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Abstracr: Local bifurcation control problems are defined and
emploved in the study of the local feedback stabihization prob-
lem for nonlinear systems in critical cases. Sufficient conditions
are obtained for the local stabilizability of general nonlincar
svstems whose linearizations have a pair of simple. nonzero
imaginary eigenvalues. The conditions show, i particular, that
generically these nonlinear entical systems can be stabihzed
locally, even if the critical modes are uncontrollable. The
analysis also vields a direct method for computing stabilizing
feedback controls. Use is made of bifurcation formutae which
require only a series expansion of the vector field.

Kevwords: Control systems, Stabilization. Bifurcation, Hopf
bifurcation, Nonlincar systems.

1. Introduction

Recently several authors have addressed the
question of stabilizability of nonlinear control sys-
tems and its relation to controllability. Sussmann
[20] shows that under very general assumptions a
reasonable notion of controllability for areal ana-
lytic control system implies the existence of a
piecewise analytic feedback control steering all
points in the state space to any given point. He
showed by example that an analytic stabilizing
feedback control may fail to exist. Brockett [4]
obtains both necessary conditions and sufficient
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conditions for the existence of a smooth feedback
which renders an equilibrium point of a nonlinear
system locally asvmptotically stable. Although the
results of [4] are applicable to general nonlinear
control systems X = f(x. u). verification of the
sufficiency conditions in specific examples is com-
plicated by the need to construct a Liapunov
function. It is noted in [4] and [3] that the only
interesting situation is that in which the linearized
system X = Ax+ Bu has uncontrollable modes
with zero real part and no unstable uncontrollable
modes. This is the onlv case for which the linear
theory is inadequate. Stability problems for sys-
tems in which the lineanization has some eigenval-
ues with zero real part and the remaining eigenval-
ues with negative real part are referred to as
critical cases in stability. Thus only the critical
cases are interesting in questions of local stabiliza-
bility of nonlinear systems. Aeyels [3] studied this
same problem for a class of critical nonlinear
systems using center manifold reduction and a
standard stability computation for the Hopf bifur-
cation in two dimensions. Although the results on
stabilizability of a certain class of systems reported
in [3] are useful and easy to apply, obtaining
generalized results using this approach may prove
difficult since the analysis depends on the compu-
tation of a center manifold. The series expansion
of the center manifold in turn depends on the
feedback control. This leads to a measure of trial
and error in determining sufficient conditions for
stabilizability. These remarks remain valid if one
attempts a reduction of dimension via the method
of Liapunov-Schmidt [7] and then applies rea-
soning analogous to that of [3].

This paper has two main goals, The first is to
indicate the connection between local stabilization
in critical cases and a seemingly distinct problem,
that of (local) bifurcarion control. This connection
becomes transparent given some basic facts about
bifurcations of equihibria of differential equations,
and provided that a clear definition of local bifur-
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cation control problems is given. The point to be
noted here is that often results on stabilization in
critical cases can be directly applied also to prob-
lems in the control of bifurcations. Correspond-
ingly. local bifurcation control problems provide
added motivation for the study of stabilization in
critical cases. The connection is established here
for the case of Hopf bifurcation; the case of
stationary bifurcation will be considered elsewhere
[8]. The second goal of this work i1s to obtain
generally applicable results for the case in which
the linearized system’s state dynamics matrix pos-
sesses a pair of simple, pure imaginary eigenval-
ues. The case of a simple zero eigenvalue will be
treated in a forthcoming paper [8] by viewing it as
a problem of controlling a double-point bifurca-
tion. The case of two pure imaginary eigenvalues is
treated here as a Hopf bifurcation control prob-
lem. Although the work of [3] in some ways resem-
bles the present approach. the former involves a
prehminary state transformation and a reduction
to a center manifold, neither of which is needed
here. Moreover. the present approach allows the
derivation of generally valid analytical criteria for
stabilizability as well as specific stabilizing feed-
back controls. This is possible through use of
bifurcation formulae which involve only Taylor
series expansion of the vector field and eigenvector
computations. These formulae are derived in
[12,13,14] by appealing to the Fredholm Alterna-
tive. They significantly simplify similar formulae
obtained by Hopf [11].

