω of the

small satellite relative to the invariable plane and an arbitrary reference direction.

Measuring the direction of
−−→
O′A from the reference direction, we find the angle

Ω̃ = ΩLap + Ωfr, (4.6)

which we redefine as the longitude of the satellite’s ascending node. Fig. 4.2a shows

its physical meaning: a bent angle partially in the invariable plane and partially in

the Laplace plane, much like the longitude of pericenter $. The free inclination is the

tilt of the satellite’s orbit with respect to its local Laplace plane, and the free node

is measured from the node of the Laplace plane on the invariable plane.

Fig. 4.3 illustrates how the histories of (i, Ω) and (ifr, Ωfr) differ. We simulate

the orbital evolution of a satellite at 8RN (the satellite illustrated in Fig. 4.1) in

the Neptune-Triton system. Measured relative to the Laplace plane, ifr ∼ 3.5◦ is a

constant over time and Ωfr regresses at a constant rate. However, measured relative

to the invariable plane, i oscillates around iLap ∼ 8.5◦, and Ω is forced to precess

at nearly the same rate as the Laplace plane. If a small satellite is initially in its

local Laplace plane (ifr = 0◦), it always stays in the plane and its inclination remains

constant relative to the invariable plane. However, if it starts out of its local Laplace

plane, it precesses about this plane and its inclination measured from the invariable

plane oscillates. Hamilton (1996) noticed similar behavior when studying the orbit

of a dust grain around Mars subject to strong solar perturbations (his Fig. 7).

The concept of the bent angle Ω̃ can be more intuitively understood through a

direct comparison to $ = Ω + ω. For an inclined orbit, ω is measured in the orbital
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Figure 4.3: Inclination and node of a satellite at a = 8RN measured relative to the
invariable plane (i, Ω) and the satellite’s local Laplace plane (ifr, Ωfr). Measured
from the Laplace plane, the free inclination, ifr, is nearly constant, and the free node,
Ωfr, regresses uniformly with a ∼ 50 year period. Orbital elements measured from
the invariable plane display a more complicated evolution: here both i and Ω oscillate
due to the satellite’s orbital regression, while Ω is also dragged along with Triton’s
600-year orbital precession.

plane, while Ω is measured in a reference plane (here the invariable plane). With the

addition of Triton, however, there are two dynamically important planes in addition to

the orbital plane – the invariable plane about which Triton’s orbit precesses, and the

local Laplace plane about which the small satellite’s orbit regresses (Fig. 4.2). Because

the local Laplace plane determines the dynamics, Ωfr is measured in that plane, and

we require an additional angle ΩLap to specify the location of the Laplace plane. As

with $, we are led to a bent angle definition (Eq. 4.6). Although not necessary for
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this work, the definition of $ must also be updated in the Neptune-Triton system

to: $̃ = Ω̃ + ω, a perverse bent angle measured in three planes (represented with an

equally perverse symbol). Here ω is measured from the ascending node of the orbital

plane on the Laplace plane rather than on any other reference plane. For the orbits

of Proteus and Larissa, the differences between $̃ and $ are tiny because their free

inclinations are so small. It is safe to replace $̃ with $ in most cases.

With the new definition of the longitude of the ascending node Ω̃ (Eq. 4.6) replac-

ing Ω, as well as the new longitude of pericenter $̃ replacing $, resonant arguments

defined in Eq. (2.18) hold the same form for resonances among the small satellites

in the Neptune-Triton system as we shall see in Chapter 5. The resonance strengths

(Eq. 2.12), however, depend on ifrj rather than ij.
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Chapter 5

Proteus Resonances

The magnitudes of resonant kicks on orbital inclinations depended strongly on the

mass of the perturber. Since Proteus is by far the largest satellite, resonances between

it and the other satellites are much stronger than those among the three smaller satel-

lites. As a first approximation, therefore, we examine only the Proteus resonances,

neglect the weaker ones, and see if we can form a consistent story from this subset

of Fig. 3.3. We will return to consider resonances between Larissa, Galatea, and

Despina in Section 6.1. In addition to the very recent 2:1 resonant zone between Pro-

teus and Larissa, Proteus might have gone through seven other resonant zones that

we list backwards from the present: PD 3:1, PG 2:1, PL 5:3, PL 3:2, PD 2:1, PG

5:3, and PL 7:5. In this chapter, we detail these resonance passages, determine the

inclination excitation provided by each resonance, and analyze new features found in

our simulations.

5.1 The Recent 2:1 Proteus-Larissa Resonance Passage

The 2:1 mean-motion resonance between Proteus and Larissa (PL 2:1) is located only

about 900 km inside Proteus’ current orbit or 600 km outside Larissa’s, implying that

the satellites passed through the resonance in the recent past (a few hundred million
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years ago). The proximity of this resonance suggests a resonant origin for the larger-

than-average eccentricities of these two satellites (Table 3.1). In Fig. 5.1, we simulate

the passage of Proteus and Larissa through this resonance at roughly the correct tidal

migration rate. As our first step in the investigation, Triton has been excluded from

the system so that a typical two-body resonance passage can be observed. We plot

the orbital semi-major axes, eccentricities, and inclinations of Proteus and Larissa as

the satellites diverge slowly through the resonant zone. The orbital elements of the

two moons jump at several locations where different individual resonances occur. We

name the resonances after the orbital elements they affect with a capital R to signify

the appropriate term in the disturbing function (Murray and Dermott, 1999, §6.9),

and mark all of the 1st- and 2nd-order ones in Fig. 5.1. Depending on which orbital

elements are most strongly affected, the resonances can be classified as eccentricity-

type, inclination-type, or mixed-type.

5.1.1 Eccentricity Evolution during and after the PL 2:1 Passage

The eccentricities of the two satellites are shown in the middle panels of Fig. 5.1.

The two first-order eccentricity-type resonances, ReL and ReP , dominate the satel-

lites’ eccentricity growth. Second-order resonances Re2L
and Re2P

occur at exactly the

same locations, respectively, while ReLeP falls between the two. Larissa’s semi-major

axis drops while that of Proteus grows with each eccentricity kick to conserve the

energy and angular momentum of the system. If aL is not significantly altered by the

resonances, then ReLeP would be midway between Re2L
and Re2P

; we derive a similar
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Figure 5.1: Proteus and Larissa diverge through PL 2:1. Triton is excluded from this
system. Plots show the semi-major axes, eccentricities, and inclinations of the two
small satellites. Larissa has a fixed semi-major axis at aL = 2.93RN , and Proteus
migrates outward with a rate of 3.6 × 10−10RN/yr. As only the relative divergence
rate is important in most cases, it is an excellent approximation to move Proteus
alone. We assume satellite densities ρ̄ = 0.8 g/cm3. Both satellites begin on circular
orbits with inclinations of 0.5590◦ and 1.0667◦ measured relative to the invariable
plane, respectively. These inclinations are the same as would be forced by Triton
were it included in the system. Orbital element kicks due to first- and second-order
resonances are marked in the plots. The unmarked small kicks are due to higher-order
resonances.
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Figure 5.2: Proteus and Larissa diverge through PL 2:1. The system consists of
Neptune, Triton, and the two small satellites. Plots show the semi-major axes, ec-
centricities, and free inclinations (measured relative to the Laplace plane) of Proteus
and Larissa. Larissa’s semi-major axis aL is fixed at 2.93RN , while Proteus migrates
outward with ȧP = 1.8× 10−10 RN/yr. The density of the satellites is ρ̄ = 0.8 g/cm3.
The first- and second-order resonances are identified, including a few strong three-
body resonances (ReLiP iT , R∗, RiP iT , and RiLiT ); smaller kicks are due to higher-order
resonances.
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result in Section 5.1.2 for the inclination-type resonances.

The amplitudes of resonant kicks depend on the strengths of the resonant per-

turbations, which are functions of satellite masses and the instantaneous values of

the orbital elements. Since the mass of Proteus is about 10 times Larissa’s, a given

resonance (e.g., ReP eL) gives a stronger kick to Larissa than to Proteus. The strength

of the second-order resonance ReLeP depends on two small eccentricities, so it is much

weaker than the first-order resonances and contributes only about 1/6 of the growth

of eP . The tiny kicks to eP before ReP eL in Fig. 5.1 are due to higher-order resonances.

Our additional simulations with different tidal migration rates suggest that the

tidal migration rate is slow enough that the first- and second-order resonances are tra-

versed in the adiabatic limit. Higher-order resonances are not traversed adiabatically,

so their eccentricity and inclination kicks depend on the drag rate and are difficult to

predict. For the 2:1 passage, though, higher-order resonances are weaker by about an

order of magnitude and their contributions are minimal (Fig. 5.1). We do not include

Triton in our eccentricity studies since its orbit is nearly circular and its perturbation

to the small satellites’ eccentricities is minimal. We verify this assertion with a direct

comparison between simulations with and without the large moon (Figs. 5.1 and 5.2).

The masses of Proteus and Larissa are not well-constrained observationally. The

higher the masses, the stronger the resonances, and in turn, the larger the eccentricity

excitation. Since the small satellites formed from the same circum-Neptunian debris

disk, we might expect that they should have similar compositions and densities. We

make the simple assumption that both satellites have the same density, and calculate
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their masses based on their observed sizes. In the simulation shown in Fig. 5.1, we

use a mean density of ρ̄ = 0.8 g/cm3. The satellites might have a higher or lower

density, depending on their composition and porosity. The current eccentricities of

the two satellites, 0.00053 for Proteus and 0.00139 for Larissa, place a lower limit on

the resonant excitation, which then limits the minimum density of the two satellites.

We simulate the resonance passage with a number of different assumed mean densities

for Proteus and Larissa. These simulations show ρ̄ > 0.05 g/cm3 in order for Proteus

to acquire an eccentricity eP > 0.00053. With this density, Larissa’s eccentricity is

excited to a value significantly higher than its current 0.00139. A density of ρ̄ >

0.05 g/cm3 for satellites is not particularly a good constraint, but we will derive much

better limits after later inclination studies.

After the resonance, the satellite orbits must migrate outward while simultane-

ously circularizing. If we know the eccentricities of the satellites immediately after the

resonance, this provides a constraint on the satellite Q’s, which we now explore. Since

tidal migration is determined by planetary tides (Eq. 3.1) and eccentricity damping

is mostly accounted for by satellite tides (Eq. 2.28), the ratio between a satellite’s Qs

and Neptune’s QN can be estimated based on the satellite’s migration distance and

the change of its eccentricity subsequent to the resonant passage:

Qs

QN

=
21

4

1

k2N µ̃s

(
ρN
ρs

)2(
RN

Rs

) ∣∣∣∣
ln(af/ai)

ln(ef/ei)

∣∣∣∣ , (5.1)

where ρN and ρs are the densities of Neptune and the small satellite; the subscripts

“i” and “f” indicate initial and final values of the semi-major axis and eccentricity,

respectively. We defer the estimation of Qs to Section 6.3 after we have obtained
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better constraints on QN .

5.1.2 Inclination Resonances in the PL 2:1 Resonant Zone

In addition to the eccentricities of the Proteus and Larissa, Fig. 5.1 also shows the

change of the satellite inclinations in the bottom two panels. First-order inclination-

type resonances do not exist due to the constraints on resonant arguments (Eqs. 2.13

and 2.14, Hamilton, 1994). The three second-order inclination resonances, Ri2P
, RiP iL ,

and Ri2L
, are equally-spaced in time, which can be explained by considering the cor-

responding resonant arguments:

φ′i2P
= 4λP1 − 2λL − 2ΩP1, (5.2)

φ′iP iL = 4λP2 − 2λL − ΩL − ΩP2, (5.3)

φ′i2L
= 4λP3 − 2λL − 2ΩL, (5.4)

where the subscripts, 1, 2, and 3, denote the three different locations of Proteus. We

use φ′ instead of φ here to distinguish these arguments from the new definitions to

be introduced later in this section. Since the three resonant locations are very close,

we can safely neglect the difference between Ω̇P1 and Ω̇P2. Applying Eq. (2.19) and

subtracting pairs of equations yield

nP1 − nP2 ≈ nP2 − nP3,

which, for closely-spaced resonances, is equivalent to

aP2 − aP1 ≈ aP3 − aP2.
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Figure 5.3: Ri2L
transit during the PL 2:1 resonance passage and the corresponding

resonant angles. Top: the free inclination of Larissa; middle: the traditionally-defined
resonant argument φ′

i2L
= 4λP − 2λL − 2ΩL; bottom: resonant argument with new

definition φi2L = 4λP − 2λL − 2Ω̃L. In the Neptune-Triton system, φ′
i2L

fails to librate

in the vicinity of resonance; instead, φi2L is the true resonant argument.

Furthermore, since the migration rate of Proteus is nearly constant during the reso-

nance passage, these locations are equally spaced in time as well (Fig. 5.1).

We continue our investigation by running a simulation that includes Triton (Fig. 5.2).

Compared to Fig. 5.1, the eccentricity histories in this simulation show similar fea-

tures, with only a few very weak additional kicks arising from high-order, mixed-type

resonances. This justifies our neglect of Triton in the previous section. In addition,

the tidal migration rate used in Fig. 5.2 is half of that of Fig. 5.1, which demonstrates

that the strong resonances of this resonant passage are traversed in the adiabatic

limit.

The inclinations shown in Fig. 5.2 are free inclinations with superscript “fr”,

which are defined in Chapter 4 and directly comparable to those listed in Table 3.1.
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The pattern of inclination kicks is quite different from what is shown in Fig. 5.1. We

identify the three traditional second-order inclination-type resonances (Ri2P
, RiP iL ,

and Ri2L
) by their positions and spacing (compare with Fig. 5.1). In addition, there

are several new and stronger resonances that appear near the standard ones. Ev-

idently, Triton has a significant impact on the tilts of the small satellites’ orbits.

Its secular perturbation slightly augments the moonlets’ orbital precession rates, but

more importantly, it alters the inclination resonant pattern itself.

When two satellites pass through a mean-motion resonance, the corresponding

resonant argument has a stationary value at the exact resonant location (Eq. 2.19).

In our simulations with Triton, however, we notice that the resonant angles of the

three second-order inclination-type resonances, as defined by the standard Eqs. (5.2-

5.4), are not stationary even when the resonant kicks occur. For example, Fig. 5.3

shows the inclination of Larissa during the Ri2L
traverse. The traditional resonant

angle φ′
i2L

is plotted in the middle panel, which shows no sign of libration. This

problem motivated our theoretical consideration of new orbital elements in Chapter

4. With the mathematical results therein, we now generalize the resonant argument

(Eq. 2.18) to

φ = (p+ q)λ2 − pλ1 + j3$̃1 + j4$̃2 + j5Ω̃1 + j6Ω̃2 + jTΩT (5.5)

for the Neptune-Triton system. The new resonant angles have stationary values at the

exact resonant location (bottom panel in Fig. 5.3), supporting our arguments. Note

that in Eq. 5.5, we also include Triton’s node to cover three-body resonances in this

system, as discussed in next section. Accordingly, the second d’Alembert condition
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Eq. (2.14) should be changed to

j5 + j6 + jT = even number.

5.1.2.1 Three-Body Resonances

In a two-satellite system, the inclination evolution during the 2:1 resonance passage

is dominated by three equally-spaced, second-order resonances: Ri2L
, RiLiP and Ri2P

(Fig. 5.1). In the actual Neptunian system with Triton included, however, several

stronger kicks appear near the traditional second-order kicks (Fig. 5.2) What are

these new resonances?

A careful examination of their resonant locations shows that the strongest kicks

(labeled RiLiT and RiP iT in Fig. 5.2) are shifted the same distance to the left of

RiP iL and Ri2P
, respectively, which implies that the resonant arguments of the two

new resonances, φiLiT and φiP iT , can be derived by adding a common term to the

corresponding second-order resonant arguments. Because RiLiT only affects Larissa

and RiP iT only affects Proteus, Ω̃L cannot appear in φiP iT , and Ω̃P not in φiLiT . The

locations of the new kicks thus suggest the following resonant arguments:

φiLiT = 4λP − 2λL − Ω̃L − ΩT , (5.6)

φiP iT = 4λP − 2λL − Ω̃P − ΩT , (5.7)

which we verify by noticing their forced librations (Fig. 5.4) immediately prior to the

resonant kicks. The node of the Laplace plane appears in both arguments through

ΩT , which means that the resonances can be considered to be amongst Proteus,
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Figure 5.4: Resonant arguments (φiP iT and φiLiT ) of the three-body resonances RiP iT

and RiLiT . The top panels show the free inclinations of Proteus (ifrP ) and Larissa
(ifrL ) as they traverse the two resonances; the bottom panels show the corresponding
resonant arguments from Eqs. (5.6-5.7). These simulations use similar parameters as
in Fig. 5.2, except that Proteus migrates at a slower rate (3.6× 10−11 RN/yr).

