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ompressible Navier-Stokes equations. We demon-strate how these methods adapt in a straightforward manner to de
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it or expli
it timedis
retization, explore their use on a 
olle
tion of ben
hmark problems, and show how they relate to
lassi
al te
hniques su
h as proje
tion methods and SIMPLE.Key words. Navier-Stokes equations, solvers, pre
onditioning, in
ompressible 
uids.1. Introdu
tion. In this paper, we des
ribe a new 
lass of 
omputational al-gorithms for solving the systems of algebrai
 equations that arise from dis
retizationand linearization of the in
ompressible Navier-Stokes equationsut � �r2u+ (u � grad)u+ gradp = f�divu = 0 in 
; (1.1)subje
t to suitable boundary 
onditions on �
. Here, 
 is an open bounded domainin R2 or R3 , u and p are the velo
ity and pressure, respe
tively, f is the body for
e perunit mass, and � is the kinemati
 vis
osity. The algorithms 
onsist of pre
onditioningstrategies to be used in 
onjun
tion with Krylov subspa
e methods. They are appliedto the primitive variable formulation of (1.1) and are designed to take advantage ofthe stru
ture of the systems.The obje
tive in developing these solution algorithms is for them to be e�e
tiveand adaptable to a variety of 
ir
umstan
es. In parti
ular, they 
an handle bothsteady and evolutionary problems in a straightforward manner, and they o�er thepossibility of being extended to more general systems, su
h as those that in
ludetemperature in the model. Their implementation depends on having eÆ
ient solu-tion algorithms for 
ertain subsidiary problems, spe
i�
ally, the Poisson equation andthe 
onve
tion-di�usion equation. These s
alar problems are easier to solve than theNavier-Stokes equations; e�e
tive approa
hes in
lude multigrid, domain de
omposi-tion, and sparse dire
t methods. On
e su
h \building blo
ks" are available, they 
anbe integrated into a solver for the 
oupled system (1.1). In this paper, we des
ribesu
h solvers and demonstrate their utility.A summary of the paper is as follows. Se
tion 2 gives a brief overview of the orig-inal development of the algorithmi
 approa
h as designed for the steady Stokes equa-tions and des
ribes what modi�
ations are needed for the Navier-Stokes equations.Se
tion 3 shows how this general approa
h is related to other traditional strategiesfor solving (1.1), in
luding proje
tion methods [4, 32℄ and SIMPLE [25℄. Se
tion 4presents the main ideas for 
onstru
ting solvers designed for the Navier-Stokes equa-tions, whi
h entail devising strategies for eÆ
iently approximating the inverse of a
omponent of the dis
rete operator. Se
tion 5 shows the results of a series of numeri-
al experiments demonstrating the utility of this approa
h for evolutionary problems.Finally, Se
tion 6 summarizes the approa
h and presents some ways it 
an be gener-alized to handle more 
omplex models.yDepartment of Computer S
ien
e and Institute for Advan
ed Computer Studies, University ofMaryland, College Park, MD 20742. elman�
s.umd.edu. This work was supported in part by theNational S
ien
e Foundation under grant DMS0208015.1