It is appropriate to note that work on bifurca-’

tion control has been reported by Mehra [18] and
Mehra, Kessel and Carroll [17]. See also the
account in Casti [6]. These results tend to be
concerned with the problem of globally removing
bifurcations by state feedback. They apply only to
stationary bifurcations, since they are obtained by
appealing to a global implicit function theorem.
This differs markedly from the local bifurcation
control problems considered here and in [8], in
which one seeks only to modify the stability prop-
erties of the bifurcated solutions.

2. The local feedback stabilization problem

Consider the nonlinear control system
x=f(x, u) (1)
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where x € R" is the state, u € R is the control,
and f is smooth in x and u. A scalar control has
been assumed for simplicity though the case of a
vector control is easily handled by the same meth-
ods. Suppose that the origin is an equilibrium
point of (1) in the absence of a control effort, i.e.
f(0.0)=0. For this system, the local smooth feed-
back stabilization problem is to find a smooth
feedback u = w(x) with w(0)=0 such that the
origin is a locally asymptotically stable equi-
librium point of the controlled system x =
f(x. u(x)).

The linearization of Eq. (1) at x=0, u=0 1s
given by

x=Ayx+ bu (2)

where
9/ =9
Ay= P (0.0) and b:= P (0,0).

If the pair (A4,. b) is controllable, then a standard
linear systems result asserts the existence of a
linear feedback u = —kx such that the resulting
system % =(A,— bk)x is asymptotically stable.
Applying this feedback in the original nonlinear
system (1) renders the origin locally asymptotically
stable. Moreover, the same conclusion applies if
the uncontrollable modes of (2) are asymptotically
stable. In contrast, if (A4,, ) has an unstable
uncontrollable mode, then the origin of (1) re-
mains unstable regardless of the applied feedback.
These same considerations were used in [4] and [3]
to determine that the only interesting and essen-
tially nonlinear situation encountered in local
feedback stabilization occurs when some uncon-
trollable modes of (2) are pure imaginary, and any
other uncontrollable modes are asymptotically sta-
ble.

In the light of the foregoing discussion, it is
appropriate to assume that the matrix A, of Eq.
(2) possesses at least one eigenvalue with zero real
part. These eigenvalues should correspond to un-
controllable modes of (2). The type of results
obtained will depend heavily on the number of
eigenvalues of A, which are assumed pure imagin-
ary, their multiplicity, and whether they arg zero
or have nonzero imaginary parts. The results of
this paper will apply in case the following hy-
pothesis is satisfied.

(H) The matrix A4,=(df/dx)0,0) has a pair of
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simple, complex conjugate eigenvalues A, =
iw., A; = —iw.on the imaginary axis, where w, #
0. Moreover. all other eigenvalues of A4, have
negative real part.

In studying the local feedback stabilization
problem. it will be convenient to view the system
(1) as resulting from a onc-parameter family of
systems

x=f(x.u) (3)

upon setting = 0. Here p 1s an auxiliary real
parameter, and the dependence of f, on u is
smooth and such that for the eigenvalue A,(p)
which is the continuous extension of the critical
eigenvalue A; of (H) above. Re Aj(0)# 0. This
requirement along with satisfaction of (H) implies
that Eq. (3) undergoes a Hopf bifurcation from the
origin at p=0. This means that a nonconstant
periodic solution of Eq. (3) emerges from the
origin for p near zero [16.10.7.14].

It should be stressed that the parameter depen-
dence in Eq. (3) nced not be artifictal. In many
applications. one is interested in the qualitative
dependence of Eq. (3) on an actual physical
parameter p. For instance, one might seek a feed-
back control u(x) which stabilizes the bifurcated
periodic solution of (3) for all sufficiently small
values of |u¢|. A main observation of this paper is

that this local Hopf bifurcation control problem and-

the local feedback stabilization problem defined
above can be resolved by the same analysis.

To set the framework and notation of the paper,
it is useful to review briefly some basic results
from bifurcation analysis. In the next section the
Hopf Bifurcation Theorem and an associated
stability computation [12,13] are recalled. In Sec-
tion 4 the connection between local feedback sta-
bilization and local bifurcation control under hy-
pothesis (H) i1s made precise, and the results of
Section 3 are used to obtain stabilizability condi-
tions for Eq. (1).

3. Hopf bifurcation and bifurcation formulae

In this section a stability formula from Hopf
bifurcation theory is recalled. The formula was
derived in [12,13]. It will first be necessary to fix
the general setting and recall standard notation.