Larissa and the warped rotating plane. When the system is close to RiLiT and RiP iT ,

the associated angles φiLiT and φiP iT begin to oscillate around equilibrium points

at 180◦ and 0◦, respectively. The libration amplitude decreases and the affected

inclination rises as each resonance is approached. When the resonance is crossed, the

free inclination of the affected satellite is kicked up sharply and the corresponding

semi-major-axis jump brings the two out of resonance. The resonant angle ceases to

librate and begins to circulate again.

Since the Laplace plane is only a mathematical description of Triton’s secular

effects, these new resonances can also be interpreted as three-body resonances among

Proteus, Larissa, and Triton, which is why we use ΩT rather than ΩLap in Eqs. (5.6-

5.7). Three-body resonances are usually weaker than two-body ones because the

involvement of Triton as a resonant perturber introduces an extra factor of mT/mN
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in the expression for resonant strengths. However, this effect is counter-balanced by

Triton’s large orbital tilt. Specifically, the strengths of the three-body resonant kicks

on Proteus and Larissa scale as:

RiP iT ∝ mT

mN

mL

mN

sin ifrP sin iT , (5.8)

RiLiT ∝ mT

mN

mP

mN

sin ifrL sin iT , (5.9)

while those of the respective two-body resonances obey

Ri2P
∝ mL

mN

sin2 ifrP ,

RiLiP ∝ mP

mN

sin ifrL sin ifrP .

The first pair differ from the second only by a factor of

mT

mN

sin iT

sin ifrP
≈ 0.2,

implying comparable resonant kicks. Note that this is only a rough estimate, the

exact ratio between the strengths of the resonances also depends on the numeric

coefficient in each resonant term.

This type of resonance is different from previously-studied three-body resonances

(e.g., the Laplace resonance among the three Jovian satellites: Io, Europa, and

Ganymede) in that the third body’s orbital longitude does not appear in the resonant

arguments. Nevertheless, Triton’s node is involved in both arguments, implying that

its inclination should also be kicked during resonance crossing. This effect is, however,

extremely weak due to Triton’s huge mass. Since resonant locations are mostly deter-

mined by the coefficients of the orbital longitudes appearing in the resonant angles,

the new resonances are located close to the standard two-body resonances.
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In general, the resonant argument of a three-body resonance has the form

φ = p1λ1 + p2λ2 + p3λ3 + j1Ω1 + j2Ω2 + j3Ω3 + j4$1 + j5$2 + j6$3,

where the integers pi and ji still need to satisfy the two d’Alembert constraints men-

tioned before. With different integer coefficients, three-body resonances should be

thickly packed throughout the region of the inner satellites. In our simulations, how-

ever, we fail to locate any that involve the longitude of Triton (i.e., p3 6= 0), from

which we conclude that these resonances are very weak. It is unclear why they are

so weak since their strengths should scale similarly with satellite masses and inclina-

tions as RiLiT and RiP iT . A definitive explanation would require a Taylor expansion

of a 3-body disturbing function similar to what has been done for two interacting

satellites (Murray and Dermott, 1999, §6.4), and an examination of the relevant res-

onant terms. This, however, is a monumental undertaking beyond the scope of this

dissertation.

5.1.2.2 Important Higher-order Resonances

By definition, RiLiT and RiP iT are second-order resonances since their strengths de-

pend on inclinations of both Triton and a small satellite. Generally, however, “order”

should refer to an expansion over small quantities. Since sin iT is not small here, these

three-body resonances (Eq. 5.8-5.9) should really be considered as first-order in incli-

nations. But they are much weaker than the first-order eccentricity resonances due to

the extra dependence on mT/mN , and it is better to consider these resonances to be
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second-order in the small quantities ifrP , ifrL , and mT/mN . We adopt this definition

here.

In addition to the two second-order three-body resonant kicks, a few fairly strong

higher-order kicks also contribute significantly to satellite inclination histories, two of

which are identified in Fig. 5.2. The strong resonance ReLiP iT occurs right after ReL ,

and has a resonant argument

φeLiP iT = 2λP − λL − $̃L − Ω̃P + ΩT .

It is a third-order resonance that affects the eccentricity of Larissa, the free inclination

of Proteus, and the inclination of Triton. We expect the strength of this resonance

to be of order eL ∼ 0.01 times the strength of the second-order RiP iT , but simula-

tions show that the two are comparable. Thus, ReLiP iT must have a large numerical

coefficient in its strength term that could be derived through Taylor expansion of the

three-body disturbing function.

Another interesting resonance is marked as R∗ in Fig. 5.2. It occurs almost ex-

actly at the location where 2nP −nL = 0. Since this resonance affects the inclinations

of both satellites, both nodes, Ω̃P and Ω̃L, should appear in the resonant argument.

Nodal precession normally should displace the resonant location from the precise 2:1

commensurability. R∗, however, is not displaced, suggesting that the satellites’ peri-

centers ($P and $L) must also be involved in the resonant argument. The pericenters

are required to explain the lack of offset, since, to first-order in small eccentricities

and inclinations, Ω̇P = −$̇P and Ω̇L = −$̇L. A single resonance with all of these
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properties would need to be at least fifth-order, e.g.,

φ = 4λP − 2λL + $̃P + Ω̃P − $̃L − Ω̃L − 2ΩT .

This is surprising, as a fifth-order resonance should not be as strong as the second-

order resonance RiP iL (Fig. 5.2). A careful examination of resonances in the vicinity

of R∗ reveals two pairs of third-order resonances:

φeLiLi3T = 2λP − λL + $̃L + Ω̃L − 3ΩT ;

φeP iP i3T = 2λP − λL + $̃P + Ω̃P − 3ΩT ;

and

φeLiLiT = 2λP − λL − $̃L − Ω̃L + ΩT ;

φeP iP iT = 2λP − λL − $̃P − Ω̃P + ΩT .

Although each individual resonance affects the orbit of only one small satellite, the

two resonances in either pair occur almost on top of each other, and the two pairs

themselves are so close that we cannot resolve them in Fig. 5.2. The first pair is

weaker than the latter pair by a factor of ∼ sin2 iT ≈ 0.15, although the exact factor

again depends on the numerical coefficients in their strength expressions.

A magnified look at R∗ with a slower migration rate shows the slightly different

locations of these four resonances (Fig. 5.5). The tiny offsets between the locations of

the resonances in each pair are due to higher-order eccentricity and inclination effects

on the nodal and pericenter precession rates. At the beginning of the simulation,

φeLiLiT shows large amplitude libration because ReLiLiT is the strongest resonance
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Figure 5.5: Detail of the R∗ resonance in Fig. 5.2. Larissa’s orbit is fixed at 2.931RN

and Proteus migrates outwards at 3.6× 10−11 RN/yr. Satellite densities are taken to
be 0.8 g/cm3. The simulation covers a very small vicinity around the location where
2nP = nL, which occurs here at t ∼ 1.04× 105 year. The plots show free inclinations
of the two satellites, together with resonant arguments of four third-order resonances
which are marked in the inclination plots and detailed in the text.
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Figure 5.6: Similar simulation as shown in Fig. 5.5, but the satellites have a slightly
higher density ρ̄ = 1.0 g/cm3. With a larger density, the resonances are stronger and
the inclination excitations behave rather stochastically. The resonance angle plots
show that multiple resonances are active simultaneously. The final inclinations are
impossible to predict.

68



in the vicinity. However, the weaker resonances ReLiLi
3
T

and ReP iP i
3
T

are traversed

first. As the orbits approach these two resonances, φeLiLiT becomes out of phase for

libration, and the arguments of two earlier resonances circulate even more slowly. At

the resonant locations, these angles reverse their direction of circulation. The argu-

ments of the latter pair of resonances behave similarly. Due to their weak resonance

strengths, none of the four arguments strongly librates as shown for RiP iT and RiLiT

in Fig. 5.4. The two Larissa resonances, which should be stronger due to higher values

of e and i as well as mP > mL, display long-range effects visible as concentration in

the resonant arguments around t = 0.

The overlap of these resonance effects is a recipe for chaos, especially if the reso-

nances are a little bit stronger, e.g., with larger satellite masses, or if orbits linger in

the region due to a slower Proteus migration rate. When two orbits diverge through

an isolated resonance, the semi-major axis of the inner satellite decreases, while that

of the outer satellite increases. The resulting jump causes the two orbits to diverge

from each other more quickly than during tidal migration. If another resonance is in

the immediate vicinity, however, the system can be affected by it before completely

leaving the first resonance, resulting in stochastic behavior. In other words, all res-

onances have effective widths – near resonance effects emerge before, and continue

after, the exact resonant location. Stronger resonances have broader widths. If two

resonances are located very close to each other, and if they are strong enough that

their widths overlap, temporary capture can occur and the kicks to orbital elements

behave somewhat like a random walk. Fig. 5.6 shows the same resonances as Fig. 5.5
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does, but with satellites just 25% more massive. As the system steps into the first

pair of resonances, the two resonant angles start to librate. But the system does

not exit the resonant region quickly and cleanly as in Fig. 5.5. Instead, the two res-

onant angles alternate between libration and circulation in a complicated way, and

the inclinations are kicked up or down randomly until the system escapes these reso-

nances. The second pair of resonances interacts chaotically in a similar manner. The

random behavior of the inclinations throughout this region makes it impossible to

predict their total excitation. However, given certain migration rates and low-enough

satellite densities, these temporary captures only continue for a limited time. In the

simulation shown in Fig. 5.6, the maximum inclination gains of Proteus and Larissa

are of the same order as the RiP iT and RiLiT kicks. Similar chaotic interactions have

also been noticed in simulations of the orbital resonances among the Uranian satel-

lites by Tittemore and Wisdom (1988). The existence of these chaotic zones puts an

intrinsic limit on how well the orbital histories of Neptune’s small satellites can be

reconstructed.

5.2 The Second-order Resonance PD 3:1

The previous resonant zone Proteus traversed consists of the 3:1 resonances with

Despina (cf. Fig. 3.3). The 3:1 resonant zone is simpler than the 2:1 one as it contains

only the second-order, fourth-order, and other even-order resonances. Compared to

the PL 2:1 zone (Fig. 5.2), which has first-order eccentricity resonances, there are

not any strong eccentricity kicks and the lack of third-order resonances makes the
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Figure 5.7: Proteus and Despina diverge through PD 3:1. The satellites have a
density ρ̄ = 0.8 g/cm3, and QN = 33, 000. Both satellites are initially on circular
orbits in their local Laplace planes. Two of the three usual second-order resonances
are identified (RiP iD and Ri2D

), as well as the two three-body resonances, RiP iT and
RiDiT . Note that although the effects of the third second-order resonance Ri2P

is too
weak to be visible, we indicate its approximate location.

inclination evolution much simpler and cleaner as well (Fig. 5.7). The two second-

order three-body resonant kicks, RiP iT and RiLiT , dominate the inclination growth.

Two of the three traditional second-order two-body resonances can be easily identified,

and fourth- and higher-order kicks are mostly too weak to have noticeable effects. The

overall PD 3:1 inclination kick on Despina is a little smaller than the overall PL 2:1

kick on Larissa, and the Proteus kick through the PD 3:1 is weaker by a factor of

3. This is due both to the smaller mass of Despina (mD ≈ 0.5mL) and to the lack

of contributions from odd-order resonances in the PD 3:1. The two sets of strong

third-order three-body resonances (ReLiP iT and R∗) that contributed significantly to

the growth of ifrP do not exist in the PL 3:1 and other second-order resonant zones,
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including the PL 5:3, PG 5:3 and PL 7:5 from Fig. 3.3.

5.3 The PG 2:1 and Diverging Capture

The 2:1 resonant zone between Proteus and Galatea is located between PD 3:1 and

PL 5:3. This resonance is similar to the first-order PL 2:1 discussed above; the only

differences come from the different mass ratios of the two satellite pairs and their

different distances from Neptune. The two first-order eccentricity resonances (ReG

and ReP ) kick the orbital eccentricities of the two satellites strongly, as can be seen in

Fig. 5.8. The inclination kicks due to three-body resonances (RiP iT , RiGiT , ReGiP iT ,

and R∗) are similar in magnitude to those due to the PL 2:1 resonances discussed in

Section 5.1. In a small fraction of our simulations such as the one shown in Fig. 5.8,

however, we see a new effect that is surprising at first glance: resonance capture.

In addition to resonant kicks when satellite orbits are subject to sudden and

sharp changes, two satellites may also be captured into a mean-motion resonance

during tidal migration (Greenberg, 1977). When this occurs, the mean motions and

orbital precession rates of the two satellites vary in such a way that the associated

resonant angle librates around a stationary point rather than cycling through full

360◦ rotations. The affected eccentricity or inclination grows until nearby resonances

or other perturbations break the system out of resonance. What is surprising is

that previous studies have shown that resonant captures during tidal migration occur

when the orbits of two satellites approach each other (e.g. Hamilton, 1994), while our

satellites are diverging. Earlier papers, however, all focus on strong first- and second-
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Figure 5.8: The PG 2:1 passage with an isolated eccentricity-type resonance capture.
After being captured into the ReP i

2
T

resonance, Proteus is later captured into the
second-order resonance (Ri2P

) which affects its inclination. The second capture is

enabled by extremely slow changes to ˙̃$P and ˙̃ΩP induced by the first resonance. In
this simulation ρ̄ = 0.8 g/cm3 and QN = 22, 000.
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order resonances. For some higher-order resonances, temporary capture is possible for

diverging orbits. We have found several such resonant trappings in our simulations

when the two orbits diverge slowly enough. Nevertheless, trappings are still very rare

even at slow migration rates, probably because of the inherent weakness of higher-

order resonances. We have run 10 simulations through the PG 2:1 zone with QN
ρ̄/(g/cm3)

ranging between 25,000 and 35,000 for different satellite densities ranging between

0.4 g/cm3 and 1.5 g/cm3, but there is only one capture event at ρ̄ = 0.8 g/cm3, shown

in Fig. 5.8. In this simulation, after the system has gone through the two first-order

eccentricity resonances (ReG and ReP ), the two third-order three-body resonances

(ReGiP iT and R∗), and the first second-order three-body resonance (RiP iT ), the two

orbits are captured into a three-body resonance ReP i
2
T
, second-order in the small

quantities eP and µT , with a critical argument

φeP i2T = 2λP − λG + $̃P − 2ΩT . (5.10)

5.3.1 Resonant Trapping Condition

We now derive the condition in which resonant trapping into ReP i
2
T

is possible. We

assume that away from resonance, tides force Proteus and Galatea to migrate at rates

ȧdP and ȧdG, respectively, and that Triton’s orbit is fixed in space. Following Hamilton

(1994), we derive the rates of change of aP , aG, eP , and iT due to resonant and tidal
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perturbations to the lowest order in e and i:

ȧP = ȧdP −
4µGµTβ eP i

2
T

nP aP
sinφeP i2T , (5.11)

ȧG = ȧdG +
2µPµTβ eP i

2
T

nG aG
sinφeP i2T , (5.12)

ėP =
µGµTβ i

2
T

nP a2
P

sinφeP i2T , (5.13)

i̇T = −2µGµPβ eP iT
nT a2

T

sinφeP i2T . (5.14)

Here β is the resonant strength of ReP i
2
T
. It has the same units as n2a2 and de-

pends only on satellite semi-major axes. When the two orbits are in any of the 2:1

resonances, their semi-major axes must follow

aP
aG

=
ȧP
ȧG
≈ 2

2
3 . (5.15)

With Eqs. (5.11, 5.12), and Eq. (5.15), we can solve for sinφeP i2T at resonant equilib-

rium:

sinφeP i2T =
nP a

2
P

2µGµTβeP i2T

ȧdP/aP − ȧdG/aG
2 + 3
√

2µP/µG
. (5.16)

For ȧdP = ȧdG = 0, the two equilibrium points are at φeP i2T = 0 and φeP i2T = 180◦. They

are shifted slightly when dissipation is present.

Substituting Eq. (5.16) into Eq. (5.13), we obtain

2 eP ėP =
ȧdP/aP − ȧdG/aG
2 + 3
√

2µP/µG
,

which has the solution

eP =

[
e2
P0 +

ȧdP/aP − ȧdG/aG
2 + 3
√

2µP/µG
t

] 1
2

, (5.17)
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where t is the time elapsed since entering the resonance, and eP0 is the initial eccen-

tricity of Proteus. If resonant trapping occurs for a low eccentricity, eP must increase

with time and Eq. (5.17) thus requires

ȧdP
aP
− ȧdG
aG

> 0,

or that the two orbits diverge from each other. Note that this is opposite the usual

requirement that the orbits converge for trapping to be possible, yet consistent with

the behavior of Fig. 5.8. This interesting result – trapping for diverging orbits – is a

direct consequence of the sign of the $̃ term in the resonant angle (Eq. 5.10), as we

shall see below.