2. Ba
kground. By way of introdu
tion, 
onsider the steady-state Stokes equa-tions �r2u+ grad p = f�divu = 0 : (2.1)Div-stable dis
retization by �nite elements [15℄ or �nite di�eren
es [23℄ leads to alinear system of equations � A BTB 0 �� up � = � f0 � (2.2)where, for problems in d dimensions, A is a blo
k diagonal matrix 
onsisting of a set ofd un
oupled dis
rete Lapla
e operators. The 
oeÆ
ient matrix of (2.2) is symmetri
and inde�nite, and therefore the minres [24℄ variant of the 
onjugate gradient methodis appli
able. This iterative method requires a �xed amount of 
omputational workat ea
h step, and it is the optimal Krylov subspa
e method with respe
t to the ve
torEu
lidian norm for solving Ax = b where A is symmetri
 inde�nite. That is, theresidual rk = b�Axk of the kth iterate satis�eskrkk2 = minpk(0)2�k kpk(A)r0k2 � minpk(0)2�k max�2�(A) jpk(�)j kr0k; (2.3)where �k denotes the set of all real polynomials pk of degree at most k for whi
hpk(0) = 1, and �(A) is the set of eigenvalues of A.If �(A) is 
ontained in two equal-sized intervals[�a;�b℄ [ [
; d℄; a; b; 
; d > 0;then the 
onvergen
e fa
tor minpk(0)2�k max�2�(A) jpk(�)j is bounded by [16℄2 1�p(b
)=(ad)1 +p(b
)=(ad)!1=2 :The key for rapid 
onvergen
e is for this quantity to be small. For (2.2), this isa
hieved by pre
onditioning. Consider a pre
onditioning operator of the form [27, 30,34℄ Q = � A 00 QS � : (2.4)This leads to the generalized eigenvalue problem� A BTB 0 �� up � = �� A 00 QS �� up � : (2.5)If � 6= 1, then the �rst blo
k of this equation gives u = [1=(�� 1)℄A�1BT p, andsubstitution into the se
ond blo
k yieldsBA�1BT p = �QSp; � = �(� � 1); � = 1�p1 + 4�2 : (2.6)A good approximationQS to the S
hur 
omplement BA�1BT will result in eigenvaluesf�g that lie in a small interval, so that the eigenvalues f�g in turn lie in two small2



intervals. It is shown in [33℄ that a good 
hoi
e forQS is the pressure mass matrix,Mp.In parti
ular, all � are 
ontained in an interval that is independent of the dis
retizationmesh parameter h, and, therefore, all � are also independent of h.Use of the pre
onditioner (2.4) with minres entails the appli
ation of the a
tionof the inverse of Q to a ve
tor at ea
h iteration; this requires the solution of a set ofPoisson equations on the dis
rete velo
ity spa
e (appli
ation of the a
tion of A�1),and appli
ation of the a
tion of M�1p on the dis
rete pressure spa
e. The pressuremass matrix is uniformly well-
onditioned with respe
t to h, so the latter operation isinexpensive [35℄. For this pre
onditioner to be useful, the Poisson solves must be doneeÆ
iently. A feature of this approa
h is that these solves 
an be also be approximatedwith little degradation of its e�e
tiveness. (This 
ontrasts with the alternative strat-egy of using iterative methods to solve the de
oupled system BA�1BT p = BA�1f .)Formally, this 
orresponds to repla
ing A in (2.4) with some approximation QA. Agood 
hoi
e would be some QA that is spe
trally equivalent to A with respe
t to h,obtained for example using a few steps of multigrid applied to the Poisson equation.See [9, 31℄ for more details on this and other aspe
ts of solving this problem.Now 
onsider the Navier-Stokes equations (1.1). Fully impli
it time dis
retizationleads to the 
oupled nonlinear equations1�u(m+1) � �r2u(m+1) + (u(m+1) � grad)u(m+1) + gradp(m+1) = f(u(m))�divu(m+1) = 0;where (u(m); p(m))T is the solution at time step m, and � and f(u(m)) depend on thetime dis
retization strategy. For example, for the ba
kward Euler method, � = �t,the time step, and f(u(m)) = f � 1�tu(m). At ea
h time step, this system 
an then besolved using a nonlinear iteration, produ
ing a sequen
e of iterates (u(m+1)j ; p(m+1)j )T .An example is the Pi
ard iteration, in whi
h the 
onve
tion 
oeÆ
ient is lagged:1�u(m+1)j+1 � �r2u(m+1)j+1 + (u(m+1)j � grad)u(m+1)j+1 + gradp(m+1)j+1 = f(u(m))�divu(m+1)j+1 = 0 (2.7)Div-stable spatial dis
retization [15, 23℄ gives a linear system of equations of the form� F BTB 0 �� u(m+1)p(m+1) � = � f (m)g(m) � ; (2.8)where F is now a blo
k diagonal matrix 
onsisting of a set of d un
oupled dis
reteoperators arising from the time-dependent 
onve
tion-di�usion equation. The blo
ksof F essentially have the form 1�M + �A+N (2.9)where M , A and N are a dis
rete mass matrix, Lapla
ian, and 
onve
tion operator,respe
tively. We will dis
uss our results below in terms of the Reynolds numberRe = jujL� ; in our examples, the length s
ale and velo
ity s
ales are L = 2, juj = 1,so that Re = 2=�.11For large Re, F may also in
lude stabilization terms, as when the streamline di�usion dis
retiza-tion [2℄ is used. This dis
retization strategy is used for the experimental results dis
ussed in Se
tion5. 3