Consider a general one-parameter system of
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ordinary differential equations
X =F,(x) (4)

where Fy(0)=0 and F is smooth in x, p. Suppose
that hypothesis (H) applies to this system, i.e. that
D, F,(0) has a simple pair of nonzero pure imagin-
ary eigenvalues +iw,., with all other eigenvalues in
the open left half complex plane. From (H) and
the Implicit Function Theorem. it follows that for
| | sufficiently small, Eq. (4) has a locally unique
equilibrium point x,(g) near 0. The Jacobian
matrix of (4) evaluated along this equilibrium path
s

JF,
A= =2 (o). (

wn
~

Note that A(0)= A, and that A(p) depends
smoothly on p. Thus A(u) possesses a complex
conjugate pair of simple eigenvalues A(p), A(p)
which depend smoothly [19] on p and such that
A(0) = iw_ (cf. (H)). Denote the real and imaginary
parts of A(p) by a(p) and w(p). respectively.

Under hypothesis (H), and assuming a'(0) # 0.
the Hopf Bifurcation Theorem asserts the ex-
istence of a one-parameter family { p,, 0 <e < ¢y}
of nonconstant periodic solutions of Eq. (4) emerg-
ing from x = 0 at p = 0. Here e i1s a measure of the
amplitude of the periodic solutions and ¢, is suffi-
ciently small. The periodic solutions p,(t) have
period near 2mw, ' and occur for parameter values
p given by a smooth function p(e). Exactly one of
the characteristic exponents of p, i1s near 0, and 1s
given by a real, smooth and even function

B(E)ZB:EZ+3454+ (6)

Moreover, p,(1r) is orbitally asymptotically stable
with asymptotic phase if 8(¢) < 0 but is unstable if
B(e)> 0. Denote by B,4 the first nonvanishing
coefficient in the expansion (6). Checking the sign
of B.x 1s sufficient for determining stability.
Generically, K =1 so that locally the stability of'
the bifurcated periodic solutions p, is typically
decided by the sign of the coefficient f,.

An algorithm for the computation of 8, can be
useful in the solution of local feedback stabili-
zation problems under hypothesis (H). In [3] the
evaluation of (a scaled version of) 8, is performed
using a formula which applies to two-dimensional
systems. The original n-dimensional system is re-
duced to a two-dimensional system by appealing
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to the Center Manifold Theorem. Use is then
made of the fact [5.7] that the stability properties
of an equilibrium on the center manifold coincide
with its stability in R". In fact. the value of B(¢) 1s
known [16.10.1] to be the same for the original and
the reduced systems. The approach taken in this
paper differs from that of [3] mainly in the choice
of algorithm for computing f.. The implications
for the tvpe of results one obtains are nontrivial.
Next an algorithm for computing 8, is given: the
discussion follows closely that of Howard [13].

Step 1. Suppose for simplicity that x,(p) = 0: this
has no effect on the final formula for 8,. Express
F(x) in the series form

FAx)=Lox+Q(x. x)+C{x. v x)+ -+ (7)

where the terms not written explicitly are higher
order in p and x than those which are. In (7). Q 18
generated by a vector valued symmetric bilinear
form Q(x. v) giving the second order (in x) terms
at =0, and C 1s generated by a vector valued
svoumetric trilinear form C(x, v, z) giving the third
order (in x) terms at p=90. Let r be the right
(column) and / the left (row) cigenvector of L,
with cigenvalue iw_. Normalize by setting the first
component of r to 1 and then choose / so that
Ir=1.

Step 2. Solve the equations
—Loa=30(r. F). (8)
(2iw 7~ Ly)b=30(r. r) (9)

for ¢ and b.

Step 3. The coefficient 8, 1s

B.=2Re{21Q(r. a)+1Q(F. b)
+3C(ror ). (10)

4. Control of Hopf bifurcations

Now suppose f3, # 0. Besides locally determin-
ing the stability of the bifurcated periodic solu-
tions p,(t). it 1s known that the sign of the coeffi-
cient 3, also determines the stabulity of the equi-
librium x,(p) at criticalitv (1.e. at g = 0). This fact
implies that if a feedback control u = u(x) can be
found such that 8, <0 for the Hopf bifurcation
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occurring in the controlled system

t=/f(x u(x)) (11)

then the local feedback stabilization problem de-
scribed in Section 2 is solved. Simply use the
feedback w=u(x) in Eq. (1). Indeed. such a
feedback solves borh the local smooth feedback
stabilization problem for Eq. (1) and the local
Hopf bifurcation stabilization problem for any
parametrized version of (1) of the form (11). This
establishes the connection between local feedback
stabilization and Hopf bifurcation control. Recall
that the appearance of g in (11) is artificial in the
local feedback stabilization problem but is an in-
tegral part of the problem formulation in the case
of local Hopf bifurcation control.

