

ABSTRACT

Title of Dissertation: DOMAIN SPECIFIC TEST CASE

GENERATION USING HIGHER ORDERED

TYPED LANGUAGES FOR SPECIFICATION

 Avik Sinha, Ph.D 2005

Dissertation Directed By: Dr. Carol S. Smidts,

Associate Professor,
Department of Mechanical Engineering.

Model based testing is an approach for automatic generation of test cases on the basis

of a representative model of the system. Recent studies show that model based testing

has many possible advantages over manual test generation techniques including a

gain in effectiveness, efficiency and reuse.

The effectiveness (ability to uncover faults in a system) of a model based testing

process is determined by the correctness of the model and by the number of

requirements represented in the model. In practice, test models for model based test

automation techniques are usually created from requirement or design specifications

of the software and hence, these techniques overtly rely on such specifications for the

completeness of the test models. This may lead to failure in testing some critical

requirements specific to the application domain because the user, who helps in

defining the requirements, may fail to consider certain domain specific requirements.

To him some may appear to be too trivial to be specified explicitly in the

requirements document and the others, he may forget. Even if the requirement is

complete with domain specific requirements, testers may not realize criticality of such

requirements or may find them too complex to model. In all such cases, testing is

incomplete and ineffective.

This dissertation describes a new model based testing technique developed to remedy

such situations. The new technique is based on modeling the system under test using

a strongly typed domain specific language (DSL). In the new technique, information

about domain specific requirements of an application are captured automatically by

exploiting properties of the DSL and are subsequently introduced in the test model.

The new technique is applied to generate test cases for the applications interfacing

with relational databases and the example DSL chosen for that purpose is HaskellDB.

Test suites generated using the new technique are enriched with test cases addressing

domain specific implicit requirements and therefore, are more effective in finding

faults.

This dissertation will present details of the technique and describe an experiment and

a case study to explore its effectiveness, efficiency, usability and industrial

applicability.

DOMAIN SPECIFIC TEST CASE GENERATION USING HIGHER ORDERED
TYPED LANGUAGES FOR SPECIFICATION

By

Avik Sinha

 Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:
Professor Carol Smidts, Chair
Professor Ali Mosleh
Professor Mohammad Modarres
Professor Marvin Zelkowitz
Professor Michel Cukier
Dr. Clay Williams

© Copyright by
Avik Sinha

2005

Acknowledgements

I wish to express my sincere gratitude to Dr. Carol Smidts for without her

immense help in guiding my research, this dissertation would have been impossible.

As an advisor she assisted me in every aspect from research brainstorming to writing

this dissertation.

I would like to thank Drs. Peter Santhanam and Clay Williams at IBM TJ

Watson Research Center for their help and support for the scalability study of the

methodology presented in this dissertation.

I would also like to thank Drs. Marvin Zelkowitz and Michel Cukier for their

help in reviewing prior publications from this research.

I am fortunate to have been able to work on this project with a talented and

dedicated team of UMD researchers consisting of Dr. Ming Li, Dr. Bin Li, Susmita

Ghose, Dongfeng Zhu, Yuan Wei, Anand Ladda and Wende Kong. Special thanks

are presented to them for their help and the support they provided to this project.

I wish to acknowledge the support of Dr. Jim Widmaier and the National

Security Agency during the earlier phases of this research. I am also grateful to Dr.

Andrew Moran at Galois Connections Inc. for helping me to learn HaskellDB.

Finally, I would like to thank Dr. Mohammad Modarres, Dr. Ali Mosleh, Dr.

Marvin Zelkowitz, Dr. Michel Cukier and Dr. Clay Williams for agreeing to be on

my committee.

 ii

Table of Contents

Acknowledgements... ii

Table of Contents... iii

List of Tables ... ix

List of Figures .. xi

Chapter 1 Introduction .. 1

1.1 Research Objective ... 1

1.2 Research Statement... 1

1.3 Approach... 3

1.4 Content.. 4

1.5 Summary of Contributions.. 6

1.6 References... 7

Chapter 2 Literature Review... 9

2.1 Model Based Testing .. 9

2.2 Domain Specific Testing... 12

2.3 Motivation... 13

2.4 Summary ... 14

2.5 References... 15

Chapter 3 Domain Specific Languages and Model Based Testing............................. 18

3.1 Application Specific Needs and Languages ... 18

3.2 What is a DSL? ... 19

3.3 Advantages of DSL... 21

 iii

3.4 Challenges of using DSL .. 23

3.5 DSLs and Model Based Testing ... 24

3.6 Types and Functions of HaskellDB .. 24

3.6.1 HaskellDB Types .. 25

3.6.2 HaskellDB Functions .. 26

3.7 HaskellDB Axioms and Domain Specific Requirements 27

3.8 Summary ... 31

3.9 References... 32

Chapter 4 Derivation of a Structural Representation.. 34

4.1 Derivation of EFSM.. 35

4.1.1 Three styles. .. 35

4.1.2 Specification to Actual Flow .. 38

4.2 Derivation of EFSMA... 42

4.2.1 Treatment of Parameters ... 42

4.3 Specification with Conditional Flow .. 47

4.4 Special Case of Recursion .. 51

4.5 Summary ... 53

4.6 References... 53

Chapter 5 Tool Support for HOTTest... 54

5.1 Modeling of SSP... 55

5.2 Component 1: Hugs Interpreter .. 58

5.3 Component 2: Call Graph Generator .. 58

5.4 Component 3: EFSM Generator: .. 61

 iv

5.5 Component 4: Test Generator... 63

5.6 Summary ... 63

5.7 References... 63

Chapter 6 Experimental Validation of Usability and Performance 65

6.1 The Experiment Design .. 66

6.1.1 The Research Question ... 66

6.1.2 Variables ... 66

6.1.3 Measurement Models.. 67

6.1.4 Hypothesis... 71

6.1.5 Design ... 73

6.1.6 Threats to Validity .. 74

6.2 Experiment Preparation .. 75

6.2.1 Subjects ... 75

6.2.2 Applications .. 76

6.2.3 Requirement Parsing... 77

6.3 Experiment.. 78

6.4 Measurement and Analysis ... 80

6.4.1 Usability -Learning ... 81

6.4.2 Usability-Efficiency.. 83

6.4.3 Usability- Error ... 85

6.4.4 Usability- Satisfaction and Ease ... 85

6.4.5 Performance-Effectiveness ... 86

6.4.6 Performance- Efficiency ... 88

 v

6.5 Results and Discussion ... 90

6.6 Summary ... 93

6.7 References... 94

Chapter 7 Industrial Applicability of HOTTest and Other Test Generation Tools 96

7.1 Description of the Test Design Tools ... 96

7.1.1 Archetest ... 96

7.1.2 ASMLT... 98

7.1.3 EFSM Based Test Generation... 100

7.2 Design of Case Study.. 101

7.2.1 Design of the Measurement Framework... 101

7.2.2 Case Study Instruments... 108

7.2.3 Case Study: Process .. 110

7.2.4 Threats to Validity .. 112

7.3 Case Study Results.. 114

7.3.1 Complexity of the Modeling Process.. 114

7.3.2 Ease of Learning ... 124

7.3.3 Effectiveness ... 127

7.3.4 Efficiency.. 129

7.3.5 Scalability ... 132

7.4 Analysis of the Results.. 135

7.5 Summary ... 139

7.6 References... 139

Chapter 8 Extension to other Domains ... 142

 vi

8.1 Steps for Extension ... 142

8.1.1 Domain Analysis... 142

8.1.2 Design/ Choice of a Domain Specific Language.............................. 143

8.1.3 Associate Requirements to DSL constructs...................................... 144

8.2 Extension to the domain of Graphical User Interface............................... 146

8.2.1 Domain Analysis... 146

8.2.2 Choice of Domain Specific Language .. 147

8.2.3 Associating Requirements to DSL constructs................................... 149

8.3 Summary ... 152

8.4 References... 152

Chapter 9 Conclusion and Future Work ... 153

9.1 Advantages of HOTTest ... 153

9.2 Limitations of HOTTest.. 155

9.3 Future Research .. 157

Appendix A: HaskellDB... 159

Appendix B: HaskellDB Axioms... 179

Appendix C: TclHaskell Axioms.. 182

Appendix D: Experiment Data for Usability Experiment... 189

Bibliography ... 191

 vii

 viii

List of Tables
Table 3.1: Axioms derived from HaskellDB .. 31

Table 6.1: Dependent Variables of the Experiment.. 67

Table 6.2: Measurement models used in the experiment.. 71

Table 6.3: Students’ experience profile .. 76

Table 6.4: Number of Requirements in the Requirements List 77

Table 6.5: Schedule for the experiment .. 78

Table 6.6: A descriptive statistics of learnability data.. 82

Table 6.7: A descriptive statistics of efficiency data .. 84

Table 6.8: A descriptive statistics of data on error index ... 85

Table 6.9: A descriptive statistics of subjective attributes of usability data............... 86

Table 6.10: A descriptive statistics of effectiveness data ... 87

Table 6.11: A descriptive statistics of effectiveness of test suites for generic

requirements.. 88

Table 6.12: A descriptive statistics of efficiency data .. 89

Table 6.13: An Overview of the Analysis .. 90

Table 6.14: Comparison of Performance between first and second rounds of

assignment... 93

Table 7.1: List of Concepts for the tools... 115

Table 7.2: Learnability Data for the tools... 124

Table 7.3: Effectiveness and Domain-specific effectiveness calculations 128

Table 7.4: The data for testing effort .. 129

Table 7.5: Efficiency measurements... 132

 ix

Table 7.6: The data for testing effort for SearchPUBS... 133

Table 7.7: Absolute and Normalized Scalability Values for the Tools 133

Table 7.8: Summary of Measurement Results.. 135

Table 7.9: Classification of the domain specific requirements missed by the

techniques ... 137

Table 7.10: Efficiency Calculations considering only the Contributions of Manual

Effort ... 138

Table 7.11: Test effort data from IBM projects.. 138

Table 8.1: The function categories of TclHaskell and the associated requirements. 152

Table D.1: Results of Statistical Analysis of Data.. 190

 x

List of Figures

Figure 1.1: The Test Framework using HOTTest... 4

Figure 4.1: The derived EFSM ... 41

Figure 4.2: The EFSM with embedded variables ... 45

Figure 4.3: The EFSM with axioms introduced, EFSMA. ... 47

Figure 4.4: EFSM with the embedded variables... 51

Figure 4.5: Model Depicting Recursion.. 53

Figure 5.1: The Architecture of HOTTest .. 54

Figure 5.2: A screenshot from SSP Application... 56

Figure 5.3: HaskellDB Model for SSP .. 57

Figure 5.4: Screenshot Depicting Hugs Interface ... 58

Figure 5.5: Algorithm for Call Graph Generation .. 60

Figure 5.6: A Screenshot from Call Graph Generator .. 61

Figure 6.1: The Experiment Design.. 73

Figure 6.2: Box plots of the data for the two test techniques. 83

Figure 7.1: The Test Framework using Archetest .. 98

Figure 7.2: The Test Framework using ASMLT .. 100

Figure 7.3: The Test Framework using EFSM based modeling 101

Figure 7.4: Different phases of the case study.. 112

Figure 7.5 Semantic Dependency Graph for HOTTest- Novice’s Perspective 116

Figure 7.6 Semantic Dependency Graph for HOTTest- Expert’s Perspective 117

Figure 7.7 Semantic Dependency Graph for Archetest- Novice’s Perspective 118

Figure 7.8 Semantic Dependency Graph for Archetest- Expert’s Perspective......... 119

 xi

Figure 7.10 Semantic Dependency Graph for ASML- Expert’s Perspective 121

Figure 7.11 Semantic Dependency Graph for EFSM- Novice’s Perspective........... 122

Figure 7.12 Semantic Dependency Graph for EFSM- Expert’s Perspective............ 122

Figure 7.13: Comparative analysis of complexity of the tools 123

Figure 7.14: Comparative plots of the absolute proficiencies attained by the users. 125

Figure 7.15: A comparative plot of the learning time... 126

Figure 7.16: A comparative plot of the normalized values of learnability 126

Figure 7.17: Comparative plots of effectiveness values ... 129

Figure 7.18: A comparative plot of the net effort and its contributors 131

Figure 7.19: A Comparative Plot of Efficiency Calculations 132

Figure 7.20: Comparative Plots of Normalized Scalability 135

 xii

Chapter 1 Introduction

1.1 Research Objective
The objective of this research is to develop an automatic test generation

technique that can generate test cases automatically from specification documents

while accounting for domain specific requirements of applications. This research

proposes a new model based test design technique that achieves this objective.

Through this research we also provide proofs of the fact that such a test generation

technique satisfies the usability requirements of the test case generation processes

used in the industry and is scalable to large scale industrial problems.

1.2 Research Statement
Testing is a vital part of the software development lifecycle and is necessary to

ensure software correctness. Proper testing is necessary to ensure and enhance

reliability of software. Test Automation is the process of automating the test

generation and execution process to make it effective and efficient. Test automation

techniques can be white-box or black-box test automation techniques depending on

whether or not the automation process needs access to the source code. White-box

test automation techniques are used for unit-testing and similar testing assignments

where the size of the code is small.[2] For larger and complex codes white-box

testing is inappropriate, and one has to resort to black box test automation techniques.

Black-box testing is also important for system level testing of applications.

Automating black box testing requires generating test cases on the basis of a

representative model of the system called the test model. These techniques are,

therefore, collectively known as model based test automation techniques. Models not

 1

only enhance the understanding of a product and its architecture, but enable one to

semi-automatically derive test cases at an early development stage.[3] Model based

test automation techniques help in making the test-generation process faster and make

it less susceptible to human error by automating routine and error prone tasks. They

also help in making the test process more reproducible by making the process less

dependent on human interpretation. With suitable enhancements models can be used

to generate scripts for executing test cases using the commercially available test

harnesses like WinRunner[7], SilkTest [6] or RationalXDE[5].

Test models for model based test automation techniques are usually created

from requirement or design specifications of the software and hence, these techniques

overtly rely on the specification for the completeness of the test models. This may

lead to failure in testing some critical requirements specific to the application domain

because the user, who is familiar with the domain and defines the requirements, may

consider certain domain specific requirements to be too trivial to be specified

explicitly in the requirements document. The tester and the developer may not have

the necessary domain knowledge and hence, may never realize that such a

requirement is missing. Even if the tester is aware of some domain specific

requirements, due to the complexity of the application, it might be difficult for the

tester to generate test cases for such requirements. For example consider the domain

of database applications and consider an application for querying a static relational

database. It is possible that there will be no explicit requirement in the specification

document that entails the application to throw warnings on domain specific errors like

generating queries for a non-existent field. This requirement is nevertheless

 2

important, more so when the application interfaces with other applications. Therefore,

it is necessary to test the application for such requirements.

1.3 Approach
In this research we develop a model based testing technique called HOTTest,

which reduces such testing errors and makes testing more effective. HOTTest is an

acronym for Higher Ordered Typed specification-based testing. It uses a higher-

ordered-typed domain-specific specification language (e.g. HaskellDB) to model the

system. This enables HOTTest to develop the test oracle automatically. Further,

HOTTest can extract domain specific axioms from the model to create additional test

cases.

A domain-specific language (DSL) is a small, usually declarative language that

offers expressive power focused on a particular problem domain [1]. Through suitable

abstractions, through embedded types and through specific library functions, the DSL

imports domain knowledge into any application. Information about domain specific

requirements can be captured automatically by exploiting properties of the DSL.

 Higher Order Programming is the ability to use functions as values [4]. Using

a higher ordered language one can pass functions as arguments to other functions and

functions can be the return value of other functions. This style of programming is

mostly used in functional programming, but it can also be very useful in other forms

of programming. Because of a declarative nature of higher ordered languages, they

can serve as ideal languages for specifying systems. A higher-ordered typed

language is any higher ordered language which is strongly typed. A strongly typed

 3

language allows us to derive system axioms1 based on type constraints. If the types

are so embedded that they capture domain concepts, then these axioms provide useful

information about domain specific requirements (DSRs). In this dissertation we show

how one can extract the axioms and use them to enrich the test suite with domain

specific test cases. The process of test automation in HOTTest involves translation of

a system specification written in a Higher-Ordered Typed language into an

intermediate representation similar to extended finite state machine (EFSM) based

representations of the system. The intermediate representation can then be used as

input to all EFSM based test design tools, which can generate test cases from the test

model automatically while satisfying various coverage and adequacy criteria.

Figure 1.1 presents an overview of the test generation framework

DSL
(HaskellDB)

Model

Structural
Representatioin

Test Suite
Enriched with

DSRs

Natural
Language

Specifications

Executable
Code

Translation using
Prototype Tool

Development

Modeling using
Open Source

Tool

Test Generation
Using Commercial

Tool

Automatic Process
Manual Process

Figure 1.1: The Test Framework using HOTTest

1.4 Content
Chapter 2 of this thesis presents an outline of the related work. Related research

in the fields of model based testing and domain specific testing are explored. Based

on the state of the current research the motivation for this research is developed.

1 Axioms are properties that are true for any system specified in HaskellDB.

 4

In Chapter 3 we define domain specific languages and discuss their advantages

and disadvantages. A brief description of HaskellDB is provided and the types and

functions of HaskellDB are introduced. In later sections of the chapter we identify the

domain specific axioms for applications interfacing with relational databases and then

we demonstrate how the domain specific axioms can be associated with specific

constructs of HaskellDB.

Chapter 4 explains the methodology for derivation of the structural

representation (EFSM) from the DSL based representation of the system. This step is

necessary in order to define the coverage and adequacy criteria and to generate test

cases using tools for EFSM based test case generation. The chapter describes the

process of flow derivation, the process of parameter mapping and the process of

axiom embedding. Later sections of the chapter illustrate how the conditional flows

are translated into test model constraints and how the special case of recursion is

handled.

The implementation of the prototype tool is described in Chapter 5. The tool

architecture and the primary modules of HOTTest implementation are discussed.

In order to study the usability of HOTTest and to compare it with other model based

test design techniques an in-vitro experiment was designed. Chapter 6 reports the

design of the experiment and describes the results of the experiment.

Chapter 7 describes a case study conducted in an industrial setting to assess

the scalability of HOTTest to industry scale problems and also to compare its

performance with other model based test design techniques.

 5

In Chapter 8 we define the general principles of extending HOTTest to the

other domains of interest. The principles are explained with the example domain of

applications based on graphical user interfaces.

Chapter 9 concludes this thesis by highlighting the advantages and limitations

of HOTTest as a model based test design tool. Possible avenues for future research

are also discussed.

1.5 Summary of Contributions
The significant contributions of this dissertation are as follows:

1. Development of a new model based test generation technique: Through this

research a new model-based test generation technique is developed that can

test for domain specific implicit requirements along with other generic

functional requirements. The new technique uses a higher ordered strongly

typed language for modeling a system and thus introduces a new modeling

tool to the software modeling community. The technique also mitigates the

shortcomings of other model based test generation techniques that fail to test

for domain specific requirements.

2. Development of a methodology for derivation of EFSM from functional

specifications: This research develops a methodology for translating a

requirements specification written in a strongly typed functional language to a

finite state machine based representation. Thus, any application specified in a

Higher Ordered language can now be used for test case generation or model

checking by utilizing the tools available for finite state machine based

representation of the system.

 6

3. Usability, Performance and Scalability assessment of the model based test:

This research also addresses the usability, performance and scalability aspects

of modeling software using higher ordered languages. Results of such study

can assist software modeler in choosing the right tool and technique to achieve

their modeling objectives.

This research is a first step in use of higher ordered specification languages for

modeling of software applications. It will help in enhancing the state of the art for

automatic test generation techniques. It will allow programmers of Higher Ordered

languages to access the tools and techniques available for software verification and

validation. It will also help in understanding the specific needs of application domains

with a view to test case generation.

1.6 References
[1] A. Deursen, P. Klint and J. Visser, “Domain-specific Languages: An annotated

bibliography,” in ACM SIGPLAN Notices, vol.35, no. 6, pp. 26-36, 2000

http://www.cwi.nl/projects/dsl

[2] B. Beizer, Software Testing Technique .Boston, USA: International Thomson

Computer Press, 1990.

[3] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.

Veanes, “Model-Based Testing with AsmL.NET,” in Proc. 1st European

Conference on Model-Driven Software Engineering , December 2003.

[4] P. Hudak, The Haskell School of Expression. New York: Cambridge University

Press, 2000.

[5] Rational XDE Tester User’s Guide, IBM Corporation., New York, NY, 2004

 7

http://www.cwi.nl/projects/dsl

[6] Silktest User’s Guide, Version 6.5, Segue Software Inc., Lexington, MA, 2002

[7] WinRunner User’s Guide, Version 7.01, Mercury Interactive Inc., Sunnyvale, CA,

2001.

 8

Chapter 2 Literature Review
Arguably all software testing activity is model based, since any test case must

be designed using some mental model of the application under test. In recent years

the use of explicit models for software development has expanded greatly. The use of

these models for the generation of test cases in the IT industry is still in its infancy,

although a significant part of the telecommunications, aerospace, and micro-

electronics industries have been experimenting with models for verification and test

generation for over a decade. Recently, the research community has also expressed

interest in testing applications that have special requirements associated to their

application domains. In this chapter we present an overview of recently published

research works on model based testing and domain specific testing.

2.1 Model Based Testing
Model based testing is a test design technique where the basis for test

generation for any application is its model representation and not the application

itself. The coverage and adequacy criteria are defined on the basis of the model. The

test cases are derived from such models and the applications are tested against them.

Thus, in effect model based testing is comparison of the system’s implementation to

its representation (model).

Several current researchers have discussed a variety of model based test generation

techniques and have highlighted the advantages of using such techniques. Barnett et

al [16] discuss a technique to generate test cases from Abstract State Machine models

of systems. In their technique, abstract state machine representations of systems are

grouped into hyper states and corresponding finite state machines (FSM) are

 9

produced. The FSM’s are then used for generating test cases using graph coverage

algorithms. A general pitfall for all finite state machine based test generation

techniques is that the state space increases exponentially with increase in system size.

Therefore, these model based testing techniques are not suitable for large scale

industrial applications.

UML or the Unified Modeling Language is a very common modeling

technique used in the industry during software design. Williams [4] shows how one

can derive test cases from UML use case specifications. The domain model is a class

diagram, and serves to indicate the domain classes that can be instantiated by the

system. The use cases are formalized to produce a use case specification by adding

five key concepts to standard use cases. A state chart is produced from the activity

diagram, which forms the basis for test case generation. The advantage of using an

UML based test model is that the model developed for design purposes can easily be

enhanced for test case generation, but such effectiveness of testing is dependent on

the skill of the tester and completeness of the requirements specification.

 Another very popular model based test design technique is based on Extended

Finite State Machine (EFSM) models of systems. Savage et. al.[17] discuss an EFSM

based test design technique and discuss its use in designing test cases for software in

the aerospace industry. EFSMs describe a system’s dynamic behavior using

hierarchically arranged events, states, and transitions. An event causes a change of

state; the state describes a condition of the system; and the transition visually

describes the system’s new state as a result of a triggering event. In an EFSM the

state machine notation is enriched by adding context (history), predicates

 10

(requirements-based behavior control), constraints (test output control), test

information (test execution system instructions), nested state machine models

(hierarchies of models, or sub-models), and the path flow language (syntax used to

control the model’s behavior). Other publications like the one by Wang et al [5]and

the one by Dsoulli et al [19] discuss industrial use of model based test design. They

show how EFSMs can be used for testing various communication protocols. EFSM

based testing is superior to finite state machine based testing for the states can be

hierarchically grouped and the transitions can be constrained to perform test

generation by batches. This allows testers to generate test cases for large scale

applications. However, modeling in EFSM itself becomes complicated with increase

in application size. This has a very adverse effect on scalability of EFSM based test

generation techniques.

Some model based testing techniques are also known as formal-specification-

based testing as the test model is a formal specification of the system. Jagadeesan et

al [14] provide a nice example for automatic testing of reactive systems. Their

methodology is based on specifying the safety requirements of reactive systems using

temporal logic. Finite state machine oracles corresponding to the safety properties are

generated automatically and test harnesses are built. Hall [18] demonstrates a

technique for deriving tests from a Z specification as a system model. Dick et al [11]

provide an interesting technique for extraction of test cases from models of the

system in VDM. Tretmans et al [12] discuss another technique for generating test

cases for applications from Promella, a language used for modeling distributed

systems. Some other model based test design techniques employ program

 11

documentation to generate test models. Peters et al [7] propose one such technique

for automatic generation of test oracles. The formal methods based test generation

techniques do not lend themselves readily for industrial use. Several papers explore

the possible reasons for formal methods not being popular in the industry. Luqi et al

[15] and Knight et al [10] cite multiple reasons for less use of formal methods in the

industry. One of the primary reasons that they cite is that the formal notations are

difficult to understand for the practicing programmers. Another reason cited is that

the formal methods do not scale up to the industrial problems. Finney [13] also

demonstrates through an experiment that the formal notations are difficult to

understand for industry practitioners.

2.2 Domain Specific Testing
Computer applications can be broadly grouped into application domains

depending on the type of functions they perform. These domains can be named based

on a particular feature of that domain eg., the domain of relational databases, the

domain of graphical user interface etc. A general problem with the regular test

generation techniques is that they don’t explicitly account for Domain Specific

requirements. We define a domain specific functional requirement (DSR) as a

requirement for an application which arises from the knowledge about the application

domain and is usually non-significant for applications from other domains. Recent

papers have addressed the need for test generation for specific application domains.

Reyes et al [1] provide a framework for developing domain specific testing

tools. Their framework provides a library of domain independent components that

could be integrated with existing test design techniques to support domain specific

 12

test automation. The process relies on the testers’ ability to identify specific domain

requirements and introduce ad-hoc libraries for generating test cases. The

effectiveness of this work hence is largely dependent on the ability of the testers.

 Specific needs of the application domain with regards to testing are

highlighted in some other recent publications. Chays et al [6] highlight the issues with

testing database applications. More specifically, they provide a test data generation

framework for testing requirements specific to database applications. Another

research by Memon et al [3] address testing graphical user interface requirements for

applications. However, none of these techniques provide a model based framework

for capturing domain specific requirements automatically.

2.3 Motivation
In a recent report published by NIST on the economic impacts of software

testing [9], the gross annual cost incurred due to insufficient testing of software is

estimated to be $59.1 billion. The report also maintains that $22.2 billion of this cost

can be recovered by improving the software testing infrastructure through invention

of superior test automation techniques and integration of such techniques to existing

software development processes. Model based test techniques have many potential

benefits, but the present-day state of the art lacks the capability to address domain

specific requirements.

The reason for existing model based test design techniques failing to account

for DSRs lies in the fact that many of the DSRs are not explicitly discussed in

specification documents, as they are considered to be too trivial by the users, who

 13

have extensive knowledge of the domain. A solution to this is a test generation

framework that does not rely on the specification document to account for all DSRs.

It is argued that domain specific languages (DSLs) can be effectively used to

specify domain specific applications as they also capture DSRs while expressing the

functional requirements.[2] As we discuss in the next chapter, DSLs are designed by

experts of an application domain and use of DSL in specification imports such

expertise into the specification. Leijen et al [8] demonstrate how types can be

embedded in a higher ordered typed language like Haskell in order to address specific

concerns of relational database based applications. The outcome of their work is

HaskellDB, a higher ordered, strongly typed, domain specific and functional

language. If such a language is used to model an application interfacing with

relational databases, then the model corresponds to the constraints prescribed by the

domain experts. Such a model can thus be used to automatically generate test cases

for certain domain specific requirements which are not specified explicitly. Further,

as is discussed in the next chapter domain specific languages have focused expressive

power. This means that modeling domain specific applications in a DSL is relatively

easy. This is the motivation for our research. We want to develop a model based test

generation technique that is user friendly and which addresses domain specific

requirements along with the generic functional requirements.

2.4 Summary
In summary we can say that many of the current researchers identify the

benefits of Model Based Testing and a variety of model based test design techniques

can be found in the literature. A general concern for model based test design

 14

techniques is that they do not account explicitly for domain specific requirements.

Strongly typed domain specific languages can be used as an effective tool for

automatically importing domain specific expertise into applications and therefore, can

be used for developing test models enriched with domain knowledge.

2.5 References
[1] A. A. Reyes and D. J. Richardson, “Siddhartha:A Method for Generating

Domain-Specific Test Driver Generators,” in Proc. 14th IEEE International

Conference on Automated Software Engineering, Cocoa Beach, FL, 1999, pp.

81-90.

[2] A. Deursen, P. Klint and J. Visser, “Domain-specific Languages: An annotated

bibliography,” in ACM SIGPLAN Notices, vol.35, no. 6, pp. 26-36, 2000

http://www.cwi.nl/projects/dsl

[3] A. M. Memon, M. E. Pollack and M. L. Soffa, “Hierarchical GUI test case

generation using automated planning,” in IEEE Transactions on Software

Engineering, Volume: 27 Issue: 2, Feb. 2001 pp: 144 –155.

[4] C. E. Williams, “Toward a test-ready meta-model for use cases,” in Proc.

Workshop on Practical UML-based Rigorous Development Methods, Toronto,

CA, 2001, 270–287.

[5] C. J. Wang and M. T. Liu, “Generating Test Cases for EFSM with Given Fault

Models,” in Proc. IEEE Infocom, 2, pp. 774-781, 1993.

[6] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos and E.J. Weyuker, “A Framework

for Testing Database Applications,” in Proc. ISSTA 2000, Portland, 2000, pp.

147-157.

[7] D. K. Peter and D. L. Parnas, “Using Test Oracles Generated from Program

Documentation,” in IEEE Transactions on Software Engineering, Vol 24, No. 3,

pp. 161-173,1998.

[8] D. Leijen and E. Meijer, “Domain Specific Embedded Compilers,” in Proc.2nd

USENIX Conference on DSL, Austin, 1999, pp. 109-122.

 15

http://www.cwi.nl/projects/dsl

[9] G. Tassey, “The Economic Impacts of Inadequate Infrastructure for Software

Testing,” in Planning Report 02-3. Prepared by RTI for the National Institute of

Standards and Technology (NIST), May 2002: see

http://www.nist.gov/director/prog-ofc/report02-3.pdf

[10] J. C. Knight, C. L. DeJong, M. S. Gibble and L.G. Nakano, “Why Are Formal

Methods Not Used More Widely?” in Proc. 4th NASA Formal Methods

Workshop, Hampton, VA, 1997.

[11] J. Dick and A. Faivre, “Automating the Generation and Sequencing of Test

Cases from Model-Based Specifications,” in Proc. First International

Symposium of Formal Methods Europe on Industrial-Strength Formal Methods,

Odense, 1993, pp.268-284.

[12] J. Tretmans and A. Belinfante, “Automatic testing with formal methods,” in

Proc. EuroSTAR'99: 7th European Int. Conference on Software Testing,

Analysis & Review, Barcelona, Spain, November pp. 8-12, 1999. EuroStar

Conferences, Galway, Ireland.

[13] K. Finney, “Mathematical notation in formal specification: Too difficult for the

masses?” in IEEE Transactions on Software Engineering, Volume 22, No 2,

pp.158-159, 1996

[14] L. J. Jagadeesan, A. Porter, C. Puchol, C. J. Ramming and L. G. Votta,

“Specification-based testing of reactive software: tools and experiments,” in

Proc.19th International Conference on Software Engineering, Boston, 1997, pp.

525–535.

[15] Luqi and J. Goguen, “Formal Methods: Problems and Promises,” in IEEE

Software, Volume 14, No 1, pp 73-85, 1997.

[16] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.

Veanes, “Model-Based Testing with AsmL.NET,” in Proc. 1st European

Conference on Model-Driven Software Engineering , December 2003.

[17] P. Savage, S. Walters and M. Stephenson, “ Automated Test Methodology for

Operational Flight Programs,” in Proc. IEEE Aerospace Conference, vol.4, pp.

293-305, 1997.

 16

http://www.nist.gov/director/prog-ofc/report02-3.pdf

[18] P.A.V. Hall, “Relations between Specifications and Testing,” in Information and

Software Technology, vol.33, no. 1, pp. 47-52, 1991.

[19] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, “Test

Development For Communication Protocols: Towards Automation,” in

Computer Networks, 31, 1999, pp. 1835-1872.

 17

Chapter 3 Domain Specific Languages and Model
Based Testing

A scientific approach may be classified into a generic approach or into a

specific approach based on the range of problems the approach addresses. A generic

approach attacks a large group of problems. It provides a solution for a spectrum of

questions in a certain area. These solutions are often not optimal. On the other hand, a

specific approach provides an optimized solution for a smaller set of problems. The

same philosophy when extended to the field of computer languages, results in what

we classify as generic languages and domain specific languages (DSL). This chapter

defines DSLs and identifies the advantages and disadvantages of using a DSL. We

also describe how embedded domain specific languages that are strongly typed can be

used as effective modeling techniques for test generation.

