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ABSTRACT

We obtain several results which may be useful in determining the convergence
behavior of eigenvalue algorithms based upo n Arnoldi and nonsymmetric
Lanczos recursions. We derive a relationship between nonsymmetric Lanczos
eigenvalue procedures and Arnoldi eigenvalue procedures. We demonstrate
that the Arnoldi recursions preserve a property which characterizes normal
matrices, and that if we could determine the appropriate starting vectors, we
could mimic the nonsymmetric Lanczos eigenvalue convergence on a general
diagonalizable matrix by its convergence on related normal matrices. Using
a unitary equivalence for each of these Krylov subspace methods, we define
sets of test problems where we can easily vary certain spectral properties of
the matrices. We use these and other test problems to examine the behavior
of an Arnoldi and of a nonsymmetric Lanczos procedure.
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1. Introduction

Lanczos recursions can be used to transform a general matrix eigenvalue problem
(1) Az = Xz

into a family of easier matrix eigenvalue problems whose solutions can be used to obtain approximations to
eigenvalues and eigenvectors of A. In theory each easier problem is a matrix representation of projections
of the given eigenvalue problem onto certain Krylov subspaces.

We consider two types of recursions for nonsymmetric A. The first variant, the Arnoldi recursion, is
a direct analog of the real symmetric Lanczos recursion applied to a nonsymmetric matrix. For a given
matrix and vector pair, {A, v}, the Arnoldi recursion simultaneously generates orthonormal bases for the
Krylov subspaces, Ki(A,v;) , associated with that pair, and Hessenberg matrices Hj which are matrix
representations of the orthogonal projections of A onto the Krylov subspaces. Theoretically, each step
of the Arnoldi recursion is well-defined. However, at each step in the basic Arnoldi recursion all of the
previously-generated Arnoldi basis vectors must be kept in storage.

Nonsymmetric Lanczos variants consist of two recursions. For a given matrix and vector triplet,
{A,v;,w;}, the nonsymmetric Lanczos recursion simultaneously generates bi-orthogonal bases for the
Krylov subspaces K(A,v;) and K(AT,w,), and tridiagonal matrices T} which are matrix representations
of the bi-orthogonal projections of A onto these Krylov subspaces. These recursions are an implementation
of a two-sided Gram-Schmidt orthogonalization. Therefore, there is no guarantee that they will not break
down. However, in contrast with the Arnoldi procedure, at any step in a nonsymmetric Lanczos recursion
only a few of the most recently-generated Lanczos vectors must be kept in storage. When A is real and
symmetric and w; = vy, then the nonsymmetric Lanczos recursions reduce to the real symmetric Lanczos
recursion,

We would like to be able to answer the question: ‘What spectral properties of A control the convergence
of each of these methods’? We have not answered this question but describe several results which might
be useful in such studies. See for example, the related work [2, 3, 4, 5, 6, 7, 8, 27, 28, 29].

In section 2 we outline briefly the Arnoldi and the nonsymmetric Lanczos eigenvalue procedures we
are considering. In section 3 we exhibit a certain relationship between these two methods. We prove
that given any matrix A and any application of a nonsymmetric Lanczos procedure to A, there exists
a matrix B with the same eigenvalues as A such that the eigenvalue approximations and unnormalized
residual norm estimates generated by applying an Arnoldi method to B are identical to those obtained from
the nonsymmetric Lanczos computation on A. From this we can conclude, at least in exact arithmetic,
that any type of eigenvalue convergence observed using the nonsymmetric Lanczos procedure can also be
observed on some other problem using the Arnoldi procedure. Therefore, in this global sense, one of these
procedures is not better than the other.

In section 4 we consider our nonsymmetric Lanczos procedure in more detail, indicating how we
implement it in finite precision arithmetic. As in the symmetric case, convergence of eigenvalue
approximations occurs in conjunction with losses in the biorthogonality of the Lanczos vectors. Using
a symmetrized version of the nonsymmetric Lanczos procedure, we derive a variant of a theorem in Bai [1]
connecting losses in biorthogonality to convergence of eigenvalue approximations, relaxing his assumptions
of exact local biorthogonality and normalization.

In section 5 we derive a simple unitary invariance for each of these methods. In section 6 we use
this invariance to identify a set of test matrices for Krylov subspace methods and express them in terms
of normal matrices. In section 7 we demonstrate that Arnoldi methods preserve the Hermitian—skew
Hermitian decomposition which characterizes normal matrices. We also demonstrate that if we were able
to select the starting vectors in a nonsymmetric Lanczos procedure appropriately, we could simulate any
eigenvalue convergence using only normal test matrices.

In section 8 we consider the Grear test matrix [29] and several variants of it based upon the test matrices
discussed in section 6, in an attempt to gain some insight into the behavior of both the Arnoldi and the



nonsymmetric Lanczos procedure. The results of these tests suggest that to characterize the behavior of
these methods on nonnormal problems it is not sufficient to know the singular values of the eigenvector
matrix. They also suggest a potential source of numerical difficulties for both types of methods.

In [9] we consider similar questions for the problem Az = b. We use the following notation.

1.1. Notation.
A=(a;),1< 4,j <n,nXnreal or complex matrix
AT =(aj;) , 1< t,j < n, transpose of A
A" = (a@;), 1 <1,7 <n, complex conjugate transpose of A
D = diag {di,...,d,}, n x n diagonal matrix
Ai(A), 1< 7 <mn,eigenvalues of A
w(4) = Py(4),1< j < n)
0;(A),1 < j < mn, singular values of A where 0; > ... > 0,
Y = diag {o1,...,0.}
K;(A,b) = span{b, Ab, ..., A77'b}, jth Krylov subspace generated by A and b
K(A) = Omax(A)/Omin(A4), condition number of A
[Allz = omax(4), [J2]l2 = /327127
v;, jth vector in any sequence of vectors, V; = {vq,...,v;}
r; = —Az; + p;jz;, jth residual vector for {u;, z;}
R™, m—dimensional Euclidean space
e;, jth coordinate vector in R™ where m is specified in the context
é;, jth coordinate vector in R™*! where m is specified in the context
I;, 7 X 7 identity matrix

2. Arnoldi and Nonsymmetric Lanczos Eigenvalue Procedures

In this section we review briefly Arnoldi and nonsymmetric Lanczos, Krylov subspace eigenvalue
procedures. We consider an Arnoldi method and two nonsymmetric Lanczos methods. Consider
Equation(1) where A is a n X n nonsymmetric matrix. A may be real or complex.