The resonance ReP i
2
T

affects not only the eccentricity of Proteus, but also the

inclination of Triton. We can solve for the evolution of iT with Eqs. (5.14) and (5.16):

iT =

[
i2T0 −

2µP
µT

√
aP
aT

(
ȧdP/aP − ȧdG/aG
2 + 3
√

2µP/µG

)] 1
2

, (5.18)

where the second term on the right hand side is negative for trapping. Thus, if

resonant trapping occurs, eP increases with time while iT decreases. In typical cases

when the satellites have comparable masses, the trapping will cease when iT drops to

zero. Because of Triton’s huge mass, however, the change of iT is negligible compared

to that of eP :

∆iT
∆eP

∼ −2µP
µT

√
aP
aT
≈ 0.002.

Hence, Triton’s inclination decreases ∼ 500 times more slowly than Proteus’ eccen-

tricity increases and the resonance trapping is stable for a long time.
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The resonant trapping condition can be easily generalized for an arbitrary reso-

nance with an argument defined by Eq. (5.5). Following similar procedures, we find

that, in order for any relevant eccentricity or inclination to increase, the integer in

front of the corresponding node or pericenter angle in Eq. (5.5), ji, must obey

ji

(
ȧd2
a2

− ȧd1
a1

)
> 0, (5.19)

For standard first-order (q = 1) and second-order (q = 2) two-body resonances,

ji must be negative, and thus we recover the standard result: resonant trapping is

possible only if ȧd2/a2− ȧd1/a1 < 0, i.e., for converging orbits. But for resonances with

three or more node and pericenter angles involved, like ReP i
2
T

shown in Eq. (5.10),

some of the ji can be positive, which makes capture into these resonances possible

only for diverging orbits, as we have seen in Fig. 5.8. Thus for any isolated mean-

motion resonances, capture for converging orbits requires a negative node or pericenter

coefficient. For capture from diverging orbits, a positive coefficient is needed.

5.3.2 Evolution in ReP i2T

We now look at the resonant angle during the resonant trapping (the fifth panel of

Fig. 5.8). Assuming moderate eccentricities so that the pericenter term in Eq. (5.10)

is negligible, φeP i2T satisfies

φ̈eP i2T = 2ṅP − ṅG,

which can be easily transformed into a harmonic equation using Eqs. (5.11) and (5.12):

φ̈eP i2T = ω2
0 sinφeP i2T − (ṅdG − 2ṅdP ), (5.20)
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where ṅdP = −(3/2)nP ȧ
d
P/aP and ṅdG = −(3/2)nG ȧ

d
G/aG are the tidal drag rates of

the two orbits expressed in terms of mean motions. Eq. (5.20) is a standard harmonic

oscillator with a libration frequency

ω2
0 =

6µTβ eP i
2
T

a2
P

(
2µG +

3
√

2µP

)
.

As shown in Fig. 5.8, φeP i2T begins to librate around a stable equilibrium point at

0◦ as the orbits are first trapped into the ReP i
2
T

resonance. In fact, the divergence

forced by tidal dissipation causes the equilibrium point to shift to a small positive

value determined by Eq. (5.16). Averaging over a libration, Eqs. (5.11) and (5.12)

simplify to

ȧP = ȧdP − δP ,

ȧG = ȧdG − δG,

where δP and δG are small positive quantities. These terms resist the tidal divergence

and allow the approximate resonance condition (Eq. 5.15) to be maintained. The

libration of φeP i2T continues to decrease as exact resonance is approached.

For slow changes of ω0, the system has an adiabatic invariant (Landau and Lifshitz,

1976, §49)

ω0 cos Φ = constant,

where Φ is the libration width, or the amplitude of the oscillating resonant angle

φeP i2T . As eP increases slowly, ω0 grows and the libration width decreases as shown in

Fig. 5.8 from 1.2×107 years until 1.6×107 years when a second resonance is activated.
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5.3.3 Trapping into Ri2P

Shortly after capture into ReP i
2
T
, the two satellites are trapped into the traditional

two-body resonance Ri2P
(Fig. 5.8), with a resonant argument

φi2P = 4λP − 2λG − 2Ω̃P .

The interplay between the two active resonances is quite interesting. With both

resonances active, the orbits still appear to diverge, as can be seen from Eq. (5.17) and

the fact that eP continues to rise in Fig. 5.8. But, coincident with the second capture,

there is an abrupt change in the behavior of φeP i2T (fifth panel of Fig. 5.8) whose

libration changes from decreasing with time (as expected for an isolated resonance)

to increasing with time. This state of affairs continues until t = 2.6 × 107 years at

which point the second resonance ceases to be active (note the flattening of the iP

curve) and the libration amplitude of φeP i2T begins decreasing again.

The sharp-eyed reader might have noticed a very subtle change in the density of

points for the φi2P history (sixth panel of Fig. 5.8) - an oval-shaped feature between

t = 1.6× 107 and 2.6× 107 years that indicates that the Ri2P
resonance is active. The

oval feature has dark edges (turning points - note the similar dark edges in the fifth

panel) and a lighter center because the system spends more time near φi2P = 0 than

near φi2P = 180◦. The Ri2P
resonance is prevented from cleanly librating about φi2P = 0

by the more powerful ReGi
2
T

resonance, but the asymmetry in the density of points

that it produces is enough to cause the systematic rise in Proteus’ free inclination

(Fig. 5.8, fourth panel). The libration of the resonant angle φi2P initially decreases
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(from 1.6 × 107 yr < t < 2.2 × 107 yr) and then increases again (from 2.2 × 107 yr

< t < 2.6× 107 yr) until orbit finally exits the Ri2P
resonance.

The Ri2P
resonance usually requires converging orbits to trap into the stable equi-

librium point φi2P ≈ 180◦ (Murray and Dermott, 1999). With the diverging orbits

of Fig. 5.8, however, we see trapping favoring the φi2P ≈ 0◦ equilibrium point. Evi-

dently the drag force and the strong earlier resonance combine to make the φi2P ≈ 0◦

equilibrium point stable when it is normally unstable (Murray and Dermott, 1999);

this unusual circumstance allows iP to grow in a second-order resonance despite the

diverging orbits.

We can qualitatively account for the effects of one resonance on another by extend-

ing Eq. (5.20) and the equivalent expression for φ̈i2P to include both perturbations:

φ̈eP i2T = ω2
0 sinφeP i2T + ω2

1 sinφi2P − (ṅdG − 2ṅdP ), (5.21)

φ̈i2P
2

= ω2
1 sinφi2P + ω2

0 sinφeP i2T − (ṅdG − 2ṅdP ). (5.22)

with

ω2
1 =

12β′(ifrP )2

a2
P

(
2µG +

3
√

2µP

)
.

Here β′, similar to β, is the resonant strength of Ri2P
. The libration of both φeP i2T

and φi2P are now modulated by new oscillations, and the presence of these new terms

breaks both adiabatic invariants.

Eq. (5.21) admits both oscillating and circulating solutions – ultimately the system

is driven to the circulating solution. Which resonance is exited first depends on the

relative resonant strengths and on the conditions when the second resonance is first
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encountered. In this example, the Ri2P
resonance is destroyed first, which allows

the unperturbed ReP i
2
T

resonance to resume decreasing its libration amplitude in

accordance with the adiabatic invariant ω0 cos Φ = constant.

The possibility of resonant capture complicates our study of the inclination history

of the small satellites because of the difficulty in predicting inclination growths. While

the two orbits are trapped into Ri2P
, the free inclination of Proteus keeps growing. It

is not obvious when the resonance will be broken, and hence it is difficult to estimate

ifrP after traversal of the resonant zone. We find four cases amongst ∼ 200 simulations

for different resonant zones, and the inclinations are affected only in one of these four

cases. Since the capture probability is low, the limitation may not be serious. The

actual capture probability might be higher than 2%, however, because our modeled

QN
ρ̄/(g/cm3)

ranges from 1000 to 30, 000. A smaller QN leads to artificially rapid orbital

evolution which precludes some of the weak trapping events.

5.4 The Chaotic PL 3:2

As we follow Proteus and Larissa backward in time to the PL 3:2 resonant zone,

the satellites are closer and the typical spacing between resonances is also smaller.

When two strong resonances are very close together, their effective widths can overlap,

causing the system to display chaotic behavior. During the PL 3:2 resonance passage

(Fig. 5.9), the semi-major axis of Larissa drops so much during the ReL resonance that

ReP becomes important before the system escape completely from the first resonance,

resulting in temporary trapping into both resonances and chaotic changes to the
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orbits. While in the two first-order eccentricity-type resonances, random kicks to the

semi-major axes bring a series of higher-order inclination-type resonances into and

out of play, including the strong ReLiP iT . Chaotic kicks by these resonances, some of

which are crossed multiple times, force the free inclinations of the two satellites to

wander randomly. The width of the chaotic region depends on the resonant strengths,

and hence the masses of the satellites. The tidal migration rate also plays a non-

trivial role. Stronger resonances result in wider chaotic regions, and in turn, larger

inclination growth. This imposes an immediate problem in estimating the inclination

growth through the traverse of the PL 3:2 resonant zone.

5.4.1 Eccentricity Resonances Overlapping Criterion

It is important to be able to estimate when resonant overlapping occurs. Wisdom

(1980) derived such a criterion for two first-order eccentricity resonances in two ad-

jacent resonant zones, taking one satellite to be a test particle. For satellites with

negligible masses compared to their planets, resonant zones are well-separated for

small p (see Eq. 5.5). For Proteus and Larissa, overlap of resonant zones requires

p & 50, i.e., beyond the PL 51:50 zone, which only occurs when the satellites are

extremely close together. For the vast majority of their evolution history, the Nep-

tunian moons were well-separated enough that this type of overlap does not occur.

Within a single resonant zone, however, resonant overlap is much more common as

we have seen in Fig. 5.9. Here we determine the criterion under which the two first-

order eccentricity resonances of a single resonant zone overlap. This type of overlap
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Figure 5.9: The PL 3:2 passage. The inclinations of the satellites follow a random
walk behavior due to the chaotic overlap of the first-order eccentricity resonances.
This interaction forces multiple crossings of weaker resonances that affect inclinations.
Subsequent to escaping from the chaotic region, additional resonances are traversed.
Several second-order resonances are indicated, while other strong ones are located
in the chaotic zone and are not easily recognizable. The density of the satellites is
ρ̄ = 0.6 g/cm3 and QN = 20, 000.
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is particularly important when the two satellites have comparable masses.

The overlap condition is determined by comparing the resonance widths and the

spacing between the two resonant centers. Murray and Dermott (1999) calculated

the half-widths for the two first-order p+ 1 : p resonances in term of the variation of

orbital semi-major axis of either Proteus or Larissa, which read

∣∣∣∣
(∆a)1/2

a

∣∣∣∣
eL

= 4

[
−αfd(α)µP

3
eresL

] 1
2

(5.23)

and
∣∣∣∣
(∆a)1/2

a

∣∣∣∣
eP

= 4

[
−α

3fd(α)µL
3

eresP

] 1
2

(5.24)

for ReL and ReP , respectively. Here α = aL/aP = [p/(p+ 1)]
2
3 is the semi-major axes

ratio; fd(α) is the coefficient for the first-order direct term in the expansion of the

disturbing function; it is negative and its magnitude increases with α. The values

of fd(α) for small p can be found in Table 8.5 of Murray and Dermott (1999), and

we find that α fd(α) ≈ 0.8 p gives an excellent fit. The eccentricities of Larissa and

Proteus when they are exactly in resonance are denoted by eresL and eresP , respectively.

When kicks occur at resonant encounters, however, eresL and eresP are not well defined

since both eccentricities jump during the resonance. For example, in the PL 2:1 zone

(Fig. 5.2), eL ≈ 0.003 right before the ReL encounter, while eL ≈ 0.011 right after the

encounter. Here we use the values right after the encounters, given by Murray and

Dermott (1999):

eresL = 2

[
−αfd(α)µP

3p2

] 1
3

,

eresP = 2

[
−α

3fd(α)µL
3p2

] 1
3

.
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Note that this might over-estimate the resonant width and bring in an error of about

50%. Using these eccentricities and the approximation fd(α) = 0.8 p, we find

∣∣∣∣
(∆a)1/2

a

∣∣∣∣
eL

= 2.34 3

√
µ2
Pp, (5.25)

∣∣∣∣
(∆a)1/2

a

∣∣∣∣
eP

= 2.34 3

√
µ2
Lα

4p. (5.26)

These approximations show that resonances are wider for more closely spaced and

more massive satellites.

Recall that (∆a)1/2/a can be the orbital size variation of either Proteus or Larissa

in Eqs. (5.23-5.26) when the semi-major axis of the other planet is fixed. Assuming

that aL is fixed, we now calculate the separation between the two resonances in term

of aP to compare with the resonance widths. Values of aP for ReL and ReP in the same

p + 1 : p resonant zone can be obtain by setting the derivatives of the appropriate

resonant arguments to zero:

φ̇eL = (p+ 1)nP − p nL − ˙̃$L = 0,

φ̇eP = (p+ 1)nP − p nL − ˙̃$P = 0.

The difference in aP gives the spacing between the two resonances:

δaP
aP

=
2

3

1

p+ 1

( ˙̃$L − ˙̃$P

nP

)
. (5.27)

The two eccentricity resonances are closer to each other for larger p, when the two

orbits are near each other, and for slower orbital precession rates. In satellite systems,

the orbital precession is usually dominated by the effect from the planet’s oblateness,
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and Danby (1988) gives the relevant pericenter precession rate:

˙̃$ =
3

2
J2 n

(
RN

a

)2

,

where J2 is the second-order planetary oblateness coefficient. Eq. (5.27) can thus be

simplified to

δaP
aP

= J2

(
RN

aP

)2
1− α 7

2

pα2
. (5.28)

Resonances are better separated at planets with large J2 values (e.g., Jupiter and

Saturn).

The spacing between the two resonances decreases as p or α increases, and overlap

occurs when the sum of the two half-widths (Eqs. 5.25-5.26) exceeds the separation:

2.34 pα2( 3

√
µ2
Pp+ 3

√
µ2
Lα

4p) & J2

(
RN

aP

)2 (
1− α 7

2

)
. (5.29)

Now we neglect the contribution from the ReP resonance in Eq. (5.29), which only

causes an error of about 20% since mL is 10 times less than mP , and solve for large

p:

p &
[
J3

2

µ2
P

(
RN

aP

)6
] 1

7

. (5.30)

Although for most satellites the critical p is small, the assumption of large p only adds

an error of about 50% even for p = 1. Assuming ρ̄ = 0.6 g/cm3, resonance overlap

occurs when p & 1.9 for Proteus and Larissa (exact solution of Eq. 5.29 gives p & 2.3),

which roughly agrees with our simulations: the PL 3:2 (p = 2) has resonance overlap,

while the PL 2:1 (p = 1) does not.

We calculate the critical resonance where overlap first occurs for the four Neptu-

nian satellites in Table 5.1. Since the resonant widths are dominated by the larger
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Table 5.1: Critical resonances for first-order eccentricity resonance overlapping

Satellite Pair Critical Resonance
PL 3:2
PG 3:2
PD 3:2
LG 6:5
LD 6:5
GD 7:6

mass, the three Proteus pairs have the same critical resonance. The two Larissa pairs

also have the same critical resonance, but due to the similar sizes of Galatea and

Despina.

This “collision” between eccentricity resonances and the resulting chaotic zone

exists for all first-order resonances when the overlap criterion is met. If the resonances

are weak, the chaotic zone is narrow and the satellite tilts are not significantly affected.

Specifically, during the PL 3:2 passage shown in Fig. 5.9, if the density of the satellites

is less than 0.6 g/cm3 and QN < 20, 000, the system shows very weak chaos and

significant growth of inclinations does not take place despite the chaotic interaction

of the two eccentricity resonances. If the satellites are more massive, or if they diverge

more slowly, however, the random walk of the orbital elements can continue for a long

time, the orbits become highly excited, and the chaotic nature of this resonant zone

wipes out all information from earlier times.
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Chapter 6

Constraints on Physical Parameters

The intention of this work is to use resonant excitation to explain the current non-zero

inclinations of the small inner Neptunian satellites. We have shown in last chapter

that the resonant kicks on inclinations are of the same magnitude as the satellites’

current free tilts, and that the resonant history of the system can be constrained

through an analysis of inclination excitations. Because this history depends on the

satellite masses and Neptune’s tidal Q, we also put limits on these quantities.

