1 Introduction

There has been an increasing emphasis in using statistical techniques for modeling and
processing images in the image analysis community. Among the several possible 2-D models
for images most of the research has been restricted to Markov random field (MRF') models,
rightly so, because of the local statistical dependence of images. MRF models have been
used to characterize prior beliefs about various image features such as textures, edges,
region labels etc. Also, establishment of the connection between MREF models and the
Gibbs distribution has resulted in the influx of many statistical mechanical techniques
like simulated annealing [19], mean field methods [14] in image processing. Problems in
both statistical mechanics and image processing involve a large number of micro states
(pixels), with their local interactions deciding the properties of the macro state (image)
and the complexity of the problem arises from the fact that any desired optimization has
to be performed over a large number of states. Introduction of the Markov models in a
Bayesian framework has resulted in a unified, coherent framework for processing images
which enables posing many image processing problems as statistical inference problems.
In the rest of this section, we provide a brief review of literature on texture segmentation
and multiresolution techniques.

Texture classification and segmentation problems have been addressed by several au-
thors with a wide range of different approaches that can be broadly classified into two,
namely, structural and statistical approaches. Structural approaches are aimed at regular
textures that exhibit a strong structural behavior. These approaches define a basic prim-
itive and placement rules. Such techniques were used by Rosenfeld [27], Lu and Fu [23]
and Tomita [31]. Structural approaches are well suited for macro textures, but are not
useful for micro textures where it is hard to define a basic primitive and placement rules.
Statistical methods are better suited for such micro textures. Most of the early statistical
methods use first and second order properties to discriminate between textures. Haralick
[18] suggested various local statistical measures based on the gray level dependence, later
generalized by Davis, et.al. [11].

More complex statistical models using MRF's [32] emerged later and have been used



in various image processing problems. Cross and Jain [10] and Chellappa [6] have shown
the applicability of GMRF models to synthesize textures. Chellappa and Chatterjee [5]
have used GMRF models for maximum likelihood segmentation of textures. Geman and
Graffigne [16] used a general MRF model for segmentation. They showed that this non-
Gaussian MRF model was not very well suited for synthesis, but still performed well for
segmentation. Derin and Elliot [12] used Gibbs distributions and presented a non-optimal
method using dynamic programming. Manjunath et.al. [24] proposed a stochastic learning
technique to improve the ICM results and presented a neural network implementation for
texture segmentation.

The main drawback of the MRF techniques is that the minimization schemes associated
with the energy functions are iterative and are usually computationally expensive. Best
results are obtained by using simulated annealing [15] which optimizes the MAP criterion,
but is computationally very taxing. There are two different approaches that have been
used to ease the computational burden. The first is to use non-optimal, deterministic
methods that converge to a local minima, but still provide reasonably good results [1],
[14]. The second approach is to use multiresolution techniques. Two important aspects
of multiresolution approaches are, (1) divide and conquer and (2) action at a distance
[28]. Multigrid methods proposed by Terzopoulos [30], applied to some computer vision
problems substantially reduced the computation. Chen and Pavlidis [7] used a hierarchical
approach to texture segmentation, but did not directly use MRFs. Bouman and Liu
[3] used a Gaussian causal autoregressive model and a quad-tree structure to perform
multiresolution segmentation. Gidas [17] investigated the multiresolution MRF framework
to process images and showed some connection between these ideas and similar ones in the
renormalization group studies in statistical mechanics [13]. A hierarchical image analysis
scheme based on renormalization group ideas was presented by Matsuba in [25].

Cohen and Cooper [8] presented a hierarchical scheme, where the data at lower res-
olution is divided into blocks and the conditional probabilities of the blocks given the
neighboring blocks were obtained. They used a recursive scheme to calculate the within-
block and between-block interaction values. They did not try to model the data at lower

resolution by GMRF's. Lakshmanan and Derin [22] used covariance invariance approxima-



tion to approximate the lower resolution data by GMRFs. This GMRF approximation has
the property that in the associated covariance matrix the entries corresponding to pairs
of sites that are neighbors are equal to the entries in the covariance matrix associated
with the exact non-Markov density. Many interesting properties of this estimator such as
maximizing entropy, minimizing Kullback-Leibler (KL) distance can be found in [22].