2.1. Arnoldi Methods
The Arnoldi method is based upon the Arnoldi recursion [26].

Arnoldi Recursion:
1. Given v; with ||v,|| =1, for j = 2,3, ... compute: v;; = Av;

2. For each 7 and for ¢t = 1,...,7 compute:
hij = v vj 41, Vip1 = V41 — hyjo;
3. For each 7 compute:
hivri = v, and vj41 = vj41/hjp,;-

Theoretically, V; = {v1,...,v;} is an orthonormal basis of the Krylov subspaces K;(A,v;) and the
Hessenberg Arnoldi matrices H; = (h;,) are matrix representations of A onto K;(A4,v;) with respect
to the V;. The preceding implementation is a modified Gram-Schmidt orthogonalization of the vectors
{v1, Avy, A*vy,...}. Other implementations exist [31]. In matrix form these recursions become

(2) A‘/] = ‘/]H] + h]'+1’j’vj+16,f where H] = (hik)7 1 S ’L,k S ]



Basic Arnoldi Eigenvalue Procedure:
1. Given vy use the Arnoldi recursion to generate Hessenberg matrices H; for j = 1,...,m.
2. For some j < m compute eigenvalues H;u = pu. Compute convergence error estimates
u,(m).
3. If desired eigenvalues are not converged, increase m and repeat steps 1 and 2.

Typically, v; would be chosen randomly. As with any iterative method there is an assumption that the
starting vector has a projection on each part of the eigenspace to be computed.

2.2. Nonsymmetric Lanczos Methods

The corresponding nonsymmetric Lanczos variants generate two sets of Lanczos vectors, and the Lanczos
matrices are tridiagonal. We consider a nonsymmetric variant which generates nonsymmetric tridiagonal
matrices, and a symmetric variant which generates complex but symmetric Lanczos matrices.

The nonsymmetric variant is used in theorem 3.1 where we derive a relationship between it and an
Arnoldi method. The complex symmetric variant is used in theorem 4.1 where we obtain a theorem
relating losses in biorthogonality of the Lanczos vectors to convergence of eigenvalue approximations. We
note however, that we could obtain a version of theorem 3.1 which uses the complex symmetric variant
but the statement of the theorem would have to be modified slightly and the notation would be more
complicated.

Nonsymmetric Lanczos Recursion (Nonsymmetric Variant):

1. Given v; and wy with ||wi|| = ||v1|| = 1, set vo = wo = 0, and p; =1, &, =1, and §; = 0.
For each 7 = 1,...,m compute:

v;41 = Av; and w;; = ATw;
2. For each 7 = 1,...,m compute:
a; = w,f’vj_l_]_/w,f’vj,
P; = V41— 0V — 051
8; = wig1 — azw; — (Bp5/&) w1
Pi+1 = ||pj||v Viy1 = pj/Pj+1
§ivr = llsill,  wijr=5;/61

T T
Bi+1 = &1aw; 1V 41/ w5 v5,

In this variant the Lanczos vectors are scaled to have unit norm. In the complex symmetric variant the

Lanczos vectors are scaled so that w;fpvj = 1 for each j. There is no agreement as to which variant is
preferable in practice. In both variants the coefficients in the recursions are chosen to make the Lanczos
vectors V,, = {v1,...,v,} and W,,, = {wy,...,w,,} biorthogonal. Theoretically, for each m, V,, is a basis

for the Krylov subspace K,.(4,v;), and W;, is a basis for the subspace K,,(AT, w;).
Nonsymmetric Lanczos Recursion (Complex Symmetric Variant):
1. Given v; and w; with wfv; = 1, set v = wo = 0, and 3; = 0. Foreach j = 1,...,m
compute;
vj11 = Av; and w; 4 = ATw;



2. For 3 =1,...,m compute:
_ T
a; = wj Vit1,

P; = Vjt1 — 00 — v
85 = Wjp1 — 0wy — —fw;q

Bit1 = /P 855 Vi1 = 05/ Biv1, Wit1 = 8;/Bj4-

In practice, the complex symmetric variant is implemented using a modified two—sided Gram Schmidt

orthogonalization.
For each variant we can define Lanczos tridiagonal matrices
ar P
Y2 az Ba
(3) Tk = ’Ya . . ‘. . 5
a1 P
Ye o Qg

In the complex symmetric variant 7, = §;, and in the nonsymmetric variant v, = p; . Theoretically, each
Ty is the matrix representation of a bi-orthogonal projection of A onto the Krylov subspaces K( A, v;) and
Kr(AT,w;). We have the following basic procedure for either variant.

Basic Nonsymmetric Lanczos Eigenvalue Procedure:

1. Given v; and w; use the nonsymmetric Lanczos recursion to generate tridiagonal Lanczos
matrices Ty, for k=1,...,m.

2. For some k < m compute eigenvalues, Tpu = pu. Select some subset of the eigenvalues of
T, as approximations to eigenvalues of A. For all relevant g compute convergence error
estimates u,(m).

3. If the desired eigenvalues are not converged, increase m and repeat steps 1 and 2.

Typically, v, is chosen randomly and w; = v;. If A is a real, normal matrix, and v; has reasonable
projections on the desired right eigenvectors of A, then setting w; = v; may be an optimal choice in terms
of the mismatch theorem [25]. .

Lemma 2.1. Let A be a real, normal matrix with n distinct eigenvalues. Let v; have a significant
projection on each unit right eigenvector of A. Then v, has a significant projection on each unit left
eigenvector of A.

Proof. Let r;, l; denote unit right and left eigenvectors, 1 < j < n. Since A is normal, each [; = 7;.
Let vy = > h_;7k7s. If A; is real, then r; is real and I; = 7;. If X; is complex, then A;;; = Xj is also
an eigenvalue, and the projection of v; on [; equals its projection on 7;.; = 7; and its projection on [;;,
equals its projection on 7;.

In matrix form the nonsymmetric Lanczos recursions can be written as

AVm = Vme ‘I’ ’Ym+1’vm+1e£
(4) Y = VT ] -
AW, = W,.T,, + wmi1Wmy1€,

In the complex symmetric variant, Tm =T, and Ymy1 = Bmit = Wmyr- In the nonsymmetric variant,

T, =®,'T,®, where ®,, = diag(¢y,...,d,) with ¢; = 1 and each ¢; = ¢;_1p;/&;.

In each Krylov subspace method there is a right Ritz vector, z]’»c = Vkuf/HVkufH corresponding to any
eigenvalue approximation ,u;?. In the nonsymmetric Lanczos procedures we also obtain a left Ritz vector.
In the complex symmetric variant the left vector has the form y; = Wi /||[Wyu}||. (From recursions( 4),
for any k and each j < k, we have, the normalized right residual norm error estimates .



(3) Il = 142 = 5 251 < (1Br (o) llvwsall + N/ Vit .

For the nonsymmetric Lanczos procedure we also have the normalized left residual norm estimate.

(6) Il = 1ATyf = wyf |l < (Braavf (B) lwesall + 1Gell)/ Wil

F; and G; represent the errors introduced into the recursions by the finite precision arithmetic. Existing
error estimates for any ,u;?, when it is considered as an estimate of some eigenvalue A of A, require estimates
of both a right and a left normalized residual norm [25], and the condition of that eigenvalue, cond(}).

(7) I3 = Al < cond(N)max([|r ][, [|77]).

In practice we do not know the condition of the eigenvalues, and do not have an estimate of the error
matrices F; and G;. If w; = vy in the nonsymmetric Lanczos recursions and A is real and symmetric,
then both the Arnoldi and the nonsymmetric Lanczos recursions reduce to the real symmetric Lanczos
recursions.