Summarizing, a sufficient condition for the ex-
istence of a solution to the local smooth feedback
stabilization problem for Eq. (1) and the local
Hopf bifurcation control problem for Eq. (11) is
that there exist a feedback u(x). u(0)=0 such
that Eq. (11) undergoes a Hopf bifurcation at
p =0 with 8, <0. The remainder of this section 1s
devoted 1o uncovering an easily verifiable condi-
tion for this to be the case. The first step is to
evaluate B, for the controlled system (B¥) and
determine its relationship to B, for the uncon-
trolled system: this is pursued next. In what fol-
lows, starred quantities pertain to the controlled
system.

Proceeding, rewrite Eq. (1) in the series form

$=Lyx+uy+ul x+ Qy(x, x)

+ullyx + uQ(x, x)+ Cy(x, x, x)+ - --
(12)

where the notation is similar to that in Section 3.
but here the terms uy, ul,x. u’L,x and uQ,(x. x)
have been included since they occur in the compu-
tation of B, for the controlled system. The vector
vy in Eq. (12) corresponds to b in Eq. (2). Note
that. in this context, one cannot in general suppose
that y=0. This would result from requiring
/(0. u)=0 rather than merely f(0, 0)=0. Ensur-
ing that this is the case is quite complicated since a
u-dependent change of coordinates would be
needed, and u is a control intended to depend on
x. This is in contrast to the standard assumption
in the analysis of Hopf bifurcations that, for Eq.
(4). F,(0)=0.

It is well known that only the quadratic and
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cubic terms occurring in a nonlinear system under-
going a Hopf bifurcation influence the value of 8,.
This fact is clear from Eq. (10) for 8,. Thus only
the linear. quadratic and cubic terms in an applied
feedback w(x) have potential for influencing B,.
Therefore the feedback control w(x) may be as-
sumed to be of the form

w(x)=c'x +x'Q,x+ C,(x. x. x). (13)

where ¢ is a real column vector. Q, is a real
symmetric n X n matrix, and C, i1s a cubic form
generated by a scalar valued symmetric trilinear
form. The closed loop dynamics. upon application

of a feedback control u of the form (13), become
X=L¥x+Q¥x. x)+CHx. x. x)+ -+ (14)

where the matrix L§. the quadratic form Q8(x. x)
and the cubic form CJ(x. x. x) are

L¥=L,+vyc'. (15a)

03(x. ¥) = (x'Q,x)y + Qu(x. x) + (') L.
(15b)

and

CHx.x.x)=Cx. x. x)y+ C)(x, x, x)

+("x)’ L,x

+(c"x)Q0,(x, x)+ (xTQ,,x)le.
(15¢)

By Eq. (15a). Ly differs from L, only in case
ve! # 0. Thus it is convenient to set

c=0 (16)

to simplify comparing B, for the controlled and
uncontrolled systems. This ensures that the critical
eigenvalues and the left and right eigenvectors of
L, and L} needed to compute 8, by Howard’s
algorithm are identical. (Of course, if the critical
eigenvalues are assumed uncontrollable, then they
will be the same for L, and L, regardless of ¢.)

Note that the tnlinear form C§ of the con-
trolled system is not necessarlly symmetric in the
form indicated by Eq. (15¢), even with ¢ set to 0.
Fortunately, however, no such difficulty arises in
the case of the bilinear form Q§:

O5(x, v)=(x'Q,y)r+ Qolx, »). (17)
To render C§(x, y, z) symmetric, write

CH(x. v, z2)=C,(x, v, z2)y+ Cy(x, y, 2)
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+3{(y'Quz) Lix + (x"Q,») L1z
+(z"0,x)L,y}. (18)
Apply Eq. (10) to the controlled system (14) to
get
BFr=2 Re{Zng(r, a*) +1Q%(r. b¥)
+3CH(r. r P} (19)

where a*, b* are obtained using Eq. (17) and the
algorithm of Section 3 as

a* = —1(L5) 'Qs(r. 7)