The analogue of (2.4) for (2.8) isQ = � F 00 QS � : (2.10)Pre
onditioning as in (2.5) leads to the eigenvalue problemBF�1BT p = �QSp; (2.11)for the S
hur 
omplement, and on
e again, we seek an operator QS for whi
h theeigenvalues are tightly 
lustered, and su
h that appli
ation of the inverse of QS to ave
tor in the dis
rete pressure spa
e is inexpensive.We defer a dis
ussion of this main point, strategies for 
hoosing QS, to Se
tion4. We 
on
lude here by identifying an improvement in the general design of solutionalgorithms available for the Navier-Stokes equations. The eigenvalues of (2.11) maybe 
omplex, and this would pla
e the eigenvalues of the pre
onditioned version ofthe Navier-Stokes equations in two regions in the 
omplex plane, one on ea
h sideof the imaginary axis [6℄. (This is analogous to the two intervals 
ontaining theeigenvalues of the pre
onditioned Stokes operator.) For the Stokes equations, thepositive-de�nite blo
k diagonal form of the pre
onditioner makes the pre
onditionedoperator symmetri
, whi
h in turn allows the use of the optimal minresmethod. Now,however, (2.8) is not symmetri
 and there is no Krylov subspa
e solver that is optimalas in (2.3) and has a �xed amount of 
omputational work per iteration [13, 14℄. Sin
ethere is no symmetry to maintain, we 
an use a blo
k-triangular variant of (2.10),Q = � F BT0 �QS � : (2.12)This 
hoi
e leads to the generalized eigenvalue problem� F BTB 0 �� up � = �� F BT0 �QS �� up � ;for whi
h the eigenvalues are those of (2.11) together with � = 1. A good 
hoi
e ofQS will then for
e all eigenvalues to be 
lustered on one side of the imaginary axis.Use of this pre
onditioner in 
ombination with a Krylov subspa
e method su
h asgmres [28℄ requires approximately half the iterations as the variant based on (2.10),with minimal extra 
ost per iteration.So far we have restri
ted our attention to stable dis
retizations, for whi
h there isa zero blo
k in the (2,2)-entry of the 
oeÆ
ient matrix of (2.8). It is often 
onvenientto use dis
retizations that require stabilization; for example, this enables the use ofequal-order �nite elements for velo
ities and pressures on a 
ommon grid [18, 21℄. Inthis 
ase, the system to be solved has the form� F BTB �C �� up � = � fg � ; (2.13)where C is a stabilization operator. A se
ond interpretation of (2.12) provides insightinto what is needed in this situation. Consider the blo
k LU-fa
torization� F BTB �C � = � I 0BF�1 I �� F BT0 �(BF�1BT + C) � : (2.14)4



This means� F BTB �C �� F BT0 �(BF�1BT + C) ��1 = � I 0BF�1 I �is an \ideally" pre
onditioned system whose eigenvalues are identi
ally 1. It suggeststhat the pre
onditioner should have the formQ = � QF BT0 �QS � : (2.15)That is, just as for stable dis
retizations, we require a good approximation QS for theS
hur 
omplement with respe
t to F , whi
h for (2.13) is BF�1BT +C. Moreover, asdis
ussed for the Stokes equations, in general, additional eÆ
ien
ies 
an be a
hievedusing QF � F , i.e. by using iterative methods to approximate the a
tion of the inverseof the (
onve
tion-di�usion) operator F .3. Relation to other methods. In this se
tion, we show some 
onne
tionsbetween the pre
onditioning methods 
onsidered above and two established solutionmethods for the Navier-Stokes equations, proje
tion methods and SIMPLE. This is abrief overview of a more detailed dis
ussion that 
an be found in [10℄.The \
lassi
al" �rst order proje
tion method for evolutionary problems [4, 32℄
an be viewed as a two-step pro
edure for advan
ing from time step m to step m+1.Viewed in its semi-dis
rete form, with only time dis
retization, it isStep 1: solve u(�) � u(m)�t � �r2u(�) + (u(m) � grad)u(m) = f for u(�);Step 2: solve  1�tI r�r 0 ! u(m+1)p(m+1) ! =  1�tu(�)0 ! : (3.1)In the se
ond step, p(m+1) is obtained by solving a Poisson equation, and u(m+1) isthen the orthogonal proje
tion of the intermediate quantity u(�) into the spa
e ofin
ompressible ve
tor �elds. Spatial dis
retization gives the matrix formulationStep 1: solve � 1�tM + �A�u(�) = f � �� 1�tM +N�u(m)Step 2: solve  1�tM BTB 0 ! u(m+1)p(m+1) ! =  1�tMu(�)0 ! ;where A, N and M are as in (2.9). The updated dis
rete pressure is obtained bysolving the dis
rete pressure Poisson equationBM�1BT p(m+1) = Bu(�):Substitution of u(�) into Step 2 shows that the advan
ement in time is done bysolving the algebrai
 system 1�tM+�A � 1�tM+�A�� 1�tM��1BTB 0 ! u(m+1)p(m+1) != f � �� 1�tM +N�u(m)0 ! :(3.2)5