3.1 Application Specific Needs and Languages
Most of the existing programming languages like COBOL, FORTRAN, and

Lisp came into existence as languages dedicated to solve a certain class of problems.

COBOL started off as a language to address commerce and business oriented

languages. FORTRAN on the other hand, had started off as a language to solve

problems regarding formulae translations. Lisp was targeted to attack specific

problems in language processing and list handling.

The need for application specific languages arises whenever there is a new

application domain. Certain functionalities need to be implemented frequently or they

may require special skills to be implemented. Various solutions to this question exist

and are tried from time to time: -

 18

• Function libraries contain in-built functions that perform related tasks in well-

defined domains like, for instance, differential equations, graphics, user-

interfaces and databases.

• Object oriented frameworks like the Java development environment are just

extensions of the previous idea. The objects have some built-in methods and

classes that make the programmer’s task easy. Classical libraries have a flat

structure, and the application can invoke any of the library functions from any

part of the code. In object-oriented frameworks, however, a definite hierarchy

is followed and there are certain restrictions regarding the accessibilities of

various methods.[2]

• A domain specific language is a language designed to address the needs of a

very specific class of problems.

Although many domain specific languages have been designed and used over the

years, the systematic study of domain specific languages has only started in late 90s.

An annotated bibliography of DSLs can be found in [2] .

3.2 What is a DSL?
The exact definition for DSLs is debatable. This is mainly because of the range

of DSLs that exist today and the various forms in which they exist. DSL or a domain

specific language is a programming or specification language dedicated to a particular

domain or problem. Deursen et al, define DSL as follows: [2]

“A domain specific language (DSL) is a programming language or executable

specification language that offers, through appropriate notations and

 19

abstractions, expressive power focused on, and usually restricted to, a

particular problem domain.”

DSLs express just as much as is needed, no more no less. DSLs are often

small, offering only a restricted suite of notations and abstractions. Sometimes, they

are referred to as micro-languages or little languages in the literature.

Sometimes, DSLs are enhancements of a general programming language.

They modify an existing general programming language to make it more suitable to

any problem domain. Often known as embedded DSLs they evolve the generic

language by inserting types, functions and subroutines into the existing library and by

making them specific to any domain. For example HaskellDB is an embedded DSL

made out of the functional programming language called Haskell. HaskellDB is a

DSL designed to generate type safe SQL queries for any relational database.

Domain specific languages are often claimed to be more declarative than

imperative. Imperative languages allow the programmer to define the state variables

and to guide the application through various states as he wishes to. Declarative

languages on the other hand do not have any explicit states. The states are declared

and transformed implicitly [11].

Since DSLs are mostly declarative, they are often also used as specification

languages. Since they are designed with the specific application in mind, they often

are more efficient in capturing the specifications of any requirement. They are ideal

for generating efficient and consistent requirement specifications; efficient because

they capture more through a very few constructs and consistent because they

generally have in-built consistency checks. Such a requirement specification can be

 20

used as a model for the purpose of model based testing as is described in the later

chapters.

Some DSLs are mainly used to generate applications for a certain domain of

interest. Such DSLs are some time referred to as application specific languages and

the corresponding DSL compilers are called the application generators.

Yet another class of DSLs actually does not aim at generating a complete

application. Instead they are aimed at generating libraries/classes for assisting the

main application. A common example of such an example could be Lex and Yacc

commonly used for the purpose of generation of libraries for compilers.

 Numerous examples of DSLs could be found. Some of them are widely used

worldwide and are often confused with general programming languages e.g., SQL,

Unix shell language, Matlab, etc. Common domains that DSLs address include

graphics [9], financial products [8], telephone switching systems [2], protocols [10],

operating systems[2], device drivers [3], routers in networks [2], database queries[5],

robot languages [6].

3.3 Advantages of DSL
Following are some of the advantages of DSL over generic languages:

1. Ease of learning: DSLs are designed with a specific domain in mind and the

DSL design process involves active interaction with domain experts.

Therefore one of the advantages is that it is seeped with knowledge specific to

the domain and thus any user who is conversant with the domain learns the

language easily.

 21

2. Easier Programming: In a DSL the level of abstraction is appropriate for

expressing the domain application. Also, constructs and special functions are

provided in order to help the users define applications of a specific domain.

Therefore, the programs are easier to write and are usually more concise and

readable than the ones in general programming languages.

If the DSL is declarative then the user has to think of what to implement

rather than how to implement. It is easier for the programmer to implement

any algorithm. This makes the entire development process shorter and

simpler. Specific optimization strategies are sometimes implemented in DSL

compilers to enhance performance and also to systematize the code. This

allows the user to get rid of all the complex optimization algorithms.

Therefore the applications are easy, small and more maintenance friendly.

3. Systematic Reuse: The DSLs contain a large number of in-built functions but

are usually quite restricted in terms of the variety available in program

constructs. Hence, in a way the user is forced to use a lot of library functions.

Also, most of the functions are explicitly parameterized, which enforces the

usage style of the function. This helps the user to make use of the domain

expertise that goes into the design of the DSL.

4. Improved Dependability: In contrast to a general programming language, the

semantics of a DSL are often restricted to enforce check on certain properties,

which are critical to any domain. DSLs help increase the testability of the

code and hence produce more reliable code as compared to the general

 22

programming languages. Thus, in a nutshell, DSLs enhance productivity,

reliability, maintainability and portability.

5. Solutions easily interpreted: DSLs also allow the solutions to be in a format

easily understood by the domain experts. This allows easy and correct

interpretation of the solutions.

6. Validation and Optimization: DSLs allow validation and optimization at the

domain level. Apostle a domain specific language for a range of device

drivers is used to do static checking on the domain level and to determine

applicability of optimizations. HaskellDB allows type check of every function

before actual implementation and thus provides some handy axioms. We will

see in later sections how we can use these axioms to enhance test generation.

3.4 Challenges of using DSL
In spite of the potential benefits, the use of DSLs is limited owing to the following

factors:

• The costs of designing, implementing and maintaining a DSL.

• The costs of education for DSL users.

• The limited availability of DSLs.

• The difficulty of balancing between domain specificity and general-purpose

programming language constructs.

• The potential for a tower of Babel, a potential language for every other

domain.

 23

3.5 DSLs and Model Based Testing
Software specifications written in a domain specific language are ideal

candidates for test models in model based test automation. Since the specification

captures the requirements at the level of abstraction appropriate for a domain, they

help the users to express the requirements efficiently. Further, if the domain specific

language is strongly typed or has in built consistency checks, the specification can be

checked for various specification level errors like ambiguity, completeness,

consistency etc. Thus the test cases derived from such a specification as a test model,

have better coverage and more effective. Also domain specific languages import

domain expertise into specifications. This allows the test generation process to

generate test cases capturing requirements specific to the application domain.

This thesis demonstrates the use of domain specific languages in model based

test generation. The principle is demonstrated through HaskellDB, a domain specific

language for applications querying relational database applications. HaskellDB was

designed as a domain specific language to produce type safe SQL queries. When

used to write specifications of applications, the specifications can be type checked

using the Hugs interpreter for Haskell. HaskellDB types capture information about

the interfacing database and the inbuilt functions of HaskellDB that access the

database conforms to the respective type constraints. This enables us to capture test

cases specific to the database and its connections automatically.

3.6 Types and Functions of HaskellDB
HaskellDB is an embedded DSL derived from Haskell. Haskell is a functional

language based on lambda calculus. [7] HaskellDB provides a finite set of operators

and an optimum level of abstraction. The goal of HaskellDB is to guarantee a type

 24

safe embedding of database queries and operations within Haskell. The underlying

idea is that instead of sending plain SQL strings to a database, queries should be

expressed with normal Haskell functions. Haskell's type system is then used to check

the queries at compile time. Instead of getting a runtime error message saying that a

field name doesn't exist, a type error is given at compile time that points to the

location where the error might have originated. Queries are performed through the

HaskellDB query monad which is a first-class value and can be stored in data

structures, passed as argument or can take typed parameters.

3.6.1 HaskellDB Types
HaskellDB possesses embedded types that define the elements of a relational

database. Each query generation operator is defined on these types. Unless the type

specification of the database entries matches the input type of the query generator,

one cannot define a legal query operation. Following are some of the embedded types

in HaskellDB:

1. Relation: A relation groups together a collection of attributed values. It is

represented by the abstract type Rel .

2. Table: Relational databases represent relations via tables, and HaskellDB defines

a Table type that is parameterized over the type of the relation.

3. Attributes:A relation associates a collection of attributed values. In HaskellDB,

attributes are first-class values, all of which have the Attr type.

4. Expressions: Expr is essentially an abstract syntax tree representation of

possible SQL expressions. It is a data type whose values correspond directly to

 25

SQL expressions. The role of the type parameter is analogous to that played by

types in most programming languages. It prevents us from constructing Expr

values that correspond to ill-formed SQL expressions.

Thus in HaskellDB a database or table of type Table r, consists of a collection

of rows or relations, of type Rel r, where each column or attribute or field, of type

Attr (Expr t), is named and contains a value, of type Expr t.

3.6.2 HaskellDB Functions
HaskellDB provides the user with a monad called the query monad2 to build

up a query or relational expression. It provides the following basic operations:

data Query a – abstract data structure for SQL queries

returnQ :: a -> Query a — returns a query element

bindQ :: Query a -> (a -> Query b) -> Query b – binds two query

 --generating

functions

table :: Table r -> Query (Rel r)—abstracts a table in the database

restrict :: Expr Bool -> Query()— restrict in relational DB

project :: r -> Query (Rel r)—project in relational DB

By using a monad, HaskellDB code can then be phrased using Haskell’s

overloaded notation for monads (the “do” notation). Here’s an example query:

-- project out all the names from the phone book.

names = do ph <- table phBookTable

 project (ph ! name)

2 A monad is a way to structure computations in terms of values and sequences of computations using
those values, thus allowing the programmer to build up computations using sequential building blocks.
In Haskell, monads are data types that encapsulate the functional I/O-activity, in such a manner that the
side-effects of IO are not allowed to spread out of the part of the program that is not functional
(imperative).

 26

In order to construct the complex query operations the user has to use the

combinators and operators provided by HaskellDB. Details of HaskellDB

combinators and operators can be found in Appendix A.

3.7 HaskellDB Axioms and Domain Specific Requirements
Chays et al [4] argue that applications interfacing with databases need to satisfy

some specific properties in order to make them function properly. These properties

are significant only for database applications and hence may be called domain-

specific properties. After a preliminary investigation we found that the most

important database specific properties could be grouped under the following

headings:

Req. Set 1. Connection Specific Properties: A vital property to ensure

for all database applications is that a correct connection is established to the

right database. Without a proper connection the application will fail either due

to inability to handle query requests or due to inability to generate correct

results for a query.

Req. Set 2. Field Related Properties: The database that an application is

linked to, should consist of the appropriate fields. In other words, the

application should not throw queries for non-existent tables or attributes and

therefore, every attempt of doing so should be arrested. Such requirements

are sometimes managed by the database management systems (DBMS), but it

is equally important for the application to satisfy such requirements. This

requirement becomes more important when the application interfaces with

other applications.

 27

Req. Set 3. Type Related Properties: It is also important for the

application to throw queries of the right type. A string field in the database

should not be treated as an integer field and vice versa. Any such attempt

should be arrested by the application.

Req. Set 4. Integrity Related Properties: Any application which can

possibly modify the database, is subject to integrity related properties. A

change in the database should only be allowed in case the user has the

privilege to do that. Sometimes data retrieval is also privilege specific. All

such requirements are vitally important for a database application.

Req. Set 5. Constraint Related Properties: All insertions, deletions and

updates performed by the application are subject to the following constraints:

a. Domain Constraints: These are the constraints on possible values

assumed by any attribute.

b. Uniqueness Constraints: These are the constraints that prohibit

multiple occurrences of certain attributes.

c. Referential Integrity Constraints: These are the constraints that ensure

that the relation between various tables of the database is maintained.

d. Not Null Constraints: This is the constraint that prohibits a certain

attribute from taking null values.

e. Semantic Integrity Constraints: These are the constraints that express

constraints on the values of the attributes.

 28

To be able to produce domain specific test cases the model needs to capture

these requirements. Testers may not have access to the real database and even if they

do, they may not be able to generate test cases that will address all the above

requirements.

In a HaskellDB model of the system, the information about the database is

captured through its type. A syntactically correct HaskellDB model ensures that the

functions and the combinators used in the model access the correct fields of the

database and that they do not perform operations violating a type constraint. Thus,

any syntactically correct HaskellDB model can confirm certain properties of the

software system. These we call the type axioms of the function. We can relate the

domain specific properties specified above to individual functions based on the

axioms they offer. Any instance of the functions in the specification thus asserts the

domain specific properties via the axioms.

Our technique extracts these requirements (axioms) from a HaskellDB specification

of the system and uses them to enhance the test model with domain specific test

cases. The axioms are identified for every use of HaskellDB operators in the

specification. For instance whenever the operator restrict (a relational database

operator) is used in Haskell , it guarantees that the parameter is a boolean expression.

This in turn demands that the relational operator for the Boolean expression has

comparable variables on either side. When one side of the operator is a database field,

extracted by the bang (!) operator we know that the fields accessed through it do exist

in the database. In absence of such fields in the database, a HaskellDB specification

will throw a type error.

 29

 Assume that there is a table in the database called ‘Home” which is listed as

Name Author_id Title_pub

Carol 1 “Welcome to Software Testing”

Andy 2 “Functional Programming Rules”

Avik 3 “The world of Haskell”

Hence the table can be restricted to the second row with the restrict operation as

shown below

x <- table Home

restrict(x!Name.==.constant“Andy”)

The output should return a query for the second row that is

Andy 2 “Functional Programming Rules”

Thus if we follow the derivation process as described above, the axiom for the

operator restrict, implies that the field ‘Name’ must exist in the table ‘Home’

otherwise the operation would not be possible. The domain specific requirement that

builds on this axiom states that “the application should always throw an error/

warning message that prevents formation of a query for the field ‘Name’ when it

doesn’t exist in the table ‘Home’.” Our algorithm extracts (see Chapter 4) all such

domain specific requirements for every operator use and embeds corresponding states

in the extended finite state model to enhance it. Table 3.1 lists a set of axioms derived

from various types of HaskellDB functions and the requirements that we can

associate on the basis of those axioms. This list is not complete and an exhaustive list

can be found in Appendix B.

 30

 Operator/

Function

Axiom Associated Set of
Requirements

1 Assignment
Operator

The object on the RHS of the
assignment operator must be defined.

Req Set 1, Req
Set 2

All fields accessed by the operator
must exist in the corresponding
database.

Req Set 1 2 Relational DB
operators

The Boolean predicate for restriction
and projection operation must be type
consistent.

Req Set 3

3. Connection
Operators

Connection parameters are predefined
and are of the right type.

Req Set 1

4. Update Operators The update operator does not violate
any table type.

Req Set 4, Req
Set 5

3 Comparison
Operators

The compared fields on either side of
the comparison operators must be
comparable.

Req Set 3

4. Boolean
Connectors

The arguments must all be SQL
Boolean expressions.

Req Set 3

5. Bang/Extraction
Operator

The field being extracted out of the
relation argument must exist.

Req Set 2

6 Set Operators The database arguments must be of the
same shape (that is, each table has the
same fields, and the corresponding
fields store values of the same Expr
type).

Req Set 4, Req
Set 5

7 Arithmetic
Operators

The arguments must all be arithmetic
expression.

Req Set 3

8 String Operators The arguments must all be string
literals.

Req Set 3

Table 3.1: Axioms derived from HaskellDB

3.8 Summary
In summary it can be said that domain specific languages have the ability to

provide the right level of abstraction and inbuilt functionalities to aid in specifying

 31

applications of the particular domain. Strongly typed domain specific languages can

be developed by embedding domain specific types and functionalities. These

languages can be used to model systems for model based testing. By doing so, one

can derive type related system axioms. These axioms can then be used to derive

domain specific test cases.

3.9 References
[1] A. Deursen and P. Klint, “Little languages: Little maintenance?” Journal of

Software Maintenance, 10:75-92, 1998.

[2] A. Deursen, P. Klint, and J. Visser., “Domain-specific Languages: An annotated

bibliography”, Net publication, http://www.cwi.nl/projects/dsl

[3] D. Bruce, “ What makes a good domain-specific language? APOSTLE, and its

approach to parallel discrete event simulation”.

[4] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos and E.J. Weyuker, “A Framework for

Testing Database Applications,” in Proc. ISSTA 2000, Portland, 2000, pp. 147-

157.

[5] D. Leijen and E. Meijer, “Domain Specific Embedded Compilers,” in Proc.2nd

USENIX Conference on DSL, Austin, 1999, pp. 109-122.

[6] G. Arango., “Domain analysis: From art form to engineering discipline.” Fifth

International Workshop on Software Specification and Design, pages 152-159,

May 1989.

[7] Hudak P., “The Haskell School of Expression”, Cambridge University Press, NY,

2000.

 32

http://www.cwi.nl/projects/dsl

[8] M. Antoniotti and A. Göllü, “SHIFT and SMART-AHS: A language for hybrid

system engineering modeling and simulation.” Ramming J. C., editor,

Proceedings of the USENIX Conference on Domain-Specific Languages,

Berkeley, CA, October 15-17 1997, pages 171-182.

[9] M. Van den Brand, A. Van Deursen, P. Klint, S. Klusener, and E. Van der

Meulen, “Industrial applications of ASF+SDF”, Wirsing M. and Nivat M.,

editors, Algebraic Methodology and Software Technology (AMAST '96), volume

1101 of Lecture Notes in Computer Science, pages 9-18. Springer-Verlag, 1996.

[10] S. Chandra, B. Richards, and J. R. Larus, “Teapot: A domain-specific

language for writing cache coherence protocols”, IEEE Transactions on Software

Engineering, 25(3), May/June 1999, pages 317-333.

[11] University of Massachusetts, CS 530 Lecture Slides, 2001.

 33

Chapter 4 Derivation of a Structural Representation

In order to generate test cases satisfying a given test coverage criterion, it is

necessary to derive a structural representation of the system model. The structural

representation chosen in this case is called an extended finite state machine (EFSM)3.

In this representation, every state represents a state of the system under test (SUT).

The states are linked through transformations that signify change of state for the SUT.

A state transformation can only be possible through triggering of a transition. A

transition is called trigger-able if the system is at a state which can be transformed by

the transition. The transitions can be constrained or un-constrained. Constrained

transitions can only be triggered if the constraint is satisfied and the transition is

trigger-able from the current system state. An un-constrained transition need not

satisfy any constraint and can be executed as soon as the system reaches a state for

which the transition is trigger-able. A group of states and transitions can be isolated

as a model when none of the states in a group can be transformed to the states of the

system outside the group. Introduction of models into the representation allows a

hierarchical arrangement of states. Each model can represent a function at a higher

level of abstraction and its child functions will then define the states of the model. A

model can subsequently contain other models.

We define the EFSM representation of the system by a set m0= {Ω0,

τ0,St ,St }Start0 Exit0 where Ω0 is a set of states and sub-models in m0 whereas, τ0 is the

set of transitions in m0 mapping each state or sub-model in Ω0 through various

3 By choosing EFSM as the structural representation, commercially available tools for test design like
TestMaster [1] could be used for test generation.

 34

system transformations. StStart0 is the starting state and StExit0 is the exit state for m0. A

test case in such a representation of the system is a list of transitions that transforms

StStart0 to the state StExit0.

 The derivation of the Extended Finite State Machine is done in three different

steps:

1) Derivation of an Extended Finite State Machine (EFSM) without Axioms or

Predicates

2) Derivation of an Extended Finite State Machine, EFSMA, which accounts for

Axioms and not the predicates

3) Derivation of an Extended Finite State Machine, EFSMAP, accounting for

Axioms and Predicate

4.1 Derivation of EFSM
To derive EFSM we first need to introduce to the reader the three approaches

one can use to write a specification in Haskell DB. The control flow and actual order

of execution will then be extracted from these three specification styles.

4.1.1 Three styles.
HaskellDB specification can have the following three identified specification

styles:

a) Specifying using the do-monad: Following is an extract of specification using

do-monad.

F1=Do- {…

 35

F2

F3

F4

…

}

This do-monad is used to specify the fact that one wishes to perform function

F2, then F3, then F4 whenever there is a call to function F1. In other words,

functions specified with a do-monad will need to be performed in the order

specified under the do. Also, F2, F3 and F4 are the children of function F1 and

are at a hierarchically lower level than F1. We denote a do- sequence of functions

as F1{SDO[F2,…,Fk]} which implies that F1 is the function specified using a do-

notation and calls functions F2…Fk in sequence.

b) Specifying using Functional Composition: Functional composition is the

second possible HaskellDB specification style. Following is an example of

functional composition: F1•F2•F3(..) where • is the functional composition

operator. This notation is used to specify that one wishes to first perform F3(..) ,

then F2 on the result of that operation, i.e. F2(F3(..)), and finally F1 on the result of

F2 and F3, i.e. F1(F2(F3(…))).We denote a composition of functions as

SCOMP[F1,F2,…,Fk] which implies that the function Fk will be called first.

Function Fk-1 will be called with the return value of function Fk and so on till

function F1 is called with the return value of function F2.

c) Specifying using a Sequential Juxtaposition of Functional Terms: Using the

 36

third specification style, sequential juxtaposition, functions can be specified in

any order. To then reconstitute the actual implied specification one has to

understand in what order functions call each other. The following is an extract of

a possible sequential juxtaposition specification:

F1 F4 F6

If Fic denotes the fact that function i is called, and if the completion of

execution of function i is denoted by Fid, then the sequence of operations for the

above extract of specification is given by, F4c F4d F6c F6d F1c F1d . In other words

function F1 is called with parameters which are the outputs of functions F4 and

F6. So prior to a call of F1, F4 and F6 need to be evaluated. HaskellDB supports a

lazy binding of functions. This is taken into account while translating the test

model to EFSM. We denote a sequential juxtaposition of functions

SSEQ[F1F2,…,Fj Fk..Fk+m,.., Fn].

Any HaskellDB specification is a combination of do monads, sequential

juxtapositions and compositions. For example consider the following specification:

query = do{ x <- table home

 ; restrict(x!name .==. constant John)

 }

show = search.execute

main = show query
It contains a combination of the three styles discussed above. For translation

purposes, an embedded use of a specification style is denoted by explicit reference to

the style. Thus the above specification may be denoted as

 37

S =main{SSEQ[show{SCOMP[search, execute]} ,query{SDO[SSEQ [assign x SSEQ[table home]],

SSEQ [restrict SSEQ[eq SSEQ[bang x name] SSEQ[constant John]]]]}]} .

4.1.2 Specification to Actual Flow
Hence taking a generic specification one can easily map it to the actual order

in which functions should be executed.

Let us define an ordering function Order that will reorder the functions in S to

generate a new specification S’. Within S’ :

1. A function F , child function of function G, is denoted byG{F}

2. A function F executed after a function G is denoted by {G;F}.

The Order function orders the actual sequence of operation based on the

specification style. The following defines Order in cases for the three specification

styles and for their combinations:

Case I. For a do-notation we have Order (S)=S’ where S=SDO[F1…Fk] and S’ is the

specification reordered by actual sequence of operation. Thus S’={F1;F2;…Fk}.

Case II. For a composition of functions, Order (S) =S’ where S=SCOMP[F1,F2…Fk] and

S’={Fk;Fk-1; …F1;}.

Case III. Similarly, for a sequential juxtaposition of functions we have Order (S) =S’

where S=SSEQ[F0 F1 F2,…Fk] and S’={F1;F2;…Fk;F0} .

Case IV. The Order function is distributed over the different fragments of specification

written in different styles contained in a complete specification. Thus if

S1[F1,…Fk] and S2[G1,…,Gn] are two fragments of the complete specification

 38

adhering to different styles (e.g., S1 could be a sequential juxtaposition

operator and S2 could be a composition operator) then:

1. Order(S1[F1,…,Fj{S2[G1,…,Gn]},Fj+1,…,Fk])=Order(S1[F1,,Fj{Order(S2[G1,…,

Gn]}),Fj+1,,Fk]).

2. Order({S1[F1,….Fk]; S2[G1,…Gn]}) = { Order(S1[F1,….Fk]); Order(

S2[G1,…Gn])}

For instance, consider the specification introduced in section 4.1.1:

 S = main{SSEQ[show{SCOMP[search, execute]} query{SDO[SSEQ [assign x SSEQ[table home]],

SSEQ [restrict SSEQ[eq SSEQ[bang x name] SSEQ[constant John]]]]}]}

Then, the remapped specification is:

S’=Order(S)= main{Order(SSEQ[show{SCOMP[search, execute]} query{SDO[SSEQ [assign x

SSEQ[table home]], SSEQ [restrict SSEQ[eq SSEQ[bang x name] SSEQ[constant John]]]]}])}

=main{query{Order(SDO[SSEQ [assign x SSEQ[table home]], SSEQ [restrict SSEQ[eq SSEQ[

bang x name] SSEQ[constant John]]]]};show{Order(SCOMP[search.execute])}}

This subsequently reduces to:
=main{query{x; home; table; assign;x;name;bang;John;constant;eq;restrict};show{execute;search}}

4.1.3 Derivation of the EFSM.
Having obtained the reordered specification we proceed to develop the EFSM.

S’ is the basis for the EFSM. Let us define a function StateMap such that, StateMap(S’)=

m0, where m0 is the desired EFSM and is defined as m0= {Ω0, τ0,StStart0,StExit0} as

before.

 39

In S’, functions listed within a pair of curly brackets represent a group of functions,

Gi, all at the same level of hierarchy in a fixed execution sequence. Each such group

Gi is translated into a sub-model mi defined as mi= {Ωi, τi,StStarti,StExiti}.

StateMap translates each function Fj in S’ to a transition tj in the

corresponding EFSM based on the following rules:

Rule 1. If Fj is the first function in the group Gi (e.g.,{Fj;…}) then a transition tj is

created from StStarti to Stj such that Stj ∈Ωi and tj ∈τi. This is because for

each model the transition starts from St Start and also, execution of the first

function in the group signifies the first transition of states in the model.

Rule 2. If Fj is the last function in the group Gi (e.g., {…;Fj}) then a transition tj is

created from the current state to StExiti and t ∈τi. This justifies the fact that

each group terminates with the execution of the terminal function and that

for a model the transitions must end at St . Exit

Rule 3. If Fj is the function in the group Gi-1 that calls a group Gi, (e.g., Fj{Gi}) then

a transition tj is created to the model mi where m ∈Ωi-1i ,tj ∈τi-1.

Rule 4. If Fk follows Fj in sequence in group Gi (e.g., {…;Fj;Fk;…}) then a

transition tk is created to Stk from Stj such that {Stj, Stk} ⊂Ωi , tk ∈ τi

Rule 5. If Fk immediately follows the call of group Gi in a group Gi-1 (e.g.,

{…;{Gi};Fk;…}) then a transition ti’ is created to Stk from mi such that {mi,

Stk} ⊂Ωi-1 , ti’ ∈ τi-1

 40

Any S’ is uniquely defined by a set of functions {F0,…Fn} and an underlying

control flow which is expressed through various combinations of sequences of

functions and the embedded function calls. The function StateMap addresses all

possible flows in S’, which are necessary and sufficient to derive EFSM from any S’.

This also implies that the StateMap function is a unique mapping function that

differentiates between specifications differing in either the set of functions or the

underlying control flow.

Since the specification contains a finite number of functions, the number of

transitions in the resulting test model is finite. This also ensures that the number of

states in the state machine is finite. The special case of recursive calls is discussed

later in this paper.

Consider, our running example :

S’=main{query{x; home; table;

assign;x;name;bang;John;constant;eq;restrict};show{execute;search}}. We will have

StateMap(S’)= m0= {Ω0, τ0,StStart0,StExit0} where τ0={query,show} . (Figure 4.1)

StStart0

StStart1

St1 St2 St3 St4 St5

St6St7St8St9St10

StExit0

StExit1

x

home table assign x

name

bangjohnconstanteq

restrict

StStart2

St11

StExit2

execute

search

query show

m0=main
m1=query

m2=show

Figure 4.1: The derived EFSM

 41

4.2 Derivation of EFSMA
 The test model obtained in section 4.1 captures the requirements imposed by

the initial specification S. To allow the test model to capture and test the implicit

domain properties, it is necessary to embed additional states and derive EFSMA. To

do so, parameters on which functions act need to be introduced explicitly. Indeed,

axioms are properties that must be true of the parameters of a function. First let us

consider the impact of explicit treatment of parameters on the three styles of

specification defined in section 4.1.1.

4.2.1 Treatment of Parameters
In a functional language there is no difference between functions and their

parameters. Functions can be passed on as parameters or parts of lists and other data

structures. A parameter of a function is essentially the value returned by some other

function. The arguments map uniquely to each parameter and the values are passed by

reference. The values returned by functions are assigned to the parameters and they

have the same type as the return type of the functions. Let Sx denote a specification

with explicit reference to parameters.

In the following, we define a function ParameterMap4, which reorders the

functions in Sx while accounting for variables. Sx’ is the resulting specification.

To do so, parameters are categorized according to the following:

4 ParameterMap is a composition of two operators: an operator that tags the variables in the specification
according to their use i.e. d, c, and an extension of Order, that reorders the functions in the same fashion
as Order while mapping variables used in function calls.

 42

1. Definition: The parameter is said to be defined if the function using it

associates a value and a type to the parameter. A definition of the parameter is

denoted by x d.

2. Computation: The parameter is said to be used in computation when the

parameter is used by a function to define any other parameter. A

computational use of x is denoted by x c

In order to differentiate between a return value of a function and the call to a

function we denote a return value of F as F .

Considering the example specification in section 4.1.1 with the variables

introduced we may have

Sx = main(maind){SSEQ[show(showd, searchc){SCOMP[search(searchd,execcutec),

execute(executed, queryc)]} query(queryd){SDO[SSEQ [assign(xd,tablec) x(xd) SSEQ[table(tabled,

homec) home(homed)]], SSEQ [restrict(xd, eqc) SSEQ[eq(eqd,bangc,constantc) SSEQ[

bang(bangd,xc,namec) x(xc) name(named)] SSEQ[constant(constantd, Johnc) John(Johnd)]]]]}]}

The remapped specification is then

S’x=ParameterMap (Sx)

=main(maind){query(queryd){x(xd);home(homed);table(tabled,homec);assign(xd,tablec);x(xc);name(nam

ed);bang(bangd,xc,namec);John(Johnd);constant(constantd,Johnc);eq(eqd,bangc,constantc); restrict(xd,

eqc) }; show(showd, searchc){execute(executed, queryc);search(searchd,execcutec)}}

 43

4.2.2 Derivation of EFSMA
The first step in the process of embedding axioms is application of a function

Filter that differentiates functions that belong to the standard HaskellDB library from

functions that do not. Indeed these are the functions to which axioms are associated.

Let S’x= F0(xd) {…Fi(yd ,xc) {…Fj-1(yd ,xc) ; Fj(yd ,xc); Fj+1(yd ,xc) …Fn(yd ,xc)}} be

an ordered specification such that Fj is a library function, Filter(S’) = Sx’’ where Sx’’=

F0(xd) {…Fi(yd ,xc) {…Fj-1(yd ,xc) ;&A0(yd ,xc); Fj+1(yd ,xc) …Fn(yd ,xc)}}, &A0 is an action

representing the call to the standard library function Fj .

Thus for our example specification, S’x in section 4.2.1

S”x= Filter(S’x)

= main(maind){query(queryd){x(xd);home(homed);&table(tabled,homec);&assign(xd,tablec);x(xc);

name(named);&bang(bangd,xc,namec);John(Johnd);constant(constantd,Johnc);&eq(eqd,bangc,consta

ntc); &restrict(xd, eqc) }; show(showd, searchc){execute(executed, queryc);search(searchd,execcutec)}}

 Having derived S”x , the reordered specification with embedded parameters

and identified library functions, we proceed to extract the EFSMA. We now define a

function StateMapx such that StateMapx(S’’x)=m0x where m0x is our EFSMA with

parameters and is given by m0x={Ω0, τ0, StStart, StExit, V0}. StateMapx is an extension of

StateMap such that m0x = m0 ∪ {V0}. V 0 is the set of variables for states in the set Ω0. If

Vti0 is the set of variables in transition ti0 (i.e. the variables used in the corresponding

 44

function) then V0= Vt10∪Vt20∪…∪Vtn0, and {t10,t20,…,tn0}=τ0. Similarly we derive

V for the sub-models in m0x.

Thus, for our example specification we have StateMapx(S’’x) = m0x={Ω0, τ0,

StStart, StExit, V0} as presented graphically in Figure 4.2.