= —1L5'Qu(r. P) ('O F) Loty (20)
and
b* =3Qiwrl — L) 'Q3(r. 1)

=3Qiw - L())W]Qo(n r)

+3(r"Q,r) Qv ~ Ly) . (21)
Equations (17)-(21) now imply that 85 is given in
terms of 3, by
Bf=pB,+2ReA (22)
where A is given by
A=2[r"Q,a*y = Q(r. }(r'0.F) L5 'Y)]

+1[77Q,b*y
+Qo(r. 4(r'Qur)@iw ~ Ly) ')
+3C,(r, r, Ty

+31[2(r"QF) Lyr + (r7Q,r) LiF). (23)

It remains to use Eq. (23) to find conditions
under which B85 can be made negative. This will be
achieved by determining criteria under which both
the sign and magnitude of Re A can be set to any
desired value by feedback control.

The case /y # 0 deserves special consideration,
since by the well known Popov-Belevitch-Hautus
(PBH) test [15] the critical modes are then control-
lable for the linearized system. Henceta linear
stabilizing feedback exists in this case. Interest-
ingly, Eq. (23) shows that if /y # 0 a cubic stabiliz-
ing feedback also exists. To see this, simply set

@, =0 and consider the effect of the cubic terms
in the feedback control. The outcome is that since
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A reduces to
A=iC(r.r. F)ly (24)

and C,(r. r. ) can be assigned any complex value
by appropriate choice of the trilinear form
C,(x. v. o). the origin is certainly locally stabiliz-
able if /y # 0.

Theorem 1. Ler hvpothesis (H)y hold and assume
that Iy #0. That is. the critical eigenvalues are
controlluble for the linearized svstem. Then there is
a feedback u(x) with u(0) =0 which solves the local
smooth feedback stabilization problem for Eq. (1)
and the local Hopf bifurcation control problem for
Eq. (11). Moreover. this can be accomplished with
only third order terms in u(x). leaving the critical
eigenralues unaffected.

Next the case in which /y =0 will be consid-
ered. By the PBH test. this corresponds to the
critical modes being uncontrollable for the lin-
earized system. Note that the class of nonlinear
svstems considered in {3} s of this category. Pro-
ceeding. suppose /y =0 and observe that the ex-
pression (23) for A now simplifies to

A= —2/Q(,(r. é("lQu'_')[‘n lY)
+1Qy(r. 4(r'Q,r)2iw I = Ly) 'y)
+1[2(FQ ) Ly + (P10, ) LyF]. (25)

Thus only the quadratic terms in the feedback
impact f3, in case /y = 0. Note that for the special
class of systems studied in [3]. only quadratic
terms were employed to stabilize the system. By
employing the present approach, it has been possi-
ble to show that in general, when /y =0 only the
quadratic terms in the feedback control can in-
fluence the value of §3,.

The value of Egs. (22) and (25) in studying the
local feedback stabilization and Hopf bifurcation
control problems when /y=0 will now be il-
lustrated more convincingly by obtaining an ex-
plicit condition for stabilizability in this case. Re-
quire the (real) matrix Q, to be such that

ImQ,r=0 and Re Q,r+0.

A simple computation shows that this is possible;
otherwise Re r and Im r would necessarily be
proportional, which is absurd since the critical
eigenvalues are nonzero. Introduce the real param-
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p:=(Re ) Q,(Rer) (26)

and. recalling that Q,, is a bilinear form. note that
Eq. (25) becomes

A=p(=200,(r. L, "y)

-1

+10,(r. Y2iw I = Ly) v)

+ [0+ L)) (27)

Thus the following sufficient condition is obtained
in the case Iy =0.

Theorem 2. Suppose that hypothesis (H) is satisfied
and that Iy = 0. Then there is a feedback u(x) with
u(® =0 which solves the local smooth feedback
stabilization problem for Eq. (1) and the local Hopf
bifurcation control problem for Eq. (11), provided
that

0+ Rel =2/0,(r. 1, "y)

+1Q,(r. L Qiw I = Ly) 'y)

MR+ L] (28)

The derivation of Theorem 2 also indicates how
a stabihizing feedback might be chosen. Simply
choose p of the proper sign (depending on the sign
of the expression in (28)) and large enough magni-
tude.
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