
  

ABSTRACT 
 
 
 

 
Title of Dissertation: WHO, WHAT, WHEN, WHERE, AND WHY? 

QUANTIFYING AND UNDERSTANDING 
BIOMEDICAL DATA REUSE 

  
 Lisa Federer, Doctor of Philosophy, 2019 
  
Dissertation directed by: Dr. Katie Shilton, Associate Professor & 

Doctoral Program Director, College of 
Information Studies 

 

Since the mid-2000s, new data sharing mandates have led to an increase in the 

amount of research data available for reuse. Reuse of data benefits the scientific 

community and the public by potentially speeding scientific discovery and increasing 

the return on investment of publicly funded research. However, despite the potential 

benefits of reuse and the increasing availability of data, research on the impact of data 

reuse is so far sparse. This dissertation provides a deeper understanding of the 

impacts of shared biomedical research data by exploring who is reusing data and for 

what purpose. Specifically, this dissertation examines use requests and dataset 

descriptions from three biomedical repositories that require potential requestors to 

submit descriptions of their planned reuse. Content analysis of use requests yields 

insight into who is requesting data and the methods and topics of their planned reuse. 

Comparing use requests to the descriptions of the original datasets provides insight 

into the breadth of impact of data reuse and text mining of the original dataset 

descriptions helps determine the topics of datasets that are highly reused. This study 

demonstrates that patterns of reuse differ between dataset types, with genomic 



  

datasets used more frequently together in meta-analyses for topics that diverge from 

the original purpose of collection, while clinical datasets are used more often on their 

own within a context that is similar to the reason for which they were collected. 

While requestors do come from a range of career stages from around the world, they 

are not evenly distributed; most requests come from English-speaking countries, 

especially the United States. This study also finds that datasets that receive the most 

requests soon after release continue to go on to be more requested, and that datasets 

covering common diseases are requested more than datasets on rare diseases. These 

findings have implications for several stakeholders, including funders and institutions 

developing policies to reward and incentivize data sharing, researchers who share 

data and those who reuse it, and repositories and data curators who must make 

choices about which datasets to curate and preserve.  
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Chapter 1: Introduction 

In 2007, computer scientist Jim Gray asserted that the practice of science had 

been fundamentally changed by the advent of new technologies that facilitated the 

collection, storage, and analysis of large digital datasets. “Techniques and 

technologies for such data-intensive science are so different,” he argued, “that it is 

worth distinguishing data-intensive science…as a new, fourth paradigm for scientific 

exploration” (Hey, Tansley, & Tolle, 2009, p. xix). In the decade since Gray first 

proposed this new paradigm, thousands of human genomes have been sequenced, and 

petabytes’ worth of scientific data collected, with more pouring in every day, giving 

rise to a veritable data deluge.  

It is not only the technical ability to more quickly and inexpensively gather, 

create, and store data that has transformed the practice of science, but also the 

establishment by both major funders and prominent publishing groups of mandates to 

share those data. Researchers around the world have begun to share their data not 

only in response to such mandates, but also as part of a growing movement toward 

open science practices that bring not only data, but a broad range of products of 

scientific research out of desk drawers and hard drives and into the public sphere, 

where they can be accessed, reused, and repurposed. In many fields, researchers today 

can feasibly conduct studies using publicly shared data, without ever having to set 

foot into a lab or seek funding to gather new data.  
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Despite this increasing availability of a broad range of datasets across 

scientific disciplines, little research has focused on how, why, or even if researchers 

are utilizing publicly available, shared research data. This dissertation aims to help 

close that gap in knowledge by exploring the ways in which scientific research 

datasets that are publicly shared have been reused. Specifically, I examine use 

requests from three biomedical data repositories in order to answer questions about 

who is reusing these datasets, how they are using them, and why some datasets are 

used more than others. 

1.1 Background of the Research 

A number of cultural and policy changes in the last few years have increased 

the availability of scientific research data for reuse. In 2013, the United States Office 

of Science and Technology Policy (OSTP) issued a memo directing agencies to 

develop policies to increase public access to research data generated using federal 

funds (Holdren, 2013). Accordingly, federal funders including the National Science 

Foundation (NSF) and National Institutes of Health (NIH) have created policies 

requiring researchers to share their data (National Institutes of Health Office of 

Extramural Research, 2016; National Institutes of Health Office of Science Policy, 

2017; National Science Foundation, 2010). The International Committee of Medical 

Journal Editors (ICMJE) has encouraged member journals to require that authors 

make data underlying their articles publicly available (Taichman et al., 2017), and 

many major publishers have already done so, including PLoS and Nature (Nature 
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Publishing Group, 2017; Silva, 2014). Researchers themselves are also increasingly 

embracing a culture of greater data sharing and transparency under the umbrella of 

various open science practices (Nosek et al., 2015b). 

As previous research has demonstrated, data sharing and openness bring a 

number of benefits to the researchers who share, the scientific community, and the 

general public. In addition to enhancing scientific reproducibility (Ioannidis, 2014; 

Munafò et al., 2017), shared data can be reused by other researchers, potentially to 

answer new questions not addressed in the original research. Data reuse increases the 

return on the investment of the original grant, and also saves on funding that would 

have been used to gather new data (Arzberger et al., 2004; Costello, 2009). The speed 

of scientific discovery, and in turn translation to clinical practice, can be accelerated 

when researchers can reuse existing data instead of spending months or years 

collecting new data (Knoppers, 2014; Knoppers, Harris, Budin, & Edward, 2014). 

Researchers who share their data may be rewarded in the form of increased citations 

to articles with associated publicly available data, as well as opportunities to 

collaborate and co-author publications with the researchers who reuse their shared 

data (Piwowar, Day, & Fridsma, 2007; Tenopir et al., 2015).  

Despite the potential benefits of reuse and the increasing availability of data, 

research on the actual impacts of data reuse is so far sparse. Some studies have 

considered patterns of data request and citation for individual repositories (Coady et 

al., 2017; Paltoo et al., 2014), but less research has been done to gain a deeper 

understanding of the impacts that shared research data can have, as well as to 
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determine how to quantify or measure that impact. Such research has important 

implications for both policy and practice. Data sharing policies should be founded on 

a strong evidence base that demonstrates the impacts and benefits of data sharing 

(Pryor, 2009). The time and effort required to share and curate data is not trivial 

(Leonelli, 2014), so quantifying the actual impacts of these datasets – as well as 

determining which datasets have the most potential for long-term impact – helps 

assure that these investments are worthwhile. Understanding how and why 

researchers reuse data could also inform development of better technical 

infrastructure to facilitate discoverability and enhance reuse (Jagodnik et al., 2017). 

Finally, understanding patterns of data reuse could incentivize sharing by making it 

possible to build upon existing academic reward structures to give credit to 

researchers who share high-use and high-impact datasets (Olfson, Wall, & Blanco, 

2017). At present, most academic institutions do not recognize shared data as a 

scholarly product in the context of tenure and promotion decisions, likely because 

tracking data reuse is technologically challenging and the impact on the broader 

scientific community of shared datasets is difficult to quantify (Ali-Khan, Harris, & 

Gold, 2017; Piwowar, Becich, Bilofsky, Crowley, & on behalf of the caBIG Data 

Sharing and Intellectual Capital Workspace, 2008).  

While tracking data reuse across science in general may be informative, the 

question of how to quantify data reuse and its impacts is especially salient in the 

context of biomedical research. In some disciplines, such as geology and astronomy, 

a culture of data reuse is relatively well established, given that these research 
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communities have a long history of sharing data generated by a small number of 

sensors or telescopes, which is then analyzed by researchers around the world (Giles, 

1995; Pepe, Goodman, Muench, Crosas, & Erdmann, 2014). However, widespread 

data sharing and reuse has not been the norm in biomedical research, and biomedical 

researchers have expressed both less willingness to share their own data and less 

interest in using others’ data (Tenopir et al., 2011, 2015). Some biomedical 

researchers even consider data reuse anathema, with one controversial editorial 

decrying researchers who reuse data as “research parasites” (Longo & Drazen, 2016).  

One argument of its detractors is that sharing data will discourage researchers 

from undertaking large studies, particularly clinical trials, because they expect to be 

able to publish multiple articles over the course of several years using the data (The 

International Consortium of Investigators for Fairness in Trial Data Sharing, 2016). 

Sharing the data before they have the chance to conduct longer term studies, they 

argue, means that other researchers could “scoop” them – beat them to publication on 

discoveries that they could have gotten credit for. Given that articles are one of the 

most important currencies in academic credit systems, this argument suggests that 

identifying a means to reward researchers for sharing data could alleviate some of 

these concerns and remove some of the disincentives to sharing. Indeed, the NIH’s 

recent Strategic Plan for Data Science recognizes that “appropriate reward…systems 

are central to making data FAIR [findable, accessible, interoperable, and reusable] 

and for incentivizing researchers to share their data and analysis tools widely for 

reuse by others” (National Institutes of Health, 2018b, p. 24).  
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While the research presented here does not necessarily solve the deeper 

cultural problems associated with biomedical data sharing, the findings of this study 

will help lay the foundation for solutions by providing a deeper understanding of the 

nature of biomedical data reuse. Data sharing cannot be meaningfully rewarded, nor 

can informed decisions be made about data curation and preservation, if it remains 

unclear how much datasets are being reused, who is reusing them, and for what 

purpose. This study explores biomedical data reuse in ways that will help answer 

these questions, as well as providing insight into how repositories and funders can 

make evidence-based decisions about policy and practice.  

1.2 Research Questions 

 To better understand how and why biomedical researchers reuse existing 

datasets, this dissertation is guided by four research questions: 

Research Question 1: What are the purposes and characteristics of biomedical 

research reuse? 

Research Question 1.1: For what methods and analysis types are datasets 

reused? 

Hypothesis 1.1: Genomic datasets of the type found in dbGaP will be 

more likely to be used in combination in meta-analyses, while clinical 

datasets of the type found in the NIDDK repository will be more likely to 

be used on their own to answer an original research question. 
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Research Question 1.2: How closely are the topics for data reuse aligned 

with the topics for which the data were originally collected? 

Hypothesis 1.2: Similarity between original topics and topics of reuse will 

be lower for genomic data (found in dbGaP) than for clinical data (found 

in the NIDDK repository).  

Research Question 2: What are the demographics of researchers who reuse existing 

datasets? 

Research Question 2.1: Where are requestors located in the world? 

Hypothesis 2.1: Requestors will be primarily located in regions with a 

greater proportion of research institutions, including North America, 

Europe, and Asia.  

 Research Question 2.2: Are there patterns in career stage of requestors? 

Hypothesis 2.2: A broad range of career stages, from student to full 

professor (or equivalent) will be represented.  

Research Question 3: Are there temporal patterns to dataset requests? 

Hypothesis 3: Patterns of requests relative to the original dataset release 

date will demonstrate a cumulative advantage process, similar to other 

scientific communication processes such as article citation. 

Research Question 4: Are there dataset topics that are more highly requested? 

 These four questions approach the topic of reuse from two perspectives. 

Research Questions 1 and 2 answer questions about the characteristics of requests and 

requestors: who are the requestors and what are they planning to do with the data? 
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Research Questions 3 and 4, on the other hand, examine characteristics of the 

datasets: which datasets are most requested and how does a dataset’s requests evolve 

over the years after its release? Together, the findings of these questions will provide 

a better understanding the complex phenomenon of biomedical data reuse. 

1.3 Scope of this Study 

 Broadly speaking, “biomedical research data” can include many different 

types of data generated, collected, or used in the course of the wide range of research 

activities that biomedical researchers conduct. In its original 2003 statement on data 

sharing, the NIH specifically notes that only “final research data” fall within the 

purview of its sharing policy. Their definition of final research data is the “recorded 

factual material commonly accepted in the scientific community as necessary to 

validate research findings.” They further note that other research objects such as 

“laboratory notebooks, partial datasets, preliminary analyses, drafts of scientific 

papers, plans for future research, peer review reports, communications with 

colleagues, or physical objects, such as gels or laboratory specimens” do not 

constitute final research data and are therefore excluded from policies regarding 

sharing (National Institutes of Health Office of Extramural Research, 2004).  

 The 2003 statement also recognizes that there are many mechanisms by which 

research data may be shared, from the relatively restrictive (interested parties must 

contact the original researcher to negotiate access) to the maximally open (data are 

made freely available in a public repository). In more recent policies and mandates 
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from publishers and funders, the once-acceptable “data available upon request” is 

often considered inadequate as a means of sharing, especially since requestors have 

often found that authors cannot or do not share data upon request (Langille, Ravel, & 

Fricke, 2018; Savage, Vickers, Kats, & Molenaar, 2009; Stodden, Seiler, & Ma, 

2018). Instead, most policies encourage, and sometimes even require, researchers to 

make data freely available in a repository, although that ideal is not always fully 

realized (Federer et al., 2018). Given the policy move toward repositories as the “gold 

standard” for data sharing, this study focuses on data shared within public biomedical 

data repositories. This choice is also based on practical considerations; data kept 

within an individual researcher’s lab would not only be difficult for someone else to 

reuse, but nearly impossible to identify for inclusion in this study.  

A further challenge to this research is identifying means for quantifying data 

reuse. Obtaining accurate counts of reuse of research datasets is challenging, given 

that standards for data citation have not been widely adopted yet. My previous 

research on the correlation between data use requests and citations to those datasets in 

the published literature found that the average dataset from biomedical data 

repositories had between about five and nine use requests for every one citation, 

suggesting that most use requests do not result in a publication that can be identified 

using existing search tools (Federer, 2018). While many open repositories track 

download counts for datasets, such raw counts provide little insight into who is using 

the data and for what purpose, or even whether they end up actually using the data at 

all.  
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In the absence of a tool or method for accurately quantifying and tracking 

reuse of shared datasets, this study utilizes use requests submitted for controlled-

access biomedical datasets as a proxy for data reuse. This study considers three 

repositories administered by various groups within the NIH, all of which make their 

use requests publicly available. The Database of Genotypes and Phenotypes (dbGaP), 

housed at the National Center for Biotechnology Information (NCBI), contains 

human genetic sequence data and associated diseases or characteristics (National 

Center for Biotechnology Information, 2018). The BioLINCC repository and the 

NIDDK Central Repository contain datasets arising from research funded by the 

National Heart, Lung, and Blood Institute (NHLBI) and the National Institute of 

Diabetes and Digestive and Kidney Diseases’ (NIDDK), respectively (National Heart, 

Lung, and Blood Institute, 2018; National Institute of Diabetes and Digestive and 

Kidney Diseases, 2018). Together, these three repositories cover a range of data 

types, from clinical data (NIDDK and NHLBI) to genomic data (dbGaP), as well as a 

range of diseases and topics.  

As will be further discussed throughout this dissertation, this method for 

operationalizing reuse has certain limitations, as does the selection of these particular 

repositories. A request for a dataset does not necessarily guarantee that the requestor 

ended up using it, nor can it be known for certain whether the person who requested 

the data was the person who intended to use it – for example, a professor might 

request a dataset on behalf of a student. Still, these use requests provide a richer 

source of information about how biomedical datasets are reused than other currently 
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available methods. Throughout this study, I will note how the methodologies and data 

sources used here limit the generalizability of these results and provide specific 

discussion about how these results can be meaningfully and responsibly applied.  

1.4 Study Methodologies 

 This study utilizes a mixed methods approach, combining qualitative and 

quantitative methods to gain a holistic view of the reuse of biomedical datasets from 

the three repositories. Some of this work considers the requests and requestors, while 

other parts of the study focus on the datasets themselves. Taken together, these 

different pieces of data and types of analysis form a view of the who, what, when, 

where, and why of data reuse. 

In the first part of the study, content analysis of the use requests provides 

insight into who is making requests, where in the world they are located, and why 

they would like to reuse the data. I coded use requests for the type of reuse using a 

taxonomy drawn from the literature and inductively expanded to address types of 

reuse not previously identified. This analysis provides insight into the ways different 

types of data are reused. Using an automated indexing tool, I further coded requests 

with topics drawn from a controlled vocabulary that the repositories also use to 

describe the datasets. Comparing the similarity between topics in the requests to 

topics in the datasets provides a quantitative means to understand how similar 

intended data reuse is to the reasons for which the data were originally collected. By 

analyzing demographic information about the researchers who request datasets, this 
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study also provides an understanding of who is benefitting from shared data – 

specifically, what is the career status of researchers who request data, and where in 

the world are they geographically located?  

The second part of the study focuses on analysis of the patterns of reuse of the 

datasets, investigating when in the data’s life cycle it is requested and what topics are 

most requested. Analyzing patterns of requests over the course of a dataset’s life can 

yield insight into the long-term usefulness of a dataset, as well as provide an 

understanding of how similar patterns of request are to other processes in science, 

such as citations to articles over time. I also conducted text mining to determine 

whether there are topics that are more highly requested than others. Using topic 

modeling on repository-provided dataset descriptions yields groupings of datasets that 

are conceptually similar. Examining patterns of reuse among those topics enables 

identification of highly requested topics. Understanding these “when” and “what” 

questions of data reuse could aid in early identification of datasets that will go on to 

be highly requested; datasets that show early signs of high reuse patterns or those that 

cover highly requested topics could be prioritized for more in-depth curation.  

1.5 Importance and Contributions 

 The findings of this study will have implications for a number of different 

stakeholders interested in how to track and quantify data reuse. At present, rewarding 

researchers for sharing data is challenging because of the difficulties in identifying 

and tracking reuse; moreover, the practical impact of a shared dataset cannot be 
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quantified. Methods for evaluating research impact generally rely on well-established 

metrics with widely agreed-upon significance across scholarly communities. For 

example, the impact of an article may be quantified by the number of times other 

researchers cite it; the impact of a research grant may be quantified by the number of 

patents it generates or the market value of a drug that it yields. While these measures 

may be imperfect representations of the practical impact of a researcher’s work and 

productivity, they still represent a common currency used in the context of tenure, 

promotion, retention, and funding decisions (Carpenter, Cone, & Sarli, 2014; Holden, 

Rosenberg, & Barker, 1994; Moher et al., 2018).  

If data sharing is to be rewarded, the research community must come to 

consensus about how the impact of a shared dataset is quantified. Simple counts of 

use requests or downloads elide the many, often very different, forms of reuse. By 

providing a better understanding of how datasets are reused, this research will help 

inform how to most effectively and fairly reward data sharing. Thus, these findings 

may provide insight for funders that wish to reward researchers for sharing, for 

academic institutions that want ways to measure the impact of their researchers’ 

contributions, and for researchers who often spend significant time and effort to share 

data but do not yet have mechanisms to be rewarded for doing so (CODATA-ICSTI 

Task Group on Data Citation Standards and Practices, 2013; Mooney & Newton, 

2012).  

This understanding of how to quantify the impact of data sharing has further 

implications for development of policies informing data sharing and reuse. The 
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aforementioned OSTP memo calling for federal agencies to create policies to increase 

public access to research results, including data, was issued in 2013; five years on, 

policy in these areas is still nascent (Holdren, 2013). For example, as of this writing, 

the NIH has yet to issue such a policy, although they have received and are reviewing 

public comments on a Proposed Provisions for a Draft Data Management and Sharing 

Policy (National Institutes of Health, 2018c). The NIH’s existing policy only requires 

a data sharing plan for grants of over $500,000 annually and does not consider the 

content of the plan in its competitive review process (National Institutes of Health 

Office of Extramural Research, 2004). A better understanding of the ways that shared 

data contribute to advancing science through reuse could help inform future policy 

developments.  

Academic research institutions, too, are beginning to adopt policies that could 

be informed by the results of this study. For example, the Montreal Neuroscience 

Institute (MNI) has adopted an institution-wide open science policy that includes 

rewarding open sharing of data and other research products in the tenure and 

promotion process (Ali-Khan, Jean, MacDonald, & Gold, 2018). At the same time, 

they have recognized that doing so requires understanding how to quantify the impact 

of open science products and are developing a toolkit of qualitative and quantitative 

techniques to do so (Gold et al., 2018). That work, which has drawn on the input of 

international experts in open science, will be further enhanced by the deeper 

understanding of data reuse that this study will yield.  
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This study also has implications for the repositories that host data and the 

curators who do the often time-consuming work of making data ready for reuse 

(Leonelli, 2014; Levin & Leonelli, 2017). Traditional libraries must make choices 

about which materials they will commit to preserve and which they will discard 

because physical space and other resources are limited. Similarly, it is neither feasible 

nor desirable to curate and preserve every single research dataset in perpetuity. It is 

difficult to predict which datasets will have future value, in part because biomedical 

research is a moving target – the hottest topics and most advanced technologies of 

today can quickly become outdated – but understanding what characteristics are most 

predictive of reuse can build an evidence base for making well-informed decisions 

about which datasets to prioritize.  

By exploring the demographics of the researchers who reuse datasets, this 

research may also provide a better understanding of how data sharing can help 

democratize science and facilitate research in areas where funding resources are 

sparser. For example, in regions of the world where less scientific funding is 

available, generating certain types or large quantities of data may be financially out of 

reach (Serwadda, Ndebele, Grabowski, Bajunirwe, & Wanyenze, 2018). Even in 

countries where research is comparatively well funded, resources may not be equally 

distributed. Early career researchers, women, under-represented minorities, and 

researchers at smaller institutions may not have the resources or funding that are 

required to generate certain types of data. Not every researcher has access to 

sophisticated high-throughput sequencing machines or a cadre of staff to collect 
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years’ worth of longitudinal data. If these data already exist, sharing them may be a 

more efficient way to distribute limited resources while maximizing scientific 

discovery. By better understanding who is (and who is not) currently using shared 

data resources, this research will be useful to funders who may wish to fund research 

that encourages reuse of existing resources, as well as to repositories and others who 

may be in a position to conduct outreach to increase awareness of the availability of 

such resources.  

1.6 Organization of the Dissertation 

This dissertation comprises seven chapters, including this introduction. 

Chapter 2 reviews the literature to contextualize this research within the literatures of 

science and technology studies, open science, and scholarly metrics. Chapter 3 

describes the design of this study, including discussion of methods for data collection 

and analysis. The findings of these analyses are split into two chapters; Chapter 4 

describes findings based on analysis of use requests and requestors, while Chapter 5 

focuses on the analysis of the datasets themselves. Chapter 6 synthesizes these 

findings to better define the who, what, when, where, and why of biomedical data 

reuse. Finally, Chapter 7 discusses the implications of these findings for various 

stakeholders in the biomedical research community and outlines directions for future 

research that builds on this exploratory study.  
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Chapter 2: Review of the Literature 

 Although the wide availability of research data for reuse is a relatively 

new development, various areas of inquiries into scholarly communication and 

academic reward systems, as well as researchers’ data use and reuse behaviors, 

provide a foundation for this study. This chapter begins with a discussion of research 

impact, including the historical context of how and why research impacts are 

measured, as well as an examination of how these measures are used in the context of 

academic reward systems today. Understanding how research outputs are currently 

measured and rewarded backgrounds this study’s approach to how metrics of data 

reuse could fit within existing scientific reward structures, and therefore provides 

insight into what characteristics of datasets and data reuse should be considered in a 

model for quantifying the impact of datasets. Some of these approaches draw on 

established bibliometrics techniques; although citations to articles cannot be 

considered exactly equivalent to instances of data reuse, many of the approaches used 

in the context of articles can yield insight into the quantification of data reuse.  

 This chapter also draws upon the nascent literature on data sharing and reuse 

to provide background on what is already known about how researchers reuse data. 

Many of these studies consider scientific research from non-biomedical fields; while 

it has been established that different disciplines have different cultures of data sharing 

and reuse (Tenopir et al., 2011, 2015), these studies provide important ideas about 

how to conceptualize data reuse and its role in advancing science.  
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2.1 Scientific Credit and Reward 

Before attempting to track, quantify, and predict data reuse, it is essential to 

understand the ecosystem of credit and reward within which science operates. At the 

heart of science, of course, is the attempt to understand the phenomena that drive the 

world around us, but the pursuit of knowledge is arguably not the only goal of many 

researchers – rather, it is the pursuit of knowledge that will allow them to gain credit 

in the scientific community.  

2.1.1 The Role of Credit in Science 

Robert K. Merton has posited “four sets of institutional imperatives taken to 

comprise the ethos of modern science”: communalism, universalism, 

disinterestedness, and organized skepticism (Merton, 1942, p. 270). The norm of 

disinterestedness suggests that science be conducted for the common good rather than 

the researcher’s personal benefit, particularly in the context of financial gain. By 

communalism, Merton means that scientific knowledge should be “owned” 

communally by, and therefore be accessible to, the entire scientific community in 

order to facilitate collaboration and advance research. This argument is especially 

salient in the context of federally funded research; as the Office of Science and 

Technology Policy’s 2013 memorandum on Increasing Access to the Results of 

Federally Funded Scientific Research points out, the outcomes of research should be 

available to the public that has funded it through their tax dollars (Holdren, 2013).  
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Some critics have argued that Merton’s norms do not present a comprehensive 

view of the normative structure of science, suggesting that “counternorms” often 

drive scientists’ behavior and serve a function in scientific communities. For 

example, scientists regularly engage in secrecy, the counternorm to communalism, by 

strategically withholding information to ensure that others cannot steal credit for their 

work. Some secrecy is probably essential to the social structure of science, as without 

it, “science would degenerate into a state of continual warfare” (Mitroff, 1974, p. 

593).  

Like Anderson et al., I suggest that Merton’s norms are best viewed as “ideals 

that...are counterbalanced by opposing norms” (Anderson, Ronning, DeVries, & 

Martinson, 2010, p. 5). Scientific knowledge progresses most effectively when 

researchers operate somewhere between complete secrecy and complete openness, in 

a system that provides them with a mechanism for receiving credit for their 

contributions while still allowing them to build upon the knowledge of others. This 

view is not incompatible with Merton’s norms – despite arguing for a high level of 

openness and community ownership of knowledge, Merton does not suggest 

scientists should work without reward or acknowledgement. Rather, he suggests that 

“the scientist’s claim to ‘his’ intellectual ‘property’ is limited to that of recognition 

and esteem,” and argues that, when scientific institutions function well, they reward 

scientists proportionally to the significance of their work (Merton, 1942, p. 273).  

Article citation is an essential mechanism for enabling this proportional 

reward process. The practice of citing articles makes it possible to trace influence and 
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inspiration and serves the very practical purpose of giving credit to researchers for 

their scholarly labor. Researchers need not pay a licensing fee or purchase an idea to 

build upon it in their own work; the “payment” for the idea is rendered to the original 

creator in the form of a citation. A citation on its own has no monetary value, but 

citations have very real economic impacts on researchers, given that they are often 

used in academic hiring, tenure and promotion, and funding decisions (Carpenter et 

al., 2014; Durieux & Gevenois, 2010; Holden et al., 1994). 

Several researchers have explored the concept of credit and its important role 

in the economy of the research community. In their seminal work Laboratory Life: 

The Construction of Scientific Facts, Latour and Woolgar devote an entire chapter to 

“Cycles of Credit” (1986). They describe science as a process of accumulating 

credibility capital through recognition in the form of citations, awards, and 

credentials, which can in turn be “reinvested” to receive the necessary resources to 

continue conducting research, such as grant funding, laboratory resources, and tenure. 