It was observed in [26℄ that the sequen
e of operations performed for the proje
tionmethod derive from a blo
k LU-de
omposition of the 
oeÆ
ient matrix of this system, 1�tM+�A � 1�tM+�A�� 1�tM��1BTB 0 ! = 1�tM+�A 0B �B � 1�tM��1BT ! I � 1�tM��1BT0 I ! : (3.3)Following [26℄, it is instru
tive to 
ontrast this with what would be required toperform an update derived purely from linearization and dis
retization of the originalproblem (1.1). If linearization is performed in a manner analogous to (3.1), i.e.,by treating 
onve
tion fully expli
itly, then a time step would 
onsist of solving thesystem  1�tM+�A BTB 0 ! u(m+1)p(m+1) != f � �� 1�tM +N�u(m)0 ! (3.4)instead of (3.2). The 
oeÆ
ient matrix of (3.2) 
an be viewed as an approximation tothe 
oeÆ
ient matrix of (3.4), the only di�eren
e lying in the blo
k (1,2){entry:BT � � 1�tM+�A� � 1�tM��1BT = �(�t)�AM�1BT = O(�t):Sin
e this is of the same order of magnitude as the time dis
retization error, thereis no loss of a

ura
y asso
iated with the proje
tion method [17℄. Thus, proje
tionmethods 
an be viewed as a devi
e for avoiding having to solve the Stokes-like systemof equations of (3.2). The analogue for (3.4) of the blo
k-LU de
omposition (3.3) is 1�tM+�A BTB 0 != 1�tM+�A 0B �B � 1�tM+�A��1BT! I � 1�tM+�A��1BT0 I !;whi
h is a fa
torization like that of (2.14). As we have observed, what is needed foreÆ
ient pro
essing of this system a good approximation to the S
hur 
omplement op-erator, in this 
ase B � 1�tM+�A��1BT . This parti
ular (generalized Stokes) problemhas been treated in [1, 3℄.Remark. Viewing (3.2) as derived from (3.4) also provides a means of impli
itlyde�ning boundary 
onditions for proje
tion methods. This is done for the pressuresvia the S
hur 
omplement operator BM�1BT appearing in (3.3). No boundary 
on-ditions are needed for u(�) sin
e this quantity is impli
itly in
orporated into (3.2).See [5, 26℄ for further dis
ussion of this point; referen
e [5℄ also shows how these ideaswork for higher order time dis
retization.To des
ribe a 
onne
tion between the widely used SIMPLE (\Semi-Impli
it Me-thod for Pressure-Linked Equations") method [25℄ and the pre
onditioning methodol-ogy of Se
tion 2, we followWesseling [36, pp. 296�℄. SIMPLE uses a blo
k fa
torization� F BTB 0 � � � QF 0B �BF̂BT �� I F̂�1BT0 I � (3.5)where both QF and F̂ are approximations to F . This represents an alternative ap-proximation to the blo
k fa
torization (2.14). The �rst operator QF is determined in6