Each step of the nonsymmetric Lanczos recursions requires matrix-vector multiplications by both A
and AT. The Arnoldi recursions use only A. However, the computation of the (k 4 1)** Arnoldi vector
requires all k preceding Arnoldi vectors. In contrast, the computation of the (k 4+ 1)** Lanczos vector
requires only the two most recently-generated left and right Lanczos vectors. Therefore, if there is no
re-bi-orthogonalization of the Lanczos vectors, the storage requirements of a basic nonsymmetric Lanczos
procedure are at most some small multiple of the order of A.

Since the nonsymmetric Lanczos recursion is an implementation of a two-sided Gram Schmidt bi-
orthogonalization of two sets of vectors, it is possible for it to break down even if each set V; and W is
linearly independent. Serious breakdown occurs if for some 7, w;f"vj = 0 but w; # 0 and v; # 0. If this
occurs then the recursions cannot be continued. If w; = 0 or v; = 0, then this means an invariant subspace
for either AT or A has been found.

Exact breakdown is highly improbable, near breakdowns may cause numerical instabilities. To avoid
such problems, various look-ahead strategies have been proposed, see e.g. [25, 18]. The discussions in
this paper are equally applicable to the look-ahead variants of these methods. If look-ahead steps are
performed, then the scalar coefficients in Equations(4) become matrices, and the Lanczos vectors become
block biorthogonal.

Assumption 1.1: In any statement or theorem about the nonsymmetric Lanczos procedures we will
always assume that no breakdown has occurred and that all quantities are well-defined.

3. A Relationship Between a Nonsymmetric Lanczos Method and an Arnoldi Method

In this section we use B and C to denote two different matrices. We use a superscript A to denote
quantities associated with an Arnoldi computation, and use a superscript L to denote quantities associated
with nonsymmetric Lanczos computations.

We want to examine the behavior of the Arnoldi and the nonsymmetric Lanczos procedures as we
vary the spectral properties of a matrix. How different are these two methods? Can we obtain a general
relationship between these two methods? In exact arithmetic, we prove that given any matrix B and
any application of a nonsymmetric Lanczos procedure to B, there exists a matrix C' of the same size
as B and with the same eigenvalues as B such that the eigenvalue approximations, the matrix residual
norm, and the unnormalized residual norm estimates generated by applying an Arnoldi procedure to
C are identical to those obtained from the nonsymmetric Lanczos computation on B. ;From this we
can conclude, at least in exact arithmetic, that any type of eigenvalue convergence observed using a
nonsymmetric Lanczos procedure can also be observed using the Arnoldi procedure on some other problem
with the same eigenvalues . In section 8 we will consider the convergence of these two procedures when



they are applied to the same test problems. In [9] we derive an analog of this theorem for the Az = b
problem,

In Theorem 3.1 we assume that B has n distinct eigenvalues, that the starting vectors have projections
on each of the right and the left eigenvectors of B, and that there is no breakdown in the nonsymmetric
Lanczos recursions. If there were fewer than n distinct eigenvalues, the recursions would terminate for
some m < nm. In this case Theorem 3.1 would still be valid when reworded in terms of m and the distinct
eigenvalues of B.

Theorem 3.1. (Exact arithmetic). Let B be any n X n matrix with n distinct eigenvalues. Let v; be
any random vector such that it has a projection on each of the right and the left eigenvectors of B. Apply
the nonsymmetric variant of the nonsymmetric Lanczos eigenvalue procedure with wy = v;. Let Vi'' and
T denote respectively, Lanczos vectors and matrices generated by applying recursions(4) to {B, vy, v }.
Then there exists a n X n matrix C' with the same eigenvalues as B and a starting vector v# such that for
1 <k <n, the Arnoldi eigenvalue procedure applied to {C, v} , yields

(8) i =T and i ks
HBVk - VT, || = ||0Vk - Vi Hj || = |,0k+1|-

Furthermore, for any Tfu? = pju;
(9) 177(B, D)l = |BV, u} — p; Vil = |Irf(C, Al = [[CVAu] — i ViEui |l = Ipraau} (k)]

Proof. Let
(10) T = QnUnQn"

be any Schur decomposition of 7T,.
Multiplying both sides of equation(10) on the left by QF we obtain

(11) UnQn = Qn T, .

Define VA = QX and C' = U,,. The columns of V;* are Arnoldi vectors corresponding to C' and to the
first column of Q. For each k < n,

(12) ICViE = VAT = llpsrrviyaes | = prsal-
Since ||vg, || = 1, we have that
(13) IBVi = ViE T = llprsaviaei | = [prsal

yielding equality of the norms of the residual matrices, see Equation(8).
Let T,fu;c = ,u;?u;?, and define % equal to the k& + 1 vector whose first k£ components consist of w and
whose k + 1 component is zero. The corresponding residual for the Arnoldi right Ritz vector satisfies

(19 (O, A) = OV = SV = Vi ot = Viask = puyast (B,
where
(15 = ot = by = (T )

and zf, z{ are the associated Lanczos and Arnoldi quasi-residual vectors. The corresponding unnormalized

residual for the Lanczos right Ritz vector satisfies

(16) TkR(Ba L) = BVkLuf - ﬂ;chLu;c = Vkﬂ—lzlf = pk+1v,f’+1uf(k)



From the orthonormality of the columns of Vi, we have that

(17) ImE(C, Al =112 = 121 = [pray (R)]-
By construction ||vg, || = 1. Therefore,
(18) Im(B, D)l = 1211 = [px4au5 (k)]

4. Finite Precision Arithmetic and Nonsymmetric Lanczos Procedures

Typically, in finite precision the Lanczos vectors do not remain biorthogonal, and the basic procedure
must be modified. We use modifications analogous to our modifications for the real symmetric Lanczos
procedure [14]. We require the following assumptions.

Assumption 4.1:. Lanczos Phenomenon. For large enough m, all of the desired eigenvalues of A will
appear in w (15, ).

Assumption 4.2: Any spurious eigenvalues appearing in the spectra of any Lanczos matrix T,, are
caused by losses in the biorthogonality of the Lanczos vectors and represent reappearances of converged
eigenvalue approximations.

Ritz vectors are not computed during the eigenvalue computations so that the storage requirements
for our eigenvalue computations are very small. Once the eigenvalues have been computed accurately, an
appropriate size Lanczos matrix m(u) can be determined for each relevant eigenvalue approximation u
and used to compute corresponding eigenvector approximations. These eigenvector computations require
regeneration of the Lanczos vectors.