“The notion of credibility,” they argue, “makes possible the conversion between 

money, data, prestige, credentials, problem areas, argument, papers, and so on” 

(Latour & Woolgar, 1986, p. 200). Other scholars have also taken an economic view 

of the function of credit and citation, for example, describing citation as payment of 

an “intellectual debt” (Garfield, 2002; Kochen, 1987). Merton argues that, in a sense, 

getting citations is the impetus for scientific publishing in the first place, pointing out 

that, “since recognition by qualified peers is the basic form of extrinsic reward…and 

since that reward can be accorded only when the work is made known, this 
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historically evolving reward system provides institutionalized incentive for open 

publication without direct financial reward” (Merton, 1983, para. 5).  

The importance of credit in scientific research is underscored by the grave 

tone of discussions about instances in which credit is not properly given. Variously 

termed as “citation amnesia,” “bibliographic negligence,” “disregard syndrome,” and 

“petty larceny plagiarism,” the failure of a researcher to cite an article that has 

informed his or her work is considered a serious breach of scientific conduct 

(Garfield, 1982, 1991; Ginsburg, 2001; Maes, 2015). Lack of proper attribution is 

also framed as a moral failing, with citation being described as “a matter of science’s 

family values” and failing to cite as “a menace to honest science” and a “serious 

transgression” (Garfield, 1991; Ginsburg, 2001; Palevitz, 1997). Garfield even muses 

on the possibility of establishing a “science court” that would enforce the norms of 

citation and “met[e] out punishment to willful perpetrators” (Garfield, 1987, 1989, 

1991, para. 2). 

In light of this economy of reward and the intellectual theft that failure to cite 

represents to the scientific community, it is not difficult to understand why some 

researchers would be unwilling to share their data. As I will discuss, standard 

mechanisms for researchers to cite datasets they have reused have not yet been widely 

adopted. Data sharing detractors see data reuse as “possibly stealing from the research 

productivity planned by the data gatherers” (Longo & Drazen, 2016, para. 3). From a 

game theory perspective, though sharing is good for the community at large, 

researchers would not logically do so, since “there is a conflicting interest for 
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individual researchers, who are always better off not sharing and omitting the sharing 

cost while they would have higher impact when sharing as a community” (Pronk, 

Wiersma, van Weerden, & Schieving, 2015, p. 1). Until mechanisms exist to situate 

data reuse within the scientific economy – that is, to quantify data reuse and reward 

researchers who share high-value datasets that go on to be frequently reused – many 

researchers may see reuse of their data as intellectual theft.  

2.1.2 Metrics for Scientific Credit 

The assumption that citations equal credit is foundational to the field of 

bibliometrics, which has at its aim measuring scientific impact. Bibliometricians use 

various indicators and statistical methods to assess the value of articles, the impact of 

journals, and the productivity of researchers. For example, the h-index, calculated by 

considering the number of citations for each paper in a researcher’s body of work, is 

often used in hiring and funding decisions and has been demonstrated to be effective 

in comparing researchers’ outputs and predicting future scientific success (Acuna, 

Allesina, & Kording, 2012; Bornmann & Daniel, 2007; Carpenter et al., 2014; Hirsch, 

2005, 2007; Penner, Pan, Petersen, Kaski, & Fortunato, 2013).  

Despite the widespread use of bibliometric methods, uncertainty remains 

about how well these measures accurately reflect scientific achievement and 

productivity. Article citations are not always easy to collect, and analysis may provide 

incomplete results (Lane, 2010). Article citation is also only one means of measuring 

scientific output, and cannot capture uses of scientific knowledge that occur outside 
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of the traditional scientific literature (Hicks, Wouters, Waltman, de Rijcke, & Rafols, 

2015). As Priem puts it, “ideas do not leave good tracks” (Priem, 2014, p. 263). As 

access to articles has become largely digital, new methods for counting article use 

have emerged, including article downloads, Mendeley readership, and mentions in 

online sources such as blogs and social media, but their validity and significance 

remains unclear (Bollen, Van De Sompel, Smith, & Luce, 2005; Galligan & Dyas-

Correia, 2013; Schlögl, Gorraiz, Gumpenberger, Jack, & Kraker, 2014; Thelwall, 

Haustein, Larivière, & Sugimoto, 2013).  

To address some of these limitations, bibliometrics researchers have 

undertaken research to consider how effectively article citation reflects impact. Using 

citations as a means to reward impactful science assumes that citations are positive, 

though in Garfield’s influential list of fifteen reasons for citations, some are actually 

negative, such as “criticizing previous work” or “disclaiming work or ideas of others” 

(Garfield, 1964, p. 85). A growing body of literature explores what citation counts 

actually measure, including quantitative studies of citations and qualitative studies of 

researchers’ citing behaviors (Bornmann & Daniel, 2008). Although significant 

questions remain about researchers’ motivations for citing articles, citation counts are 

still widely recognized as a “a strong indicator of scientific performance” (van Raan, 

2005, p. 3). 

Nonetheless, even when bibliometric measures can be relatively well defined 

and easily measured, bibliometricians urge caution in interpreting and using these 

metrics for decision-making. The 2015 “Leiden Manifesto,” a declaration of best 
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practices for bibliometrics, described a scientific community inundated by metrics 

that are “usually well intentioned, not always well informed, often ill applied” (Hicks 

et al., 2015, p. 429). They warn that citation counts in particular are subject to 

“conceptual ambiguity and random variability” and urge the scientific community to 

“avoid misplaced concreteness and false precision” when interpreting and using all 

types of research impact measures (Hicks et al., 2015, p. 431).  

In considering how to quantify data reuse and measure its impact, an 

important caution that researchers should take from bibliometricians is to consider 

potential unintended consequences. Some critics see citation counts as an example of 

Goodhart’s Law, which states that “when a measure becomes a target, it ceases to be 

a good measure” (Edwards & Roy, 2017, p. 52). They argue that using article citation 

to reward high-impact science may have the effect of creating perverse incentives that 

encourage self-citation and other bad behaviors that artificially inflate citation counts 

(Edwards & Roy, 2017; Werner, 2015). Further, it is also essential to consider how to 

measure what is meaningful, and not simply what is easy to count, especially in the 

context of phenomena for which there is an “absence of internationally meaningful 

comparative data” – a situation that is almost certainly the case for data reuse at 

present (Hazelkorn, 2013, p. 6). As the “Leiden Manifesto” points out, “the problem 

is that evaluation is now led by the data rather than by judgement” (Hicks et al., 2015, 

p. 429). 
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2.1.3 Patterns of Scientific Attention 

 Merton has described a social phenomenon in science that he termed “the 

Matthew effect” after a parable that states “for to every one who has will more be 

given, and he will have abundance; but from him who has not, even what he has will 

be taken away” (1968, p. 159). He describes this effect at the level of the investigator, 

suggesting that “the accruing of greater increments of recognition for particular 

scientific contributions to scientists of considerable repute and the withholding of 

such recognition from scientists who have not yet made their mark” (Merton, 1968, p. 

159). In other words, the more well known a researcher is, the more likely he or she is 

to gain further attention. Bibliometric research has demonstrated that this effect, also 

called the “success breeds success” phenomenon (Cozzens, 1985), exists in article 

citations as well; that is, articles that are highly cited are more likely to receive more 

citations in the future (Bornmann & Daniel, 2008; Burrell, 2003; Cozzens, 1985).  

Given that this phenomenon occurs at the researcher level as well as the 

article level, it stands to reason that dataset reuse may also governed by such a model, 

such that the more a dataset is reused, the more attention it gets and the more likely it 

is to be reused. Further, it has been shown that the data creator’s reputation is a factor 

in a researcher’s decision to use a dataset (Faniel, Kriesberg, & Yakel, 2015). Since 

researcher reputation is subject to the Matthew effect, it follows that the success of 

the researcher will breed success of his or her datasets. In the context of data science, 

this process is likely especially true for benchmarking datasets, which are used for 

testing new tools and methods, as well as comparing them to existing gold standard 
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tools (Moura et al., 2013; Ó Conchúir et al., 2015). Datasets that have been used for 

benchmarking are more likely to go on to be used for this purpose again, since it is 

useful to compare a new tool to an existing tool on the same dataset. 

 In statistics, the Matthew effect is described as a cumulative advantage 

process (de Solla Price, 1976). Some bibliometricians argue that citations to papers 

are accrued in a linear fashion at a constant rate (Bornmann & Daniel, 2008; Hirsch, 

2005). Others contend that papers accrue citations at random, therefore arguing for a 

stochastic model (Burrell, 2003, 2008). De Solla Price suggests that accumulated 

citations are determined by the number of citations that the article receives early, 

which he terms the initial pulse (1976). These types of models of cumulative 

advantage may be helpful for predicting future reuse of datasets.  

 While dataset reuse likely follows some of the same patterns of article citation 

over shorter time spans, the long-term patterns may differ. Even the most highly cited 

papers are subject to a process of “attention decay;” citations hit a peak, typically 

between two and seven years depending on discipline, and citations subsequently 

taper off (Eom & Fortunato, 2011; Parolo et al., 2015). Attention decay in articles is 

largely driven by knowledge obsolescence; as new discoveries are made and new 

articles written, researchers are more likely to cite the newer, more current 

information (Fortunato et al., 2018). However, this same process may not hold with 

datasets. Some of the datasets considered in this study demonstrate that even old data 

can be of significance to researchers; for example, in the NHLBI repository, over 

20% of the datasets were collected more than 20 years ago. That these datasets are 
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still being requested suggests that datasets may not be subject to the same pattern of 

attention decay as articles.  

2.2 Scientific Data Sharing and Reuse 

 The sharing of data with other researchers is not new to science. However, 

data previously tended to be shared through interpersonal connections, such that a 

researcher who wanted to use a dataset had to first know that it existed, and then 

negotiate with the data creator for access. This process requires significant and often 

tacit knowledge of the discipline and interpersonal connections within the field, 

limiting opportunities to students, early career-researchers, under-represented 

minorities, and others who were not research community insiders (Wallis, Rolando, & 

Borgman, 2013; Yoon, 2017; Zimmerman, 2007). Data was exchanged in the context 

of a “gift economy” – sharing in an open repository would be undesirable because 

data had value as an item to be bartered with other researchers in return for resources 

or intangible credit capital (Bollen, Van de Sompel, Hagberg, & Chute, 2009; Wallis 

et al., 2013). Data use agreements governed how reusers would be expected to 

“compensate” the data sharer, sometimes in the form of co-authorship on resulting 

papers (Gorgolewski, Margulies, & Milham, 2013). Although this type of sharing still 

occurs, the development of computational and technological infrastructure that has 

enabled the creation of data repositories, as well as the policy mandates that have 

driven researchers to populate them, have inherently changed how datasets are shared 

today (Tausczik, 2016).  
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2.2.1 Understanding Data Reuse 

 Given that widespread data availability is a relatively new phenomenon, our 

understanding of how researchers are reusing publicly available datasets is still 

emerging. Coady et al. (2017) developed a set of categories for coding reuse requests 

in their study of the NHLBI repository (emphasis added for ease of reading): 

new question, defined as a secondary analysis designed to explore 

associations, prognostic factors, subgroup analyses, or similar issues; meta-

analysis or pooled study, defined as a formal meta-analysis of individual 

participant data, combined study analysis, or consortium of studies with 

participant-level data; statistical methods, defined as a project focused on the 

development and testing of new statistical approaches; clinical trial methods, 

defined as a project examining statistical methods or analytic approaches that 

are generalizable to all or specific types of clinical trials; and other projects, 

examples of which include pilot data for a subsequent grant submission, 

simulation studies, and development of prediction equations. (p. 1851) 

This taxonomy provides a useful starting point for understanding types of data reuse, 

although the datasets considered in the Coady et al. study are limited to clinical trial 

data; additional types of reuse not covered in this taxonomy have been discussed in 

other studies. For example, publicly available data can be useful in reproducing or 

verifying the results of an original study, a particularly compelling use given that 

many scientific disciplines are troubled by a “reproducibility crisis” (Borgman, 2011; 

Pasquetto, Randles, & Borgman, 2017). As data science methodologies advance, 
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researchers also need existing data for development and validation of new software, 

particularly in the context of supervised machine learning tasks, which require well-

described and tagged data from which the algorithm can learn patterns (Kotsiantis, 

2007). Even beyond research, shared data can have important applications in training 

the next generation of researchers who do not yet have their own data to analyze. For 

example, Compute Canada funds cloud-based data and compute hubs for training use 

in Canadian academic institutions (Compute Canada, 2018).  

Some of the variation in ways datasets are reused is due to characteristics of 

the data themselves. Biomedical data can include a wide range of data types; the two 

considered in this study, clinical and genomic data, have very different histories that 

influence the ways they are collected, and therefore the ways they can be reused. 

Clinical research traces its history back hundreds of years (Bhatt, 2010); by 

comparison, genomic research is quite young, beginning with the Human Genome 

Project (HGP) in the 1990s (National Human Genome Research Institute, 2012). Data 

sharing has been a norm in genomic research from the start – the HGP considered 

“rapid prepublication data release” fundamental to genomic research, and this 

principle was even codified in the form of the Bermuda Principles and adopted into 

policy by the National Institutes of Health (Collins, Morgan, & Patrinos, 2003, p. 

288; Powledge, 2003). That type of widespread sharing and collaboration has not 

been part of the culture of clinical research, which likely contributes to the resistance 

among many clinical researchers to policies that would require them to share (The 

International Consortium of Investigators for Fairness in Trial Data Sharing, 2016).  
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Since genomic research has embraced sharing and collaboration from its 

beginnings, genomic data have intentionally been standardized; the Genomic 

Standards Consortium was formed in 2005 to develop and promote data standards 

(Field et al., 2011). These standards enable researchers not only to use data from 

another lab, but to aggregate it with their own, which is especially important given 

that genomic research requires a much larger sample of participants to achieve 

statistical power than does clinical research (Hong & Park, 2012). On the other hand, 

little standardization exists across clinical datasets; researchers often word questions 

to patients in different ways or record the same concept using different terminology 

(Richesson & Nadkarni, 2011). As a result, even if clinical researchers share their 

data, other researchers’ ability to aggregate it with other datasets is limited. Efforts 

are underway to improve standardization of clinical data; for example, the National 

Institutes of Health’s activities to promote Common Data Elements would help 

ensure greater consistency across clinical datasets and thereby enable aggregation and 

potentially increase reuse (Sheehan et al., 2016). 

Beyond the what of data reuse, a number of studies have considered the why, 

exploring researchers’ attitudes toward and experiences with reusing research data. 

Tenopir et al.’s 2011 article and their 2015 follow-up provide useful insight into how 

practices have changed over time. Eighty-three percent of respondents strongly or 

somewhat agreed that they “would use other researchers’ datasets if their datasets 

were easily accessible” (Tenopir et al., 2011, p. 8). They do not report the percentages 

for responses in the follow-up article, but do indicate that the agreement with this 
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statement increased significantly from a mean of 4.19 to 4.33, on scale of 1 (disagree 

strongly) to 5 (agree strongly) (Tenopir et al., 2015). However, these attitudes differ 

across disciplines; notably, researchers in medical and health sciences fields had the 

lowest rate of agreement with the statement in both the original study and its follow 

up (Tenopir et al., 2011, 2015).  

 Other studies have aimed to understand the reasons underlying researchers’ 

attitudes about reuse. Several studies have found that trust plays a major role in 

researchers’ decision to reuse data (Faniel & Jacobsen, 2010; Faniel et al., 2015; 

Rolland & Lee, 2013; Yakel, Faniel, Kriesberg, & Yoon, 2013; Yoon, 2014, 2017), 

although another study found that reuse decisions were more based on perceived 

usefulness of the data than its trustworthiness (Kim & Yoon, 2017) . The concept of 

trustworthiness may be tied to the repository (does the researcher trust the repository 

to curate, preserve, and provide accurate data?), as well as the original data collector 

(does the data collector have a reputation for accurate and clean data?). 

Characteristics of the datasets themselves also play a significant role in researchers’ 

selection of datasets to reuse. Researchers look for datasets that are complete, 

credible, accompanied by high-quality metadata, and easy to use (Faniel & Jacobsen, 

2010; Faniel et al., 2015). However, most of these studies considered reuse in specific 

research disciplines, such as earthquake engineering or social sciences, and little 

research has interrogated the practices and attitudes of biomedical researchers. Given 

Tenopir et al.’s (2011, 2015) findings that researchers in biomedical research differ 

from their counterparts in other disciplines in many ways regarding sharing and reuse, 
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these findings may not be generalizable to biomedical researchers. Differences likely 

exist even within specific sub-disciplines of biomedical research; a previous study my 

colleagues and I conducted found that NIH clinical researchers were significantly less 

likely to consider data reuse important to their work than non-clinical researchers at 

NIH (Federer, Lu, Joubert, Welsh, & Brandys, 2015). 

Not only are biomedical researchers different from those in other disciplines, 

but the data used in biomedical research is also different in an important way: it often 

contains personally identifiable information on human subjects. Data reuse in the 

context of biomedical research therefore raises some additional concerns about 

privacy that may not apply to other types of research data. The Health Insurance 

Portability and Accountability Act of 1996 stipulates that patients’ data cannot be 

shared without their consent, thus limiting the sharing of some types of patient data, 

unless they can be de-identified adequately to present “only a very small risk” of the 

patient being re-identified (Meystre et al., 2017). However, in some cases, such as 

patients with very rare diseases, de-identification may not be possible (Hansson et al., 

2016; Wan et al., 2017). Paradoxically, it is these very patients who could potentially 

stand to benefit the most from data sharing, since collecting enough data to draw 

statistically meaningful conclusions often necessitates researchers from around the 

world sharing data on their patients.  
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2.2.2 Challenges in Tracking and Quantifying Data Reuse 

As data reuse becomes more common, many in the scientific community have 

recognized the need for mechanisms to track and quantify data reuse. One approach 

that has been championed by various stakeholders is data citation (Bierer, Crosas, & 

Pierce, 2017). In 2014, the scholarly communication organization FORCE11 issued a 

Joint Declaration of Data Citation Principles that suggests “data should be considered 

legitimate, citable products of research,” and proposes eight principles for the 

“purpose, function and attributes of citations” (Data Citation Synthesis Group, 2014). 

This formal declaration is situated within a body of literature exploring both the ideal 

forms that data citation might take (Altman & Crosas, 2013; Altman & King, 2007; 

Silvello, 2017) and actual citation practices observed in the literatures of various 

disciplines (Edmunds, Pollard, Hole, & Basford, 2012; Henderson & Kotz, 2015; 

Mooney & Newton, 2012). Advocates see data citation as a means to enhance 

scientific reproducibility by allowing readers to easily locate data underlying 

scientific articles (Altman & Crosas, 2013; CODATA-ICSTI Task Group on Data 

Citation Standards and Practices, 2013). Researchers themselves also seem to 

consider data citation important: in 2011, 92% of respondents said that they “agree 

strongly” or “agree somewhat” with the statement “it is important that my data are 

cited when used by other researchers,” although a 2015 follow-up found significantly 

less agreement with that statement (Tenopir et al., 2011, 2015).  

However, utilizing data citations as a means for quantifying reuse remains 

challenging, especially since standards have not been widely adopted (Zhao, Yan, & 
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Li, 2017). While article citations are standardized and typically found in a reference 

section, authors place data citations throughout articles, including in the 

acknowledgements, materials/methods section, or elsewhere (Callahan, Winnenburg, 

& Shah, 2018; Piwowar, Carlson, & Vision, 2011). Others may cite not the dataset 

itself, but an article describing the dataset. For example, the GenBank database 

directs researchers who have reused data to cite a paper describing the database 

(Benson, Karsch-Mizrachi, Lipman, Ostell, & Wheeler, 2005). Citations to that paper 

do not necessarily reflect use of GenBank data; authors may cite that paper even 

when GenBank data have not been used (such as I have done here).  

Inconsistencies in data citations complicate the process of locating articles that 

report on reuse of a dataset. A variety of academic databases have article citation 

indices that automatically connect a user to citing articles, but a similarly 

comprehensive data citation does not yet exist (Garfield, 1955; Robinson-García, 

Jiménez-Contreras, & Torres-Salinas, 2015). Though some computational and 

automatic methods have been developed (Piwowar, 2010; Q. Zhang, Cheng, Huang, 

& Lu, 2016), correctly and completely identifying articles citing datasets often 

requires significant manual work. Most studies that have utilized citation-based 

methods to quantify data reuse have relied at least partly on manual identification of 

articles and elimination of false positives (Belter, 2014; Callahan et al., 2018; 

Piwowar et al., 2011). These methods would be impractical in large-scale analyses to 

systematically quantify the impact of larger sets of data citations. In my previous 

research, I demonstrated that some articles that report on data reuse do not cite the 
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original dataset at all; I could include them in my study because the repository 

containing the cited dataset had been notified of the publication and so included it in 

the list they provided me. Had I attempted to locate all articles citing those datasets on 

my own, it would have been impossible for me to identify them (Federer, 2018).  

Despite the slow uptake, it appears that many within the scholarly community 

are eager to move toward data citation standards and infrastructure that allow for 

better tracking of data and its reuse in the scholarly literature. These efforts could also 

be stimulated by increased recognition of data reuse as a form of scientific impact that 

merits scholarly credit. 

2.3 Conclusions 

 Although the study of data reuse is relatively young and many questions 

remain about who is reusing biomedical research data and for what purposes, the 

bodies of research described here can help inform directions for this research. 

Quantifying and tracking data reuse is important for ensuring proper credit and 

attribution. Because data reuse is situated within the context of an existing structure 

for academic credit, this research is most useful if it builds upon our current 

understanding of how researchers interact with and use scientific knowledge of all 

types. As the next chapter will discuss, applying bibliometric models of 

understanding scientific credit and reward also supplies a useful set of methods for 

quantifying and tracking data reuse.  
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Chapter 3: Methodology 

 Chapters 1 and 2 have provided an overview of the need for and challenges 

involved in quantifying and understanding biomedical data reuse. In this chapter, I 

will describe the research design and the approach I have taken to answer four 

research questions intended to elucidate who is reusing data and how they are doing 

so: 

Research Question 1: What are the purposes and characteristics of biomedical 

research data reuse? 

Research Question 1.1: For what methods and analysis types are datasets 

reused? 

Hypothesis 1.1: Genomic datasets of the type found in dbGaP will be 

more likely to be used in combination in meta-analyses, while clinical 

datasets of the type found in the NIDDK repository will be more likely to 

be used on their own to answer an original research question. 

Research Question 1.2: How closely are the topics for data reuse aligned 

with the topics for which the data were originally collected? 

Hypothesis 1.2: Similarity between original topics and topics of reuse will 

be lower for genomic data (found in dbGaP) than for clinical data (found 

in the NIDDK repository).  

Research Question 2: What are the demographics of researchers who reuse existing 

datasets? 
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Research Question 2.1: Where are requestors located in the world? 

Hypothesis 2.1: Requestors will be primarily located in regions with a 

greater proportion of research institutions, including North America, 

Europe, and Asia.  

 Research Question 2.2: Are there patterns in career stage of requestors? 

Hypothesis 2.2: A broad range of career stages, from student to full 

professor (or equivalent) will be represented.  

Research Question 3: Are there temporal patterns to dataset requests? 

Hypothesis 3: Patterns of requests relative to the original dataset release 

date will demonstrate a cumulative advantage process, similar to other 

scientific communication processes such as article citation. 

Research Question 4: Are there dataset topics that are more highly requested? 

3.1 Research Design 

 This study utilizes a mixed methods approach to explore the complicated 

phenomenon of biomedical data reuse, employing both manual techniques for 

analyzing the qualitative content of data reuse requests and automated analyses that 

aim to quantify and better understand patterns of requests. A mixed methods design 

has the benefit of combining qualitative and quantitative methods to provide a more 

complete picture of a phenomenon, as well as allowing for exploration of multiple 

related research questions (Bryman, 2006). This chapter describes how this study 
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combines qualitative content analysis of data reuse requests with quantitative 

methods, including text mining and bibliometric modeling.  

3.1.1 Operationalizing “Reuse” 

Quantifying reuse of datasets is challenging, since reuse can take so many 

different forms. Some forms of reuse are easy to identify, but others leave few traces 

that can be identified and tracked. An article that makes an explicit citation to a 

shared dataset and clearly describes its role in the study is an obvious instance of 

reuse; however, articles frequently do not cite datasets in systematic ways that can be 

easily and automatically tracked. Even when efforts are made to systematically track 

and record citations to datasets, dataset requests typically outnumber citations by 75% 

(Federer, 2018). While using citations as a proxy likely underestimates reuse, using 

counts of downloads and views as a proxy likely overestimates reuse. In open 

repositories where anyone can download or view a dataset, it cannot be known how 

or even if the downloader goes on to use the data. Further, because most of these 

repositories do not collect information about who is viewing or downloading, little 

can be known about the potential users of the dataset.  

One approach that may more accurately reflect reuse is analysis of data use 

requests. Repositories that contain sensitive human research data cannot make 

datasets available to freely download because of privacy and consent issues. Instead, 

researchers must make a formal request for datasets, including a description of the 

specific purpose for which they are requesting the data and, in most cases, clearance 
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from their Institutional Review Board (IRB); these requests are then reviewed by a 

Data Access Committee (DAC) at the repository, a body charged with determining 

acceptable reuse. Since researchers cannot use the data without submitting a request, 

and a request cannot be submitted without having a specific intended use, use 

requests likely provide a reasonably complete representation of data reuse, as well as 

providing information about how the requestor intends to use the data. In this study, I 

will draw on these requests as a proxy for reuse.  

While they are likely more accurate than citations or download counts, use 

requests also do not provide an exact measure of data reuse. Just because researchers 

must have a specific use in mind when they apply for the dataset does not mean that 

they end up using the data. They may realize once they have the dataset that it is not 

actually suited for their purpose after all, or they may discover that the data do not 

support their initial hypothesis and discard the project. Knowing the identity of the 

requestor also does not mean that the actual data reuser is known; it is possible that 

someone else, or even whole research groups, are the actual users. For example, a 

professor might request a dataset on behalf of a student, or an administrator may 

request data on behalf of an entire team. Despite these limitations, use requests are a 

useful proxy for data reuse in the context of this study, in that they provide a depth of 

information about how researchers at least intend to reuse datasets. Throughout this 

dissertation, I will discuss how the limitations of this approach constrain the 

application and generalizability of the findings, as well as propose how these findings 
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could be supplemented by future research that draws on other methodologies and data 

sources. 

3.1.2 Sampling and Data Collection 

This study considers three repositories administered by various groups within 

the NIH, all of which require researchers to submit requests to reuse the datasets. 