In this paper, we present two schemes to estimate the parameters of GMRF's at lower
resolutions from the parameters at the fine resolution, one by directly minimizing the KL
distance (relative entropy) and the second by minimizing the KL distance (conditional rel-
ative entropy) between the conditional densities. We also show that the computations for
these two estimators turn out to be similar to traditional maximum likelihood [26], [21],
[29] and pseudo likelihood estimators [2] for GMRF parameters except that the sample
covariances are replaced by covariances calculated with respect to the exact non-Markov
measure. We also present results on the existence of different sets of GMRF parameters
at fine resolution which on subsampling results in statistically identical coarser resolution
processes. As an application, we have chosen the texture segmentation problem and per-
formed segmentation over multiple resolution using the multiresolution GMRF model. The
coarsest resolution data is initially segmented and the results of segmentation along with a
confidence measure is passed on the immediate higher resolution and so on, until the fine
resolution data is segmented. We have shown that the multiresolution technique performs
better than single resolution approach.

The rest of the paper is organized as follows. Section 2 introduces the GMRF and the
basics of the resolution transformation. Section 3 presents the Markov approximation for
non-Markov fields based on KL distance minimization and local conditional distribution
invariance approximation. Section 4 discusses the many-to-one nature of transformation of
the GMRF parameters from the fine to coarse resolution. Section 5 presents various aspects
of the multiresolution segmentation and Section 6 carries synthetic and real experiments.

Section 7 concludes the paper.



2 GMRFs and Resolution Transformation

In this section we introduce basic notations used for GMRFs in the rest of the paper and

also present results on loss of Markovianity under resolution transformation.

2.1 The GMRF Model

The GMRF models can be used on a finite, infinite lattice or on any general graph. Here
we introduce the aspects GMRF models on a finite lattice. Let 2% = {(i,5):0 < <
M —1,0 < j < N —1} be a rectangular lattice. The superscript stands for the level in

k) represents the lattice

the image pyramid, Q) being the lattice at the fine resolution, Q!
which is obtained by subsampling Q(®), & times (Figure 1). Let X®) represent a random
vector, obtained by ordering the random variables on the two-dimensional lattice QX
through a row-wise scan. The elements of Q¥ are indexed by s and ¢, where s = (s1,52).
If X© is modeled by a GMRF, then the joint probability density function of X(® can be

written as follows:

O(x O — ) = 1 ox _lx (01, T
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where ¥(% is the covariance matrix of X9,

Equivalently, the process X can be written in terms of a non-causal interpolative
process. For a site s, let 7(%) be the symmetric neighborhood that contains the set of sites
that are chosen to be the neighbors of X(© and let #(®) = (9(_07?. We always use r to index

into the neighbor set in the rest of the paper.
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where e(”), is zero mean, Gaussian noise, with autocorrelation given by:
[0'(0)]2 ifr=20
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Hence the GMRF process can be completely characterized by the set of parameters
{00 [c9]2}. Also X exhibits the Markov property,

POXO X i 45,0 €00) = POXO/XE e y0)
1 2 = g0 0027

pr U

The power spectrum S of the process X(® can be shown to be:
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where w = {wy,wy},and 0 <w; < M — 1,0 <wy; < N — 1.

2.2 Resolution Transformation

In this paper we restrict ourself to resolution transformation obtained by subsampling.
But the results can be easily extended to block-to-point type transformation, where the
coarse resolution data is obtained by averaging the fine resolution data over 2x2 window.
Other types of resolution transformation including Gaussian, Laplacian pyramids [4] have
been used in image processing literature for various other problems.

The subsampling resolution transformation is defined as:
X(k) _ Xz(k_l)

defined for all s € Q*),
Equivalently,

X = pkx© (3)

where the matrix Df, has to be properly defined.
The resulting subsampled process X *) is Gaussian, with covariance 5*) = [DF]2O[ DT,
The power spectrum of X¥) can be shown to be [22]:

1
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where r’ = (QMkrl, zﬂkrg) and Oy = {r:0<r <28 1,0 <ry <28 -1},
It can be observed that this is similar to frequency domain aliasing due to sampling, in
time series applications. It can be observed that S(*) cannot be written in the form of Eq.

(2) with a finite neighborhood. Therefore, the subsampled process X is non-Markov,

except for the special case of second order separable correlation processes [22].