4.1. Spurious Eigenvalues

The success of any Lanczos procedure which does not use reorthogonalization depends upon a procedure for
identifying the spurious eigenvalues which appear when biorthogonality is lost. For the real symmetric case,
Paige [22] proposed that error estimates be used to make this identification. An eigenvalue of some T;,, would
be accepted as good and an approximation to an eigenvalue of A only if its corresponding error estimate was
sufficiently small. There are two problems associated with that approach. First, any spurious eigenvalue
which is close to a converged good eigenvalue will typically have an error estimate of the same order of
magnitude as the estimate for a converged eigenvalue approximation. Thus, the procedure would indicate
that two such eigenvalues were either distinct or should be combined, resulting in losses in achievable
accuracy. Second, if error estimates are used to determine convergence, the user only sees the eigenvalues
whose estimates meet the convergence tolerance, and none of the other Lanczos eigenvalues which are not
copies of converged approximations but whose error estimates do not meet the convergence tolerance. The
accuracy of these other approximations varies and they cannot be identified using a convergence tolerance.
Presumably spurtous eigenvalues which are not close to converged eigenvalues would not have small error
estimates and would be excluded on that basis, along with these other good eigenvalues. Error estimates
cannot distinquish between these two types of Lanczos eigenvalues. Alternatively, references [24, 30] track
the convergence of approximations as the size of the Lanczos matrix is increased and only accept converged
approximations. That approach suffers from the same difficulties as an approach which uses error estimates.

We use a completely different approach. No convergence tolerances are used. Qur identification test is
a simple extension of the test used in our real symmetric Lanczos procedures. This extension is discussed
in detail in [11]. The argument requires only the symmetry of the Lanczos tridiagonal matrices and is valid
in finite precision arithmetic, as long as the error terms in the Lanczos recursions remain small. There is
no proof that our test identifies all of the extra eigenvalues but it seems to work well in practice. This test
is implemented using inverse iteration on the indicated submatrix.

C-W Identification Test: A simple eigenvalue p of some T} which is also numerically an eigenvalue
of the submatrix obtained by deleting the first row and column of T} is labelled spurious and discarded.



All of the remaining simple and numerically-multiple Lanczos eigenvalues are labelled good, and used as
approximations to eigenvalues of A.

Error estimates for relevant simple good eigenvalues p are computed by computing eigenvectors u of the
Lanczos matrix, Ty, and then computing |Bri1u(k)|. Convergence is declared when all relevant estimates
are small. In the nonsymmetric case, the accuracy of the error estimates as measures of convergence
depends upon the error propagation, the condition of the eigenvalues being computed, and the sizes of
various vector norms.

4.2. Losses in Biorthogonality Imply Convergence

The stability of our algorithm depends upon the error propagation. In Theorem 4.1, we derive an apparently
stronger version of a theorem in [1] relating the loss of biorthogonality of the Lanczos vectors to convergence
of Ritz vector approximations. Bai [1] considered a different nonsymmetric variant of the nonsymmetric
Lanczos eigenvalue procedure and obtained extensions of theorems in Paige [20, 21] to the error terms
F; and G, in equations (19). In his proof, Bai assumed exact local biorthogonality and normalizability.
We prove a similar result for the complex symmetric variant which requires only e-biorthogonality and
normalizability.

Theorem 4.1. (Loss of Bi-orthogonality implies Convergence): Let

AV; = ViTi 4 Bipaviae; + F

(19) ATW; = WiT + Bjpawjne; +G;
(20) WiV =1L+ Aj + L + U;
where
L; = strictly lower triangular part of I/V]TV]
U; = strictly upper triangular part of I/V]TV]
and V; and W; aren x 7, T; is j X j, and F; and G; are n X j matrices.
Define
(21) K; — K7 =W/ F; — FfW; + V7 G; - G]V; + 2(A0T; — T; )
where K is strictly upper triangular.
(22) e =viw , € =wiv, for1<i<j,
(23) D; = diag (dy,...,d;) with d; = Bi[el, — € ] + Bijale] — €] .

For any Tju; = p;u; define corresponding unnormalized right and left Ritz vectors

(24) = Viu; and 2 = Wi,

Then for any 1 <1 < 7,
—uf Dju; + uf Kju; + (¢f + €7)ul(d)
Bj+1ui(7)

Therefore if || F}|, ||G;ll, ||A;]|, and ||Dy|| are small, |W;]|,||V;||, and ||T;|| are not too big, and either
|(zE)T v 11| or |(2F)Tw; 11| is large, then |B;1u;(7)| must be small.

(25) (Zf)T Vjy1 T (Zf)T Wjt1 =

We need the following lemmas.



Lemma 4.1. Let T, L and U be as defined in Theorem 4.1. Let C; = TL — LT and Cy =TU — UT.
Then C is lower triangular, Cy is upper triangular, and

01(1,1) = ﬂl-l-l6 ﬂl €1
(26) Ca(i,1) = Biel 1 — Bitiel

Proof. Consider C;. The proof for C, is similar. C; is lower Hessenberg. Straight-forward applications of
the facts Ty = 0 unless k = ¢ — 1,4,¢+ 1 and L;;, = 0 when k > 4, yield Ci(¢,s+ 1) =0 for all 1 <7 < 7,
and the first half of Equation (26).

Lemma 4.2. For each j, I/V]»Trve;‘»p — eyejeT

J
Proof. The proof follows directly from the definition of ey.
Proof. (Theorem 4.1): ;From the nonsymmetric Lanczos recursions (19), we obtain

is strictly upper triangular.

(27) WiAv; - (W) T = (Win)ef + WE,
(28) VEATW; — (ViW,) T, = (Vra) ef + V76

where we set r, = 8;41v;41 and 7, = B;41w;41. Taking the transposes of both sides of equations (27, 28)
we obtain

(29) VIATW; =T (VIW;) = e (iTW;) + FTW,
(30) WIAV, - T (W]'V;) = e (IV;) +GTV;
Subtracting Equation (30) from Equation (27) we obtain

(31) Ty (WEV;) = (W) T = (W) ef — ¢ (o7

w

Vi) + Wi E - GV
Subtracting Equation(28) from Equation (29) we obtain
(32) (V7wW,) T~ Ty (VIW,) = & ((TW;) — (VTr, ) € + FFW; — VTG .
Subtracting Equation (32) from Equation (31) we obtain

Wil — et W]+ (Vi — V| 4 [WIE - ETW] + V76 - 6TV
(33) =z (wivy) - (viw) 1]+ [m (viws) - (WPv) 3]

The matrices within each pair of square brackets are skew symmetric. ;From Equation (20) and the
symmetry of T; we have that

5 07w) - (7)1, 7~ ()
2(T;8; = AT + (1L - L) + (LU, = UiTh)
(34) +(TLT f'r) + (nUf-ulm) .

;From Lemma 4.1 we have that
(35) Ly =(T;L; - L;Ty) + (TJU]T - U]TTJ)

is lower triangular and

(36) U; (TJL]T - L]TTJ) +(TU; - U;T;)



is upper triangular. Rewrite Equation (33) as
(37) [W]Trvef - ejr,ij] + [VjTrwef - eerVj] =L;+U; + K; - K] .
Equate the strictly upper triangular parts of the right and of the left hand sides of Equation (37)

(38) (Wireel — &l esel| + [Viryel — ¥ eel| = U; — D; + K,
Let Tju; = p;u; with ||ug|| = 1. If we apply u] to the left side of Equation (38) and w; to the right side, we
obtain

T

. T
(Bj+1ui (7)) [(Zf) Vi1 + () wj+1] =
(39) u;faul — u;TFDjui + u;‘r'K]uZ + [e;}v + ey] uZ(5) .

