
1 IntroductionThere has been an increasing emphasis in using statistical techniques for modeling andprocessing images in the image analysis community. Among the several possible 2-D modelsfor images most of the research has been restricted to Markov random �eld (MRF)models,rightly so, because of the local statistical dependence of images. MRF models have beenused to characterize prior beliefs about various image features such as textures, edges,region labels etc. Also, establishment of the connection between MRF models and theGibbs distribution has resulted in the inux of many statistical mechanical techniqueslike simulated annealing [19], mean �eld methods [14] in image processing. Problems inboth statistical mechanics and image processing involve a large number of micro states(pixels), with their local interactions deciding the properties of the macro state (image)and the complexity of the problem arises from the fact that any desired optimization hasto be performed over a large number of states. Introduction of the Markov models in aBayesian framework has resulted in a uni�ed, coherent framework for processing imageswhich enables posing many image processing problems as statistical inference problems.In the rest of this section, we provide a brief review of literature on texture segmentationand multiresolution techniques.Texture classi�cation and segmentation problems have been addressed by several au-thors with a wide range of di�erent approaches that can be broadly classi�ed into two,namely, structural and statistical approaches. Structural approaches are aimed at regulartextures that exhibit a strong structural behavior. These approaches de�ne a basic prim-itive and placement rules. Such techniques were used by Rosenfeld [27], Lu and Fu [23]and Tomita [31]. Structural approaches are well suited for macro textures, but are notuseful for micro textures where it is hard to de�ne a basic primitive and placement rules.Statistical methods are better suited for such micro textures. Most of the early statisticalmethods use �rst and second order properties to discriminate between textures. Haralick[18] suggested various local statistical measures based on the gray level dependence, latergeneralized by Davis, et.al. [11].More complex statistical models using MRFs [32] emerged later and have been used1



in various image processing problems. Cross and Jain [10] and Chellappa [6] have shownthe applicability of GMRF models to synthesize textures. Chellappa and Chatterjee [5]have used GMRF models for maximum likelihood segmentation of textures. Geman andGra�gne [16] used a general MRF model for segmentation. They showed that this non-Gaussian MRF model was not very well suited for synthesis, but still performed well forsegmentation. Derin and Elliot [12] used Gibbs distributions and presented a non-optimalmethod using dynamic programming. Manjunath et.al. [24] proposed a stochastic learningtechnique to improve the ICM results and presented a neural network implementation fortexture segmentation.The main drawback of the MRF techniques is that the minimization schemes associatedwith the energy functions are iterative and are usually computationally expensive. Bestresults are obtained by using simulated annealing [15] which optimizes the MAP criterion,but is computationally very taxing. There are two di�erent approaches that have beenused to ease the computational burden. The �rst is to use non-optimal, deterministicmethods that converge to a local minima, but still provide reasonably good results [1],[14]. The second approach is to use multiresolution techniques. Two important aspectsof multiresolution approaches are, (1) divide and conquer and (2) action at a distance[28]. Multigrid methods proposed by Terzopoulos [30], applied to some computer visionproblems substantially reduced the computation. Chen and Pavlidis [7] used a hierarchicalapproach to texture segmentation, but did not directly use MRFs. Bouman and Liu[3] used a Gaussian causal autoregressive model and a quad-tree structure to performmultiresolution segmentation. Gidas [17] investigated the multiresolution MRF frameworkto process images and showed some connection between these ideas and similar ones in therenormalization group studies in statistical mechanics [13]. A hierarchical image analysisscheme based on renormalization group ideas was presented by Matsuba in [25].Cohen and Cooper [8] presented a hierarchical scheme, where the data at lower res-olution is divided into blocks and the conditional probabilities of the blocks given theneighboring blocks were obtained. They used a recursive scheme to calculate the within-block and between-block interaction values. They did not try to model the data at lowerresolution by GMRFs. Lakshmanan and Derin [22] used covariance invariance approxima-2