StStart0

StStart1

St1 St2 St3 St4 St5

St6St7St8St9St10

StExit0

StExit1

x

home table assign x

name

bangjohnconstanteq

restrict

StStart2

St11

StExit2

execute

search

query

show

m0=main
V0={main,query,show}m1=query

V1={query,x,home,table, name,bang,john,constant, eq, restrict}
m2=show

V2= {show, execute, search}

Figure 4.2: The EFSM with embedded variables

4.2.3 Embedding the Axioms
 Having introduced the variables in the test model, we proceed to embed the

related axioms into m0x to derive EFSMA. Each call to a HaskellDB library function

associates one or more properties with the variables on which the function is acting.

As discussed before all calls to the HaskellDB library functions are represented by

actions in the filtered specification S’’x. These properties were derived in Chapter 3

and are listed in Appendix B. Thus each action in S’’x possesses a set of properties

which hold true for the parameters on which it operates (parameters in computational

use). These properties can either be satisfied by the implementation or not. The test

model should test each case. Thus two additional states in the test model need to be

created. The first one will generate a test case which does satisfy the axiom, hence a

 45

normal functioning of the system. The second one generates (if possible) a test case

that violates the axiom and will allow us to verify whether the application is protected

against this violation or not.

Let X represent the set of variables on which a library function Ai acts in

computational use. Thus for each Ai(X) in Sx’’ a set of properties given by

Pi(X)={p1i(X),…pni(X)} hold. Let us define a function TestProperty such

that .,
x
iτ=))((XP,mtyTestProper ix where {�

n

j
Exitjjj

x
i ttt

1
,,,

=

=τ } and mx represents the test

model or any of the sub-models. If is the system state where the property pjjiSt , i for

action Ai holds and is the sate where it does not hold, then is a transition to

the state from the state and

'
, jiSt jt

jiSt , 1, −jiSt jt is a transition to the state from the state

. Further, is a transition from to St

'
, jiSt

1, −jiSt Exitjt , 1, −jiSt Exit. Also we have,

. { }�
n

j
jiji

x
i StSt

1

'
,, ,

=

=Ω

If there are n transitions representing the actions A1,…An in mx, we define τAxioms

=� and Ω
n

i

x
i

1=

τ Axioms=�
n

i

x
i

1=

Ω 5.

EFSMA is then obtained easily by defining a function AxiomMap such that if

mx={Ω, τ, StStart, StExit, V}, then AxiomMap(mx) = mx’ , where mx’={Ω’, τ’, StStart, StExit, V};

τ’=τ ∪ τAxioms and Ω’=Ω ∪ΩAxioms. Figure 4.3 depicts the effect of introducing the

axioms into the test models.

5 The set of properties for a given library function is finite. Therefore the number of states added is
finite and EFSMA remains a finite state machine.

 46

StStart0

StStart1

St6

StExit0

StExit1

x home table assign x

name

bangjohnconstanteq

restrict

StStart2

St11

StExit2

execute

search

query

show

m0=main
V0={main,query,show}m1=query

V1={query,x,home,table, name,bang,john,constant, eq, restrict}
m2=show

V2= {show, execute, search}

St7St8St9St10

St5St4St3St2St1

P2
St'7

St'10P3

St'4P1

Figure 4.3: The EFSM with axioms introduced, EFSMA.

4.3 Specification with Conditional Flow
HaskellDB Specifications contain conditional calls of the functions.

Conditional flow can exist only in a SSEQ or SDO specification.

In the following we extend the function ParameterMap to account for the

conditional flow. A conditional flow in HaskellDB can be created in via three

possible constructions. For each conditional constructor the function ParameterMap

introduces a condition Ci (X) to the corresponding specification fragments. Ci (X) can

be uniquely described by the variable X and the constraint associated with it. If the

constraint is satisfied by the variable, then Ci (X)= True else Ci (X)=False. The constraint

is composed of a relational operator and a constraint value. Hence, we formally

represent a condition as:

P(X) = (X RO Value) where RO є {.==.,!=., .>=.,. <=.,.>.,.<.}

 ParameterMap extracts the condition for each conditional construction in

HaskellDB as described below. Let S0 represent the example specification, which has

specification fragments S1, S2,… Sn, each adhering to any one of the three

 47

specification styles described as defined in section 4.1.1 Also, let X represent the set

of variables, x represent any particular variable and xi represent any value assumed by

the variable x.

1. If then else: The if-then-else construct of HaskellDB is the counterpart of the if-

then-else in procedural languages. The general syntax for if-then-else is given as :

if (Pi(X)) then (Consequence) else (Alternative)

Pi(X) is a boolean expression on X that can either be True or False. The

Consequence and the Alternative are HaskellDB specification fragments. The

variable used in the predicate needs to be defined before its use.

Let us consider an example specification, S0 with an if-then-else construct

such that:

S0=SSEQ[F0(x){ if (P1(x)) then S1[…] else S2[…]}]

Thus ParameterMap (S0)=S0’ such that

S0’=F0(xd){C1(x)=>ParameterMap(S1[…])}{C2(x)=>ParameterMap(S2[…])}:C1(x)=P1(x),C2(x)=

)(1 xP .

2. Case constructor: The case constructor of Haskell has the following syntax:

Case (X) of
 (Value 1) -> Consequence 1
 (Value 2) -> Consequence 2
 …
 (Value n) -> Consequence n
Value i is a possible value set assumed by the set of variable X. A value of ‘_’

signifies the default value of the set of variable. The consequences have to be a

valid HaskellDB specification fragment. Now consider an example specification

with an explicit reference to the case constructor.

S0 = SSEQ[F0 (x) { Case (x) of

 48

 (x1) -> S 1[…]
 (x2) -> S 2[…]
 (_) ->S3[…]
 }]

 Thus ParameterMap (S0) = S0’ such that

S0’=F0(xd){C1(x)=>ParameterMap(S1)}{C2(x)=>ParameterMap(S2)}{C3(x)

=>ParameterMap(S3)}, C1(x)=(x.==. x1), C2(x)=(x.==.x2) and

C3(x)=)(2)(1))(2)(1(xCxCxCxC OR AND = =((x!=x1) OR(x != x2))

3. Pattern Matching: Pattern matching is a unique way for introducing conditional

flow in Haskell specifications. If a function f (X) is described using a pattern

matching fragment, then the function sequentially scans for matching patterns on

X until one is found. This is a way of overloading functions in Haskell. In case of

ambiguity the first available pattern is adopted. Pattern matching can bear any of

the following two allowable syntaxes in Haskell.

• F (x){
|Pattern(x)1 →Consequence 1
|Pattern(x)2 →Consequence 2
…
|Pattern(x)n →Consequence n

 }
• F (Pattern(x)1) = Consequence 1

F(Pattern(x)2) = Consequence 2
…
F(Pattern(x)n)= Consequence n
Again, the consequences need to be valid HaskellDB specification fragments.

Pattern(x) is an abstract way of representing the list of parameters and their types.

It transforms a parameter pattern into a regular constraint with a relational

operator and a constrain-value defined on the variable x. Let us consider an

example specification with an explicit reference to the pattern matching

constructor.

 49

S0 = SSEQ[F0 (x) {
 |Pattern(x1) -> S 1[…]
 |Pattern(x2) -> S 2[…]
 }]

 Thus ParameterMap(S0) = S0’ such that S0’=F0(xd){C1(x)=>ParameterMap(S1)}{C2(x) =>

ParameterMap (S2)}, C1(x)=Pattern(x)1,and C2(x)= Pattern(x)2

4.3.1 State Machine
The function Filter is then applied to the re-ordered specification to differentiate

the functions that belong to the standard HaskellDB library from the functions that do

not. We then apply the StateMapx function to the re-ordered specification. EFSMAP

is an extension of the EFSMA notation for TestModels with each transition also

characterized by a governing predicate. The default value of these predicates is set to

NULL. The StateMapx function is extended to handle the specification while

accounting for the conditional flow by adding a rule 6 and also by modifying rule

number 3 in order to account for functions passing control to multiple groups:

Rule 3 (modified): If Fj is the function in the group Gi that calls k groups

Gi+1,..Gi+k, (e.g., Fj{Gi+1}{Gi+2}…{Gi+k})then k transitions tj1, tj2,…tjk are created to the

models mj+1,mj+2,…,mj+k where {mi+1,mi+2,…,mi+k} ⊂Ωi , { tj1, tj2,…tjk }⊂τi.

Rule 6: If group Gi is initiated on condition Cj(x) being True and if tk is the

transition that corresponds to initiation of Gi, then tk.predicate=Cj(x).

Let S” , be the reordered specification accounting for the variables and for the

conditional branching of functions with identified library functions.

 50

Thus, if we have S’={F0(xd){C1(x)=>F1(yd, xc) ;F2(zd , yc) {A3(yd ,zc) }}{C2(x)=> F3(x d, yc) }

}, then TestMapx(S’’x) = m0x={Ω0, τ0, StStart, StExit, V0} as presented graphically in Figure

4.4.

StStart

StStart St3 StExitA3
StStart St2 StExit

St1 StExitC2(x)

C1(x)

F1

F3

F2

m0
V0={x}

m1
V1={x,y,z}

m2 V2={y,z}

Figure 4.4: EFSM with the embedded variables

The test model derived above can be enriched with domain specific test cases as

before by the application of the function Axiom.

4.4 Special Case of Recursion
Recursion is the only means of introducing the repetitive tasks in HaskellDB.

Recursions are characterized by the base case definition and the recursive relation. A

recursion can not be modeled explicitly into state machines primarily because the

number of states and transitions depend on the input to the function and hence is not

predetermined for the test models. Consider the following example for calculating

factorials by recursion:

Fact 0= 1
Fact x= x* Fact x-1

This can be written in a more generic form as :

SSEQ[F1 (x){

 51

|x.==.x1->y1 base case
 |x.!=.x1->SSEQ[F2(x){SCOMP[F1,F3(x))]} recursive rule
}
where F1=Fact, F2= multiplication operator and F3= unary subtractor. Here the

number of calls to F1 depends on the value of x and hence with the input varying, the

number of states in the model will vary. F3 determines how x is modified with each

recursive call. The recursion will halt iff F3n (x)= x1 for some finite n. (Termination

Rule) which is true for this case as F3x(x)=0=x1.

Now, suppose we need to validate F1(x). Let us consider x2 such that F3n

x2=x1. If by assuming that F1 F3(x2) is correct, we can validate F1(x2) then by

induction we can say that F1(x) is validated, provided that the base case, F1 (x1)= y1, is

true.

In order to keep the number of states finite and pre-determined, a similar

technique is adopted for test modeling. It can be assumed that for a correct

HaskellDB specification the termination rule is satisfied (or else the static checker

will throw an error). The test-model models the base case and the recursive rule. If a

function is correct for the recursive rule and the base case, then it can be said that the

function is correctly implemented for any input. The recursive rule can be validated

by modeling the function for one iteration. A test suite for testing iteration must

exercise the base case at least once.

 For example for the above specification we have the test model as follows:

 52

StStart

StexitStStart

Stexit

St2

St1

x!=x1

x==x1

x==F3(x)

F3(x)

contsraints to one iteration

Figure 4.5: Model Depicting Recursion

4.5 Summary
There are three possible functional flows in Haskell (and similar higher ordered

typed languages). By identifying the flows it is possible to embed states

corresponding to every call and return of the functions. The states can be grouped

hierarchically by identifying the hierarch in function calls. Thus a functional

specification can be translated into an extended finite state machine representation of

the system. The EFSM notation can then be enriched by embedding variable and

predicates. Additional states can also be embedded in the EFSM to account for

domain specific axioms.

4.6 References
[1] Test Master User’s Guide, Release 1.9.5, Empirix Inc., New Hampshire, 1999.

 53

Chapter 5 Tool Support for HOTTest

This chapter describes the tools supporting test generation using HOTTest.

The primary components of HOTTest’s implementation are identified and described

in detail. We also show screenshots from various phases of generation of test cases

from HaskellDB models. The translation process is described using a model for a

small search program (SSP).

Figure 5.1 presents the primary tools that implement HOTTest.

Graphical User
Interface for type

checking models in
HaskellDB

Haskell DB
Test Model

Call Graph
Generator

Call Graph

EFSM generator:
prototype tool

EFSM Model

Test
Generator

Test
Specification

Test Script

1

2

3

4

Input to Component

Output From Component

Legend

Figure 5.1: The Architecture of HOTTest

 54

 The user manually describes the system using any text editor like “Notepad6”.

The graphical user interface, Hugs is used to type check the HaskellDB specification.

The type correct HaskellDB specification is the input to the HaskellDB parser. The

parsed tree produced by the parser is used to generate a call graph. The call graph lists

the call sequence of the functions and also lists the parameters passed and returned

during the calls to the function. The call-graph is then used to generate the EFSM

and embed the related domain specific axioms. The EFSM is finally imported to

TestMaster which is a commercial tool for test case generation from EFSM models of

systems.

5.1 Modeling of SSP
SSP is an application for generating queries for the PUBS database. PUBS is a

database created in MS Access with information about authors and their publications.

The database has three tables named authors, titles and titleauthor. SSP is required to

generate and execute queries on PUBS. SSP generates the queries based on the search

options specified by the user. The user may opt to search by first or last name of the

author, by the author’s city, or by the title of the book written by the author. User is

then supposed to provide the search string for the selected option, viz. name of the

author, or city of the author or the title of the book. If an entry corresponding to the

query exists in PUBS, the application returns the Name of the author(s) and their

respective publication(s) or else the application returns a message saying “No such

entry”.

6 “Notepad” is a text editor available with the Windows O/S. Other text editors can be used for
modeling in HaskellDB, if “Notepad” is not available.

 55

Figure 5.2. depicts a screenshot of SSP application implemented using Visual

C++. The GUI is implemented using dialog boxes of the Microsoft Foundation

Classes (MFC).

Figure 5.2: A screenshot from SSP Application

To model an application in HaskellDB, one can use any text editor like

notepad.exe. The model is an executable specification of the application under test.

To enable database specific type checking and to access the domain specific functions

one has to import the module named HaskellDB into the specification. Figure 5.3

presents the model for SSP in HaskellDB.

module Search_example where
import Trex
import HaskellDB
import Ado
import Pubs

search sf q = doQuery (printQ sf) q

printQ sf = putStr . unlines . perform sf

perform f [] = ["No such entry"]
perform f rs = map f rs

doQuery action q
 = adoRun $

 56

 adoConnect (adoDSN "Pubs") $ \pubs ->
 do{ rows <- query pubs q
 ; action rows
 }

main = do putStr "Choose search criterion:\n\t(1) author\n\t(2) city\n\t(3) title\n\t(q) quit \nMake your choice: "
 choose

choose = do choice <- getChar
 case choice of
 '1' -> do doAuthor
 main
 '2' -> do doCity
 main
 '3' -> do doTitle
 main
 'q' -> return ()
 _ -> do putStr "\nNo such choice; try again!\n"
 main

doAuthor = do putStr "\n Which author name do you want to search for? "
 name <-getLine
 search showResult (authorQ name)

doCity = do putStr "\n Which city do you want to search for? "
 name <-getLine
 search showResult (cityQ name)

doTitle = do putStr "\n Which title do you want to search for? "
 name <-getLine
 search showResult (titleQ name)

authorQ name = do{ x <- table authors
 ; y <- table titleauthor
 ; z <- table titles
 ; restrict ((x!au_lname .==. constant name) .||.(x!au_fname .==. constant name))
 ; restrict (y ! title_id .==. z!title_id)
 ; project (au_fname = x!au_fname .++. x!au_lname, city= x!city, title = z!title)
 }

cityQ name = do{ x <- table authors
 ; y <- table titleauthor
 ; z <- table titles
 ; restrict (y ! title_id .==. z!title_id)
 ; restrict (x!city .==. constant name)
 ; project (au_fname = x!au_fname .++. x!au_lname, city= x!city, title = z!title)
 }

titleQ t
 = do{ x <- table authors
 ; y <- table titleauthor
 ; z <- table titles
 ; restrict (x!au_id .==. y!au_id)
 ; restrict (y!title_id .==. z!title_id)
 ; restrict (like (z!title) (constant ("%" ++ t ++ "%")))
 ; project (au_fname = x!au_fname .++. x!au_lname, city= x!city, title = z!title)
 }

showResult r
 = "Name =" ++ r!. au_fname ++ "City =" r!.city ++ "Title =" r!.title

Figure 5.3: HaskellDB Model for SSP

 57

5.2 Component 1: Hugs Interpreter
At the front end we have Hugs, a Graphical User Interface for validating

models in HaskellDB. Hugs is an interpreter for Haskell, available freely for non-

commercial use. Hugs supports static type checking and can also be used to execute

the specification. The HaskellDB type library needs to be loaded before Hugs can

check models for HaskellDB types. Hugs can track the errors and provides

suggestions for the modeler for possible error locations. An example screenshot of the

Hugs interface is depicted in Figure 5.4.

Figure 5.4: Screenshot Depicting Hugs Interface

5.3 Component 2: Call Graph Generator
The callgraph generator component is composed of a HaskellDB parser and a

call graph generator tool. The HaskellDB parser is implemented using HSparser, a

parser generator tool (e.g.,YACC for C++) written in Haskell. The parser takes a

 58

syntactically correct HaskellDB specification and generates a parse tree for it. The

parse tree is analyzed using a Haskell module called CallGraph.hs that outputs the

call sequence of the functions and the parameters that are passed and returned during

the call of the functions.

The algorithm for CallGraph.hs (Depicted in Figure 5.5) distinguishes three

kinds of declaration: IO procedures, HaskellDB queries, and everything else. This

allows it to concentrate on those declarations of interest. The ‘main’ function first

labels each node in the parse tree with its declaration type (IO procedure, query,

other), and then extracts from those nodes the monitored variables (those whose

initial values can affect the control flow) and controlled variables (those whose final

values constitute the output of the program). The monitored and the controlled

variables together constitute the set of “important variables”. Given a set of

"important" variables, and a set of labeled declarations, the module CallGraph.hs

produces a graph representing the control flow for those declarations. It does this by

considering each node in turn, and constructing a control graph node containing the

following information:

• The name of the node

• A list of its input variables (built from the parameters of the declaration, and

any of its free variables which are also "important” variables).

• A list of output variables

• The control flow emanating from this node. This can be one of:

o Go to <node>, with parameters <ps>.

o Perform IO action.

 59

o Branch on <name>, with possibilities given as pairs of values

o Exit this node.

CallGraph(parseTree P)
{
 flowGraph f = empty;
 P, f = mark(f,P);
 develop_flow_graph(f,p);
}

mark(flowGraph f, parseTree P)
{
 for each node n in P
 {
 if (n.type = IO)||(n.type = Query)
 {
 n.important = TRUE;
 node node_in_flowGraph = new node;
 node_in_flowGraph.input = n.parameterlist;
 if (n.type = IO)
 node_in_flowGraph.output = Empty;
 if (n.type = Query)
 node_in_flowGraph.output = Rows;
 f.addNode(node_in_flowgraph);
 }
 else
 n.important = FALSE;
 }
 return P, f;
}

develop_flow_graph(flowGraph f, parseTree P)
{
 for each node n in f
 {
 node declaration_in_parseTree = P.getNode(n);
 for each functionCall f in declaration_in_parsetree
 {
 if (f = bindingAction) //binding action is definition of local variables in
terms
 //of inputs or other local variables
 { n.actionList.add(f);
 n.localVariables.add(f.return);
 }
 if (f = non_bindingAction); //non binding action is the action where no local
 //variable is defined. Only such action in our
 // declarations of interest is an output action
 n.actionList.add(output_action);
 if (f = association) // association is renaming of variables.
 do nothing;
 if (f = final_action) // Signifies a termination of a do_sequence.
Usually
 //termination,branching or a jump.
 if declaration_in_parseTree for f(X) is important
 n.add(Goto G with X);
 if f.type = variableInvocation && variable.scope =global
 n.add (Goto Variable);
 if f.type = conditional && predicate has localVariables
 n.add (branches on);
 }
 }
}

Figure 5.5: Algorithm for Call Graph Generation

 60

A screenshot of an output from the module CallGraph.hs is depicted in Figure 5.6.

Figure 5.6: A Screenshot from Call Graph Generator

5.4 Component 3: EFSM Generator:
EFSM generator is a prototype tool that implements the methodology

discussed in the previous chapter. The EFSM generator has four main modules as

follows:

1. ParameterMap: This module implements the algorithms for ordering

functions and extracting the parameters.

2. Filter: This is the module that identifies and isolates the HaskellDB

standard library functions.

3. TestMap: This module translates the specification into the extended

finite state machine.

 61

4. AxiomMap: It is the module that embeds states to capture domain

specific requirements on the basis of the HaskellDB axioms.

The EFSM generator generates the EFSM representation of the model in

accordance to an API for the commercial test generation tool. Figure 5.7 shows a

flowchart for the EFSM generator component of HOTTest.

Start

Input list of functions

F= Next Function
Current_Condition = Predicate on

F

Create State StStart in Current_Model;
Create State StExit in Current_Model;
Current_State= StStartmi

parent_Model =mi
i=i+1;
Create Model mi;
l=0;
Create transition tj from Current_State to mi
in Current_Model;
predicate=Current_condition in tj;
j=j+1;
Caling_state=Current_State;

Is F first function of a Group?

Is F =HaskellDB operator?

k=0;
Get varible X for F;
 define axiom based properties for X
Pk;

create State Stjk in parent_Model;
Create transition tjk from Calling_state to Stjk
in parent model;
predicate=Current_condition in tjk;
Create transition tjk' from Stjk StExit in parent
model;

Are there more properties for F on X?

k=k+1

Yes

Yes

Yes

NO

No

Create StateStExit in Current_model;
Create transition tj from Current_State to StExit
in Current_model;
predicate=Current_condition in tj;
j=j+1;
Caling_state=Current_State;

Is F last function of a group?

Is F =HaskellDB operator?

k=0;
Get varible X for F;
 define axiom based properties for X
Pk;

create State Stjk in Current_Model;
Create transition tjk from Calling_state to Stjk in
Current_model;
predicate=Current_condition in tjk;
Create transition tjk' from Calling_state to StExit
in Current_model;

Are there more properties for F on X? k=k+1

Yes

Yes

Yes

Current_Model=Parent_Model;
Current_State= mi in
Parent_Model

No

Current_Model=mi;
Create StateStStart in Current_model;
Create State StExit in
Current_model;
Current_State= StStartmi

l=l+1;
Create StateStl Current_model;
Create transition tj from Current_State to Stl
in Current_model;
predicate=Current_condition in tj;
j=j+1;
Caling_state=Current_State;

Is F the last function of the list?

Is F =HaskellDB operator?

k=0;
Get varible X for F;
 define axiom based properties for X
Pk;

create State Stjk in Current_Model;
Create transition tjk from Calling_state to Stjk in
parent model;
predicate=Current_condition in tjk;
Create transition tjk' from Calling_state to StExit
in Current_model;

Are there more properties for F on X?

k=k+1

No

Yes

Yes

Current_State= Stl

i=0; j=0;
Current_Model=mi;
parent_model=Software
F= Start_Function of the
list

No

Create transition tj from Current_State to StExit
in Current_model;
predicate=Current_condition in tj;
j=j+1;
Caling_state=Current_State;

Is F =HaskellDB operator?

k=0;
Get varible X for F;
 define axiom based properties for X
Pk;

create State Stjk in Current_Model;
Create transition tjk from Calling_state to Stjk in
parent model;
predicate=Current_condition in tjk;
Create transition tjk' from Calling_state to StExit
in Current_model;

Are there more properties for F on X?

k=k+1

Yes

Yes

yes

Stop

no

no

no

No

no

no

 Figure 5.7: A flowchart for EFSM generation

The prototype tool generates the EFSM in “tmi” format which corresponds to

the API provided in TestMaster [1]. Files in “tmi” format can be readily uploaded to

TestMaster for test case generation.

 62

5.5 Component 4: Test Generator
The test generator is the component that derives test cases on the basis of the

generated EFSM. The test generator is a commercial test generation tool (TestMaster

[1]). Apart from the generated EFSM, the test generator takes as input a test

specification. A test specification contains information on test objectives, test profile

and test constraints. The test generator performs a depth first search on the test model

for the exit states starting from the entry state of the main model on all enabled edges.

An edge is said to be enabled if the test constraints are satisfied before traveling the

edge. The test constraints contain constraints based on profile, number of iterations(

in case of recursion) and behavioral constraints. Each edge of the EFSM is enriched

with information called TestInfo. This is the information that contains the script for a

certain test harness (in our case it was WinRunner[2]). While generating the test case

the test generator concatenates the test info stored in these edges in sequence to

produce test scripts in accordance to a certain coverage criteria.

5.6 Summary
 In summary, to generate test cases using the HOTTest technique one needs to

use four independent components, viz. Hugs Interface, Call-Graph Generator, EFSM

generator and TestMaster, an EFSM based Test Case Generator. Prototype

components have been implemented for the call-graph generator and the EFSM

generator. Hugs is freely available for non-commercial use and TestMaster is a

commercial tool by Empirix Inc.

5.7 References
[1] Test Master User’s Guide, Release 1.9.5, Empirix Inc., New Hampshire,

1999.

 63

[2] WinRunner User’s Guide, Version 7.01, Mercury Interactive Inc., Sunnyvale,

CA, 2001.

 64

Chapter 6 Experimental Validation of Usability and
Performance

To be industrially viable, a test generation technique should excel both in

performance and usability. Since, HOTTest uses a functional domain specific

language with limited use in the past, it is uncertain how will it compare to usability

of other test generation tools. Programmers of imperative languages are not

conversant with the functional style of specification and may find it difficult to use

HaskellDB to define the systems. Also, it is argued that because of its syntax and its

type system, Haskell is hard to learn. Since, HaskellDB is derived from Haskell and

uses the same syntax, it is feared that it will raise similar concerns. Therefore, there is

a need for a study that characterizes the use of functional languages for system

modeling and thereby provides empirical support for HOTTest’s usability.

Additionally, we also seek empirical evidence to support claims with regards to

performance of HOTTest.

In this chapter an in-vitro experiment is designed that studies the usability of

HOTTest by comparing it with another model based test design technique. This study

will identify the advantages and disadvantages of using Higher Ordered Typed

specification languages for model based testing of applications. The model based test

design technique that is chosen as the basis for comparison is the Extended Finite

State Machine (EFSM) based test design technique. This technique was chosen after

an extensive survey of test design techniques used in the software industry. It was

found that Extended Finite State Machine (EFSM) is a very popular technique for

modeling state-based systems including web-applications, database query systems,

 65

computer communications, industrial control system, etc.[5][11][12] Tools like

TestMaster [1] use EFSM based test models for generation of test cases. EFSM based

test generation is widely used in the telecommunication industry for automatic test

case generation and requirements tracking. Both HOTTest and EFSM based

techniques are functional test design techniques and they have tools to support test

generation. Further, both of these techniques work with behavioral representation of

the system. Therefore, EFSM based test generation lends enough similarity in the

modeling process for comparison.

6.1 The Experiment Design

6.1.1 The Research Question
I n this chapter a formal investigation is carried out to answer the following

research questions:

• Q1- Is the HOTTest based test generation technique comparable in

usability to the model based test generation technique using EFSMs?

• Q2- Is the test suite generated using the test model of HOTTest superior in

performance than the one generated using the EFSM model of the system?

6.1.2 Variables
The independent, controlled and dependent variables for the experiment are as

follows:

• Independent Variable- The independent variable is the test modeling

technique used. The experiment groups used either the HaskellDB

specifications or the EFSMs for modeling the application.

 66

• Controlled Variable- The controlled variable is the knowledge and

experience of the students and it is measured on an ordinal scale.

• Dependent Variable- The dependent variables are performance and

usability indicators of the test design techniques and performance

indicator of the test models. Some of them are direct measures and the

others are calculated using some other direct measures. (See Table 6.1.)

No. Indicator of Dependent Variable Type Symbol

1. Usability Learning Indirect Learn

2. Usability Ease of Learning Indirect Eff

3. Usability Errors Direct EI

4. Usability Satisfaction Direct Sat

5. Usability Ease Direct Ease

6. Performance Effectiveness Indirect EffectP

7. Performance Efficiency of Model Indirect EffP

Table 6.1: Dependent Variables of the Experiment

6.1.3 Measurement Models
The measurement-models used for measuring performance indicators of the models

and usability indicators of the techniques are described below.

6.1.3.1 Usability
Traditionally the measures of usability [3], [9] are defined for software applications

or more specifically for their graphical user-interfaces. This study extends the concept

to the processes of test modeling. The measurement model for usability is based on

the following four main attributes suggested by [9]:

1. Learnability: Learnability is the most fundamental usability attribute.

[9]Learnability is the measure of ease of learning the technique. The higher

 67

the learnability, the easier it is to learn the technique. Therefore, learnability is

defined as:

Effort

Levely ProficienctyLearnabili = .

The Effort for learning is measured by recording the time needed to reach the

Proficiency Level. The Proficiency Level of a user is a relative measure

dependent on the number of errors committed by him/ her for a given task.

2. Efficiency: Efficiency of the technique is a measure of performance of a user

after he/she has achieved a specified level of proficiency[9]. It depicts the

productivity of the technique. The efficiency is measured as:

Effort

 Size SuiteTestEfficiency = .

The size of the test suite can be computed by counting the number of test

cases it has and the effort can be computed by recording the time to develop

the model.

3. Errors: The technique needs to have a low error rate, so that the users commit

fewer errors and the criticality of the errors is low. An error is called a

significant error if it results in generation of a wrong test case or in a missing

test for a requirement. Also an error is said to have a workaround if there

exists methods to eliminate the effect of the error without modifying the

model. Criticalities of errors are evaluated based in accordance to the

following definitions:

a. Level1: A significant error that does not have a workaround.

b. Level2: A significant error which has a workaround.

 68

c. Level3: A non-significant error.

A measure, Error Index, is defined to account for different types of errors.

Error index of an application is a weighted sum of the errors in the

application. Thus the error indices for the two test generation processes are

defined as

Errors 1 Level of No. Errors) 2 Level of (No.*21Errors) Level of No.Index Error ++= (*3

The levels of errors are assigned weights of 3, 2 and 1 respectively. This scale

helps us to derive an aggregate value for the errors for comparison but it might

introduce construct related threats. To mitigate the effect, a comparison of

level 1, level 2 and level 3 errors is also presented in this chapter along with

the aggregate.

4. Satisfaction: This is a subjective measure which describes how pleasant the

technique is for use. Satisfaction is measured on a four point semantic

differential scale: 1- Frustrating, 2-Unpleasant, 3- Likeable and 4- Pleasant.

5. Ease: This is another subjective assessment. The measure shows the difficulty

felt by the user in achieving a task. Similar to satisfaction, this measure is

also measured on a four point semantic differential scale: 4- Very Easy, 3-

Easy, 2-Moderately Difficult, 1-Very Difficult.

6.1.3.2 Performance
The performances of the models are measured using the test suites generated from the

test models by adopting the same coverage scheme. The performance metrics of the

models are thus the same as the performance metrics of the test suites. Two

traditional metrics to measure performances of the test suites are effectiveness and

 69

efficiency.[6], [8], [10] The measurement models for these metrics are defined as

follows:

1. Effectiveness: The effectiveness of the test model is determined by computing

the fraction of the net requirements covered by the test suite generated using

the technique. Thus effectiveness for a test suite is defined as:

nApplicatio the in tsRequiremen of Number Total
Covered tsRequiremen of NumberessEffectiven = .

2. Efficiency: The efficiency of the test suite is the measure that determines the

effectiveness achieved per unit cost of developing the test suite. Thus

efficiency is calculated as

 SuiteTest the Develop to Cost
 SuiteTest the of essEffectivenEfficiency =

The cost to develop the test suite is a function of the time spent in developing

the test model and the time spent in generating the test suites from the test

models. The time spent to generate the test suite from the test models is

negligible in comparison to the time spent in developing the test models. (See

Section 6.6) Thus:

 ModelTest the Develop to Time
 SuiteTest the of essEffectivenEfficiency ≅

Table 6.2 lists all the measurement models used in the experiment.

Aspect Contributor Model

Learnability
Effort

Levely ProficienctyLearnabili = Usability

Efficiency of

tool
Effort

 Size SuiteTestEfficiency =

 70

Error Index Index 3*(No. of Level 1Errors)
 2*(No. of Level 2 Errors)
 No. of Level 1 Errors

Error =
+
+

Effectiveness
nApplicatio the in tsRequiremen of Number Total

Covered tsRequiremen of NumberessEffectiven =Performance

Efficiency
 ModelTest the Develop to Time
 SuiteTest the of essEffectivenEfficiency ≅

Table 6.2: Measurement models used in the experiment

6.1.4 Hypothesis
The general hypothesis of the experiment is that the test suite generated using

HOTTest (T1) is superior in performance than the one generated using EFSMs (T2).