;From Equation (36), uTU;u; = 0 and therefore Equation (39) reduces to Equation (25). Furthermore,

ul D;u; = E; where ||E;|| < 4 (max; |Biy1]) (ma}g |ey’W|). Therefore, if ||F;|],||G5l], 1|14, and the local
near-biorthogonality terms €!,€e/, 1 < ¢ < j, are small, and ||[W;]|,||V;]l,||T;]| are not too large, then
the right hand side of Equation (39) is small. Therefore, if for some 1, either |(z7)Tv;41] or |(zF)Tw;14],
is large, then |B;11u;(7)| must be small. Furthermore, if ||Fj|| and ||G]|| are small, ||v;41|| and ||Jw;4q]|
are not large, and ||V;u;|| and ||W;u,|| are not too small, Equation (19) implies that the residual norms
|AzF — p28||/1|2F|| and ||AT 25 — pizf||/||2f]| are small, so that convergence, at least in the sense of the
residual norms, has occurred.

5. Invariant Properties of Arnoldi and Nonsymmetric Lanczos Methods

To be able to fully utilize Krylov subspace iterative methods in practical problems we need a better
understanding of their convergence behavior. In order to study the numerical behavior of these algorithms
we need test matrices where we can systematically vary spectral properties. In this section we list several
theorems which identify one such possible class of matrices.

We have the following unitary invariance for the real symmetric Lanczos methods [11]. Theorem 5.1
is stated for real C' but the complex Hermitian analog follows easily. In this section we use C' and C to
denote two matrices which are unitarily similar.

Theorem 5.1. (Exact Arithmetic): Let C and C be similar real symmetric matrices. Let U be a
unitary matrix such that ¢ = UTCU. Fork = 1,..., K, let Te ch"' and V€, ch”' denote respectively,
Lanczos matrices and Lanczos vectors, obtained by app]ymg the real symmetric Lanczos recursions to C
and to C. If the starting vector for C' is v, and for C' is v¥ = UTvy, then fork =1,...,K, TS = ch, Vk
= UTVE, and the two computations yield identical eigenvalue approximations, and 1dent1'ca1 residual and
error norms for the corresponding Ritz vectors.

Corollary 5.1. if A is real and symmetric and the arithmetic is exact, to understand the convergence
behavior of a real symmetric Lanczos procedure, it is sufficient to consider diagonal test matrices.

We consider extensions of Theorem 5.1 to nonsymmetric matrices. We will use these extensions to
obtain a family of test matrices. First consider an Arnoldi method.

Theorem 5.2. (Exact Arithmetic) Let U be any unitary matrix. Let C' be a nonsymmetric matrix
and define C = UECU. Fork=1,...,K, let HS , H¢ and V¢, V€ denote respectively, Arnoldi matrices
and Arnoldi vectors, obtained by app]ymg the Arnoldi recursions in exact arithmetic to {C,vf} and to
{C,%¢} with 3, = UH O, Then for each k, HZ = HS, V€ = UV, and the two computations yield
identical eigenvalue approximations, and identical residual and error norms for the corresponding Ritz
vectors.



Proof. For each k and in exact arithmetic
(40) CVE = Vi HE + hyp10v8,1ef and C(UPVE) = (UHVEVHS + hapr, U 07 €.

Therefore, for each k, V¢ = URV,C and HS = HP.

Since C' and C are similar, they have the same eigenvalues and if Cz = Az with ||z| = 1, then
CUHz = MUHz. Moreover, for any HPuw = pu, the corresponding Arnoldi right Ritz vectors satisfy
zf = UHz{ where we set ||2{|| = 1. Let X be the eigenvalue of C' closest to u and let z be a corresponding
unit right eigenvector. Then the error and the residual norms for these eigenvector approximations satisfy

the following.
(@V)|ef ]| = 1128 — 2|l = ||z — U"all = [|e|| and [|r{[| = || = C= + pzf | = || = C= + pzl || = |||

Theorem 5.2 tells us that applications of the Arnoldi procedure to any {C, v, } and to the corresponding
{UECU,U¥#v,} where U is any unitary matrix will yield the same eigenvalue and Ritz vector convergence
behavior. This is not unexpected since the corresponding starting vectors have the same size projections
on corresponding right eigenvectors. We note that the matrices were not assumed to be diagonalizable.

In Theorem 5.3 we use the complex variant of the nonsymmetric Lanczos recursions but the basic
arguments are independent of the particular scaling used.

Theorem 5.3. (Exact Arithmetic) Let U be any unitary matrix. Let C' be a nonsymmetric matrix
and define C = UECU. Fork=1,...,K,let T¢ ,T¢ and VE, WE,VE, W denote respectively, Lanczos
matrices and Lanczos vectors, obtamed by app]ymg the nonsymmetric Lanczos recursions in equation(4) to
C and to C with v¢ = UHv¢ and w$ = UTwC. Then for each k, TC, =TS, V¢ = UVE, and WS = TWY,
where U7 is the simple transpose of U. The two computations yield identical eigenvector approximations,
and identical residual and error norms for the corresponding right and left Ritz vectors.

Proof. For each k and in exact arithmetic,

CVkO = VkOTkO + pk+1v,f+1e;f

(42) CTW,CO = WkCTkO + ,0k+1w1§+1e;€
Similarly,
(43) C(URVE) = (UVEVE)TE + pryaUH g, el

CT(UTWk ) = (UTWI)TY + iU wk+1e;€
Therefore, for each k, T¢ = TS, V¢ = UHV,C and W = UTW.

Since C and C are similar, they have the same eigenvalues, and if Cz = Az and CTy = My, then
CUHz = \UH and CTUTy = AUTy. Moreover, for any Thu = ,uu the corresponding right and left Ritz
vectors satisfy zfo = UHsz and zﬁc =UTz L where we set ||zR | = ||zLO|| = 1. Let X be the eigenvalue
of C' closest to u, and let z and y be correspondmg unit right and left eigenvectors. The error and residual
norms satisfy the following.

e8] = (|28 — z|| = [|28C — U#a|| = [|eE°|
£l = || - vl = ||sz ~UHy| = ||e:3°'||

(44) ||7’RO||_||—C’Z +aal ||_||—C’z +uz ||—||r ||
172N = || = CT 28 + pat €| = || - T2k + pk || = |||

Theorem 5.3 tells us that applications of the nonsymmetric Lanczos procedure to any {C,v;,w;}
and to any {U¥CU,U¥vy,UTw,} where U is a unitary matrix will yield the same eigenvalue and Ritz
vector convergence behavior. As in Theorem 5.2, equal size projections on each of the left and the right
eigenvectors are maintained.



6. Test Matrices

From Theorems 5.2 and 5.3, we obtain the well-known fact that we can study the behavior of each of these
Krylov methods on normal matrices by considering only complex diagonal matrices. For general matrices
we have the following theorems. Theorem 5.4 provides a form for test matrices.