a manner analogous to the approa
h of Se
tion 2, via an iteration that approximatesthe a
tion of the inverse of F . The se
ond approximation F̂ is 
hosen so that theoperator BF̂�1BT 
an be used expli
itly. The standard implementation [25℄ uses thediagonal of F for F̂ . This means that the approximate S
hur 
omplement BF̂�1BTresembles a dis
rete Lapla
ian operator.The solver for (2.8) derived from (3.5) is a stationary iteration essentially of theform u(m+1)j+1p(m+1)j+1 ! =  u(m+1)jp(m+1)j ! + I F̂�1BT0 I !�1 QF 0B �BF̂BT !�1" f (m)g(m) !� F BTB 0 ! u(m)jp(m)j !# :This 
an easily be adapted to produ
e a pre
onditioned iteration. The main di�eren
ebetween this approa
h and those of the next se
tion lies in the approximation to theS
hur 
omplement. The 
hoi
e determined by F̂ = diag(F ) is a good one in the 
aseof small time steps but is less e�e
tive when the spatial mesh size is small or when
ows are 
onve
tion-dominated [36℄.4. Approximation to the S
hur 
omplement. In 
ontrast to the methodsdis
ussed in the previous se
tion, the perspe
tive of the new approa
h is to treat the
oupled equations dire
tly by approximating the S
hur 
omplement asso
iated with(2.8) or (2.13). In this se
tion, we dis
uss two ways to do this.For the �rst, assume that both m and j are �xed in (2.7), and let w = u(m+1)jdenote the lagged 
onve
tion 
oeÆ
ient. Consider the translated 
onve
tion-di�usionoperator 1� I��r2+w �r. Suppose that the pressure spa
e also admits a 
onve
tion-di�usion operator (��r2 + w � r)p, and furthermore that the 
ommutator of thetranslated 
onve
tion-di�usion operators with the gradient operator,( 1�I � �r2 +w � r)r�r( 1�I � �r2 +w � r)p ;is small in some sense. A dis
rete version of this assertion is that(M�1u F ) (M�1u BT )� (M�1u BT ) (M�1p Fp) (4.1)is also small, where Mu is the mass matrix asso
iated with the velo
ity dis
retizationand Fp is a dis
rete approximation to the translated 
onve
tion-di�usion operator;both F and Fp have the form given in (2.9). It follows thatBF�1BT � ApF�1p Mp ; (4.2)where Ap = BM�1u BT is a dis
rete Lapla
ian operator. The matrix on the right handside here de�nes a pre
onditioning operator QS . More generally, any suitable dis
reteapproximation to the Lapla
ian 
an be used for Ap; in parti
ular, if stabilization isrequired, then BM�1u BT will be rank-de�
ient and an alternative, stable, approxima-tion Ap to the Lapla
ian would be needed. The resulting operator 
an then be used asan approximation to BF�1BT +C. See [12, 20, 29℄ for additional dis
ussion of thesepoints; in parti
ular, [20℄ gives an alternative derivation of QS using the fundamentalsolution tensor for the linearized Navier-Stokes operator. An important point is thatalthough 
ommutativity is used in the derivation above, it is not ne
essary that (4.1)7