Also, since T1 is based on a formal functional specification of an application, it is

hypothesized that the usability of T2 is higher than usability of T1. As discussed

before, usability is characterized by five main aspects: Learnability(Learn),

Efficiency(Eff), Error Index (EI) ,Satisfaction (Sat) and Ease(Ease) and the

performance of the techniques are characterized by two main aspects: Effectiveness

(EffectP) and efficiency (EffP7). The hypotheses for the individual variables are

defined as follows:

• H0 Learn: There is no difference in learnability of test techniques T1 and

T2. Both techniques require equal effort to learn.

• HA Learn: The difference in learnability of test techniques T1 and T2 is

significant.

7 The efficiency metric of usability, Eff should not be confused with the efficiency metric for
performance, EffP. While, Eff measures how efficient the tool is in producing a test-model, EffP
measures how efficient the technique is in generating a test-suite of certain effectiveness.

 71

• H0 Eff: There is no difference in efficiency of use between the two testing

techniques T1 and T2 .Both techniques require same amount of effort

from the users to produce test models of similar size.

• HA Eff: The difference in efficiency of use for test techniques T1 and T2 is

significant.

• H0 EI: There is no difference between error indices of the two testing

techniques T1 and T2 .Both techniques are equally error prone.

• HA EI: The difference in error index of test techniques T1 and T2 is

significant.

• H0 Ease: There is no difference in ease of use between the two testing

techniques T1 and T2 .Users feel that both techniques are equally easy to

work with.

• HA Ease: The difference between ease of use for test techniques T1 and T2

is significant.

• H0 Sat: There is no difference in level of user satisfaction between the two

testing techniques T1 and T2. Users feel that both techniques are equally

satisfying.

• HA Sat: The difference in user satisfaction for test techniques T1 and T2 is

significant.

• H0 EffectP: There is no difference between effectiveness of the test suites

generated from the test models produced using the two testing techniques

T1 and T2 .Test suites generated by the techniques are equally capable of

uncovering faults.

 72

• HA EffectP: The difference in effectiveness of test suites generated through

test techniques T1 and T2 is significant.

• H0EffP: There is no difference between efficiencies of the test suites

generated from the test models produced using the two testing techniques

T1 and T2 .Test suites generated by the techniques are equally costly in

achieving similar effectiveness.

• HA EffP: The difference in efficiencies of the test suites generated through

the test techniques T1 and T2 is significant.

6.1.5 Design
An in-vitro experiment was designed to answer the research questions described in

section 6.1.1. The experiment was conducted in a class on Software Testing offered at

University of Maryland during Fall 2003.The class was divided into two groups and

there were two rounds of trainings and observations. The experiment design is shown

below in Figure 6.1.

The instrumenta

applications and

Group 1 R H A1 A2 T A3 A4 Q M
Group 2 R T A1 A2 H A3 A4 Q M

R – Randomization
H – Training for HaskellDB specification based test modeling
T – Training for extended finite state machine based testing
Ax – Assignment number x {A1 & A3: Smaller Project; A2& A4:
Larger Project}
Q – Questionnaire on Satisfaction and Ease
M – Measurement and Analysis.
Figure 6.1: The Experiment Design

tion of the experiment consists of requirements documents for the

 log-sheets used for to recording daily progress. Log-sheets were

73

designed in order to record every event of a student’s work session. There were two

rounds of assignments. Each round of assignment had a smaller and a larger project.

A follow-up questionnaire was designed to assess the subjective attributes of

Usability. The measurements on the models and the usability of the techniques were

performed later in order to minimize the internal threats.[5]

6.1.6 Threats to Validity
 The experiment design minimizes the effects of the threats to internal

validity.[5] Biases resulting in differential selection of respondents for the

comparison groups are eliminated through blocking of the effect of the controlled

variable through randomization. The effect of instrumentation is minimized because

the measurements are performed by a single person at the end of the experiment. The

students were monitored through log sheets on their daily performances. This gave us

a chance to observe any effects due to History and Maturation. Post-mortem of the

log sheets gave us no indication of such effects. Data was collected through log-

sheets and self reporting of the data poses another threat to the experiment design.

Log-files were automatically generated by the test design tools that reported the time

and the activity. Computer generated log-files were used to cross check the log-sheets

submitted by the students. Erroneous log sheets were not used for measurements.

Concerning the external validity, the use of students as subjects is a threat.

However, the students are senior level undergraduate students of computer

engineering, computer sciences and electrical engineering, and many of them had

part-time or full time jobs in software companies. (See section 6.2.1) Another threat

to the external validity is the requirement specification used in the experiment. The

 74

size of the application is in the smaller range of the real world problems. The

scalability and other related issues to HOTTest thus remain unanswered at this point.

 The choice of the representative test design technique is an issue for external threats.

EFSM based modeling was chosen as the representative after a comprehensive

survey, which revealed that the techniques is one of the most frequently used tools. It

was found to have the best tool support in all finite-state-machine based test design

tools.

6.2 Experiment Preparation
This section describes the preparation needed to conduct the experiment and the

subjects acting in the experiment.

6.2.1 Subjects
The subjects for the experiment were students of a senior-level undergraduate

course on Software Testing offered at University of Maryland. A total of 28 students

were part of the experiment. The undergraduate students were senior year students

from Computer Engineering (23 out of 28), Computer Sciences (3 out of 28) and

Electrical Engineering (2 out of 28). Table 6.3 provides information on backgrounds

of the students. Almost 30% of the students were working in the software industry as

part-time employees and another 35% had past experiences in the industry. Some

students had significant experiences in software development through their research

work. A few of them had full-time job experiences as developers in software

companies and a few others as Co-ops/ Interns in the software industry. All of them

had extensive programming experiences in the past through various courses and

course projects as part of their curriculum. This means that the students were

 75

experienced and, to some extent, comparable to fresh software engineers in the

industry.

Profile Number of
Students

Full Time Jobs in Software Companies in the Past 2
Internships in Software Companies in the Past 7
Currently, Part-Time Job in Software Companies 6
Currently, Conducting Research in Industry at Present 2
Currently, Conducting Research in School at Present 5
Currently, Involved in Some Research Projects in School at
Present

4

Experience only through Class Projects in the Past 2

Table 6.3: Students’ experience profile

The students were not notified about the experiment to ensure that they do not get

influenced by the knowledge of the experiment. The experiment was presented as a

class project that was mandatory for the course ensuring the necessary motivation.

Preventive steps were taken to ensure that the students had no un-wanted

communications during the course. The experiment served the educational objective

of teaching students a popular finite state machine based test-modeling tool and a

formal software specification language, both required by the course curriculum.

6.2.2 Applications
The experiment needed two database applications of different sizes. The

applications were designed to generate and execute queries on a static database called

PUBS. PUBS is a database created in Microsoft Access with information about

authors and their publications. The database has three tables named authors, titles and

titleauthor. The applications ask the user for search options and generate SQL queries

on the basis of the search options. The smaller application has two possible search

options and the bigger has twelve.

 76

Requirement documents were developed for the applications in natural

language and the applications were implemented in C++. Requirements documents

for the applications were formatted according to the IEEE specification standards. [7]

The requirements were analyzed for defects prior to the experiment by two

independent inspectors. This was necessary because the requirements were assumed

to be correct for the purpose of the experiment. The implementation of the smaller

application had 1KSLOC and that of the larger application had 4.2 KSLOC.

6.2.3 Requirement Parsing
In order to measure requirement coverage and effectiveness of the test models,

the natural language requirements were thoroughly examined and a list of atomic

requirements was produced for the two applications. The list was prepared by an

individual who was unaware of the experiment but was very familiar with the

applications. This step was taken to avoid any bias arising from personal discretion

and the knowledge of the experiment.

The requirements were then classified as general, functional and non-

functional requirements. The functional requirements were further classified as

domain-specific (DSR) and non-domain-specific requirements. The number of atomic

requirements in the two applications is shown in Table 6.4.

 Smaller
Application(A1/A3)

Larger Application
(A2/A4)

General
Requirements

 5 18

Domain
Specific

27 65 Functional
Requirements

Generic 26 66
Non-Functional
Requirements

 2 13

Total 60 162
Table 6.4: Number of Requirements in the Requirements List

 77

6.3 Experiment
The experiment was run for a span of eleven weeks. Using the controlled variable to

get a block design, the students were initially divided into four groups and then

randomized into two groups. A questionnaire with eight questions was used to

explore the students’ experience in functional programming, software testing and

database programming. The questionnaire showed that students had four different

types of backgrounds. Therefore, it was necessary to divide them into these groups

and thereby mitigate the effect of the experience factor from the experiment. After

regrouping each group had 12 students. The schedule of the experiment is shown in

Table 6.5.

 Group 1 Group 2
Day 1
Session 1

Introduction to FSM and Test
Modeling

Introduction to Haskell and
Functional Programming

Day 1
Session 2

Tool Demonstration SQL, Relational DB, Haskell DB
demonstration

Day 8
Session 3

Tool Tutorial
Assignment 1 assigned.

HaskellDB Tutorial
Assignment 1 assigned.

Day 8
Session 4

In Class Tutorial In Class Tutorial

Day 15 Assignment 1 Submitted. Project 1 assigned.
Day 26 Project 1 submitted.
Day 27
Session5

Introduction to Haskell and
Functional Programming

Introduction to FSM and Test
Modeling

Day 28
Session 6

SQL, Relational DB, Haskell DB
demonstration

Tool Demonstration

Day 35
Session 7

HaskellDB Tutorial Tool Tutorial

Day 35
Session 8

In Class Tutorial In Class Tutorial

Day 42 Assignment 2
Day 63 Project 2
Day 77 Questionnaire on Satisfaction and Ease

Table 6.5: Schedule for the experiment

 78

The students were trained before each round of assignments. There were eight

training sessions in all, each of length 1 hr 10 minutes. Apart from the theory

presentations, the sessions consisted of in class assignments and practical

demonstrations of the techniques and the associated tools. Questions were encouraged

during the class but no interactions were allowed among students outside the class.

All questions to the instructor, outside the class were through e-mails or through help

sessions. Events in lecture and the help sessions were recorded and so were the

questions through e-mails. During the 4th and the 8th study sessions, the students were

given in-class assignments and they were trained on how to use the log sheets.

The study sessions 4 and 8 followed up with the application of the technique

on the smaller project. The project was assigned at the end of the sessions and was

due in a week. The students were instructed to work independently and record every

event. The experiment details were recorded on log-sheets. The students recorded the

time taken, nature and the possible cause of any events in the log-sheets. While

designing the log-sheet, it was ensured that it is very easy to fill up and that it is not

ambiguous. This ensured that the extra burden on test design because of the log-

sheets was minimal. Students were strictly instructed to avoid outside-class

communications. There were extra credits for log-sheets which provided them the

necessary motivation. The bigger project was assigned a week after the smaller

project was submitted and was due after three weeks. After each student turned in the

projects and log-sheets, the data was briefly examined for errors and missing

information.

 79

A follow-up questionnaire was sent to the students at the end of the experiment

to assess the subjective measures of usability viz., satisfaction and ease. Test models

were used to generate test cases following the full coverage scheme. Full cover is

similar to the all-path coverage schemes used in structural testing. The choice of the

coverage scheme was important. Different test coverage schemes have different

schemas for test selection. Since full coverage produces an exhaustive set of tests for

the system under test, it could be ensured that the performance measurement is not

affected by test case selection schemas.

6.4 Measurement and Analysis
The dependent variables were measured and analyzed for inferring on the

hypotheses. In the following sections we will address the HOTTest based technique

as T1 and the EFSM based modeling technique as T2. The observation sets used for

measurement are as follows:

1. O1, O3: The observations conducted on the smaller projects (A1 / A3). (See

section 6.1.5) The instruments included logsheets, submitted models/specs,

log of help sessions and log of e-mail interaction with students.

2. O2, O4: The observations conducted on the larger projects. (A2/A4). (See

section 6.1.5) The instruments included logsheets, submitted models/specs,

log of help sessions and log of e-mail interaction with students.

3. O5: The answers to the questionnaire (Q) designed to assess satisfaction and

ease.

4. O1modified, O3modified: The observations conducted on smaller assignments after

minor corrections and elimination of incorrigible models and specs.

 80

5. O2modified, O4modified: The observations conducted on larger projects after minor

corrections and elimination of incorrigible models and specs.

The statistical significance tests were conducted with an α = 0.05. Detailed

results from the statistical analysis are presented in the appendix. Box-plots of the

data sets were created to identify the outliers and to see the overall trend of the

population. For each data-set Kolmogorov Smirnov (K-S) tests are performed to

assess the normality of the data. If the data is normal a dependent t-test is performed

and if the data is not normal, Wilcoxon Signed Rank (W-S) tests are performed to

infer on the null-hypothesis. An effect size8 was then calculated for the test statistic

using the Karl-Pearson Correlation Coefficient(r).

6.4.1 Usability -Learning
The learnability for the techniques was calculated by using O1, O3. The two

parameters of interest for learnability calculations are:

1. Time to learn: The time to learn is calculated by adding the time spent in

training sessions, time spent during the help sessions and the time spent on

study materials. The time spent on study materials was recorded from the log

sheets of the students.

2. Proficiency: In order to measure proficiency, the number of errors committed

by each student was counted. The proficiency for individual students was

then calculated using the following equation:

tany Studenby Committed Errors of Number Maximum
X by Student Committed Errors of NumberX Studenta ofy Proficienc −=1

8 Effect size is an objective measure of the importance of the finding; the higher the effect size the
higher is the importance of the finding. [28]

 81

The learnability was calculated in accordance to the measurement model

specified in section 6.1.3.1 using the two parameters described above. The data

collected for T1 and T2 assignments was analyzed for inferring on the null hypothesis

H0 Learn. The descriptive statistics for the data set are presented in Table 6.6.

 Proficiency Time to
Learn(min.)

Learnability(Learn)

 T1 T2 T1 T2 T1 T2
Number of Data
Points

26 28 26 28 26 28

Mean .8950 .4737 315.5000307.5000.0028 .0015
Std. Deviation .21897 .3115518.5857814.50862.00069 .00100

Table 6.6: A descriptive statistics of learnability data

The number of data points in T1 is 26 as the statistical outliers observed in box-plots

(Figure 6.2 (a)) were not considered for analysis. The mean time to learn for T1 was

2.6% higher than that for T2, but the mean level of proficiency for T1 was higher by

88.94% and it over-shadowed the effect of time on learnability calculations. The

observed learnability of T1 was 86.67% higher than that of T2. As the data was

normal (see Table 15 in Appendix), a dependent t-test was performed for comparing

the means of the two techniques. The results from the t- tests reject the null

hypothesis H0 Learn. This implies that the mean values of learnability differed

significantly.

Further, the effect size of the test statistic using the correlation coefficient is

0.61, signifying that the finding is substantive. Figure 6.2 (a) shows a box-plot of

learnability values for the two test techniques, which shows a marked difference

between learnability of the test techniques. The median values denoted by the

horizontal line in the center of the boxes are significantly different.

 82

Figure 6.2: Box plots of the data for the two test techniques.

6.4.2 Usability-Efficiency
The efficiency aspect of the usability is calculated using O2 and O4. All

students who did not achieve enough proficiency in O1 and O3 were filtered out

while considering the data in O2 and O4 respectively. This was necessary to filter out

the effect of proficiency on the results of efficiency. The two parameters of interest

for efficiency calculations are:

1. Effort: The time to develop the test model was considered as the measure of

effort. This value was directly available from the log-sheets.

2. Size of the Test Suite: The test suites produced from the test models were used

for measuring the size of the test suites. The number of test cases in a test

suite is not a very good indicator of its size because the sizes of different test

 83

cases themselves vary depending on the number of requirements they test for.

Thus a good indicator of the test suite size is the number of atomic

requirements covered by the test models. The parsed requirements-list was

used as a basis for measuring the number of atomic requirements covered by

the test models. The number of test cases in a test suite is a function of the

number of the requirements covered and is directly proportional to it.

The efficiency values for the test generation techniques are calculated using

the above parameters. The descriptive statistics are presented in Table 6.7.

 No. of Requirements
Covered

Time to
Develop(min.)

Efficiency(Eff)

 T1 T2 T1 T2 T1 T2
Number of Data
Points

23 24 22 24 22 24

Mean 117.5217 30.38 568.046 497.46 0.25 0.084
Std. Deviation 3.47549 10.172 252.689 310.962 0.115 0.053

Table 6.7: A descriptive statistics of efficiency data

The number of requirements covered by T1 is 286% higher than the number of

requirements covered by T2 and as the time to develop the model is only 14%

higher, the mean efficiency for T1 is considerably higher(197.62%) than that of T2.

Also, the t-test rejects the null hypothesis H0 Eff, which implies that the means differ

significantly. (See Table 15 in Appendix) The effect size of the test statistic is

calculated to be 0.75 that signifies that the effect of the test is large. [1]Figure 6.2 (b)

shows the box plots for the efficiency of production using the two test design

techniques. T1 is superior to T2 for almost all data points. The median value for T1 is

three times that of T2.

 84

6.4.3 Usability- Error
The direct measure error is counted from O1 and O3. The errors are assigned

criticality on the basis of the rules specified in section 6.1.3.1 and corresponding

error index was calculated. Descriptive statistics for the errors are mentioned in Table

6.8.

 T1 T2
Level 1 2 3 EI 1 2 3 EI
Number
of Data
Points

22 22 22 22 20 20 20 20

Mean .64 .45 .00 2.82 1.25.95 .45 6.10
Std.
Deviation

1.529.739.0005.197.786.510.5102.882

Table 6.8: A descriptive statistics of data on error index

The mean error index for T1 is 116.3% lower than that of T2. The frequencies

of level 1, level 2 and level 3 errors for T1 is uniformly lower than those for T2. The

data is not a part of normal distribution. (See K-S tests in Table 13 in Appendix)

Hence, to test for sufficiency W-S tests [2] are conducted instead of the usual t tests.

The W-S tests’ significance values were 0.004 (p <0.05), implying that the null

hypothesis H0 Ei is rejected. Further, the effect size is calculated to be (- 0.39) which

implies a medium sized effect for the findings. Figure 6.2 (c) shows the box plot of

the error index of the two testing techniques. The median and the upper limit for the

error index of T1 is less than that of T2 and the error indices for T2 are uniformly

higher than that for T1.

6.4.4 Usability- Satisfaction and Ease
The satisfaction and ease aspects of the usability were measured using O5.

Table 6.9 presents a descriptive analysis of the results. The number of data points is

 85

less than 28 because of less number of respondents to the questionnaire. All data sets

pass the normality tests. (K-S significance value >0.05) The test of hypothesis is

conducted using dependent t-tests. The mean satisfaction with T2 is marginally higher

(3.92%) than that with T1. However, the t-test significance levels >0.05 means that

we accept hypotheses H0 Sat. This signifies that the population means do not differ

sufficiently. Further the effect size for the test findings on Satisfaction is 0.06,

signifying a small effect. 0.

 Satisfaction (Sat) Ease(Ease)
 T1 T2 T1 T2
Number of data
points

21 18 21 18

Mean 2.8333 2.9444 2.7381 3.3611
Std. Deviation .99163 .87260 .86051 .58926

Table 6.9: A descriptive statistics of subjective attributes of usability data

The mean value assessment for ease of T2 is 23% higher than T1 and the test

on hypothesis H0 Ease fails, (p <0.05). This implies that the difference in subjective

assessment of ease is significant. The effect size for the t-statistic on Ease is 0.39

signifying a medium sized effect. Figure 6.2 (d) and Figure 6.2 (e) show the box plots

of ease for T1 and T2. There is a significant difference in subjective assessment of

ease for the two techniques, and there is little or no difference in satisfaction

assessment for the two techniques.

6.4.5 Performance-Effectiveness
The performances of the models were evaluated from O1modified, O2modified,

O3modified and O4modified. The test models and specification were corrected for minor

mistakes if there were any. The modifications were mainly to ensure that each of the

models could be used for generating test cases following the full-cover scheme.

 86

Since, effectiveness is independent of the proficiency level of the students, O1 and

O2 could be used for measurement after minor corrections. The average number of

corrections per model is 0.12. The modifications do not affect the measurements as

they did not alter the test suites. The two parameters of interest for effectiveness

calculations are:

1. Total Number of Requirements: The total number of requirements was

computed from the parsed requirements.

2. Number of Requirements Covered: All functional requirements affect the

output of the application. A requirement is said to be verified if at least one

test case checks for the variation in the output from the application due to a

missing requirement or due to a faulty implementation of the requirement. The

total number of requirements covered is computed after examining the test

suite generated from various test models following the full-cover scheme.

Effectiveness of a test model is measured by calculating the fraction of the

requirements covered through the generated test suites. Table 6.10 presents the

descriptive statistics for effectiveness calculations.

 Effectiveness(EffectP)
 T1 T2
Number of Data
Points

45 43

Mean .8668 .1197
Std. Deviation .08440 .1201

Table 6.10: A descriptive statistics of effectiveness data

The mean effectiveness of the test models derived from T1 are 624.14%

superior to those derived from T2. Again, the K-S tests for normality are negative for

the T2 data. So for checking the null hypothesis, H0 EffectP, the Wilcoxon Signed Rank

 87

Test was used. The sig value for the W-S tests <0.05 resulting in rejection of the null

hypothesis H0 EffectP. This signifies that the means of the samples differ significantly.

Also, the effect size for the test statistic was found as -0.87. This implies a very high

effect size and a substantive finding. The box plots of the data show that the

effectiveness values of the two test suites have significant differences. (Figure 6.2 (f))

The lowest value of effectiveness for T1 is greater than the highest value of

effectiveness for T2.

 Effectiveness (EffectPgeneric)
 T1 T2
Number of data
points

45 45

Mean .884 .491
Std. Deviation .0683 .1882

Table 6.11: A descriptive statistics of effectiveness of test suites for generic

requirements

A functional requirement can be further classified as domain specific

requirement or as a generic requirement. A second round of measurement was

conducted considering just the generic requirements. T1 again faired over T2 by

80%(See Table 6.11). The Wilcoxon Signed Rank test rejected the null hypothesis

again, and therefore the means differed significantly. Also, the effect size of the test is

-0.86 signifying a large effect.

6.4.6 Performance- Efficiency
In order to measure the efficiency of the models observations O2modified and

O4modified were used. Unlike in effectiveness measurements, O1 and O3 could not be

used in efficiency measurements because the measure is dependent on time to

develop the test model. Time to develop is a true indicator of effort only when the

 88

user has achieved a specified level of proficiency. The efficiencies were calculated by

measuring the following parameters:

• Effectiveness: Effectiveness was calculated as before. (See section 6.5)

• Time to develop the Test Model: The time to develop the test model or the

time to write the equivalent specification was considered as the measure of

effort. This value was directly available from the log-sheets.

The efficiency for the test model is calculated in accordance to the equation

specified in section 6.1.3.2. using the above parameters. The descriptive statistics are

presented in Table 6.12

 Efficiency (EffP)
 T1 T2
Number of Data
Points

22 24

Mean .0018 .0007
Std. Deviation .00085 .00043

Table 6.12: A descriptive statistics of efficiency data

The mean efficiency for T1 is 157% higher than that of T2. Since the data sets

are parts of a normal distribution, to test for sufficiency t-tests are conducted as

before. The t-test rejects the null hypothesis H0 Eff, which implies that the difference

in means is statistically significant. So it can be said that the efficiency for T1 is

significantly higher than that of T2. The effect size of the test statistic is calculated to

be 0.75, which signifies that the effect of the test is large.[1] Figure 6.2 (g) shows the

box plots for the efficiency in learning for the two test-design techniques. T1 is

superior than T2 for almost all data points. This is true also for the outliers.

 89

6.5 Results and Discussion
A summary of the analysis of the experimental data is listed in Table 6.13.

The analysis of the experimental data as presented in the previous section rejected six

out of seven hypotheses. This implies that differences in traits for the two test

techniques T1 and T2 are significant. Further, the effect sizes for the test statistic are

mostly large, implying that the findings are substantive.

Variable Trait Superior
Technique

Hypothesis
accepted?

Effect Size

Learnability T1 No Large
Efficiency T1 No Large
Error Index T1 No Medium
Satisfaction T2 Yes Small

Usability

Ease T2 No Medium
Effectiveness T1 No Large Performance
Efficiency T1 No Large

Table 6.13: An Overview of the Analysis

It can be inferred from the results that the technique T1 based on Higher-

Ordered-Typed functional specification of the application is superior in effectiveness

to T2 which is based on EFSM based system modeling. There is a gain in

effectiveness by a factor of 7.3, while using T1. Such behavior can be ascribed

mainly to the following reasons:

1. T1 captures a greater number of requirements by including those which are

domain specific.

2. T1 users translate the specification in natural language to another textual

representation. This aids in achieving a systematic abstraction process. The

higher effectiveness observed in case of the generic requirements is an

indicator of the fact that the abstraction process used by the users in HOTTest

is better than that of EFSM based modeling.

 90

3. T1 tool is supported by static type checker of the Haskell type system. This

eliminates many human errors and ensures that the model is a closer

representation of the system.

A similar verdict can be reached, while considering efficiencies of the test

suites. The efficiency of the test suites produced using T1 is 2.6 times higher than that

of the test suites produced using T2. The average time needed to develop HaskellDB

model is higher than the time needed to create test models for EFSM based technique,

but the gain in effectiveness offsets the loss in time.

The subjective assessment of ease was in favor of T2 showing that the

subjects of the experiment like any other programmer of imperative languages had

difficulty in changing the perspective. Only two of the subjects said that T1 is

extremely easy to use. Both subjects had prior experience in coding applications

using ML. ML is a functional language like Haskell and therefore, it was easier for

them to translate the concepts.

Further, the satisfaction measure for the students was in favor of T2 but the

null-hypothesis was accepted. This implied that the differences in the mean were not

significant enough. Even the box plots showed a similar data for both test design

techniques.

The surprising discovery was the fact that for all the objective measures of

usability, T1 performed better than T2. For all such measures the null hypotheses

were rejected showing a significant difference in means. Also, for all such measures

the effect sizes of the test statistics are large showing that the findings are substantial.

This indicates that although the users don’t feel good about using formal functional

 91

specification based modeling techniques, they actually perform better with them.

They learn it better, and they commit errors less frequently. The two possible reasons

for such behavior are:

1. The functional specification method’s strong typed-ness inadvertently forces

the users to concentrate more on the task.

2. The functional specification method has a better error feedback mechanism (in

terms of static type checking) to prevent users from committing recurrent

errors. The strong typed specification language made error tracking easier.

A comparison between first round of assignments (observation sets O1 and

O2) with second round of assignments (observation sets O3 and O4) is presented in

Table 6.14. It is observed that there is a slight increase in the mean values for most

variables but the difference is not statistically significant. This implies that the

students’ knowledge of the system has a minimal effect on the variables of the

experiment.

Descriptive Statistics Comparison of Means(t-test)
Test
Techniqu
e

Variable Round Mean Std.
Deviation

t Df significan
ce

Mean
differenc
e

1 0.8517 .04217
EffectP

2 0.8157 .02455
2.530 21 0.079 0.0360

1 0.0015 .00087
EffP

2 0.0020 .00078
-1.450 20 0.162 -0.0005

1 0.1546 .08124
Eff

2 0.2114 .08042
-1.649 20 0.115 -0.0568

1 0.0025 .00104
Learn

2 0.0030 .00050
-1.339 20 0.195 -0.0005

1 3.8000 6.82805

T1

EI
2 2.0000 3.43776

0.802 20 0.432 1.8000

1 0.2198 .0742
EffectP

2 0.2701 .0847
-1.550 22 0.135 -0.0504

1 0.0006 .0004
EffP

2 0.0007 .0004
-0.717 22 0.481 -0.0001

1 0.0214 .0171

T2

Eff
2 0.0262 .0199

-0.634 22 0.533 -0.0047

 92

1 0.0012 .0009
Learn

2 0.0015 .0009
-0.729 18 0.476

-0.0003

1 6.60 2.797
EI

2 5.60 3.026
0.767 18 0.453 1.00

Table 6.14: Comparison of Performance between first and second rounds of

assignment

6.6 Summary
The experiment presented in this chapter compares HOTTest, a Higher Ordered

Typed Domain Specific Language based test design technique with a test design

technique based on creation of EFSM models for the software. The performance

aspects of the test suites generated using the two techniques were compared along

with the usability aspect of the respective techniques.

The main result from the analysis is that HOTTest provides enhanced

performance of the test suites without any compromise on usability. The important

results from the experiment are:

• Performance of Test Suites: HOTTest can generate test suites that are

more effective and efficient than the test suites generated from the EFSM

based test models. The gain in effectiveness is by a factor of 7.3 and in

efficiency by a factor of 2.6.

• Usability of the Technique: The users feel HOTTest is more difficult to

use than the EFSM based test design tool used in the industry but they

learn it faster and produce more effective models in less time. Further,

while using HOTTest the users commit fewer errors and the errors have a

lower criticality.

 93

6.7 References
[1] A. Field and G. Hole, How to Design and Report Experiments .London, UK:

SAGE Publications, 2003

[2] A. Hughes and D. Grawoig, Statistics: A Foundation for Analysis .Reading,

MA: Addition Wesley Publishing Company, 1971.

[3] B. E. John, “Evaluating Usability Evaluation Techniques,” in ACM

Computing Surveys, [Online] 28 (4es).Available:

 http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a139-john/

[4] C. J. Wang and M. T. Liu, “Generating Test Cases for EFSM with Given

Fault Models,” in Proc. IEEE Infocom, 2, pp. 774-781, 1993.

[5] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental

Designs for Research. Chicago: Rand McNally and Company, 1963.

[6] G. E. Stark, R. C. Durst and T. M. Pelnik, “An Evaluation of Software Testing

Metrics for NASA's Mission Control Center” [Online] MITRE, Available:

http://hometown.aol.com/geshome/ibelieve/sqjsubm2.pdf.

[7] IEEE Guide to Software Requirements Specification, IEEE Standard 830,

1984.

[8] J. K. Chaar, M. J. Halliday, I. S. Bhandari and R. Chillarge, “In-Process

Evaluation of Software Inspection and Test,” in IEEE Transaction on

Software Engineering, Vol 19, No. 11, November, 1993, pp. 1055-1070

[9] J. Nielsen, Usability Engineering .San Diego, CA: Academic Press Inc.,1993.

[10] J. T. Huber, “Efficiency and Effectiveness Measures to Help Guide the

Business of Software Testing”, in Applications of Software Measurement, HP

 94

http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a139-john/
http://hometown.aol.com/geshome/ibelieve/sqjsubm2.pdf

Labs Research Report, 1999, [Online]. Available:

http://www.benchmarkqa.com/PDFs/efficiency_measures.pdf.

[11] P. Savage, S. Walters and M. Stephenson, “ Automated Test

Methodology for Operational Flight Programs,” in Proc. IEEE Aerospace

Conference, vol.4, pp. 293-305, 1997.

[12] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir,

“Test Development For Communication Protocols: Towards Automation,” in

Computer Networks, 31, 1999, pp. 1835-1872.

[13] Test Master User’s Guide, Release 1.9.5, Empirix Inc., New

Hampshire, 1999.

 95

http://www.benchmarkqa.com/PDFs/efficiency_measures.pdf

Chapter 7 Industrial Applicability of HOTTest and
Other Test Generation Tools

Another problem common model based test design techniques face is their

limited ability to scale–up to industry scale problems. A case study was designed in

order to assess the ability of HOTTest to scale up to industrially large and complex

problems. This chapter reports the case study: its design and results.

HOTTest and three other model based test design techniques were used to

generate test cases for an industrial application. The three other techniques that were

selected for comparison with HOTTest(called HOTTest in this study) are as follows:

an Abstract State Machine [6] based test generation technique (called ASML in this

study), an UML based test generation technique [2] (called Archetest in this study)

and an Extended Finite State Machine [8] based test generation technique(called

EFSM in this study). The choice of ASML, Archetest and EFSM was guided by the

fact that these are the most commonly used modeling techniques in the industry.

7.1 Description of the Test Design Tools

7.1.1 Archetest
Archetest [2] is a test generation technique that supports test case generation

from high level use case and domain models captured using UML [5]. The tool for

Archetest is provided as a plug-in to the Rational Rose UML modeling tool [11],

enabling the user to specify use cases precisely. The domain model is a class

diagram, and serves to indicate the domain classes that can be instantiated by the

system. The use cases are formalized to produce a use case specification by adding

five key concepts to standard use cases.

 96

1. Preconditions - these state what must be true in the system for the use case to

be eligible for execution. Preconditions are always written based on domain

model instances.

2. Parameters and partitions - the tool allows the modeler to declare typed

parameters that represent input to the use case from an actor. Parameters may

have partitions associated with them. Partitions are logical values that testers

typically use to think about test data. For example, a password may be valid

or invalid, so those values could be used as partitions for a password

parameter.

3. Test Data - the partitions are associated with physical values that can be used

in actual testing of the system.

4. Results - results are named outcomes of executing the use case. They are

guarded by constraints that indicate under what conditions they occur, and

also have associated update statements that change the state of the system.

5. Execution template mapping - this defines how the use case is realized in

terms of the APIs9 of the implemented system. This allows executable test

scripts to be generated.