6.1. A Family of Test Matrices

Theorem 6.1. (Exact Arithmetic). For either an Arnoldi or a nonsymmetric Lanczos eigenvalue
procedure, all possible sequences of eigenvalue approximations and all corresponding sequences of Ritz
vector residual and error norms can be generated by considering matrices of the form

(45) A=xVHjyx-t

where ¥ is a diagonal matrix with positive diagonal entries, V is a unitary matrix and J is the Jordan
canonical form of A. If A is diagonalizable, then J is a diagonal matrix A of the eigenvalues of A.

Proof. Let C' be any n X n matrix then there exists an invertible matrix X and a Jordan matrix J such
that
(46) C=XJX1'.

Let X = UXV¥H be a singular value decomposition of X. Then C = UXVEJVE-UH. Define
C = SVEJVS-1. By Theorems 5.2 and 5.3, any one of the two methods will generate the same eigenvalue
approximations and Ritz vector residual and error norms when applied to both C' and €, when the starting
vectors are chosen according to Theorems 5.2 and 5.3. If C' is diagonalizable, then X is a matrix of
eigenvectors of C' and J is a diagonal matrix of corresponding eigenvalues of C.

If A is real and diagonalizable we can replace complex V and A in equation(45) by a real orthogonal
matrix and a real block diagonal matrix with 1 X 1 and 2 x 2 blocks, [10]. We can use equations(45) to
specify various eigenvalue distributions and eigenvector spaces. In this paper we focus on diagonalizable
test matrices. In [10] where we study the convergence of iterative procedures for Az = b, we also consider
defective matrices.

6.2. Some Properties of These Test Matrices

Theorem 6.1 states that it is sufficient to consider eigenvector matrices of the form V¥ where X is a
positive diagonal matrix and V is a unitary matrix. Since for any unitary V and diagonal A, B = VEAV
is normal, the following lemma is a simple restatement of theorem 6.1 in terms of normal matrices.

Lemma 6.1. Let A be diagonalizable and defined by equation(45) for some choice of ¥ , unitary V,
and A, then A is a positive diagonal similarity transformation of the normal matrix

(47) B =VHAV.

If all of the eigenvalues of A are real, then A is a positive diagonal similarity transformation of a Hermitian
matrix.

We observe that the matrices in equation(45) are invariant under any scaling of the ¥ matrices. In our
test problems we could for example choose a scale v such that we

. _ _ 2
(48) min (|ly2 = Z|f; + 72 = 1]3)

If oy > 1 and o, < 1, we can approximate this minimization by letting y*04? = 1/0,%. This suggests a
scale of ¥ = 1/,/070, for which the scaled singular values and the inverses of the scaled singular values lie
in the same interval. We used this scale in each example of the form equation(45) which we considered.



7. Arnoldi versus Nonsymmetric Lanczos Methods
7.1. A Property of Arnoldi Methods

The following lemma may indicate that an Arnoldi method should perform well when applied to a matrix
which is nearly normal. Theorem 7.1 gives a characterization of any normal matrix A in terms of its
Hermitian-skew Hermitian decomposition. For a proof, see for example, [10]. We use A to denote an
eigenvalue of C.

Theorem 7.1. Let A be any n X n matrix. Define M* = (A+ A¥)/2 and N4 = (A - A®)/2. A is
normal if and only if MAN#4 = NAM#. Equivalently, A is normal if and only if each eigenvector of A is
also an eigenvector of M4 and of N4, and each eigenvalue of A is of the form A\ = AM* 4+ AN for some
orderings of the eigenvalues of A, M#, and N*.

Theorem 7.1 states that if A is normal we can compute its eigenvectors and eigenvalues by Hermitian
eigenvalue computations on M4 and 1:N4 and and Hermitian eigenvector computation on either M4 or
N4, In other words, the Hermitian-skew Hermitian decomposition is the natural decomposition when
the matrix is normal. Lemma 7.1 states that for any A, and at each stage of an Arnoldi process, the
Hermitian-skew Hermitian decomposition of A is preserved in the Arnoldi orthogonal projection matrices
H,. Therefore, at each stage we are implicitly generating orthogonal projection matrices for M4 and N4.

Lemma 7.1. (Exact Arithmetic): Let A be any n X n matrix. Apply the Arnoldi recursions to A,
generating orthogonal projection matrices Hy = VZ AVy, k=1,...,m. Then

(49) M" = VIMAV, and N*» = VI N4V,

are respectively, orthogonal projection matrices for M#* and N*, on the Krylov subspaces.

7.2. A Property of Nonsymmetric Lanczos Methods

For any A defined by equation(45) and the corresponding normal matrix B defined in lemma 6.1, we derive
relationships between the Lanczos matrices, the residual norms and the error norms of corresponding Ritz
vectors generated by applying the nonsymmetric Lanczos procedure to both A and B when the starting
vectors satisfy the relationships specified in this theorem.

This theorem says that to understand the eigenvalue convergence of the nonsymmetric Lanczos
procedure when it is applied to any diagonalizable matrix, it is sufficient to understand the behavior
of this procedure when it is applied to normal matrices with certain well-chosen starting vectors. However,
the corresponding residual and error norms for the nonnormal and the normal problem are not equal.
Moreover, this is not a practical result since to generate the correct starting vectors we would need to
know >. We note that one cannot prove a similar result for the Arnoldi procedure. Moreover, if the
eigenvalue convergence is monitored by estimates of the residual norms for the Ritz vectors, we would not
see this invariance. The proof is analogous to the proof of Theorem 5.3.

Theorem 7.2. (Exact arithmetic): Let A = X BY.~! where B is a normal matrix. Fork = 1,..., K, let
TA ,TE and VA, W&, VP, and W2 denote respectively, Lanczos matrices and Lanczos vectors, obtained
by applying the complex symmetric variant of the nonsymmetric Lanczos recursions to { B, v, w;} and to
{A,%v;, X" w,}. Then for each k, T3, = TE, VA = TV, and W& = T 'WE.

For any T,u = pu, the corresponding right and left Ritz vectors satisfy zfA = Esz and

zﬁA = E_lzﬁB . Let X be the eigenvalue of B closest to pu, and let © and y be corresponding unit
right and left eigenvectors, then the right error norms satisfy

B B _ A A
(50) le™ |l = [z — =l = 127 (5" - Za2)|| # llex™ |-

Similar relationships exist for the right and the left residual norms and the left error norm.



8. Numerical comparisons, Arnoldi versus Nonsymmetric Lanczos

We are interested in studying the convergence behavior of Arnoldi and nonsymmetric Lanczos eigenvalue
procedures as we vary the spectral properties of the matrix A. These methods are invariant under shifts.
In exact arithmetic either method when applied to A and A + oI for any shift ¢ will generate the same
vectors, and matrices which differ only by the specified shift. Therefore , without loss of generality, we can
restrict ourselves to test matrices with eigenvalues whose real parts are all positive.

We have written a suite of MATLAB [19] codes which allow the user to generate and regenerate test
matrices of the form given in equation(45). The user can also call either a Az = b routine or a basic real
or complex Arnoldi eigenvalue routine. The matlab routines will write a test matrix to a file which can
then be read into the codes for the nonsymmetric Lanczos procedure which are written in Fortran. Qutput
from any of these computations can be plotted using MATLAB routines written specifically for such tests.
There are also codes for generating pseudospectra of test matrices and contour plots of the pseudospectra.
These codes are described in [10].