3 Markov Approximations

As mentioned in the last section, the GMRF's lose Markovianity under subsampling, the
same is true for general MRFs. In the case of GMRFs, it is atleast possible to find the
probability density function (pdf) of subsampled processes, whereas in the case of general
MRFs it is not possible to obtain exact expressions for the pdf of subsampled process.
However, if the lower resolution data are modeled by the exact non-Markov Gaussian mea-
sures, conventional optimization techniques based on Markov properties cannot be applied.
In this section we show that it is possible to obtain very good Markov approximations for
coarser resolution processes. Cohen et.al [9] refer to the possibility of approximating ro-
tated and scaled textures by GMRFs. In this section two different estimators to estimate
the parameters of GMRF's at lower resolutions from the parameters at the fine resolution
are presented. We also exemplify the connection between these two estimators and the
estimators that are commonly used to estimate the GMRF parameters from a data sample,

namely, the maximum likelihood and pseudo likelihood estimators.

3.1 Kullback-Leibler Distance Minimization

In this section, we show that given any pdf p, it is possible to obtain a GMRF approxi-
mation of p by minimizing the KL distance D(p || ¢) [20], where ¢ belongs to the family
of GMRF pdfs. KL distance measure is widely used to obtain approximate probability
measure with desired properties. The problem at hand, can be stated as follows:

Given the probability measure p(x), find another probability measure ¢*(x) such that:

*

¢ = argminD(p || q)



p(x) (5)

= argmin » p(x)lo
gmi %: (x) 2 )
where,
1

|
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and the covariance matrix ¥ is such that, the power spectrum is of the form in Eq. (2). As
seen before, GMRFs can be completely characterized by (8, 0?) and ¢(x) can be written in
terms of these parameters.

The quadratic form x? ¥7'x can be simplified as:

where
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Using the above equations, ¢(x) can be written as:
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Rewriting Eq. (5):
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where F,(.) represents the expectation with respect to the p-measure.

EJC(r)] = Ep[z X Xsyr]

SEQN

= (MN)E,[X: Xs4r] (7)

Remark: Observe that Eq. (6) is very similar to the maximum likelihood expression,
except that the C(r) values obtained from the data are replaced by expectation values with
respect to the p - measure. Hence, in terms of computation the maximization is exactly
similar to the maximum likelihood computation. Second, given the p - measure, we only
need a few moment values FE,[C(r)], followed by the maximization of Eq. (6) to obtain
the Markov approximation. Lakshmanan and Derin [22] also remark that their covariance
invariance estimator which also minimizes the KL distance maximizes the likelihood of a

sample observation with sample covariance equal to the covariance of the p - measure.

3.2 Local Conditional Distribution Invariance Approximation

We propose another method to estimate the GMRF parameters of a non-Markov process
based on a KL distance (conditional relative entropy) measure between local conditional
distributions. In MRF applications all optimizations are performed based on the local
conditional distribution, so, we believe an estimator based on that should be better suited
for image analysis applications.

The Markov approximation presented in this section is based on linear estimation.
Before presenting the details, we will provide a known result regarding the linear estimation
of a GMRF process. Let Z be a GMRF defined by (6, 0?) with a neighborhood . Then
the linear estimate of Z; based on the elements of 1 is given by:

ZAS = Z 0T25+7’

reY

and the mean square error

The conditional density Pr(z;/z.,r € 1) is gaussian with conditional mean 3, ., 0,2,

and conditional variance [o]%.



Let X be a random field with a non-Markov probability measure p(x) and let ¢*(x) be
a GMRF approximation such that:

¢ (xs/Tsyr, 7 €M) = arg rrlqinD[p(xs/xs+T,r en) || ¢les/zspr,r €1), (8)

where the minimization is performed over the entire family of GMRFE pdfs with a chosen
neighborhood n. In addition, under certain conditions, ¢*(xs/xsyr, v € ) is exactly equal
lo plaf2aer.r € ).

Since ¢(x) belongs to the family of GMRF density, ¢(xs/xs4,) will be of the form in
Eq. (1). The following results regarding the parameters (6%, [c%]*) corresponding to ¢*(x)
can be obtained from Eq. (8).