While other NIH repositories do exist, these three lend themselves to study because 

they not only require submission of use requests, but also make most or all of the 

request contents publicly available. The Database of Genotypes and Phenotypes 

(dbGaP), administered by the National Center for Biotechnology Information 

(NCBI), contains human genetic sequence data and associated diseases or 

characteristics (National Center for Biotechnology Information, 2018). The 

BioLINCC repository and the NIDDK Central Repository contains biospecimens and 

datasets arising from research funded by the National Heart, Lung, and Blood 

Institute (NHLBI) and the National Institute of Diabetes and Digestive and Kidney 

Diseases’ (NIDDK), respectively (National Heart, Lung, and Blood Institute, 2018; 

National Institute of Diabetes and Digestive and Kidney Diseases, 2018).  

Together, these three repositories cover a range of data types, from clinically-

focused data (NIDDK and NHLBI) to genomic data (dbGaP), as well as a range of 

diseases and topics. The data contained within these repositories almost exclusively 

comes from NIH-funded studies. While individual researchers may submit data, many 
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of these datasets arise from large efforts that involve research teams or even multi-site 

consortia.  

In addition to use requests, all three of the repositories considered in this study 

display descriptive metadata about available datasets, including Medical Subject 

Headings (MeSH) terms that describe the focus of the dataset and narrative 

descriptions of the original study, which contain information such as the purpose of 

the original study, data collection methods, characteristics of the original study 

participants (such as adults, children, healthy volunteers, or individuals with a 

particular disease), and findings of the original study.  

Table 3-1 summarizes the counts of data used in this study (the total datasets 

requested is greater than total requests, since many individual requests mentioned 

more than one dataset). NHLBI could not provide identifying information about 

requestors for privacy reasons; therefore, analyses can be conducted at the dataset and 

institution levels, but not individual requestor level for NHLBI. While dbGaP’s full 

dataset also includes requests that were rejected, this study considers (and Table 3-1 

reflects) only requests that were accepted. Future study on differences between 

requests that were accepted and those that were rejected may be fruitful, but this 

study considers data reuse, which of course did not occur in the case of requests that 

were rejected. Table 3-2 indicates the content included in the use requests by 

repository. 
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Table 3-1. Number of datasets, requestors, institutional affiliations, and use requests from 

each repository and overall.  

 dbGaP NHLBI NIDDK All repositories 

Datasets 1,014 146 77 1,237 
Total 
requestors 

5,260 N/A 253 5,513 

Total 
institutional 
affiliations 

1,230 1,001 195 2,426 

Total requests 9,444 1,939 449 11,832 
Total datasets 
requested 

104,326 3,864 562 108,752 

 

Table 3-2. Contents of use requests by repository (X indicates the repository contains the 

item). 

 dbGaP NHLBI NIDDK 
Requestor name X  X 
Requestor 
institution/affiliation 

X X X 

Dataset(s) requested X X X 
Date of request X X X 
Reuse summary  X X 
Technical research 
use statement 

X   

Non-technical 
research use 
statement 

X   

 

I acquired the data for analysis through a combination of web-scraping from 

the public sites (that is, writing a script to automatically fetch and parse the data) and 

requesting the data from the repositories. I requested data on use requests and dataset 

descriptions from NIDDK and NHLBI, and they provided this information in a set of 

comma-separated value (CSV) files. dbGaP staff were not able to provide the 

information I requested due to staffing limitations and time constraints. However, all 
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the information needed for these analyses is publicly available on the dbGaP website, 

so I was able to obtain the necessary data from the site. Rather than manually 

download all the metadata and use requests, I wrote an R script that automatically 

downloaded the dbGaP use requests and dataset metadata. This web-scraping process 

was accomplished using the R packages httr (version 1.3.1) and rvest (version 0.3.2) 

(Wickham, 2016, 2017a).  

Once I obtained all the data, I wrote various custom R scripts to clean, 

organize, and visualize the data to prepare it for coding and analysis, incorporating 

existing functions from the R tidyverse package (version 1.2.1) (Wickham, 2017b). 

Except where noted otherwise, all code is written in R version 3.4.1 and run in 

RStudio version 1.0.143. All code used for data collection, cleaning, and analysis is 

available at https://github.com/informationista/integrative_paper.  

3.2 Data Preparation and Analysis 

3.2.1 Research Question 1: For what research objectives are biomedical datasets reused? 

Requests to dbGaP and NIDDK included not only general information about 

who was making the request and what data they were requesting, but the actual text of 

the request itself. These requests provide an overview of how the requestor intended 

to reuse the dataset, written with enough detail to enable the repositories’ Data Access 

Committee (or equivalent body) to make a determination about whether the request 

constituted valid and appropriate reuse. These detailed requests provide a rich corpus 

from which to draw information about how data are intended to be reused. 
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Specifically, I consider the type of reuse and the similarity of the reuse to the topic for 

which the data were originally collected. 

I manually coded requests for the type of reuse from a taxonomy drawn from 

existing literature and validated in my previous research on the use requests in this 

dataset (Borgman, 2011; Coady et al., 2017; Federer, 2018; Pasquetto et al., 2017). I 

also inductively added categories as needed for cases that did not fit within the 

taxonomy. For example, initial coding revealed that some of the use requests asked 

for data to include in a larger database for general use, which did not fit any of the 

existing categories. Therefore, I added the category of “infrastructure” to describe this 

type of reuse. Table 3-3 describes and defines the categories used in this analysis. 

Table 3-3. Coding categories and their definitions. 

Category Definition 

Original research study use of a single dataset to answer a new research 
question, distinct from the specific question for which 
the data were originally collected 

Meta-analysis study  aggregation or integration of the dataset with other 
datasets to answer a research question or conduct a 
formal meta-analysis 

Statistical methods study use of one or more datasets to develop or verify new 
statistical methodology 

Software or tool 
development study  

use of one or more datasets to develop, test, or validate 
a new software product or analysis tool 

Validation use of one or more datasets to validate other findings, 
such as validating findings from an animal model in 
human subjects 

Comparison or control use of one or more datasets to validate the 
investigator’s own data, provide comparison, or serve 
as a control group 

Reproducibility or 
reanalysis study  

reanalysis of one or more datasets to answer the same 
question for which the data were originally collected or 
to verify the original study’s findings 

Infrastructure use of one or more datasets to populate a database or 
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Category Definition 

repository for internal or institutional use 
 

Of the 449 unique requests for NIDDK datasets, 17 were missing the 

executive summary that contained information about how the datasets would be 

reused. 432 unique requests had executive summaries, an amount that was small 

enough to permit me to code all the requests. This total population sampling has the 

benefit of avoiding sampling error and providing a richer understanding of the 

phenomena of interest (Etikan, Abubakar Musa, & Sunusi Alkassim, 2016; Thygesen 

& Ersbøll, 2014). However, dbGaP datasets had 9,444 unique requests, too many for 

me to feasibly manually code. Therefore, for the dbGaP analysis, I randomly selected 

a subset of 1,500 of the 9,444 requests (15.9%), which provides a confidence interval 

of +/-1.1 at a 95% confidence level (based on estimation of proportion). 

To identify the topic of reuse proposed in a dataset, I used an automated 

coding method rather than manual coding. Using an automated method has the 

benefit of applying systematic coding, not affected by human judgment, across the 

entire dataset. The use of an automated technique also allowed me to include the 

entire set of both dbGaP and NIDDK requests (9,444 and 432 requests, respectively) 

in this analysis, since I was not limited by what I could feasibly manually code.  

MeSH On Demand is an automated tool that generates a list of Medical 

Subject Headings (MeSH) terms for each use request, including the specific organ 

systems, diseases, research techniques, and other topics that describe the content of a 

text by using the National Library of Medicine’s (NLM) Medical Text Indexer (MTI) 
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(National Library of Medicine, 2018). MTI was originally developed to partly 

automate indexing of journal articles for inclusion in MEDLINE, the database of 

biomedical literature maintained by the NLM. Prior to the development of MTI, 

human indexers manually indexed all articles for MEDLINE; by 2014, MTI was 

being used in the indexing of over 60% of MEDLINE articles (Mork, Aronson, & 

Demner-Fushman, 2017).  

With advances in technology and the application of machine learning 

technologies to MTI, its precision and recall have improved since its original 

development in 2002 (Aronson, Mork, Gay, Humphrey, & Rogers, 2004; Mork, 

Yepes, & Aronson, 2013). Even so, MTI is not as accurate as a human indexer, so I 

tested whether it would perform adequately for use in this study by comparing the 

terms it automatically generated with my own manual coding for ten randomly 

selected use requests from the repositories considered in this analysis (five from 

dbGaP and five from the NIDDK repository). For each of the requests, MTI assigned 

more terms than I did (mean 9.7 terms per use request for MTI compared to a mean of 

4.7 for me). My own indexing focused only on terms such as diseases, conditions, and 

organ systems, which are the categories of terms that are used to describe the original 

datasets, while MTI also picked up on concepts such as analytical methods and study 

populations. Considering only disease, condition, and organ system terms, the MTI 

terms and my own matched in all ten cases. Given that MTI’s sensitivity (in other 

words, its ability to identify all relevant terms) is similar to my human indexing, its 



 

 

 

47 

 

lack of specificity (that is, its tendency to identify some irrelevant terms) does not 

present a problem for this study.  

To help improve the accuracy of the MTI indexing, I also removed high-level 

terms related to study populations, such as Male, Female, Child, and Adult. Leaving 

extraneous terms in would not significantly affect the outcome of the analysis; as will 

be discussed, the algorithm that calculates similarity considers terms that come from 

two separate “branches” of the MeSH tree hierarchy to be entirely unrelated. Since 

the MeSH terms assigned to datasets almost exclusively covered diseases and organ 

systems, which are on separate branches of the MeSH tree from study population 

terms, the algorithm would consider these terms unrelated to the dataset terms, which 

would make them irrelevant to this analysis, since the similarity score is based on the 

set of most similar pair of terms. Leaving unrelated or extraneous terms in the MTI-

produced term lists would therefore have no impact on the outcome of the analysis, 

but removing them did improve the efficiency of an already computationally 

intensive analysis, so I removed them.  

Once MeSH terms were assigned for each request, these terms could be 

compared to the MeSH terms assigned by the repositories to the corresponding 

dataset in order to determine how closely the proposed reuse matches the original 

reason for which the dataset was collected. This comparison is based on a technique 

called semantic similarity, which employs ontologies to calculate the relatedness of a 

set of terms (Pesquita, Faria, Falcão, Lord, & Couto, 2009). MeSH’s tree structure 

makes it possible to calculate semantic similarity between terms based on their 
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relative positions in the hierarchy, where 0 means two terms are completely unrelated 

and 1 means they are identical (Gan, Dou, & Jiang, 2013; Garla & Brandt, 2012; 

Zhou et al., 2015).  

Figure 3-1 demonstrates the concept of semantic similarity in a small portion 

of the MeSH tree structure. Considering the term Heart Diseases, some of the terms in 

the tree are similar conceptually (for example, Vascular Diseases also affect the 

cardiovascular system), while others are completely unrelated (for example, 

Informatics is on a totally separate branch of the MeSH tree and has no conceptual 

relationship to Heart Disease). Figure 3-1 shows the semantic similarity score (SSS) 

for each term to the index term of Heart Diseases. 

 

Figure 3-1. MeSH tree sample demonstrating semantic similarity. The number following each 

term is its semantic similarity score (SSS) to the index term of “Heart Diseases.” 

I calculated semantic similarity using the shortest path algorithm in the R 

package MeSHSim (version 1.2.0; requires R version 3.2.1) (Zhou & Shui, 2015). I 

All MeSH
terms

Diseases
(SSS = 0.85)

Cardiovascular 
Diseases 

(SSS = 0.95)

Heart Diseases 
(SSS = 1)

Vascular 
Diseases 

(SSS = 0.9)

Eye Diseases

(SSS = 0.85)

Eye Infections 
(SSS = 0.783)

Information 
Science (SSS 

= 0)

Informatics

(SSS = 0)
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tested each of the nine algorithms that are implemented in this R package; all 

performed similarly in terms of how they relatively ranked similarity of terms, but the 

shortest path algorithm has the benefit of being on a 0 – 1 scale that enables 

straightforward interpretation of similarity (or lack thereof). Both use requests and 

datasets can be tagged with multiple MeSH terms; the MeSHSim package returns 

results in the form of a matrix of similarities for all terms, as shown in the example in 

Table 3-4. I recorded the highest semantic similarity value for each use 

request/dataset pair (for example, in the case of the terms in Table 3-4, I would record 

the value 0.86, since the terms Lung and Cardiovascular System are most similar). 

Since the datasets and requests are both described by multiple terms, it is likely that 

many of the term pairs in the matrix will be 0, even if the dataset and request also 

share a term that is an exact match. For that reason, the use of the maximum rather 

than the mean score provides a better understanding of the similarity between the 

dataset and the request.  

Table 3-4 An example matrix of semantic similarity scores between two sets of terms. 

 Dataset terms 

Ankle 
Brachial 

Index 

Cardiovascular 
System 

Intermittent 
Claudication 

Peripheral 
Vascular 
Diseases 

R
eq

u
es

t 
te

rm
s 

Lung 0 0.86 0 0 

Smoking 0 0 0 0 

Global Health 0 0 0 0 
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Cohort Studies 0.24 0 0 0 

Biological 
Markers 

0 0 0 0 

Pulmonary 
Disease, Chronic 
Obstructive 

0 0 0.62 0.65 

 

Together, the analyses of manually-coded reuse types and machine-coded 

topics provide insight into the uses for which data are being requested. For example, 

are most datasets being used in the context of the same topic for which they were 

originally collected, as measured by semantic similarity? Are multiple datasets being 

combined to derive additional findings that would not have been possible using a 

single dataset on its own? Are genomic datasets of the type found in dbGaP reused in 

different contexts or ways than clinical datasets of the type found in NIDDK? These 

findings contribute to a clearer view of biomedical data reuse that will contribute to 

understanding the impacts of shared datasets. Given the concern that many 

researchers have about others “scooping” their work if they share their data, the 

answers to these questions may also have implications for researchers’ attitudes 

toward sharing.  

3.2.2 Research Question 2: What are the demographics of researchers who reuse existing 

datasets? 

To better understand the types of requestors who are reusing data, I manually 

coded the use requests with demographic information about the requestor. First, for 
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each unique institution, I recorded the latitude and longitude of the institution’s city to 

determine where requests are originating. The latitude and longitude enabled me to 

use the data with R packages that rely on geocoded data for visualization, both at the 

international level and at the state level within the United States. The institution name 

was available for all 9,444 dbGaP requests, all 1,939 of the NHLBI requests, and 255 

of the 449 NIDDK requests (57%). The large number of missing institutions in the 

NIDDK datasets is due to differences in the repository’s systems prior to September 

2013 that resulted in some data about requests being unavailable; therefore, this 

analysis reflects only the most recent six years of use.  

Raw counts of requests would not provide useful insight into which countries 

were making the most reuse of shared datasets, since research activities are not evenly 

distributed around the world. For example, it would be reasonable that more requests 

would come from the United States (a large country with a sizeable research 

enterprise) than say, Liechtenstein (one of the smallest countries in the world). 

Therefore, rather than use raw counts, I compared the number of requests coming 

from a geographic region to its research presence. Research presence is difficult to 

quantify, since research is conducted within many different organizations, including 

academic institutions, government agencies, non-profit organizations, and private 

research corporations, to name a few. For international-level comparisons, I used 

number of universities as a proxy for research presence. For state-level comparisons, I 

used NIH funding received within each state in Fiscal Year 2018 (the most recent 

year for which complete funding data are available). This state-level proxy likely 
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provides a more accurate representation of research presence, since NIH funds are 

awarded not only to universities, but to other types of research institutions.  

To compare a country’s (or state’s) research presence to the number of use 

requests its researchers make to each repository, I calculated the relative difference in 

composition (RDC). RDC is a measure of how over- or underrepresented a group is 

within a specific context compared to the composition of the entire population. For 

example, RDC has been used to measure underrepresentation of racial groups in 

gifted and talented education programs compared to their total presence in a school 

overall; a group that makes up 50% of the students in the whole school, but only 25% 

of the students in the gifted and talented program is underrepresented (Ford, 2014). I 

calculated RDC for countries and for states within the United States to determine 

whether certain geographic regions are making more requests than might be expected 

based on their research presence. I did this analysis for each repository individually to 

determine whether there was variation in where requests were concentrated for the 

different repositories.   

To better understand who is reusing data, I also coded each unique request 

with the requestor’s career stage at the time of the request. To determine career stage, 

I located web resources that documented requestors’ career, such as LinkedIn, CVs, 

biosketches, and web pages. Where I could not definitively determine a requestor’s 

career stage using available online materials, I coded the career status as unknown. 

Because a single requestor may have made multiple requests across his or her career, 

I recorded the career stage for each unique request. For example, a requestor may 
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have been an assistant professor when she made her first request in 2013, but she had 

received tenure and was an associate professor by the time she made her next request 

in 2016. I converted non-United States job titles to their United States equivalent to 

allow for comparison across countries. For example, in many commonwealth 

countries such as the United Kingdom and Australia, the term “lecturer” is the 

equivalent of assistant professor in the United States (Wikipedia, 2018).  

Because NHLBI did not provide the names of individual requestors, I limited 

this analysis to the dbGaP and NIDDK requests. Of the 449 unique NIDDK requests, 

286 included the requestor’s name (64%). As with institution name, the requestor 

names were missing from the oldest requests (in the case of requestor name, those 

made before December 2012). The 9,444 requests to dbGaP came from 5,260 unique 

requestors. As with coding for reuse type, locating career status information for so 

many requestors was not feasible, so I coded a subset of 1,500 of the 9,444 requests 

(15.9%), which provides a confidence interval of +/-1.1 at a 95% confidence level 

(based on estimation of proportion). 

As with the distribution of research across different geographic areas, the 

distribution of researchers across career stages is not totally even. More requests may 

come from assistant professors simply because more researchers are at this career 

stage, and not because they are actually making more requests than researchers at 

other stages. Therefore, I took the same approach of calculating relative difference in 

composition between the proportion of individuals at a career stage overall and the 

number of requests coming from individuals at this career stage. For non-academic 
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career stages, determining the number of individuals in a given career stage, such as 

“senior scientist” or “executive” would be nearly impossible, since these individuals 

are employed in so many different types of institutions. However, for academic 

requestors, this analysis is possible, since the National Center for Education Statistics 

tracks counts of full-time faculty in US degree-granting postsecondary institutions 

(National Center for Education Statistics, 2017).  

One unavoidable limitation of this approach is that the person who requested 

the data may not actually be the person who used the data. For example, a junior lab 

member may request data on behalf of his or her principal investigator, or a professor 

may request data on behalf of a student. Future survey research of dataset requestors 

could help elucidate the extent to which the data requestor and the data reuser differ. 

3.2.3 Research Question 3: Are there temporal patterns to dataset requests? 

The repositories in this study contain many years’ worth of datasets, some 

dating back to the early 2000s, and records of requests dating back almost as long. 

With many years’ worth of request data available, it is possible to track the dynamics 

of requests over a dataset’s lifetime to better understand when datasets are most 

requested. Further, understanding temporal patterns to dataset requests could make it 

possible to predict early in a dataset’s life how much use it would receive in the long-

term, which could be useful in making curation and preservation decisions. Knowing 

how long a dataset remains useful could also influence preservation decisions – if 
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datasets are generally no longer requested once they reach a certain age, it may be 

reasonable to discard them. 

This inquiry into requests to datasets over time is similar to the study of 

citation dynamics within bibliometrics, which considers the numbers of citations an 

article receives over time. Part of this exploration involves mapping “citation bursts,” 

or the time it takes for articles in a given field to reach their peak annual citation 

before citations begin to decline (Eom & Fortunato, 2011). The literature also 

contains explorations of unique or unusual citation dynamics, such as descriptions of 

the dynamics of “sleeping beauties” (articles that receive few citations for many years 

and then suddenly attract significant attention) and “flashes in the pan” (articles that 

receive a great deal of initial attention, which quickly dies down) (Li, 2014; van 

Raan, 2004). These explorations provide a basis upon which to begin to explore 

temporal patterns of dataset requests.  

As has been previously discussed, NIDDK’s move to a different system in 

September 2013 means that the year of release for datasets prior to that date is 

unknown. Removing all datasets from before September 2013 left too few datasets 

for this analysis. Therefore, for this analysis I used dbGaP, which contains 982 

datasets with a total of 100,115 requests, and NHLBI, which contains 143 datasets 

with a total of 3,860 requests. For each dataset, I aggregated the number of requests it 

had received each year. I also calculated the dataset’s age at the time of request, 

enabling comparison across datasets at the same age, regardless of when they were 

released. If dataset requests are a cumulative advantage process, with success 
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breeding success, then datasets that are older are likely to receive more requests in a 

given calendar year than those that are younger. For example, consider a dataset 

released in 2010 and one in released in 2016. The older dataset has had an additional 

six years to accrue advantage, so if we compare the number of requests each received 

in calendar year 2017, it is likely that the 2010 dataset would receive more than the 

2016 dataset. However, considering how many requests each received in the first year 

after they were released provides a more meaningful basis for comparison.  

Once the number of datasets requested per year of a dataset’s life was 

calculated, I divided the data within each repository into groups. First, I divided the 

datasets into tiers based on their percentile ranking of total requests over time, that is, 

the top 10% most requested, the next 10% most requested, and so on. To better 

control for age of dataset, I also calculated the mean percentile ranking over the 

course of a dataset’s life. For example, if it was in the 20th percentile of first year 

requests, the 30th percentile of second year requests, and the 40th percentile of third 

year requests, its mean percentile ranking is 30th percentile. I divided the mean 

percentile rankings into quartiles. I then plotted both the overall request deciles and 

the mean request quartiles to visualize the pattern of requests for datasets of varying 

levels of attention based on requests.  

In addition to understanding patterns of requests over time, I also aimed to 

determine whether the number of requests a dataset received early in its life was 

predictive of how many requests it would receive over the long run. That is, does a 

dataset that receives many requests in its first year likely to go on to receive more 
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requests than a dataset that is less requested soon after its release? I tested this by 

fitting three regression models to the dbGaP and NHLBI dataset, looking at the 

relationship between total requests and first-year requests only; first- and second-year 

requests; and first-, second-, and third-year requests, controlling for year of release 

for all three models. These models provide an understanding of the extent to which 

requests in the first three years of a dataset’s life can be used to potentially predict the 

number of requests it will go on to receive.  

Because dynamics and temporal patterns of dataset requests have not yet been 

studied, my primary aim here was to determine whether in fact patterns do indeed 

exist, and if so, the general dynamics of requests over time. This study provides an 

initial view of the temporal patterns within dataset requests, that can be expanded 

based on request dynamics. This analysis also demonstrates the extent to which 

dataset requests can be considered a cumulative advantage process.  

3.2.4 Research Question 4: Are there dataset topics that are more highly requested? 

The time-based methods described above provide insight into patterns of how 

datasets are requested over time and whether cumulative advantage processes and 

attention decay effects influence how many requests datasets receive. However, these 

models likely do not fully account for the reasons why some datasets are more highly 

requested than others. Previous studies have explored researchers’ decision-making 

processes related to choice of and satisfaction with datasets, but the factors identified 

in these studies are subjective and would be difficult to measure in the context of this 
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study. For example, opinions about dataset credibility would likely differ significantly 

among dataset requestors, so it would be difficult to develop a method to quantify 

credibility as a factor. Reputation of the data creator is also a factor in data reuse; 

even if there were an objective measure of reputation, many of these datasets have 

been collected by large, multi-site consortia with many individuals involved, and 

some of the datasets do not list who originally collected the data at all. In the absence 

of robust and reliable methods for quantifying these subjective measures, it is 

necessary to look to the datasets themselves to understand why some are more highly 

requested.  

 The repositories considered in this study do include some basic metadata 

about the dataset, such as the number of subjects in the dataset and the dates of data 

collection. However, this metadata is sparse and provides little useful insight into the 

content of the dataset itself. In addition, the content of the metadata differs across the 

three repositories, making it challenging to identify patterns that would hold for 

biomedical data reuse broadly, rather than being specific to an individual repository. 

More useful than this basic metadata is the narrative description of the dataset, 

which can be meaningfully explored using text-mining methods. At its most basic 

level, text mining is useful in understanding the contents of a document by identifying 

the terms that are most central based on frequency (Hotho, Andreas, & Paaß, 2005). 

This simple approach considers a document as a “bag of words,” simply counting the 

number of times a given word appears without consideration of its context within the 

text (Y. Zhang, Jin, & Zhou, 2010). More advanced topic modeling techniques make 
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it possible to identify complex latent topics in a text by counting words in their 

broader context, such as considering n-grams (a set of n words appearing together in 

sequence), sentences, or paragraphs (Blei, Ng, & Jordan, 2003).  

These topic modeling techniques are considered “unsupervised,” in that the 

algorithm simply identifies patterns of words within a corpus that frequently appear 

together in texts, and it is up to a human subject matter expert to determine the topic it 

describes. For example, the algorithm might determine that the terms “myocardial 

infarction,” “hypertension,” and “cardiac output” form a topic in a corpus; a human 

interpreter would then be able to determine that texts containing this topic could be 

described as being about “cardiovascular disease.” 

Text mining is especially useful in this analysis because it allows for the 

detection of patterns in the data even when potentially important features are not 

known in advance and has the benefit of being able to account for a wide range of 

features that are not captured in the metadata. For example, since data descriptions 

include information such as the specific brand of the sequencing machine and the 

study methodologies, these methods will be able to take into account whether these 

features are characteristic of reuse.  

Text mining techniques also are a practical method here because they have 

been demonstrated to be useful in various bibliometric applications, which, as has 

been discussed, is similar to the type of inquiry being conducted here. For example, 

topic modeling techniques have been used to successfully identify high impact 

articles, with significant correlation to article citation counts (Gerrish & Blei, 2010; 
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Mann, Mimno, & McCallum, 2006). Text mining has also been used to detect 

similarities between patent documents and scientific articles (Magerman, van Looy, 

& Song, 2010); while I did not use that technique in this study, this approach could 

have potential future applications for detecting similarities between dataset 

descriptions and the associated reuse requests.  

 The narrative study descriptions from each of the three repositories formed the 

corpus for text mining, specifically using a topic modeling approach. This analysis 

includes the descriptions of 1,150 datasets from dbGaP, 166 datasets from NHLBI, 

and 140 datasets from NIDDK. I wrote a script that retrieved dataset descriptions 

from the webpages of each of the datasets’ web pages, then prepared the texts using 

standard text mining pre-processing techniques incorporated in the R text mining 

package tm (version 0.7-3) (Meyer, Hornik, & Feinerer, 2008), including converting 

all text to lowercase (since R is case-sensitive); removing common English language 

stopwords such as “the” and “and”; stemming, which converts various forms of a 

word to their common root (for example, “genetic,” “genetically,” and “genetics” 

would all be collapsed to “genetic”); and trimming of white space and special 

characters. The dataset descriptions, particularly from the same repositories, are all 

somewhat homogenous in terms of certain scientific words that would not be 

contained in the English language stopword list, but that would not be informative 

about the content of the description, such as “study” and “subject.” Therefore, I also 

removed a custom set of stopwords that appeared almost universally in the 
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descriptions and provided no useful context about the topic of the dataset; this list is 

in Appendix B. 