We considered 9 different test problems. We applied a complex Arnoldi method with reorthog-
onalization and our complex symmetric variant of the nonsymmetric Lanczos method with no re-
biorthogonalization to each problem and computed eigenvalue approximations and true errors for various
size Arnoldi and Lanczos matrices. In each test both methods used the same randomly-generated starting
vector. In the nonsymmetric Lanczos tests we set w; = v;.

Ideally we would like to be able to characterize the convergence behavior in terms of the nonnormality
of the test matrix. To be able to make comparisons across different test matrices, we would need to
eliminate the effects of using different starting vectors on different problems, and we have not done that.
These tests however indicate, at least for these test matrices, that in order to completely characterize the
convergence behavior of the eigenvalue approximations generated by either method, we need not only the
singular values of an eigenvector matrix but also knowledge of the relative sizes of entries in the associated
right singular vector matrix. They also indicate that small but nonzero entries in strategic positions in the
singular vector matrix may interact with the singular values to yield an eigenvector matrix whose columns
are even more poorly conditioned than the singular values of the eigenvector matrix suggest. We will
develop these ideas in another paper.

8.1. Test Problems Used

We consider 9 different examples. For examples 1—8, n = 48, and all have the same eigenvalue distribution.
The first two examples are the Grear matrix n = 48, [29], and its transpose. We denote this matrix by
Gr48true. This matrix is real. The subdiagonal entries are —1. The diagonal entries and the entries on the
first 3 superdiagonals are 1. All other entries are 0. Each eigenvalue is simple. The eigenvalue distribution
is depicted by o’s in Fig. 1.

We used the MATLAB function EIG to compute right eigenvectors Xg of Gr48true and eigenvalues
Ag. We then used the MATLAB function SVD to compute a singular value decomposition X¢ = Ux SxVE
of Xg. The singular values X x of X¢ vary from 5.3 x 1078 to 4.5. We scaled Xy using s = 1/y/0n01 and
set X, = sXx.

Examples 3 and 4 are normal matrices.

(51) Gr48id2 = Vif A¢Vx and Gr48id3 = VI A Va,

where Vi was generated randomly using a uniform distribution and orthonormalized using the MATLAB
function ORTH.
Examples 5 and 6 were nonnormal matrices.

(52) Gr482 = B, VEAL VxS, ! and Gr483 = X, VI AVRE, 7T,

where Vg is the unitary matrix used in examples 3 and 4.



Examples 7 and 8 were also nonnormal.
(53) Gr48a2r2b02 = L, VEFALVx X, and Grd8a2r2b03 = B, VEAVRE. ",

where Vg is the unitary matrix used in examples 4 and 6. >, was obtained by computing the 48 points
in the interval [10™*1] whose logarithms of their square roots are equally spaced in the interval [1072, 1]
and then scaling these numbers by the reciprocal of the square root of the product of the smallest and the
largest values. The scaled values in 3, varied from 1072 to 107

Example 9 is of size n = 32. This matrix is bidiagonal with the entries 1/1/k on and above the main
diagonal.

In Figs 1-4 and 7-14, we use o’s to denote the true eigenvalues, x’s to denote the Arnoldi approximations,
and a combined + and x to denote the Lanczos approximations. In Figs 5-6, we use x to denote the errors
at the smallest size considered, a combined + and x at the next largest size, and + to denote the errors at
the largest size considered. In Figs 15-16 we plot the sizes of entries in certain matrices. In each of these
pictures the ’origin’ is the (1,1) position in the matrix.

8.2. Observations

We make several comments based upon the tests we have run. However, more testing is needed before
any definite conclusions can be made. We believe that both Arnoldi and nonsymmetric Lanczos methods
can be effective for computing eigenvalues (and eigenvectors) of many nonsymmetric matrices. We observe
that, for examples 1-8, the approximations to the left tails of the eigenvalue distribution converge prior to
convergence of the leading edge.

Example 1 is well-conditioned in the sense that its singular values vary from .922 to 3.23. This matrix
is however very nonnormal [29]. In Figs. 1-2, for m = 24 and m = 32, we plot the true eigenvalues, the
complex Arnoldi approximations, and the nonsymmetric Lanczos approximations . We observe that in
both figures the nonsymmetric Lanczos approximations are closer to the actual eigenvalue curve than the
Arnoldi approximations. At m = 32 the Lanczos approximations have correctly identified the left trailing
eigenvalues. The Arnoldi estimates are still on the wrong side of the origin.

We ran the same tests using the real Arnoldi method and a real randomly-generated starting vector
in both the Arnoldi and the nonsymmetric Lanczos method. See Figs. 3-4. These plots are very similar
to Figs. 1-2. In corresponding tests on the transpose of Gr48true, the order in which the eigenvalues
converged changed slightly but the overall plots were very similar to the plots for Gr48true.

In Figs 5-6 we plot true errors for the eigenvalue approximations generated by each method for different
size Arnoldi and Lanczos matrices. The x-axis corresponds to the number of an eigenvalue when the
eigenvalues A;,1 < j < n, are ordered from algebraically-smallest to algebraically-largest real parts.
With this ordering, the numbering moves from left to right along the tails of the eigenvalue distribtuion
for the first 15 complex pairs of eigenvalues. It then moves to the center of the curved front edge of
the distribution, moving upwards and downward from that center through Azs. Az73s complete the left
arms of the distribution, afterwhich the numbering resumes along the front edge, continuing up into the
top(bottom) cusp. Comparing Figs. 5 and 6 at m = 40, we observe that the Lanczos errors for the left
portion of the spectrum are smaller than the corresponding Arnoldi errors at that size. By m = 48 the
nonsymmetric Lanczos procedure has an approximation to each eigenvalue. Good accuracy is obtained by
m = 60.

Examples 3 and 4 are normal. Fig. 7 for example 3, and Fig. 8 for example 4, both for m = 24,
indicate that the Arnoldi method has identified the shape of the spectrum. The nonsymmetric Lanczos
iterates are not constrained by the normality and are more scattered than the Arnoldi iterates.

Examples 5 and 6 are not normal. The condition number of example 5 is 3.5 with the singular values
ranging from .92 to 3.23. The singular values of the eigenvector matrix range from 5.28 x 1072 to 4.5. The
condition number of example 6 is 2.4 x 10**. The singular values of example 6 range from 1.1 x 1077 to
2.5 x 107. The singular values of the eigenvector matrix range from 5.29 x 1072 to 4.6. If we selected the



starting vectors according to Theorems 5.2-5.3, in exact arithmetic, the convergence of example 5 should be
the same as that observed for example 1. Although we did not modify the starting vectors appropriately,
the observed convergence is very similar. See Fig. 9. We would like to be able to make a statement about
differences corresponding to Vx versus Vz. A precise statement would require us to take starting vectors
with equal projections on corresponding eigenspaces. We did not do that. In fact we used the same starting
vector on both examples and methods. If however we compare Figs 9 and 10, for m = 32, we observe
better convergence for the nonsymmetric Lanczos procedure when V = Vi versus V = Vx, along the front
edge of the distribution.