To simplity the notations, let Y be the vector containing the neighborhood random

variables in a proper order. For a first order neighborhood,

YT = ( Xoro) Xs—0) Xot01) Xs—(0,1)- )

* 27 % = arg min X Y (xS/Y)
(1O = o i T el (S

= arg max Zp (zs,y)log g(ws/y)

(002
1
= argmax »_ p(,y)[— §log ol — —(xs—>_0,y,)°]
(6702)x5,y TEN
Ly 4L —> 0.V,
= arg min - logo?
(0.02) 2 207 ren

(9)

It can be shown that the 8™ parameters corresponding to ¢*(x) are the coefficients of

the best linear estimator and can be obtained as follows:

0" = arg rr&nEp[Xs — Z ozTXS_H]Q (10)

TEN

and using the §* obtained, we can estimate the [0?]* as,

(07 = E,[X, — 0 X1 ] (11)

TEN
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then,

0 = arg1(1rloié1r1Ep[X5—QzTY]2

0" = E(X Y [E(YY) (12)
and

] = Ey(X])

= Ep(X )

— Ep(XY)[E, (YY) Ep(X,Y)
— [0 E,(X.Y). (13)
In addition, the estimated §* parameters should satisfy the positivity conditions [6]:

L— 10776 >0 VseQ

Now, returning back to multiresolution discussion, let X be a GMRF defined by
(Q(O), [0@]?) and X be the process obtained by subsampling X(® k times. The non-
Markov X*) can be approximated by a GMRF by minimizing Eq. (8). The minimization
requires the autocorrelation values E(Xs(k)Xs(i)T) which can be computed, given the GMRF

parameters for X(® as shown below.

X = X
EXWPX®y = px¥x©

s 2k s Qk(s—l—r))

For any two lattice sites u and v in Q) the correlation is given by,

) = 1 (ARTAR) AN AR™)
u MN 1—[0“7¢

s€Q(0)

where \i = eXp(\/—l%”).
Algorithm:

1. Compute the autocorrelations required in Eq. (12) using Eq. (14) and the inverse of
the matrix [E(YYT)]_I.

2. Compute 8 using Eq. (12).

10



3. If the computed 0F) satisfy the conditions 1 — [Q(k)]Tqﬁs > 0, for every s in Q%) then

compute [c™]? from Eq. (13) and stop.

4. If the conditions are not satisfied, then scale 8% to,

0.99

ng) — Q(k) -
max,cq [0 ¢,

5. Compute a direction ¥ such that

[V O] g = =[S (O)] g

where f(a) = E,[X") = 3, ¢ 0 0, X2

S

6. Find the largest m for a fixed g (3 < 1), such that

and Qfﬁgl satisfy the positivity condition.
7. Go to step b if

| FO) = F(08)) 1>~

Lemma: Under the assumption that the covariance matrix with respect to p - measure
is positive definite, the function in Eq. (10) to be minimized is convex and is minimized
over a convex set defined by 1 — [Q(k)]Tgﬁs > 0, for every s in ). Hence the minimization
can be performed by a gradient descent procedure.

Remarks:

1. If the " obtained from Eq. (12) satisfies the positivity conditions, ie., the algo-
rithm terminates at step 3 and given that p is gaussian, then it can be shown that
plas/@spr,r €0) = ¢ (xs/sqr,” € 1), both conditional densities are gaussian with con-
ditional mean Y, ¢, 02,4, and conditional variance [0*]*, thus the estimator preserves the
local conditional distribution.

2. It is worth observing that solving Eqs. (10) and (11) is similar to the pseudo likelihood

estimate [2] where the GMRF parameters are obtained by minimizing the products of
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local conditional densities over the entire lattice. The pseudo likelihood estimator uses the
sample covariance obtained from the observed sample field, whereas our local conditional
distribution invariance estimator uses the covariances calculated with respect to the p -

measure.

3.3 PSD Comparisons

We show the validity of local conditional distribution invariance approximation to esti-
mate the GMRF parameters at lower resolutions by comparing the exact power spectrum
function of the subsampled process and the power spectrum associated with the GMRF
approximation.