tion to approximate the lower resolution data by GMRFs. This GMRF approximation hasthe property that in the associated covariance matrix the entries corresponding to pairsof sites that are neighbors are equal to the entries in the covariance matrix associatedwith the exact non-Markov density. Many interesting properties of this estimator such asmaximizing entropy, minimizing Kullback-Leibler (KL) distance can be found in [22].In this paper, we present two schemes to estimate the parameters of GMRFs at lowerresolutions from the parameters at the �ne resolution, one by directly minimizing the KLdistance (relative entropy) and the second by minimizing the KL distance (conditional rel-ative entropy) between the conditional densities. We also show that the computations forthese two estimators turn out to be similar to traditional maximum likelihood [26], [21],[29] and pseudo likelihood estimators [2] for GMRF parameters except that the samplecovariances are replaced by covariances calculated with respect to the exact non-Markovmeasure. We also present results on the existence of di�erent sets of GMRF parametersat �ne resolution which on subsampling results in statistically identical coarser resolutionprocesses. As an application, we have chosen the texture segmentation problem and per-formed segmentation over multiple resolution using the multiresolution GMRF model. Thecoarsest resolution data is initially segmented and the results of segmentation along with acon�dence measure is passed on the immediate higher resolution and so on, until the �neresolution data is segmented. We have shown that the multiresolution technique performsbetter than single resolution approach.The rest of the paper is organized as follows. Section 2 introduces the GMRF and thebasics of the resolution transformation. Section 3 presents the Markov approximation fornon-Markov �elds based on KL distance minimization and local conditional distributioninvariance approximation. Section 4 discusses the many-to-one nature of transformation ofthe GMRF parameters from the �ne to coarse resolution. Section 5 presents various aspectsof the multiresolution segmentation and Section 6 carries synthetic and real experiments.Section 7 concludes the paper. 3



2 GMRFs and Resolution TransformationIn this section we introduce basic notations used for GMRFs in the rest of the paper andalso present results on loss of Markovianity under resolution transformation.2.1 The GMRF ModelThe GMRF models can be used on a �nite, in�nite lattice or on any general graph. Herewe introduce the aspects GMRF models on a �nite lattice. Let 
(0) = f(i; j) : 0 � i �M � 1; 0 � j � N � 1g be a rectangular lattice. The superscript stands for the level inthe image pyramid, 
(0) being the lattice at the �ne resolution, 
(k) represents the latticewhich is obtained by subsampling 
(0), k times (Figure 1). Let X(k) represent a randomvector, obtained by ordering the random variables on the two-dimensional lattice 
(k),through a row-wise scan. The elements of 
(k) are indexed by s and t, where s = (s1; s2).If X(0) is modeled by a GMRF, then the joint probability density function of X(0) can bewritten as follows:P (0)(X(0) = x) = 1(2�)MN2 (det�(0)) 12 expf�12xT [�(0)]�1xTgwhere �(0) is the covariance matrix of X(0).Equivalently, the process X(0) can be written in terms of a non-causal interpolativeprocess. For a site s, let �(0) be the symmetric neighborhood that contains the set of sitesthat are chosen to be the neighbors of X(0)s and let �(0)r = �(0)�r . We always use r to indexinto the neighbor set in the rest of the paper.X(0)s = Xr2�(0) �(0)r x(0)s+r + e(0)swhere e(0)s , is zero mean, Gaussian noise, with autocorrelation given by:Efe(0)s e(0)s+rg = 8>>>><>>>>: [�(0)]2 if r = 0��(0)r [�(0)]2 if r 2 �(0)0 otherwise4



Hence the GMRF process can be completely characterized by the set of parametersf��(0); [�(0)]2g. Also X(0)s exhibits the Markov property,P (0)(X(0)s =X(0)t ;8t 6= s; t 2 
(0)) = P (0)(X(0)s =X(0)s+r ; r 2 �(0))= 1q2�[�(0)]2 expf� [x(0)s �Pr2�(0) �(0)r x(0)s+r]22[�(0)]2 g (1)The power spectrum S(0)! of the process X(0) can be shown to be:S(0)! = [�(0)]21 �Pr2�(0) �(0)r cos[2�M r1!1 + 2�N r2!2] (2)where ! = f!1; !2g; and 0 � !1 �M � 1; 0 � !2 � N � 1.2.2 Resolution TransformationIn this paper we restrict ourself to resolution transformation obtained by subsampling.But the results can be easily extended to block-to-point type transformation, where thecoarse resolution data is obtained by averaging the �ne resolution data over 2x2 window.Other types of resolution transformation including Gaussian, Laplacian pyramids [4] havebeen used in image processing literature for various other problems.The subsampling resolution transformation is de�ned as:X(k)s = X(k�1)2sde�ned for all s 2 
(k).Equivalently, X(k) = Dk0X(0) (3)where the matrix Dk0 , has to be properly de�ned.The resulting subsampled process X(k) is Gaussian, with covariance �(k) = [Dk0 ]�(0)[Dk0 ]T :The power spectrum of X(k) can be shown to be [22]:S(k)! = 122k Xr2Ck S(0)!+r0 (4)5