be small (it is not small when equal order �nite element methods on di�erent gridsare used [7℄) for the idea to be e�e
tive.An alternative approximation to the S
hur 
omplement is derived from a simpleobservation in linear algebra [8℄. Suppose G and H are two re
tangular matri
es ofdimensions n1 � n2 with full rank n1 � n2. The matrixHT (GHT )�1GTmaps Rn1 to range(HT ) � Rn1 , and it �xes range(HT ). That is, HT (GHT )�1GT = Ion range(HT ). With the 
hoi
es G = BF�1, H = B, this givesBT (BF�1BT )�1BF�1 = I on range(BT )or, equivalently, BT (BF�1BT )�1B = F on range(F�1BT ):If range(BT ) were 
ontained in range(F�1BT ), then this would imply that(BBT ) (BF�1BT )�1(BBT ) = BFBT ;or (BF�1BT )�1 = (BBT )�1(BFBT ) (BBT )�1: (4.3)It is generally not the 
ase that range(BT ) � range(F�1BT ), so that the expressionabove is not a valid equality. However, if we view (4.3) as an approximation, we 
anuse the expression on the right side to de�ne a pre
onditioning operator Q�1S . Notethat this approa
h is appli
able only to div-stable dis
retizations; ideas to generalizeit to stabilized dis
retizations are under development.We refer to the operator de�ned by (2.15) and (4.2) as the \Fp-pre
onditioner,"and that de�ned by (2.15) and (4.3) as the \BFBt-pre
onditioner." Both strategieswere originally developed with steady problems in mind, and in this regard theyhave been studied in [8, 11, 12, 20, 22, 29℄. Some of their properties for solving theproblems that arise from low-order �nite element or �nite-di�eren
e dis
retization ofsteady problems are as follows:1. With Fp-pre
onditioning, gmres iteration exhibits a rate of 
onvergen
e thatis independent of the dis
retization mesh size h [12, 22℄.2. With BFBt-pre
onditioning, 
onvergen
e of gmres iteration is mildly depen-dent on mesh size, with iteration 
ounts that appear to grow in proportionto h�1=2 [8℄.3. Both methods lead to 
onvergen
e rates that are mildly dependent on theReynolds number [8, 12, 20, 29℄.As we will see in Se
tion 5, for evolutionary problems the dependen
e of 
onvergen
erates on mesh size and Reynolds numbers be
omes negligable; similar results have alsobeen shown in [9, 11℄. The results 
ited here are largely experimental. The report[22℄ 
ontains rigorous bounds showing that the eigenvalues of the Fp-pre
onditionedoperator AQ�1 are 
ontained in a region that is independent of mesh size h and timestep �t; these 
an be used to establish bounds on the asymptoti
 
onvergen
e ratesof gmres.Using the pre
onditioner (2.15) with an iterative method su
h as gmres to solvesystems (2.8) or (2.13) requires that the a
tion of the inverse of Q be applied at ea
h8



step. The main 
omputational tasks required for this are to apply the a
tion of the in-verse of QS to a member of the dis
rete pressure spa
e, and to apply the a
tion of theinverse of QF to a member of the dis
rete velo
ity spa
e. For Pi
ard iteration (2.7),the latter operation entails solution of a set of s
alar dis
rete 
onve
tion-di�usionequations. This 
an be done e�e
tively by iterative methods. For evolutionary prob-lems espe
ially, this is a straightforward 
omputation be
ause of the presen
e of themass matrix in F ; see [11℄.For the other main task, appli
ation of the a
tion of the inverse of QS, the prin-
ipal 
ost is for solution of the Poisson equation. The Fp-pre
onditioner requires onePoisson solve at ea
h step, and the BFBt-pre
onditioner requires two per step. On
eagain, this task 
an be handled by iterative methods, and moreover, approximatesolutions to the Poisson equations are suÆ
ient. In our experien
e, one or two stepsof V-
y
le multigrid are suÆ
ient for good performan
e of the 
omplete solver.If we 
ompare these two pre
onditioning methods, it is evident that the Fp-approa
h tends to have more favorable properties. However, one advantage of theBFBt method is that it is fully automated: it is de�ned expli
itly in terms of operators
onstru
ted from the dis
retization, and it requires no a
tion on the part of a potentialuser in order to be spe
i�ed. In 
ontrast, for the Fp-pre
onditioner, it is ne
essarythat the matri
es Fp and Ap be 
onstru
ted. In prin
ipal this 
an be done using a
ode similar to the one that produ
es F , but it must be done. It is also ne
essary tomake de
isions on how boundary 
onditions a�e
t the de�nitions of Fp and Ap.5. Experimental results. In this se
tion, we show some representative experi-mental results on performan
e of the pre
onditioners des
ribed in the previous se
tion.We used two ben
hmark problems:1. The two-dimensional driven 
avity problem on the domain 
 = [�1; 1℄ �[�1; 1℄. Boundary 
onditions are u � 0 on �
 ex
ept u1(x; 1) = 1 at the topof 
.2. Flow over a ba
kward-fa
ing step. 
 is the L-shaped domain [�1; 0℄� [0; 1℄[[0; 5℄�[�1; 1℄, with paraboli
 in
ow 
onditions u1(�1; y) = 1�y2, u2(�1; y) =0, natural boundary 
onditions � �u1�x �p = 0, �u2�y = 0 at the out
ow boundaryx = 5, and u � 0 otherwise.Steady solutions of these problems for Reynolds number 200 are depi
ted in Figure5.1. Details 
on
erning the experiments are as follows. Spatial dis
retization was doneusing the stable Q2-Q1 �nite element dis
retization 
onsisting of biquadrati
 elementsfor the velo
ities and bilinear elements for the pressures, on a uniform grid. Streamlineupwinding [2℄ was used in 
ases where the 
ell Reynolds number jujh2� is greater thanone. Rather than perform a full transient iteration, we simulated time dis
retizationas follows. For most of the tests, we performed a Pi
ard iteration for the steadyproblem, saved the 
oeÆ
ient matrix J arising from the se
ond Pi
ard step, and then
omputed F = 1�tM + J (5.1)where �t is to be viewed as a pseudo-time step. For ba
kward Euler dis
retization,�t is the value of the time step. For higher order time dis
retizations, there areother s
aling fa
tors involved. For example, the Crank-Ni
olson dis
retization wouldhave time step equal to �t=2. In these experiments, on
e F is de�ned by (5:1), we9