We show the results for 8 = {0.2, 0.1, —0.25,0.15} and [¢(®]? = 6.0. Let S be the
exact power spectral density function at the k-th subsampled stage and let M .S (m) be

the power spectrum for the m-th order Markov approximation. We calculate the normal-

E: (k) (k)
. . k |Sw _Msw (m)|
ized absolute difference D(k,m) = (wealk))

? szze(Q(k))

of lattice sites in Q). Table 1 shows the values of D(k,m), for values of k = 1,2, 3. Figure 2

, where size(Q®)) is the number

shows the power spectrum at the fine resolution calculated by Eq. (2) and Figure 3 shows
the exact power spectrum (non-Markov)at the once subsampled resolution calculated by
Eq. (4). Figure 4 shows the power spectrum for a third order Markov approximation with
GMRF parameters obtained from the local conditional distribution invariance approxima-
tion and Figure 5 shows the same for a fourth order Markov approximation. Figure 6 shows
the exact power spectrum (non-Markov) of twice subsampled process. Figure 7 shows the
second order Markov approximation and Figure 8 shows the third order Markov approxi-
mation. From these figures and Table 1, it is easy to see that the power spectrum of the
Markov approximations are very similar to the power spectrum of the exact non-Markov

processes.
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Level (k) | Order (m) | D(k,m)
0.72
0.32
0.26
0.21
0.023
0.022

[N]
W N W N W

Table 1

Comments:

1. For any k, D(k,m + 1) < D(k,m). This is true because the GMRF approximation

of order m 4+ 1 includes order m.

2. We have observed that D(k + 1,m) < D(k,m), ie., as the level of subsampling

increases the order of the GMRF approximation need not be increased.

3. If the order of the GMRF model at the finest resolution is m, then an m or m 4+ 1
order GMRF approximation at the first level and an m order approximation at the
subsequent levels results in very small values of the normalized absolute difference

D(k,m) and hence can be used as a good GMRF approximation.

4 Parameters Resulting in Identical PDF's at Lower
Resolution

In the previous section, we suggested methods to approximate subsampled processes by
GMRF's assuming that data at the fine resolution is modeled by a GMRF. In this process, it
is necessary to analyze that if different GMRF parameters at the fine resolution can result
in the same process (probabilistically) at the coarser resolutions. Since we are dealing
with Gaussian processes, it suffices to check the covariance matrices of the subsampled

processes instead of the pdf. However, the covariance elements are complicated functions

13



of the parameters. Therefore, we look at the power spectrum of the subsampled processes
which are simpler functions of the parameters. We show that there exists different sets of
GMRF parameters, which on subsampling result in the same pdf at the lower resolution
and hence the same estimated parameters of the GMRF approximation.

Case 1: First order GMRF on Q)

The first order GMRF model is defined by the parameters (8¢ ), 80,1, [0@]?) and the

power spectral density function is given by:

o

5O = . 15
1 —2(01,0) cos 2”# + 0(0,1) cos 2”%) (19)
The power spectral function on subsampling is given by:
1
1) _ 0 (0) (0) (©)
S = 21+ S a0yt S 0yt Soyar ) (16)
By using Eq. (15) in Eq. (16) and after some manipulations, we obtain
s =
1 1
2 [g0]2 + .
[ [1 — 4(01,0) cos 2”# + 0(0,1) cos 2%’2 )2 1 —4(0q,0) cos %ﬁ — 0(0,1) cos 2”%)2]
(17)
Claim:

For a first order GMRF at the fine resolution, the only set of parameters that result in the
same power spectrum at the lower resolution is (6(1.0), f(0.1)), (—0(1,0), 9(0,1))-(0(1,0), —0(0,1))
(=000, =0 (0,1))-

Proof:

From Eq. (17) it can be infered that, the sets of parameters (6(10y, 00.1)), (—0(1,0), f(0,1))
(01,0, —90,1)), (=010, =0 (0,1)) Will result in the same S, For these sets of parameters the
subsampled processes are statistically indistinguishable. We need to show that these are
the only set of parameters that result in the same power spectrum at the lower resolution.

Since the power spectrum has to be the same for every 0 <w; < M —1 and 0 < wy <

N — 1, we can substitute specific values of (wy,ws), to get the necessary conditions.

14



Let, wy =0 and wy = N/4

5 4[]
OF) 1 — 403,

Hence, the only possible values of ;) that will result in the same st

)
(0,%)
-0(1,0)- The same can be proved for 0 ;) by taking w, = N/4 and wy; = 0. This proves our

are 010y and

claim.