where r0 = (M2k r1; N2k r2) and Ck = fr : 0 � r1 � 2k � 1; 0 � r2 � 2k � 1g.It can be observed that this is similar to frequency domain aliasing due to sampling, intime series applications. It can be observed that S(k)! cannot be written in the form of Eq.(2) with a �nite neighborhood. Therefore, the subsampled process X(k) is non-Markov,except for the special case of second order separable correlation processes [22].3 Markov ApproximationsAs mentioned in the last section, the GMRFs lose Markovianity under subsampling, thesame is true for general MRFs. In the case of GMRFs, it is atleast possible to �nd theprobability density function (pdf) of subsampled processes, whereas in the case of generalMRFs it is not possible to obtain exact expressions for the pdf of subsampled process.However, if the lower resolution data are modeled by the exact non-Markov Gaussian mea-sures, conventional optimization techniques based on Markov properties cannot be applied.In this section we show that it is possible to obtain very good Markov approximations forcoarser resolution processes. Cohen et.al [9] refer to the possibility of approximating ro-tated and scaled textures by GMRFs. In this section two di�erent estimators to estimatethe parameters of GMRFs at lower resolutions from the parameters at the �ne resolutionare presented. We also exemplify the connection between these two estimators and theestimators that are commonly used to estimate the GMRF parameters from a data sample,namely, the maximum likelihood and pseudo likelihood estimators.3.1 Kullback-Leibler Distance MinimizationIn this section, we show that given any pdf p, it is possible to obtain a GMRF approxi-mation of p by minimizing the KL distance D(p k q) [20], where q belongs to the familyof GMRF pdfs. KL distance measure is widely used to obtain approximate probabilitymeasure with desired properties. The problem at hand, can be stated as follows:Given the probability measure p(x�), �nd another probability measure q�(x�) such that:q� = argminq D(p k q)6



= argminq Xx� p(x�) log p(x�)q(x�) (5)where, q(x�) = 1(2�)MN2 (det�) 12 expf�12x�T��1x�gand the covariance matrix � is such that, the power spectrum is of the form in Eq. (2). Asseen before, GMRFs can be completely characterized by (��; �2) and q(x�) can be written interms of these parameters.The quadratic form x�T��1x� can be simpli�ed as:x�T��1x� = C(0)� ��TC�where C(0) = Xs2
 x2s; C(r) =Xs2
 xsxs+r 8r 2 �:and det� = �MNQs2
(1� ��T��s) ; where ��s = cos0B@(2�s1M 2�s2N )0B@ r1r2 1CA1CA8s 2 
:Using the above equations, q(x�) can be written as:q(x�) = Qs(1 � ��T��s)(2��2)MN2 expf� 12�2 [C(0)� ��TC� ]gRewriting Eq. (5):(���; [�2]�) = arg min(��;�2)Xx� p(x�) log p(x�)q(x�)= arg max(��;�2)Xx� p(x�) log q(x�)= arg max(��;�2)Xx� p(x�)[Xs log(1 � ��T��s)� MN2 log �2 � 12�2 (C(0)� ��TC� )]= arg max(��;�2)Xs log(1 � ��T��s)� MN2 log �2 � 12�2 (Ep[C(0)]� ��TEp[C� ]) (6)7



where Ep(:) represents the expectation with respect to the p-measure.Ep[C(r)] = Ep[Xs2
XsXs+r]= (MN)Ep[XsXs+r]: (7)Remark: Observe that Eq. (6) is very similar to the maximum likelihood expression,except that the C(r) values obtained from the data are replaced by expectation values withrespect to the p - measure. Hence, in terms of computation the maximization is exactlysimilar to the maximum likelihood computation. Second, given the p - measure, we onlyneed a few moment values Ep[C(r)], followed by the maximization of Eq. (6) to obtainthe Markov approximation. Lakshmanan and Derin [22] also remark that their covarianceinvariance estimator which also minimizes the KL distance maximizes the likelihood of asample observation with sample covariance equal to the covariance of the p - measure.3.2 Local Conditional Distribution Invariance ApproximationWe propose another method to estimate the GMRF parameters of a non-Markov processbased on a KL distance (conditional relative entropy) measure between local conditionaldistributions. In MRF applications all optimizations are performed based on the localconditional distribution, so, we believe an estimator based on that should be better suitedfor image analysis applications.The Markov approximation presented in this section is based on linear estimation.Before presenting the details, we will provide a known result regarding the linear estimationof a GMRF process. Let Z� be a GMRF de�ned by (��; �2) with a neighborhood  . Thenthe linear estimate of Zs based on the elements of  is given by:ẑs =Xr2 �rzs+rand the mean square error E(Zs � Ẑs)2 = [�]2:The conditional density Pr(zs=zr; r 2  ) is gaussian with conditional mean Pr2 �rzs+rand conditional variance [�]2: 8