Fig. 5.1. Steady state solutions of the driven 
avity (top) and ba
kward step (bottom) problemsfor Re = 200.
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solve solve Fu = f where f is the right hand side that arises from the steady Pi
arditeration.To spe
ify the operators Ap and Fp used in the Fp-pre
onditioner, it is ne
essaryto asso
iate boundary 
onditions with them. In these tests, for the driven 
avity(en
losed 
ow) problem, Ap and Fp are de�ned as though derived from Neumannboundary 
onditions. For the steady version of the ba
kward step problem, it isne
essary to use a Diri
hlet 
ondition at the in
ow boundary x = �1. For thetransient step problem, we found a Neumann 
ondition for Fp at the in
ow to beslightly more e�e
tive and this 
hoi
e was used in the experiments. We note thatalthough this issue is similar to what is often fa
ed for proje
tion methods [19℄, hereit is only an aspe
t of the solution algorithm and it has no e�e
t on dis
retization ofthe pressure, for whi
h no boundary 
onditions are spe
i�ed.Representative results are shown in Figures 5.2 and 5.3 for the driven 
avityproblem, and in Figures 5.4 and 5.5 for the ba
kward step. We show results for10



Fig. 5.2. Iterations of pre
onditioned gmres at sample time and Pi
ard steps, for driven 
avityproblem, Re = 200 and Q2-Q1 �nite elements. Left: 32� 32 grid, right: 64 � 64 grid.
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Fig. 5.3. Iterations of pre
onditioned gmres at sample time and Pi
ard steps, for driven 
avityproblem, Re = 1000 and Q2-Q1 �nite elements. Left: 32 � 32 grid, right: 64 � 64 grid, bottom:128� 128 grid.
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Fig. 5.4. Iterations of pre
onditioned gmres at sample time and Pi
ard steps, for ba
kwardfa
ing step, Re = 200 and Q2-Q1 �nite elements. Left: 32� 96 grid, right: 64� 192 grid.
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�t = 1=100, 1=10, 1 (in one example), and 1. The last value, whi
h 
orresponds tothe steady problem, gives an idea of what the maximal solution 
osts (per time step)would be in the 
ase of very large CFL numbers.The main points to observe 
on
erning the transient problem are as follows:� For �xed �t, the iteration 
ounts required for 
onvergen
e are essentiallyindependent of both the Reynolds number and the dis
retization mesh size.� Iteration 
ounts are de
reasing as a fun
tion of the time step size. This is a
onsequen
e of the fa
t that the term 1�tM be
omes more dominant in thede�nition of both the dis
rete operator and the pre
onditioner as �t! 0.� The BFBt-pre
onditioned solvers require fewer iterations (typi
ally on theorder of 10 or fewer for the driven 
avity problem and 20 or fewer for theba
kward step) than the Fp-pre
onditioned solvers. Although the 
omputa-tions for the BFBt operator are more expensive at any step (requiring twoPoisson solves at ea
h step instead of one), there is typi
ally at least a 50%savings in iterations, whi
h makes the BFBt-pre
onditioner more eÆ
ient inthese examples.� Note that the �rst and third assertions do not 
arry over to the steady prob-lem, where only the Fp-pre
onditioner is mesh independent and the perfor-man
e of both methods depends on Re.The problems arising from the ba
kward fa
ing step are 
onsiderably more diÆ
ultthan those arising from driven 
avity 
ow. Although this is not ne
essarily unex-pe
ted, there is no obvious explanation that 
an be seen purely from the propertiesof the algebrai
 systems.Table 5.1 gives estimates for the CFL numbers kuk�t=h for these tests, derivedfrom the empiri
ally observed values kuk � 17 (in the ve
tor Eu
lidian norm) for thedriven 
avity problem and kuk � 29 for the ba
kward step. It is evident that thisapproa
h enables the use of large CFL numbers when it is feasible, i.e., when a