In examples 7 and 8 we attempted to construct problems with normality between that of Gr48true and
Gr48id. The norm of example 7 is 2.82. The singular values of example 7 range from 1.16 to 2.82. The
singular values of the MATLAB eigenvector matrix for example 7 range from 4 X 10~* to 4. The norm of
example 8 is 4.2 X 10%. The singular values of example 8 range from 7.8 x 10™* to 4.2 x 103, The condition
number is 5.4 X 10°. The singular values of the MATLAB eigenvector matrix for example 8 range from
4 x 107* to 4.

In Fig. 11 at m = 32 we observe that both the Arnoldi and the nonsymmetric Lanczos approximations
have correctly identified the left tails of the distribution. There is however still a bulge on the front edge
in the Arnoldi plot but it is smaller than in Fig. 9. In Fig. 12 corresponding to V = Vg, the bulge
is gone. The differences between Figs. 11 and 12, and between Figs. 9 and 10, led us to examine the
structure of the V¥ matrix. We observed that the numerical shape of this matrix, in terms of the sizes
of the nonzero entries in this matrix, enhances the deterimental effects of the small singular values on the
resulting eigenvector matrix. For examples 5 — 8 these enhancements affect portions along the eigenvalue
distribution near the cusps. This structure also allows the matrix to 'conceal’ its ill-conditioning. We can
illustrate this type of effect more clearly by considering example 9 where even the singular values alone are
sufficient to prevent finite precisions implementations of either procedure from working properly.

Example 9 is well-conditioned and all of the eigenvalues are real, ranging from .176 to 1.0. The
condition number is 154. The singular values of example 9 range from 102 to 1.55. The singular values of
the eigenvector matrix, however, range from 1.2 x 1072* to 5.5. First consider Fig. 13 with m = 24. Both
methods have computed the 3 right-most eigenvalues correctly but the other approximations form rings
around the true eigenvalues. If we increase the size to m = 32, we observe in Fig. 14, that the 8 rightmost
eigenvalues are approximated by both procedures but the other approximations for both methods form
rings around the rest of the spectrum even though the Arnoldi vectors are fully orthogonal and m = n.

For this example only 16 singular values are larger than 107!°. Therefore, we might expect the
eigenvector matrix to behave as though its rank is less than 32, and it does. Fig. 15 is a contour plot of
the base 10 logarithms of the absolute values of the entries of the right singular vector matrix. This matrix
was computed by first using MATLAB to compute an eigenvector matrix for example 9 and then using
MATLAB to compute the singular value decomposition of example 9. We observe that the upper left hand
portion of this plot corresponds to small entries. Fig. 16 is a contour plot of the base 10 logarithms of
the absolute values of the entries of the corresponding canonical eigenvector matrix. The figure indicates
that the numerical rank of this matrix is less than 10. Thus, we can expect to be able to compute at most
10 of the eigenvalues of this example. The ’shape’ of the singular vector matrix has combined with the
singular values to make things even worse. Since the well-separated eigenvalues converge first, the actual
convergence is from the right to the left.

We also note that w.r.t several of the examples, without scaling 3}, premature termination of the Arnoldi
recursions occurred even with limited reorthogonalization. Therefore, for each test we used the scaling and
at each step of the Arnoldi procedure incorporated total reorthogonalization of each intermediate Arnoldi
vector w.r.t all preceding Arnoldi vectors. However, there was no re-biorthogonalization in the Lanczos
method.



9. Summary

We obtained several results which may be useful in determining the convergence behavior of eigenvalue
algorithms based upon Arnoldi and nonsymmetric Lanczos recursions. We derived a relationship between
nonsymmetric Lanczos eigenvalue procedures and Arnoldi eigenvalue procedures. We demonstrated
that the Arnoldi recursions preserve a property which characterizes normal matrices, and that if we
could determine the appropriate starting vectors, we could mimic the nonsymmetric Lanczos eigenvalue
convergence on a general diagonalizable matrix by its convergence on related normal matrices. Using a
unitary equivalence for each of these Krylov subspace methods, we defined sets of test problems where
we can easily vary certain spectral properties of the matrices. We used these and other test problems
to examine the behavior of an Arnoldi and of a nonsymmetric Lanczos procedure. The results of these
tests suggest that to completely characterize the behavior of these methods on nonnormal problems it is
not sufficient to know the singular values of the eigenvector matrix. They also suggest a potential source
of numerical difficulties for both types of methods. In addition, these tests suggest that a nonsymmetric
Lanczos procedure may more readily identify key portions of the spectrum of a highly nonnormal matrix
than an Arnoldi method. However, each step of a nonsymmetric Lanczos procedure requires a matrix-
vector multiply by both A and by AT. Moreover, the eigenvalue approximations generated by the Arnoldi
method typically exhibit less scatter than those generated by a Lanczos method.

There are many open questions regarding the behavior of either or both of these types of methods, and
even questions about the design of tests for comparisons both between methods and for a given method.
In [9] we examine similar questions in the context of the problem Az =b.
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Imaginary Part of Eigenvalues

True, Arnoldi, NSLanczos Eigenvalues: gr48true2: m=24, cA,cL,cvl
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Imaginary Part of Eigenvalues

True, Arnoldi, NSLanczos Eigenvalues: gr48true2: m=32, cA,cL,cvl
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Imaginary Part of Eigenvalues

True, Arnoldi, NSLanczos Eigenvalues: gr48true: m=24,rA,cL
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True, Arnoldi, NSLanczos Eigenvalues: gr48true: m=32,rA,cL
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Logl10 True Errors in Eigenvalue Approximations

Complex Arnoldi Eigenvalue Errors: gr48true2c: m=40,44,46
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NSLanczos Eigenvalue Errors: gr48true2c: m=40,48,60
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True, Arnoldi, NSLanczos Eigenvalues: gr48id2c: m=24, cA,cL
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True, Arnoldi, NSLanczos Eigenvalues: gr48id3c: m=24,cA,cL
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True, Arnoldi, NSLanczos Eigenvalues: gr482c: m=32, cA, cL
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Imaginary Part of Eigenvalues

True, Arnoldi, NSLanczos Eigenvalues: gr483c: m=32,cA,cL
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Imaginary Part of Eigenvalues

True, Arnoldi, NSLanczos Eigenvalues: gr48a2r2b02c: m=32, cA, cL
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True, Arnoldi, NSLanczos Eigenvalues: gr48a2r2b03c: m=32,cA,cL
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True, Arnoldi, NSLanczos Eigenvalues: compact32: m=24,cA,cL
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True, Arnoldi, NSLanczos Eigenvalues: compact32: m=32,cA m=40,cL
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bs(V~H)): Eigvectors, X=U Sigma V"H
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Fie. 15. Ezample 9: Contours, log(abs(VH)-matriz, Eigenvector Matriz, X = UX, V.



compact32: log(abs(sigma*v"H)) with x=u*sigma*v"H
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Fic. 16. FEzample 9: Contours, log(abs(X), X = Eigenvector Matriz