Let X� be a random �eld with a non-Markov probability measure p(x�) and let q�(x�) bea GMRF approximation such that:q�(xs=xs+r; r 2 �) = arg minq D[p(xs=xs+r; r 2 �) jj q(xs=xs+r; r 2 �)]; (8)where the minimization is performed over the entire family of GMRF pdfs with a chosenneighborhood �. In addition, under certain conditions, q�(xs=xs+r; r 2 �) is exactly equalto p(xs=xs+r; r 2 �).Since q(x�) belongs to the family of GMRF density, q(xs=xs+r) will be of the form inEq. (1). The following results regarding the parameters (���; [�2]�) corresponding to q�(x�)can be obtained from Eq. (8).To simplify the notations, let Y� be the vector containing the neighborhood randomvariables in a proper order. For a �rst order neighborhood,Y� T = � Xs+(1;0) Xs�(1;0) Xs+(0;1) Xs�(0;1): �(���; [�2]�) = arg min(��;�2)Xxs;y� p(xs; y�) log p(xs=y�)q(xs=y�)= arg max(��;�2)Xxs;y� p(xs; y�) log q(xs=y�)= arg max(��;�2)Xxs;y� p(xs; y�)[�12 log �2 � 12�2 (xs �Xr2� �ryr)2]= arg min(��;�2) 12 log �2 + 12�2 (Ep[Xs �Xr2� �rYr]2): (9)It can be shown that the ��� parameters corresponding to q�(x�) are the coe�cients ofthe best linear estimator and can be obtained as follows:��� = arg min�� Ep[Xs �Xr2��rXs+r]2 (10)and using the ��� obtained, we can estimate the [�2]� as,[�2]� = Ep[Xs �Xr2� ��rXs+r]2: (11)9



then, ��� = arg min�� Ep[Xs � ��TY�]2���T = Ep(XsY� T )[Ep(Y�Y� T )]�1 (12)and, [�2]� = Ep(X2s )� Ep(XsY� T )[Ep(Y�Y� T )]�1Ep(XsY�)= Ep(X2s )� [���]TEp(XsY�): (13)In addition, the estimated ��� parameters should satisfy the positivity conditions [6]:1 � [���]T��s > 0 8s 2 
Now, returning back to multiresolution discussion, let X(0) be a GMRF de�ned by(��(0); [�(0)]2) and X(k) be the process obtained by subsampling X(0) k times. The non-Markov X(k) can be approximated by a GMRF by minimizing Eq. (8). The minimizationrequires the autocorrelation values E(X(k)s X(k)s+r) which can be computed, given the GMRFparameters for X(0) as shown below.X(k)s = X(0)2ksE(X(k)s X(k)s+r) = E(X(0)2ksX(0)2k(s+r))For any two lattice sites u and v in 
(0) the correlation is given by,E(X(0)u X(0)v ) = 1MN Xs2
(0) (�s1u1M �s2u2N )(�s1v1M �s2v2N )1� [��(0)]T��s (14)where �in = exp(p�1 2�in ).Algorithm:1. Compute the autocorrelations required in Eq. (12) using Eq. (14) and the inverse ofthe matrix [E(Y�Y� T )]�1.2. Compute ��(k) using Eq. (12). 10



3. If the computed ��(k), satisfy the conditions 1� [��(k)]T�s > 0, for every s in 
(k), thencompute [�(k)]2 from Eq. (13) and stop.4. If the conditions are not satis�ed, then scale ��(k) to,��(k)n = ��(k) 0:99maxs2
(k)[��(k)]T�s5. Compute a direction #� such that[52��f(��)]��(k)n #� = �[5��f(��)]��(k)nwhere f(��) = Ep[X(k)s �Pr2�(k) �rX(k)s+r]26. Find the largest m for a �xed � (� < 1), such that��(k)n+1 = ��(k)n + �m#�and ��(k)n+1 satisfy the positivity condition.7. Go to step 5 if j f(��(k)n )� f(��(k)n+1) j> �Lemma: Under the assumption that the covariance matrix with respect to p - measureis positive de�nite, the function in Eq. (10) to be minimized is convex and is minimizedover a convex set de�ned by 1 � [��(k)]T��s > 0, for every s in 
. Hence the minimizationcan be performed by a gradient descent procedure.Remarks:1. If the ��� obtained from Eq. (12) satis�es the positivity conditions, ie., the algo-rithm terminates at step 3 and given that p is gaussian, then it can be shown thatp(xs=xs+r; r 2 �) = q�(xs=xs+r; r 2 �), both conditional densities are gaussian with con-ditional mean Pr2� ��rxs+r and conditional variance [�2]�, thus the estimator preserves thelocal conditional distribution.2. It is worth observing that solving Eqs. (10) and (11) is similar to the pseudo likelihoodestimate [2] where the GMRF parameters are obtained by minimizing the products of11