 Once the texts were prepared, I proceeded to develop topic models for each 

repository using latent Dirichlet allocation (LDA) implemented in the R package 

topicmodels (version 0.2-7). To understand the LDA model, consider a set of 

documents from a corpus. Most documents do not have a single topic, but several; for 

example, a description of a dataset in dbGaP has the topic genetics, as well as the 

topic of whatever disease or condition it is studying. The topic genetics, in turn, has a 

number of words that are associated with it, such as “genetic,” “sequence,” and 

“genome.” LDA fits a mathematical model to “[find] the mixture of words that is 

associated with each topic, while also determining the mixture of topics that describes 

each document” (Silge & Robinson, 2018, para. 5). The topicmodels package will 

generate a list of the terms most highly associated with each topic, as well as 

calculating the probability that a term is predictive of a given topic. For example, the 

term “carcinoma” would have a higher probability of being associated with the topic 

of cancer than the topic of cardiovascular disease. The word “topic” should be 

understood broadly here, not just to refer to the disciplinary focus of a dataset, but to 

also potentially draw on other concepts contained in the descriptions, such as study 

type or characteristics of subjects.  

 The application of the LDA model does require a fair amount of judgment on 

the part of the human programmer. For example, the choice must be made whether to 

use individual words as the “token” or unit of analysis (the bag of words approach) or 



 

 

 

62 

 

group words into n-grams with their nearest neighbors. For example, in a simple text 

with a basic vocabulary, the bag of words approach may be effective, but more 

technical texts might use many multi-word phrases, which would not be reflected if 

using simple counts of single words. Therefore, achieving meaningful results requires 

experimenting with using single words, bigrams (word pairs), or trigrams (word 

triplets). In addition, the human must determine the number of topic groups into 

which to divide the corpus. While there are some statistical methods that can aid in 

identifying the optimal number of topic groups, achieving meaningful topics largely 

relies on human judgment. The process of determining the number of topics is 

iterative, starting with the predicted optimal number of groups and experimenting 

with the varying numbers until the most meaningful categories appear. In addition, it 

is up to the human to identify what the topics actually describe. The topicmodels 

package simply returns a set of numbered topics and the words most highly 

associated with them; based on the mixtures of terms associated with the topic, I 

applied my subject matter knowledge to determine what the topic describes.  

 Once the datasets were organized into topics, I determined which topics were 

most requested based on the number of use requests to datasets in each topic. I looked 

not only at overall counts, but counts by year, to determine whether the most popular 

topics changed over time. A problem here is that the datasets are not divided evenly 

among the topics. For example, in Figure 3-2, Topic A contains 4 datasets while 

Topic B contains only half as many. Topic A would be reasonably expected to have 

more requests than Topic B, not necessarily because it’s more popular, but because it 
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contains more datasets to receive requests. The fact that Topic B has actually received 

more requests than Topic A despite having fewer datasets must also be accounted for; 

not only does it have more requests, but it has them despite having half as many 

datasets to be requested.  

 

Figure 3-2. Demonstration of analyzing topics and requests. 

 To solve the problem of comparing topics of uneven size, I compared the 

proportion of datasets in a topic to total datasets in the repository, to the proportion of 

requests received by the topic to total requests received by the repository. For 

example, Topic A contains 4 datasets of the 6 datasets total (0.67) and 70 requests of 

the 192 requests total (0.36). That is, it contains 67% of the total datasets but has 

received only 36% of the total requests. By comparison, Topic B only contains 33% 

of the requests but received 64% of the requests. This analysis makes it possible to 

compare topics’ requests even when the datasets are unevenly distributed among 

them, to determine which topics are most highly requested.  
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3.3 Limitations 

It is important to note that the scope of this study limits its generalizability not 

only beyond biomedical data, but also beyond the three repositories considered here. 

Analyzing each repository separately from the others makes it possible to gain insight 

into the extent to which biomedical repositories differ from each other, such as 

whether genomic datasets are reused differently from clinical datasets. Still, caution 

should be used in generalizing results, and further research should examine whether 

the findings of this study hold for other repositories, data types, and disciplines.  

The repositories considered here are also somewhat unique in that they are 

restricted access repositories. Because of the limitations I have described, it is 

difficult or even impossible to know who is using data from truly open repositories 

and in what ways. Counts of dataset views and downloads provide limited insight into 

the deeper questions about dataset reuse considered here. At present, use requests are 

one of the few robust ways to operationalize data reuse, so the limitations associated 

with these findings are difficult to avoid. However, efforts currently underway in the 

scientific community to standardize data citation will likely enable better automated 

tracking of data reuse over time, including data from both restricted access and fully 

open repositories. As data citation standards mature, future research may be able to 

address questions about differences in reuse of different types of data and 

repositories.  
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Chapter 4: Findings About Requests and Requestors 

This chapter presents the findings of the two research questions that focus on 

questions about requests and requestors, or the who, where, and why of biomedical 

data reuse – who is reusing biomedical data, from where in the world do requests 

come, and why are datasets reused. Specifically, the research questions and 

hypotheses considered here are: 

Research Question 1: What are the purposes and characteristics of biomedical 

research reuse? 

Research Question 1.1: For what methods and analysis types are datasets 

reused? 

Hypothesis 1.1: Genomic datasets of the type found in dbGaP will be 

more likely to be used in combination in meta-analyses, while clinical 

datasets of the type found in the NIDDK repository will be more likely to 

be used on their own to answer an original research question. 

Research Question 1.2: How closely are the topics for data reuse aligned 

with the topics for which the data were originally collected? 

Hypothesis 1.2: Similarity between original topics and topics of reuse will 

be lower for genomic data (found in dbGaP) than for clinical data (found 

in the NIDDK repository).  

Research Question 2: What are the demographics of researchers who reuse existing 

datasets? 
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 Research Question 2.1: Where are requestors located in the world? 

Hypothesis 2.1: Requestors will be primarily located in regions with a 

greater proportion of research institutions, including North America, 

Europe, and Asia.  

 Research Question 2.2: Are there patterns in career stage of requestors? 

Hypothesis 2.2 A broad range of career stages, from student to full 

professor (or equivalent) will be represented.  

4.1 Research Question 1: For what research objectives are biomedical datasets 

reused? 

 Biomedical research is a large umbrella that encompasses many different 

research methodologies on a range of topics, from efforts aimed at understanding the 

very building blocks of life to specific trials on the efficacy of various types of 

therapies. The types of data that comprise biomedical research data are similarly 

diverse – as are their potential applications. Even when datasets seem very specific in 

their scope and application, the potential often exists for researchers to reuse data in 

new and sometimes unexpected ways. In fact, as data science methodologies advance, 

biomedical research data has potential for researchers who might not even be 

considered biomedical researchers, such as computer scientists who need test data to 

develop and validate new algorithms or statisticians who can use existing data to 

pioneer new statistical approaches. 
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 Here, I aim to better understand how researchers are making use of data 

available through the dbGaP and NIDDK repositories by examining the descriptions 

that are submitted as part of a potential reuser’s request to access the data. These 

descriptions, intended for evaluation by repository staff responsible for determining 

whether the use is appropriate, contain details about the specific research questions 

researchers intend to explore with the dataset. In this section, I use a combination of 

qualitative analysis and computational indexing methods to understand the types of 

research conducted using these datasets, as well as the topics of reuse, including how 

similar (or different) they are from the original data use. 

This analysis draws on data from two repositories; NIDDK provided me a 

spreadsheet containing details of use requests, including the proposed use, and I wrote 

an R script to retrieve requests from the dbGaP website. The NIDDK requests cover 

the period between 2005 and 2018, while dbGaP includes 2007 to 2018. NHLBI does 

not make their full use requests public; they provided me with summary information 

about requests, but they did not share identifying information about requestors or the 

text of proposed uses. Therefore, this analysis does not include NHLBI requests.  

4.1.1 Research Question 1.1: For what methods and analysis types are datasets reused? 

To determine the purpose for which researchers intend to use requested 

datasets, I analyzed the descriptions of reuse that are included in the request 

submission. I hypothesized that the types of reuse described for datasets in dbGaP, 

which contains primarily genetic data, would differ from those in NIDDK, which 
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contains primarily clinical data. Given that studies using genetic data typically require 

a large number of subjects to achieve adequate statistical power (Hong & Park, 2012), 

I expected that dbGaP would have more requests to use datasets in meta-analyses 

(that is, in combination with other data). On the other hand, clinical data of the type 

found in the NIDDK repository can be difficult to combine with other datasets 

because of nuances of how individual researchers or teams collect the data, so I 

would expect that these datasets would more likely be used on their own to answer an 

original research question.  

After reading the proposed use for each request, I classified the request 

according to the type of reuse. The categories were based on review of the relevant 

literature, with the addition of new categories when needed for use requests proposing 

an activity not covered by an existing category, and include the eight types described 

in Table 4-1. 

Table 4-1. Coding categories and their definitions. 

Category Definition 

Original research study use of a single dataset to answer a new research 
question, distinct from the specific question for which 
the data were originally collected 

Meta-analysis study  aggregation or integration of the dataset with other 
datasets to answer a research question or conduct a 
formal meta-analysis 

Statistical methods study use of one or more datasets to develop or verify new 
statistical methodology 

Software or tool 
development study  

use of one or more datasets to develop, test, or validate 
a new software product or analysis tool 

Validation use of one or more datasets to validate other findings, 
such as validating findings from an animal model in 
human subjects 

Comparison or control use of one or more datasets to validate the 
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Category Definition 

investigator’s own data, provide comparison, or serve 
as a control group 

Reproducibility or 
reanalysis study  

reanalysis of one or more datasets to answer the same 
question for which the data were originally collected or 
to verify the original study’s findings 

Infrastructure use of one or more datasets to populate a database or 
repository for internal or institutional use 

 

Each of the requests may ask for more than one dataset, and I report the 

findings at the dataset rather than the request level. For example, if I code a request as 

being a meta-analysis, and it asks for 200 datasets, 200 instances of meta-analysis are 

added to the tally. This treats each dataset request as its own unit; even though a 

requestor may use the same request text for more than one dataset, each dataset’s 

request should still be counted. Appendix A provides examples of use requests in 

each category from dbGaP and NIDDK. 

The determination of how to categorize each dataset was based on a number 

of factors, including the number of datasets included in the request (more than one 

requested dataset would suggest a meta-analysis) and the inclusion of phrases that 

explicitly named a reuse type (e.g. “we propose to validate findings from our own 

colorectal cancer studies” or “our goal here is to perform a meta-analysis of densely 

sequenced genomes” – emphasis added) or keywords that likewise identified a reuse 

type (e.g. “we develop a Bayesian hierarchical model,” with Bayesian referring to a 

statistical approach or “we are currently evaluating the performance of our mutation 

detection pipeline,” where a pipeline refers to a series of software tools used in 

sequence to conduct a specific analysis).  
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I also drew on my own extensive experience with biomedical research, 

including nearly ten years working in biomedical libraries, the last six of which were 

spent working closely with researchers at the National Institutes of Health and 

National Library of Medicine. In that capacity, I have served as a consultant to and 

collaborator with biomedical researchers, used my expertise in data science as a team 

member in “hackathons” aimed at using some of these same types of data to answer 

biomedical research questions, and developed and delivered training for other 

biomedical librarians interested in learning more about these skills. These experiences 

have given me a depth of understanding of research techniques and a familiarity with 

the vocabulary of the science described within these requests.  

I also validated my coding by comparing my codes to those of two outside 

coders for a random subset of twenty requests (ten from each repository). Both coders 

have experience working with research of the type described in the use requests: one 

is an academic biomedical librarian who consults with researchers on issues related to 

biomedical data and computational reproducibility, and the other is an NIH fellow in 

data science and open science policy, who holds a doctoral degree in computational 

biology. Their mean percent agreement with my codes was 72.5% (70% and 75%), 

which is considered Substantial agreement on Landis and Koch’s scale for Strength of 

Agreement (Landis & Koch, 1977). Most of the variability between their coding and 

mine was due to their use of the “comparison or control” code when I used “meta-

analysis” or vice versa. These two types of reuse are similar, since they both refer to 

combining data. 
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The set of NIDDK requests included 416 requests from 252 unique requestors, 

requesting a total of 561 datasets. Each request asked for a mean of 1.3 datasets, with 

a minimum of 1 and a maximum of 10. For the dbGaP analysis, I randomly selected a 

subset of 1,500 of the 9,444 requests (15.9%), which provides a confidence interval 

of +/-1.1 at a 95% confidence level (based on estimation of proportion). This set came 

from 1,069 unique requestors and included requests for a total of 20,179 datasets. 

Each request asked for a mean of 13.5 datasets, with a minimum of 1 and a maximum 

of 398.  

Table 4-2 shows the number of requests in each reuse category and the 

percent of overall requests for requests to dbGaP and NIDDK. 

Table 4-2. Counts and percentages of requests describing various types of reuse for NIDDK 

and dbGaP datasets. 

Reuse type dbGaP Requests NIDDK requests 

N % N % 

Original research 460 2.3% 282 50.27% 
Meta-analysis 14,619 72.4% 139 24.78% 
Comparison 858 4.3% 2 0.36% 
Validation 221 1.2% 14 2.5% 
Statistics 2,242 11.1% 84 15.0% 
Software 1,097 5.4% 14 2.5% 
Infrastructure 644 3.2% 0 0% 
Re-analysis  11 0.05% 2 0.36% 
Reuse type not specified 2 0.01% 24 4.28% 
 

 Although some types of reuse are uniformly low for both dbGaP and NIDDK 

datasets, the most common ways that they are reused are very different from each 

other. A chi-squared test of independence confirms that the distributions of reuse 

between dbGaP and NIDDK are significantly different (χ2 = 4547, df = 8, p < 0.01). 
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As hypothesized, original research is the most common reuse type for NIDDK 

datasets, but it is actually the fourth least common reuse type for dbGaP datasets. On 

the other hand, nearly three-quarters of dbGaP datasets are requested for use in a 

meta-analysis; while meta-analysis is still a significant category for NIDDK data 

reuse, it is much less common than for dbGaP. The greater frequency of meta-

analyses in dbGaP and original research studies in NIDDK is also reflected in the 

very different number of datasets per request for these two repositories: on average, 

NIDDK requests ask for just 1.3 datasets to dbGaP’s mean of 13.5. A Welch unpaired 

two-sample t-test shows that the means of datasets per request for dbGaP and NIDDK 

are significantly different (t = 11.5, df  =1504, p < 0.001). 

 These variations are likely due to the differences in the types of data that 

dbGaP and NIDDK house. Genome-wide association studies, a common use of the 

dbGaP datasets, require a much larger sample size to achieve adequate statistical 

power than do clinical studies, and therefore several datasets may need to be pooled 

in order to have enough subjects for a study (Hong & Park, 2012). On the other hand, 

many of the NIDDK are clinical datasets, which are often difficult to combine using 

meta-analytic techniques because different research teams collecting the original 

datasets often use their own unique ways of recording variables.  

For example, many of the studies in NIDDK ask participants about their 

alcohol consumption habits, but they do so in ways that make it difficult to compare 

across studies. One such study, the Diabetes Prevention Program Outcomes Study 

(DPPOS) queries in specific detail, asking participants to recall how many “12 ounce 
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bottles of beer,” “4 ounce glass of wine,” and “1.5 ounce shots of hard liquor or 

mixed drinks” they had consumed in the past seven days (Diabetes Prevention 

Program Outcomes Study, 2016). Another, the Nonalcoholic Fatty Liver Disease 

(NAFLD) study, simply asks participants how many drinks they have on a typical day 

(Nonalcoholic Fatty Liver Disease (NAFLD) Adult Database, 2016). It is difficult to 

know if responses to these questions yield truly comparable results. Perhaps an 

NAFLD participant is in the habit of going to the pub for a pint of beer (16 ounces) 

every evening, and without this more specific guidance of “12 ounces,” will likely 

count each of these as one drink. When this NAFLD participant responds he has 

seven beers a week, he has consumed 112 ounces of beer, or 30% more than a 

DPPOS respondent who says she consumes seven 12-ounce bottles of beer a week (or 

84 ounces). These two studies also differ on how they define binge drinking, with the 

DPPOS asking about how often the participant has had seven or more drinks in 24 

hours, whereas NAFLD asks about how often the participant has had six or more 

drinks on one occasion. Even such seemingly inconsequential differences – six versus 

seven drinks, “on one occasion” versus in 24 hours – mean that different information 

is being elicited from participants. With many of these clinical studies having 

hundreds or even thousands of variables, these small differences can add up to 

significant challenges that prevent datasets from being combined for meta-analytic 

purposes.  
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4.1.2 Research Question 1.2: How closely are the topics for data reuse aligned with the topics 

for which the data were originally collected? 

This analysis aims to quantify similarity between the original subject focus of 

shared datasets and the focus of the research for which requestors hope to reuse them. 

I hypothesize that the differences in genomic versus clinical research discussed above 

will also lead to differences in the similarity of reuse to original data purpose between 

dbGaP and NIDDK. Given the broader applications of dbGaP data compared to the 

relatively specific applicability of NIDDK’s clinical datasets, I expect greater 

similarity between NIDDK datasets and their topics of reuse than for dbGaP datasets 

and their topics of reuse.  

Medical Subject Heading (MeSH) terms provide a means by which to 

compute an objective measure of similarity between original use and reuse. These 

terms are used to describe medical literature consistently as well as to understand 

relationships between terms. Because MeSH terms are arranged in a hierarchical 

fashion in a tree structure, it is possible to calculate a measure of similarity between 

two terms, known as semantic similarity. Terms closer to each other in the hierarchy 

will have a high semantic similarity score, whereas terms that are far from each other 

on the tree will have a lower semantic similarity score. Exactly identical terms have a 

semantic similarity score of 1, whereas a semantic similarity score of 0 indicates that 

the two terms are not in any way topically related (since they are on totally different 

top-level branches in the 16-branch MeSH tree). Thus, comparing MeSH terms that 

are assigned to a dataset with MeSH terms assigned to a request for that data allows 
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for a quantitative measure of similarity between the proposed reuse and the original 

dataset’s purpose. 

Conveniently, datasets from dbGaP and NIDDK were classified by the 

repository with one or more MeSH terms. To determine MeSH terms for the requests, 

I used the MeSH On Demand tool, which utilizes the National Library of Medicine’s 

(NLM) Medical Text Indexer (MTI) to assign terms to a provided text. Given a reuse 

request description, the MeSH On Demand tool returns a list of relevant MeSH terms. 

I removed very general terms, such as “Human” and “Adult” from the list of returned 

MeSH terms, since these provided little useful context. 

Once the terms had been assigned, I wrote an R script that would join the set 

of MeSH terms for a request with the set of MeSH terms for all the datasets included 

in the request. Since most datasets and requests had more than one MeSH term, the 

script calculated a semantic similarity score for each request/dataset term pair and 

recorded the highest score. Table 4-3 shows an example of a request/dataset pair from 

dbGaP with their terms and the semantic similarity score for each term. Most of the 

term pairs have a semantic similarity score of 0, since they are on totally different 

top-level branches of the MeSH tree. Others have a small score because they are on 

the same branch, but far apart from each other. For example, Ankle Brachial Index 

and Cohort Studies are both on the top-level branch Analytical, Diagnostic, and 

Therapeutic Techniques, and Equipment. However, moving down the tree, they are 

far down on very distant branches from each other. On the other hand, Pulmonary 

Disease, Chronic Obstructive, is much closer to Intermittent Claudication and 
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Peripheral Vascular Diseases on the Diseases top-level branch. Cardiovascular 

System and Lung are the closest to each other, just one level apart on the Anatomy 

branch. Because many of the terms are unrelated, recording the maximum score 

provides the best comparison of the similarity between the request and the dataset; for 

example, in this case, the mean would only be 0.03, compared to the maximum score 

of 0.86.   

Table 4-3. Example semantic similarity scoring. 

 Dataset terms 

Ankle 
Brachial 

Index 

Cardiovascular 
System 

Intermittent 
Claudication 

Peripheral 
Vascular 
Diseases 

R
eq

u
es

t 
te

rm
s 

Lung 0 0.86 0 0 

Smoking 0 0 0 0 

Global Health 0 0 0 0 

Cohort Studies 0.24 0 0 0 

Biological 
Markers 

0 0 0 0 

Pulmonary 
Disease, Chronic 
Obstructive 

0 0 0.62 0.65 

 

Semantic similarity scores were calculated for each request/dataset pair in 

dbGaP and NIDDK; NHLBI was not included in this analysis because they did not 

provide me the text of use requests. The dbGaP dataset included 9,348 unique 
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requests for 986 unique datasets, for a total of 92,523 request/dataset pairs. The 

NIDDK dataset included 544 unique requests for 65 unique datasets, for a total of 539 

request/dataset pairs. Figure 4-1 shows the distribution of maximum semantic 

similarity scores for dbGaP and NIDDK request/dataset pairs. The top part of the 

chart shows density at each score (i.e. the proportion of how many request/dataset 

pairs have that score). The horizontal boxplot below shows the distribution of 

maximum semantic similarity scores. Each of the points overlaying the boxplot 

corresponds to a single request/dataset pair at that score. Table 4-4 provides summary 

statistics. 

Table 4-4. Summary statistics of semantic similarity scores for dbGaP and NIDDK 

request/dataset pairs. 

 Mean score Number of pairs 

with score = 0 

Number of pairs 

with score = 1 

dbGaP 0.56 28,804 (31.1%) 18,347 (19%) 

NIDDK 0.78 85 (15.8%) 297 (55.1%) 
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Figure 4-1. Distribution of maximum semantic similarity scores for request/dataset pairs. 
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  A Welch unpaired two-sample t-test shows that the means of the maximum 

semantic similarity scores for dbGaP and NIDDK request/dataset pairs are 

significantly different (t = -14.22, df  = 546, p < 0.001). These differences suggest 

that requestors are using dbGaP for topics that vary more from the original data topic 

than NIDDK requestors. As hypothesized, NIDDK scores tended to be higher (more 

similar), while dbGaP scores tended to be lower (less similar). Over half of the 

NIDDK datasets had a score of 1, indicating that requestors intended to reuse the 

datasets for the same topic of research for which it had originally been collected. On 

the other hand, nearly a third of dbGaP datasets had a score of 0, suggesting that these 

datasets were being used in entirely novel contexts compared to the topic for which 

the data were originally collected.  

4.1.3 Summary of Findings 

 These findings demonstrate that dbGaP and NIDDK datasets are being reused 

in very different ways from each other. dbGaP datasets were most often used in 

combination with other datasets to conduct meta-analyses, and they were more likely 

to be used for a topic that diverged from the original reason the data were collected. 

On the other hand, just over half of the NIDDK datasets were requested for use in an 

original research study, using a single dataset on its own. NIDDK datasets were also 

reused in contexts that were generally more similar to the reason for which the data 

had originally been collected.  
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 The differences in reuse observed here are likely reflective of the very 

different types of data in the two repositories. dbGaP houses genetic sequence data; 

because of statistical issues associated with analyzing this type of data, very large 

sample sizes are required to achieve adequate statistical power and arrive at 

meaningful results (Hong & Park, 2012). A number of the dbGaP datasets contain 

genetic sequences of normal, healthy humans, which can serve as a useful comparison 

group for a researcher’s own set of sequences on a particular disease, since 

identifying where variations occur in the disease group but not in the healthy 

comparison group can elucidate genetic regions of interest. In general, genetic 

sequence data provides more flexibility in its range of research applications than the 

type of clinical data collected in NIDDK. These clinical datasets tend to be more 

focused on a specific disease or condition and therefore have less broad applicability. 

Further, while genetic sequence data is largely standardized and therefore generally 

interoperable regardless of who collected it, the same is not true for clinical data, 

which is often recorded based on the specific practices of individual research teams, 

and therefore more difficult to analyze in combination with other datasets.  

4.2 Research Question 2: What are the demographics of researchers who reuse 

existing datasets? 

The repositories included in this study represent a valuable resource for the 

research community at large, regardless of a researcher’s country of origin or career 

status. A young assistant professor at a small university in South America is just as 
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eligible to request data as an acclaimed full professor at an Ivy League university. 

However, just because both of these hypothetical researchers are able to request data 

does not necessarily mean that they do. Here, I aim to understand the demographics 

of researchers who request data by exploring the geographic distribution of requests 

and the career status of requestors.  

4.2.1 Research Question 2.1: Where are requestors located in the world? 

Although the three repositories considered here are funded by and 

administered through various parts of the National Institutes of Health, a United 

States government research institution, researchers from around the world are 

permitted to request use of the datasets. While requests can and do come from around 

the world, I hypothesize that most requests will arise from geographic regions with a 

large research presence, such as North America, Europe, and Asia, as well as highly-

populated states within the US. 

Research activities are not distributed evenly among countries around the 

world, nor among states in the United States. For example, a country such as the 

United States that is large and has many well-established research institutions is likely 

to have more dataset requests than a country such as Liechtenstein, which is much 

smaller and has fewer universities, simply because there are more researchers in the 

United States to request datasets. Therefore, I calculated relative difference in 

composition between requests by repository and a proxy measure for presence of 

research institutions. Relative difference in composition (RDC) is used to quantify 
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over- and underrepresentation of specific groups in a measure of interest compared to 

their representation in the population overall (Ford, 2014).  

To calculate RDC, first the difference in composition between the measure of 

interest (requests) and the comparison measure (the proxy measure for research 

presence) is calculated. For example, suppose that requests from a country constitute 

15% of the overall requests to a repository, and that country has 10% of the research 

institutions in the world. The difference in composition is 5%. Then, the RDC is 

calculated by dividing the difference in composition by the composition of the 

research proxy, that is, 5%/10%, and multiplying by 100, yielding an RDC of 200% - 

that is, that particular country’s requests are 200% of what would be expected given 

its number of research institutions. In this analysis, I use counts of individual requests 

rather than counts of datasets requested to represent how many studies the repository 

is supporting. For example, if one researcher from a country is requesting 250 

datasets to conduct a single meta-analysis, it is counted as one request, not 250. If 

each dataset requested was counted individually, a single meta-analysis could 

significantly sway a country’s results, overrepresenting the amount of research 

supported by the shared data. 

A single list of all research institutions of all types globally would be nearly 

impossible to obtain, so I use number of universities in the country as a proxy for 

number of research institutions. Although there are various types of non-academic 

research institutions employing researchers that might request datasets, the number of 

universities provides a reasonable basis for quantifying the relative research presence 
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of a given country. The Cybermetrics Lab in the Consejo Superior de Investigaciones 

Científicas (CSIC), a public research institution in Spain, maintains a list of 

universities and rankings for 209 countries around the world, including 28,077 

universities as of January 2019 (Consejo Superior de Investigaciones Científicas, 

2019). I used this list to calculate the percent of all universities in the world located in 

each country. For example, India has 3,944 universities, the most of any country in 

the world, accounting for 14% of all global universities. By comparison, a country 

such as Malawi that has only 12 universities accounts for 0.04% of the world’s 

universities. Considering the difference between the percent of all repository requests 

coming from a country and the percent of all universities in the world that are in that 

country provides a basis for determining whether countries are requesting datasets at 

a rate that is proportional to its representation among global universities.  