6.1 Satellite Densities

The magnitude of each resonant kick depends on the masses of the satellites, on their

initial inclinations and eccentricities, and more weakly, on the tidal drag rate. As

long as the two satellites diverge from each other so slowly that the major resonances

are traversed in the adiabatic limit, the inclination growth is nearly independent of

the actual migration rate. Since the four small satellites have probably migrated

by less than a Neptune radius during their lifetime, our simulations show that most

first- and second-order resonances are traversed adiabatically. Effects of higher-order

resonances are usually insignificant at these migration rates, but can occasionally lead

to resonant trapping as discussed above.
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In principle, with a system of resonances traversed in the adiabatic limit, we can

derive the resonant kick magnitudes analytically to determine how the kicks depend

on satellite masses, as is done for two-body resonances by Yoder (1973), Hamilton

and Burns (1993) and Murray and Dermott (1999, §8). However, for the Neptunian

satellites, this derivation requires a Taylor expansion of the three-body disturbing

function, which is beyond the scope of this work. Instead, we take a numerical

approach, starting with an analysis of the inclination kicks from the PL 2:1 resonance

passage.

6.1.1 Constraints from a Single PL 2:1 Passage

Assuming same density for Proteus and Larissa, we have run simulations through the

PL 2:1 resonant zone with satellite density ranging from 0.4 to 2.5 g/cm3. The total

inclination excitation from each simulation is plotted in Fig. 6.1. As we expected, a

larger mean density results in greater inclination growth for both Proteus and Larissa.

This 2:1 resonance passage can excite Proteus’s free inclination to its current value if

the satellites’ mean density is ρ̄ ∼ 1.5 g/cm3. Their density cannot be much greater,

or Proteus’s free tilt would exceed its observed value, and there is no mechanism to

damp this inclination in a few hundred million years.

Although Proteus is able to obtain its free inclination through a single PL 2:1

passage if ρ̄ ∼ 1.5 g/cm3, Larissa can only acquire half of its current tilt. Perhaps

this can be explained by relaxing the assumption of equal densities. We might suspect

that Proteus has a greater density than Larissa due to its larger mass, even if they
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Figure 6.1: Magnitudes of the sum of all 2:1 inclination kicks versus satellite density.
Triangles represent the data points obtained through different simulations with dif-
ferent satellite densities (assuming ρP = ρL = ρ̄). The dashed lines show the current
free inclinations of the satellites. Top panel shows the inclination kicks on Proteus;
bottom panel shows those on Larissa. The inclinations shown here represent the sum
over all inclination kicks in plots similar to Fig. 5.2.

formed with similar compositions. In general, the resonant kicks on one satellite

depend strongly on the mass of the other one (see Eqs. 5.8 and 5.9). Thus, if we

keep Larissa’s density at 1.5 g/cm3 (we have to do this to maintain enough of a

kick to Proteus’ inclination), while allowing Proteus to be denser, we might be able

to maintain ifrP ≈ 0.026◦ and raise ifrL to ≈ 0.2◦ at the same time. We have run

simulations with Proteus’s density ρP ranging from 1.5 to 4.0 g/cm3. Our results

show that for ρP < 3.5 g/cm3, we are able to keep ifrP ≈ 0.026◦, with ifrL increasing

smoothly to 0.17◦. The resonant kick to Proteus’ free inclination does actually drop

a little bit due to its weak dependence on mP . If ρP ≥ 3.5 g/cm3, however, high-

order resonances become too strong to be ignored (Fig. 6.2). Temporary captures

and stochastic processes, similar to what we have seen for R∗, occur throughout the

region, and the prediction of final inclinations is impossible.
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Figure 6.2: Similar simulation as shown in Fig. 5.2, but Proteus and Larissa have
larger and unequal densities: ρP = 4.0 g/cm3 and ρL = 1.5 g/cm3. Proteus’ migra-
tion rate is 3.6 × 10−10 RN/yr. Due to heavy masses, high-order resonances become
important, resonance overlap occurs, and temporary captures and stochastic processes
fill the region.
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Table 6.1: Numerically-determined inclination kicks through different resonance pas-
sages (in degrees). Inclinations and eccentricities are initially set to zero.

Density (g/cm3)
Resonance Satellite

1.5 1.2 1.0 0.8 0.6 0.4
Proteus 0.026 0.022 0.018 0.017 0.014 0.012

PL 2:1
Larissa 0.1 0.095 0.090 0.085 0.070 0.057
Proteus 0.0076 0.0065 0.0060 0.0058 0.0050 0.0040

PD 3:1
Despina 0.090 0.082 0.076 0.070 0.050 0.052
Proteus 0.016 0.015 0.015 0.013 0.011 0.008

PG 2:1
Galatea 0.100 0.095 0.085 0.085 0.063 0.042
Proteus 0.013 0.013 0.012 0.011 0.0095 0.0080

PL 5:3
Larissa 0.08 0.075 0.068 0.062 0.056 0.048

It is unlikely that Neptune’s small satellites can have densities as high as 3.5 g/cm3.

Even 1.5 g/cm3 is probably too large since moonlets formed in the outer solar sys-

tem are most likely icy and porous, with densities . 1.0 g/cm3. Since inclination

excitations can be maintained for the lifetime of the satellites and earlier kicks can

accumulate, multiple excitations are possible. We now look for solutions that involve

most strong Proteus resonances.

6.1.2 Constraints from All Proteus Resonances

In Table 6.1 we summarize the overall inclination kicks on all satellite through the

most recent four resonant zones (Fig. 3.3). These simulations are not meant to rep-

resent past histories of the satellite orbits, but instead show how the strengths of

the resonances compare with one another for different assumed satellite masses. We

are able to constrain the satellite masses by matching the total amount of inclina-

tion growth that a satellite obtains through multiple resonant passages to its current
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observed tilt.

Due to the limitation of com-

Figure 6.3: Magnitudes of the three-body resonant
kicks versus satellite’s initial free inclinations for
five resonances. The top two panels show the RiLiT

kicks on Larissa during PL 5:3 and PL 2:1 pas-
sages. The bottom three panels show the RiP iT and
ReLiP iT kicks on Proteus during the same passages.
Triangle: kick magnitudes from different simula-
tions with various initial free inclinations; solid line:
curves fit to Eq. (6.1).

puting power, we can only carry

out realistic N-body simulations

for the time spans during which

two satellites cross a resonant

zone. We assume that between

resonant zones, satellite tides fully

damp eccentricities but leave free

inclinations unaltered. Adding

the effects of multiple resonant

zones, therefore, requires that

the later resonances be encoun-

tered with non-zero free inclina-

tions. Thus we cannot use the

results in Table 6.1 to directly

add up resonant perturbations to inclinations because of the assumption that satel-

lites initially reside in their Laplace planes. In order to correctly add successive in-

clination kicks to a satellite, we need to understand how the total inclination growth

through a resonant zone depends on initial inclinations.

To address this issue, we ran sets of simulations to measure the effects of the initial

inclinations on the magnitudes of the resonant kicks for the five strongest three-body
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resonances in the PL 5:3 and PL 2:1 resonant zones. We find that the initial free

inclination of Proteus does not significantly affect the kicks on Larissa, and vice versa,

confirming that the resonant kicks are forced primarily by Triton rather than the closer

moon. Since the resonant strengths are proportional to satellite inclinations, we might

expect that larger initial tilts would result in stronger kicks. Surprisingly, however,

the kick magnitude decreases extremely rapidly with increasing initial inclination of

the affected satellite, as shown in Fig. 6.3.

We find that the simulation data from all individual three-body resonances is

remarkably-well fit by:

∆i =
∆i0√

1 + 2 i0
∆i0

, (6.1)

where ∆i is the kick magnitude, i0 is the initial inclination, and ∆i0 is the kick

magnitude at i0 = 0◦. We determine ∆i0 through the fitting process, with excellent

agreement with numerical observations as seen in Fig. 6.3. If we treat the vertical

oscillations as a simple harmonic oscillator, then ∆i represents an amplitude change

and the energy in the oscillation is proportional to i2. The energy pumped into the

system by each resonance is then

∆E ∝ (i0 + ∆i)2 − i20 =

[
1 + 2i0/∆i

1 + 2i0/∆i0

]
∆i20.

The term in the bracket is an increasing function of i0 since ∆i0 > ∆i for all i0.

Thus, although the amplitude of the inclination kick decreases for increasing initial

inclination i0, the energy input actually increases.

Since kicks from these three-body resonances dominate the inclination growth and

all obey the same equation, the overall change in inclination attained from passage
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through a full resonant zone roughly follows the same rule. Eq. (6.1) shows that the

contribution to inclination growth by a resonant zone passage is more significant if

those resonances occur earlier in time when the satellites’ free inclinations are still

small. For example, the PL 2:1 passage can kick Larissa’s inclination up to 0.085◦

(ρ̄ = 0.8 g/cm3) if it is the only resonant zone the satellite has gone through, but if

the satellite already has a 0.1◦ free tilt excited by earlier resonances, then the kick is

only 0.046◦ according to Eq. (6.1).

Now we know how to combine resonant kicks from different zones, and are set to

compute satellite masses by equating the total resonant kicks to the satellites’ current

free inclinations. But an immediate difficulty is that we do not know how many

resonant zones the satellites have passed through since the tidal evolution timescale

itself is not well-constrained. Fortunately, however, the current free inclinations of

Proteus, Larissa, Galatea, and Despina provide strong constraints on the number of

past resonant encounters.

The observed free tilts of Galatea and Despina are both about 0.06◦, Larissa’s free

inclination, at ∼ 0.2◦, is three times as large, and Proteus has a smaller inclination

of 0.026◦ (Table 3.1). While the first three satellites have similar masses (within a

factor of 2), Proteus is 10 times more massive, making it simultaneously the strongest

perturber in the system and the hardest to perturb. For this reason, its free inclination

is significant although it is the smallest among the four. We now combine the effects of

all resonances discussed in last section, and attempt to construct a migration scenario

that can account for the free tilts of all four satellites.
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We have shown in last section that the single PL 2:1 resonance passage acting

alone provides too little current free tilts for Larissa and probably for Proteus as

well. Furthermore, the inclinations of Galatea and Despina likely require that these

two satellites once had resonant interactions with Proteus, so the earlier resonances,

PD 3:1 and PG 2:1, must also have occurred. These three resonances have similar

strengths, and the inclination kicks on the smaller satellite are about the same, as

discussed previously. If these were the only resonant zones that the system has

traversed, the three smaller satellites would have comparable free tilts today. Galatea

and Despina do actually have similar inclinations, and Table 6.1 shows that, for

an average density 0.4 g/cm3 < ρ̄ < 0.8 g/cm3, the free inclinations of these two

satellite can be excited to close to their current values. Larissa, however, has an

inclination three times larger, which requires additional resonance passage(s). In our

tidal evolution model, the next strong Proteus resonance is the PL 5:3, which involves

Larissa. Thus, these four Proteus resonances might provide a consistent solution.

We now test the above hypothesis with our numerical data. We combine the

results from Table 6.1, scaled by Eq. (6.1) as appropriate, and plot the final free

inclinations acquired by the satellites for several possible past histories in Fig. 6.4.

The curves for each satellite are represented by step functions with steps occurring

at resonant zones that involve that satellite. It is important to realize that these

curves are not evolutionary tracks, but are rather final status plots: inclinations at

any given point in the past represent the predicted orbital tilts of the satellites today

assuming that the system formed at that past time. We only calculate kicks for the
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Figure 6.4: The cumulative free inclinations of Proteus (ifrP ), Larissa (ifrL ), Galatea
(ifrG ), and Despina (ifrD ). The curves show the final free inclinations that the satel-
lites acquire versus their formation time represented in terms of resonant zone pas-
sages (c.f. Fig. 3.3). Resonances to the left of the formation time have actually
occurred, while those to the right have not. We assume all satellites have the
same densities; solid curves represents different bulk densities: from top to bottom:
ρ̄ = 1.5, 1.2, 1.0, 0.8, 0.6, 0.4 g/cm3. The single exception to this is the Despina 0.4
curve which is actually above the 0.6 curve due to stochastic variations. The dashed
horizontal lines represent the current free inclinations of the satellites.
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most recent four Proteus resonances since the chaotic behavior of PL 3:2 prevents

any useful estimates of prior inclination growth. The curves for Galatea and Despina

are very simple (with only one step) since they each can only be involved in at most

one major resonant zone passage. Larissa may go through two major zones, and there

are four possible ones for Proteus.

If PL 2:1 is the only resonant zone the system has gone through, Fig. 6.4 shows

that, with a mean density of 1.5 g/cm3, ifrP can be kicked up to near its current value,

but Larissa can only obtain about half of its current orbital tilt, as we have discussed in

the last section. If the system starts from an earlier configuration to include both the

PD 3:1 and the PG 2:1 resonant zones, the inclinations of both Galatea and Despina

can be pushed high enough with a density satisfying 0.4 g/cm3 < ρ̄ < 0.8 g/cm3. For

ifrP to reach 0.026◦ in this case, however, a density of 0.6 g/cm3 < ρ̄ < 1.0 g/cm3

is required. This three-resonant-zone scenario leaves Larissa with less than half its

current tilt. With an earlier formation time so that all four Proteus resonances are

traversed, the density required by Proteus’s free inclination drops to 0.4 g/cm3 < ρ̄ <

0.8 g/cm3 due to the extra kick from Larissa. Although ifrL is more excited, however,

Larissa still attains just over a half of its current inclination for this density range. In

fact, ifrL can only be excited to∼ 0.14◦ even if the mean density is as high as 1.5 g/cm3.

Thus the three or four Proteus resonance passages provide a consistent solution for

the free tilts of Proteus, Galatea, and Despina with 0.4 g/cm3 < ρ̄ < 0.8 g/cm3,

a density range that is physically plausible. But the current inclination of Larissa

cannot be matched with the assumptions of equal satellite densities in any of the
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scenarios considered so far. What happened to Larissa?

The first possible solution to the Larissa problem is to allow satellites to have

different densities. But this leads immediately to the same problem that we faced

in last section: in order for ifrL to be kicked more, we need a more massive Proteus,

or a less massive Larissa. The mass of Proteus cannot be increased much since this

would result in larger inclinations for Galatea and Despina than currently observed.

Reducing Larissa’s mass helps a little, but the dependence of the PL kick strengths on

Larissa’s mass is very weak since Proteus is the dominate mass. Our simulations show

that the cumulative inclination kick on Larissa only increase from 0.1◦ to ∼ 0.13◦ if

we drop ρL from 0.6 g/cm3 to 0.05 g/cm3 while keeping ρP at 0.6 g/cm3. Even this

unrealistically-low satellite density does not solve the problem.

A second possible solution is to allow Larissa to pass through more resonances.

The next Proteus-Larissa resonant zone is the chaotic PL 3:2. For this zone, our

simulations indicate that chaotic behavior becomes significant only for density ρ̄ >

0.8 g/cm3, in which case Proteus usually gets an overall kick > 0.025◦ through the

random walk process ). Adding kicks from later resonances, this results in too large a

tilt. However, for density ρ̄ ≤ 0.6 g/cm3, the chaotic behavior is weak and the orbital

inclination growths are reasonable. In our example shown in Fig. 5.9 (ρ̄ = 0.6 g/cm3),

the kicks on Proteus and Larissa are 0.009◦ and 0.06◦, respectively, which bring the

overall inclination growths of the two satellites through the 5 resonance passages to

ifrP = 0.029◦ and ifrL = 0.128◦, where we have used Eq. (6.1) to model the later

kicks. If ρ̄ = 0.4 g/cm3, the PL 3:2 kicks on the two satellites are 0.008◦ and 0.05◦,
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which can only promote the inclination growth of Larissa through the five resonant

zones to a total of ifrL = 0.107◦. Although the actual inclination kicks may vary, our

simulations show that for a specific density, they all fall in roughly this range. Hence,

Larissa’s orbit cannot be effectively tilted even if the troublesome PL 3:2 resonant

zone is included. Perhaps there is a rare outcome of the chaotic interactions in which

Larissa’s inclination is highly excited, but we have seen no evidence that this is the

case. Including earlier resonances is problematic: the preceding one, PD 2:1, excites

the inclination of Despina, forcing Proteus’ density to ρ̄ < 0.4 g/cm2 to keep that

satellite’s inclination low and making it less likely to produce similar tilts for Despina

and Galatea. The earlier PG 5:3 would then be required. The trend here is clear –

additional PD and PG resonances force Proteus’ density down, making additional PL

resonances less effective. Tweaking the tidal model might change the order of some

resonances (e.g. the PL 3:2 and PD 2:1, cf. Fig. 3.3), but our basic conclusion is

unaltered. There is no set of Proteus resonances that can simultaneously make the

inclination of Larissa large while keeping those of Galatea and Despina low.

A third possibility includes invoking the weaker, but more numerous, resonances

among the three smaller satellites (Fig. 3.3), which we have neglected until now.