local conditional densities over the entire lattice. The pseudo likelihood estimator uses thesample covariance obtained from the observed sample �eld, whereas our local conditionaldistribution invariance estimator uses the covariances calculated with respect to the p -measure.3.3 PSD ComparisonsWe show the validity of local conditional distribution invariance approximation to esti-mate the GMRF parameters at lower resolutions by comparing the exact power spectrumfunction of the subsampled process and the power spectrum associated with the GMRFapproximation.We show the results for ��(0) = f0:2;�0:1;�0:25; 0:15g and [�(0)]2 = 6:0. Let S(k)! be theexact power spectral density function at the k-th subsampled stage and let MS(k)! (m) bethe power spectrum for the m-th order Markov approximation. We calculate the normal-ized absolute di�erence D(k;m) = P(!2
(k))jS(k)! �MS(k)! (m)jsize(
(k)) , where size(
(k)) is the numberof lattice sites in 
(k). Table 1 shows the values of D(k,m), for values of k = 1; 2; 3: Figure 2shows the power spectrum at the �ne resolution calculated by Eq. (2) and Figure 3 showsthe exact power spectrum (non-Markov)at the once subsampled resolution calculated byEq. (4). Figure 4 shows the power spectrum for a third order Markov approximation withGMRF parameters obtained from the local conditional distribution invariance approxima-tion and Figure 5 shows the same for a fourth order Markov approximation. Figure 6 showsthe exact power spectrum (non-Markov) of twice subsampled process. Figure 7 shows thesecond order Markov approximation and Figure 8 shows the third order Markov approxi-mation. From these �gures and Table 1, it is easy to see that the power spectrum of theMarkov approximations are very similar to the power spectrum of the exact non-Markovprocesses.
12



Level (k) Order (m) D(k;m)1 3 0.724 0.322 2 0.263 0.213 2 0.0233 0.022Table 1Comments:1. For any k, D(k;m + 1) � D(k;m). This is true because the GMRF approximationof order m+ 1 includes order m.2. We have observed that D(k + 1;m) � D(k;m), ie., as the level of subsamplingincreases the order of the GMRF approximation need not be increased.3. If the order of the GMRF model at the �nest resolution is m, then an m or m + 1order GMRF approximation at the �rst level and an m order approximation at thesubsequent levels results in very small values of the normalized absolute di�erenceD(k;m) and hence can be used as a good GMRF approximation.4 Parameters Resulting in Identical PDFs at LowerResolutionIn the previous section, we suggested methods to approximate subsampled processes byGMRFs assuming that data at the �ne resolution is modeled by a GMRF. In this process, itis necessary to analyze that if di�erent GMRF parameters at the �ne resolution can resultin the same process (probabilistically) at the coarser resolutions. Since we are dealingwith Gaussian processes, it su�ces to check the covariance matrices of the subsampledprocesses instead of the pdf. However, the covariance elements are complicated functions13



of the parameters. Therefore, we look at the power spectrum of the subsampled processeswhich are simpler functions of the parameters. We show that there exists di�erent sets ofGMRF parameters, which on subsampling result in the same pdf at the lower resolutionand hence the same estimated parameters of the GMRF approximation.Case 1: First order GMRF on 
(0)The �rst order GMRF model is de�ned by the parameters (�(1;0); �(0;1); [�(0)]2) and thepower spectral density function is given by:S(0)! = [�(0)]21� 2(�(1;0) cos 2�!1M + �(0;1) cos 2�!2N ) : (15)The power spectral function on subsampling is given by:S(1)! = 14[S(0)! + S(0)!+(M2 ;0) + S(0)!+(0;N2 ) + S(0)!+(M2 ;N2 )]: (16)By using Eq. (15) in Eq. (16) and after some manipulations, we obtain:S(1)! =2 [�(0)]2 [ 11� 4(�(1;0) cos 2�!1M + �(0;1) cos 2�!2N )2 + 11� 4(�(1;0) cos 2�!2M � �(0;1) cos 2�!2N )2 ]:(17)Claim:For a �rst order GMRF at the �ne resolution, the only set of parameters that result in thesame power spectrum at the lower resolution is (�(1;0); �(0;1)), (��(1;0); �(0;1));(�(1;0);��(0;1));(��(1;0);��(0;1)).Proof:From Eq. (17) it can be infered that, the sets of parameters (�(1;0); �(0;1)), (��(1;0); �(0;1));(�(1;0);��(0;1)); (��(1;0);��(0;1)) will result in the same S(1)! : For these sets of parameters thesubsampled processes are statistically indistinguishable. We need to show that these arethe only set of parameters that result in the same power spectrum at the lower resolution.Since the power spectrum has to be the same for every 0 � !1 �M � 1 and 0 � !2 �N � 1, we can substitute speci�c values of (!1; !2), to get the necessary conditions.14