Figure 4-2, Figure 4-4, and Figure 4-6 show relative difference in composition 

by each repository internationally. Darker shades of blue indicate more significant 

underrepresentation of requests relative to number of universities, while darker 

shades of red indicate more significant overrepresentation. Countries in gray have no 

universities represented in the CISC list, nor requests to the data repository. Each 

figure has a different legend based on the maximum difference in relative 

composition for each repository. Figure 4-3, Figure 4-5, and Figure 4-7 compare 

counts of universities per country to counts of requests coming from that country for 

each repository, demonstrating that there is neither a linear nor quadratic relationship 

between these two variables. 
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Figure 4-2. Relative difference in composition of requests for dbGaP datasets and 

universities in countries in the world. 
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Figure 4-3. Counts of universities compared to counts of requests to dbGaP. 
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Figure 4-4. Relative difference in composition of requests for NHLBI datasets and 

universities in countries in the world. 
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Figure 4-5. Counts of universities compared to counts of requests to NHLBI. 

 



 

 

 

88 

 

 

Figure 4-6. Relative difference in composition of requests for NIDDK datasets and 

universities in countries in the world. 
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Figure 4-7. Counts of universities compared to counts of requests to NIDDK. 

 As these three maps demonstrate, requests for datasets are unevenly 

distributed, with a few countries highly overrepresented. In fact, most countries that 

had at least one university had never made any requests to the repositories; 79% of 

countries with universities had no requests to NHLBI, 81% had no requests to dbGaP, 

and 90% had made no requests to NIDDK. Given that these three repositories are 

within the United States, it is perhaps unsurprising that United States-based 

institutions are highly overrepresented among requests from all three repositories. 

Datasets also appear to be more highly requested in English-speaking countries; 

Canada, the United Kingdom, and Australia are all over-represented for some or all 

three of the repositories. This finding could be due to the documentation and web 

pages of the repositories being written in English; non-English speakers might have 
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difficulty finding and using datasets that do not include documentation in their native 

language, especially given that requesting the datasets requires writing a detailed 

description of the proposed reuse in English.  

 Table 4-5 shows the number of universities, requests per repository, and 

relative difference in composition for the ten highest scoring countries for each 

repository, except NIDDK, which only had six countries that were overrepresented 

(several countries are in the top ten for more than one repository). RDC values of less 

than 0 are highlighted in light gray. As Table 4-5 demonstrates, countries were not 

universally under- or over-represented among requests to the various repositories; in 

fact, relative difference in composition varied significantly among the repositories. 

For example, Luxembourg, which had the highest relative difference in composition 

for dbGaP requests, (1,397% over-represented), did not have one single request to 

either of the other two repositories and therefore was 100% underrepresented.  

Table 4-5. Countries with number of universities and number of requests (N) and relative 

difference in composition (RDC) for each repository. 

Country University 

Count 

dbGaP NIDDK NHLBI 

N RDC N RDC N RDC 

Australia 188 183 221% 6 55% 35 170% 
Canada 355 301 179% 2 -72% 85 246% 
Cyprus 26 1 -89% 1 84% 0 -100% 
Finland 46 23 65% 0 -100% 4 28% 
Germany 465 223 58% 2 -26% 22 -32% 
Iceland 9 12 337% 0 -100% 0 -100% 
Israel 42 77 501% 0 -100% 10 248% 
Italy 239 86 19% 5 2% 1 -94% 
Luxembourg 3 14 1,397% 0 -100% 0 -100% 
Netherlands 133 106 162% 2 -26% 32 248% 
New Zealand 56 27 60% 0 -100% 11 186% 
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Country University 

Count 

dbGaP NIDDK NHLBI 

N RDC N RDC N RDC 

Qatar 9 0 -100% 0 -100% 1 56% 
Singapore 45 44 224% 0 -100% 3 -6% 
Sweden 46 63 352% 5 431% 3 -8% 
Switzerland 102 59 90% 2 -4% 4 -42% 
United 
Kingdom 

280 471 484% 16 179% 71 267% 

United States 3,257 5,773 484% 338 406% 1,556 592% 
 

Among the most highly overrepresented countries, the large number of 

requests cannot be explained by coming from one highly prolific requestor or 

institution. For example, all of the dbGaP requests from Luxembourg do come from 

just one of its three national universities, but the 14 requests come from nine different 

requestors. The 77 requests to dbGaP from Israel, the next most overrepresented 

country, come from 15 different institutions. However, some of the countries that are 

overrepresented in fact have a low number of requests and only appear 

overrepresented because they also have very few universities. For example, Qatar is 

the eighth most highly represented country among NHLBI requests despite having 

only one request. In fact, 27 countries have more requests than Qatar, but 20 of them 

have a lower RDC because of the much larger number of universities they have than 

Qatar’s nine. 

Just as research institutions are not evenly distributed around the world, they 

also are not within the United States among states. I conducted the RDC analysis for 

states as well, using NIH funding amounts in Fiscal Year 2018 (National Institutes of 

Health Research Portfolio Online Reporting Tools, 2018) as a proxy for research 
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presence. I calculated the relative difference between the percent of total requests by 

repository made in a state and the percent of all NIH funding awarded within the 

United States that was awarded to that state. NIH research funding is probably a more 

accurate proxy for biomedical research presence than the university count that was 

feasible to use for the world analysis, since NIH awards funding to a variety of types 

of research institutions, not just universities, and focuses specifically on the type of 

biomedical research that is relevant here. 

Figure 4-8, Figure 4-9, and Figure 4-10 show RDC by repository within the 

United States. Red indicates states that are requesting a larger share of datasets 

compared to the research funding they receive, while blue indicates states that are 

requesting a smaller share. The darker the color, the more highly the state is over- or 

underrepresented, while states in white request datasets at a rate about equivalent to 

their research presence.  
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Figure 4-8. Relative difference in composition of requests for dbGaP datasets and NIH 

funding in FY18 by state within the US. 
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Figure 4-9. Relative difference in composition of requests for NHLBI datasets and NIH 

funding in FY18 by state within the US. 
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Figure 4-10. Relative difference in composition of requests for NIDDK datasets and NIH 

funding in FY18 by state within the US. 

 The state RDC analysis shows more variation in geographic distributions than 

the global RDC analysis. The states that are the most highly over-represented among 

the various repositories are not necessarily the ones that might be expected: New 

Mexico, Wyoming, and Alaska all appear as outliers. On the other hand, other states 

with a strong research reputation also are over-represented, such as Massachusetts 

and California. Unlike the global analysis, more states appear in white (or a shade 

close to it), indicating that they are requesting datasets at a level that is proportional to 

the amount of NIH funding they receive. This finding could suggest that requests for 

data are more evenly distributed among research institutions within the United States 
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than they are within universities across the world. Where disparities do exist within 

the states, they also generally tended to be less significant than those among 

countries. Compared to RDCs of nearly 1,500% for the most highly overrepresented 

countries, the most extreme RDCs for NHLBI is about 500% and dbGaP’s is only 

85%. However, NIDDK requests are skewed at a level closer to that seen at the global 

level, largely due to the very high overrepresentation of requests from New Mexico 

and Washington, DC.  

 As with the global RDC analysis, some states appear highly overrepresented 

not because they have a very high number of requests, but because they receive very 

little NIH funding. For example, only two requests for NHLBI data came from 

Wyoming, but they also receive the least NIH funding of any state – only 0.05% of all 

NIH funding. However, some highly funded states also request very little data. For 

example, Texas, the seventh-highest funded state, had only made four requests to 

NIDDK.   

4.2.2 Research Question 2.2: Are there patterns in career stage of requestors? 

 Although requestors to the three repositories must demonstrate that they are 

legitimate researchers (for example, dbGaP requestors must be registered in NIH’s 

Electronic Research Administration system, while NHLBI and NIDDK have a 

process for requestors to apply for an account, which includes indicating their 

research affiliation and status), researchers from a range of career stages are free to 

request datasets. That range includes students to full professors, as well as career 



 

 

 

97 

 

stages from areas outside of academia, such as senior scientists, CEOs and other 

executives, and managers. Some requestors may be at a career stage at which they 

might benefit more substantially from the opportunity to use existing data – for 

example, students and early career researchers are less likely to have access to the 

significant funding, laboratory resources, and staff that it would take to generate their 

own data. Despite the potentially greater benefit to early career researchers, I 

hypothesized that a broad range of career stages, from student to full professor (or 

their equivalents in non-academic contexts) would be represented.  

For this analysis, I used the NIDDK requests and a random sample of 1,500 of 

the total 9,444 dbGaP requests (15.9%), which provides a +/-1.1 confidence interval 

at a 95% confidence level based on estimation of proportion. Of the 416 NIDDK 

requests, 144 of them (35%) did not include a requestor name and were therefore 

excluded from this analysis, leaving 272 requests. NHLBI did not provide me 

individual researcher level request data for privacy reasons, so those requests could 

not be included in this analysis. I determined the career status of the researcher at the 

time they made the request by searching the internet for documentation of their career 

history, such as institutional web pages, CVs, biosketches, and LinkedIn pages. Titles 

from non-American institutions were converted to their American equivalent; for 

example, the rank of “senior lecturer” in the United Kingdom is the equivalent of an 

associate professor in the US (Wikipedia, 2018). For requestors for whom I could not 

definitively determine the career status at the time of request, I recorded “unknown.” 
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The 1,500 dbGaP requests came from 1,118 unique requestors and requested 

access to 18,117 total datasets (since a request could ask for multiple datasets). Each 

unique request asked for between one and 529 datasets, with a mean of 12.1 datasets 

per request. The 272 NIDDK requests came from 252 unique requestors, requesting a 

total of 394, with each request asking for between one and ten datasets (mean 1.4). 

While many requests asked for more than one dataset, this analysis counts individual 

requests rather than requests by dataset to provide a clear understanding of how much 

research is being supported at each career stage. For example, if an associate 

professor requests 30 datasets for a meta-analysis, that request supports one research 

project; counting each dataset separately would inflate counts of how much research 

is being supported at a given career stage. Table 4-6 provides the distribution of 

requests for dbGaP and NIDDK, by career status, and with statuses grouped by career 

stages that approximately reflect where the career status falls in a broader career 

trajectory.  

Table 4-6. Proportions of datasets requested by career status of requestor for dbGaP and 

NIDDK. 

Career Stage Title Percent of dbGaP 

requests 

Percent of NIDDK 

requests 

Pre-professional Student 0.7% 1.8% 

Fellow 0.7% 3.1% 
Total 1.4% 4.9% 

Early career Assistant Professor 19.1% 27.6% 
Resident Physician 0% 1.1% 
Lecturer 0.07% 0.4% 
Instructor 0.07% 0% 
Total 19.2% 29.1% 

Mid-Career Associate Professor 15.4% 13% 
Scientist 5.7% 3.9% 
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Career Stage Title Percent of dbGaP 

requests 

Percent of NIDDK 

requests 

Attending 
Physician 

0% 0.2% 

Manager 0.7% 0.4% 
Total 21.8% 17.5% 

Established Professor 26.8% 24% 
Director 8.5% 5.5% 
Executive 3% 5.1% 
Senior Scientist 10.3% 6.7% 
Total 48.6% 41.3% 

Unknown 9% 5.9% 

 

Patterns of requests appeared generally similar across dbGaP and NIDDK; 

however, a chi-squared test of independence revealed that the two distributions were 

in fact significantly different (χ2 =81, df = 12, p < 0.001). This statistic was most 

influenced by the numbers of resident and attending physicians requesting datasets; 

expected counts would be 1 physician (0.9 expected resident and 0.1 expected 

attending) for NIDDK and 6 for dbGaP (5.1 expected resident and 0.9 expected 

attending), but all 7 requests from physicians went to NIDDK. This finding could be 

explained by the fact that NIDDK contains clinical data of the type that would be 

familiar to physicians, whereas physicians generally do not have training in dealing 

with genomic information and would be therefore be less likely to use the genomic 

data found in dbGaP (Demmer & Waggoner, 2014; Manolio & Murray, 2014; 

Murray, 2014).  

Despite the fact that the distribution of requestors between the two 

repositories differed statistically, the requests did at least follow a broadly similar 

pattern, with nearly half of requests to both repositories coming from full professors 
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and other researchers in more established positions. Assistant professors also 

represented a sizeable proportion of requestors, accounting for about a quarter of the 

datasets requested from both dbGaP and NIDDK. Almost none of the requests came 

from pre-professionals such as students and fellows. However, a limitation that 

should be noted for this analysis is that the person who requested the data might not 

be the person who actually ended up using the data. For example, a full professor 

might request data on behalf of a graduate student. 

As with universities’ uneven distribution around the world, researchers are not 

necessarily evenly distributed among career ranks. For example, faculty might be 

more concentrated in lower ranks, and therefore it would be expected that they would 

make more requests, since there are more individuals to be making requests. 

Therefore, in addition to considering proportions overall, I also calculated the relative 

difference in composition (RDC), as described in Section 4.1. Obtaining counts of 

non-academic ranks such as CEO or scientist was infeasible, but I calculated RDC for 

the academic-related ranks based on 2016 data from the National Center for 

Education Statistics, which reports counts of full-time faculty in US degree-granting 

postsecondary institutions (National Center for Education Statistics, 2017). I 

compared the proportion of each rank within all of US faculty to its proportion of 

academic requests for dbGaP and NIDDK. Note that this analysis only considers 

requests that came from academic requestors; for example, the 46.3% reported for 

professors requesting dbGaP datasets refers not to the proportion of datasets this 

group requested compared to all requests, but to the proportion requested compared 
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to requests coming from the five academic ranks listed in the results, reported in 

Table 4-7.  

Table 4-7. Relative difference in composition (RDC) between faculty at five academic ranks 

in US institutions and their requests to dbGaP and NIDDK. 

Faculty status Percent of US 

faculty 

Academic dbGaP 

requests 

Academic NIDDK 

requests 

% RDC % RDC 

Professor 22.4% 44% 96% 40% 78% 
Associate professor 19.3% 25% 29% 20% 4% 
Assistant professor 21.6% 31% 43% 42% 94% 
Instructor 12.4% 0.1% -99% 0% -100% 
Lecturer 5.2% 0.1% -98% 0.6% -88% 
Other 19.1% NA NA NA NA 
 

 A chi-squared test of independence revealed that request counts from staff at 

different faculty ranks differed significantly from their representation in American 

universities for both dbGaP and NIDDK (χ2 = 641, df = 5, p < 0.001 and χ2 = 108, df 

= 5, p < 0.001, respectively). Their distributions are also significantly different from 

each other (χ2 = 14, df = 4, p = 0.01). As Table 4-7 demonstrates, professors are 

overrepresented in their requests to both repositories, although to a lesser degree 

among requests to NIDDK. Instructors and lecturers are almost 100% 

underrepresented, a finding that seems reasonable given that many faculty members 

at this level have teaching and service responsibilities that may limit their engagement 

in research, and therefore request less data for that purpose.  

A surprising finding is that the representation of assistant professors and 

associate professors varies between dbGaP and NIDDK. Associate professors are 

30% overrepresented among dbGaP requests but only 4% represented among NIDDK 
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requests. Assistant professors, on the other hand, are 94% overrepresented among 

NIDDK requests, but less than half as much overrepresented among dbGaP requests 

(43%).  A possible explanation for this finding could be that researchers at different 

ranks are more likely to engage in the types of research that tend to be supported by 

each repository, that is, that associate professors are requesting more data from 

dbGaP because they are doing more meta-analyses and assistant professors are 

requesting more data from NIDDK because they are doing more original research 

studies. Further research into how requestors are using datasets could help elucidate 

some of the differences in request rates. 

4.2.3 Summary of Findings 

 Although datasets from the three repositories considered here are theoretically 

available to any qualified researcher, requests for datasets are unequally distributed 

around the world and among researchers at different career stages. English-speaking 

regions, particularly the United States, were overrepresented in requests compared to 

their number of research institutions. Established researchers who were at higher 

career ranks were also overrepresented, particularly among academic staff. These 

findings suggest that, in many cases, datasets are going to the researchers most able to 

collect their own data if need be: established researchers in wealthy countries who 

likely have access to resources that earlier career researchers and those in poorer 

countries do not. 
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4.3 Conclusions and Summary of Findings 

 The results reported here have helped elucidate the who, where, and why of 

data reuse. From these findings, a general picture of biomedical data reuse begins to 

appear. Researchers are making use of data in a wide range of contexts, from using 

one dataset in a context very similar to its original purpose, to requesting hundreds of 

datasets from a range of unrelated topics to conduct large-scale meta-analyses. The 

range of types and contexts of reuse seen here demonstrates that data reuse is 

complex, not a single, easily explained phenomenon, although some of the 

differences in reuse can be explained by the repository and the type of data it holds. 

Researchers from around the world are taking advantage of the opportunity to reuse 

existing datasets rather than gathering their own, though requests tend to be 

concentrated in English-speaking countries, particularly the United States. Requests 

come from researchers at all different career stages, from students just beginning their 

career to full professors who are well established in their discipline, though later 

career researchers are somewhat overrepresented. In Chapter 5, I will build on this 

emerging picture of biomedical data reuse by considering patterns of use requests in 

relation to dataset topic and time since dataset release. 
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Chapter 5: Findings About Datasets 

This chapter presents the findings of the two research questions that focus on 

questions about the datasets themselves, or the when and what of biomedical data 

reuse – when in a dataset’s life cycle is it most requested, and what topics are the 

most requested? Specifically, the research questions and hypotheses considered here 

are: 

Research Question 3: Are there temporal patterns to dataset requests? 

Hypothesis 3: Patterns of requests relative to the original dataset release date 

will demonstrate a cumulative advantage process, similar to other scientific 

communication processes such as article citation. 

Research Question 4: Are there dataset topics that are more highly requested? 

5.2 Research Question 3: Are there temporal patterns to dataset requests? 

Many processes in the study of science, including citations to articles, follow 

the model of a cumulative advantage process: the rich get richer, and success breeds 

success. In other words, an article that has already been cited many times is more 

likely to go on to receive more citations than an article that has only been cited a few 

times. This process makes sense for a variety of reasons – an article cited many times 

could be cited more because it is of higher quality than a less-cited article, and a 

highly cited article likely ends up having more visibility than a less-cited article, since 

it appears in the bibliography of more citing articles. I hypothesize that temporal 
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patterns in requests for datasets over time can, like article citations, be explained by a 

cumulative advantage model.  

For this analysis, I used dbGaP and NHLBI datasets only. The NIDDK 

repository only had a specific release year for datasets released in 2014 or later, 

which is just 30% of its datasets. As a result, only 91 of the total 516 requests, just 

18%, could be matched with a dataset with a known release date, and most datasets 

had only one or two requests per year. With so few datasets and only four years’ 

worth of requests to consider, the NIDDK data was inadequate for this analysis.  

Request data began in 2007 for dbGaP and 2000 for NHLBI. For both the 

dbGaP and NHLBI analysis, 2018 requests were excluded since the list of dataset 

requests was collected in mid-2018 and therefore did not represent a full year worth 

of requests. Thus, the dbGaP analysis included requests made between 2007 and 

2017, and the NHLBI analysis, requests made between 2000 and 2017.  

For each repository, I considered how many total requests each dataset had 

received across the years included in this analysis (that is, excluding 2018 requests). 

Based on these total requests, I determined rankings for the least to the most 

requested datasets by calculating how many requests a dataset would need to fall in 

each decile (or set of 10 percentile points) between the 10th and 90th percentile and 

determined the decile for each dataset. For example, a dbGaP dataset with a total of 6 

requests would be in the 20th percentile, while a highly requested dataset that had 

received 200 requests would be in the 90th percentile. For each individual request, I 

determined the age of the dataset at the time of the request by subtracting the year the 
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request was made from the year the dataset was first shared. Finally, I calculated the 

mean number of requests by decile for each year since dataset release (for example, 

of the 365 datasets that fall into the 50th percentile for dbGaP, the mean number of 

requests they received in the first year of being available was 5.85).  

Using the dataset’s age at the time of request (e.g. the request was made 2 

years after the dataset was released) rather than the calendar year of the request (e.g. 

the request was made in 2015) makes it possible to compare datasets of different 

ages. If the cumulative advantage effect holds true, a dataset released in 2009, for 

example, would be more likely to have a higher number of requests in 2015 than a 

dataset released in 2014, since it is six years old and has had more time to accumulate 

advantage than a one-year-old dataset. However, the number of requests the 2009 

dataset received in 2010, when it was one year old, can be reasonably compared to 

the number of requests the 2014 dataset received in 2015, when it was also one year 

old.  

Of course, it is possible that the year a dataset was released might affect the 

number of requests it receives even when comparing like to like by using dataset age. 

For example, data science and other computational methods have become 

increasingly popular in recent years, so perhaps a dataset released in 2015 would be 

more requested in its first year than a dataset released in 2009 would in its first year, 

simply because more people are making requests overall. However, this analysis also 

controls for age, as will be further discussed, by measuring correlation between year 

of release and total requests. A weak correlation between year of release and number 
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of requests received would suggest that year of release has little impact on a dataset’s 

number of requests.  

5.1.1 dbGaP Results 

The dbGaP analysis includes 982 datasets with a total of 100,115 requests 

between 2007 and 2017; 68 datasets for which a year of release could not be 

determined from the dbGaP website were excluded. Figure 5-1 shows the number of 

requests datasets in each decile received in each year since their release (not 

cumulative requests). The count of age at request on the x-axis begins with 0, which 

indicates requests made within the first year of its release, with 1 indicating requests 

when the data is one year old, and so on. Table 5-1 shows the range and distribution 

of dbGaP datasets within deciles. 
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Figure 5-1. Mean requests by year for dbGaP datasets in each decile, by age of the dataset at 

time of request. 

Table 5-1. Distribution of dbGaP datasets by request deciles for requests made between 2007 

and 2017. 

Decile Request count 

range 
Number of 

datasets in 

percentile 

Mean age of 

datasets, years 

10th percentile 4 or fewer 164 1.82 (range 0 –7) 
20th percentile 5 – 8 263 2.89 (range 0 – 8)  
30th percentile 9 – 12 254 3.57 (range 0 – 7) 
40th percentile 13 – 18 324 3.85 (range 0 – 7) 
50th percentile 19 – 27 373 4.42 (range 0 – 7) 
60th percentile 28 – 42 406 4.66 (range 0 – 8) 
70th percentile 43 – 66 465 5.16 (range 1 – 9) 
80th percentile 67 – 174 635 6.75 (range 1 – 10) 
90th percentile 175 – 2754 1807 9.03 (range 5 – 10) 
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As Table 5-1 demonstrates, datasets in the lower percentiles of requests are on 

average younger, which is logical considering that a ten-year old dataset has had 

twice as long to accumulate requests as a five-year old dataset, and would therefore 

be in a higher decile. It does appear that length of data availability does at least partly 

explain the amount of requests a dataset has received; no datasets that had less than 

five years to accrue citations (i.e. no datasets released after 2012) made it into the 

90th percentile, and none of the oldest datasets (released between 2007 and 2009) fell 

below the 80th percentile. However, a dataset’s age cannot fully account for the 

number of requests it has received, given that at least some datasets that had eight 

years to accrue requests were only in the 20th percentile, compared to other datasets 

that had only one year to accrue requests and made it into the 60th percentile. 

Further, as discussed above, this analysis controls for age by comparing 

requests over time based on dataset age rather than calendar year. Datasets in the 90th 

percentile were already more highly requested in the first year after being released, 

receiving on average 42 requests in the first year – more than three times as many as 

datasets in the 80th percentile received in their first year (mean = 13) and more than 

twenty times as many as datasets in the bottom 10th percentile received in their first 

year (mean = 2). The number of requests in the first year varies significantly even 

among the lower deciles; on average, datasets in the 20th percentile received over 

70% more requests in their first year than those in the 10th percentile.  

Because this method is still somewhat affected by the age of the dataset, I also 

calculated percentile ranges for each year of release (i.e. calculated percentiles for all 
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requests in year one of a dataset’s life, year two, and so on) and conducted the same 

analysis using the mean percentile across all the years of its availability, rather than 

its overall percentile. For example, a dataset in the 90th percentile of first-year 

requests, 80th percentile of second-year requests, and 70th percentile of third-year 

requests would have a mean of the 80th percentile. Using the mean instead of the 

overall percentile ranking helps compare newer datasets more fairly with older 

datasets. Whereas an older dataset would be more likely to be in a higher percentile 

overall because it had more time to accrue requests, using the mean percentile makes 

it possible to compare datasets at various points in their life. For example, suppose a 

dataset has been available for two years, and receives 25 requests in its first year and 

40 requests in its second year, putting it in the 90th percentile for both first- and 

second-year requests, for a mean of the 90th percentile. In its two years, it has 

accrued a total of 65 requests, but this is only enough to put it in the 70th percentile 

overall, since it is also competing against datasets that have had five times as long to 

accrue total requests. Using the mean percentile instead of the overall percentile more 

accurately reflects its high performance over the course of its life, comparing it to 

datasets of the same age at each year of its life.  

Most datasets had at least some variability in their performance across all 

years, with few achieving the same percentile at every year since their release. 

Because of this variability, and since the mean is a measure of central tendency, few 

datasets had a mean percentile at the highest end – only two dataset older than two 

years old had a mean of 90th percentile. Therefore, rather than use deciles, I grouped 
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more datasets together and use quartiles (i.e. 0- 25th percentile, 26-50th percentile, 

51-75th percentile, and 76-100th percentile). Figure 5-2 shows the number of requests 

for datasets in each mean quartile received in each year since their release (not 

cumulative requests). The count of age at request on the x-axis begins with 0, which 

indicates requests made within the first year of its release, with 1 indicating requests 

when the data is one year old, and so on. Table 5-2 shows the range and distribution 

of dbGaP datasets within deciles. As Table 5-2 demonstrates, calculating the mean 

quartile by averaging the percentile for a dataset in each year of its life creates a more 

even distribution of datasets by age among the various quartiles. However, the two 

higher quartiles do have older datasets on average than the two lower quartiles. 
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Figure 5-2. Mean requests by year for dbGaP datasets in mean quartile, by age of the dataset 

at time of request. 

 

Quartile Total request 

count range 
Number of 

datasets in 

percentile 

Mean age of 

datasets, years 

1-25th percentile 1 – 114  867 4.7 (range = 0-9)  
26-50th percentile 2 – 215 1321 4.9 (range = 0-10) 
51-75th percentile 5 – 442  1808 7.7 (range = 0-10) 

76-100th percentile 10 – 2754  695 7.8 (range = 0-9) 
Table 5-2. Distribution of dbGaP datasets by mean request quartiles for requests made 

between 2007 and 2017. 