9 Application Programming Interface, it is a set of definitions of the ways in which one piece of
computer software communicates with another.

 97

UML Model Test Model

Test Suite

Natural
Language

Specifications

Executable
Code

Use Case
Specification

Development

Modeling using
Commercial

Tool

Test Generation
Using Commercial

Tool

Automatic Process
Manual Process

Figure 7.1: The Test Framework using Archetest

Figure 7.1 represents the test generation framework used in Archetest.

Given an Archetest model, several transformations occur leading to the

generation of test cases. First, fault modeling techniques are applied to determine

interesting test variations to try on a use case by use case basis. Second, integer

programming techniques are used to determine efficient ways to flows through the

system that consist of multiple use cases. Finally, the test cases are generated using a

series of graph traversal techniques. Preliminary studies of the Archetest tool indicate

that it can improve both testing quality and the cost associated with testing [2].

7.1.2 ASMLT
The AsmL Test Generator tool, or short asmlt, is an integrated test generation

environment. It can be used to automatically generate test cases from an AsmL model

using various algorithms, and to use such test cases to perform a conformance test

against an actual implementation. The test generation process in ASMLT can be

divided into following steps:

 98

1) Finding interesting sequences of method calls

2) Finding interesting parameters for each method call

3) Performing a conformance test against an implementation.

4) Sequence Selection

When testing an application, each test sequence consists of a sequence of

method calls. The ASMLT’s approach towards test-case generation is as follows.

First, it generates a finite state machine (FSM) from an AsmL model. The process of

generating FSM from ASM is close to that of typical model checking methods. The

tool fires all possible transitions and based on an abstraction property, abstracts them

into hyper states. The hyperstates are finite in number and thus can form the states of

the FSM. Then ASMLT generate test cases using a Chinese postman tour [7] to

traverse the states of the FSM.

After the method sequences are generated the next step is to generate test data

using the parameter generation feature in ASMLT. There are two ways the parameter

generation feature can be used:

1) By itself. In this case the searched-for "parameters" really are values which

satisfy certain conditions. Such values can be seen as test cases by themselves.

2) Or, as part of the sequence selection to find parameters for each method call

of the test sequence.

Once the test suite is generated and an implementation of the application is available,

one can perform a conformance test using ASMLT.

 99

ASM Model Test Model

Test Suite

Natural
Language

Specifications

Executable
Code

 Test
Specification

Development

Modeling using
Open Source

Tool

Test Generation
Using Open
SourceTool

Automatic Process
Manual Process

Figure 7.2: The Test Framework using ASMLT

7.1.3 EFSM Based Test Generation
An EFSM consists of hierarchically arranged states and transitions between

states. A transition is triggered by an event provided that the enabling condition is

satisfied. Tools based on EFSM test generation provide graphical user interfaces for

creating EFSM models of the system. The user/tester creates a behavioral model of

the system by identifying the states and transitions of the system under test. Each

transition has field like actions, predicates, likelihood etc. that help in establishing the

context of a test scenario. The states are arranged hierarchically allowing the

user/tester to choose an appropriate level of abstraction. Each path (a set of possible

transitions from entry to exit states) in the model such constructed signifies a test case

for the system under test. These tools can generate test cases following user specified

path coverage schemes such as Full Cover, Transition Cover, and Profile Cover etc.

Figure 7.3 depicts the test design framework using EFSM based models.

 100

EFSM Model
of the System

Structural
Representatioin

Test Suite

Natural
Language

Specifications

Executable
Code

Translation using
Commercial Tool

Development

Modeling using
Commercial

Tool

Test Generation
Using Commercial

Tool

Automatic Process
Manual Process

Figure 7.3: The Test Framework using EFSM based modeling

7.2 Design of Case Study

7.2.1 Design of the Measurement Framework
The measurement framework for the case study was designed following the

GQM methodology. Chapter 7 GQM defines a measurement model on three levels:

1. Conceptual level (goal): A goal is defined for an object, for a variety of

reasons, with respect to various models of quality, from various points of

view, and relative to a particular environment.

2. Operational level (question): A set of questions is used to define models of the

object of study and then focuses on that object to characterize the assessment

or achievement of a specific goal.

3. Quantitative level (metric): A set of metrics, based on the models, is

associated with every question in order to answer it in a measurable way.

The purpose of the case study is to characterize HOTTest’s test generation

abilities against similar existing test generation techniques. Therefore at the

conceptual level, the goal is defined as:

 101

Goal: “Analyze HOTTest to characterize it with respect to its test generation ability

from the point of view of the testers (in Industry).”

The purpose of the study is carefully chosen as to characterizing which

implies that the case study will serve to provide the first insight into certain aspects

pertinent to test generation ability of HOTTest. The scope of this study limits us to

generalize the comparison to all possible test generation tools. In absence of the

established benchmarks for test generation, this is the only way to obtain an initial

estimate of the necessary parameters.

7.2.1.1 Questions and Metrics
At the operational level we ask the following questions .

1. How complex is the tool to use?

2. How easy is it to learn the tool?

3. What is the effectiveness of the tool?

4. What is the effort needed for testing of applications?

5. How does the test generation effort scale up with application size?

It is understood that the higher the complexity the lower is the usability of the

tool. A higher complexity will also mean a higher investment on human resources

manifested through higher hiring and training costs. Ease of learning is another vital

issue that governs applicability. Lower Ease of learning implies more difficulty in

educating the testers on the test generation technique. Complexity and Ease of

Learning determines directly the productivity in terms of volume and quality of the

test cases generated. The next two questions help determine the return-on-investment

on installing and using the test generation technique for various application projects.

 102

The effort needed for testing and the effectiveness of the test technique jointly

determine the appropriateness of the technique. The gain in effectiveness should not

be at the cost of heavy increase in effort. Also, the testers in the industry need to

ascertain that the technique scales-up to large applications.

7.2.1.2 The Metrics and the Measurement Models:
At a quantitative level GQM defines metrics. These metrics help answer the

questions asked at the operational level. They also provide the necessary comparative

basis for the techniques under scrutiny. Following are the metrics that are part of this

study:

1. Complexity: Complexity of the test generation process is defined as the

difficulty in using the tool owing to the number of concepts that one needs to

learn in order to produce a correct test model. The concepts include the basic

set of operators, functions, and modeling elements that a user needs to learn in

order to use the tool. The complexity (CPLXForm) is measured using a graph

depicting dependencies between semantic concepts. We call such graphs as

semantic dependency graphs. A semantic dependency graph relates the

various concepts expressing their hierarchical dependencies. The nodes of a

semantic graph can consist of any of the following concepts:

a) Modeling Concepts (nmod): The modeling concepts are the concepts related

to test models. For example for a UML based model these are the concepts

like Use Case Diagrams, Class Diagrams, and Activity Diagrams etc.

b) Linguistic Concepts (nling) : The concepts related to the language of

specification constitute the linguistic concepts. These include the

 103

language related constructs, special functions and operators any user needs

to learn to be able to use the tool. For example in ASML these are the

language constructs supporting abstraction mechanisms.

c) Technique Concepts (ntech) : These are the concepts that relate to the test

generation technique. For example in EFSM based test design techniques

these include constraint related concepts that define the context of any

state.

d) Tool Specific Concepts (ntool) : These are the concepts that should be

learnt in order to use the tool supporting the technique. For example for

Archetest the concepts related to Tofu combinations are tool specific

concepts.

Complexity of any concept is measured on a scale of three (1- Easy, 2-

Moderate and 3- Difficult). The difficulty is decided from the perspective of

the user of the tool. Complexity of any node in a semantic dependency graph

is calculated as follows:

∑ +=
nodes child all

conceptinode CPLXCPLXCPLX [7.1]

This metric indicates the conceptual complexity of the formalism involved for

each of the tools and does not necessarily signify the ease of learning. The

ease of learning is dependent on the conceptual complexity and also on the

quality and amount of support available for the tool for the purpose of

learning. It is possible for tools having similar complexities to differ in their

ease of learning.

 104

2. Ease of learning: Ease of learning indicates the time a user needs to achieve a

specified proficiency-level with the tool. Proficiency is measured by creating

a list of concepts and then by measuring the proficiency that the user achieves

for each such concept. The proficiency is measured on the basis of users’

performance in a pilot project. Proficiency for any individual concept i is

given as

i

i
i N

nprof = , [7.2]

where ni is the total number of correct uses of the concept i by the user in the

model for the pilot project and Ni is the total number of usage instances of the

concept in the model. The proficiency of any user is calculated as

m

prof
PROF

m

i
i∑

== 1 , [7.3]

where m is the total number of concepts used in the model by the user. Ease

of learning is measured in accordance to the following equation:

Learnt
PROFEASE = [7.4]

The time to learn (tLearn) is the time needed for the user to achieve the recorded

proficiency. This includes the time to model and debug the pilot project along

with the time spent during the training. The time can be recorded in minutes.

Ease of learning contributes positively towards usability. A high ease of

learning indicates high usability.

3. Effectiveness: The effectiveness of the test technique is defined as the

techniques’ ability to determine faults. A fault is defined as the inability of an

 105

application to satisfy a requirement. Thus number of faults is equal to the

number of requirements that the application fails to satisfy. Thus effectiveness

in finding faults can be determined by computing the fraction of the net

requirements covered by the test suite generated using the technique. Thus

effectiveness for a test suite is defined as:

 of Requirements Covered
Total Number of Requirements in the Application

Number rEffectiveness
R

= = [7.5]

where r = number of requirements tested by the application and R = net

number of requirements to be tested.

4. Efficiency: Efficiency is a measure of ease of testing a system after a user’s

learning is complete. Efficiency is calculated as

MM

Size of the Testing assignment(Z)
Effort in Testing ()

EFF
T

= [7.6]

The size of the testing assignment can be measured as follows:

 () * *Coverage ComplexitySize of the Testing assignment Z Application Size C C=

 [7.7]

where =Size nApplicatio Size of the system under test in LOC/ FP,

Coverage coefficient of the test model, = Complexity of the

application. The coverage coefficient is measured as in equation 7.5.

=CoverageC ComplexityC

Effort in testing can be measured by summing the time for test

modeling, time for test generation and the time for test execution. Time for

test modeling and time for test generation is a direct measure. Execution time

can be computed by summing the time to setup the execution environment,

 106

the time to run the test cases and the time to verify the results. Execution time

is an indicator for the effort to execute.

MM

M

G

S

X

Effort for testing (T)
 Time to develop the test model(T)

+ Time to generate test cases (T)
+ Time to set up the execution environment(T)

 Time to execute the test cases(T)

=

+

 [7.8]

Efficiency contributes positively towards the usability of the tool. A

high efficiency enhances the usability of the test tool.

5. Scalability: Scalability is defined as the tool’s ability to scale up to large

application. It can be measured as the increase in application size per unit

increase in effort. Therefore, we define scalability as :

()()
()i

i

IncreaseInApplicationSize ZEffortScalability S
IncreaseInEffort T

∆
=

∆
 [7.9]

iT∆ is a component of net effort in testing as is defined in equation

7.8. Thus scalability of the tool with regards to effort in modeling is defined

as:

(()
()M

M

)IncreaseInApplicationSize ZEffortScalability S
IncreaseInEffort T

∆
=

∆
 [7.10]

For this case study, Z∆ is the same for all the test generation tools.

Therefore, for comparison purposes,

1()
()i

i

EffortScalability S
IncreaseInEffort T∆

∼ [7.11]

 107

7.2.2 Case Study Instruments
The subject of the case study was a summer intern working in Software

Testing at the IBM TJ Watson Research Center. The intern had previous formal

training in software testing and he compared in experience to a fresh hire of a

software firm.

The assignment was test generation for a tool called JMYSTIQ (Java - Managing

Your Software To Improve Quality). JMYSTIQ is a tool for the analysis of defect

data from software development and service. It is an essential tool for organizations

using the ODC (Orthogonal Defect Classification)[9] methodology for capturing

defect information.

JMYSTIQ is implemented in java and is a GUI driven tool that generates and

executes SQL queries for a database of defect reports collected during various

phases of software development lifecycle. The dataset that results from the queries is

analyzed to provide valuable insights on most issues facing a development

organization (e.g. product stability, test effectiveness, customer usage, etc.) to drive

actions that would take time-consuming specialist task forces to identify.

In addition to JMYSTIQ, two other applications were modeled using the

techniques by the subject. One is called SSP and the other is called SearchPUBS.

 SSP is a small application for generating queries for the PUBS database. PUBS is a

database created in MS Access with information about authors and their publications.

The database has three tables named authors, titles and titleauthor. The application

generates and executes queries on PUBS. The application asks the user for search

options. The user may opt to search by first or last name of the author, by his city, or

 108

by the title of the book written by the author. If successful, the application returns the

Name of the author(s) and the corresponding publication(s) or else the application

returns a message saying “No such entry”. SSP was modeled by the subject while

learning the tool. SSP was chosen because it is a relational DB based application,

similar to JMYSTIQ.

Search PUBS is also an application based on the database PUBS. It is a VC++

application of size 4.2KSLOC that queries a static relational database called PUBS

for author information. The user can form queries by using 12 search criteria provided

in a dialog based system.

Following are some artifacts that were part of the case study:

1. JMYSTIQ Product Description (A1): The artifact number A1 was a set of

documents that described the product characteristics of JMYSTIQ. It listed the

functionalities that JMYSTIQ needed to satisfy and also presented screenshots

and essential directives for the users.

2. JMYSTIQ Requirements Documents (A2) : A natural language

specification is a description of JMYSTIQ’s functional and non functional

requirements specified in accordance to the IEEE format [4]. This is called A2

in this case study and was the sole basis for creating the test models using the

tools. A2 was prepared by the subject of the case study from A1 under the

supervision of an ODC expert.

3. Parsed Requirement List (A3): A parsed requirement list is a list that

contains requirements decomposed to their lowest level. These are the

requirements that do not subsume or are composed of other requirements. The

 109

parsed requirement list is prepared by an ODC expert on the basis of A2. The

requirements were further classified as domain specific and generic

requirements to help classify the results.

7.2.3 Case Study: Process
The subject of the case study learnt the tools and generated tests for

JMYSTIQ. The first step in the case study was study of JMYSTIQ. The subject was

trained on ODC and was made to develop the natural language specification (artifact

A2) for JMYSTIQ from artifact A1.

The next step was learning of the test technique T0 by the subject. Learning of

the tools was accomplished using SSP. Learning of the tools was accomplished

through the technical manuals and the user support documents available for the tool.

A log was maintained in order to record the learning time and also to document any

special observations during the learning phase. After perusal of the documents, the

respective test generation tools were applied on SSP. The results of test generation on

the small tool were used to evaluate the proficiency achieved in each tool by the

subject. The proficiency of the subject was assessed by an expert tester and who was

otherwise not involved directly in the case study. Modeling of JMYSTIQ in T0

immediately followed the learning phase. Similar to the learning phase a log was

maintained for recording the time and any special observations made by the subject

during the modeling process.

Similar steps were repeated for T1, T2 and T3.

In order to study Scalability, after completion of the modeling process for

JMYSTIQ, the subject modeled the application Search Pubs.

 110

Test cases were derived independently for JMYSTIQ and SearchPUBS using

each test generation tool. The test suite and results of the test execution were recorded

and were later analyzed. The test suites were assessed against the parsed requirements

list (A3) prepared independently. The execution time and the test generation times for

each model were recorded. The test results were also analyzed.

The final step in the case study was that of measurement and analysis. The

data recorded during the test modeling phase, the test generation phase and the test

execution phase were compiled for the four techniques and were analyzed. Figure 7.4

shows the outline of the case study.

 111

Software Requirement
Specification for JMYSTIQ

A2

 Detailed Analysis
and Requirement
Elicitation by an

ODC expert

JMYSTIQ product
description +informal

requirments list
A1

Test Suite TS0 Test Suite TS1 Test Suite TS2 Test Suite TS3

Test Model
TM0

Test Model
TM1

Test Model
TM2

Test Model
TM3

Parsed
Requirement List

A3

Modeling Time
T0M

Modeling Time
T1M

Modeling Time
T2M

Modeling Time
T3M

Study of
JMYSTIQ

Measurement And Analysis

Learning of
T0

Modeling
using T0

Learning of
T1

Modeling
using T1

Learning of
T2

Modeling
using T2

Learning of
T3

Modeling
using T3

Modeling of
SearchPUBS

Document

Case Study Activity

Time Log

Test Model

Legend

Input to the Activity

Output from the Activity

Flow of Activity

Figure 7.4: Different phases of the case study

7.2.4 Threats to Validity
Internal validity refers specifically to whether an experimental

treatment/condition makes a difference or not, and whether there is sufficient

 112

evidence to support the claim. [3] Possible threats to internal validity are identified in

[3] as:

• History—History refers to the specific events which occur between the first

and second measurement and that may affect the outcomes.

• Maturation—Maturation indicates the processes within subjects which act as

a function of the passage of time.(e.g. hunger, aging, etc)

• Testing—Testing refers to the effects of taking a test prior to the experiment

on the outcomes of the measurement.

• Experimental Mortality – Experimental Mortality refer to the loss of

subjects during the experiment.

• Instrumentation—Instrumentation refers to the changes in the instrument,

observers, or scorers which may produce changes in outcomes.

Since the case study was not conducted in a controlled environment, there was

no threat because of History and Maturation. [3]The effect of Testing was reduced by

isolating the study of the system from the study of the test design tools. The test of

proficiency for each tool, prior to modeling of JMYSTIQ ascertained that the

measurement results were not biased because of the continuous learning of the

subject. The analysis and measurements were performed after completion of the

modeling process and this was to ensure that there is no threat due to Instrumentation

on the results.

The subject was asked to develop a natural language specification of the

requirements of the application to be tested prior to the development of the test

model. This ensured that the subject had reached the asymptotic level of the system’s

 113

natural learning curve before modeling the application. A single subject ensured

minimal variation in the measurement due to personal bias and abilities. A major

threat to validity was Experimental Mortality [3]. However, the whole time span of

the experiment was about four months which is manageably small. Further, the

subject was naturally motivated because the study was part of his summer project

requirements.

7.3 Case Study Results

7.3.1 Complexity of the Modeling Process
For calculating the complexity of the modeling process the concepts for each

tool were enumerated first. Table 7.1 lists the basic concepts needed in each modeling

technique. As is seen in the table, the number of concepts in HaskellDB is the least.

This is because HaskellDB is a domain specific language and the concepts in

HaskellDB are limited and designed to be sufficient for the domain of database

application.

HOTTest ArcheTest ASMLT EFSM
Concepts Prof Concepts Prof Concepts Prof. Concepts Prof.
Function 0.9 prologue 0.9 state variables 1 states 1
polymorphic types 1 epilogue 1 stopping conditions 0.9 models 0.8
user defined types 0.9 consistency 1 update procedures 0.9 randomizations 0.2
basic types 1 activity mirroring 1 partial updates 0.9 type 0.9
Records 1 parameter partitioning 0.9 Methods 1 array i/o 0.2
Sequential flow 1 tofu combinations 1 Values 0.9 scope 0.2
juxtaposition 1 result definitions 1 Constraints 0.9 initialization 0.3
composition 1 context updates 1 Variables 1 IMCF 0.2
Recursion 0.8 execution templates 1 condition loops 1 table models 0.3
pattern matching 0.95 test data 1 Sets 0.9 context 0.3
case constructs 1 inheritance 0.9 Variables 1 events 1
If 1 inclusion 0.9 Constants 1 action 0.5
lists comprehensions 0.9 extension 0.9 Hyperstates 0.8 predicate 0.3
Relations 0.9 actors 1 Abstraction 1 argument 0.5
Attributes 0.8 associations 1 FSM generator 0.9 parameters 0.4
expressions 1 activity diagrams 1 Types 0.8 constraints 0.3
Query 0.9 classes 1 Instantiation 0.8 likelihood 0.5

 114

Restrict 0.9 Sequences 1 path constraints 0.2
Project 0.95 Maps 0.9 "@ constraints" 0.2
set operators 1 non-determinism 1 test info 0.5
logical operators 1 Enumerations 0.9 test file set up 0.3
boolean connectors 1 Classes 0.9 shallow paths 0.5
 parameter generation 1 deep paths 0.5
 coverage scheme 0.5
Total # of Concepts 22 17 23 24

Table 7.1: List of Concepts for the tools

As discussed in section 7.2.1.2 the complexity of the test design tools is calculated

using semantic dependency graphs. The semantic dependency graphs are constructed

by relating the concepts through their hierarchical dependency. For instance in order

to learn Archetest one needs to know certain UML concepts and certain concepts

related to use case specifications. (Figure 7.7)

For calculating complexities we define two perspectives for each of the tools.

1. Perspective of a Novice: A novice is a person who is not familiar with any

concepts related to the tool but is familiar with basic principles of test

generation.

2. Perspective of an Expert: An expert is a person who is well versed with the

underlying modeling principles (ASM for ASMLT, UML for Archetest,

Haskell for HOTTest, and FSMs for EFSM) and who has past experience in

design of test cases.

The complexities of the individual concepts are assessed using these

perspectives. The complexity assignments for individual concepts are done during the

measurement. The complexities for the nodes are assigned in accordance to the

following guidelines:

 115

1. A concept is assigned a complexity value of 3 if it is likely that the user has no

prior experience with the concept.

2. A concept is assigned a complexity value of 2 if it is likely that the user has

some experience with the concept or with a related concept.

3. A concept is assigned a complexity value of 1 if it is likely that the user has

working experience with the concept or with a related concept.

The semantic dependency graphs for all the three tools are depicted in Figures

7.5 -7.12. We depict the dependency graphs along with the respective calculations.

The complexities of the nodes have been calculated using equation 7.1. The

complexity of the topmost node in the graph is the complexity of the test generation

technique.

HaskellDB
68

Haskell Concepts
37

DB concepts
31

Function
2

types
11

flows
11

conditional
constructs

7

polymorphic
types

2

user defined
types

3

basic types
1

sequential
1

juxtaposition
1

composition
3

lists
5

pattern
matcing

2

if
1

case
constructs

1

comprehensions
2

recursion
3

embedded types
17

operators
11

relations
3

attributes
3

expressions
3

query
3

restrict
3

project
3

set oprators
1

logical
operators

1

boolean
connectors

1

records
3

Figure 7.5 Semantic Dependency Graph for HOTTest- Novice’s Perspective

 116

HaskellDB
36

Haskell Concepts
20

DB concepts
15

Function
1

types
7

flows
5

conditional
constructs

4

polymorphic
types

1

user defined
types

1

basic types
1

sequential
1

juxtaposition
1

composition
1

lists
2

pattern
matcing

1

if
1

case
constructs

1

comprehensions
1

recursion
1

embedded types
8

operators
6

relations
1

attributes
1

expressions
1

query
1

restrict
1

project
1

set oprators
1

logical
operators

1

boolean
connectors

1

records
3

 Figure 7.6 Semantic Dependency Graph for HOTTest- Expert’s Perspective

 117

archetest
64

Tool
Concepts

26

UML
concepts

37

classes
12

use cases
23

activivity diagrams
2

actors
12

associations
10

inheritance
3

inclusion
3

extends
3

prologue
1

epilogue
1

use case specs
21

consistency
1

activity
mirroring

1

parameter
5

context
4

result
5

execution
template

4
test data

2

partitioning
2

Tofu combinations
2

result
definition

2
context updates

2

Figure 7.7 Semantic Dependency Graph for Archetest- Novice’s Perspective

 118

archetest
33

Tool
Concepts

17

UML
concepts

15

classes
4

use cases
9

activivity diagrams
1

actors
4

associations
4

inheritance
1

inclusion
1

extends
1

prologue
1

epilogue
1

use case specs
12

consistency
1

activity
mirroring

1

parameter
3

context
2

result
3

execution
template

2
test data

1

partitioning
1

Tofu combinations
1

result
definition

1
context updates

1

Figure 7.8 Semantic Dependency Graph for Archetest- Expert’s Perspective

 119

ASMLT
68

ASML
Concepts

44

Tool
Concepts

21

state
Varaibles

3

stopping
conditions

3

update
procedures

3

partial
updates

3

methods
3

values
3

constraints
3

constants
1

variables
1

classes
3

structured values
2

sets
3

sequences
3

maps
3

non-determinism
3

enumerations
2

condition
loops

1

FSM generator
10

Parameter
Generator

8

HyperStates
3

Abstraction
6

Properties
3

Types
3

instantiation
2

Figure 7.9 Semantic Dependency Graph for ASML- Novice’s Perspective

 120

ASMLT
28

ASML
Concepts

19

Tool
Concepts

8

state
Varaibles

1

stopping
conditions

1

update
procedures

1

partial
updates

1

methods
1

values
1

constraints
1

variables
1

constants
1

classes
1

structured values
1

sets
1

sequences
1

maps
1

non-determinism
1

enumerations
1

condition
loops

1

FSM generator
4

Parameter
Generator

3

HyperStates
1

Abstraction
2

Properties
1

Types
1

instantiation
1

Figure 7.10 Semantic Dependency Graph for ASML- Expert’s Perspective

 121

EFSM
79

Modeling Concepts
50

Global Controls
9

Test Set Up
19

States
1

Models
3

Transitions
23

Variables
16

Table Models
3

Context
1

Events
1

Action
3

Argument
3

Parameters
3

Constraint
3

Predicate
3

Likelihood
3

Path Constraints
3

@ constraints
3

Scope
3

Initialization
1

Randomization
3

Type
3

Test Info
3

Coverage
Scheme

3

Test File Set Up
3

Deep Paths
2

Shallow Paths
2

IMCF
3

Array I/O
3

Figure 7.11 Semantic Dependency Graph for EFSM- Novice’s Perspective

EFSM
38

Modeling Concepts
22

Global Controls
7

Test Set Up
8

States
1

Models
1

Transitions
9

Variables
6

Table Models
1

Context
1

Events
1

Action
1

Argument
1

Parameters
1

Constraint
1

Predicate
1

Likelihood
1

Path Constraints
3

@ constraints
3

Scope
1

Initialization
1

Randomization
1

Type
1

Test Info
1

Coverage
Scheme

1

Test File Set Up
3

Deep Paths
1

Shallow Paths
1

IMCF
3

Array I/O
1

Figure 7.12 Semantic Dependency Graph for EFSM- Expert’s Perspective

 122

 Figure 7.13 presents a comparison of the complexities of the tools from the

two different perspectives.

0

10

20

30

40

50

60

70

80

90

Novice Expert

Perspective

C
om

pl
ex

ity ASML
Archtest
HOTTest
EFSM

Figure 7.13: Comparative analysis of complexity of the tools

The complexity of the EFSM based tool is the maximum for both the

perspectives (novice and expert). But for the other three tools the complexity of

formalism are very similar to each other. This observation is interesting because this

may imply that there is a threshold value for the complexity which any test generation

tool must satisfy. The complexity measure is an indicator of how difficult it is to

understand the modeling process for any person and therefore it can be inferred from

the observations that if the tools’ provide the same quality and quantity of support

(for learning), they will need the equal effort for learning for users.

 123

7.3.2 Ease of Learning
The ease of learning is calculated on the basis of the proficiency and the time

to learn. The learning data was recorded on SSP. A list of concepts involved in each

technique was prepared and proficiency of the user was measured on each such

concept. The proficiency was measured using the equation number 7.2 as described in

section 7.2.1.2 and the learning time was measured from the data logged during the

recording phase. Table 7.1 logs the proficiency achieved by the subject in individual

concepts of the test tools. Table 7.2 lists the measurements of the proficiency and the

learning time. The measure for learnability is calculated using equation 7.4. Table 7.2

depicts the learnability values for the three techniques normalized to1.

 Total Learning Time Learning Sessions Modeling of Pilot Proficiency Learnability Learnability Normalized
Archestest 14:44:00 3:56:00 10:48:00 0.9698413 1.5798319 0.912329844
ASML 22:21:00 13:18:00 9:03:00 0.9318182 1.0006101 0.57783772
HOTTest 13:10:00 5:00:00 8:10:00 0.95 1.7316456 1
EFSM 8:21:00 5:00:00 3:21:00 0.4428571 1.2728828 0.735071211

Table 7.2: Learnability Data for the tools

 Figure 7.14 presents a comparison of the proficiencies achieved by the users while

using the three test generation tools.

 124

Proficiency Obtained in the Tools

0.74

0.48

0.67
0.82

0.97 0.93 0.95

0.44

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Archetest ASML HOTTest EFSM

Fraction of Concepts Used
Absolute Proficiency

Figure 7.14: Comparative plots of the absolute proficiencies attained by the users

The user could achieve a proficiency of 0.97 with Archetest, 0.95 with

HOTTest, 0.93 with ASML and only 0.44 with EFSM. The fraction of the total

number of concepts used in the model is also depicted in the graph. This may give an

indication of the sample models’ ability to judge the proficiency of the user. Since,

there was just one application used for studying learnability, the fraction of concepts

used in the process is low for all the tools.

The learning time for the user is calculated by summing the time spent during

the learning sessions and the time spent in developing the model. Figure 7.15 depicts

a comparative plot of the learning times for the test generation tools. It also depicts

the break-up of the learning times into times spent in learning sessions and the time

spent in modeling the pilot. In Figure 7.16 a comparative plot of the learnability

normalized to 1 is presented.

 125

14:44

22:21

13:10

8:21

0:00

2:24

4:48

7:12

9:36

12:00

14:24

16:48

19:12

21:36

0:00

Archestest ASML HOTTest EFSM

Total Learning Time
Time in Learning Sessions
Time in modeling of pilot

Figure 7.15: A comparative plot of the learning time

Normalized Learnability

0.91

0.58

1.00

0.74

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Archetest ASML HOTTest EFSM

Normalized Learnability

Figure 7.16: A comparative plot of the normalized values of learnability

 126

The time to learn for ASML is 22 hours and 21 minutes whereas that for

EFSM models in 8hrs and 21 minutes. The learning time for HOTTest is less than

that of ASML but higher than that of EFSM. This is probably because the support

materials available for the EFSM based test generator are more developed than the

other tools. Also, the modeling of systems using finite states is intuitively more

appealing to imperative programmers.

The learnability however, is the highest for HOTTest. This is primarily

because the gain in absolute proficiency offsets the loss in time.

7.3.3 Effectiveness
The effectiveness values for the test generation techniques are calculated

using equation 7.5. The coverage attained by the test models is measured using the

parsed requirement list (artifact A3). It is computed by calculating the fraction of

requirements in A3 covered by the test suites. The net number of atomic requirements

in A3 for JMYSTIQ was counted to be R (=1260). Total number of requirements

covered by the test models is depicted in the column with heading r. The number of

requirements covered by any test model is calculated by examining the respective test

suites generated using the technique (following maximum allowed coverage) and then

by identifying the requirements tested by the test suite. A requirement is said to be

tested by the test suite, if there are test cases in the test suite that would fail if that

particular requirement is not satisfied by the application.

Each requirement in A3 was later tagged as domain specific or generic

requirement by a domain expert. A domain specific requirement was identified when

the requirement was a requirement specific to the domain of relational-database-

 127

applications. The total number of requirements in A3 was 1260 (R) out of which 602

(D) were identified to be specific to the domain of database applications. 210 of the

602 net domain specific requirements were not explicitly mentioned in the original

requirements document (A2). Some of the 210 implicit requirements were identified

by the expert; others were identified while testing with HOTTest. The number of

requirements covered using the test techniques (r) and the number of domain specific

requirements covered using the technique (d) along with the calculated values of

effectiveness of techniques is presented below in Table 7.3

Measures→
R r D d Effectiveness

(%)
Domain Specific Effectiveness
(%)

HOTTest 1260 1216 602 577 96.51 95.85
ASMLT 1260 965 602 307 76.59 51.00
Archetest 1260 1050 602 392 83.33 65.12

Te
ch

ni
q

ue

EFSM 1260 843 602 185 66.90 30.73
Table 7.3: Effectiveness and Domain-specific effectiveness calculations

The test model in HOTTest captures the most number of requirements (1216)

while that in EFSM captures the least number of requirements (843). HOTTest has an

effectiveness of 96.51% and a domain specific effectiveness of 95.85%. The other

techniques have a fair value for generic effectiveness but they fail to perform likewise

for domain specific effectiveness. Figure 7.17 makes a comparative plot of the

effectiveness values for various techniques.

 128

0

20

40

60

80

100

120

Effectiveness Domain Specific Effectiveness

Pe
rc

en
t (

%
) HOTTest

ASML
Archetest
EFSM

Figure 7.17: Comparative plots of effectiveness values

7.3.4 Efficiency
To calculate efficiency we first need to compute the effort needed in testing

using the test generation techniques. The net effort in testing is calculated using

equation 7.8 in the measurement model specified in the section 7.2.1.2. Table 7.4

presents the data for effort calculations.