Could the inclusion of these resonances solve the problem of Larissa’s inclination

excess? Since the masses of Larissa, Galatea, and Despina are 10 times smaller than

Proteus’, these resonances are very weak even though the satellites are closer to one

another than to Proteus. Our simulations show that typically inclinations of both

satellites show a ∼ 0.01◦ overall growth through a single zone passage, assuming zero
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initial free inclinations. The cumulative effect of these kicks could potentially be large

given that there are so many of them. However, due to the strong dependence of the

kick magnitude on the initial free inclinations, these weak kicks, albeit numerous, do

not add much to the satellites’ free tilts, especially for the ones occurring after any

of the more powerful Proteus resonances. Furthermore, Fig. 3.3 shows that Larissa,

Galatea, and Despina have all traversed a similar number of these weak resonant

zones – in fact, Galatea receives more kicks than the other two because of its central

location – it is nearly impossible to increase Larissa’s inclination significantly while

keeping those of the other two small. Inclusion of these weak resonances, however,

does systematically drive our solution for ρ̄ towards slightly lower values.

A fourth possible cause of Larissa’s inclination excess is that the satellite might

actually have been captured into a resonance. We have seen an unusual inclination

capture following a three-body eccentricity capture with the result that both Proteus’

eccentricity and inclination are forced to increase (Fig. 5.8). Although the chance is

low because of Larissa’s smaller mass, it is possible that the satellite was once captured

into a similar resonance (Ri2L
) with either Galatea or Despina. Fig. 3.3 shows that

there are several possibilities, with earlier resonances more likely to capture Larissa

than later ones because its inclination was smaller in the past. Expanding our search

to include the tiny inner moons, Naiad and Thalassa, we note that captures are more

likely since Larissa’s orbit is approaching the inner two orbits and resonant trapping

into strong low-order inclination resonances is possible without a prior capture. Na-

iad’s extremely high free inclination also points to a previous capture (Banfield and
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Murray, 1992), and Larissa would be a natural candidate. Assuming that Larissa’s

semi-major axis migrated from the synchronous orbit to its current orbit, Larissa’s in-

terior 2:1 resonance would move from 2.08RN to 1.83RN , which brackets the current

orbit of Naiad at 1.91RN . Although Naiad was somewhat further away from Neptune

in the past, there is a good chance that the 2:1 Larissa-Naiad resonance did actu-

ally occur. Similarly, Larissa’s 2:1 or 5:3 internal resonances may have swept across

Thalassa’s orbit, implying possible strong interactions with that satellite. The odds

of capture into a resonance involving Larissa’s inclination is a strongly decreasing

function of its initial tilt, and it is hardly possible if Larissa’s orbit is tilted more than

some critical value (Borderies and Goldreich, 1984). Hence, the capture probably

occurred earlier on. Two main possibilities exist: i) capture occurred prior to the PL

5:3, with two subsequent Larissa kicks from the PL 5:3 and PL 2:1, and ii) capture

occurred prior to the PG 2:1 with only one subsequent Larissa kick, the recent PL

2:1. For the density range 0.4 g/cm3 < ρ̄ < 0.8 g/cm3, scenario (i) requires Larissa to

have a free inclination of 0.14◦ after escaping from the hypothetical resonant capture,

while in scenario (ii), the satellite needs to have a 0.16◦ free tilt after escape. Al-

though requiring an additional resonant capture, we think that this is the most likely

scenario and will pursue the details in a future publication.

Densities in the range 0.4 g/cm3 < ρ̄ < 0.8 g/cm3 implies large porosities, but

similar values are measured for both Saturnian and Jovian satellites. Nicholson et al.

(1992) measured the densities of Saturn’s co-orbital satellites, Janus and Epimetheus,

at ρ̄ ≈ 0.6 g/cm3. More recently, Renner et al. (2005) measured the densities of
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Prometheus (0.4 g/cm3) and Pandora (0.49 g/cm3), and Porco et al. (2005) estimated

the densities of Atlas and Pan to be ∼ 0.5 g/cm3. All those Saturnian satellites are

made of nearly-pure porous water ice. The density of the Jovian satellite Amalthea

(ρ̄ = 0.9 g/cm3 Anderson et al., 2005) is a little bit higher, but the satellite is made

of a mixture of water ice and rock, so high porosity is also expected.

For such low densities, the Roche limit of the Neptunian system is located between

3.1RN and 3.9RN . Accretion for small satellites, however, is possible within the

Roche limit through non-gravitational amalgamation. Or perhaps the satellites are

fragments from larger bodies that were forced inside the Roche radius and were then

disrupted.

6.2 Tidal Evolution Timescale and QN

The four satellites have most likely passed though three or four strong Proteus res-

onant zones: definitely the PL 2:1, the PD 3:1, and the PG 2:1, and possibly the

PL 5:3 before those. If the system formed with a configuration between PL 3:2 and

PG 2:1 in Fig. 3.3, this provides a natural explanation for the inclinations of at least

three of the four satellites. We enlarge this region of the plot in Fig. 6.5. Due to the

observational error in satellite size measurements (Table 3.1), which leads to mass

uncertainties, the evolution tracks of Proteus and Larissa fall somewhere within the

lightly-shaded area in Fig. 6.5, resulting in uncertainties of the location of PL 3:2

and PG 2:1 at 4.99Gyr < t < 6.06Gyr and 2.92Gyr < t < 3.72Gyr, respectively, as

indicated by the darkly-shaded area. As discussed before, the evolution timescale is
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Figure 6.5: Possible initial configurations of the system. The plot shows a magnified
region of Fig. 3.3. The evolution tracks of Proteus, Larissa, and Galatea lie anywhere
in the respective lightly-shaded areas. The darkly-shaded areas show the possible
locations of PL 3:2 and PG 2:1 resonant zones. The boundaries of these areas are de-
termined by the observational uncertainties of satellite sizes. The system started with
an initial configuration between the earliest possible PL 3:2 and the latest possible
PG 2:1. As with Fig. 3.3, times need to be multiplied by the factor QN/20,000

ρ̄/(0.6 g/cm3)
.

affected by QN and ρ̄. Thus, the formation time of the system is estimated at

(
QN/20, 000

ρ̄/(0.6 g/cm3)
× 2.92Gyrs

)
< t <

(
QN/20, 000

ρ̄/(0.6 g/cm3)
× 6.06Gyrs

)
. (6.2)

Triton was most likely captured at a very early stage of Solar System history

(∼ 4.5Gyr ago), when there were still plenty of planetesimals for Neptune to interact

with (Agnor and Hamilton, 2006). The circularization of Triton takes merely a few

100Myr, thus, we assume that the inner satellites date back to ∼ 4 billion years.

Substituting t ≈ 4Gyrs and 0.4 g/cm3 < ρ̄ < 0.8 g/cm3 into Eq. (6.2), we estimate

9, 000 < QN < 36, 000.

Part of this uncertainty comes from satellite size and density uncertainties, while

the rest comes from not knowing whether the system formed closer to PL 3:2 or
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PG 2:1. Although 4Gyrs is a feasible age for the small satellites, they may have

been subsequently destroyed by cometary bombardment as suggested by Smith et al.

(1989). This effectively resets the clock to the time of destruction and lowers the lower

bound on QN . Nevertheless, we believe that this late and complete destruction of the

inner Neptunian satellites is not a very likely possibility. Another uncertain factor

that affects the QN determination is k2N . The Love numbers of the giant planets

are computed by several authors with different models. We have adopted k2N = 0.41

from Burša (1992), while an earlier estimation by Gavrilov and Zharkov (1977) gives a

much smaller value (k2N = 0.13). Since the tidal constraints are actually on QN/k2N

(Eq. 3.1), the smaller Love number would lead to a drop in both the upper and lower

bounds of QN by a factor of 3.

Banfield and Murray (1992) estimated QN with similar method but different dy-

namical constraints. They took k2N = 0.39 based on a model by Dermott et al.

(1988), assumed satellite densities to be ∼ 1.2 g/cm3, and obtained a lower limit

QN > 12, 000 by requiring Proteus to form outside of the synchronous orbit and an

upper limit QN < 330, 000 from the Naiad capture event. As our determined satellite

density of 0.4−0.8 g/cm3 is half that assumed by Banfield and Murray (1992), we scale

their QN estimates to 4, 000 < QN < 220, 000 so that they can be directly compared

to our estimates. Instead of assuming that Proteus migrated from the synchronous

orbit at ∼ 3.31RN , we have shown that the satellite could not have formed closer

to Neptune than 4.20RN in order to avoid the PL 3:2 resonance. This explains our

improved lower bound of QN > 9, 000. Our biggest improvement, a factor of 6 times
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Table 6.2: Q of giant planets

Planet Author Q k2 Q/k2

GS66 ≥ 100, 000 1.5 ≥ 66, 000
Jupiter

YP81 (0.6− 20)× 105 0.379 (GZ77) 1.6× 105-5× 106

GS66 ≥ 60, 000 1.5 ≥ 40, 000
Saturn

P80 ≥ 16, 000 0.341 (GZ77) ≥ 45, 000
GS66 ≥ 72, 000 1.5 ≥ 48, 000

Uranus
TW89 11,000 - 39,000 0.104 (GZ77) 105,000 - 375,000
BM92 4,000 - 220,000∗ 0.39 (D88) 10,000 - 560,000∗

Neptune
This work 9,000 - 36,000 0.41 (B92) 22,000 - 90,000

GS66: Goldreich and Soter (1966); GZ77: Gavrilov and Zharkov (1977); P80: Peale
et al. (1980); YP81: Yoder and Peale (1981); D88: Dermott et al. (1988); TW89:
Tittemore and Wisdom (1989); BM92: Banfield and Murray (1992); B92: Burša
(1992);

reduction in the upper limit of QN , arises from the constraint that Proteus traversed

at least 3 resonant zones.

Several authors have previously estimated Q for other giant planets based on

similar dynamical constraints; we collect these results in Table 6.2 and compare them

to our own. It is best to compare the values of Q/k2 in the final column because

this is the quantity directly constrained by all dynamical studies. Goldreich and

Soter (1966) were the first to systematically investigate the planetary Q’s in the solar

system. Based on the known satellites at that time, they estimated lower limits of

Q for Jupiter (QJ ≥ 100, 000), Saturn (QS ≥ 60, 000), and Uranus (QU ≥ 72, 000).

They ignored the internal structure of the planets and assumed a uniform k2 = 1.5.

They also assumed that these satellites could initially migrate from the surface of the

planet. The existence of synchronous orbits, however, reduces the amount of tidal

migration and lifts their lower limits by a factor of 2 − 3. Yoder and Peale (1981)
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addressed this and obtained a lower bound for Jupiter’s Q: QJ ≥ 64, 000, using

k2J = 0.379 computed by Gavrilov and Zharkov (1977). Yoder and Peale (1981) also

estimated the upper limit of QJ based on tidal heating required by Io, and obtained

QJ ≤ 2 × 106. Peale et al. (1980) corrected Saturn’s Q with more reliable k2S from

Gavrilov and Zharkov (1977), and estimated the lower bound to be QS ≥ 16, 000. The

lower bounds of both QJ/k2J and QS/k2S are larger than what we find for Neptune.

Recall that Q is an empirical measurement of the energy dissipation properties of

planets that is not well understood physically.

For Uranus, the closest sibling of Neptune, Tittemore and Wisdom (1989) placed

QU between 11,000 and 39,000 based on the resonant history of the Uranian satellites.

However, their QU/k2U value is about 4 times larger than our QN/k2N . Although

one might expect these two similar-sized planets to have similar Q and k2, different

internal structures of the planets – Neptune is denser and has a much stronger internal

heat source – may lead to significantly different Q/k2 values.

6.3 QP and QL

The current eccentricities of Proteus and Larissa have significant non-zero values

(Table 3.1), which we have interpreted as a signature of the recent PL 2:1 resonance

passage. In Chapter 5, we derived a constraint on satellite Q based on this interpre-

tation (Eq. 5.1).

With density between 0.4 and 0.8 g/cm3, our numerical simulations show that

Proteus and Larissa can attain eccentricities of 0.0011− 0.0014 and 0.008− 0.01 dur-
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ing the PL 2:1 passage, respectively. After the resonance, their eccentricities damp

to current values of 0.00053 and 0.00139 according to Eq. (2.28). Immediately after

PL 2:1, the satellites’ semi-major axes must satisfy a3
P/a

3
L ' 4; they then evolve

following Eq. (3.1), and the two satellites migrate to their current orbits simultane-

ously. Based on these constraints, we calculate the semi-major axes displacements of

the two satellites after the PL 2:1 encounter: Larissa has migrated 0.014− 0.016RN

inward, while Proteus’ semi-major axis has increased by 0.010 − 0.013RN . The un-

certainties are primarily due to the observational error of satellite sizes. Substituting

these measurements into Eq. (5.1), we find

0.004 <
QP

QN

< 0.02, 0.002 <
QL

QN

< 0.006.

We have adopted Neptune’s Love number k2N = 0.41, as computed by Burša (1992).

The internal strength, µ̃s, is unknown for most satellites, but it is not expected to

be as sensitive to satellite composition and shape as Qs is. We estimate µ̃P and µ̃L

based on the formula µ̃s ≈ (104 km/Rs)
2 given by Murray and Dermott (1999). For

9, 000 < QN < 36, 000, we find

36 < QP < 700, 18 < QL < 200.

This is an interesting result since the tidal Q of satellites is more poorly known

than planetary Q’s – very few dynamical events can provide useful constraints. The

only satellite with a well-determined Q is our own Moon, with QM = 27 (Yoder,

1995). This is within the range of our estimates for Proteus and Larissa, but the size

of the Moon is much larger than the two Neptunian satellites. For other satellites
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of the giant planets, Goldreich and Soter (1966) estimated that Qs < 500 based on

a rough assumption of satellite rigidity. Yoder and Peale (1981) estimated Europa’s

Q with an eccentricity damping method similar to what we have used, and obtained

QE & 2×10−4QJ . They were also able to estimate Io’s Q through an analysis of tidal

heating of the melting moon: QI ≈ 0.001QJ . These values fall into the same general

range as our new estimates for Proteus and Larissa.
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Part III

Secular Interactions with Eccentricity Damping

110



Chapter 7

Background

In this and the following three chapters, we investigate secular interactions between

planetary pairs. Initially, we follow Wu and Goldreich (2002) to study the role of

secular interaction in maintaining the eccentricities of “hot-Jupiters”, and extend the

basic secular theory to apply to systems subject to tidal damping of eccentricities. Fi-

nally, we apply our results to actual extrasolar planetary systems and explain how our

theory can guide planet searches. The material in this part is currently in preparation

for submission to ApJ.

7.1 Extrasolar Planets

Since the first Jupiter-sized planet was discovered outside the Solar System around 51

Pegasi in 1995 (Mayor and Queloz, 1995), more than 230 extrasolar planets have been

found orbiting Sun-like stars (the Extrasolar Planet Encyclopaedia, http://exoplanet.eu/).

These extrasolar planetary systems are largely unlike our own Solar System. The

majority of the planets are Jupiter-sized, are located much closer to their stars, and

display substantially larger eccentricities (Juric and Tremaine, 2007). In the past

decade, many mechanisms have been studied in order to explain these unusual plan-

etary architectures (see a recent review by Namouni (2007), and references therein),
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including planet-planet scattering, planet-disk interaction, mean-motion resonance

passage, Kozai resonances, etc. All these mechanisms can excite orbital eccentricity

effectively. For planets with large semi-major axes, the excited eccentricities may

last for billions of years, explaining why their orbits are still eccentric today. Prob-

lems arise, however, for planets very close to stars – the so-called “hot-Jupiters” with

orbital periods typically less than a week.

Stars and planets raise tides on

Figure 7.1: Eccentricities of “hot-Jupiters”.
Data courtesy the Extrasolar Planet Ency-
clopaedia (http://exoplanet.eu/).

each other which, in turn, perturb

the planet’s orbit. Planetary tides

raised by the star damp the orbital

eccentricity quickly in the same way

that satellite tides circularize a satel-

lite’s orbit (Section 2.5), especially

for systems with “hot-Jupiters” in

which tides are rather strong due to the small separations. We rewrite Eq. (2.28) in

terms of stellar and planetary parameters:

λ = − ė
e

=
63

4

1

µ̃pQp

m∗
mp

(
Rp

a

)5

n, (7.1)

where m∗ is the mass of the star. For giant planets in the Solar System, µ̃pQp & 105

(see Goldreich and Soter, 1966; Peale et al., 1980; Yoder and Peale, 1981). We assume

most extra-solar “hot-Jupiters” have similar values, and thus their typical eccentricity

damping timescales are only a few hundred million years, implying that they should

all have circular orbits.
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We plot the eccentricities of all “hot-Jupiters” with sub-week orbital periods in

Fig. 7.1 and notice that, although the average eccentricity is much less than that of

all known planets, more than half of the 44 “hot-Jupiters” have orbits with eccen-

tricities significantly different from zero. This observation requires an explanation;

possibilities include i) the systems are recently formed, ii) the planetary µ̃pQp values

are underestimated so that tidal timescales are much longer, and iii) forcing from

an exterior planet prevents circularization. We explore the third option here and

investigate the interactions between a “hot-Jupiter” and a more distant companion.