 While the exact dynamics of requests in the analysis using the mean percentile 

rather than the overall percentile differ, as Figure 5-2 demonstrates, the general 

pattern is the same: datasets that start out being highly requested go on to continue 
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being highly requested as time goes on. Taken together, the mean percentile and 

overall percentile analyses suggest that dbGaP dataset requests are at least partly 

affected by a cumulative advantage process. Datasets that are highly requested soon 

after their release go on to continue to receive more requests later, while datasets that 

initially receive fewer requests continue to be less requested over time.  

As Figure 5-1 demonstrates, datasets across all overall deciles reach a peak of 

requests in their second year (age = 1) and requests begin to drop off in the third year. 

This pattern is very similar to citations to articles over time – articles reach a peak of 

citations at various ages depending on discipline (for example, Clinical Medicine 

articles peak around 4 years while Biology articles peak around 7 years), but 

eventually drop off as the articles becomes older (Eom & Fortunato, 2011; Parolo et 

al., 2015; Wang, 2013). As with article citations, this decline continues over time for 

datasets in the 10th through 80th percentiles overall, but the same is not true of 

datasets in the 90th percentile overall. After following the pattern of third year drop-

off, requests actually begin to increase again in the fourth year and steadily climb in 

each subsequent year, eventually reaching and even surpassing the number of 

requests received in the first year. With only ten years of data to consider here, it is 

difficult to completely explain the mechanism behind this pattern. Perhaps these 

highly requested datasets see a bump in requests in subsequent years as early 

requestors begin to publish articles that cite their reuse of the dataset, thus creating a 

cycle of increased attention for the already highly requested datasets. 
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Looking at the data requests as a whole, rather than dividing them by deciles, 

also demonstrates a strong relationship between the number of requests a dataset 

receives in the first few years after release and the number it receives over the long 

term. The number of long-term requests is strongly positively correlated with the 

number of requests received in the first year and second year (correlation coefficient 

for both = 0.8), and even more so with requests in the third year (correlation 

coefficient = 0.9). There is a negative correlation between release year (i.e. calendar 

year) and total number of requests, indicating that older datasets have more requests, 

but this correlation is only moderate (correlation coefficient = -0.6). 

Fitting a linear regression model to the request data further demonstrates the 

importance of a dbGaP dataset’s early performance in predicting its long-term request 

rate. Table 5-3 summarizes results from three regression models: first-year requests 

only; first- and second-year requests and first-, second-, and third-year requests. All 

three models also include release year to control for the influence of a dataset’s age 

on the number of requests. All three models are statistically significant at p < 0.001. 

To determine whether results were affected by collinearity, I calculated the variance-

inflation factor (VIF) for each model and each variable. VIF values of greater than 10 

indicate collinearity; all VIFs here are less than 10 (Dormann et al., 2013). 

The R-squared value of a regression model is a measure of the amount of 

variability in the outcome variable (total requests) that is explained by a given model. 

For example, the one-year model accounts for 73% of the variability in total requests, 

while adding the second and third year increases the amount of variability the model 
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accounts for. The regression coefficient (coef) represents the mean change in total 

requests for every additional increase of one in the predictor variable, while holding 

other variables constant. For example, in the one-year model, the coefficient of 6.61 

for number of requests in the first year means that for every additional request in the 

first year, a dataset would have, on average, 6.61 additional requests over time. The 

standard error (SE) is a measure of the average distance between the regression line 

and the values in the data. The higher the standard error, the less correct the model is 

on average; variables with SE of greater than 2.5 are not statistically significant at a 

95% prediction interval. Finally, the Beta value (β) indicates the relative influence 

(and the direction of that influence) of a variable on the number of total requests a 

dataset receives. Values close to 1 (or -1) indicate a high level of influence, while 

values close to 0 indicate less influence.  

Table 5-3. Results of regression analysis showing effects of requests during year one, two, 

and three of a dbGaP dataset’s life on the total number of requests during the 2007 – 2017 

period.  

 One-Year Model Two-Year Model Three-Year 

Model 

First year requests coef  = 6.61 (p < 

0.001) 
SE = 0.26 (p < 

0.001) 
β = 0.76 (p < 

0.001) 
VIF = 1.1 

coef  = 4.6 (p < 

0.001) 
SE = 0.28 (p < 

0.001) 
β = 0.53 (p < 

0.001) 
VIF = 1.11 

coef  = 3.54 (p < 

0.001) 
SE = 0.23 (p < 

0.001) 
β = 0.41 (p < 

0.001) 
VIF = 1.6 

Second year 
requests 

NA coef  = 5.44 (p < 

0.001) 
SE = 0.45 (p < 

0.001) 
β = 0.38 (p < 

0.001) 

coef  = -0.56 (p < 

0.001) 
SE = 0.51 (p < 

0.001) 
β = -0.04 (p < 

0.001) 
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 One-Year Model Two-Year Model Three-Year 

Model 

VIF = 2 VIF = 4 
Third year requests NA NA coef  = 7.57 (p < 

0.001) 
SE = 0.46 (p < 

0.001) 
β = 0.58 (p < 

0.001) 
VIF = 4.9 

Year of release coef  = -10.92 (p < 

0.001) 
SE = 2.31 (p < 

0.001) 
β = -0.14 (p < 

0.001) 
VIF = 1.1 

coef  = -5.42 (p < 

0.001) 
SE = 2.05 (p < 

0.001) 
β = -0.07 (p < 

0.001) 
VIF = 2.04 

coef  = -5.8 (p < 

0.001) 
SE = 1.63 (p < 

0.001) 
β = -0.08 (p < 

0.001) 
VIF = 2.2 

R-squared  0.733 (p < 0.001) 0.7979 (p < 0.001) 0.8733 (p < 0.001) 
 

As Table 5-3 shows, the three-year model accounts for nearly 90% of the 

variability in long-term requests. Even the model with only first-year requests 

accounts for 73% of the variability in total requests. Year of release appears to have 

only a small amount of influence on the total number of requests, with Beta values 

close to 0 for all three models. These models suggest that the number of requests a 

dataset receives in the first few years is a good predictor of long-term requests, 

regardless of when the dataset was released.  

Because first, second, and third year requests are included in total requests, I 

also fit models to determine the effect of first through third year requests on all later 

requests, in other words, total requests made in the fourth year and beyond. This 

analysis includes the 615 datasets that were released before 2015 (that is, those that 

were old enough to have more than three years’ worth of requests). All three models 
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also include release year to control for the influence of a dataset’s age on the number 

of requests. All three models are statistically significant at p < 0.001. Table 5-4 

summarizes the results of these three models. 

Table 5-4. Results of regression analysis showing effects of requests during year one, two, 

and three of a dbGaP dataset’s life on the total number of requests in the fourth year and 

later during the 2007 – 2017 period. 

 One-Year Model Two-Year Model Three-Year 

Model 

First year requests coef  = 2.53 (p < 

0.001) 
SE =  0.22 (p < 

0.001) 
β = 0.32 (p < 

0.001) 
VIF = 1.1 

coef  = 2.54 (p < 

0.001) 
SE = 0.16 (p < 

0.001) 
β =  0.32 (p < 

0.001) 
VIF = 1.1 

coef  = 1.16 (p < 

0.001) 
SE = 0.18 (p < 

0.001) 
β = 0.14 (p < 

0.001) 
VIF = 1.78 

Second year 
requests 

NA coef  = 4.75 (p < 

0.001) 
SE = 0.2 (p < 

0.001) 
β =  0.65 (p < 

0.001) 
VIF = 2.21 

coef  = 2.18 (p < 

0.001) 
SE = 0.27 (p < 

0.001) 
β =  0.3 (p < 0.001) 

VIF = 5.02 

Third year requests NA NA coef  = 4.96 (p < 

0.001) 
SE = 0.39 (p < 

0.001) 
β = 0.47 (p < 

0.001) 
VIF = 4.96 

Year of release coef  = -40.3 (p < 

0.001) 
SE = 1.76 (p < 

0.001) 
β =  -0.62 (p < 

0.001) 
VIF = 1.1 

coef  = -8.85 (p < 

0.001) 
SE = 1.85 (p < 

0.001) 
β =  -0.14 (p < 

0.001) 
VIF = 2.31 

coef  = -9.56 (p < 

0.001) 
SE = 1.65 (p < 

0.001) 
β = -0.14 (p < 

0.001) 
VIF = 2.32 

R-squared  0.599 (p < 0.001) 0.7895 (p < 0.001) 0.833 (p < 0.001) 
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This analysis shows that early requests are good predictors for how many 

requests datasets will go on to receive in later years. In fact, the two- and three-year 

models perform almost as well in predicting later requests as they do in predicting 

total requests. This finding provides further evidence that requests early in a dataset’s 

life can be helpful in predicting patterns of long-term reuse among dbGaP datasets.  

5.1.2 NHLBI Results 

The NHLBI analysis includes 143 datasets with a total of 3,860 requests 

between 2000 and 2017. Figure 5-3 shows the number of requests datasets in each 

decile received in each year since their release (not cumulative requests). Table 5-5 

shows the range and distribution of NHLBI datasets within deciles. 
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Figure 5-3. Mean requests by year for NHLBI datasets in each decile, by age of the dataset at 

time of request. 

Table 5-5. Distribution of NHLBI datasets by request deciles for requests made between 2000 

and 2017. 

Decile Request count 

range 
Number of 

datasets in 

percentile 

Mean age of datasets, 

years 

10th percentile 2 or fewer 39 4.45 (range 0 – 17) 
20th percentile 3 19 6.74 (range = 1 – 15) 
30th percentile 4 22 8.64 (range = 3 – 17) 
40th percentile 5 46 9.04 (range = 0 – 15) 
50th percentile 6 – 8  70 6.73 (range = 2 – 12) 
60th percentile 9 – 14 97 9.7 (range = 2 – 15) 
70th percentile 15 – 21 107 9.49 (range = 2 – 16) 
80th percentile 22 – 34  127 11.83 (range = 2 – 16) 
90th percentile 35 or more 367 13.26 (range = 1 – 17) 
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Figure 5-3 reveals a markedly different pattern of requests from what was 

observed within the dbGaP analysis. NHLBI requests appear to follow no 

demonstrable pattern of requests at all. Part of the variability seen in Figure 5-3 is due 

to the sparsity of datasets that reach age 17 or 18. For example, given that only eight 

datasets exist that had been around for 17 years by 2017, the notable spike in requests 

in year 17 is probably not a meaningful finding; with so few datasets to consider in 

that age range, one or two outliers will have more of an effect on the mean than in a 

larger pool of datasets.  

A further consideration in this analysis is that methods for requesting and 

accessing the data changed significantly over the course of the nearly twenty years 

considered in the full 2000 – 2017 analysis. In September 2009, NHLBI launched the 

BioLINCC website as it exists in its current form, which permits users to request and 

access data through a secure web portal (Giffen et al., 2015). Prior to the launch of 

the site, requestors were required to submit a paper request form by mail, and datasets 

were disseminated to approved requestors by mailing them a CD-ROM within two 

weeks (National Heart, Lung, and Blood Institute, 2008). Given the very different 

means of accessing data before and after the launch of the BioLINCC site, it seems 

reasonable to expect that patterns of requests from the two periods would likely 

differ.  

To determine whether request patterns were more predictable after the launch 

of the BioLINCC site, I repeated this analysis including only the 90 datasets released 

between 2010 (the first complete year that BioLINCC was online) and 2017, and the 
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3,704 requests those datasets received during that time. However, as Figure 5-4 

demonstrates, this subset shows no more coherent pattern than did the entire set.  

 

Figure 5-4. Mean requests by year for NHLBI datasets released between 2009 and 2017 in 

each decile, by age of the dataset at time of request. 

While it seems apparent that dbGaP requests are likely a cumulative 

advantage process, this analysis suggests that the same may not true for NHLBI 

requests. However, the seeming randomness of the NHLBI data may be based more 

on the relative sparsity of this set compared to dbGaP’s. With 982 datasets to 

NHLBI’s 96, and a whopping 100,115 requests to NHLBI’s 3,704, the dbGaP data 

massively dwarfs the NHLBI data. While it’s possible that NHLBI request patterns 
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over time are significantly different from dbGaP’s, and in fact seem to follow no real 

pattern at all, it seems just as likely that this is simply too small a set to yield 

meaningful findings.  

Nonetheless, I did proceed with regression analysis of the NHLBI 2010 – 

2017 release subset. Total requests were strongly correlated with first- and second-

year requests (correlation coefficient = 0.9 for both) and but only moderately 

correlated with third-year requests (correlation coefficient = 0.4). Total number of 

requests is weakly positively correlated with calendar year of the dataset’s release 

(correlation coefficient = 0.1), suggesting that older datasets are slightly likely to have 

fewer requests.  

Table 5-6 summarizes results from these three regression models fit to the 

2010 – 2017 request data. All models are statistically significant at p < 0.001. 

Table 5-6. Results of regression analysis showing effects of requests during years one, two, 

and three of a NHLBI dataset’s life on the total number of requests during the 2010 – 2017 

period. 

 One-Year Model Two-Year Model Three-Year 

Model 

First year requests coef  = 1.63  (p < 

0.001) 
SE =  0.13 (p < 

0.001) 
β =  0.9 (p < 0.001) 

VIF = 1.03 

coef  =  -0.66 (p > 

0.05) 
SE =  0.56 (p > 

0.05) 
β =  0.38 (p > 0.05) 

VIF = 17.44 

coef  = 0.52 (p > 

0.05) 
SE =  0.45 (p > 

0.05) 
β = 0.3 (p > 0.05) 

VIF = 23.29 
Second year 
requests 

NA coef  = 3.81 (p < 

0.001) 
SE = 0.91 (p < 

0.001) 
β = 1.33 (p < 

0.001) 
VIF = 17.27 

coef  = 1.82 (p < 

0.05) 
SE = 0.75 (p < 

0.05) 
β = 0.64 (p < 0.05) 

VIF = 23.22 
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 One-Year Model Two-Year Model Three-Year 

Model 

Third year requests NA NA coef  = 5 (p < 

0.001) 
SE =  0.88 (p < 

0.001) 
β = 0.31 (p < 

0.001) 
VIF = 1.38 

Year of release coef  = -4.15(p = 0. 
01) 

SE = 1.37 (p = 

0.01) 
β = -0.22 (p = 0.01) 

VIF = 1.03 

coef  = -5.07 (p = 

0.01) 
SE = 1.62 (p 

=0.01) 
β = -0.21 (p = 

0.01) 
VIF = 1.04 

coef  =  -5.57 (p < 

0.001) 
SE =  1.34 (p < 

0.001) 
β = -0.21 (p < 

0.001) 
VIF = 1.06 

R-squared  0.795 (p < 0.001) 0.888 (p < 0.001) 0.955 (p < 0.001) 
 

The three-year model is the best fit, accounting for more than 95% of the 

variability in long-term requests. However, while the R-squared values for the 

NHLBI regression models are higher than the models for the corresponding years of 

requests in dbGaP, the Beta values are higher for the NHLBI models, suggesting that 

the year of release has a more significant impact on NHLBI requests. That is, part of 

the better predictive power in the NHLBI models is simply due to the fact that older 

datasets have had more time to accrue requests, and not because requests within the 

first several years are more highly predictive within NHLBI than within dbGaP. In 

addition, the two- and three-year models’ VIF values indicate that there is a level of 

collinearity between first and second year requests. However, this finding is not 

necessarily problematic since its mechanism can likely be understood by the fact that 

datasets receive similar amounts of requests in their first and second years. Moreover, 
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first- and second-year requests are not perfectly collinear in the sense that one 

predicts the other in the way that variables like age and date of birth do. Finally, while 

methods exist to address collinearity, they do not perform much better than standard 

regression models, and many statisticians recommend simply ignoring collinearity 

(Dormann et al., 2013).  

I also considered the role of first, second, and third year requests in predicting 

later requests, made in the fourth year and beyond. This analysis includes the 49 

datasets that were released before 2015 (that is, those that were old enough to have 

more than three years’ worth of requests). All three models also include release year 

to control for the influence of a dataset’s age on the number of requests. All three 

models are statistically significant, although the one-year model achieved a higher 

(but still significant) p-value. Table 5-7 shows a summary of the results. 

Table 5-7. Results of regression analysis showing effects of requests during year one, two, 

and three of an NHLBI dataset’s life on the total number of requests in the fourth year and 

later during the 2009 – 2017 period. 

 One-Year Model Two-Year Model Three-Year 

Model 

First year requests coef  = 4.6  (p = 

0.03) 
SE =  2.1 (p = 

0.03) 
β =  0.3 (p = 0.03) 

VIF = 1.13 

coef  =  1.43 (p = 
0.3) 

SE =  1.48 (p = 

0.3) 
β =  0.09 (p = 0.3) 

VIF = 1.24 

coef  = 0.12 (p = 
0.9) 

SE = 1.48   (p = 
0.9) 

β =  0.008 (p = 0.9) 
VIF = 1.39 

Second year 
requests 

NA coef  = 5.13 (p < 

0.001) 
SE = 0.68 (p < 

0.001) 
β = 0.69 (p < 

0.001) 
VIF = 1.1 

coef  = 3.8 (p < 

0.001) 
SE = 0.82 (p < 

0.001) 
β = 0.51 (p < 

0.001) 
VIF = 1.79 
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 One-Year Model Two-Year Model Three-Year 

Model 

Third year requests NA NA coef  =  2.31 (p = 
0.01) 

SE =  0.88 (p = 
0.01) 

β =  0.3 (p = 0.01) 
VIF = 1.99 

Year of release coef  = -4.55 (p < 

0.001) 
SE = 1.26 (p < 

0.001) 
β = -0.5 (p < 

0.001) 
VIF = 1.13 

coef  = -4.61 (p < 

0.001) 
SE = 0.85 (p < 

0.001) 
β = -0.5 (p < 

0.001) 
VIF = 1.13 

coef  =  -4.25 (p < 

0.001) 
SE =  0.81 (p < 

0.001) 
β =  -0.46 (p < 

0.001) 
VIF = 1.17 

R-squared  0.2332 (p = 0.002) 0.6593 (p < 0.001) 0.7057 (p < 0.001) 
 

Unlike with the dbGaP data, first year requests do not appear to be a good 

predictor for reuse later in an NHLBI dataset’s life. In fact, while the one-year model 

did achieve statistical significance, the first-year request variable barely did (p = 

0.03), and first-year requests did not achieve statistical significant in the two- and 

three-year models. Further, the Beta value for first-year requests was lower than for 

year of release in each model; the very low Beta values in the two- and three-year 

models indicate that first-year requests have very little impact at all on later requests.  

Because first year requests are such a poor predictor for requests later in the 

dataset’s life, I also fit models for second-year requests only and second- and third-

year requests. Table 5-8 summarizes these models.  
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Table 5-8. Results of regression analysis showing effects of requests during year two and 

three of an NHLBI dataset’s life on the total number of requests in the fourth year and later 

during the 2009 – 2017 period. 

 Second Year Only Model Second and Third Year 

Model 

Second year requests coef  = 5.32 (p < 0.001) 
SE = 0.66 (p < 0.001) 
β =  0.71 (p < 0.001) 

VIF = 1.01 

coef  = 3.8 (p < 0.001) 
SE = 0.81 (p < 0.001) 
β =  0.51 (p < 0.001) 

VIF = 1.79 
Third year requests NA coef  = 2.33 (p = 0.006) 

SE = 0.82 (p = 0.006) 
β =  0.31 (p = 0.006) 

VIF = 1.77 
Year of release coef  = -4.34 (p < 0.001) 

SE = 0.8 (p < 0.001) 
β = -0.47 (p < 0.001) 

VIF = 1.01 

coef  = -4.23 (p < 0.001) 
SE = 0.75 (p < 0.001) 
β = -0.46 (p < 0.001) 

VIF = 1.02 
R-squared  0.6522 (p < 0.001) 0.7056 (p < 0.001) 

 

Interestingly, these models performed substantially better than the models that 

include the first year. For example, considering first-year requests only accounts for 

only 23% of the variability in later requests, while considering second-year requests 

only accounts for 65% of the variability. The second and third year model likewise 

performs better than the first and second year model. This finding suggests that, while 

first-year requests are a good predictor for dbGaP dataset’s long-term reuse, the same 

is not true for NHLBI.  Rather, it appears that it takes longer for a dataset in NHLBI 

to be “noticed” and start receiving requests. This finding is further supported by the 

fact that while 27% of dbGaP datasets received no requests in their first year, 40% of 

the NHLBI datasets received no requests in their first year. A Welch unpaired two-

sample t-test shows that the means of the maximum semantic similarity scores for 
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dbGaP and NIDDK request/dataset pairs are significantly different (t = 2.49, df  = 

83.34, p = 0.01). 

5.1.3 Summary of Findings 

Here, I considered whether there are temporal patterns to dataset requests by 

considering the number of requests datasets receive by year since their release, rather 

than calendar year. Specifically, I tested the hypothesis that patterns of requests 

relative to the original dataset release date will be similar to patterns of citations to 

articles relative to their publication date. The findings of the dbGaP analysis support 

this hypothesis; like citations to articles, requests to dbGaP datasets appear to be a 

cumulative advantage process, with highly requested datasets going on to receive 

even more requests over time. Except for the tier of most- requested datasets, dbGaP 

datasets requests peak around the third year after a dataset is released and gradually 

decline over time, a pattern again seen in citations to articles (Parolo et al., 2015). 

Finally, regardless of when a dataset was released, the number of requests it receives 

in the first few years of its life are a good prediction for how many requests it will go 

on to receive. 

On the other hand, this hypothesis did not hold true with the NHLBI analysis. 

While mean requests by decile followed a clean pattern in the dbGaP datasets, 

requests in the NHLBI datasets appeared to follow virtually no pattern at all. Even 

when considering only the subset of datasets that had been released during the time 

that the request process existed in electronic form, no pattern appeared to exist. 
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However, interestingly, these analyses found that first-year requests, which were a 

good predictor of later requests in the dbGaP datasets, were actually a very poor 

predictor for later requests in NHLBI. Instead, second- and third-year requests 

showed good predictive power, suggesting that patterns of reuse differ between 

NHLBI and dbGaP. NHLBI datasets take longer to begin accruing requests, a finding 

that could suggest genomic data starts being requested earlier than clinical data, but 

these differences could also be due to characteristics of the repositories themselves. 

For example, perhaps dbGaP does more to raise awareness of its datasets among the 

community of researchers who use them. If a dataset’s release is not publicized, 

researchers would likely not be aware of its existence until later after its release, 

perhaps when articles start to cite the dataset (which would likely correspond with the 

second and third year after the dataset’s release). Further research into how these 

repositories promote outreach to their research communities and how researchers 

typically find datasets to reuse could help explain these findings.  

5.3 Research Question 4: Are there dataset topics that are more highly requested? 

The datasets contained within the three repositories considered here vary, in 

some cases significantly, in the number of requests they have received. The length of 

time a dataset has been available likely plays some role in accounting for more 

requests; a dataset released in 2009 has had more time to be requested than a dataset 

released in 2017, so it stands to reason that the total number of requests accrued by 

age would differ. However, as was demonstrated in Section 5.1, the variations in 
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request numbers can only partly be explained by how long a dataset has been 

available.  

The repositories considered here contain datasets that cover a wide range of 

different conditions and disorders, from the very common (such as heart disease, 

which is the leading cause of death in the US) to the very rare (such as biliary atresia, 

a rare liver disorder affecting about 1 in 20,000 live births in the US), as well as 

including some reference sets of healthy human subjects (Hopkins, Yazigi, & Nylund, 

2017; National Center for Health Statistics, 2017). Given that the burden of disease 

for various conditions differs widely, biomedical research funders and pharmaceutical 

development companies understandably tend to focus more money and effort on 

certain diseases. Likewise, it seems logical that some of the topics within the datasets 

from these three repositories would be more “popular” than others and would 

therefore receive more requests. Here I aim to explore whether variations in numbers 

of requests are due to the subject coverage of the dataset – in other words, are some 

topics more highly requested?  

5.2.1 Defining Topics 

Determining whether some topics are more requested requires first defining 

what the major topics in repositories are, a task that is not as straightforward as it 

might seem. Of course, datasets could simply be categorized into topics based on the 

primary condition the dataset covers, but there are other characteristics of datasets 

that might influence requests. For example, some of the studies in the NIDDK and 
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NHLBI repositories are longitudinal, following participants over the course of 

decades. Such datasets provide a wealth of data that could be useful for a range of 

research purposes, regardless of the topic focus of the original study. As the semantic 

similarity analysis described in Section 4.1.2 demonstrated, datasets often end up 

being reused in the context of topics that differ significantly from the topic for which 

the dataset was originally requested, so at least in some cases, the topic of the dataset 

is not what makes it appealing for reusers. 

Rather than make my own assumptions about how to divide datasets into 

topics, I utilized a topic modeling approach that used a technique called latent 

Dirichlet allocation (LDA) to sort datasets into topics with other datasets that were 

most similar to them. For this analysis, I considered each repository separately, since 

the subject coverage and request patterns for the three repositories are very different, 

and used the descriptions of each dataset as the corpus for text mining. I wrote custom 

R scripts that retrieved the descriptions for each dataset from the three repositories 

and removed extraneous text, such as HTML tags and section headers, leaving only 

the dataset description. Next, I removed common English language stopwords (such 

as “and” and “the”), as well as a set of custom stopwords, which were terms such as 

“patients” or “research” that appeared in many of the dataset descriptions and did not 

provide meaningful context (the full list of stop word is included as Appendix B). 

Next, I experimented with several text processing techniques to determine 

which processes would yield the most meaningful input for the topic-modeling 

algorithm. First, various forms of the same word needed to be processed to arrive at a 
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common form that would prevent the algorithm from considering them as two 

different words. For example, the words “decrease,” “decreases,” “decreased,” and 

“decreasing” are all forms of the common stem “decrease,” and therefore should be 

considered as one, rather than four separate terms. I tested the stemming algorithm in 

the R package SnowballC (Bouchet-Valat, 2019), but found it to be aggressive in 

stemming words, essentially indiscriminately stripping many “-s”, “-d”, and “-ing” 

endings from words that should not have been stemmed, resulting in many terms 

being reduced to the same stem when in fact they were not topically similar. Instead, I 

used lemmatization, a process that is more computationally intensive but achieved 

better results by identifying the term within a pre-defined dictionary and thereby 

determining the correct root word (Rinker, 2018).  

Once terms had been lemmatized, I experimented to determine the unit of 

analysis that would provide the most meaningful input for the LDA algorithm. I 

started with using individual lemmatized words, producing a count of the number of 

times each word appeared in a given description. This approach is referred to as a 

“bag of words” approach, since it simply counts words in the text without 

consideration for the context of the word within the description. Given the complexity 

of the concepts within the descriptions of the datasets, the bag of words approach was 

not effective. For example, consider the topics “elevated blood pressure,” “elevated 

risk,” “elevated glucose levels,” and “elevated liver enzymes.” These four terms refer 

to very different concepts, but the bag of words approach would consider them 

similar because they all contain the term “elevated.”  
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Instead, I experimented with bigrams and trigrams, sets of two or three words 

appearing in conjunction with each other. This approach provides greater 

consideration of the words in context. For example, “elevated blood pressure” would 

be split into bigrams “elevated blood” and “blood pressure.” Some less meaningful 

connections would still be made with the “elevated blood” bigram, connecting this 

description to ones referring for example, to “elevated blood glucose” or “elevated 

blood platelets.” However, it would also have the bigram of “blood pressure” to 

connect it to concepts such as “high blood pressure” and “blood pressure 

measurement.” I processed all descriptions into both bigrams and trigrams and found 

that bigrams provided the most useful sets of terms for these descriptions.  