 TM(mins) TG(mins) TS(mins) TX(mins) N TMM(mins)
Archetest10 1554.00 -- -- -- -- --
ASML 1356.00 1584.00 1822.00 1309.73 4180 6071.73
EFSM 3030.00 73.00 132.00 1322.89 4222 4557.89
HOTTest 1093.00 83.00 140.00 2052.96 6552 3368.96

Table 7.4: The data for testing effort

The time to model TM for HOTTest is the least at 1093 minutes and that for

EFSM is the most at 3030 minutes. The difference arises mainly due to the fact that

modeling in HOTTest requires translation of information from one textual form to

another whereas there is a translation into EFSM concepts. The latter demands good

10 Because of some technical difficulties, access to Archetest was not available for test case generation
and execution.

 129

abstraction skills from the modeler. For the same reason the time to model for ASML

is comparatively low. However, since the ASM compiler is inefficient, the gain in

modeling time is compromised.

The time to generate test cases from the test model TG is enormously high for

ASML. In fact, it was impossible to generate an exhaustive set of test cases from the

ASML model without the abstraction rules. This is because the state space for the

ASML model is huge and the algorithm for test case generation is still primitive

(Chinese Postman Algorithm). TGs for the other tools are comparable. It should be

less for Archetest that uses innovative, path generation algorithms based on AI

planning.

The time for setting up the test environment TS, includes the time to set up the

test harness (Rational XDE tester[10]) and the time to derive the test scripts from the

test cases. EFSM and HOTTest have the capabilities of producing test scripts directly

from the test model, but the tester needs to map the execution sequence of the

application to a sequence of states and transitions. This process is error- prone and

contributes heavily towards the test set-up time. The test cases produced by ASML

are abstract and the process of translating a test case to a test script is a complete

manual process. Therefore, the time to set-up for ASML is the most. Archetest

directly produces test script for the test harness and therefore TS for Archetest should

be less than other tools.

N is the number of test cases in the test suite produced from the model

following the full coverage scheme. The number of test cases produced with

HOTTest is much higher than any of the other test generation tools. This is because

 130

HOTTest generates an extra test case for every domain specific requirement. The

time to execute TX is proportional to the number of test cases generated. Therefore, TX

is highest for HOTTest. This is a compromise one has to do in order to achieve higher

test coverage.

The net effort in testing TMM is calculated using equation 7.8. The net effort is

highest for ASML primarily due to huge generation and set-up times. The net effort

for EFSM is also high because of a huge modeling time. Archetest requires the least

effort in testing and is followed by HOTTest. A comparative plot of the effort

calculations is presented in Figure 7.18 for the tools.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

TM TG TS TX TMM

Time Components

m
in

ut
es

ASML
Archetest
EFSM
HOTTest

Figure 7.18: A comparative plot of the net effort and its contributors

Efficiency of the tools is calculated using equation 7.6. The coverage attained

by the test models is measured using the parsed requirement list (artifact A3) and is

discussed in section 7.3.3. Since, for each of the test models the application was the

 131

same (that being JMYSTIQ), therefore we don’t evaluate the CComplexity*Application

Size. This factor eventually cancels out when we do a comparative analysis. Table 7.5

presents the results of the efficiency calculations.

 R R TMM Coverage Efficiency Normalized Efficiency
ASML 1260 965 6071.73 76.59 0.013 39.90

Archetest 1260 1050 -- 83.33 -- --
EFSM 1260 843 4557.89 66.90 0.015 46.43

HOTTest 1260 1216 3368.96 96.51 0.029 90.61
Table 7.5: Efficiency measurements

Efficiency measurements were normalized to 100 to allow better comparisons.

A comparative plot for the normalized efficiency values for the test generation

techniques is presented in Figure 7.19.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Normalized Efficiency

ASML
EFSM
HOTTest

Figure 7.19: A Comparative Plot of Efficiency Calculations

7.3.5 Scalability
As mentioned before, scalability for the tools was measured by measuring

effort on two applications, viz. JMYSTIQ and SearchPUBS. The effort data for

 132

JMYSTIQ is presented in section 7.3.4. The measure of effort contributors and the net

effort in the modeling of SearchPUBS are presented below in Table 7.6

 TM TG TS TX N TMM
ASML 546 17.00 95.00 23.50 75 681.50
Archetest 518 2.00 15.00 10.03 32 545.03
EFSM 201 0.70 45.00 6.89 22 253.59
HOTTest 490 12.00 50.00 26.63 85 578.63

Table 7.6: The data for testing effort for SearchPUBS

Scalability of effort is calculated for various contributors of the test effort in

accordance to equation 7.8. Scalability values were normalized to 100 to allow a

better comparison. Table 7.7 presents the scalability measures for the various tools for

different effort contributors and the net effort.

 Absolute Scalability Scalability normalized to 100

 SM SG SS SX SMM SM SG SS SX SMM

ASML
1.23E-

03
6.38E-

04
5.79E-

04
7.77E-

04
1.86E-

04 74.44 4.53 5.04 100.00 51.77

Archetest
9.65E-

04 -- -- -- -- 58.20 -- -- -- --

EFSM
3.53E-

04
1.38E-

02
1.15E-

02
7.60E-

04
2.32E-

04 21.31 98.20 100.00 97.74 64.83

HOTTest
1.66E-

03
1.41E-

02
1.11E-

02
4.94E-

04
3.58E-

04 100.00 100.00 96.67 63.48 100.00

Table 7.7: Absolute and Normalized Scalability Values for the Tools

The scalability for modeling time for HOTTest was the highest followed by

that of ASML. The scalability value of modeling for EFSM is the least. This indicates

that with increase in size of the system under test, it becomes increasingly easier to

describe functionalities in a textual representation rather than using some abstract

concept.

Due to some technical difficulties Archetest was not available for most scalability

studies. It is expected that Archetest will have good scalability with respect to the

 133

time to generate test cases, the time to set up the test environment and the time to

execute the test cases.

The scalability for EFSM and HOTTest with regards to the time to generate

test cases is comparably close. However, the scalability for the time to generate is

much lower for ASML. This is probably due to the fact that the state space for the

finite state machine structure used by ASML for test generation soon becomes

unmanageable with increase in size of the system under test.

The scalability values for the test set up time show trends similar to the values

for test generation time. The very low scalability for ASML is ascribed to the fact that

there is no mechanism to generate test scripts automatically from the test case

directives generated using ASML.

The scalability with regards to the execution time is the lowest for HOTTest.

This is probably due to the fact that the number of test cases generated in HOTTest

increases faster with the size of the system than the other techniques. With increasing

number of test cases the execution time suffers.

The scalability for HOTTest with regards to the net effort is the highest

followed by EFSM. The weakness in scalability value of ASML is contributed by its

weak scalability of the effort to generate test cases and of the effort to set up the test

environment. Figure 7.20 presents a comparative plot of the normalized scalability

values for the four test generation techniques.

 134

0.00

20.00

40.00

60.00

80.00

100.00

120.00

TM TG TS TX TMM

Time Components

ASML
Archetest
EFSM
HOTTest

Figure 7.20: Comparative Plots of Normalized Scalability

7.4 Analysis of the Results
A summary of measurements for the metrics selected at the quantitative level of

the GQM (see section 7.2.1.2) is presented in Table 7.8.

Metric Corresponding
Question HOTTest ASML Archetest EFSM

Complexity of
Technique (Novice) Q1 68 68 64 79

Complexity of
Technique (Expert) Q1 36 28 33 38

Ease of Learning Q2 1.00 0.57 0.91 0.73
Effectiveness Q3 96.51 76.59 83.33 66.90
Efficiency Q4 90.61 39.90 100.00 46.43
Scalability Q5 74.94 38.74 100.00 48.58

Table 7.8: Summary of Measurement Results.

It can be seen from Table 7.8, that except EFSM the complexities of all the

test generation tools are comparably close from both the perspectives (Novices and

Experts). This implies that the tools are equally hard or equally easy to use, once the

learning is complete. The complexity of EFSM is higher than the others because the

technique provides too many concepts to master with regards to test generation

 135

related concepts. While, these concepts should make test specifications more

effective, they easily can add complexity to the technique.

As for the ease of learning of tools, HOTTest is easier to learn than the other

techniques. The subject learnt it better, and committed errors less frequently. The

proficiency evaluation was done on SSP. The subject committed most errors in

ASML. This is probably because of the poor error feedback provided by ASML. This

is also reflected in the highest debugging time for ASML in the modeling of SSP.

(401 minutes for ASML compared to 75 minutes for EFSM, 121 minutes for

Archetest and 32 minutes for HOTTest). For both Archetest and EFSM the

debugging time is lower, because they provide better error feedback and tracking. For

HOTTest the static type checker helps commit fewer errors and aids in error tracking.

Effectiveness of HOTTest is highest because it captures the implicit

requirements along with the ones explicitly stated in requirements document (A2).

Also the number of domain specific requirements tested using HOTTest is higher

than any other technique. This was expected because HOTTest automatically embeds

additional test cases to capture for requirements that were not explicitly mentioned in

the original requirements document (Artifact A2). None of the other techniques were

capable of testing the implicit domain specific requirements. While Archetest was

able to capture all 392 of the domain specific requirements explicitly mentioned in

A2, ASML could capture only 307 of them. (See Table 7.3) ASML could not capture

all the explicit domain specific requirements, because of the stringent abstraction

properties without which test case generation was impossible. EFSM covered least

number of domain specific requirements (185) primarily because the subject could

 136

not embed the requirements in an EFSM whose state space was unmanageably large.

The domain specific requirements missed by various test generation techniques were

classified further as shown in Table 7.9. The table shows the net number of

requirements that are missing and classifies the missed requirements into the

requirements related to DbConnection, Missing Fields, Wrong Types, Security and

Constraints. (See Chapter 3).

Technique Missing Db Connection Missing Fields Wrong Types Security Constraints
HOTTest 25 0.00 72.00 28.00 0.00 0.00
ASML 295 1.69 59.66 38.64 0.00 0.00
Archetest 210 1.43 57.14 41.43 0.00 0.00
EFSM 417 44.60 32.61 22.78 0.00 0.00

Table 7.9: Classification of the domain specific requirements missed by the

techniques

HOTTest, however, could capture only 639 generic requirements out of a total

of 658 requirements for the application. This inability was mainly due to the

restrained expressive power of HaskellDB which resulted in inability to capture the

functionalities related to date and system time. All the other test generation

techniques were capable of capturing all 658 generic requirements.

The most efficient tool for test generation purposes was observed to be

HOTTest at 90.61. As is discussed during the effort calculations cited in section 7.3.4,

HOTTest however, has a very poor execution time. This is due to the huge number of

redundant test cases that HOTTest generates. It should be noted that the time to

execute and the time to generate the test cases are pure machine times and they don’t

need any manual effort. If we count only the manual effort to be the effort in testing

then we get modified values of efficiency, as is depicted in Table 7.10

 137

 TM (mins) TS (mins) Modified TMM
(mins)

Coverage
(%) Efficiency Normalized

Efficiency (%)
ASML 1356.00 1822.00 3178.00 76.59 0.024 30.79
EFSM 3030.00 132.00 3162.00 66.90 0.021 27.03
HOTTest 1093.00 140.00 1233.00 96.51 0.078 100.00

Table 7.10: Efficiency Calculations considering only the Contributions of Manual

Effort

Efficiency values clearly depict the advantage HOTTest has over the other

tools in terms of the modeling time. This further proves that in large systems it is

easier to model in a textual representation than using some other concepts.

In order to set benchmarks for effort calculations, data were collected from

past industrial test activities in IBM. Table 7.11 presents test effort data collected

from 10 projects within IBM.

KLOC Person Months
0.5 3
1 4
1 5.5

1.25 4
5 36

7.45 14
11.3 39.5

12.75 32
80 168

Table 7.11: Test effort data from IBM projects

Considering a person month to be equal to 152 hours [1], it can be said that

model based testing is definitely rewarding. According to the data, if we do linear

interpolation, then for a 50Kloc application, the estimated effort needed in testing is

given as 106.8 person months. And when the values of net effort for the test

generation tools are compared to the estimated value, every technique has excellent

rewards. The highest effort was needed for ASML and it was only 0.66 %(~1%) of

the estimate.

 138

Scalability values for individual components of total effort are compared in

section 7.3.5. The comparison shows a clear lead for Archetest. Archetest scales up

for all effort contributors except for the modeling time. HOTTest performs poorly for

execution time but is very good for all the other contributors. Scalability of ASML is

very poor in consideration of components like time to generate, time to set up and the

time to execute.

7.5 Summary
In summary it can be said that all model based test generation tools have great

advantages in terms of effort reduction. Among the tools compared for industrial

applicability, HOTTest is 96.51% effective in covering requirements and is most

efficient. It has the highest learnability and a complexity comparable to the other

techniques. The scalability for HOTTest when considering the modeling time is

100%.

HOTTest has a very high execution time and misses out on some of the

requirements. The reason for the high execution time is the huge number of redundant

test cases. A dependency analysis of the generated EFSM in HOTTest can reduce the

number of test cases and can reduce the execution time. To capture the kind of

requirements missed by HOTTest, the underlying domain specific language (in this

case HaskellDB) needs to be expanded by embedding types and functions.

7.6 References
[1] B. W. Boehm, C. Abts, A.W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.

Madachy, D. Reifer, B. Steece, Software Cost Estimation With COCOMO II.

Prentice Hall, July 2000.

 139

[2] C. E. Williams, “Toward a test-ready meta-model for use cases,” in Proc.

Workshop on Practical UML-based Rigorous Development Methods, Toronto,

CA, 2001, 270–287.

[3] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental Designs

for Research. Chicago: Rand McNally and Company, 1963.

[4] IEEE Guide to Software Requirements Specification, IEEE Standard 830, 1984.

[5] J. Siegel, Introduction to OMG UML, OMG Consortium, online

http://www.omg.org/gettingstarted/what_is_uml.htm

[6] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.

Veanes, “Model-Based Testing with AsmL.NET,” in Proc. 1st European

Conference on Model-Driven Software Engineering , December 2003.

[7] M. Kwan. Graphic programming using odd and even points. Chinese Math., 1, pp.

273-277, 1962

[8] P. Savage, S. Walters and M. Stephenson, “ Automated Test Methodology for

Operational Flight Programs,” in Proc. IEEE Aerospace Conference, vol.4, pp.

293-305, 1997.

[9] R. Chillarege, I.S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.

Ray, and M. Y. Wong, “Orthogonal Defect Classification – A Concept for In-

Process Measurements,” in IEEE Transactions on Software Engineering, Nov

1992.

[10] Rational XDE Tester User’s Guide, IBM Corporation., New York, NY, 2004.

[11] Rational Rose Enterprise Edition, IBM Corporation, New York, NY 2004.

 140

[12] V. Basili, “ Software Quality Assurance and Measurement: A Worldwide

perspective”, in Applying the Goal/question/Metric Paradigm in the Experience

factory, Chapter 2, pp 21- 44, International Thomson Computer Press, ITP An

International Thomson Publishing Company, 1995.

 141

Chapter 8 Extension to other Domains

In the previous chapters we discovered HOTTest’s ability to capture domain

specific requirements and generate test cases accordingly. The concept was proven

for the domain of database applications. This chapter addresses extension of

HOTTest’s capabilities to other domains of application. The study presented in this

chapter is preliminary and is not a complete study of the subject. This can help in

directing the future research.

8.1 Steps for Extension
The basic steps for extending HOTTest to other application domains are as follows:

8.1.1 Domain Analysis
The first step in extending HOTTest to a new domain starts with domain analysis.

During domain analysis various applications of the domain are studied and a generic

understanding on the domain is achieved. Following this, the domain specific

requirements are identified. Identification of domain specific requirements is a two

step activity:

• Identify the global requirements of the domain (DG): These are the

requirements that are true for any application of the domain, e.g. the

connection specific properties for the domain of database applications like the

security properties, the availability properties etc. These properties need to be

satisfied for all applications for that domain and is not dependent on some

specific functionality of the application.

 142

• Identify the local functional requirements of the domain applications (DS):

These are the requirements specific to the functional features of an

application. For instance for the database domain any update operators should

satisfy integrity constraints. Such a requirement is valid only for the database

applications that perform an update operation.

8.1.2 Design/ Choice of a Domain Specific Language
After a detailed understanding of the domain, a strongly typed domain specific

language is designed or chosen. The use of Haskell as the parent language allows

seamless integration with the existing tool. The criteria for choice of the DSL include

the following features of the DSL:

• The level of abstraction that the DSL provides: If the level of abstraction

supported by the DSL is too high, it might be very difficult to specify every

requirement of the application. A very low level of abstraction on the other

hand makes the DSL too complex and again makes the specification process a

difficult one.

• The types, constructs and the functions that the DSL provides: The DSL

types, constructs and the function should be such that they can express the

domain requirements properly. Too many functions and types make the DSL

difficult to use, but if they are too few then it might be difficult for the user to

express all the requirements. Therefore, a balance needs to be struck.

• The usability of the DSL: The DSL should not be too complicated to use. The

complication in use of a DSL may be affected by one of the factors mentioned

above but it may also be affected by other factors like complexity of

 143

formalism, available support, etc. Therefore, independent assessment of

usability is important.

• The extensibility of the DSL to accommodate more domain concepts: The

DSL should be extensible easily in order to accommodate the need to expand

and capture more domain requirements.

In absence of an appropriate DSL, a new DSL for test design could be designed by

adding required types and library functions in an existing Higher Ordered Typed

generic language. The choice of the embedded types and the library functions is a

multi-step activity that can be perfected only over years of use. The concept of

polymorphic types and type hierarchy supported by Haskell makes it easier to embed

types in Haskell.

8.1.3 Associate Requirements to DSL constructs
The next step is to associate the specific functional requirements (Ds) with constructs

of the DSL. The global requirements (DG) are associated with the entire application.

They can be directly embedded in the test model every time a domain specific

application is specified and after it has been validated for ambiguity, correctness and

consistency. For the feature specific requirements, the first step is to identify

functions/ operators that realize such features in an implementation. Any such

function may act on a set of parameters. The next and the most critical step is to

associate the requirements to the function on the basis of the types of the parameters.

Types in a language capture the essential concepts of any domain and a domain

specific requirement is essentially a constraint on the application’s behavior

expressed through the domain concepts. Any domain specific requirement can be

 144

expressed by a tuple, ,R D C=< > where, D is the domain concept and C is the

associated constraint. For instance consider the domain requirement, “Any probability

value should lie between 0 and 1”. It can be expressed in a tuple as

. Thus if there is a type probability in the DSL, we can

associate the constraint with every instance of the type and whenever there is

a call to a function that has a parameter of type probability or has an output of type

probability, we can produce test cases for input or output validation.

, 0, 1R probability=< ≥ ≤ >

0, 1≥ ≤

A domain specific language should have the types embedded so that each domain

concept is addressed and so that the types satisfy associated constraints. For example

for the domain of graphical user interface we need to have an embedded type for

buttons (since, ‘button’ is a domain concept). And also it is necessary that elements of

type ‘button’ can be embedded into elements of type ‘window’ (since, the associated

constraint with the concept of button is that they must be associated to some pre-

defined window).

A function in a domain specific language, relates the domain specific concepts while

satisfying the constraints imposed by the types. Thus if a function f is such

that then we can say that it relates X and Y, where X and Y are lists of

domain concepts. Each domain specific concept in the input and the output parameter

list is of certain type satisfying the domain constraint. The static type checkers on

validating the function f guarantee that the relation expressed by the function f is

satisfying the domain constraints. This is what we call a type axiom. Any function

validated by the static type checkers satisfies a type axiom and the axiom says that the

relation between X and Y is correct. Since, the types of a DSL capture the domain

()Y f X=

 145

constraints; we know that X and Y in the specification satisfy the corresponding

domain constraints. This information can be embedded in the test oracle to derive

additional test cases.

A function may assert multiple type axioms expressed using its parameters. Thus if F

is the set of functions provided by the DSL and Xi is the set of parameters for function

fi such that if F∈ , then we express as the set of type specific properties

expressed by f

()i
j

P A x=∪ ij

i when ij i
j

x X=∪ .

While associating the requirements we need to ensure that , i s
i

P D⊇∪ if∀ , where Ds

is the set of feature specific domain requirements. This is called the completeness

condition. In a case when we cannot satisfy the completeness condition, we may need

to embed additional types and functions in the DSL in order to extend its expressive

power.

8.2 Extension to the domain of Graphical User Interface
In this section we demonstrate how we can use the principles mentioned in the

previous section to extend the principles of domain specific testing to the domain of

graphical user interfaces.

8.2.1 Domain Analysis
After an ad-hoc analysis, it was found that following are some of the domain specific

requirements that can be associated with GUI applications.

Req. # 1. The items in the list of configuration should be of the right type, e.g.

the name of the widget (Basic GUI element like a button, menu etc.) should be

of type string, and the coordinates should be a tuple of integers and so on.

 146

Req. # 2. The parent window for which a widget is being created must be

predefined. This is necessary because this ensures that all the widgets are

associated to certain windows. This is the requirement that says that a ‘menu’

or a ‘button’ must be an element of a ‘window’.

Req. # 3. Each GUI action initiates a function of the underlying model. This is

the requirement that ensures that there are no useless GUI elements and that

the GUI is consistent.

Req. # 4. The view of the application is modified in accordance to the change in

the underlying model. This requirement necessitates the adherence of the GUI

to the model view architecture[1]. This is to ensure that the display reflects the

system state.

Req. # 5. The display window should be smaller than the parent window.

The above list is ad-hoc and far from being exhaustive but will suffice to exemplify

the steps of extension.

8.2.2 Choice of Domain Specific Language
Many higher ordered typed domain specific languages are available that bind with

various GUI frameworks like Window, Gtk, Tcl, Tk, Delphi, AWT etc. The need is

for a DSL that has embedded types to address domain concepts like widgets, events,

window etc. Following is a list of higher ordered typed domain specific languages

derived from Haskell that can be used to specify graphical user interfaces for various

applications:

 147

• wxHaskell : wxHaskell provides a set of library functions to directly interface

with wxWindows - a comprehensive C++ library that is portable across all

major GUI frameworks like GTK, Windows, X11, and MacOS X.

• HToolkit : HToolkit is a portable Haskell library for writing graphical user

interfaces (GUI's). The library is built upon a low-level interface that will be

implemented for each different target GUI frameworks. The low-level library

is called Port and is currently implemented for GTK and Windows. The

middle-level library is named GIO (the Graphical IO library) and is built upon

the low-level Port library.

• Gtk+HS: Gtk+HS is a Haskell binding for Gtk. This library provides a

transcription of the original Gtk API into Haskell. Gtk+HS has a modern,

portable library and forms the basis of the Gnome desktop project. The

binding, while not complete, covers most of Gtk's core functionality and is

ready for use in applications that require a GUI of medium complexity.

• Htk : Htk is a library of functions for writing framework independent,

graphical user interfaces in Haskell. The library provides a convenient,

abstract and high-level way to write window-oriented applications. It also

provides a lower level interface to write primitive Tcl/Tk code where helpful.

It can be used for UNIX and Windows.

• TclHaskell : TclHaskell is a typed, portable encapsulation of Tcl into Haskell.

Its distinctive features are the use of Haskell types and type classes for

structuring the interface, an abstract notion of event for describing user

interaction, and portability across Windows, Unix and Linux.

 148

The above list is again not exhaustive but serves to exemplify the extension process.

Among the DSLs listed above, Htk and TclHaskell have embedded types to capture

GUI elements. All the remaining DSLs provide libraries to port Haskell functions to

the imperative languages commonly used for GUI design and implementation. Since,

the objective of our DSL is specification of a system instead of implementation, the

selection criteria is governed by the DSL’s ability to capture the domain specific

properties. Htk and TclHaskell are natural qualifiers as they provide an extensible

type library to capture domain concepts that would assist the test case derivation

process. The net number of functions in TclHaskell is 239 while that in Htk is 782. So

it is assumed that TclHaskell is more usable than Htk. (This may not be the case in

reality)

8.2.3 Associating Requirements to DSL constructs
The types embedded in TclHaskell can be categorized into:

1. the types corresponding to GUI elements,

2. the types corresponding to GUI configuration items,

3. the types corresponding to GUI events,

4. the types corresponding to display configurations,

5. and the basic types in Haskell, viz., String, Num etc.

All functions in TclHaskell specifications have parameters and return values

corresponding to any of these types. Upon type validation we know that the functions

in the specification are type correct. Thus, any function from the validated

specification is a source of oracle information. For instance whenever the operator

“button” is used in TclHaskell, the type system guarantees that the button is

 149

configured using objects of right type. The type of “button” is defined in Haskell

notation as:

button::WPath→[Conf But]→GUI Button

which says that the operator button takes in two arguments:

1. First a variable of type WPath

2. and second, a list of variables of type Conf But.

While the type WPath forces the first argument to be only a valid “window”

description, the type [Conf But] forces the second argument to be a set of valid

configuration commands applicable to buttons. In other words, the type Conf But

ensures that a button can be configured only through a set of allowed library functions

whose return types are Conf But, eg., text. The function text defines the label of a

button and is designed to have the following type:

text :: String → Conf But

Thus for the library function button the input data set is strictly characterized. This

also means for the oracle that before the call to function button, the window must

exist (Req #2) and the configuration list is appropriate (Req#1). Therefore, if we

associate test cases for these two requirements with every call to the button function,

then we can assert if Req #1 and Req #2 are satisfied by the application.

 Typically a GUI specification in TclHaskell will contain the following four

categories of functions:

1. Widget Creation Functions: These functions create various windows

components like the buttons, menus and textboxes. These are the functions

that relate the configuration items with GUI elements while creating them.

Thus, these are the functions ideal for relating the requirement numbers 1 and

 150

2. Any functionality creating a widget should be aware of the requirements 1

and 2. Therefore, any time there is a call to a widget creation function, we

should have domain specific test cases testing for requirements 1 and 2.

2. Support Functions: These functions enhance the GUI display by naming the

buttons, providing titles for windows etc. These are the functions that

configure GUI items. Hence, they are also the candidates for requirement # 1.

However, since there is no creation of a widget involved here, requirement #2

does not hold.

3. Event Binding Functions: These functions bind action to various GUI events

like clicking of a button, clicking on a menu, typing of the keys, etc. Naturally

they qualify for the requirement # 3 and 4.

4. Display Functions: These functions display a widget on the screen. They

determine the display location, size, refresh rate etc. Therefore they can be

bound with requirement # 5 on display

After relating these requirements to the functions, states can be embedded in the

EFSM based structural representation as explained in chapter 4. Table 8.1 lists the

various groups of functions and the associated requirements.

Type Description Axioms Requirement
Widget
Creation
Functions:

These functions create various windows
components like the buttons, menus and
textboxes.

• The Configuration Items
have the right type.

• The parent window
exists.

• The widget has the right
number of configuration
parameters

Req # 1.
Req # 2.

Support
Functions:

These functions enhance the GUI display by
naming the buttons, providing titles for
windows etc.

• The name is a string.
• The GUI element exists

Req # 1

 151

Event Binding
Functions:

These functions bind action to various GUI
events like clicking of a button, clicking on a
menu, typing of the keys, etc.

• The action corresponds
to the type of GUI
element.

• Each action initiates one
function

Req # 3.
Req # 4.

Display
Functions:

These functions display a widget on the
screen. They determine the display location,
size, refresh rate etc.

• The display
configuration have right
number of parameters

• The display
configuration has right
type

Req # 5

Table 8.1: The function categories of TclHaskell and the associated requirements

A complete list of TclHaskell functions and their categories is provided in Appendix

C.

8.3 Summary
In summary it can be said that to extend the test generation technique to different

domains we need to first identify a set of domain requirements. These domain

requirements can be classified further as requirements that are true for all domain

specific applications and the requirements that are true for certain domain specific

applications. The latter are called feature specific domain requirement. For each

feature specific domain requirement we need identify a function in the DSL that

implements the feature. The feature specific requirement is associated with that

function and its parameters. In a case when the entire set of domain specific

requirements cannot be associated with the embedded functions, then there is a need

to extend the DSL. The DSL can be extended by embedding extra types and

functions.

8.4 References
[1] Krasner and Pope, A Cookbook Approach to Using MVC, JOOP, 1(3): 26-49.

 152

Chapter 9 Conclusion and Future Work
In this chapter we conclude by identifying the advantages of HOTTest over other

model based test design techniques. We also identify the shortcomings and limitations

of HOTTest. Avenues for future research are subsequently identified.

9.1 Advantages of HOTTest

HOTTest has the following advantages over other model based test design

techniques:

1. Higher Effectiveness: In HOTTest test models are created from a natural

language specification of a system using a domain specific language. This

means that the tester needs to translate from one textual representation to

another. The identification of the system states is automatic. This relieves the

tester from the burden of abstracting the system and identifying the state

transitions manually. Thus the modeling process has increased level of

automation and is therefore, less error-prone. This also ensures a higher

requirement coverage and consequently higher effectiveness.

Further, HOTTest identifies some domain specific implicit requirements, for

which test cases are automatically embedded in the test suite. This leads to an

increase in overall and domain specific effectiveness. HOTTest is capable of

identifying greater number of domain specific and generic defects.

HOTTest’s abilities have been experimentally validated against ASMLT,

Archetest and EFSM based testing. (see chapter 7) The requirement coverage

obtained by using HOTTest is on an average twice that of the other test

generation techniques.

 153

2. Efficient Test Generation: With increase in size of the application, the

complexity of the modeling in model based testing increases. The extent of

increase in the modeling complexity for HOTTest is minimal as compared to

Archetest and EFSM based testing. This is again because of the text based

representation, adopted by HOTTest. Subsequently the modeling time for

large applications is the least when compared to other model based test

generation techniques. Similar reduction in modeling time is observed in

another text based modeling technique ASML and therefore, confirms our

assumption. Reduction in modeling directly manifests into reduction in net

effort for testing because in model based testing the primary contributor to the

effort is the modeling effort. Thus for larger applications we need

comparatively less effort in HOTTest. This implies a direct gain in efficiency.

3. Comparable Usability: For a person who is usually conversant with procedural

languages, the learning of a functional language is not easy. This implies a

slow learning process, but once the learning is complete, modeling in

HOTTest becomes easier. The modeling process is less error prone and is

more efficient. Being declarative in nature the modeling language is easy to

use and lends itself easily for writing specifications. Usability measured

through Learnability, Efficiency, Error Proneness, Satisfaction and Ease is

hence comparable to other test generation tools. (See chapter 6)

4. High Scalability: As is discussed in Chapter 7, scalability of HOTTest to

industrial scale problems is very high. Using HOTTest, it was possible to

model an industrial application (>50kloc) and to generate test cases for it. It

 154

scales up easily on accounts of test modeling time, test generation time and

test set up time. It does not scale up similarly while considering the execution

time.

5. Lends itself to model checking: The structural representation used in HOTTest

is a finite state machine based representation with embedded semantics in

terms of actions and constraints. This kind of representation lends itself easily

to finite state machine based model checking tools for validation of systems.

The system can be checked for safety and live-ness properties and vulnerable

configurations could be detected.

9.2 Limitations of HOTTest

HOTTest at its present state has the following limitations:

1. Separate DSL for every domain: HOTTest depends on type axioms offered by

domain specific languages in order to capture implicit domain specific

requirements. Although explicit requirements for applications can be tested by

HOTTest for any application domain, the implicit requirements can only be

addressed if an appropriate DSL is available. This effectively means that in

order to test for domain specific requirements, we need separate domain

specific language for each of the domains. Also, before use, domain experts

need to define potential domain specific requirements and such requirements

need to be expressed through domain specific constructs. This is an overhead

that reduces the extendibility of HOTTest.

2. Training in every DSL: Also, since we have a separate DSL for every

application domain, therefore before a tester can start availing domain specific

 155

test generation capabilities of HOTTest he needs to learn the corresponding

DSL. This process however, becomes easier with each new DSL that is learnt.

This is because the DSLs used in HOTTest are all embedded in Haskell, and

they share the same grammar and therefore have similar constructs.

3. Inability to capture every requirement: HOTTest cannot ensure that the

implicit domain specific requirements covered by the test suite form the

exhaustive set of such requirements. The effectiveness of HOTTest is largely

dependent on the prior domain research conducted and the number of domain

specific requirements identified during such research. If the research is

incomplete the test generation effectiveness will suffer accordingly.

4. Assumption of correct requirements: Like any other model based testing,

HOTTest assumes that the requirement specification for the application is

correct. Some of the requirement faults can be uncovered through static

analysis of the test model but there is no effective way to ensure that the

system specification is thorough, consistent and safe. Model checking tools,

however, can validate a system for such properties starting from the EFSM

that is generated as part of the structural representation of the system in

HOTTest.

5. Redundant Test Cases: HOTTest at its present state generates a number of

redundant test cases. Since the axiom embedding is done in a non-conditional

manner, the test model verifies for the same property every time a similar

functionality is called. For example if a certain table is missing in the

database, it is understood that the fields of the table will also be missing from

 156

the database. At this point, it is not possible in HOTTest to identify such

dependencies. As a result, we have test cases for checking failures which are

in reality dependent on each other. This results in an excessive number of

redundant test cases. These test cases increase the net execution time for

HOTTest and add up to the net testing effort.