uraterepresentation of short time-s
ale physi
s is not the goal.Finally, Figure 5.6 shows a few results for the 
ase where the nonlinear iterationis based on Newton's method instead of the Pi
ard iteration (2.7). As above, theexperiments were done for 
oeÆ
ient matrix F = 1�tM + J where J is now the Ja
o-bian of the nonlinear system obtained after two Newton iterations. These 
oeÆ
ient12



Fig. 5.5. Iterations of pre
onditioned gmres at sample time and Pi
ard steps, for ba
kwardfa
ing step, Re = 1000 and Q2-Q1 �nite elements. Left: 32� 96 grid, right: 64� 192 grid.

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BFBt preconditioner
F

p
 preconditioner

∆t=∞

∆t=1/100

∆t=1/10

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BFBt preconditioner
F

p
 preconditioner

∆t=∞

∆t=∞

∆t=1/100 ∆t=1/10Table 5.1Estimated CFL numbers for test problems.Driven 
avity mesh Ba
kward step mesh�t 32� 32 64� 64 128� 128 32� 96 64� 1921=10 27 54 109 46 931=100 2.7 5.4 10.9 4.6 9.3matri
es have a more 
omplex stru
ture, and in parti
ular, F is no longer a blo
kdiagonal matrix. In this 
ase, the Fp-pre
onditioner is de�ned using the velo
ity fromthe previous step for the 
onve
tion 
oeÆ
ient. These graphs should be 
omparedwith the �rst ones from Figures 5.2 and 5.4; they show that the 
osts to solve theseproblems are roughly twi
e those in
urred for Pi
ard iteration.6. Con
luding remarks and generalizations. The goal of developing theseapproa
hes for pre
onditioning is to enable the development of 
exible and easilyimplemented solvers for the Navier-Stokes equations. This is a
hieved in part bybuilding on e�orts to develop eÆ
ient solvers for simpler subsidiary problems su
has the 
onve
tion-di�usion and Poisson equations. The resulting algorithms 
an beapplied dire
tly to both evolutionary and steady problems and enable the use of timedis
retization with large CFL numbers.We 
on
lude with the observation that they also o�er the potential to handlemore general systems. Consider the 
ase where heat transport is 
ombined with theNavier-Stokes equations, giving rise to the Boussinesq equations�ut �r � (�uru) + (u � grad)u+ grad p = f(T )�Tt �r � (�TrT ) + (u � grad)T = g(T )�divu = 0 on D � Rd; d = 2 or 3: (6.1)Linearization and dis
retization (impli
itly in time in the 
ase of transient problems)leads to a sequen
e of linear systems of equations now having the form0� Fu G BTH FT 0B 0 0 1A0� Æ�� 1A = 0� fg0 1A : (6.2)13



Fig. 5.6. Iterations of pre
onditioned gmres at sample time and Newton steps, for Re = 200and Q2-Q1 �nite elements Left: driven 
avity problem on a 32 � 32 grid. Right: ba
kward fa
ingstep on a 32� 96 grid.
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The pre
ise stru
ture of the individual blo
ks of the 
oeÆ
ient matrix depends onthe strategy used to linearize, that is, on the algorithm used to perform the nonlineariteration. If a Pi
ard iteration is used, then both Fu and FT are 
onve
tion-di�usionoperators as above, and H = 0. In this 
ase, the S
hur 
omplement operator isBF�1u BT , whi
h is identi
al to the operator arising from the Navier-Stokes equations.Thus, we expe
t these ideas to be dire
tly appli
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