The lemmatized bigrams were then arranged in a document-term-matrix 

(dtm), which gives a count for the number of times a bigram appears in each dataset 

description. The dtm serves as the input for the LDA algorithm, which sorts the 

documents (i.e. the dataset descriptions) into k groups of similar documents, where k 

is the user-defined number of topics. To some extent, determining the number of 

topics is a matter of trial and error, experimenting with different values of k until 

meaningful topics appear. However, the R package ldatuning provides some metrics 

to assist in determining the optimal value of k. For each repository, I tested for all 

values of k between 5 and 25 to determine the optimal number of groups. The 

package returns results of four metrics, two for which the optimal value should be as 

low as possible and two for which the optimal value should be as high as possible. 
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Figure 5-5, Figure 5-6, and Figure 5-7 show output from the ldatuning package, run 

for k between 5 and 25 for each of the repositories.  

 

Figure 5-5. Output from ldatuning package for the dbGaP dataset descriptions. 

 

Figure 5-6. Output from ldatuning package for the NHLBI dataset descriptions. 
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Figure 5-7. Output from the ldatuning package for the NIDDK dataset descriptions. 

Based on this output, I ran the LDA algorithm with the k values that appeared 

optimal, comparing a few variations where the ldatuning package showed some 

ambiguity. For example, for NIDDK, I tried models with k of 13 and 14, and 

examined the outputs to determine which model provided the most meaningful 

groupings. Each term was assigned a beta value that indicated how strongly it was 

associated with a topic. Reviewing the ten terms with the highest beta for each 

grouping helped provide insight as to whether the grouping was meaningful and what 

the topic was about. Figure 5-8 shows an example of a chart showing the top ten 

terms in topic 7 of the 14-group NIDDK model. Appendix C contains the full set of 

charts for all topics for each repository. 
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Figure 5-8. An example of a chart showing the top ten terms in topic 7 of the 14-group 

NIDDK model with its corresponding beta value. 

 A consideration of the terms shown in Figure 5-8 confirms that this is a 

logical grouping of documents and also provides insight into how the topic can be 

described. Gastroparesis is a disorder characterized by delayed gastric emptying, 

resulting in nausea, vomiting, and abdominal pain. It is diagnosed by a gastric 

emptying scintigraphy test, as well as upper endoscopy, and the severity of the 

condition can be quantified using the Gastroparesis Cardinal Symptom Index. 

Gastroparesis often occurs in insulin-dependent patients with diabetes, but in non-

diabetics, it is known as idiopathic gastroparesis. Based on this list of terms, this topic 

appears to contain datasets that are about gastroparesis. Of course, some of the terms 

are general enough that they might not refer to gastroparesis – for example, nausea 

and vomiting are common to many illnesses, and upper endoscopy is used in the 

context of many gastrointestinal disorders. Therefore, I also reviewed the list of 
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datasets that had been classified as belonging to topic 7 to determine whether 

“gastroparesis” was an accurate title for this grouping, as well as to ensure that the 

grouping of datasets also made logical sense. In reviewing the datasets in this topic, 

gastroparesis was the most common topic, but a few datasets also contained data 

about other rare gastrointestinal disorders, so I expanded the title of this topic to 

“gastroparesis and other GI disorders.”  

 I conducted this procedure with the descriptions of datasets from each of the 

repositories. For both NIDDK and NHLBI, the optimal number of groupings was 14, 

the topics of which are described below. However, the LDA algorithm was less useful 

in analyzing the dbGaP dataset descriptions. The tuning algorithms suggested using a 

k of 11, which yielded groupings of datasets that seemed mostly unconnected and for 

which I could not find meaningful topic descriptions. I experimented with a range of 

different values for k, but was not able to obtain groupings that made sense. The 

success of the topic modeling in NIDDK and NHLBI might be due to the fact that the 

datasets in these repositories do generally fall within a relatively constrained range of 

topics – after all, they only collect datasets related to diabetes, digestive disorders, 

and kidney diseases (NIDDK) and heart-, lung-, and blood-disorders (NHLBI). 

dbGaP, by comparison, contains thousands of datasets spanning the range of human 

disease and health, so it may be that the range of topics is too complex to be 

meaningfully captured by the LDA algorithm. Of course, it is also possible that the 

groupings the algorithm made did actually have some meaning, but it was too obscure 
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for me to understand (such as, “datasets with a principal investigator named Jim”) and 

that also would have been unlikely to provide a meaningful basis for this analysis. 

 Since the LDA algorithm was ineffective for the dbGaP datasets, I instead 

categorized them based on the “primary phenotype” (that is, the main disease or 

characteristic of interest in the dataset) reported on the dbGaP website for each 

dataset. The 1,150 datasets had 452 unique primary phenotypes; to achieve a more 

manageable number of topics, I grouped the datasets into 18 broad topics as described 

below, using the MeSH trees into which each phenotype term fell as a guide. Because 

the dbGaP dataset also contains a large number of datasets covering different types of 

cancers, I also further categorized cancer datasets with the type of cancer they 

described and conducted a sub-analysis of these datasets.  

5.2.2 Comparing Requests Across Topics 

Because datasets were not evenly distributed among the topics, raw request 

counts would not provide a fair comparison for considering request rates. For 

example, consider the top two most requested topics in the NIDDK repository, 

Chronic Kidney Diseases and Type 2 and Gestational Diabetes (shortened here for 

convenience to CKD and T2D), which have received 125 and 104 requests and 

account for 32% and 27%, respectively, of all requests submitted to the NIDDK 

repository. However, there are almost twice as many CKD datasets (13, or 14% of all 

NIDDK datasets) as there are T2D datasets (7, or 8% of all NIDDK datasets). Even 

though the request counts are similar, the 104 requests for T2D topics are spread 
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among a much smaller set of datasets, and therefore cannot reasonably be compared 

to the CKD requests. 

To account for the differences in number of datasets per topic, I calculated a 

request to dataset (RTD) ratio. First, I calculated the proportion of requests by 

dividing the number of requests in a topic by the total number of requests in the 

repository. Similarly, I calculated the proportion of datasets by dividing the number 

of datasets in a topic by the total number of datasets in the repository. Dividing the 

proportion of requests by the proportion of datasets, I arrived at the request ratio. 

Figure 5-9 provides a visual explanation of this process. In this example, topic A’s 

request ratio is calculated by dividing the proportion of its requests (70 requests for 

topic A datasets divided by 192 total requests for datasets in the repository = 0.36) by 

the proportion of datasets in the topic (4 datasets in topic A divided by 6 datasets total 

in the repository = 0.67), arriving at a ratio of 0.54. 

 

Figure 5-9. Visual explanation of request ratio calculation. 
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A ratio of 1 would indicate that a topic received as many requests as would be 

expected based on the number of datasets in the topic. If every topic in a repository 

received a score of 1, it would mean that every topic had been requested at the same 

rate, and essentially all topics were equally popular. A topic with a ratio of greater 

than 1 is over-requested based on how many datasets it contains; for example, a ratio 

of 2 would mean the topic had received twice as many requests as would be expected 

based on the number of datasets it contained. Similarly, a ratio of less than 1 meant 

the topic was under-requested; a ratio of 0.3 would mean the topic had received only 

30% as many requests as would be expected based on the number of datasets it 

contained.  

To revisit our NIDDK example, the CKD topic has a request proportion of 

0.323 and a dataset proportion of 0.141, yielding a request ratio of 2.29. The T2D 

topic has a request proportion of 0.269 and a dataset ratio of 0.076, yielding a request 

ratio of 3.54. Both topics are highly requested; with a request ratio of greater than 1, 

they received more requests than would be expected if all topics were requested 

equally. However, despite the T2D topic having received 21 fewer requests than the 

CKD topic, it has actually outperformed CKD by 1.5 times, given that T2D had fewer 

datasets than CKD overall.  

In addition to considering the total RTD ratio for each topic, I also calculated 

a yearly RTD ratio to explore whether topic popularity remained consistent or 

whether some topics gained or lost popularity over time. To calculate the yearly RTD 

ratio, I used annual request counts and cumulative rather than total dataset counts. For 
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example, in 2009 dbGaP contained eight datasets in the Cancer topic, which received 

a total of 230 requests in that year. By 2010, an additional 10 datasets had been added 

for a total of 18 datasets that received 592 requests in the Cancer topic. To calculate 

the 2009 RTD ratio for the Cancer topic, I used the proportions for that year; the eight 

datasets that were about Cancer constituted 4.5% of the 178 datasets that existed in 

dbGaP at that time. By 2010, dbGaP contained 243 total datasets, so the 18 Cancer 

datasets now constituted 7.4% of the total.  

5.2.3 dbGaP Results 

 1,133 datasets from dbGaP were sorted into 18 topics based on their primary 

phenotype. These datasets had received a total of 104,337 requests between 2008 and 

2018. Table 5-9 shows the distribution of datasets and requests among the 18 topics 

and each topic’s RTD ratio.  

Table 5-9. Distribution of dbGaP datasets and requests among 18 topics derived from the 

assigned primary phenotype, and calculated request to dataset (RTD) ratio. 

Topic Datasets  Requests  RTD Ratio 

Blood and Cardiovascular 269 (23.7%) 66,725 (64%) 2.69 
Mental Disorders 39 (3.4%) 3,117 (3%) 0.87 
Eye Disorders 20 (1.8%) 1,298 (1.2%) 0.7 
Normal 48 (4.2%) 2,668 (2.6%) 0.6 
Women's Health and 
Pregnancy 

26 (2.3%) 1,412 (1.4%) 0.59 

Cancer 319 (28.2%) 17,208 (16.5%) 0.59 
Neurological 86 (7.6%) 4,154 (4%) 0.52 
Lung and Respiratory 
Disorders 

38 (3.4%) 1,653 (1.6%) 0.47 

Substance Use Disorders 18 (1.6%) 729 (0.7%) 0.44 
Metabolic Diseases 57 (5%) 2,147 (2.1%) 0.41 
Skin Disorders 7 (0.6%) 238 (0.2%) 0.37 
Other 39 (3.4%) 926 (0.9%) 0.26 
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Topic Datasets  Requests  RTD Ratio 

Musculoskeletal 17 (1.5%) 293 (0.28%) 0.19 
GI Disorders 26 (2.3%) 365 (0.3%) 0.15 
Congenital Disorders 70 (6.2%) 910 (0.9%) 0.14 
Immune and Autoimmune 
Disorders 

16 (1.4%) 173 (0.2%) 0.12 

Urogenital Disorders 18 (1.6%) 190 (0.2%) 0.11 
Infectious Disease 20 (1.8%) 131 (0.1%) 0.07 

 

The mean RTD ratio for dbGaP topics is 0.52, indicating that disparity exists 

among the various topics. Most of this disparity comes from the Blood and 

Cardiovascular topic being highly over-requested, receiving requests at a rate nearly 

triple would be expected based on the number of datasets in the category. Six 

categories also have ratios of less than 0.2, having received less than 20% as many 

requests as would be expected.  

 Figure 5-10 shows the annual RTD ratios for each topic between 2008 and 

2018. The dashed line indicates a ratio of 1; values below the line indicate higher-

than-expected requests, and values below the line, lower-than-expected requests. 

Annual results are similar to the overall results described above, and RTD ratios 

remain generally steady for most topics over time. However, a few topics do show 

change over time. Blood and Cardiovascular datasets, already over-requested in 2008 

with a ratio of 1.14, continues to rise in popularity, eventually reaching a high RTD of 

2.3 in 2017. Conversely, datasets in the Mental Disorders topic see their ratio decline 

over time; with RTD ratios over 1 and even approaching 2 in most years between 

2008 and 2012, the ratio declined to just over 0.6 by 2018.  
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Figure 5-10. Request to dataset ratios for dbGaP datasets, by topic, calculated annually from 

2008 – 2018. 

In addition to considering the full dbGaP repository, I also performed this 

analysis for the 319 datasets that contained data about cancer to determine whether 

differences existed in requests for data about specific types of cancer. These datasets 

received 17,208 requests between 2008 and 2018. I classified them into ten groups 

based on primary cancer site, with one group for datasets that included multiple types 

of cancer as well as forms of cancer that could not be categorized into one of the 

other nine types. Table 5-10 shows the distribution of datasets and requests among the 

ten cancer types and each topic’s RTD ratio. 
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Table 5-10. Distribution of dbGaP datasets specific to cancer and their requests among 10 

cancer topics derived from the assigned primary phenotype, and calculated request to dataset 

(RTD) ratio. 

Topic Datasets  Requests  RTD Ratio 

Other or Multiple Cancers 39 (12.2%) 4,388 (25.5%) 2.09 
Blood Cancer 63 (19.7%) 3,950 (23%) 1.16 
Bone and Soft Tissue Cancers 11 (3.4%) 618 (3.6%) 1.04 
Urogenital Cancers 32 (10%) 1,581 (9.2%) 0.92 
Prostate Cancer 28 (8.8%) 1,373 (8%) 0.91 
Lung Cancer 23 (7.2%) 1,116 (6.5%) 0.9 
Brain and Nervous System 
Cancers 

21 (6.6%) 965 (5.6%) 0.85 

Breast Cancer 36 (11.3%) 1,434 (8.3%) 0.74 
Skin Cancers 25 (7.8%) 716 (4.2%) 0.53 
GI Cancers 41 (12.9%) 1,067 (6.2%) 0.48 
 

 The mean RTD ratio among the cancer datasets is 0.96, indicating that 

requests are relatively evenly distributed among the topics. The Other or Multiple 

Cancer type is requested at a rate more than double what would be expected based on 

the number of datasets, but this category is influenced by a significant outlier: the 

Cancer Genome Atlas (TCGA). This dataset, which contains detailed data about 

several different types of cancer, has been requested 2,857 times since its release in 

2009, more than three times as many as the next-most requested dataset in all of 

dbGaP. No other dataset in dbGaP (or any of the other repositories in this study) has 

been requested so significantly more than TCGA; its requests alone account for 65% 

of requests in the Other or Multiple Cancer topic and 17% of all the requests in the 

subset of datasets on cancer. Without the TCGA requests, the Other or Multiple 

Cancer topic would only have an RTD ratio of 0.33, and if TCGA alone were 

considered its own topic, it would have an RTD ratio of 55.3.  
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 Figure 5-11 shows RTD ratios for the ten cancer types for each year between 

2008 and 2018, which remain mostly steady over time.  

 

Figure 5-11. Request to dataset ratios for dbGaP datasets related to cancer, by cancer type, 

calculated annually from 2008 – 2018. 

5.2.4 NHLBI Results 

The LDA algorithm classified the 166 datasets from NHLBI into 14 different 

topics. These datasets had received a total of 893 requests between 2000 and 2018. 

Table 5-11 shows the distribution of datasets and requests among the 14 topics and 

each topic’s RTD ratio. 

Table 5-11. Distribution of NHLBI datasets and their requests among 14 topics determined 

by LDA, and calculated request to dataset (RTD) ratio. 

Topic Datasets  Requests  RTD Ratio 

Heart Disease Treatment and 
Prevention 

17 (10.2%) 157 (17.6%) 1.72 

Lung Injuries and Mechanical 12 (7.2%) 97 (10.9%) 1.5 
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Topic Datasets  Requests  RTD Ratio 

Ventilation 
Population-Based Studies 7 (4.2%) 53 (5.9%) 1.41 
Cardiovascular Risk Factors 11 (6.6%) 82 (9.2%) 1.39 
Heart Failure and Rhythm Disorders 16 (9.6%) 106 (11.9%) 1.23 
Hypertension 15 (9%) 98 (11%) 1.21 
Non-Asthma Lung Diseases 14 (8.4%) 81 (9.1%) 1.08 
Myocardial Ischemia 13 (7.8%) 61 (6.8%) 0.87 
Sickle Cell Anemia and Blood-Borne 
Diseases 

8 (4.8%) 32 (3.6%) 0.74 

HIV and Other Viral Diseases 9 (5.4%) 33 (3.7%) 0.68 
Asthma 19 (11.4%) 60 (6.7%) 0.59 
Emergency Resuscitation 8 (4.8%) 17 (1.9%) 0.4 
Coagulation and Sleep Disorders 5 (3%) 9 (1%) 0.33 
Blood Transfusions and Marrow 
Transplants 

12 (7.2%) 7 (0.8%) 0.11 

 

 The mean RTD ratio for all NHLBI datasets was 0.94, suggesting a relatively 

even distribution of requests among the 14 topics. Topics related to heart disease were 

particularly popular, with Heart Disease Treatment and Prevention and the related 

Hypertension and Cardiovascular Risk Factors topics (both of which lead to heart 

disease) all having RTD ratios over 1. By comparison, non-heart-related topics were 

more under-requested; of the seven topics with an RTD of less than 1, only one of 

them, Myocardial Ischemia, is related to any kind of cardiovascular disorder.  

 Figure 5-12 shows RTD ratio scores for each topic over time. Several of the 

topics do not appear across all years of this analysis; for example, the first datasets in 

the Coagulation and Sleep Disorders topic were not released until 2014, so that 

topic’s first RTD ratio is recorded in that year. As with the dbGaP topics, RTD scores 

among the NHLBI topics remain mostly steady over time.  
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Figure 5-12. Request to dataset ratios for NHLBI datasets by topic, calculated annually from 

2000 – 2018. 

5.2.5 NIDDK Results 

The 92 datasets in NIDDK were sorted into 14 topics determined by the LDA 

algorithm. These datasets received a total of 387 requests between 2013 and 2018. 

These datasets and requests do not represent the entire set of NIDDK datasets and 

requests; because the annual RTD analysis requires knowing how many total datasets 

existed in a given year, the date of release must be known for every dataset, but 

NIDDK did not track the date of release for datasets released before 2013. Because 

49 of the NIDDK datasets were simply recorded as being released sometime before 
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2013, the earliest the annual analysis could begin was 2013. Table 5-12 shows the 

distribution of datasets and requests among the 14 topics and each topic’s RTD ratio. 

Table 5-12. Distribution of NIDDK datasets and their requests from 2013 – 2018, for 14 

topics determined by LDA, and calculated request to dataset (RTD) ratio. 

Topic Datasets  Requests  RTD Ratio 

Type 2 and Gestational Diabetes 7 (7.6%) 104 (26.9%) 3.53 
Chronic Kidney Diseases 13 (14.1%) 125 (32.3%) 2.29 
Glomerulopathies* 3 (3.2%) 11 (2.8%) 0.87 
Genetics and Disease Mechanisms 8 (8.7%) 26 (6.7%) 0.77 
Dialysis and Lifestyle Interventions 9 (9.8%) 27 (7%) 0.71 
Nonalcoholic Liver Diseases and 
Bariatric surgery 

9 (9.8%) 23 (5.9%) 0.61 

Type 1 Diabetes 8 (8.7%) 20 (5.2%) 0.59 
Hepatitis 6 (6.5%) 14 (3.6%) 0.55 
Incontinence 5 (5.4%) 8 (2.1%) 0.38 
Urological Disorders 12 (13%) 19 (4.9%) 0.38 
Gastroparesis and GI Diseases 4 (4.3%) 6 (1.6%) 0.36 
Biliary Diseases and Liver 
Transplantation 

6 (6.5%) 4 (1%) 0.16 

Islet Transplantation**  2 (2.2%) 0 (0%) 0 
*diseases affecting the filtering mechanism of the kidney 
**transplantation of insulin-producing cells to treat type 1 diabetes 
 

 The NIDDK topics had a mean RTD ratio of 0.86, suggesting that there is at 

least moderate disparity in requests among the topics. In fact, NIDDK has two of the 

highest RTD ratios of all three repositories, with the Type 2 and Gestational Diabetes 

and Chronic Kidney Diseases topics scoring 3.53 and 2.29, respectively. NIDDK is 

also the only repository to have a topic with an RTD score of 0, meaning the datasets 

in this topic have never been requested. However, only two datasets were in the Islet 

Transplantation topic, and both were released in 2016, so these datasets may go on to 

receive requests over time. 
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Figure 5-13 shows RTD ratio scores for each topic over time (the Islet 

Transplantation topic is not shown because its RTD ratio is 0). Many of the topics 

remain steady over time, but the yearly RTD ratios show somewhat more variability 

than those for NHLBI and dbGaP. For example, the Hepatitis and Dialysis and 

Lifestyle Interventions topics both have RTD ratios greater than one for the first two 

years of the analysis, but then decline and drop below 1 in 2015. The Chronic Kidney 

Diseases topic also sees a significant increase in its RTD ratio in 2015; while some 

topics in the other repositories see a spike in a single year and then drop back to the 

baseline rate in the following year, the increase in the RTD ratio for this topic lasts 

throughout this analysis. 
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Figure 5-13. Request to dataset ratios for NIDDK datasets by topic, calculated annually from 

2013 – 2018. 

5.2.6 Summary of Findings 

Considering requests of datasets by topic reveals that not all topics are 

requested at the same rate, with certain topics emerging as highly popular. Although 

some variation did exist over time, the RTD ratio for most topics stayed generally 

consistent across the range of years analyzed for each repository. Among all three 

repositories, the most highly requested topics were all related to illnesses and 

disorders with a significant disease burden (National Center for Health Statistics, 

2017). For example, heart disease is the number one cause of death in the US, and 

had the highest ratio for topics in both dbGaP and NHLBI. Diabetes and chronic 
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kidney diseases, the two topics with the highest ratios in NIDDK are also both on the 

list of top ten causes of death in the US.  

However, other topics are surprisingly under-requested based on their disease 

burden. For example, breast cancer is the most common cancer in the US, with more 

than 260,000 women diagnosed annually, and also the fourth deadliest, but falls close 

to the bottom of the rankings for the cancer-specific dbGaP requests (National Cancer 

Institute, 2019). Some of the multiple cancer datasets that are the most highly 

requested likely do contain some breast cancer data (for example, the highly-

requested TCGA dataset does include breast cancer cases). However, datasets 

covering prostate cancer, which is also included in the TCGA dataset, receive 

requests at a rate 1.2 times higher than those covering breast cancer, despite breast 

cancer killing nearly 30% more people annually. The difference in requests might 

suggest that breast cancer is less studied in comparison to prostate cancer, but the 

opposite is true; in Fiscal Year 2017, NIH funded nearly 3 times more breast cancer 

research than prostate cancer research – $689 million for breast cancer and $239 

million for prostate cancer (National Institutes of Health, 2018a), suggesting that 

breast cancer is in fact more widely researched than prostate cancer. Thus, it is not 

clear why prostate cancer datasets are requested so much more than those on breast 

cancer, which is both deadlier and more highly funded.  

One possible explanation for the disparity between these cancers’ dataset 

request rates and their disease burden and research funding could be that prostate 

cancer researchers receive less funding and therefore take advantage of existing 
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datasets to make the most of their limited funds. Conversely, prostate cancer 

researchers could be requesting less funding because of the fact that datasets that are 

suited to their purpose already exist and they therefore do not need to request funds to 

gather new data. The request data here does not provide enough information to draw a 

conclusion about the reasons behind this disparity, but does suggest potential avenues 

for future research. 

Considered in combination with the results of the temporal analysis described 

in Section 5.2, these findings suggest that dataset requests do follow potentially 

predictable patterns and are not simply a function of datasets accruing requests over 

time. As will be discussed in Chapters 6 and 7, these findings have potential 

implications for how datasets are curated and stored. 

5.3 Conclusions and Summary of Findings 

This chapter has turned to information about the datasets themselves to better 

understand the dynamics and patterns of why some datasets are requested more than 

others. These analyses provide answers to the when and what of biomedical data 

reuse: when in a dataset’s life cycle does reuse happen, and what are the topics that 

are most highly requested? 

A number of factors appear to be at play in determining which datasets 

researchers choose to request. As would be expected, the age of a dataset has some 

influence in the number of total requests it has received – a dataset that has been 

around longer has had more time to accrue requests. However, at least among the 
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dbGaP datasets, age alone does not fully explain the number of requests a dataset 

receives. dbGaP datasets appeared to follow a cumulative advantage model, with the 

number of requests a dataset receives in its first year, regardless of when it was 

released, being highly predictive of how many requests it will receive in later years of 

its life. Some of the variation in request rates is also likely due to the topics that 

datasets cover. Among all three repositories, the most highly requested datasets were 

those that were related to common diseases that take a high toll on public health, with 

fewer requests for datasets covering rare diseases. 

The findings presented here build upon the analyses described in Chapter 4 

and help to provide a deeper understanding of how biomedical datasets are reused. 

Chapter 6 will discuss how the findings presented here and in Chapter 4 can be 

interpreted within the broad context of biomedical data reuse and explore what these 

findings tell us about who is using data and why.  
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Chapter 6: Discussion 

The previous chapters have provided a view of the impacts of shared datasets 

– who is reusing them, for what topics they are being reused, when in their life cycle 

they are requested, where in the world they are being reused, and why they are 

reused. In this chapter, I will interpret the major findings of this study and discuss 

how these findings help advance our understanding of biomedical data reuse. I will 

also discuss the limitations of these findings and the context within which they can be 

meaningfully applied.  

6.1 Summary of the Major Findings 

This study aimed to provide a better understanding of how data are reused by 

exploring four broad research questions. Because research into data reuse is still 

nascent, I drew on an understanding of other phenomena in scientific research to 

formulate hypotheses for these questions. One exception to this is Research Question 

4, about the topics of datasets that are most highly requested; little exists in the way 

of prior studies that would enable forming a hypothesis on this exploratory question. 

Table 6-1 provides a summary of the major findings. 

Table 6-1. Summary of the major findings. 

Research Question Hypothesis Finding 

Research Question 1.1: 

For what methods and 
analysis types are datasets 
reused? 

 

Hypothesis 1.1: Genomic 
datasets of the type found 
in dbGaP will be more 
likely to be used in 
combination in meta-
analyses, while clinical 

Confirmed. Genomic 
datasets from dbGaP are 
more often used together 
in meta-analysis and 
clinical datasets from 
NIDDK are more often 
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Research Question Hypothesis Finding 

datasets of the type found 
in the NIDDK repository 
will be more likely to be 
used on their own to 
answer an original 
research question. 

used on their own for an 
original study. There are 
statistically significant 
differences in the ways 
that dbGaP and NIDDK 
datasets are used. 

Research Question 1.2: 

How closely are the topics 
for data reuse aligned with 
the topics for which the 
data were originally 
collected? 
 

Hypothesis 1.2: Similarity 
between original topics 
and topics of reuse will be 
lower for genomic data 
(found in dbGaP) than for 
clinical data (found in the 
NIDDK repository).  
 

Confirmed. Similarity 
between original topics 
and topics of reuse is 
lower for genomic datasets 
from dbGaP than for 
clinical datasets from 
NIDDK. This difference is 
statistically significant.  