9.3 Future Research

Following are some possible avenues for future research:

1. State Space Reduction: The state space of the HOTTest test model can be

reduced by eliminating dependent failure states [] or by identifying spatial or

semantic symmetry in the system []. Such a reduction will reduce the number

of test cases produced by HOTTest and will thus increase the efficiency of

HOTTest. This will also make HOTTest more scalable and applicable to large

scale industrial applications.

2. Generalized Axiom Embedding Process: At present the domain specific

requirements are associated manually by identifying the type axioms offered

by the functions. This is a process that accounts for a major overhead for

HOTTest for extending it to other domains of interest. It might be possible to

develop a generalized theory for type embedding and extension to other

domains. Such a theory will enhance HOTTest’s applicability to other

domains.

3. Development of an integrated testing environment: The prototype tool for

HOTTest is made up of three independent components. The HaskellDB

modeler, the EFSM generator and a test case generator. One of these

 157

components is a commercial tool and another is an open source tool. Through

future research an integrated test generation environment can be developed

that will provide the testers with an environment where they can specify the

system, generate the test cases and execute them without having to depend on

multiple applications.

 158

Appendix A: HaskellDB

HaskellDB [5] focuses mainly on the type-safe construction of SQL database queries

[2, 6]. This appendix introduces the types and operations that HaskellDB provides,

and attempts to give an informal semantics for HaskellDB queries. For a detailed

understanding on HaskellDB the reader is referred to [5]

HaskellDB Types

Types play a crucial role in HaskellDB. The relational database concepts are

expressed through Haskell records available through TREX extensions. Additional

types are embedded to define attributes, relations and tables of the database. This

section introduces the main HaskellDB specific types, and explains what they’re

modeling.

Rel: the Relation Type

A relation groups together a collection of attributed values. It is represented by the

abstract type Rel:

data Rel r -- abstract

It is parameterized over a type that precisely captures the relation — that is, what

attribute-value pairs the relation brings together. For instance, if the relation is

intended to describe a phone book, it will at the very least contain the names and

phone numbers of the subscribers. Its Rel type would then be:

phBook :: Rel (name :: Expr String,number :: Expr String)

The type is stating that for each record/row in the database, it will contain an entry for

the name and number — and those two only. Associated with both the name and

number attributes are String values.

 159

In other words, the type argument to Rel precisely captures the attributes of the

relation and the type of the attribute values. Notice that the Rel type makes use of

TREX records, an extension to the Haskell type system. [3, 4]11

The benefits of using types to precisely describe a relation will become clearer once

we present the combinators for working with relations.

Table: Database Tables

Relational databases represent relations via tables, and HaskellDB defines a table type

that is parameterized over the type of the relation:

data Table rel -- abstract

The type argument is the same as the type used for Rel. In the case of the phone

book the table would have the type

phBookTable :: Table (name :: Expr String, number :: Expr String)

 Attr: Attributes

A relation associates a collection of attributed values. In HaskellDB, attributes are

first-class values, all of which have the Attr type:

data Attr rel value -- abstract

It is parameterized over two type arguments, the second of which is the type of the

value the attribute contains or denotes (its “domain”, to use relational database

terminology). The first type parameter constrains (or specifies, depending upon how

one looks at it) what kinds of relations the attribute can be associated with. Consider

the phone book example. It had two attributes, which will have the following types:

attrName :: (r\name) => Attr (name :: Expr String | r) String

attrNumber :: (r\number) => Attr (number :: Expr String | r) String

11 Unfortunately, only the Hugs interpreter has an implementation of TREX. This in
turn means that HaskellDB is confined to Hugs for the near future.

 160

These types use TREX also. The type for attrNumber is saying:

Given a relation that has an attribute with name number and an associated value of

type String (and no other attributes named number), then attrNumber is an

attribute of this relation.

phBook does indeed satisfy those constraints, so attrNumber does represent its

number attribute. Similarly for attrName.

A word about names and name spaces in HaskellDB: In the above example, name

and number were used as field labels in the TREX types. These field labels have a

separate name space from that of other Haskell values, so it is legal to also use the

field labels as the names for the attributes, i.e.,

name :: (r\name) => Attr (name :: Expr String | r) String

number :: (r\number) => Attr (number :: Expr String | r) String

We will do this from now on, but chose not to initially to avoid confusing the name of

an attribute in a relation from that of the name which represents that attribute in

HaskellDB.

Expr: Typed SQL Expressions

To build up interesting queries with HaskellDB, we want to construct expressions that

can be converted into the query language of the dB system we’re talking to. In the

case of HaskellDB, the query language is SQL, so we want to have a way of

constructing well-formed SQL expressions. To cut a long story short, HaskellDB uses

the following type to represent SQL expressions:

data Expr t -- abstract

Expr is essentially an abstract syntax tree representation of possible SQL

expressions; it is a datatype whose values correspond directly to SQL expressions.

 161

The role of the type parameter is analogous to that played by types in most

programming languages: it prevents us from constructing Expr values that

correspond to ill-formed SQL expressions. See [5] for details as to exactly why this

representation is the preferred one, and more explanation on how the type parameter

to Expr guarantees type-correctness of the corresponding SQL expression.

Aside: The original paper [5] and the implementation differ in one aspect: Attrs

use Expr t for their value types in the implementation, as opposed to just t in the

paper. The reason for this mismatch is not clear, but it does mean that one may only

store valid SQL expression values in HaskellDB attributes, a constraint that makes

good design and programming sense.

Summary

The world of relational databases uses different terms for the same object, depending

upon how that object is being used or viewed. The following table lists the most

common synonyms:

Concept Synonyms

Database table

Relations rows

Fields attributes, columns

Table A1.1: Synonyms of Database Concepts

The first column lists the more abstract concepts, while the second column lists

common ways these concepts are implemented. Attributes fall somewhere in

between. One way to relate the HaskellDB types is to the following:

• a database or table, of type Table r, consists of a collection of

 162

• rows or relations, of type Rel r, where each

• column or attribute or field, of type Attr (Expr t), is named and

contains a value, of type Expr t.

Some confusion also arises due to the use of relation to occasionally mean a set or list

of rows.

Representing Queries

HaskellDB provides the user with a monad to build up a query or relational

expression: the Query monad. It provides the following basic operations:

data Query a -- abstract

returnQ :: a -> Query a

bindQ :: Query a -> (a -> Query b) -> Query b

table :: Table r -> Query (Rel r)

restrict :: Expr Bool -> Query ()

project :: r -> Query (Rel r)

By using a monad, HaskellDB code can then be phrased using Haskell’s overloaded

notation for monads (the “do” notation). Here’s an example query:

-- project out all the names from the phone book.

names = do

 ph <- table phBookTable

 project (ph ! name)

HaskellDB combinators/operators

With the relevant types all introduced, let’s have a look at the HaskellDB combinators

and operators one can use to construct queries. A query works over rows or relations,

so we first need to be able to select the tables to draw the rows from.

Throughout, we will use the following databases as examples. The first two are

simple author/publication databases, called home and away, respectively:

 163

home:

Name Author ID Title

Carol 1 “Integrating software into PRA”

Ming 2 “Reliability Prediction Systems for Software”

Avik 3 “Stateful Transformations in Functional Language”

away:

Name Author ID Title

Carol 1 “Integrating software into PRA”

Sush 2 “Cooking Sushi?”

Anand 3 “Visiting places on demand!”

Sachin 4 “Reliability and Availability”

Avik 5 “Learning HaskellDB: My Journey to Hell and Back”

The next two examples tables are a list of customers and their orders (called

orders), and a separate database of customers and their phone numbers (called

phonebook):

orders:

Name Cost

Carol 10

Carol 500

Sush 10

Avik 3000

Avik 30

 164

Sush 200

phonebook:

Name Number

Anand 555-1020

Avik 555-9943

Sush 555-2134

Row Selection

You select a row using the table operator:

 table :: Table r -> Query (Rel r)

This says that given a database or table consisting of rows of type r, this will return a

query whose result is a row of type r.

For example, the following code fragment will select the Home database:

h <- table home

Now we can access any of the fields of the database, using !, as we shall see below,

by referring to the database with the variable h. In fact, any operation we wish to

perform on the database home will use the variable h to refer to the database. More

accurately, h refers to any row of the database home.

Attribute/Column Selection

Given a row, you can select a particular column / attribute from it using the (!)

operator:

(!) :: Rel r -> Attr r a -> Expr a

Notice how the r type variable ensures that we’re only able to select

attributes/columns that the relation actually contains.

 165

For example,

h ! title

will extract the value of the field named title in the row referred to by h.

However, h ! cost

will generate an error like:

ERROR HaskellDBExample.hs:113 - Type error in application

*** Expression : h ! cost

*** Term : h

*** Type : Rel (name :: Expr String, authorId :: Expr Int, title ::

Expr String)

*** Does not match : Rel (cost :: Expr Int | b)

*** Because : field mismatch

This means that h does not a field called cost, and is how record field mismatch

errors appear in TREX. In this way, HaskellDB guarantees that any field accesses are

valid (that is, the database being queried really does have the corresponding field).

Projection

At the query-level, you can project a new relation using the project operator:

project :: r -> Query (Rel r)

But, project from what? From an expression constructed using the (!) operator,

most likely. To make this clearer, here is a query which selects all the names and

titles in the Away database:

names :: Query (Rel (name :: Expr String,title :: Expr String))

names = do

 entry <- table away

 project (who = entry ! name, what = entry ! title)

This can be read as:

 166

For each row in the table Home, construct a new row that contains a field named

who, and one named what.

The database so constructed is:

Who What

Avik “Learning HaskellDB: My Journey to Hell and Back”

Sush “Cooking Sushi?”

Anand “Visiting places on demand!”

Sachin “Reliability and Availability”

Yuan “Two Thumbs Up!”

Restriction

What if you wanted to constrain the row names returned to only those written by

Anand?

You’d use the restrict operator:

restrict :: Expr Bool -> Query ()

For example,

ming :: Query (Rel (name :: Expr String, authorId :: Expr Int, title

:: Expr String)))

ming = do

 entry <- table away

restrict (entry ! name .==. constant "Anand")

This results in the following table:

Name Author ID Title

 167

Anand 3 “Visiting places on demand!”

Join

What about the join operator, how do we express it in HaskellDB? Through

restriction and the (!) operator:

names :: Query (Rel (name :: Expr String, phone :: Expr String))

names = do

 customer <- table orders

 phBook <- table phonebook

 restrict (phBook ! name .==. customer ! name)

 project (who = phBook ! name, what = phBook ! number)

In other words, one relates two relations with restrict expressions that compare

columns from different tables (which correspond to the relations).

The above query yields this table:

who what

Avik 555-9943

Sush 555-2134

Carol doesn’t appear, since his phone number is not in the phonebook table;

Anand doesn’t appear since he has no orders in the orders table.

Basic Set Operations

HaskellDB provides you with the basic operations of an relational algebra:

union :: Query (Rel r) -> Query (Rel r) -> Query (Rel r)

minus :: Query (Rel r) -> Query (Rel r) -> Query (Rel r)

intersect :: Query (Rel r) -> Query (Rel r) -> Query (Rel r)

The Cartesian product of two relations is provided via join; see Section 3.5. Each of

the above set operations may only be applied to relations that have precisely the same

set of attributes. Note that this means that the types of the values stored in the

 168

attributes must be the same; simply having the same field name is not sufficient. This

condition is guaranteed by the types of the operators.

For example, the following code:

table home ‘union‘ table away

yields this table:

Name Author ID Title

Carol 1 “Integrating software into PRA”

Sush 2 “Cooking Sushi?”

Anand 3 “Visiting places on demand!”

Sachin 4 “Reliability and Availability”

Avik 5 “Learning HaskellDB: My Journey to Hell and Back”

Ming 2 “Reliability Prediction Systems for Software”

Avik 3 “Stateful Transformations in Functional Language”

Note that Avik now has two different authorIds, and that the duplicate entry for

Carol has been removed.

But the following code:

table home ‘union‘ table orders

will result in a “field mismatch” error, since the two tables have different fields. This

is sometimes known as failing union-compatibility, but there is a similar constraint on

the other set operators, so we will use the term field-compatibility.

Set operator minus performs the set difference operation on the given tables

(returning only those rows from the first argument which do not occur in the second),

provided they are field-compatible:

 169

table away ‘minus‘ table home

yields:

Name Author ID Title

Sush 2 “Cooking Sushi?”

Anand 3 “Visiting places on demand!”

Sachin 4 “Reliability and Availability”

Avik 5 “Learning HaskellDB: My Journey to Hell and Back”

Finally, intersect performs set intersection between the tables in question,

provided they are field-compatible:

table home ‘intersect‘ table away

yields this table:

Name Author ID Title

Carol 1 “Integrating software into PRA”

Building Expressions

Using the parameterized Expr type and its operators, you can construct more

interesting restrict expressions—here’s a complete list of the SQL operators

supported by HaskellDB.

Comparison operators

We’ve already seen some examples of the use of one comparison operator, equality,

written .==., in the restrict examples above. Here’s the complete list:

(.==.) :: Eq a => Expr a -> Expr a -> Expr Bool -- Equality

(.<>.) :: Eq a => Expr a -> Expr a -> Expr Bool -- Inequality

(.<.) :: Ord a => Expr a -> Expr a -> Expr Bool -- Less than

(.<=.) :: Ord a => Expr a -> Expr a -> Expr Bool -- Less than or

equal

 170

(.>.) :: Ord a => Expr a -> Expr a -> Expr Bool -- Greater than

(.>=.) :: Ord a => Expr a -> Expr a -> Expr Bool -- Greater than or

equal

These, like all of the boolean expression forms in HaskellDB, are really only useful to

the restrict operator, and tend to be used in conjunction with the boolean

operators below. Note the naming convention: take the normal Haskell operator name

and put periods on either end. This convention is used for most of the primitive

operators. It indicates that the operator in question operates upon Expr types (i.e.,

Haskell expressions that represent SQL expressions).

Boolean operators

The following boolean operators may be used to construct more complex restriction

expressions:

_not :: Expr Bool -> Expr Bool -> Expr Bool -- Negation

(.&&.) :: Expr Bool -> Expr Bool -> Expr Bool -- Conjunction

(.||.) :: Expr Bool -> Expr Bool -> Expr Bool -- Disjunction

Here’s a (quite contrived) example of their use:

x <- table away

restrict (x ! name .==. constant "Sush" .||._not (x ! authorId .==.

3))

This yields the following table:

Name Author ID Title

Carol 1 “Integrating software into PRA”

Sush 2 “Cooking Sushi?”

Sachin 4 “Reliability and Availability”

Avik 5 “Learning HaskellDB: My Journey to Hell and Back”

Arithmetic operators

 171

When building new tables with project, we often want to perform some

calculation:

(.+.) :: Num a => Expr a -> Expr a -> Expr a -- Addition

(.-.) :: Num a => Expr a -> Expr a -> Expr a -- Subtraction

(.*.) :: Num a => Expr a -> Expr a -> Expr a -- Multiplication

(./.) :: Num a => Expr a -> Expr a -> Expr a -- Division

(.%.) :: Num a => Expr a -> Expr a -> Expr a -- Mod

These operators are also used in conjunction with so-called aggregate operators.

Here’s an example which adds the various authorIds from tables home and

away:

x <- table home

y <- table away

project (name = "Author id sum",sum = _sum x authorId .+._sum y

authorId)

This results in the following table:

name Sum

Author id sum 21

We’ll see more examples below.

String operators

The following string operations are available:

(.++.) :: Expr String -> Expr String -> Expr String -- Concatenate

cat :: Expr String -> Expr String -> Expr String -- Concatenate

constant :: ShowConstant a => a -> Expr (Maybe a) -- Values into

strings

Imagine a database called names, with two fields: firstName and surname.

Then we

 172

can build a table of fullNames thus:

x <- table names

project (fullName = x ! firstName .++.x ! surName)

Suppose names looked like this:

firstName surName

George Bush

Clay Williams

Marv Zelkowitz

Then the above results in the following table:

fullName

George Bush

Clay Williams

Marv Zelkowitz

constant may be used (along with .++.) to build display or description strings,

or strings for pattern matching (see Section 3.7.5). Any normal Haskell datatype that

has a Show instance (i.e., any type that can be printed) may be used.

Pattern Matching

One can use like to perform simple pattern matching on string-value fields:

like :: Expr String -> Expr String -> Expr Bool

 173

There are two special wildcard characters: “%” and “ ”. The first will match any

string, while the second will match any character. These characters may be escaped,

using the escape character “n”.12

So to search for titles in containing a given string, one would use:

 z <- table titles

 restrict (like (constant ("%" ++ t ++ "%")) z ! title)

Aggregate operators

An aggregate operator acts upon all of the values of a given field of a table at once.

Here is a list of the supported aggregate operators:

count :: Rel r -> Attr r a -> Expr Int -- number of values

_sum :: Num a => Rel r -> Attr r a -> Expr a -- sum of all values

_max :: Num a => Rel r -> Attr r a -> Expr a -- maximum

_min :: Num a => Rel r -> Attr r a -> Expr a -- minimum

avg :: Num a => Rel r -> Attr r a -> Expr a -- average

stddev :: Num a => Rel r -> Attr r a -> Expr a -- std deviation

(sampled)

stddevP :: Num a => Rel r -> Attr r a -> Expr a -- std deviation

variance :: Num a => Rel r -> Attr r a -> Expr a -- variance

(sampled)

varianceP :: Num a => Rel r -> Attr r a -> Expr a -- variance

Consider the Orders table, and suppose we want to calculate the number of orders

over $50, and average them. This code will suffice:

x <- table Orders

restrict (x ! Cost .>=. 50)

project (average = _sum x Cost ./. count x Name)

However, we could also just write:

12The precise characters used varies with the particular SQL server that your
HaskellDB program is interacting with. These values work with the Microsoft SQL
servers.

 174

x <- table Orders

restrict (x ! Cost .>=. 50)

project (average = avg x Cost)

The difference between stddev and stddevP is that the former calculates the

standard deviation from a sample of the values of the given field, where as the latter

bases its calculation upon all values of the given field. (The difference between

variance and varianceP is analogous.) The sample size chosen is dependent

upon the SQL server.

Sorting responses

To present the rows satisfying a query in a given order, one can use the order

function:

asc :: Rel r -> Attr r a -> Expr Order

desc :: Rel r -> Attr r a -> Expr Order

order :: [Expr Order] -> Query ()

order takes a list of so-called Order expressions. asc and desc are used to

influence the “direction” of the sort. Each takes a row and a field upon which to sort.

Order sorts in a lexicographic fashion (first by the first element of its argument list,

then by the second if necessary, etc.). The following code sorts the orders order of

their cost (largest first), with orders of the same cost being sorted alphabetically:

x <- table orders

order [desc x cost, asc x name]

return x

This results in the following table:

Name Cost
Avik 3000
Carol 500
Sush 200
Avik 30

 175

Carol 10
Sush 10

In SQL, one doesn’t need to specify whether the sort should be ascending or

descending; if no order is specified, then the default is ascending. However,

HaskellDB requires the specification of the sorting direction.

Filtering responses

It is often useful to cut down on the number of responses returned. For this, one can

use top or topPercent:

top :: Integer -> Query ()

topPercent :: Integer -> Query ()

Both take an integer argument. top n will discard all but the first n responses;

topPercent n will discard all but the first n% responses. top and

topPercent are often used in conjunction with order.

The following takes the query from the above example, but will only return the first

two results:

x <- table orders

restrict (x ! cost .>=. 500)

order [desc x cost, asc x cost]

top 2

return x

NULL – Missing Data in HaskellDB

SQL’s NULL is a complex beast. SQL most commonly uses NULL for unknown

values, for values to be filled in later, for optional values, and to represent the result

 176

of nonsensical calculations (e.g., division by zero), but this list is by no means

complete.13 3

When dealing with fields whose values may be NULL, then the following operations

will be essential:

isNull :: Expr a -> Expr Bool -- True if NULL

notNull :: Expr a -> Expr Bool -- True if not NULL

nullable :: ShowConstant a => a -> Expr (Maybe a) -- Similar to

constant

nullable is essentially the same as constant, except that NULL values should

be rendered as the string “NULL”.

Comments

There are many SQL operators not supported by HaskellDB (such as more complex

aggregate boolean operators). This is due to the fact that it arose out of a research

project, whose main aim was investigation of embedded domain-specific languages,

rather than constructing a fully-functional interface to SQL databases.

Another shortcoming is that there is no facility for easily adding user-defined

operations to HaskellDB. This is impossible to get around, since HaskellDB doesn’t

perform any expression evaluation itself; the SQL database server is responsible for

that. If HaskellDB were to pass on to it some user-defined operation, then the SQL

server would not know how to proceed. The only alternative is to implement the

operation in terms of those SQL operations provided by HaskellDB, augmented with

Haskell expressions.

13

Chapter 6 of [1] has a deeper discussion on the use and abuse of NULL in SQL databases.

 177

References

[1] J. Celko. Joe Celko’s SQL for Smarties: Advanced SQL Programming. Morgan

Kaufman, second edition, 2000.

[2] C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, 1993.

[3] B. R. Gaster. Polymorphic extensible records for Haskell. In Haskell Workshop,

Amsterdam, June 1997. ACM.

[4] B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records

and variants. Technical report NOTTCS-TR-96-3, Languages and Programming

Group, Department of Computer Science, University of Nottingham, Nottingham

NG7 2RD, UK, Nov. 1996.

[5] D. Leijen and E. Meijer. Domain specific embedded compilers. In 2nd USENIX

Conference on Domain-Specific Languages (DSL), Austin, Texas, Oct. 1999.

Available for download at http://www.cs.ruu.nl/people/daan/papers/dsec.ps.

[6] Microsoft. DevGuru Jet SQL Developer Index. http://www.devguru.com/

Technologies/jetsql/quickref/jet sql list.html.

 178

Appendix B: HaskellDB Axioms

Operator Type Usage Axioms
 -- query Operators

(!)

:: Record r =>
Rel r -> Attr r b -
> Expr b table ! field Field Exists in the table

project
:: Record r => r -
> Query (Rel r) project(column = attribute,...) No two fields in the relation are same

restrict
:: Expr Bool ->
Query () restrict(Boolean Expression) The boolean expression is valid

table
:: Table r ->
Query (Rel r) table TableName The table exists in the database.

 -- binary query operators

union

:: Query (Rel a) -
> Query (Rel a) -
> Query (Rel a) union(query1 query2) The two relations have the same fields(type and names)

intersect

:: Query (Rel a) -
> Query (Rel a) -
> Query (Rel a) intersect(query1 query2) The two relations have the same fields(type and names)

divide

:: Query (Rel a) -
> Query (Rel a) -
> Query (Rel a) divide(query1 query2) The two relations have the same fields(type and names)

minus

:: Query (Rel a) -
> Query (Rel a) -
> Query (Rel a) minus(query1 query2) The two relations have the same fields(type and names)

 -- operators over
expressions embedded
inside queries

(.==.)

:: Eq a => Expr a
-> Expr a -> Expr
Bool attribute1 .==. attribute2

The expression on either sides of the operator attributes
are of same type and are equalable.

(.<>.)

:: Eq a => Expr a
-> Expr a -> Expr
Bool attribute1 .<>. attribute3

The expression on either sides of the operator attributes
are of same type and are equalable.

(.<.)

:: Ord a => Expr
a -> Expr a ->
Expr Bool attribute1 .<. attribute4

The expression on either sides of the operator are of
same type and are ordinal.

(.<=.)

:: Ord a => Expr
a -> Expr a ->
Expr Bool attribute1 .<=. attribute5

The expression on either sides of the operator are of
same type and are ordinal.

(.>=.)

:: Ord a => Expr
a -> Expr a ->
Expr Bool attribute1 .>=. attribute6

The expression on either sides of the operator are of
same type and are ordinal.

(.>.)

:: Ord a => Expr
a -> Expr a ->
Expr Bool attribute1 .>. attribute7

The expression on either sides of the operator are of
same type and are ordinal.

(.&&.)

:: Expr Bool ->
Expr Bool ->
Expr Bool boolean expr1 .&&. boolean expr2

The expressions on either side of the operator must be a
boolean expression

(.||.)

:: Expr Bool ->
Expr Bool ->
Expr Bool boolean expr1 .||. boolean expr3

The expressions on either side of the operator must be a
boolean expression

(.*.)

:: Num a => Expr
a -> Expr a ->
Expr a attribute1 .*. attribute2

The expressions on either side of the operator must be
of the same type and are of the Number class.

(./.)

:: Num a => Expr
a -> Expr a ->
Expr a attribute1 ./. attribute3

The expressions on either side of the operator must be
of the same type and are of the Number class.

(.%.)

:: Num a => Expr
a -> Expr a ->
Expr a attribute1 .%. attribute4

The expressions on either side of the operator must be
of the same type and are of the Number class.

(.+.)
:: Num a => Expr
a -> Expr a -> attribute1 .+. attribute5

The expressions on either side of the operator must be
of the same type and are of the Number class.

 179

Expr a

(.-.)

:: Num a => Expr
a -> Expr a ->
Expr a attribute1 .-. attribute6

The expressions on either side of the operator must be
of the same type and are of the Number class.

(.++.)

:: Num a => Expr
a -> Expr a ->
Expr a attribute1 .++. attribute7

The expressions on either side of the operator must be
of the same type and are of the Number class.

_not
:: Expr Bool ->
Expr Bool _not boolean expr1

The expression on which the operator acts must be
boolean.

like

:: Expr String ->
Expr String ->
Expr Bool like(attribute1 attribute2)

The expressions on which the operator acts must be of
type String.

cat

:: Expr String ->
Expr String ->
Expr String cat (attribute1 attribute2)

The expressions on which the operator acts must be of
type String.

isNull
:: Expr a -> Expr
Bool isNull(attribute1) NONE

notNull
:: Expr a -> Expr
Bool notNull(attribute1) NONE

constant
:: ShowConstant
a => a -> Expr a constant X NONE

count
:: Rel r -> Attr r a
-> Expr Int count(table, attribute) The attribute must be an element of the field.

_sum

:: (Num a) => Rel
r -> Attr r a ->
Expr a _sum(table, attribute)

The attribute must be an element of the field and be a
number.

_max

:: (Num a) => Rel
r -> Attr r a ->
Expr a _max(table, attribute)

The attribute must be an element of the field and be a
number.

_min

:: (Num a) => Rel
r -> Attr r a ->
Expr a _min(table, attribute)

The attribute must be an element of the field and be a
number.

avg

:: (Num a) => Rel
r -> Attr r a ->
Expr a avg(table, attribute)

The attribute must be an element of the field and be a
number.

stddev

:: (Num a) => Rel
r -> Attr r a ->
Expr a stddev(table, attribute)

The attribute must be an element of the field and be a
number.

stddevP

:: (Num a) => Rel
r -> Attr r a ->
Expr a stddevP(table, attribute)

The attribute must be an element of the field and be a
number.

variance

:: (Num a) => Rel
r -> Attr r a ->
Expr a variance(table, attribute)

The attribute must be an element of the field and be a
number.

variance
P

:: (Num a) => Rel
r -> Attr r a ->
Expr a varianceP(table, attribute)

The attribute must be an element of the field and be a
number.

 -- ascending, descending

asc
:: Rel r -> Attr r a
-> Expr Order asc(table, attribute) The attribute must be an element of the field.

desc
:: Rel r -> Attr r a
-> Expr Order desc(table, attribute) The attribute must be an element of the field.

order
:: [Expr Order] ->
Query () order(asc/desc table attribute) The expression must express order.

top
:: Integer ->
Query () top(integer) The expression must have integer as an input.

topPerce
nt

:: Integer ->
Query () topPercent(integer) The expression must have integer as an input.

DbOptions(dbUserID ::
String, dbPassword

::String, dbHost::String,
dbName::String)

dbOption
s

:: DbOptions
(the
default/empty
value). dbOptions

The dbUserID,dbPassword,dbHost and dbName must
be String.

(!.) :: Row a b => a c row!.attribute The row must exist and it must contain the attribute.

 180

-> Attr c b -> b

query

:: Database db
row -> Table r->
Query (Rel r) ->
IO () query(db table query1)

The db must exist, table must exist, the query must be
valid.

lazyQuer
y

:: Database db
row -> Table r->
Query (Rel r) ->
IO () lazyQuery(db table query)

The db must exist, table must exist, the query must be
valid.

strictQuer
y

:: Database db
row -> Table r->
Query (Rel r) ->
IO () strictQuery(db table query)

The db must exist, table must exist, the query must be
valid.

insert

:: Database db
row -> Table r->
Query (Rel r) ->
IO () insert(db table query)

The db must exist, table must exist, the query must be
valid.

delete

:: Database db
row -> Table r->
(Rel r -> Expr
Bool) -> IO () delete(table (function))

The db must exist, table must exist, the boolean
expression must be valid.

update

:: (Record r,
Record s) =>
Database db row
-> Table r-> (Rel
r -> Expr Bool)->
(Rel r -> s)-> IO
() update(db table function1 function2)

The db must exist, the table must exist,the condition
must be a valid boolean condition,The record must be
updated accordingly.

insertNe
w

:: (Record r) =>
Database db row
-> Table r -> r ->
IO () insertNew(db table row)

The db must exist, the table must exist, the record must
be a valid one.

showQ
:: Query (Rel a) -
> Doc showQ(query) The query must be valid

showOpt
:: Query (Rel a) -
> Doc showOpt(query) The query must be valid

showSql
:: Query (Rel a) -
> Doc showSql(query) The query must be valid

 181

Appendix C: TclHaskell Axioms

Type Description Axioms Category
Widget
Creation
Functions:

These functions create
various windows
components like the
buttons, menus and
textboxes.

TheConfiguration
Items have the right
type

The parent
window exist

The widget has
the right number
of cofiguration
parameters

A

Support
Functions:

These functions
enhance the GUI
display by naming the
buttons, providing titles
for windows etc.