Case 2: Second order GMRF on Q©
The second order GMRF model is defined by the parameters (6 o), 0(0,1)0(1,1), 0(=1,1), [0'(0)]2)

and the power spectral density function is given by:

)2
§0) — .
T 1= 200 cos i A fo) cos HgE A Oy cos(G - #E) + O cos (it — H2))

The power spectral function on subsampling is given by:

(1) —
Sy =
Lo(©))2 1
* 1=2(6(1,0) cos T3P +0(0 1) cos T2 401 1) cos( T+ T2 )+ —1,1) cos( Gt = T2))
+ 2 Pl L 2 7 3 5
1—2(9(170) cos %—H(Oyl)cos %—0(171)Cos( Tjr\jl—l— T;:‘,Q )—0(_171)COS( T;\;‘I)l— T;:;Q )

1
+ 1—2(—9(170) cos 275\2)1 +0(0,1) cos 27;:;2 —0(1,1) Cos(2§2)1 —|—2T;:;2 )—9(_171) cos( Tjr\jl _ 2T )
_I_

1
1—2(—9(170) cos 27;\2)1 —8(0,1) cos 27;:;2 +0(1,1) cos( Tjr\jl —|—2T;:;2 )+€(_171) Cos(2§2) -

)

Z

)

—
N
EY
€

N
—
=

-

(18)

Claim:

For a second order GMRF at the fine resolution, the only set of parameters that result in
the same power spectrum at the lower resolution is,

(01,002 90,1) 01,1y O-1.1)s (=001.0)5 90,0, =0(1,1)s =0(-1,1))5

(01.0)» =00,1): =01,1): =0=1.1))s (=01,0) =00,1), 01,1y, O-1.1))-

Proof:
By observing Eq. (18) it can be infered that the above four sets of parameters will result
in the same SS). The constraints we have obtained on (0(170), 0(071)) for the first order case

also hold good here.

15



Let, wy = M /4 and wy = N/4,

4[0(0)]2
’¥) - 1 - 4(0(171) - 0(_171))2

—
~—

(
S(

=~z

Therefore, a constraint on the set of (0(171) — 0(_171)) that can result in the same Sqful) 18,

| (0a,1) — O(=1,1)) |= constant. (19)
Let, wy = M 4+ 5o that cos(23t — 222) = 0. For convenience, let, cos(23%) = ay,
COS(Q?\(;&)) = oy and COS(27]T\‘/‘[’1 27;\‘;’2) = a3, Writing the expression for S{1):

1) _
(w1, 55+
2(1—20(16’(170)) + 2(1+2a1€(170))
(1=2010(1 0))* —4(a20(0,1)toab11))? (14201001 ,0))* —4(02000,1)—ab(1,1))?

(20)

If (=010, 0(0,1), (9(1,71), 0(_’171)) should result in the same spectrum as (0(1,0), 00,1y, 01,1y, 9(=1.1))
for all wy in Eq. (20), then
b1y = —f01)-

Combining this result with Eq. (19) implies that

Similar results can be shown for the other sets of parameters and for higher order

processes.

5 Texture Segmentation

Texture segmentation problem is the labeling of pixels in a lattice to one of V' texture
classes, based on a texture model and the observed intensity process. Each site in the
lattice carries a class label from (1,2,...,V) and this label process is modeled by an MRF.
We do not directly observe the label process, but a function of the labels, the intensity
process. The intensity process is modeled by a GMRF, the parameters (8, 0?%) of which
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depend on the label process at that site. The goal is to estimate the unobserved label
process from the observed intensity process by optimizing a suitable error criterion.

The following conventions are used. The GMRF parameters corresponding to label
v, (v € {1,2,...V}) are written as (f(v),o%(v)). The symmetric neighborhood for the
GMRYF is denoted by n and for the MRF label process by # and the index r is used to
index through the neighborhood of the both label and intensity processes.

The intensity process is defined as follows:

1
P(Xs=a;/Ls =v,X,,L,,r €) = ——exp{— YT Z@ Tsir) 2 bo(21)
o2

2102 (v) =

The above equation is exact if the label field is homogeneous in the 5 neighborhood. If
not, the intensity values corresponding to the site where L, # v can be replaced by the
mean value.

The label process is modeled by an MRF. The following model is also called a pairwise
interaction model.

P(L=1)= lexp (B> U(L)
s€Q

where, U(l,) is the number of neighbors in v that have the same label as I;.