Let, !1 = 0 and !2 = N=4 S(1)(0;N4 ) = 4[�(0)]21 � 4�2(1;0)Hence, the only possible values of �(1;0) that will result in the same S(1)(0;N4 ) are �(1;0) and-�(1;0). The same can be proved for �(0;1) by taking !1 = N=4 and !2 = 0. This proves ourclaim.Case 2: Second order GMRF on 
(0)The second order GMRFmodel is de�ned by the parameters (�(1;0); �(0;1)�(1;1); �(�1;1); [�(0)]2)and the power spectral density function is given by:S(0)! = [�(0)]21� 2(�(1;0) cos 2�!1M + �(0;1) cos 2�!2N + �(1;1) cos(2�!1M + 2�!2N ) + �(�1;1) cos(2�!1M � 2�!2N )) :The power spectral function on subsampling is given by:S(1)! =14 [�(0)]2[ 11�2(�(1;0) cos 2�!1M +�(0;1) cos 2�!2N +�(1;1) cos( 2�!1M + 2�!2N )+�(�1;1) cos( 2�!1M � 2�!2N ))+ 11�2(�(1;0) cos 2�!1M ��(0;1) cos 2�!2N ��(1;1) cos( 2�!1M + 2�!2N )��(�1;1) cos( 2�!1M � 2�!2N ))+ 11�2(��(1;0) cos 2�!1M +�(0;1) cos 2�!2N ��(1;1) cos( 2�!1M + 2�!2N )��(�1;1) cos( 2�!1M � 2�!2N ))+ 11�2(��(1;0) cos 2�!1M ��(0;1) cos 2�!2N +�(1;1) cos( 2�!1M + 2�!2N )+�(�1;1) cos( 2�!1M � 2�!2N )) ] : (18)Claim:For a second order GMRF at the �ne resolution, the only set of parameters that result inthe same power spectrum at the lower resolution is,(�(1;0); �(0;1); �(1;1); �(�1;1)), (��(1;0); �(0;1);��(1;1);��(�1;1));(�(1;0);��(0;1);��(1;1);��(�1;1)); (��(1;0);��(0;1); �(1;1); �(�1;1)).Proof:By observing Eq. (18) it can be infered that the above four sets of parameters will resultin the same S(1)w . The constraints we have obtained on (�(1;0); �(0;1)) for the �rst order casealso hold good here. 15



Let, w1 =M=4 and w2 = N=4,S(1)(M4 ;N4 ) = 4[�(0)]21� 4(�(1;1) � �(�1;1))2Therefore, a constraint on the set of (�(1;1)� �(�1;1)) that can result in the same S(1)w is,j (�(1;1)� �(�1;1)) j= constant: (19)Let, w2 = Nw1M + N4 , so that cos(2�!1M � 2�!2N ) = 0. For convenience, let, cos(2�!1M ) = �1,cos(2�!2N ) = �2 and cos(2�!1M + 2�!2N ) = �3, Writing the expression for S(1)w :S(1)(!1;N!1M +N4 ) =2(1�2�1�(1;0))(1�2�1�(1;0))2�4(�2�(0;1)+�3�(1;1))2 + 2(1+2�1�(1;0))(1+2�1�(1;0))2�4(�2�(0;1)��3�(1;1))2 : (20)If (��(1;0); �(0;1), ��(1;1); ��(�1;1)) should result in the same spectrum as (�(1;0); �(0;1), �(1;1); �(�1;1))for all !1 in Eq. (20), then ��(1;1) = ��(1;1):Combining this result with Eq. (19) implies that��(�1;1) = ��(�1;1):Similar results can be shown for the other sets of parameters and for higher orderprocesses.5 Texture SegmentationTexture segmentation problem is the labeling of pixels in a lattice to one of V textureclasses, based on a texture model and the observed intensity process. Each site in thelattice carries a class label from (1; 2; : : : ; V ) and this label process is modeled by an MRF.We do not directly observe the label process, but a function of the labels, the intensityprocess. The intensity process is modeled by a GMRF, the parameters (��; �2) of which16



depend on the label process at that site. The goal is to estimate the unobserved labelprocess from the observed intensity process by optimizing a suitable error criterion.The following conventions are used. The GMRF parameters corresponding to labelv, (v 2 f1; 2; : : : V g) are written as (��(v); �2(v)). The symmetric neighborhood for theGMRF is denoted by � and for the MRF label process by  and the index r is used toindex through the neighborhood of the both label and intensity processes.The intensity process is de�ned as follows:P (Xs = xs=Ls = v;Xr; Lr; r 2 �) = 1q2��2(v) expf� 12�2(v)[xs �Xr2� �r(v)xs+r)]2g (21)The above equation is exact if the label �eld is homogeneous in the � neighborhood. Ifnot, the intensity values corresponding to the site where Lr 6= v can be replaced by themean value.The label process is modeled by an MRF. The following model is also called a pairwiseinteraction model. P (L� = l�) = 1Z exp(�Xs2
U(ls))where, U(ls) is the number of neighbors in  that have the same label as ls.The local conditional probability of the label process is given by:P (Ls=Lr; r 2  ) = exp(�U(ls))Pl0s=(1;2;:::V ) exp(�U(l0s)) (22)Now given the intensity process, the label process can be estimated by minimizinga suitable criterion. The maximum a posterior (MAP) error criterion solution can beobtained by: maxL�P (X� ; L�) = maxL�P (L�=X� )P (X� ): (23)This optimization requires stochastic relaxation methods and is computationally very ex-pensive. So, we restrict ourselves to iterated conditional mode (ICM) method, a greedyalgorithm that converges to a local maxima. ICM solution is obtained by:maxLs P (Ls=Lr;Xs;Xr)17