In systems with more than one planet, the most significant orbit-orbit interac-

tions are mean-motion resonances, which have been studied in detail for the satellite

systems (see Part II and reviews by Greenberg, 1977; Peale, 1986) and for some extra-

solar planetary systems (Chiang, 2003; Beaugé et al., 2003; Lee, 2004). Mean-motion

resonance passages during planetary migration can be effective at exciting orbital ec-

centricities. In addition, a long-term secular interaction exists among orbits. Studies

of the secular perturbations of the Solar System have been undertaken by Brouwer

et al. (1950), and of the Uranian satellites by Dermott and Nicholson (1986). The

discovery of extrasolar multi-planet systems (Butler et al., 1999) provides more places

to apply secular theory (Adams and Laughlin, 2006). Wu and Goldreich (2002) were

the first to use secular interactions to explain the non-zero eccentricity of a “hot-

Jupiter”. More recently, Barnes and Greenberg (2006b) have shown that the known

multi-planet systems tend to be near the separatrix dividing apsidal circulation from

libration.
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7.2 Secular Modes

Secular perturbations arise from terms of the disturbing function that do not involve

the fast-changing orbital longitudes. In Section 2.3, we pointed out that for the

lowest-order terms with angular arguments (Eq. 2.15)

φe = $1 −$2 and φi = Ω1 − Ω2,

Lagrange’s planetary equations can be linearized.

With the disturbing potentials for both orbits independent of λ and ε, Eq. (2.6)

shows that the semi-major axes of the two orbits remain constant. This is a general

result: secular or orbital-averaged perturbations between planets never affect the

semi-major axes, which means that long-term energy transfer between the orbits

does not occur. For small e and i, Eqs. (2.7 - 2.10) can be simplified to (Murray and

Dermott, 1999, §7.1)

dej
dt

= − 1

nja2
jej

∂Rsec
j

∂$j

, (7.2)

d$j

dt
= +

1

nja2
jej

∂Rsec
j

∂ej
; (7.3)

dij
dt

= − 1

nja2
j ij

∂Rsec
j

∂Ωj

, (7.4)

dΩj

dt
= +

1

nja2
j ij

∂Rsec
j

∂ij
. (7.5)

Here the subscript j denotes each individual planet. Note that the evolution equations

of (ej, $j) and (ij, Ωj), are completely decoupled, and hence can be analyzed sepa-

rately. We neglect the inclination and node pair since these elements are not currently

observable for most extrasolar planets discovered by the radial velocity technique. Be-
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cause the two sets of equations take the same form, however, our eccentricity results

below can be easily applied to inclination equations with the transformation i ↔ e

and Ω↔ $.

The eccentricity components of the first-order secular disturbing functions for the

two orbits are given by Murray and Dermott (1999):

Rsec
1 = n1a

2
1 σq

[
1

2
e2

1 − β e1e2 cos($1 −$2)

]
, (7.6)

Rsec
2 = n2a

2
2 σ
√
α

[
1

2
e2

2 − β e1e2 cos($1 −$2)

]
, (7.7)

where the subscript “1” refers to the inner planet and “2” to the outer one. Orbital

mean motions are denoted by n1 and n2, respectively, which are both constant since

the aj are constant. For compactness of notation, we define:

α = a1/a2, β = b
(2)
3/2/b

(1)
3/2,

q = m2/m1, σ =
1

4
n1
m1

m∗
α2b

(1)
3/2.

Here the dimensionless quantities α, q, and β are the semi-major axis ratio, the

mass ratio, and the ratio between two Laplace coefficients defined in Murray and

Dermott (1999, §6.6). The quantity σ has units of frequency, which we will see later

characterizes the secular precession rates. It is proportional to the planet-star mass

ratio m1/m∗ and depends on the planetary spacing.

Following Brouwer et al. (1950), we transform an (ej, $j) pair into a complex

Poincaré canonical variable hj with the mapping:

hj = ej exp(i$j), (7.8)
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Figure 7.2: Analogy between the normal modes of the two-planet and the double
pendulum systems.

where i =
√
−1. Use of the complex Poincaré variable simplifies notation compared

to the more commonly used pair: h = e sin$, k = e cos$. Substituting Eqs. (7.6-7.7)

into Eqs. (7.2) and (7.3) and rewriting in terms of hj yields a set of linear homogeneous

ordinary differential equations similar to those for a double pendulum system:

ḣj = i

2∑

k=1

Ajkhk, (7.9)

where the coefficient matrix is

A = σ

{
q −qβ

−√αβ √
α

}
.

Two orthogonal special solutions (or secular eigen-modes) of the system Eq. (7.9),

are given by
(
ĥ1±
ĥ2±

)
=

(
1
ηs±

)
exp(igs±t), (7.10)

where the eigen-frequencies gs± and eigenvector parameters ηs± are obtained from the
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matrix A:

gs± =
1

2
σ

[
q +
√
α∓

√
(q −√α)2 + 4q

√
αβ2

]
, (7.11)

ηs± =
q −√α±

√
(q −√α)2 + 4q

√
αβ2

2qβ
. (7.12)

We use the superscript “s” to indicate that these parameters are for a “static”, or

non-dissipative, system. Note that (gs+ + gs−) = σ(q +
√
α) is the trace of matrix A.

We seek to elucidate the physical meaning of the two modes by transforming the

solution of hj back to the orbital elements (e, $) with Eq. (7.8). If the system is fully

in either the “+” or the “–” mode, we find

$̇1± = $̇2± = gs±, (7.13)

(e2/e1)± = |ηs±|, (7.14)

cos(∆$±) = ηs±/|ηs±|, (7.15)

where ∆$ = $2 −$1 is the difference between the two pericenter angles. In either

mode, the two orbits precess at the same rate g± (Eq. 7.13), and their eccentricities

keep a fixed ratio (Eq. 7.14). Furthermore, Eq. (7.12) shows that ηs+ > 0 while ηs− < 0.

Thus, Eq. (7.15) states that the pericenters of the two orbits are always aligned in the

“+” mode (cos(∆$) = 1), and always anti-aligned in the “–” mode (cos(∆$) = −1).

In fact, in an eigenmode, the system behaves as a rigid body with the shapes and

relative orientation of the elliptical orbits remaining fixed while the entire structure

rotates in space (Fig. 7.2). The 2-planet secular system is in many ways reminiscent

of a double pendulum system. The equations for a simple double pendulum system

have the same form as Eq. (7.9), only with a symmetric coefficient matrix A. In both
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systems, the anti-aligned mode has the faster frequency (g− > g+) due to a larger

restoring force provided by the spring in the pendulum problem, and the more closely

spaced orbits in the planetary problem.

We now explore how the eccentricity

Figure 7.3: Eccentricity ratios versus√
α/q in the secular modes as given by

Eq. (7.12). Different curves represent dif-
ferent β values. The dashed line represent-
ing q =

√
α is a turning point; these orbits

have e1 = e2 in both modes.

ratios in secular modes depend on the

physical parameters q and α. We plot

η2
± as a function of

√
α/q for different

β values in Fig. 7.3. Although rare in

real systems, q =
√
α makes an interest-

ing special case. When this condition is

met, ηs± = ±1 (Eq. 7.12), and therefore,

the inner and outer orbits have the same

eccentricity (Eq. 7.14). When q >
√
α,

either the outer planet is more massive (larger q), or the two planets are further apart

(smaller α). Then the outer planet has a higher eccentricity in the aligned mode and

a lower eccentricity in the anti-aligned mode. The opposite is true for q <
√
α.

Only very special initial conditions will put a system exactly in one of its eigen-

modes. In general, most systems are composed of a linear combination of the two

modes:

hj = e+ exp(iϕ+) ĥj+ + e− exp(iϕ−) ĥj−. (7.16)

Here the mode amplitudes e± and phases ϕ± are determined by the initial conditions.

Plotting the solution Eq. (7.16) on the complex plane yields a phase portrait
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ϖcose

sine
ϖ

η+e+ e−

e+

e2

e1

η−e−

g−t+ϕ−
g−t+ϕ−

g+t+ϕ+

g+t+ϕ+

Figure 7.4: Phase plot of the secular solution of a system with two planets (Eq. 7.16).
The arrows represent the eccentricity vector e exp(iω). The total eccentricity of each
orbit (e1 or e2) is the vector sum of an aligned (+) and an anti-aligned (−) component.
The two aligned mode components, e+ and ηs+e+, rotate (precess) at rate gs+, while the
two anti-aligned mode components (e− and ηs−e−) rotate at rate gs−. The maximum
of e1 occurs when e2 is at minimum, and vice versa.

of e cos$ versus e sin$ as shown in Fig. 7.4. The e1 and e2 vectors in the plot

represent (e, $) pairs for the two orbits at a given time. The length of a vector is the

instantaneous eccentricity, and its azimuthal angle is the instantaneous longitude of

pericenter. Each eccentricity vector is a vector sum of an aligned and an anti-aligned

component (e1 = e+ +e−, e2 = ηs+e++ηs−e−). In the pure aligned eigenmode, e− = 0,

the e1 and e2 vectors are parallel, and as time progresses, the vectors rotate together

at rate gs+ while maintaining their lengths. This corresponds to the aligned orbits in

Fig. 7.2. For the anti-aligned eigenmode, e+ = 0 so that e1 and e2 are anti-parallel

and rotate together at rate gs−. This is the anti-aligned mode in Fig. 7.2. In the most

general system, both motions occur simultaneously: the parallel eccentricity vectors

(e+ and ηs+e+) rotate at rate gs+, while the anti-parallel vectors (e− and ηs−e−) spin

119



Figure 7.5: Secular changes of orbital eccentricities. Plot shows the eccentricities of
two planetary orbits in a computer-simulated system consisting of a 1 Solar-mass star,
a 1 Jupiter-mass “hot-Jupiter” at 0.05 AU, and a 0.8 Jupiter-mass companion at 0.2
AU. The simulation shows an oscillation period of ∼ 1690 years, closely agreeing with
the prediction of the secular model:f 2π/(g−− g+) = 1670 years. This simulation was
carried out with the HNBody package by Rauch and Hamilton (2002).

at rate gs−. The resulting lengths of e1 and e2 thus vary periodically as illustrated in

Fig. 7.5. The maximum value of e1 occurs when e+ is parallel to e−. At the same

time, however, ηs+e+ and ηs−e− are anti-parallel to each other, leading to a minimum

value for e2. The simultaneous maximum for e1 and minimum for e2 are guaranteed

by angular momentum conservation. The two eccentricities, in mathematical form,

are (Murray and Dermott, 1999)

e1 =
√
e2

+ + e2
− + 2e+e− cos(gs− − gs+)t,

e2 =
√

(e+ηs+)2 + (e−ηs−)2 + 2e+e−ηs+η
s
− cos(gs− − gs+)t.

Both eccentricities oscillate at the difference frequency (gs− − gs+).

120



Chapter 8

Secular Solutions with Eccentricity Damping

Since a planet close to its host star experiences a drag force due to planetary tides

raised by the star, we seek a way to include tides into the mathematical formalism

of Chapter 7. Because the force is radial (Section 2.5), there is no torque and the

planet’s angular momentum is conserved: a(1− e2) = const. For small eccentricities

for which the secular solution Eq. (7.16) is valid, this implies that changes in a are

negligible compared to the damping in e. Because the damping timescales for “hot-

Jupiters” (∼ 108 yrs) are much slower than secular timescales (∼ 103 yrs), we can

treat the damping effect as a small perturbation to the secular solution.

8.1 Secular Modes with Eccentricity Damping

The addition of the constant tidal damping (Eq. 7.1) adds an extra term to the

eccentricity equation in Eq. (7.3), which now reads

ėj = − 1

nja2
jej

∂Rj

∂$j

− λjej.

This causes the coefficient matrix of Eq. (7.9) to change to

A = σ

{
q + i ξ1 −qβ
−√αβ √

α + i ξ2

}
, (8.1)

where the dimensionless ξj = λj/σ � 1.
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Eccentricity damping causes the eigen-frequencies of matrix A to have both real

and imaginary parts. As in other dynamical systems, the real parts (g±) of the

eigen-frequencies still represent the precession rates of the secular modes, while the

imaginary parts (γ±) indicate that the amplitudes of the modes change over time.

This is clearer if we rewrite the two orthogonal special solutions of the system as

(
ĥ1±
ĥ2±

)
=

(
1
η±

)
exp(−γ±t) exp(ig±t), (8.2)

where η± is the new eccentricity ratio for each mode.

For ξj � 1, we solve the new matrix for the complex frequencies and find

g± = gs± ±
q
√
αβ2

[(q −√α)2 + 4 q
√
αβ2]3/2

σ (ξ1 − ξ2)2, (8.3)

γ± =
1

2

[
λ1 + λ2 ±

√
α− q√

(q −√α)2 + 4 q
√
αβ2

(λ1 − λ2)

]
, (8.4)

with gs± given by Eq. (7.11). Eccentricity damping increases the precession rate of

the aligned mode and decreases that of the anti-aligned mode, but only by a small

amount of order ξ2
j , which can usually be neglected. These tiny frequency changes

are due to the slightly different orbital configurations in the secular modes as we shall

see below. The new eigen-vectors of the matrix A are:

η± = ηs±

[
1± i ξ1 − ξ2√

(q −√α)2 + 4 q
√
αβ2

]
. (8.5)

Here we have neglected terms of the second- and higher-order power of ξj.

In general, the η± are complex, with small imaginary components. If we ignore

the imaginary parts for the moment, then η± are real and Eq. (8.2) shows that the

pericenter angles of the two orbits are the same (positive η+, aligned mode) or 180◦
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apart (negative η−, anti-aligned mode). For complex η±, however, the two orbits are

not exactly aligned or anti-aligned any longer (Fig. 8.1). Instead, ∆$± shifts from

0◦ and 180◦ by a small angle

ε = tan−1

(
ξ1 − ξ2√

(q −√α)2 + 4 q
√
αβ2

)
≈ ξ1 − ξ2√

(q −√α)2 + 4 q
√
αβ2

.

In the “aligned” mode, the

180ο−ε

η+ η−

ε

Figure 8.1: Mis-aligned orbital configurations for
secular modes with eccentricity damping. In each
mode, both orbits precess counter-clockwise at the
same rate and keep their orientation fixed.

new pericenter difference is ∆$+ =

ε. Because of this mis-alignment,

the minimum distance between

the two orbits is slightly less than

that in the undamped case. This

causes the average interaction be-

tween the two orbits to be stronger,

leading to an increase of the precession frequency as indicated by Eq. (8.3). Similarly,

∆$− = 180◦ − ε in the “anti-aligned” mode; the slight rotation results in a weaker

average interaction and a slightly slower mode-precession rate. The deviation angle ε

is tiny, and the eccentricity ratios in the two modes, |η±|, are nearly the same as |ηs±|.

Thus, we continue to use “aligned” and “anti-aligned” to refer to the two modes.

In addition to the little mis-alignment, each mode amplitude also damps at the

rate given by Eq. (8.4). If only planetary tides contribute to eccentricity damping,

Eq. (7.1) shows that the damping rate decreases rapidly with the planet’s semi-major

axis (λ ∝ a−6.5). In the absence of secular interaction between the planets, the outer

orbit is hardly affected. With this interaction, however, the damping applied to the
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(a) (b)

Figure 8.2: Eccentricity damping of systems in different secular modes found by inte-
gration of the secular equations (top panels) and direct N-body simulations (bottom
panels). The plots show the eccentricity evolution of a “hot-Jupiter” (1 Jupiter-mass
planet at 0.05 AU from a 1 Solar-mass star) with a companion; γ+ and γ− represent
the mode damping rates. The “hot-Jupiter” is subject to an artificial eccentricity
damping having a rate λ1 = 7.9 × 10−7 yr−1, which is also plotted in each panel. a)
A 0.8 Jupiter-mass companion is located at 0.2 AU (q >

√
α); b) A 0.3 Jupiter-mass

companion is located at 0.2 AU (q <
√
α).

eccentricity of the inner orbit is partially transmitted to the outer planet, causing a

decrease of its eccentricity as well. The damping rates of the two modes are different,

unless q =
√
α, or m2

1a1 = m2
2a2. An interesting result from Eq. (8.4) is that the sum

of the two mode-damping rates is equal to the sum of the two individual eccentricity

damping rates:

γ+ + γ− = λ+ + λ−;

secular interactions simply redistribute where the damping occurs.