The local conditional probability of the label process is given by:

exp(8U(Ls))
Zl;:(Lz,...V) exp(BU(L;))

Now given the intensity process, the label process can be estimated by minimizing

P(Ls/L,,r €)=

(22)

a suitable criterion. The mazimum a posterior (MAP) error criterion solution can be

obtained by:
maxLP(X L)= maxLP(L/X)P(X). (23)

This optimization requires stochastic relaxation methods and is computationally very ex-
pensive. So, we restrict ourselves to iterated conditional mode (ICM) method, a greedy

algorithm that converges to a local maxima. ICM solution is obtained by:
maxy,, P(Ls/L,, X, X))
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maXLS P(XS/XT7LSvLT)P(Ls/LmXT)
maxy,, P(Xs/X,,Ls, L,)P(Ls/L,) (24)

This is equivalent to,

n%m log(o(Ls =v)) + ! )[:1;5 — Z@T(LS = v)xyy, ) — BU(Ls = v) (25)

20-2(1) TEN
the minimization is performed by visiting the pixels in raster scan for all s € ) and stopped

when no further changes in the labels occur.

5.1 Multiresolution Segmentation

The segmentation algorithm presented above is a singe resolution algorithm. As we have
discussed in the previous sections, data at lower resolutions can be approximated by a
GMRF process. Thus the same algorithm can be applied at lower resolutions too. Our
multiresolution algorithms includes the following steps. First, given the number of classes
and the associated parameters at the fine resolution, the GMRF parameters at lower
resolutions are obtained by the local conditional distribution invariance approximation as
discussed before. Then segmentation is performed at the coarsest resolution by minimizing
Eq. (25) with the corresponding parameters and the results of segmentation are passed on
to the immediate higher resolution and this process is repeated until the fine resolution is
reached. At each resolution a confidence measure is attached to the segmentation result
at each pixel and propagated to the finer resolution. We address issues regarding the

confidence measures in this section:

5.1.1 Confidence Measures

After obtaining the segmentation result by ICM convergence at one resolution, the results
have to propagated upwards to the immediate higher resolution. Since we obtain reso-
lution transformation by subsampling, we have a quad tree type of graph. If L™ is the
segmentation result at the kth resolution, the labels in the (k — 1)th level are initialized

as:

— k
L= =L, (26)
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In addition, at level k, after the ICM converges, we attach a confidence measure C*)
to the segmentation results obtained at site s.

At level k. after the convergence of ICM iterations, let v and v be such that,
v, = arg ue{?ﬁ%v}P([JS =v/L,, X5, X,)

g = arg | max o P(Ly=v/L, X, X))

and the confidence measure is defined as,
o) _ P(vs/L,, X5, X))
T P LX)

These confidence measure at level k are propagated upwards to level £ — 1 in the same

(27)

manner as in Eq. (26). At level k, ICM is restricted to only those pixels with confidence
measure such that,
1
i

where ¢¥) is a confidence threshold at level k. Also from the definition,

> k) (28)

For the coarsest resolution ¢t =0, ie., ICM is performed over all sites in the lattice.
The confidence measure defined in Eq. (27) has a hypothesis testing interpretation.
The ;s expression is exactly same as the hypothesis test ratio to compare the hypotheses

that the label at site s is © or ©. This interpretation can be used in the following ways:

1. In an application, if misclassification between textures vy and vy results in a higher
misclassification cost, say a (¢ > 1), compared to other types of misclassification
which have a cost of 1, then at the end of ICM iteration, if v, = vy and ¥, = v, or
vice versa, the confidence measure C; at that site can be replaced by % to reflect

the higher misclassification cost.

2. If at a particular resolution the parameters corresponding to different textures are
such that discrimination between some textures are low, while the rest of the textures
can be easily discriminated. In such cases, if © and v belong to the set of textures that
have low discrimination, then the result of classification at that site is not reliable

and hence the C; can be set to zero.
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5.2 MRF on Resolution Transformation

We have already addressed the issue of modeling GMRFs at lower resolutions. The label
process in the two-tier model is defined by an MRF. This process also loses Markovianity
under resolution transformation and can be approximated by a Markov process at lower
resolutions. For the pairwise interaction model there is only one parameter 3 to be esti-
mated in Eq. (22). However, it is hard to find approximations as we did in the case of
Gaussian fields. Fortunately, segmentation results are not heavily dependent on this pa-
rameter. Therefore, we have chosen 8 = {0.5,0.3,0.15,0.1,0.05} for different resolutions
with the smaller values used at coarser resolutions. We have experimented with different
sets of values of # and found that parameter of the label MRF process does not have a

great bearing on the segmentation, hence a rigorous estimation may not necessary.