The name is a string the GUI element
exists

 B

Event
Binding
Functions:

These functions bind
action to various GUI
events like clicking of a
button, clicking on a
menu, typing of the
keys, etc.

action correspond to
the type of GUI
element

each action
intiates one
function

 C

Display
Functions:

These functions display
a widget on the screen.
They determine the
display location, size,
refresh rate etc.

diplay configuration
have right number of
parameters

display
configurationn
has right type

 D

Function Type Category

Button
button :: Window -> [Conf But] -> GUI

Button A
Window window :: [Conf Top] -> GUI Window A

Frame
frame :: Window -> [Conf Fra] -> GUI

Frame A
mkChildOf mkChildOf :: Widget c w -> GUI WPath A
mkSibling mkSibling :: Widget c w -> GUI WPath A

addFinaliserW
addFinaliserW :: Widget a b -> GUI ()

-> GUI () A
rootWin rootWin :: GUI Window A
genWindow genWindow :: [Conf Win] -> GUI Window A

menu'
menu’ :: WPath -> [Conf Men] -> GUI

Menu A

Menu
menu :: Has_use_menu w => Widget a w

-> [Conf Men] -> GUI Menu A
Popup popup :: Menu -> (Int,Int) -> GUI () A
Tearoff tearoff :: Bool -> Conf Men A

Mbutton
mbutton :: Menu -> [Conf MBut] -> GUI

MButton A

mbutton'
mbutton’ :: Menu -> [Conf MBut] ->

GUI MButton A
mradioButton mradiobutton :: Menu -> [Conf MRB] -> A

 182

GUI MRadiobutton

mradioButton'
mradiobutton :: Menu -> [Conf MRB] ->

Int -> GUI MRadiobutton A

mcheckButton
mcheckbutton :: Menu -> [Conf MChe] -

> Int -> GUI MCheckbutton A
Separator separator :: Menu -> GUI Separator A

separator'
separator’ :: Menu -> Int -> GUI

Separator A

frame'
frame’ :: WPath -> [Conf Fra] -> GUI

Frame A

Frame
frame :: Window -> [Conf Fra] -> GUI

Frame A
inFrame inFrame :: Frame -> PackInfo A
inWindow inWindow :: Frame -> PackInfo A

label'
label’ :: WPath -> [Conf Lab] -> GUI

Label A

Label
label :: Window -> [Conf Lab] -> GUI

Label A

button'
button’ :: WPath -> [Conf But] -> GUI

Button A

radioButton'
radiobutton’ :: WPath -> [Conf RB] ->

GUI Radiobutton A

radioButton
radiobutton :: Window -> [Conf RB] ->

GUI Radiobutton A
Radio radio :: [Radiobutton] -> GUI Radio A
Mradio mradio :: [MRadiobutton] -> GUI Radio A

Coval
coval’ :: Canvas -> CCoord -> CCoord

-> [Conf COva] -> GUI COval A

coval'
coval :: Canvas -> CCoord -> Coord ->

[Conf COva] -> GUI COval A

cline'
cline’ :: Canvas -> [CCoord] -> [Conf

CLin] -> GUI CLine A

Cline
cline :: Canvas -> [Coord] -> [Conf

CLin] -> GUI CLine A

crectangle'
crectangle’ :: Canvas -> CCoord ->

CCoord -> [Conf CRec] -> GUI CRectangle A

Crectangle
crectangle :: Canvas -> Coord ->

Coord -> [Conf CRec] -> GUI CRectangle A

carc'
carc’ :: Canvas -> CCoord -> CCoord -

> [Conf CAr] -> GUI CArc A

Carc
carc :: Canvas -> Coord -> Coord ->

[Conf CAr] -> GUI CArc A

cpoly'
cpoly’ :: Canvas -> [CCoord] -> [Conf

CPol] -> GUI CPoly A

Cpoly
cpoly :: Canvas -> [Coord] -> [Conf

CPol] -> GUI CPoly A

ctext'
ctext’ :: Canvas -> CCoord -> [Conf

CTex] -> GUI CText A

Ctext
ctext :: Canvas -> Coord -> [Conf

CTex] -> GUI CText A

cbitmap'
cbitmap’ :: Canvas -> CCoord -> [Conf

CBit] -> GUI CBitmap A

Cbitmap
cbitmap :: Canvas -> Coord -> [Conf

CBit] -> GUI CBitmap A

cimage'
cimage’ :: Canvas -> CCoord -> [Conf

CBit] -> GUI CBitmap A

Cimage
cimage :: Canvas -> Coord -> [Conf

CBit] -> GUI CBitmap A

cwindow'
cwindow’ :: Canvas -> CCoord ->

PWidget w -> [Conf CWin] -> GUI CWindow A

Cwindow
cwindow :: Canvas -> Coord -> PWidget

w -> [Conf CWin] -> GUI CWindow A

Scrollbar
scrollbar :: WPath -> [Conf Scr] ->

GUI Scrollbar A

vscroll'
vscroll’ :: ScrollableY w => WPath ->

PWidget w -> [Conf Scr] -> GUI Scrollbar A

 183

hscroll'
hscroll’ :: ScrollableX w => WPath ->

PWidget w -> [Conf Scr] -> GUI Scrollbar A

Vscroll
vscroll :: ScrollableY w => PWidget w

-> [Conf Scr] -> GUI Scrollbar A

Hscroll
hscroll :: ScrollableX w => PWidget w

-> [Conf Scr] -> GUI Scrollbar A

entry'
entry’ :: WPath -> [Conf Ent] -> GUI

Entry A

Entry
entry :: Window -> [Conf Ent] -> GUI

Entry A
getEntry getEntry :: Entry -> GUI String A
setEntry setEntry :: Entry -> String -> GUI () A

vscale'
vscale’ :: WPath -> [Conf Sca] -> GUI

Scale A

hscale'
hscale’ :: WPath -> [Conf Sca] -> GUI

Scale A

Vsacle
vscale :: Window -> [Conf Sca] -> GUI

Scale A

Hscale
hscale :: Window -> [Conf Sca] -> GUI

Scale A

insertListbox
insertListbox :: Listbox -> LIndex ->

[String] -> GUI () A

edit'
edit’ :: WPath -> [Conf Edi] -> GUI

Edit A

Edit
edit :: Window -> [Conf Edi] -> GUI

Edit A

setMarkGravity
setMarkGravity :: Mark -> Gravity ->

GUI () A
getMarkGravity getMarkGravity :: Mark -> GUI Gravity A
tagId tagId :: Tag -> TagId A

tag'
tag’ :: Edit -> TagId -> [TIndex] ->

[Conf Tg] -> GUI Tag A

Tag
tag :: Edit -> [TIndex] -> [Conf Tg]

-> GUI Tag A
selectionTag selectionTag :: Edit -> GUI Tag A

Embedded
embedded' :: Edit -> WPath -> TIndex

-> [Conf Ew] -> GUI Embedded A

embedded'
embedded :: Edit -> PWidget a' ->

TIndex -> [Conf Ew] -> GUI Embedded A
getAllEmbedded getAllEmbedded :: Edit -> GUI [WPath] A
newState newState :: a -> GUI (GUIRef a) A

newGUIArray
newGUIArray :: Int -> a -> GUI

(GUIArray a) A

mkDialog
mkDialog :: a -> GUIRef (Maybe a) ->

Window -> GUI a A
parentWpath parentWPath :: Widget a b -> WPath B
Wtag wtag :: Widget a b -> String B
Wpath wpath :: Widget c w -> WPath B
Title title :: Window -> String -> GUI () B
Destroy destroy :: Window -> GUI () B
Text text :: String -> Conf w B
Command command :: GUI () -> Conf w B
Start start :: GUI () > IO () B
Quit quit :: GUI () B
Proc proc :: IO a > GUI a B
failGUI failGUI :: IOError -> GUI a B

tryGUI
tryGUI :: GUI a -> GUI (Either

IOError a) B

catchGUI
 catchGUI :: GUI a -> (IOError -> GUI a) -
> GUI a B

Tcl tcl :: [String] -> GUI String B

 184

tcl_ tcl_ :: [String] -> GUI () B

tcl_append
tcl_append :: WPath -> String ->

WPath B

Cascade
cascade :: Menu -> Menu -> [Conf CB]

-> GUI Cascade B

cascade'
cascade’ :: Menu -> Menu -> [Conf CB]

-> Int -> GUI Cascade B

gridAdd
gridAdd :: PWidget w -> Coord ->

[GridInfo] -> GUI () B
gridForget gridForget :: PWidget w -> GUI () B
gAnchor gAnchor :: Anchor -> GridInfo B
ginFrame ginFrame :: Frame -> GridInfo B
ginWindow ginWindow :: Window -> GridInfo B

menuButton
menubutton’ :: WPath -> Maybe WPath -

> [Conf MB] -> GUI Menubutton B

menuButton'
 menubutton :: Window -> [Conf MB] ->
GUI Menubutton B

getCoords
getCoords :: CWidget w -> GUI

[(Int,Int)] B

setCoords
setCoords :: CWidget w -> [Coord] ->

GUI () B

insertEntry
insertEntry :: Entry -> EIndex ->

String -> GUI () B

deleteEntry
deleteEntry :: Entry -> EIndex ->

EIndex -> GUI () B

setICursor
setICursor :: Entry -> EIndex -> GUI

() B

clearEntrySelection
clearEntrySelection :: Entry -> GUI

() B

setEntrySelectionAnchor
setEntrySelectionAnchor :: Entry ->

EIndex -> GUI () B

listbox'
listbox’ :: WPath -> [Conf Lis] ->

GUI Listbox B

Listbox
listbox :: Window -> [Conf Lis] ->

GUI Listbox B

deleteListbox
deleteListbox :: Listbox -> LIndex ->

LIndex -> GUI () B

resetListbox
resetListbox :: Listbox -> [String] -

> GUI () B

clearListboxSelection
clearListboxSelection :: Listbox ->

LIndex -> LIndex -> GUI () B

setListboxSelection
setListboxSelectionAnchor :: Listbox

-> LIndex -> GUI () B
getEdit getEdit :: Edit -> GUI String B

getFromTo
getFromTo :: Edit -> TIndex -> TIndex

-> GUI String B

loadEdit
loadEdit :: Edit -> FilePath -> GUI

() B

saveEdit
saveEdit :: Edit -> FilePath -> GUI

() B
reserEdit resetEdit :: Edit -> String -> GUI () B

deleteEdit
deleteEdit :: Edit -> TIndex ->

TIndex -> GUI () B

insertEdit
insertEdit :: Edit -> String ->

String -> GUI () B

insertEditTagged
insertEditTagged :: :: Edit -> TIndex

-> String -> [TagId] -> GUI () B

eqTIndex
eqTIndex :: Edit -> TIndex -> TIndex

-> GUI Bool B

ltTindex
ltTIndex :: Edit -> TIndex -> TIndex

-> GUI Bool B

gtTIndex
gtTIndex :: Edit -> TIndex -> TIndex

-> GUI Bool B

cmpTIndex
 cmpTIndex :: Edit -> TIndex -> TIndex ->
GUI Ordering B

 185

cutClipboard cutClipboard :: Edit -> GUI () B
copyClipboard copyClipboard :: Edit -> GUI () B
pasteClipboard pasteClipboard :: Edit -> GUI () B

mark'
mark' :: Edit -> MarkId -> TIndex ->

GUI Mark B
Mark mark :: Edit -> TIndex -> GUI Mark B
getMarkPos getMarkPos :: Mark -> GUI (Int,Int) B
removeMark removeMark :: Mark -> GUI () B
currentMark currentMark :: Edit -> Mark B
tagEdit tagEdit :: Tag -> GUI Edit B
readState readState :: GUIRef a -> GUI a B
writeState writeState :: GUIRef a -> a -> GUI () B

modState
modState :: GUIRef a -> (a->a) -> GUI

() B

readGUIArray
readGUIArray :: GUIArray a -> Int ->

GUI a B
getOpenFileName getOpenFileName :: GUI (Maybe String) B
getSaveFileName getSaveFileName :: GUI (Maybe String) B

tcl_eventUntil
tcl_eventUntil :: GUIRef a -> (a ->

Bool) -> GUI () B
After after :: Int -> GUI () -> GUI Remover B
parseInt parseInt :: String -> Int B
Rgb rgb :: (Int,Int,Int) -> String B

tcl_callback
tcl_callback :: String -> ([String]-

>GUI ()) -> GUI (String,GUI ()) B

trapDeleteWindow
trapDeleteWindow :: Window -> GUI ()

-> GUI () B

getTclTime
getTclTime :: GUI Double -- time in

seconds since program started B

tcl_debug
tcl_debug :: Bool -> GUI () – print

debugging info or not B

bind
bind :: Widget c w -> TkEvent -> GUI

() -> GUI Remover C

Bindxy
bindxy :: Widget c w -> TkEvent ->

((Int,Int)->GUI ()) -> GUI Remover C

bindXY
bindXY :: Widget c w -> TkEvent ->

((Int,Int)->GUI ()) -> GUI Remover C

bindArgs

bindArgs :: Widget c w ->
(Bool,TkEvent,String) -> ([String]->GUI
()) -> GUI Remover C

Click click :: [String] -> GUI () C
getMCheck getMCheck :: MCheckbutton -> GUI Bool C

setMCheck
setMCheck :: MCheckbutton -> Bool ->

GUI () C
varMCheck varMCheck :: MCheckbutton -> String C
setRadio setRadio :: Radio -> Int -> GUI () C
getRadio getRadio :: Radio -> GUI Int C
varRadio varRadio :: Radio -> String C
getRadio' getRadio’ :: Radio -> GUI WTag C
setRadio' setRadio’ :: Radio -> WTag -> GUI () C

appendMRadio
appendMRadio :: Radio -> MRadiobutton

-> GUI () C

removeMRadio
removeMRadio :: Radio -> MRadiobutton

-> GUI () C

appendRadio
appendRadio :: Radio -> Radiobutton -

> GUI () C

removeRadio
removeRadio :: Radio -> Radiobutton -

> GUI () C
getCheck getCheck :: Checkbutton -> GUI Bool C

 186

setCheck
setCheck :: Checkbutton -> Bool ->

GUI () C
varCheck varCheck :: Checkbutton -> String C

canvas'
canvas’ :: WPath -> [Conf Can] -> GUI

Canvas C

Canvas
canvas :: Window -> [Conf Can] -> GUI

Canvas C

citem_canvas
citem_canvas :: CWidget a -> GUI

Canvas C
citem_number citem_number :: CWidget a -> Int C
isEntrySelected isEntrySelected :: Entry -> GUI Bool C

setEntrySelection
setEntrySelection :: Entry -> EIndex

-> EIndex -> GUI () C

adjustEntrySelection
adjustEntrySelection :: Entry ->

EIndex -> GUI () C

setToEntrySelection
setToEntrySelection :: Entry ->

EIndex -> GUI () C
getScale getScale :: Scale -> GUI Int C
setScale setScale :: Scale -> Int -> GUI () C

getListboxEntris
getListboxEntries :: Listbox ->

LIndex -> LIndex -> GUI [String] C
getListboxSize getListboxSize :: Listbox -> GUI Int C

getListboxSelection
getListboxSelection :: Listbox -> GUI

[Int] C
setMark setMark :: Mark -> TIndex -> GUI () C
getAllMarks getAllMarks :: Edit -> GUI [Mark] C
getMark getMark :: Edit -> MarkId -> Mark C

previousMark
previousMark :: Edit -> TIndex -> GUI

Mark C

nextMark
nextMark :: Edit -> TIndex -> GUI

Mark C
insertionMark insertionMark :: Edit -> Mark C
getAllTags getAllTags :: Edit -> GUI [TagId] C

getTagsAt
getTagsAt :: Edit -> TIndex -> GUI

[TagId] C

tagRemove
tagRemove :: Tag -> [TIndex] -> GUI

() C

tagRanges
tagRanges :: Tag -> GUI

[((Int,Int),(Int,Int))] C

tagNextRange

tagNextRange :: Tag -> TIndex ->
TIndex -> GUI (Maybe
((Int,Int),(Int,Int))) C

tagPrevRange

tagPrevRange :: Tag -> TIndex ->
TIndex -> GUI (Maybe
((Int,Int),(Int,Int))) C

tagText tagText :: Tag -> GUI [String] C

writeGUIArray
writeGUIArray :: GUIArray a -> Int ->

a -> GUI () C

modGUIArray
modGUIArray :: GUIArray a -> Int ->

(a->a) -> GUI () C

Packadd
packAdd :: PWidget w -> [PackInfo] ->

GUI () D

Geometry
geometry :: Window -> Geometry -> GUI

() D
showWindow showWindow :: Window -> GUI () D
hideWindow hideWindow :: Window -> GUI () D
menuSize menuSize :: Menu -> GUI Int D

Raise
raise :: PWidget w -> Maybe WPath ->

GUI () D

Lower
lower :: PWidget w -> Maybe WPath ->

GUI () D
packForget packForget :: PWidget w -> GUI () D

 187

Expand expand :: Bool -> PackInfo D
packAnchor packAnchor :: Anchor -> PackInfo D
packPos packPos :: PlacePos WPath -> PackInfo D

checkButton'
checkbutton’ :: WPath -> [Conf Che] -

> GUI Checkbutton D

checkButton
checkbutton :: Window -> [Conf Che] -

> GUI Checkbutton D

moveObject
moveObject :: CWidget w -> Coord ->

GUI () D

removeObject
removeObject :: CWidget w -> Maybe

WTag -> GUI () D

lowerObject
lowerObject :: CWidget w -> Maybe

WTag -> GUI () D
raiseObject raiseObject :: CWidget w -> GUI () D

bboxObjects
bboxObjects :: [CWidget a] -> GUI

(Int,Int,Int,Int) D

Xview
xview :: ScrollableX b => Widget a b

-> GUI (Double,Double) D

xMoveTo
xMoveTo :: ScrollableX b => Widget a

b -> Double -> GUI () D

xScroll
xScroll :: ScrollableX b => Widget a

b -> ScrollUnit -> GUI () D

Yview
yview :: ScrollableY b => Widget a b

-> GUI (Double,Double) D

yMoveTo
yMoveTo :: ScrollableY b => Widget a

b -> Double -> GUI () D

yScroll
yScroll :: ScrollableY b => Widget a

b -> ScrollUnit -> GUI () D

scanMark
scanMark :: Scan w => Widget a w ->

Int -> Int -> GUI () D

scanDrag
scanDrag :: Scan w => Widget a w ->

Int -> Int -> GUI () D

listboxMoveToSee
listboxMoveToSee :: Listbox -> LIndex

-> GUI () D

addListboxSelection
addListboxSelection :: Listbox ->

LIndex -> LIndex -> GUI () D

putPosTag
putPosTag :: Edit -> TIndex -> String

-> [Conf Tg] -> GUI Tag D

setWithTags
setWithTags :: Edit -> TagId ->

[TIndex] -> GUI () D

lowerTag
lowerTag :: Tag -> Maybe TagId -> GUI

() D

raiseTag
raiseTag :: Tag -> Maybe TagId -> GUI

() D
Stretch stretch :: Bool -> Conf Ew D
Align align :: Align -> Conf Ew D

 188

Appendix D: Experiment Data for Usability Experiment
The following steps were followed to test the hypotheses and evaluate the effect size

of the findings

1. The data was first scanned for outliers. Outliers were found using Box-

Whisker plots and were not considered for analysis.

2. The data were then analyzed for normality. Kolmogorov Smirnov (K-S) tests

were performed on each data set. If the significance value of K-S tests

exceeded the threshold value of 0.05 (p > 0.05), then the data was inferred to

be normal.

3. If the data was normal, dependent t-tests were performed or else Wilcoxon

Signed Ranked (W-S) Tests were performed to test the null hypotheses. If the

significance value for the tests exceeded the threshold value of 0.05 (p > 0.05)

the null hypothesis was accepted, otherwise the alternative hypothesis was

accepted.

4. The effect size was calculated by calculating the correlation coefficient from

the test statistic. The threshold values of small, medium and large effect sizes

are r =0.10, r=0.30 and r=0.50 respectively.

Table D.1 presents the details of the statistical analysis.

 189

Normality Tests
K-S tests

t- test Verdict on
Hypothesis

W-S tests Effect Size

V
ar

ia
b
le

T
es

t
T
ec

h
n
iq

u
e

Mean

K-S
Z

K-S p Verdict t DF sig (2
–
tailed)

Mean
Difference

Std Error
Difference

Null
Hypothesis?

W-S
Test
Z

W-S
test
sig

Effect
Size

Effect
Size
verdict

T1 0.003 1.292 0.349 Normal Learn
T2 0.001 0.993 0.071 Normal

6.056 18 0.000 0.0015 0.00025 Rejected N/A N/A 0.61 Large

Eff T1 0.25 0.836 0.487 Normal
 T2 0.084 0.554 0.918 Normal

5.913 21 .000 0.1632 .0276 Rejected N/A N/A 0.75 Large

E I T1 2.82 1.607 0.011 Not
Normal

 T2 6.10 0.873 0.431 Normal
N/A N/A N/A N/A N/A Rejected

-
2.885

0.004 -0.39 Medium

Sat T1 2.833 1.288 0.073 Normal
 T2 2.944 1.050 0.220 Normal

0.368 37 0.715 0.11 0.302 Accepted N/A N/A 0.06 Low

Ease T1 2.7381 1.093 0.183 Normal
 T2 3.3611 1.212 0.106 Normal

2.592 37 0.014 0.062 0.240 Rejected N/A N/A 0.39 Medium

EffectP T1 0.8668 1.163 0.133 Normal
 T2 0.1197 1.886 0.002 Not

Normal
N/A N/A N/A N/A N/A Rejected 5.647 0.000 0.87 Large

EffectPgeric T1 0.884 1.599 0.012 Not
Normal

 T2 0.491 0.614 0.846 Normal
N/A N/A N/A N/A N/A Rejected 5.579 0.000 0.86 Large

EffP T1 0.0018 0.839 0.482 Normal
 T2 0.0007 0.554 0.918 Normal

5.227 21 0.000 0.0011 0.00021 Rejected N/A N/A 0.75 Large

Table D.1: Results of Statistical Analysis of Data

 190

Bibliography

[1] A. A. Reyes and D. J. Richardson, “Siddhartha:A Method for Generating

Domain-Specific Test Driver Generators,” in Proc. 14th IEEE International

Conference on Automated Software Engineering, Cocoa Beach, FL, 1999, pp.

81-90.

[2] A. Deursen and P. Klint, “Little languages: Little maintenance?” Journal of

Software Maintenance, 10:75-92, 1998.

[3] A. Deursen, P. Klint and J. Visser, “Domain-specific Languages: An

annotated bibliography,” in ACM SIGPLAN Notices, vol.35, no. 6, pp. 26-36,

2000 http://www.cwi.nl/projects/dsl

[4] A. Field and G. Hole, How to Design and Report Experiments .London, UK:

SAGE Publications, 2003.

[5] A. Hughes and D. Grawoig, Statistics: A Foundation for Analysis .Reading,

MA: Addition Wesley Publishing Company, 1971.

[6] A. M. Memon, M. E. Pollack and M. L. Soffa, “Hierarchical GUI test case

generation using automated planning,” in IEEE Transactions on Software

Engineering, Volume: 27 Issue: 2, Feb. 2001 pp: 144 –155.

[7] A. Sinha , H. Nejad, C. Smidts, A. Moran, J. Widamier , “Concurrent

Modeling for High Assurance Software Test and Development”, Fast

Abstract, Proceedings of DSN 2002, pp. B-45-B-46.

[8] A. Sinha, C. Smidts and A. Moran, “Enhanced Testing of Domain Specific

Applications by Automatic Extraction of Axioms from Functional

 191

http://www.cwi.nl/projects/dsl

Specifications,” in Proc. 14th International Symposium on Software Reliability

Engineering, Denver, 2003, pp. 181-190.

[9] B. Beizer, Software Testing Technique .Boston, USA: International Thomson

Computer Press, 1990.

[10] B. E. John, “Evaluating Usability Evaluation Techniques,” in ACM

Computing Surveys, [Online] 28 (4es). Available:

http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a139-john/.

[11] B. Vaysburg, L. H. Tahat and B. Korel, “Dependence Analysis in Reduction

of Requirement Based Test Suites,” in Proc .International Symposium on

Software Testing and Analysis, Roma, Italy, pp. 107-111, 2002.

[12] B. W. Boehm, C. Abts, A.W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.

Madachy, D. Reifer, B. Steece, Software Cost Estimation With COCOMO II.

Prentice Hall, July 2000.

[13] C. E. Williams, “Toward a test-ready meta-model for use cases,” in Proc.

Workshop on Practical UML-based Rigorous Development Methods, Toronto,

CA, 2001, 270–287.

[14] C. J. Wang and M. T. Liu, “Generating Test Cases for EFSM with Given

Fault Models,” in Proc. IEEE Infocom, 2, pp. 774-781, 1993.

[15] C. L. Heitmeyer, B. G. Labaw, “Consistency checks for SCR-style

requirements specifications.” Technical Report 9586, NRL, Washington DC,

1978.

[16] D. Bruce, “ What makes a good domain-specific language? APOSTLE, and its

approach to parallel discrete event simulation”.

 192

http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a139-john/

[17] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos and E.J. Weyuker, “A Framework

for Testing Database Applications,” in Proc. ISSTA 2000, Portland, 2000, pp.

147-157.

[18] D. K. Peter and D. L. Parnas, “Using Test Oracles Generated from Program

Documentation,” in IEEE Transactions on Software Engineering, Vol 24, No.

3, pp. 161-173,1998.

[19] D. Leijen and E. Meijer, “Domain Specific Embedded Compilers,” in Proc.2nd

USENIX Conference on DSL, Austin, 1999, pp. 109-122.

[20] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental

Designs for Research. Chicago: Rand McNally and Company, 1963.

[21] E. M. Clarke , J. M. Wing , et al., “Formal Methods: State of the Art and

Future Directions”, in ACM Computing Surveys, Vol. 28, No. 4, December,

1996, pp. 626-643.

[22] G. Arango, “Domain analysis: From art form to engineering discipline,” in

Proc.5th International Workshop on Software Specification and Design,

Pittsburgh, 1989, pp. 152-159.

[23] G. E. Stark, R. C. Durst and T. M. Pelnik, “An Evaluation of Software Testing

Metrics for NASA's Mission Control Center” [Online] MITRE, Available:

http://hometown.aol.com/geshome/ibelieve/sqjsubm2.pdf.

[24] G. Tassey, “The Economic Impacts of Inadequate Infrastructure for Software

Testing,” in Planning Report 02-3. Prepared by RTI for the National Institute

of Standards and Technology (NIST), May 2002: see

http://www.nist.gov/director/prog-ofc/report02-3.pdf

 193

http://hometown.aol.com/geshome/ibelieve/sqjsubm2.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf

[25] HaskellDB Manual, Galois Connections Inc., 2002.

[26] IEEE Guide to Software Requirements Specification, IEEE Standard 830,

1984.

[27] J. C. Knight, C. L. DeJong, M. S. Gibble and L.G. Nakano, “Why Are Formal

Methods Not Used More Widely?” in Proc. 4th NASA Formal Methods

Workshop, Hampton, VA, 1997.

[28] J. Cohen, “A Power Primer,” in Psychological Bulletin, Vol. 112, no. 1, pp.

155-159.

[29] J. Dick and A. Faivre, “Automating the Generation and Sequencing of Test

Cases from Model-Based Specifications,” in Proc. First International

Symposium of Formal Methods Europe on Industrial-Strength Formal

Methods, Odense, 1993, pp.268-284.

[30] J. Hughes, “Why Functional Programming Matters?,” in The Computer

Journal, vol.32, pp 98-107, April 1989.

[31] J. K. Chaar, M. J. Halliday, I. S. Bhandari and R. Chillarge, “In-Process

Evaluation of Software Inspection and Test,” in IEEE Transaction on

Software Engineering, Vol 19, No. 11, November, 1993, pp. 1055-1070.

[32] J. Nielsen, Usability Engineering .San Diego, CA: Academic Press Inc.,1993.

[33] J. Siegel, Introduction to OMG UML, OMG Consortium, online

http://www.omg.org/gettingstarted/what_is_uml.htm

[34] J. T. Huber, “Efficiency and Effectiveness Measures to Help Guide the

Business of Software Testing”, in Applications of Software Measurement, HP

 194

Labs Research Report, 1999, [Online]. Available:

http://www.benchmarkqa.com/PDFs/efficiency_measures.pdf.

[35] J. Tretmans and A. Belinfante, “Automatic testing with formal methods,” in

Proc. EuroSTAR'99: 7th European Int. Conference on Software Testing,

Analysis & Review, Barcelona, Spain, November pp. 8-12, 1999. EuroStar

Conferences, Galway, Ireland.

[36] James McDonald and John Anton. “SPECWARE - Producing Software

Correct by Construction.” Kestrel Institute Technical Report KES.U.01.3.,

March 2001.

[37] K. Finney, “Mathematical notation in formal specification: Too difficult for

the masses?” in IEEE Transactions on Software Engineering, Volume 22, No

2, pp.158-159, 1996

[38] Krasner and Pope, A Cookbook Approach to Using MVC, JOOP, 1(3): 26-49.

[39] L. J. Jagadeesan, A. Porter, C. Puchol, C. J. Ramming and L. G. Votta,

“Specification-based testing of reactive software: tools and experiments,” in

Proc.19th International Conference on Software Engineering, Boston, 1997,

pp. 525–535.

[40] Luqi and J. Goguen, “Formal Methods: Problems and Promises,” in IEEE

Software, Volume 14, No 1, pp 73-85, 1997.

[41] M. Antoniotti and A. Göllü, “SHIFT and SMART-AHS: A language for

hybrid system engineering modeling and simulation.” Ramming J. C., editor,

Proceedings of the USENIX Conference on Domain-Specific Languages,

Berkeley, CA, October 15-17 1997, pages 171-182.

 195

http://www.benchmarkqa.com/PDFs/efficiency_measures.pdf
ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf
ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf

[42] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.

Veanes, “Model-Based Testing with AsmL.NET,” in Proc. 1st European

Conference on Model-Driven Software Engineering , December 2003.

[43] M. Sage, “TclHaskell-User Manual”, August 1999

[44] M. Van den Brand, A. Van Deursen, P. Klint, S. Klusener, and E. Van der

Meulen, “Industrial applications of ASF+SDF”, Wirsing M. and Nivat M.,

editors, Algebraic Methodology and Software Technology (AMAST '96),

volume 1101 of Lecture Notes in Computer Science, pages 9-18. Springer-

Verlag, 1996.

[45] M. Kwan. Graphic programming using odd and even points. Chinese Math., 1,

pp. 273-277, 1962

[46] P. A. Stocks, P. A., D. A. Carrington, “Deriving Software Test Cases from

Formal Specifications,” in Proc.6th Australian Software Engineering

Conference, Sydney 1991, pp. 327-340.

[47] P. Hudak , “The Haskell School of Expression”, Cambridge University Press,

NY, 2000.

[48] P. Hudak, , “Conception, Evolution and Application of Functional

Languages”, ACM Computing Surveys, Vol.21, No.3, September 1991

[49] P. Savage, S. Walters and M. Stephenson, “ Automated Test Methodology for

Operational Flight Programs,” in Proc. IEEE Aerospace Conference, vol.4,

pp. 293-305, 1997.

[50] P.A.V. Hall, “Relations between Specifications and Testing,” in Information

and Software Technology, vol.33, no. 1, pp. 47-52, 1991.

 196

[51] R. Chillarege, I.S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.

Ray, and M. Y. Wong, “Orthogonal Defect Classification – A Concept for In-

Process Measurements,” in IEEE Transactions on Software Engineering, Nov

1992.

[52] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir, “Test

Development For Communication Protocols: Towards Automation,” in

Computer Networks, 31, 1999, pp. 1835-1872.

[53] Rational Rose Enterprise Edition, IBM Corporation, New York, NY 2004.

[54] Rational XDE Tester User’s Guide, IBM Corporation., New York, NY, 2004

[55] S. Chandra, B. Richards, and J. R. Larus, “Teapot: A domain-specific

language for writing cache coherence protocols”, IEEE Transactions on

Software Engineering, 25(3), May/June 1999, pages 317-333.

[56] S. Thompson, Haskell: The Craft of Functional Programming, Essex:

Addison-Wesley, 1999.

[57] Silktest User’s Guide, Version 6.5, Segue Software Inc., Lexington, MA,

2002.

[58] Test Master User’s Guide, Release 1.9.5, Empirix Inc., New Hampshire,

1999.

[59] Testing Tool Information, Grove Consultants, 2002.

[60] University of Massachusetts, CS 530 Lecture Slides, 2001.

[61] V. Basili, “ Software Quality Assurance and Measurement: A Worldwide

perspective”, in Applying the Goal/question/Metric Paradigm in the

 197

Experience factory, Chapter 2, pp 21- 44, International Thomson Computer

Press, ITP An International Thomson Publishing Company, 1995.

[62] WinRunner User’s Guide, Version 7.01, Mercury Interactive Inc., Sunnyvale,

CA, 2001.

 198

	Avik Sinha, Ph.D 2005
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Objective
	Research Statement
	Approach
	Content
	Summary of Contributions
	References

	Literature Review
	Model Based Testing
	Domain Specific Testing
	Motivation
	Summary
	References

	Domain Specific Languages and Model Based Testing
	Application Specific Needs and Languages
	What is a DSL?
	Advantages of DSL
	Challenges of using DSL
	DSLs and Model Based Testing
	Types and Functions of HaskellDB
	HaskellDB Types
	HaskellDB Functions

	HaskellDB Axioms and Domain Specific Requirements
	Summary
	References

	Derivation of a Structural Representation
	Derivation of EFSM
	Three styles.
	Specification to Actual Flow
	Derivation of the EFSM.

	Derivation of EFSMA
	Treatment of Parameters
	Derivation of EFSMA
	Embedding the Axioms

	Specification with Conditional Flow
	State Machine

	Special Case of Recursion
	Summary
	References

	Tool Support for HOTTest
	Modeling of SSP
	Component 1: Hugs Interpreter
	Component 2: Call Graph Generator
	Component 3: EFSM Generator:
	Component 4: Test Generator
	Summary
	References

	Experimental Validation of Usability and Performance
	The Experiment Design
	The Research Question
	Variables
	Measurement Models
	Usability
	Performance

	Hypothesis
	Design
	Threats to Validity

	Experiment Preparation
	Subjects
	Applications
	Requirement Parsing

	Experiment
	Measurement and Analysis
	Usability -Learning
	Usability-Efficiency
	Usability- Error
	Usability- Satisfaction and Ease
	Performance-Effectiveness
	Performance- Efficiency

	Results and Discussion
	Summary
	References

	Industrial Applicability of HOTTest and Other Test Generatio
	Description of the Test Design Tools
	Archetest
	ASMLT
	EFSM Based Test Generation

	Design of Case Study
	Design of the Measurement Framework
	Questions and Metrics
	The Metrics and the Measurement Models:

	Case Study Instruments
	Case Study: Process
	Threats to Validity

	Case Study Results
	Complexity of the Modeling Process
	Ease of Learning
	Effectiveness
	Efficiency
	Scalability

	Analysis of the Results
	Summary
	References

	Extension to other Domains
	Steps for Extension
	Domain Analysis
	Design/ Choice of a Domain Specific Language
	Associate Requirements to DSL constructs

	Extension to the domain of Graphical User Interface
	Domain Analysis
	Choice of Domain Specific Language
	Associating Requirements to DSL constructs

	Summary
	References

	Conclusion and Future Work
	Advantages of HOTTest
	Limitations of HOTTest
	Future Research

	Appendix A: HaskellDB
	Appendix B: HaskellDB Axioms
	Appendix C: TclHaskell Axioms
	Appendix D: Experiment Data for Usability Experiment
	Bibliography