In Fig. 8.2, we compare our analytical results with numerical integration of both

the secular equations and the direct N-body equations, with an artificial eccentricity

damping added for the inner planet in all cases. The eccentricity evolution curves

of the inner planet are plotted for two different cases, and e-folding rates are mea-
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sured and marked for all curves. Fig. 8.2a illustrates a system with q >
√
α, or

m2
1a1 < m2

2a2. The top panel shows results from secular equations, and the bottom

panel shows the corresponding N-body simulations. Each panel plots three curves:

i) the single planet case, in which the eccentricity of the inner planet damps at rate

λ1, ii) a two-planet aligned mode with damping rate γ+, and iii) a two-planet anti-

aligned mode (damping rate γ−). For q >
√
α, eccentricities damp much faster in the

anti-aligned mode than in the aligned mode, as predicted by Eq. (8.4). A compari-

son between the top and bottom panel shows close agreement (within 2%) between

full-scale N-body simulation and integration of the approximate secular equations.

Damping rates predicted by Eq. (8.4) also agree well with these observed values.

Fig. 8.2b shows a system with m2
1a1 > m2

2a2, for which the aligned mode damps

faster than the anti-aligned mode. The faster damping rate of the aligned mode in

the N-body simulation is still within 2% of the prediction, but that of the slow anti-

aligned mode, however, is ∼ 10% off. This is probably due to the fact that the drag

force that we used in the N-body simulations damps the inner body’s semi-major axis

slightly, weakening the coupling between the planets a little.

The different damping rates for the two modes are particularly interesting, espe-

cially for well-separated nearly-decoupled orbits for which α and β are small. In this

case, the 4q
√
αβ2 term under the square root of Eq. (8.4) is much smaller than the

other term. As a result, if the eccentricity damping on one orbit is much faster than

on the other, as the case for tides (λ1 � λ2), one mode damps much faster than the

other and the system quickly evolves to a single mode. The more rapid damping rate
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is near the single-planet tidal rate λ1, while the other mode decays substantially more

slowly.

We now carry out secular integrations and N-body simulations for the same two-

planet system (q >
√
α) shown in Fig. 8.2a, but with initial conditions that lead to

a superposition of the two eigen-modes at the beginning. The results are depicted

in Fig. 8.3. The two numerical methods agree with each other very well, except for

some blurring of the orbital elements in the N-body simulations arising from fast

variations at the orbital periods. These oscillations are partially due to impulses at

conjunction, and partially due to the subtle difference between the osculating and

geometrical orbital elements as discussed by Greenberg (1981). Before about 4× 106

years, the system is in a combination of the two modes, so both eccentricities, as

well as their ratio, oscillate (cf. Figs. 7.4 and 7.5). As the short-lived anti-aligned

mode damps away, the orbits begin to librate around ∆$ = 0◦, the two eccentricities

oscillate less and less, and in the end, the eccentricity ratio settles at the aligned mode

ratio |η+| predicted by Eq. (8.5). Fig. 8.3 shows the corresponding plots for q <
√
α.

The orbital elements undergo similar evolution, except that the aligned mode damps

faster and the system ends up in the anti-aligned mode.

8.2 Apsidal Circulation and Libration

In both Figs. 8.3 and 8.4, the orientations of the two orbits change from libration (∆$

librates about 0◦ or 180◦) to circulation (∆$ circulates a full 360◦), and to libration

again during the eccentricity damping. In order to understand what determines the
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Figure 8.3: Secular evolution for systems with m2
1a1 < m2

2a2. The same planetary
system as in Fig. 8.2a is shown, but with a different initial condition so that the
system starts in a combination of the two modes. The anti-aligned mode damps
quickly at rate γ− from Fig. 8.2a, and the system evolves to the aligned mode. Secular
integration results are shown in the left panels, while the N-body results are in the
right panels. Agreement between the two integration methods is very good.
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Figure 8.4: Secular evolution for systems with m2
1a1 > m2

2a2. Similar to Fig. 8.3, but
the planetary system in Fig. 8.2b is shown. The aligned mode damps more rapidly
and the system evolves to the anti-aligned mode.
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apsidal state of the orbits, we plot the aligned and anti-aligned components of the

eccentricities for Fig. 8.3 in the top two panels of Fig. 8.5. Recall that the total

eccentricities of the orbits at any time can be obtained from the components as

illustrated in Fig. 7.4. The lower panels in the figure show the phase diagrams of

both orbits (e cos(∆$) versus e sin(∆$)) at five different points in time indicated in

the top two panels. The two orbits travel along the phase curves, which themselves

change slowly over time. Two critical instants, labeled s− and s+, are circulation-

libration separatrices, which represent the transitions of the apsidal state from anti-

aligned libration to circulation (s−), and from circulation to aligned libration (s+).

These two points divide the evolution curves into three regions.

In region I (t < 106 yrs), the anti-aligned components are stronger than the aligned

ones for both orbits (e− > e+ and |ηs−|e− > ηs+e+). In the phase plots, both the e1 and

the e2 curves are closed and stay on the left side of the e sin(∆$) axis, indicating the

libration of ∆$ about 180◦. With the decrease in the amplitudes of all components,

especially the faster damping of the anti-aligned ones, the curves move closer toward

the origin, resulting in an increased libration width of ∆$.

The anti-aligned separatrix s− crossing occurs at t = 106 yrs, when the two

components for the outer orbit are equal (|ηs−|e− = ηs+e+) and e2 may drop to zero,

resulting in a phase curve for the orbit that is tangential to the e sin(∆$) axis at the

origin (cf. Fig. 8.5). The phase curve for e1 at s− is a half-oval whose straight edge

includes the origin. Accordingly, when e2 drops to zero, ∆$ jumps from 90◦ to −90◦

for the largest possible full libration amplitude of 180◦.
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Figure 8.5: Evolution of the apsidal states during eccentricity damping. The top
two panels show the time evolution of the eccentricity components for the system
in Fig. 8.3 for which m2

1a1 < m2
2a2. The inner orbit has an aligned component e+

and an anti-aligned one e−, while ηs+e+ and |ηs−|e− are the components for the outer
orbit. Two circulation-libration separatrices (s− and s+) divide the evolution curves
into three parts: anti-aligned libration (region I), circulation (region II), and aligned
libration (region III). The bottom panels show phase diagrams of the inner and outer
orbits on the complex e exp(i∆$) plane at the corresponding points indicated in the
top panels. The shape of the phase curves depends on the relative strength of the two
components for each orbit. Banana shapes result from the large difference between
the two components: e− � e+ at (a), while |ηs−|e− � ηs+e+ at (c).
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As the system moves past s−, the phase curves for both orbits enclose the origin

and circulation results. The circulation region (II) is located between the two separa-

trices (i.e., when 106 yrs < t < 3.95× 106 yrs), where the anti-aligned component of

the inner orbit is stronger than the aligned one (e− > e+), while it is weaker for the

outer orbit (|ηs−|e− < ηs+e+). With the continuous fast damping of the anti-aligned

mode, the system crosses the aligned separatrix s+ at t = 3.95 × 106 yrs, when the

two components for the inner orbit are equal (e− = e+). The two separatrices occur

at those times when each phase curve in Fig. 8.5 touches the origin.

After s+, both phase curves are to the right of the e sin(∆$) axis, indicating

libration about the aligned mode (region III). The two anti-aligned components are

both significantly damped and the system now has both e− > e+ and |ηs−|e− > ηs+e+.

The geometry of the orbits can also be illustrated with a component diagram

similar to Fig. 7.4, but in a frame rotating at the same rate as the anti-aligned mode

(Fig. 8.6). Note that in this rotating frame, the aligned component vectors rotate

clockwise because their precessions are slower than those of the anti-aligned ones.

Evolution in these coordinates can be visualized as circles whose radii and distances

to the origin shrink at the different rates γ+ and γ−. Since the anti-aligned components

initially dominate the aligned ones (region I), the e1 vector stays on the right side of

the e sin$ axis, and the e2 vector on the left side. When the aligned components are

parallel to the vertical axis, the angle between e1 and e2, |∆$| > 90◦, is at minimum;

thus the orbits librate about ∆$ = 180◦ (anti-aligned libration). When the e2 circle

moves to enclose the origin and the e1 circle is still confined in the first and fourth
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Figure 8.6: Eccentricity component diagrams for different regions in Fig. 8.5. These
diagrams are similar to Fig. 7.4, but now shown in a frame rotating at the same rate
as the anti-aligned mode. Here the anti-aligned mode damps faster than the aligned
mode (γ− > γ+) so that the circles move toward the origin faster than their radii
shrink.
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quadrants, the system reaches circulation region II. This geometry enables ∆$ to

cycle through a full 360◦ (Fig. 8.6). Finally, when the anti-aligned components are

sufficiently damped and both circles contain the origin, the system goes to aligned

mode libration (region III). Now the maximum value of ∆$ < 90◦ occurs when the

two aligned components are parallel to the e sin$ axis, and the orbits librate about

∆$ = 0◦.

Fig. 8.7 shows the case of Fig. 8.4, where the two aligned components are initially

stronger and the system starts in the aligned libration region III. The two orbits

evolve to cross the aligned separatrix s+ into the circulation region II, and then pass

the anti-aligned separatrix s− to reach the final anti-aligned libration region I. The

equivalent of Fig. 8.6 for this system would show the radii of the circles shrinking

faster than the distances of their center from the origin.

In conclusion, the apsidal state of a two-planet secular system depends on the

relative strengths of the mode components in the following way:

Libration: (e+ − e−)(ηs+e+ + ηs−e−) > 0; (8.6)

Circulation:(e+ − e−)(ηs+e+ + ηs−e−) < 0. (8.7)

Libration occurs when the same mode components are stronger for both orbits, and

circulation occurs when one mode is stronger for the inner orbit, but weaker for the

outer one. Barnes and Greenberg (2006b) studied the non-dissipative secular apsidal

state and found the distinction between circulation and libration can be expressed in
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Figure 8.7: Evolution of the apsidal state during eccentricity damping. Similar to
Fig. 8.5, but using data from Fig. 8.4. The system moves from aligned libration to
circulation, and finally to anti-aligned libration.
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terms of the quantity

S =
(ηs+ + ηs−)e+e−
ηs+e

2
+ + ηs−e

2
−
.

They found that the pericenter difference ∆$ circulates if |S| > 1, and ∆$ librates

if |S| < 1, which is equivalent to our conclusion.

Eccentricity damping is effective in changing the apsidal state of the orbits because

the two modes damp at different rates. In fact, not only eccentricity damping, but ec-

centricity excitation is also able to move the two orbits across the libration-circulation

separatrices. This can be easily visualized by running the plots in Fig. 8.5 and 8.7

backwards in time. For systems with m2
1a1 < m2

2a2 (Fig. 8.5), eccentricity excitation

eventually brings the systems into anti-aligned libration (region I), and eccentricity

damping brings them into aligned libration (region III). The opposite is true for sys-

tems with m2
1a1 > m2

2a2 (Fig. 8.7). All mechanisms that change eccentricities slowly

cause planetary systems to move toward apsidal libration.

8.3 Relativistic Correction

Extrasolar “hot-Jupiters” are close enough to their host stars that general relativis-

tic effects are important. In particular, it is well-known that the post-Newtonian

potential produces an apsidal precession of the orbit which, to the lowest order in

eccentricities, is (Danby, 1988)

$̇GR =
3 a2n3

c2
,
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where c is the speed of light. We define a dimensionless quantity κ to measure the

relativistic effect:

κ =
$̇GR

1

σ
,

which is the ratio of the relativistic precession to the characteristic secular precession.

General relativity adds an extra term to Eq. (7.3), which now reads

$̇j = +
1

nja2
jej

∂Rj

∂ej
+ $̇GR

j .

Since $̇GR is independent of e for small eccentricities, the extra terms do not change

the form of Eq. (7.9), and so all discussion of the general secular modes still holds.

In particular, the system still has aligned and anti-aligned modes and the two modes

damp separately. The mode frequencies, damping rates, and eccentricity ratios, how-

ever, need to be revised. Now the diagonal terms of the coefficient matrix Ajk should

be adjusted to

A = σ

{
q + κ+ iξ1 −qβ
−√αβ √

α(1 + α2κ) + iξ2

}
,

which gives the new mode frequencies and eccentricity ratios:

gs± =
1

2
σ

{
(q + κ) +

√
α(1 + α2κ)∓

√
[q + κ−√α(1 + α2κ)]2 + 4 q

√
αβ2

}
,(8.8)

ηs± =
q + κ−√α(1 + α2κ)±

√
[q + κ−√α(1 + α2κ)]2 + 4 q

√
αβ2

2 qβ
, (8.9)

g± = gs± ±
q
√
αβ2

{[q + κ−√α(1 + α2κ)]2 + 4q
√
αβ2}3/2

σ (ξ1 − ξ2)2, (8.10)

γ± =
1

2

[
λ1 + λ2 ±

√
α(1 + α2κ)− (q + κ)√

[q + κ−√α(1 + α2κ)]2 + 4q
√
αβ2

(λ1 − λ2)

]
, (8.11)

η± = ηs±

{
1± i ξ1 − ξ2√

[q + κ−√α(1 + α2κ)]2 + 4 q
√
αβ2

}
. (8.12)

136



Note that these equations can be obtained from Eqs. (7.11, 7.12, 8.3, 8.4, and 8.5)

with the substitution (q ±√α)→ [q + κ±√α(1 + α2κ)].

The relativistic effect increases both secular rates gs± (Eq. 8.8) since it causes the

orbits to precess in the same direction as the secular interaction does. Both mode

eccentricity ratios are also increased (Eq. 8.9), because the eccentricity of a faster

precessing inner orbit is less forced by the outer planet. As for the mode damping

rates (Eq. 8.11), relativistic precession decreases the aligned mode damping rate, but

increases that of the anti-aligned mode. It also decreases the deviation ε of the mode

apsidal lines from perfect alignment (Eq. 8.12).
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Chapter 9

Applications to Extrasolar Planetary Systems

The purpose of the Wu and Goldreich (2002) study of secular theory and tidal damp-

ing was to explain the eccentricity of the planet HD 83443b. At the time there was

thought to be a second planet in the system, a claim that has since been retracted. In

addition to tidal eccentricity damping, they also considered the small change to the

semi-major axis that arises from energy dissipation. They found that, even in a sin-

gle apsidal aligned or anti-aligned mode, the eccentricities of the two orbits damp at

different rates – e1 damps faster because of the semi-major axis migration. For small

eccentricities, however, the inward migration, is slower than the eccentricity damping

by a factor of e2
1. Thus we have neglected the semi-major axis migration, which is

consistent with the low e assumption made within linear secular theory, and we have

derived a simpler theory to study the apsidal state of orbits and to estimate eccen-

tricities. Our expression for the mode damping rates, Eq. (8.9), are consistent with

that of Wu and Goldreich (2002). In this chapter, we first use the theory developed

in Chapter 8 to analyze the current status of a two-planet system, and then discuss

how our equations can be used to predict possible companions of “hot-Jupiters”.
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Table 9.1: Properties of planets and stars discussed in this chapter

Planet Orbital Period (days) m sin i (MJ) a (AU) e ω (◦) m∗ (M�) Age (Gyrs)
HIP 14810b 6.674± 0.002 3.9± 0.6 0.069± 0.004 0.147± 0.006 159± 2 ∼ 0.99 ∼ 4
HIP 14810c 95.285± 0.002 0.8± 0.1 0.41± 0.02 0.409± 0.006 354± 2 ∼ 0.99 ∼ 4
GJ 436b 2.64385± 0.00009 0.0713± 0.006 0.029± 0.002 0.16± 0.02 351± 1 0.44± 0.04 > 3
GJ 674b 4.6938± 0.007 0.037 0.039 0.20± 0.02 143± 6 0.35 0.1-1

Data for HIP 14810 system are from Wright et al. (2007); GJ 436 from Maness et al. (2007); GJ 674 from Bonfils et al.
(2007).

139



9.1 A Test of the Theory: the HIP 14810 System

Several multi-planet systems that host one or more “hot-Jupiters” have been discov-

ered, but most are not good candidates upon which to test our theory. The Gliese

876, 55 Cnc, and υ And systems all have three or more planets, which makes apsidal

analysis more complicated (Barnes and Greenberg, 2006a). The HD 217107 system

has two planets, but the outer planet is 60 times further away from the star than the

inner one, resulting in weak secular interactions that are insufficient to force any in-

teresting eccentricity on the inner orbit. The recent discovery of a two-planet system

HIP 14810 (Wright et al., 2007), however, provides a good test for our theory. Star

HIP 14810a is a Solar-type star with a mass of 0.99 Solar mass. The orbital parame-

ters of the two planets are listed in Table 9.1: the 3.9 Jupiter-mass inner planet (HIP

14810b) has an orbital period of 6.674 days, and its orbital eccentricity is as large

as 0.147; the outer HIP 14810c is about 20% as massive, and about 6 times further

away. It has a larger eccentricity of 0.4.

At 0.147 and 0.4, the eccentricities of the two orbits are larger than that assumed

by our linear secular theory. But this brings merely a ∼20% error as shown in Fig. 9.1.