maxLs P (Xs=Xr; Ls; Lr)P (Ls=Lr;Xr)maxLs P (Xs=Xr; Ls; Lr)P (Ls=Lr) (24)This is equivalent to,minLs log(�(Ls = v)) + 12�2(v) [xs �Xr2� �r(Ls = v)xs+r]2 � �U(Ls = v) (25)the minimization is performed by visiting the pixels in raster scan for all s 2 
 and stoppedwhen no further changes in the labels occur.5.1 Multiresolution SegmentationThe segmentation algorithm presented above is a singe resolution algorithm. As we havediscussed in the previous sections, data at lower resolutions can be approximated by aGMRF process. Thus the same algorithm can be applied at lower resolutions too. Ourmultiresolution algorithms includes the following steps. First, given the number of classesand the associated parameters at the �ne resolution, the GMRF parameters at lowerresolutions are obtained by the local conditional distribution invariance approximation asdiscussed before. Then segmentation is performed at the coarsest resolution by minimizingEq. (25) with the corresponding parameters and the results of segmentation are passed onto the immediate higher resolution and this process is repeated until the �ne resolution isreached. At each resolution a con�dence measure is attached to the segmentation resultat each pixel and propagated to the �ner resolution. We address issues regarding thecon�dence measures in this section:5.1.1 Con�dence MeasuresAfter obtaining the segmentation result by ICM convergence at one resolution, the resultshave to propagated upwards to the immediate higher resolution. Since we obtain reso-lution transformation by subsampling, we have a quad tree type of graph. If L�(k) is thesegmentation result at the kth resolution, the labels in the (k � 1)th level are initializedas: L(k�1)s = L(k)bs=2c: (26)18



In addition, at level k, after the ICM converges, we attach a con�dence measure C(k)sto the segmentation results obtained at site s.At level k, after the convergence of ICM iterations, let _v� and �v� be such that,_vs = arg maxv2f1;2;:::;V gP (Ls = v=Lr;Xs;Xr)�vs = arg maxv2f1;2;:::;V gn _vs P (Ls = v=Lr;Xs;Xr)and the con�dence measure is de�ned as,C(k)s = P ( _vs=Lr;Xs;Xr)P ( �vs=Lr;Xs;Xr) (27)These con�dence measure at level k are propagated upwards to level k� 1 in the samemanner as in Eq. (26). At level k, ICM is restricted to only those pixels with con�dencemeasure such that, 1C(k)s � c(k) (28)where c(k) is a con�dence threshold at level k. Also from the de�nition,0 � 1C(k)s � 1:0:For the coarsest resolution c(:) = 0, ie., ICM is performed over all sites in the lattice.The con�dence measure de�ned in Eq. (27) has a hypothesis testing interpretation.The Cs expression is exactly same as the hypothesis test ratio to compare the hypothesesthat the label at site s is _v or �v. This interpretation can be used in the following ways:1. In an application, if misclassi�cation between textures v1 and v2 results in a highermisclassi�cation cost, say a (a > 1), compared to other types of misclassi�cationwhich have a cost of 1, then at the end of ICM iteration, if _vs = v1 and �vs = v2 orvice versa, the con�dence measure Cs at that site can be replaced by Csa to reectthe higher misclassi�cation cost.2. If at a particular resolution the parameters corresponding to di�erent textures aresuch that discrimination between some textures are low, while the rest of the texturescan be easily discriminated. In such cases, if _v and �v belong to the set of textures thathave low discrimination, then the result of classi�cation at that site is not reliableand hence the Cs can be set to zero. 19