6 Experiments

We present experimental results with simulated, Brodatz texture images and real satellite
images and show that the multiresolution algorithms performs better both in terms of
the classification accuracy and computational requirement. In all the experiments, the
confidence threshold ¢*) = (0.6,0.25,0.15,0.1,0.05), is used for the different levels. In all
cases the misclassification percentage error is reported. Maximum likelihood initialization
is used for the ICM in the single resolution and at the lowest level for multiresolution.
Multiresolution results presented in this section are obtained by performing the algorithm

over three resolutions.

6.1 Synthetic Image

We synthesised texture images using the technique given in [6]. Three third order GMRF
textures are generated with parameters {#= (0.0934154, 0.520252, 0.0303413, 0.0180476,
-0.0216434,-0.148331), 0% = 0.9342 }, {0= (0.308257, 0.468389, -0.0755398, -0.0755797,
-0.0407557, -0.100678), o? = 1.8472 }, {#= (0.406875, 0.423393, -0.178478, -0.188702, -
0.0649544, -0.121439), o* = 1.264811 }. Figure 9 shows the composite image with these
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three textures (after histogram equalization for visual clarity). Figure 10 shows the single
resolution segmentation result and Figure 11 shows the result for multiresolution segmen-

tation.

6.2 Brodatz Images

We have tested our algorithm on textures from Brodatz texture album. Figure 12 contains
grass, calf leather, wool and wood textures. The original GMRF parameters are estimated
by maximum likelihood estimation. Figure 13 shows the single resolution segmentation
and Figure 14 shows the multiresolution segmentation. We have another interesting plot
of the ﬁ for the level £ =1 in Figure 15. The brighter points in the image correspond to
points of low confidence measure. As expected all the boundary regions between different
textures have a low confidence measure. In texture segmentation classification near the
texture boundaries is usually more ambiguous.

Table 2 shows the comparison between single and multiresolution algorithms in terms
of the misclassification error percentage and number of computation units required. To
compare the computational requirements between the single resolution and multiresolution
approaches, we define a unit of computation to be the computation required to perform

ICM at a single pixel site.

Resolution
Image Single Multiple
Error % | Computation | Error¥% | Computation
Synthetic | 10.16 2686976 3.25 431031
Brodatzl | 13.96 1114112 7.25 679444
Brodatz2 | 31.89 2490368 15.46 710980
Africa - 2160000 - 426105
Table 2

We also experimented with another more complex set of textures from Brodatz album.

Figure 16 shows a three class (pigskin, raffia and water) texture image. Figure 17 shows
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the single resolution segmentation and Figure 18 shows the multiresolution segmentation.

Figure 19 shows the corresponding confidence measure plot.

6.3 Real Image

Figure 20 shows a section of a single channel of a multispectral sensor (MSS) image over
Africa. (The image has been displayed after histogram equalization, the classes are not so
disparate in the actual image). Unfortunately exact class maps are not available. However,
we chose three classes corresponding to river, forest, deforestation and the GMRF param-
eters are obtained from small sections from a different part of the image and then used to
classify the image shown. Figure 21 shows the single resolution result and Figure 22 shows
the multiresolution result. Obviously, we can see that the multiresolution algorithm has
performed better, with lesser computation, than the single resolution algorithm.

We also present the results of multireslution segmentation for two other satellite images.
We have not presented the performance comparison in these cases, since exact class maps
are not available. Figure 23 shows another section of MSS image and Figure 24 shows the
corresponding 4-class multiresolution segmentation result. Figure 25 shows a section of
thematic mapper (TM) data and Figure 26 shows the 4-class multiresolution segmentation

result.

7 Summary

Multiresolution models and algorithms play an important role in image analysis. These
algorithms not only help to reduce the computational time, but also help to analyze the
given information in different levels of specificity. We have provided two schemes based on
minimizing KL distances, to estimate the parameters of GMRF at lower resolutions and
have successfully used it for texture segmentation application. Also, this can be extended to
perform unsupervised texture segmentation. However, as mentioned in Section 4, GMRF
parameters at lower resolution can correspond to more than one set of parameters at fine

resolution. Hence the problem of retrieving the GMRF parameters at fine resolution given
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the parameters at coarse resolution has to be addressed for unsupervised segmentation.

GMRFs are widely used in many image processing applications including restoration, seg-

mentation and compression. The proposed scheme can be used for multiscale restoration,

segmentation and image compression techniques used in progressive image transmission.
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