Here we depict the orbital histories of the two planets on a phase diagram, similar

to the ones shown in Figs. 8.5 and 8.7. We plot curves computed both from secular

theory (red) and from N-body simulation (black) and find reasonable agreement. It

appears as if the system librates about ∆$ = 180◦, but is near the anti-aligned

separatrix so that the libration amplitude is large. This is an example of a general

observation that extrasolar multi-planet systems tend to be near a secular separatrix
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Figure 9.1: The current apsidal state of the HIP 14810 system. We show the orbits
of both planets on the e exp(i∆$) plane, similar to the lower plots in Fig. 8.5 and
8.7. The red curves represent the solution of secular equations, while black curves are
obtained through an N-body simulation. The orbits librate about ∆$ = 180◦, with
the libration width ∼ 100◦ predicted by the secular theory, and ∼ 140◦ measured
from N-body simulation.

(Barnes and Greenberg, 2006b). The near-separatrix state of the system is surprising;

perhaps it is due to insufficient tidal circularization. HIP 14810b is about 0.07 AU

from its star, which is relatively far compared to other “hot-Jupiters” so that tidal

dissipation may simply too weak to significantly alter the apsidal state.

How does the current state of the system compare with the expectation from

tidal-damping theory as developed in Chapter 8? In Section 8.2, we found that if

tides are strong enough, every system will rapidly damp to either apsidally aligned

or anti-aligned. Which mode the system finally ends up in depends on the damping

rates given by Eqs. (8.4) and (8.11). In a secular eigen-mode, the outer and inner
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orbits have a predictable eccentricity ratio (Eqs. 8.5 and 8.12). In Fig. 9.2, we show

a contour plot of the eccentricity ratio between the two orbits for the more slowly

damped eigen-mode in the parameter space (q, α), assuming a fixed inner planet b

and varying the parameters q and α of planet c. The dashed line divides the space into

a slow aligned mode region (top left) and a slow anti-aligned region (bottom right). In

the blue area, the lifetime of the aligned mode is longer than the age of the systems; in

the red region, the anti-aligned mode can last the age of the system; and in the white

middle area, both modes should have already damped away. Hence, we expect to find

that the two orbits are apsidally aligned or in aligned libration in the blue area, and

they are anti-aligned or in anti-aligned libration in the red region. The boundaries of

these areas depend only on the age of the system and the tidal damping timescale.

We have assumed an age of 4 billion years and a tidal circularization timescale at 500

million years. An older system age and/or faster damping rate will expand the white

area and further constrain the outer planet. The actual location of planet c in the

HIP 14810 system is marked in both plots of Fig. 9.2. It resides in the more slowly

damped anti-aligned mode region, as expected from Fig. 9.1.

A comparison between the two plots in Fig. 9.2 shows the effect of relativistic

pericenter precession. The anti-aligned area (red) diminishes while the aligned area

(blue) expands into the region of low-mass distant companions (small q, small α,

the bottom left corner in the plots), systems in which the relativistic precession rate

competes with the planet-induced ones (σ ∼ $̇GR). The shrinking of the red area

agrees with Eq. (8.11) which shows that relativistic precession tends to increase the
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X X

a) without general relativity b) with general relativity

Figure 9.2: Orbital states of possible companions for HIP 14810b without (a) and
with (b) general relativistic precession. We have assumed the tidal-damping timescale
to be 500 million years. Each point in these q - α plots represents an outer companion
with corresponding mass and semi-major axis. The dashed curve divides the plane
into regions in which the aligned mode damps faster (top-left) and the anti-aligned
mode damps faster (bottom-right). Furthermore, in the colored regions, either the
aligned mode (blue) or the anti-aligned mode (red) can survive tidal dissipation and
last longer than the age of the system (4 Gyrs). The solid contour lines represent the
eccentricity ratio ηs of the long-lived (slower) mode. The location of HIP 14810c is
marked by the black cross.

damping rate of the anti-aligned mode and to decrease that of the aligned mode.

9.2 Constraints on Possible Companions of “Hot-Jupiters”

If tidal dissipation is strong enough, an extrasolar two-planet system should have

evolved into either an aligned or an anti-aligned apsidal-lock state. Equations (8.9)

and (8.11) thus provide a constraint on these three parameters: the mass ratio q of

the two planets, the semi-major axis ratio α, and eccentricity ratio of the two orbits.

For a lonely “hot-Jupiter” with confirmed parameters and non-zero eccentricity, we

can predict possible companion that may force its orbital eccentricity. We illustrate
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our method with a few examples.

Figure 9.3a is similar to Fig. 9.2, but now for the planetary system around the M

dwarf star GJ 436; here we plot contours of the companion’s eccentricity rather than

the eccentricity ratios. With only 1.3 Neptune masses, GJ 436b is the first Neptune-

sized extrasolar planet detected through a radial velocity survey (Butler et al., 2004).

It has recently been found to transit its host star (Gillon et al., 2007), which removes

the uncertainty in the determination of its mass. The planet is 0.023AU away from

the star (orbital period ∼ 2.6 days), and has an orbital eccentricity of about 0.16.

If this eccentricity is due to another planet and the system has damped to an eigen-

mode, then Fig. 9.3a excludes almost the entire anti-aligned region and all companions

that are less that 1/10 as massive as GJ 436b, or more than 5 times further away

– these planets are simply too weak to force the inner planet’s eccentricity. In fact,

if we consider the age of the system, which is estimated to be older than 3 billion

years (Gillon et al., 2007) and probably much older, most possible outer companions

are much more massive than GJ 436b. Larger planets in this region are very likely

within the radial-velocity detection window, but none have been found. Most planets

outside this region, however, cannot be observationally excluded. Recall that the

boundaries between the long-lived mode zones and the short-lives one (dotted lines

in Fig. 9.3a) depend on both the tidal timescale and how long the eccentricities

have been damped. We have assumed that tides have acted to circularize the orbits

throughout the evolution history of the system. It is possible that a later event, such

as a resonance crossing, excites the eccentricities and tides have worked for a much
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Figure 9.3: Eccentricities of possible companions for the “hot-Neptunes” a) GJ 436b,
and b) GJ 674b. These plots are similar to Fig. 9.2b, except that contours show
the eccentricity of the outer orbit, and dotted lines replace boundaries between the
colored areas; between the dotted lines, both modes should damp away within the 3
Gyr age of the system.

shorter time. This pushes the two dotted lines toward the boundary between the

faster aligned zone and faster anti-aligned zone (dashed line in Fig. 9.3a), and makes

more parameters available to the outer planet. Furthermore, the secular theory is

accurate only for small eccentricities. For very eccentric orbits, e.g., e > 0.4, further

analysis is necessary to include higher-order terms in the disturbing functions.

Another recently discovered “hot-Neptune”, GJ 674b in shown in Fig. 9.3b. This

system is very similar to the GJ 436 system, except that the star is much younger.

With an age of only about half a billion years, most of the parameter space in the q−α

plane is available for a possible secular companion. The slightly larger eccentricity

of GJ 674b, however, pushes the eccentricity contours towards the upper-right in

Fig. 9.3b, which means that all possible companions with small masses or large semi-

major axes are excluded.
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The assumption of an apsidal lock that we made at the beginning of this section,

however, is probably too strong. What we have seen for the HIP 14810 system may

be true for most systems: although one mode has been significantly damped, its

amplitude is not yet near zero. In this case, for a “hot-Jupiter” with known mass,

semi-major axis, and eccentricity, the eccentricity of the companion is still free to

vary somewhat even for a given mass and semi-major axis. We have shown that the

existence of a companion certainly slows the tidal circularization of “hot-Jupiters”

and can maintain non-zero orbital eccentricities.
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Part IV

Conclusion
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Chapter 10

Conclusion and Future Directions

Modern computing technology has made it possible to study the orbital motion of

the planets over their 4.5 billion year histories, and we are rapidly approaching the

point where this will also be possible for satellite systems. Numerical simulation

also proves to be an effective tool to test analytical theories. In this dissertation, we

have combined numerical methods with mathematical techniques to address several

problems in both resonant and secular orbital dynamics. In the last chapter of this

dissertation, we summarize our results, tie up some loose ends, and indicate some

promising future directions.

10.1 The Inner Neptunian System

In Chapters 3 - 6, we have shown that the dynamics of the small inner Neptunian

satellites are strongly affected by Neptune’s large moon, Triton. We derived mathe-

matical tools (Chapter 4) to analyze resonances in this system, and we numerically

studied the details of resonance passages between Proteus and other satellites. Tri-

ton’s huge mass and large orbital tilt lead to strong three-body resonant kicks in the

traditional two-body resonant zones between a pair of small satellites (Chapter 5).

We showed that these resonant kicks can explain the existing non-zero orbital tilts of
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three of the four largest inner moons. If the satellites have a common mean density

between 0.4 and 0.8 g/cm3, the inclinations of Proteus, Galatea, and Despina can be

excited by three or four Proteus resonance passages. The tilt of Larissa, however, is

twice as large as can be explained with these resonant events alone. In Chapter 6, we

suggested that a resonant capture event might have tilted Larissa’s orbit, and that

this event might also be responsible for the large inclination of Naiad (Table 3.1).

10.1.1 The 4.7◦ Inclination of Naiad

The origin of Naiad’s large tilt was first investigated by Banfield and Murray (1992),

who undertook a resonant-history analysis for the inner Neptunian satellites similar

to our study in Section 3.2. Since the importance of three-body resonances was not

known at the time, the authors suggested that Naiad might have been trapped into

one of the standard two-body resonances with another satellite. Because two-body

resonances are so weak (cf. Fig. 5.2), the probability of resonant capture is low,

typically only a few percent. The number of possible resonance passages, however, is

large and the total capture probability could reach ∼ 76% with multiple resonance

passages invoked (Banfield and Murray, 1992).

With our discovery of the strong three-body resonances with Triton, resonance

trapping is much more probable. Our numerical observations show that the capture

probability for a zero-degree-inclined Naiad approaches one hundred percent. In

other words, Naiad would likely be trapped into the first three-body resonance it

passes across, as shown in Fig. 10.1. This figure shows that Naiad and Galatea are
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Figure 10.1: A numerical simulation in which Naiad and Galatea are trapped into
their 5:3 mean-motion resonance with Triton. The corresponding resonant angle
φiN iT = 5λG − 3λN − Ω̃N − ΩT is shown in the bottom panel.

trapped into a 5:3 inclination resonance with Triton when Galatea migrates inward

and the two orbits converge. During the resonant trapping, the free inclination of

Naiad grows in time, and its semi-major axis decreases with Galatea’s to keep the

satellites in resonance.

In order to explain Naiad’s current tilt, the satellites must exit the resonance

when ifrN ∼ 4.7◦. Multiple excitations are unlikely because the capture probabil-

ity decreases dramatically once the satellite’s inclination is above a critical value

(Borderies and Goldreich, 1984). Several mechanisms can break the resonance lock,

including additional mean-motion resonances, secondary resonances (resonances be-

tween the libration frequencies of nearby mean-motion resonances, Malhotra, 1990),
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and possible non-resonant perturbations from other satellites. A systematic study

is necessary to understand which resonance, with which satellite, might have been

responsible for the capture, and to determine how resonance evolves after capture.

Besides providing an explanation for the large inclinations of Larissa and Naiad, a

successful theory would also further constrain tidal models.

10.1.2 Confinement of Neptunian Ring Arcs

The puzzles in the inner Neptunian system arose even before the discovery of the six

small satellites. After the first evidence for the existence of Larissa (Reitsema et al.,

1982), several observations of stellar occultations (e.g. Hubbard et al., 1986) implied

possible narrow ring arcs around Neptune, which were later confirmed during the

Voyager 2 fly-by (Smith et al., 1989). Goldreich et al. (1986) suggested that the sharp

edge of the rings could be confined by a Lindblad resonance (φ = (p+1)λ2−pλ1−$1)

with a hypothetical satellite, and further proposed that the ring arcs were azimuthally

confined by an inclination co-rotation resonance (φ = (p + 2)λ2 − pλ1 − 2Ω1). This

shepherd satellite turns out to be Galatea, whose 43:42 resonance multiplet sits near

the ring arcs (Porco, 1991). More recent observations (Sicardy et al., 1999; Dumas

et al., 1999), however, showed that the rings are not centered on the inclination co-

orbital resonance. This led Namouni and Porco (2002) to seek a new explanation

in which the non-zero mass of the ring arcs moves the location of the resonances.

These authors invoked an eccentricity co-rotation resonance to confine the ring arcs

and estimated that the total mass of the ring arcs is 0.002 − 0.2 times the mass of
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Galatea, which is large for such a narrow ring system.

The requirement for a massive ring might be relaxed if Triton’s effect were to be

considered. Although none of the strong Triton resonances are located especially close

to the ring arcs, and the standard two-body resonances are not shifted significantly,

the system is complicated and warrants a more careful investigation.

10.2 Perturbed Secular Interactions

Additional perturbations that affect planetary orbits, such as mass accretion and ra-

dial migration, may interfere with secular interactions. In Chapter 7 - 9, we examined

the case of slow eccentricity decay due to tidal drag. Because of secular interactions,

eccentricity damping imposed on one orbit can be transmitted to the other, and the

timescale for total damping can be substantially slowed. The current eccentricities of

“hot-Jupiters” might be secularly forced by unknown companions. Here we expand

our attention to consider the effects of additional perturbations on the system.

10.2.1 Effects of Adiabatic Changes in a and m

Although tidal circularization is important for “hot-Jupiters”, additional perturba-

tions on orbits may be important in other situations. Here we consider both planet

migration and mass loss or accretion. For the simplest case in which the mass of the

outer planet is much less than that of the inner planet, or q � √α, Eqs. (7.11) and

(7.12) can be simplified to:

gs+ = 0, gs− = σ
√
α; ηs+ = β, ηs− = −∞;
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and the general solution of the two orbits are (Eq. 7.16)

h1 = e+,

h2 = β e+ + e− exp[i(σ
√
αt+ ϕ−)].

Thus, the inner orbit is not affected, and the eccentricity of the outer orbit consists

of a “forced” component eforced = β e+ and a “free” component efr = e−, similar to

the discussion in Chapter 4 where Triton forces the inclinations of small Neptunian

satellites. Note that for a small free eccentricity, these are aligned orbits. Similar

arguments for a system with an inner planet of negligible mass (q � √α) also lead

to a near aligned configuration:

h1 = e+ + e− exp[i(σqt+ ϕ−)],

h2 =
1

β
e+.

For slow adiabatic changes of any of a1, a2, m1, and m2, we find that the free

eccentricity is an adiabatic invariant of the system, so it remains nearly constant

over time. For more general cases where the two masses are comparable, we expect

that similar adiabatic invariants exist, but to date we have been unable to prove this

assertion. If these more general adiabatic invariants can be found, we would be able

to determine the response of a system to a broad class of slow perturbations.

10.2.2 Systems with Three or More Planets

Approximately 10 planetary systems with 3 or more planets have been discovered

to date, which motivates us to extend our approach to N planets. Since the system
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in Eq. (7.9) is linear, a solution exists for any N . The solution to the characteristic

equation for the eigenmodes requires solving a polynomial of order N, which is best

done numerically. The identification of the eigenmodes, however, can be explored

qualitatively. Recall that for a two-planet system, there are two natural apsidal co-

precession states (aligned and anti-aligned as in Fig. 7.2) and they comprise the

two eigenmodes. With three planets, it can be shown that all eigenmodes consist of

aligned and/or anti-aligned pericenters. There are four possible states (Figure. 10.2)

while the system can have only three eigenmodes. We have found that for different

systems, sets of three eigenmodes are selected from the four natural states: the fully

aligned and fully anti-aligned states are always eigen-modes, while the remaining one

depends on mass ratios and orbital spacings. For N (> 3) planets, it is even more

complicated to determine N eigen-modes from 2N−1 candidates, but is interesting to

pursue.

The application of this study would

Figure 10.2: The natural apsidal co-
precession states for a three-planet system.
Arrows show the direction from the star to
the orbital pericenters for each planet, with
the inner-most planet on the top. The left-
most (fully aligned) and rightmost (fully
anti-aligned) sets are always eigenmodes.

not be limited to extrasolar planetary

systems, but could also be used to fur-

ther understand the dynamics of our own

Solar System. One long-standing puzzle

is the origin of the inclinations and ec-

centricities of the giant planets. Much attention has been paid to the large eccentric-

ities seen in other planetary systems, leading to speculation that large eccentricities

might be the norm and that our Solar System is an exception. On the other hand,
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the simplest disk formation scenarios suggest that planetary orbital planes should be

precisely parallel to one another (as the case of inner Neptunian satellites discussed

in Part II), and planets should all orbit along perfect circles. This may indeed be the

primitive state, with all non-zero eccentricities and inclinations generated by subse-

quent planetary interactions (Tsiganis et al., 2005) and/or interactions with the gas

and planetesimal disks.
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