5.2 MRF on Resolution TransformationWe have already addressed the issue of modeling GMRFs at lower resolutions. The labelprocess in the two-tier model is de�ned by an MRF. This process also loses Markovianityunder resolution transformation and can be approximated by a Markov process at lowerresolutions. For the pairwise interaction model there is only one parameter � to be esti-mated in Eq. (22). However, it is hard to �nd approximations as we did in the case ofGaussian �elds. Fortunately, segmentation results are not heavily dependent on this pa-rameter. Therefore, we have chosen � = f0:5; 0:3; 0:15; 0:1; 0:05g for di�erent resolutionswith the smaller values used at coarser resolutions. We have experimented with di�erentsets of values of � and found that parameter of the label MRF process does not have agreat bearing on the segmentation, hence a rigorous estimation may not necessary.6 ExperimentsWe present experimental results with simulated, Brodatz texture images and real satelliteimages and show that the multiresolution algorithms performs better both in terms ofthe classi�cation accuracy and computational requirement. In all the experiments, thecon�dence threshold c(k) = (0:6; 0:25; 0:15; 0:1; 0:05), is used for the di�erent levels. In allcases the misclassi�cation percentage error is reported. Maximum likelihood initializationis used for the ICM in the single resolution and at the lowest level for multiresolution.Multiresolution results presented in this section are obtained by performing the algorithmover three resolutions.6.1 Synthetic ImageWe synthesised texture images using the technique given in [6]. Three third order GMRFtextures are generated with parameters f��= (0.0934154, 0.520252, 0.0303413, 0.0180476,-0.0216434,-0.148331), �2 = 0.9342 g, f��= (0.308257, 0.468389, -0.0755398, -0.0755797,-0.0407557, -0.100678), �2 = 1.8472 g, f��= (0.406875, 0.423393, -0.178478, -0.188702, -0.0649544, -0.121439), �2 = 1.264811 g. Figure 9 shows the composite image with these20



three textures (after histogram equalization for visual clarity). Figure 10 shows the singleresolution segmentation result and Figure 11 shows the result for multiresolution segmen-tation.6.2 Brodatz ImagesWe have tested our algorithm on textures from Brodatz texture album. Figure 12 containsgrass, calf leather, wool and wood textures. The original GMRF parameters are estimatedby maximum likelihood estimation. Figure 13 shows the single resolution segmentationand Figure 14 shows the multiresolution segmentation. We have another interesting plotof the 1C(k)s for the level k = 1 in Figure 15. The brighter points in the image correspond topoints of low con�dence measure. As expected all the boundary regions between di�erenttextures have a low con�dence measure. In texture segmentation classi�cation near thetexture boundaries is usually more ambiguous.Table 2 shows the comparison between single and multiresolution algorithms in termsof the misclassi�cation error percentage and number of computation units required. Tocompare the computational requirements between the single resolution and multiresolutionapproaches, we de�ne a unit of computation to be the computation required to performICM at a single pixel site. ResolutionImage Single MultipleError % Computation Error% ComputationSynthetic 10.16 2686976 3.25 431031Brodatz1 13.96 1114112 7.25 679444Brodatz2 31.89 2490368 15.46 710980Africa { 2160000 { 426105Table 2We also experimented with another more complex set of textures from Brodatz album.Figure 16 shows a three class (pigskin, ra�a and water) texture image. Figure 17 shows21



the single resolution segmentation and Figure 18 shows the multiresolution segmentation.Figure 19 shows the corresponding con�dence measure plot.6.3 Real ImageFigure 20 shows a section of a single channel of a multispectral sensor (MSS) image overAfrica. (The image has been displayed after histogram equalization, the classes are not sodisparate in the actual image). Unfortunately exact class maps are not available. However,we chose three classes corresponding to river, forest, deforestation and the GMRF param-eters are obtained from small sections from a di�erent part of the image and then used toclassify the image shown. Figure 21 shows the single resolution result and Figure 22 showsthe multiresolution result. Obviously, we can see that the multiresolution algorithm hasperformed better, with lesser computation, than the single resolution algorithm.We also present the results of multireslution segmentation for two other satellite images.We have not presented the performance comparison in these cases, since exact class mapsare not available. Figure 23 shows another section of MSS image and Figure 24 shows thecorresponding 4-class multiresolution segmentation result. Figure 25 shows a section ofthematic mapper (TM) data and Figure 26 shows the 4-class multiresolution segmentationresult.7 SummaryMultiresolution models and algorithms play an important role in image analysis. Thesealgorithms not only help to reduce the computational time, but also help to analyze thegiven information in di�erent levels of speci�city. We have provided two schemes based onminimizing KL distances, to estimate the parameters of GMRF at lower resolutions andhave successfully used it for texture segmentation application. Also, this can be extended toperform unsupervised texture segmentation. However, as mentioned in Section 4, GMRFparameters at lower resolution can correspond to more than one set of parameters at �neresolution. Hence the problem of retrieving the GMRF parameters at �ne resolution given22
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(0)(1)(2)Figure 1: Resolution Transformation26
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Figure 5: GMRF MS(1)w (4)Figure 2: Power spectrum of GMRF at 
(0), Figure 3: Exact non-Markov powerspectrum at 
(1), Figure 4: Power spectrum of third order Markov approximation at
(1) and Figure 5: Power spectrum of fourth order Markov approximation at 
(1).27
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