Research Question 2.1: 

Where are requestors 
located in the world? 
 

Hypothesis 2.1: 

Requestors will be 
primarily located in 
regions with a greater 
proportion of research 
institutions, including 
North America, Europe, 
and Asia. 

Partially confirmed. 

Requestors are located 
around the world, but 
English-speaking countries 
are most over-represented 
when considering their 
requests compared to their 
international research 
presence. 

Research Question 2.2: 

Are there patterns in career 
stage of requestors? 

 

Hypothesis 2.2: A broad 
range of career stages, 
from student to full 
professor (or equivalent) 
will be represented.  

Partially confirmed. 

While requests do come 
from a broad range of 
requestors, the majority of 
requests come from 
established researchers, 
rather than those early in 
their career. 

Research Question 3: Are 
there temporal patterns to 
dataset requests? 

Hypothesis 3: Patterns of 
requests relative to the 
original dataset release 
date will demonstrate a 
cumulative advantage 
process, similar to other 
scientific communication 
processes such as article 
citation. 

Confirmed. Patterns of 
requests do appear to 
follow a cumulative 
advantage model, with 
patterns of requests over 
time similar to patterns of 
article citations over time. 
Early requests are 
predictive of later requests, 
especially for dbGaP. 

Research Question 4: Are NA Datasets that contain data 
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Research Question Hypothesis Finding 

there dataset topics that are 
more highly requested? 

on more common diseases 
are more requested. 

 

6.2 Interpretation of the Major Findings 

This study used a variety of methods to describe biomedical data reuse to 

better understand patterns of reuse and the impacts of shared data for the biomedical 

research community. Throughout, I have framed this approach as providing answers 

to the questions of the who, what, when, where, and why of biomedical data reuse. 

Here, I interpret what the findings of this study can tell us about each of those 

questions. 

6.2.1 Who is Reusing Data? 

As I supposed in Hypothesis 2.2, researchers from across the research career 

life cycle reuse biomedical research data, from students just kicking off their careers, 

to mid-career professors, to well-established researchers and high-level commercial 

executives. This finding suggests that data sharing is more equitable in its current 

form – that is, in data repositories – than it had been through the interpersonal “gift 

economy” that previously characterized data sharing (Wallis et al., 2013; Yoon, 2017; 

Zimmerman, 2007). Students and early career researchers who would have lacked the 

professional network and status to be able to locate and negotiate access to data on 

their own can, and as this study found, do, make use of the datasets shared through 

repositories. These earlier career researchers can particularly benefit from the ability 

to use existing data, since they likely have less access to funding and other research 
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resources. The representation of researchers from both earlier and later career stages 

here suggests that a system of sharing data through repositories is more equitable and 

can help democratize research. 

However, it is also notable that these various career stages are not evenly 

represented among requestors. Just under half of requestors to both the NIDDK and 

dbGaP datasets were established researchers at the full professor, senior scientist, 

executive, or director level, while assistant professors accounted for around a quarter 

of the requests. While these early-career and established researchers were making 

many requests, surprisingly, researchers in the middle of their careers were making 

fewer. Considering the relative difference in composition of requests for academic 

career stages (for which actual counts of researchers at each level are known) reveals 

that the number of researchers in a given career stage alone does not account for 

differences in rates of requests. The reason for the lower request rates among mid-

career researchers cannot be determined with the data available in this study; further 

research could help elucidate the drivers behind different request rates. 

Another finding that merits further exploration is the differences in rates of 

requests for associate and assistant professors to the dbGaP and NIDDK repositories. 

As discussed in section 4.2.2, associate professors are overrepresented in requests to 

dbGaP and underrepresented in requests to NIDDK, while the opposite is true for 

assistant professors. Further research would be needed to explain the reasons behind 

this finding, but it is possible that assistant and associate professors are engaged in 

substantively different types of research. The higher request rate to dbGaP for 



 

 

 

157 

 

associate professors could indicate that they are doing more genomic research or 

conducting more meta-analyses (the most common type of reuse for dbGaP data), 

while assistant professors’ higher request rate to NIDDK could suggest that they are 

doing more clinical research or doing more original research studies (the most 

common type of reuse for NIDDK data). Analysis of the articles that arise from reuse 

among these two groups could help provide insight into how early versus mid-career 

researchers are reusing data. 

6.2.2 What Are the Most Requested Topics? 

The three repositories considered here include datasets covering a wide range 

of topics. Even within the NIDDK and NHLBI repositories, which are more 

constrained in terms of topic coverage than dbGaP, many different diseases and 

conditions are represented. In general, datasets about more common diseases and 

conditions were more requested than those that covered rare diseases. It stands to 

reason that a disease such as type 2 diabetes, which affects may people, would be the 

focus of more research, and therefore receive more reuse requests, than something 

such as a rare genetic disorder that affects only a few families in the world. On the 

other hand, the datasets that cover uncommon diseases do not go entirely 

unrequested, suggesting that they still represent a valuable source of data for the 

researchers who are engaged in such research. 

Disease burden and research density alone do not fully explain request rates 

for some topics. The example discussed in section 5.2.5 – the relative request rates of 
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prostate cancer and breast cancer datasets – demonstrates that not all topics are 

requested at a rate that correlates with the relative disease burden and research 

funding for that topic. Based on this analysis, which simply compares relative request 

rates, it is impossible to know what other factors might be at play in determining what 

topics researchers are most likely to request. Perhaps prostate cancer data are more 

difficult or expensive to collect than breast cancer data, and therefore researchers are 

more likely to request existing datasets rather than collect their own. Perhaps the 

prostate cancer datasets have been cited more in the literature, thus giving them 

higher visibility. Perhaps the prostate cancer datasets just happen to be better 

described and more clearly documented than the breast cancer datasets and are 

therefore more useful. Perhaps it is an issue of gender disparity in research, with 

prostate cancer, a disease affecting men, receiving more requests than breast cancer, a 

disease primarily affecting women. These findings suggest that further research into 

the broader funding, publication, and disease context in which datasets are requested 

could provide additional insight into the drivers behind the patterns of requests by 

topics seen here.  

6.2.3 When in a Dataset’s Life Cycle Are Requests Made? 

Temporal analysis of data requests reveals that long-term requests of datasets 

can likely be predicted from early requests. In both the dbGaP and NHLBI 

repositories, the number of requests that a dataset receives in the first three years after 

its release is a good predictor of how many requests it will receive in the long-term, 
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considering both total requests and requests made after the first three years. This 

finding holds true even when controlling for age, suggesting that the number of 

requests a dataset receives is not merely a function of how old it is. However, 

interestingly, while the first year of requests is a good predictor of long-term reuse in 

dbGaP, it is actually a very poor predictor of reuse in NHLBI. It is not until the 

second year that NHLBI datasets begin to be requested at a rate that is predictive of 

long-term reuse. This finding could be due to differences in patterns of how clinical 

versus genomic datasets are reused, or could be reflective of differences in how 

datasets from these two particular repositories are reused. Unfortunately, the NIDDK 

repository did not have enough historical data to include in this analysis, which would 

have provided a means of better understanding whether the difference could be 

ascribed to differences in ways clinical data is used. However, this analysis could be 

expanded to include other repositories to determine the mechanism behind these 

different request patterns.  

Within dbGaP, datasets also follow typical patterns of request over the course 

of their life cycle that suggests that dbGaP data reuse requests, much like other 

scientific processes, follow a cumulative advantage model – success breeds success. 

Datasets that are highly requested early in their life go on to continue to be highly 

requested, whereas datasets that receive few requests in their first years tend to 

continue to be less requested. Dataset requests are also similar to article citations in 

that they tend to reach a peak number of requests and then receive gradually fewer 

requests over time. In article citations, this peak is often achieved around five to ten 
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years after the article’s publication (Wang, 2013); for datasets, this peak occurs in the 

second year of the dataset’s life, after which requests slowly taper off over time.  

The shorter time period in which datasets reach their peak compared to 

articles could be due to differences in where in the life cycle of datasets requests 

happen versus where in the life cycle of articles citations happen. A use request 

happens much earlier than an article citation, at the start of the research process rather 

than at its end. The publication process often stretches over the course of months, as 

the article goes through peer review, potential revisions, and preparation of the final 

documents, so there will always be a lag between the time that a researcher uses an 

article and the appearance of evidence of that use, in the form of a citation. On the 

other hand, a use request provides evidence of use immediately. Therefore, it is likely 

that patterns of when datasets and articles are used are similar, and what differs is just 

the times at which evidence of that use appears. 

A surprising exception to the finding about peak request year was that the 

most highly requested datasets – those in the 90th percentile of overall requests – 

diverge from the pattern observed in the less-requested datasets in ways that suggest 

different dynamics could be at work in driving requests. The mean number of 

requests for these datasets does reach a peak and then drop off in the third year after 

release, like datasets in the other percentiles. However, the mean number of requests 

begins to rise again in the fourth year, increasing over subsequent years and 

eventually even surpassing its previous peak. Without further research, it is difficult 

to definitively say why this pattern occurs, but one possible explanation is that the 
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most highly requested datasets see peaks at the usual time for datasets and the usual 

time for article citations. That is, the dataset is released, and, like its peers, reaches its 

peak in the first year, following whatever dynamics drive requests. However, unlike 

less-requested datasets, these highly requested datasets also go on to be cited in 

articles reporting on the secondary reuse that arose in this first wave of requests. As 

descriptions of dataset reuse start to appear in the literature, perhaps the temporal 

pattern of requests starts to behave more like article citations, reaching a peak around 

the same time that the article describing the dataset would also expect to see a peak in 

citations (around 5-10 years after publication of the article).  

With only ten years of requests available for this analysis, it is impossible to 

know whether this explanation holds. Mean requests for 90th percentile datasets were 

at their highest in the final year of requests available for this study; without additional 

years of data to consider, it cannot be known whether that year is the peak or whether 

requests will continue to increase over time. Revisiting this analysis a few years from 

now, when additional years of requests are available, could demonstrate whether in 

fact this predicted pattern occurs. In addition, having a better mechanism to connect 

datasets with articles that cite them would help provide additional evidence that could 

support this potential explanation. At present, data citation mechanisms do not allow 

for sufficiently accurate counts of articles that cite datasets to enable a meaningful 

analysis of this theory.  

If further research supports the initial findings of this study – that the number 

of requests a dataset receives early in its life is predictive of its long term reuse – 
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reward and credit for researchers who share highly reused datasets could come more 

quickly than with other measures of scientific success or productivity. One criticism 

of measures such as citations to articles is that these are lagging measures that cannot 

show impact until months or even years after the release of the original article. As 

discussed above, the nature of the scholarly publication cycle means that citations to 

articles generally do not even begin to appear until well after the article’s publication, 

peaking sometimes as late as a decade after the article’s publication. Some 

bibliometricians have tried to identify measures that could provide earlier 

identification of high-impact articles, so-called altmetrics such as mentions of the 

article on Twitter or number of times readers have saved the article in Mendeley. 

While altmetrics provide quantitative counts of attention early in an article’s life 

cycle, that attention generally does not translate into long-term impact in the form of 

article citations, limiting their usefulness as a means of assigning meaningful 

scholarly credit (Thelwall et al., 2013). If it can be demonstrated that early attention 

to datasets in the form of requests in the first few years do reliably predict long-term 

use of datasets, credit could be given comparatively early in the research life cycle to 

researchers who share high-value datasets. Being able to recognize researchers who 

share high-value datasets soon after they share them, rather than having to wait years 

to receive credit, could incentivize researchers to not only share datasets, but to do so 

in a timely fashion. 
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6.2.4 Where in the World Are Requestors Located? 

Although the repositories considered here are funded and administered by 

various organizations within the NIH, an agency of the US government, the datasets 

contained within them are available worldwide and represent a potentially valuable 

global research resource. Indeed, requests do come into these repositories from all 

around the world, but the global distribution of requests is far from uniform. Even 

when accounting for research presence by considering the number of universities 

within countries, the United States is highly overrepresented in requests to all three 

repositories.  

Outside of the United States, other patterns in which countries were over- and 

underrepresented emerged. Other English-speaking countries such as Canada, the 

United Kingdom, Australia, and New Zealand, were also overrepresented given their 

share of universities. This is a finding that I did not predict, but it is logical given that 

that the websites and documentation for all three repositories considered here are 

available in English only, making it more challenging for non-English speakers to 

request and meaningfully use the data. Applying a similar methodology to analyze 

geographic distribution of reuse for datasets in repositories documented in other 

languages could provide a comparison to test whether researchers’ native language 

drives their choice to reuse certain datasets.  

Besides potential language barriers, other geographic factors may influence 

rates of reuse among researchers in various countries. Researchers may be more 

familiar with repositories located within their home country or region than those in 
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other parts of the world. Previous studies on researchers’ data reuse practices have 

identified trust in the repository as a major factor in the decision to reuse data (Faniel 

& Jacobsen, 2010; Faniel et al., 2015; Rolland & Lee, 2013; Yakel et al., 2013; Yoon, 

2014, 2017); perhaps researchers are more likely to trust a repository located within 

their region. One example that supports this hypothesis is the existence of an 

international collaboration among three nucleotide sequence databases: GenBank, 

located in the United States; the European Molecular Biology Laboratory (EMBL), 

with several locations in Europe; and the DNA Data Bank of Japan (DDBJ) all 

contain the exact same data. The three databases are synchronized daily, so that a user 

need only submit data to one of the databases for it to be available in all three (Baker 

et al., 2000). While distributed and redundant data storage makes sense from a 

preservation perspective, the fact that these three identical databases exist with their 

own distinctive names (two of which reference geography explicitly) suggests that 

researchers might make choices about where to look for data based on the geographic 

location of the repository. These three repositories do not require submission of a use 

request to access data, so other methods would be needed to track patterns of reuse, 

such as analysis of use logs and IP address access, but such an analysis could provide 

insight into the extent to which geographic factors play a role in researchers’ choice 

to use data from a repository.   

For all three repositories in this study, North American and European 

countries (including European countries where English is not the official language) 

were the most overrepresented, while countries in Asia, the Middle East, Africa, and 
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South America were almost universally underrepresented – if they were represented 

at all. The low use of data in Asian nations in particular was a surprising finding, 

given the major research presence within that region. For example, together, India, 

China, and Indonesia have about 30% of the world’s universities, yet account for only 

2% of the data requests. The majority of countries in the world that had at least one 

university had no requests at all to any of the three repositories. This finding suggests 

that these valuable data resources might not be benefitting the researchers who could 

potentially gain the most value from them: those in countries with less research 

funding and therefore less resources with which to collect their own data.  

Within the United States, requests are more evenly distributed among states 

than they are among countries in the world. There were fewer extremes among 

requests within the US, with most states requesting data from the three repositories at 

rates that are in accordance with the amount of NIH funding received by research 

institutions within the state. The less extreme variations between request rates and 

research presence within the states versus within countries could simply indicate that 

the proxy for research presence within states – NIH funding – is a better 

representation of biomedical research presence than the proxy used for countries – 

number of universities.  

However, outliers do still exist – Alaska, New Mexico, and Wyoming are 

somewhat surprising outliers in terms of overrepresentation. This finding could 

indicate that these states are requesting more data than might be expected given the 

amount of research underway, but conversely, it could also mean that these states are 
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receiving less NIH funding than might be expected given that amount of research. 

Perhaps researchers in these states are unable to secure adequate NIH funding to 

support large-scale data collection, so they turn to existing datasets to fill the gap. On 

the other hand, it is possible that these researchers simply are not applying for as 

much research funding because they are already planning to reuse existing data. 

Analysis of not just the research that is funded in each state, but what proposals are 

not funded could help elucidate the reasons behind the funding/request discrepancy 

(although information about unfunded proposals is not publicly available). Either 

way, this finding could support economic arguments in favor of sharing and reuse of 

biomedical research data – not only can reuse of data save money that would have 

otherwise been spent on gathering new data, but sharing also increases the return on 

investment of scientific research funding by extracting additional discovers from the 

original data (Arzberger et al., 2004; Costello, 2009).  

6.2.5 Why Are Requestors Reusing Datasets? 

This study revealed that researchers request data for a variety of different 

reasons – sometimes they simply want a dataset in which to test a research question, 

but researchers also request data to pool multiple datasets for questions that one 

dataset alone cannot answer, develop and test new statistical methods, design and 

validate software and computational tools, develop data infrastructure, and more. 

While any given dataset can and often is used in a variety of different contexts, the 

genomic and clinical datasets here demonstrate different patterns of reuse that are at 
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least in part accounted for by the different methodological limitations and practices 

associated with these two data types.  

As section 4.1.1 describes, some of the methodological differences in how 

researchers use datasets can be explained in part by the strengths and limitations of 

certain types of data. Genomic dataset of the kind found in dbGaP often must be 

combined with each other to achieve the massive sample sizes that are needed to 

achieve adequate statistical power for this type of study (Hong & Park, 2012). With 

this in mind, the genomic research community has developed data standards to ensure 

that, wherever you are in the world and whatever type of equipment you use to collect 

your data, it will likely be interoperable with other genomic datasets (Field et al., 

2011).  

On the other hand, clinical datasets of the kind found in NIDDK often use 

variables developed uniquely for a specific research study, often aimed at capturing 

subjective measures of patient experience. Similar concepts may be represented with 

varying degrees of difference among studies, such as the example discussed in 

Chapter 4 of differences in how alcohol consumption and binge drinking are defined 

in two similar studies from the NIDDK repository. Even if the discrepancy between 

how two studies define a concept is slight, those two datasets cannot be meaningfully 

combined. Although the NIH has made efforts to encourage the use of Common Data 

Elements (CDEs) that would enable harmonization of data across studies, uptake has 

not been universal, and researchers will still face problems integrating datasets that 
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have already been collected without CDEs, such as many of the datasets in NIDDK 

(Sheehan et al., 2016).  

These differences in how data are used also influence the degree of similarity 

between the topic of the original dataset and the topic for which it will be reused. 

NIDDK datasets were used in contexts that were similar to the original reason for 

which the data were collected. Over half of request/dataset pairs had a semantic 

similarity score of 1, meaning that the request proposed reuse in the exact context for 

which the data had been originally collected, and the mean score for NIDDK was 

0.78, demonstrating a high degree of similarity between reuse and the original data 

context. This finding makes sense, considering the attributes of clinical datasets 

described above. These datasets focus not only on a defined patient population, but 

also on fairly specific characteristics of that population – their response to a particular 

drug or intervention, symptoms and clinical findings related to their disease, or their 

self-described perception of their health and emotional well-being. While these 

datasets provide a depth of understanding – often featuring hundreds, if not 

thousands, of variables – they provide it in a very specific context, meaning that the 

applicability of these datasets is relatively constrained to a small set of related topics.  

On the other hand, genomic data is comparatively uncomplicated, consisting 

of the genetic sequences of individuals with a certain condition (or even normal, 

healthy individuals). Not only are these data interoperable with other genomic 

datasets, but they are also more generally applicable beyond a narrow disease 

category. As a result, they are used in a broader range of reuses that may diverge 
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quite significantly from the original reason for which they were collected. The mean 

semantic similarity score for dbGaP request/dataset pairs was only 0.56, and nearly a 

third of them had a score of 0, meaning that the request proposed a topic of reuse that 

was completely different from the reason for which the data had been collected.  

It may be tempting to suggest that dbGaP datasets are more useful than 

NIDDK datasets, since they are not only more requested, but also reused in a broader 

range of contexts. As Chapter 7 will discuss, just because a dataset is infrequently 

requested does not mean that it lacks value. However, the datasets that are most likely 

to be requested frequently and for the broadest range of reuse may merit additional 

curation or prioritization for preservation.  

6.3 Methodological Contributions of the Study 

This study is an early exploration of questions that need to be answered to 

understand the impact of data sharing and thereby reward researchers who share high-

value datasets. As this study has demonstrated, data reuse takes many forms, and also 

introduces a set of methods for understanding various aspects of this complex 

phenomenon. These methods will also be of use to repositories who wish to better 

understand who is using their data and how. Researchers could also benefit from 

knowing these answers to these questions as well, so repositories could consider 

creating dashboards or reports that draw on these methods to provide more detailed 

information to researchers beyond simple counts of reuse.  
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First, this study introduces semantic similarity as a method to understand how 

similar a proposed reuse is to the reason for which the dataset was originally 

collected. Using MeSH terms is a useful approach here, since the datasets already 

have MeSH terms, and the availability of a reliable automated text indexer, which 

NLM makes freely available, enables easy description of texts with little manual 

intervention. Because semantic similarity is used in a range of biomedical text 

comparison applications, packages exist for R and other popular statistical software, 

incorporating existing, validated algorithms, lessening the challenges of adoption of 

semantic similarity as a metric. While measuring semantic similarity with MeSH 

terms is limited to texts within the context of biomedical literature, other similar 

methods exist for quantitatively determining similarity between a pair of texts, so 

repositories with other types of data could use either a discipline-specific or a 

general-purpose measure. 

The coding of reuse requests in this study gives new insight into the ways that 

datasets are reused by expanding on the existing taxonomy of reuse types drawn from 

the literature. This expanded taxonomy provides a more complete understanding of 

the ways that datasets are reused and is validated by external coders. While other 

types of reuse likely exist outside of biomedical research, this taxonomy provides a 

basis for categorizing and understanding types of reuse. Unfortunately, this method is 

time-consuming because it requires manual coding of reuse requests, which can only 

be done by someone with a reasonably comprehensive understanding of the science 

described in the requests. However, in future research, I intend to use the set of use 
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requests I have coded with reuse type as a corpus for a machine learning text 

classifier to determine whether an automated approach could be used to categorize 

requests, which could replace the manual process, at least in the context of 

repositories with similar types of data to those discussed here. 

This study draws from a discipline quite distant from biomedical research, 

borrowing the measure of relative difference in composition that is used to assess 

racial and ethnic disproportionality in educational settings. This metric moves beyond 

raw counts of reuse to contextualize the extent to which researchers from particular 

countries or career stages are reusing existing datasets. I have used number of 

universities per country and amount of NIH funding by state as a proxy for research 

presence, but this method could also be used with other ways of approximating 

research presence, such as funding from another relevant funder or number of 

publications arising from a country.  

To understand temporal patterns of datasets over time, this study proposes two 

techniques: tracking use by deciles of overall reuse and quintiles based on the mean 

decile per year over the course of the dataset’s life. This method can be applied to 

dataset requests from any repository, regardless of discipline, since it does not rely on 

information about the dataset or topic of request. Further, this method could also be 

used to explore cumulative advantage processes outside of dataset requests, such as 

citations to articles over time.  

Finally, this study introduces the request to dataset ratio as a way of 

understanding which topics are most requested. This method could also be applied to 
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other repositories in different disciplines or even to other comparisons of topics, such 

as comparing citations to articles with certain topics. Here, I use a topic modeling 

algorithm to identify topics within the datasets, a technique that is broadly applicable 

to texts of any type, regardless of their linguistic content.  This approach could 

therefore be applied to any repository, but topics could also be determined manually 

or by drawing on metadata from the dataset descriptions. For example, because the 

topic model did not perform well for the dbGaP datasets, I used primary phenotype to 

determine the topics. Once topics are determined, the request to dataset ratio can be 

used with any number of topics and any number of datasets to provide insight into the 

topics that are most requested.  

Based on the variation in findings among the three repositories studied here, 

study of repositories from other disciplines would also likely exhibit some differences 

in how datasets are reused. In addition to providing a set of methods for exploring 

data reuse, this study provides a set of data to compare against to understand how 

reuse differs from one discipline to another, or even from one repository to another 

within the same discipline. This study also provides a baseline against which to 

compare data reuse over time. For example, it could be informative to revisit these 

analyses after the NIH implements its forthcoming data management and sharing plan 

policy to determine whether the increased demand to share datasets impacts reuse. 
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6.4 Limitations and Considerations for Application of Findings 

 As has been discussed, this study aimed to provide a preliminary 

understanding of a very complex phenomenon. As such, the findings should be 

understood and interpreted in that context. This study considers a very small group of 

repositories, several of which had incomplete data (such as NIDDK, which was 

missing release dates and request info from before September 2013, or NHLBI, which 

did not provide me with data on requestors or the text of use requests). Even where 

full data were available, the NIDDK and NHLBI datasets had much fewer requests 

than dbGaP, so these findings should be considered with less certainty, given that any 

variations here may be due more to the smaller population size than to actual 

differences in the phenomena described. 

 As has been discussed, reuse of data is difficult to quantify. This study used 

requests to reuse data as a proxy for reuse, which is likely a better proxy than some 

other measures, such as download counts or citations within the scholarly literature, 

but they are still an imperfect measure. Although requestors must have a fairly 

specific reason for which they intend to use the data, their actual research may not 

proceed according to those plans. A researcher might request a dataset and then, upon 

receiving it, discover it is not actually suited to her needs after all and end up not 

using it. Anecdotally, researchers have told me that the request process for some of 

the repositories is onerous enough that they sometimes request more datasets than 

they will likely need just in case, rather than find out later that they need additional 

data and have to go through the process again. Connecting use to requestors may also 
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lead to inaccuracies in understanding the career status of reusers; the person who 

requests the data may not actually be the person reusing it. A professor might request 

a dataset on behalf of a student, or a project manager on behalf of a research team. 

Therefore, a data request cannot be considered exactly equivalent to an instance of 

data reuse, and results should be interpreted with this consideration in mind. 

As this study has demonstrated, findings that hold true for one repository may 

not hold true for another, which suggests that the ability to generalize findings across 

repositories may be limited. Some of the findings were similar across repositories – 

datasets were almost universally most highly requested by researchers in the United 

States and other English-speaking countries, and topics with significant global disease 

burden were among the most requested for all three repositories, compared to rare 

diseases. However, for other questions, the findings differed widely between 

repositories. For example, the types of research for which dbGaP and NIDDK 

datasets were used differed widely, as did the temporal patterns of use between 

dbGaP and NHLBI. That this much difference existed between three relatively similar 

repositories – all three housing human subject data related to biomedical research and 

funded by the NIH – suggests that data reuse is not a phenomenon with simple, 

universal explanations. Therefore, caution should be used in trying to apply these 

findings to biomedical research repositories or datasets more broadly, and they almost 

certainly should not be applied to data and repositories from other disciplines. 
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6.5 Summary of Discussion 

This chapter has provided an interpretation of the findings, with a particular 

focus on what this study can tell us about the who, what, when, where, and why of 

data reuse. The answers to these questions help extend our understanding of the 

nature of biomedical data reuse and contribute to the development of scholarship in 

this area. This study was designed around a specific definition of reuse and 

constrained by the limited information that is currently collected about data reuse, so 

these findings must be interpreted within the context of a specific type of biomedical 

data reuse. Despite these limitations, these findings suggest potential implications for 

a range of stakeholders in the biomedical research ecosystem, which will be discussed 

in Chapter 7.  

  



 

 

 

176 

 

Chapter 7: Conclusion 

With researchers increasingly being required to share their data, the amount of 

publicly available and potentially reusable biomedical research data will continue to 

grow. Understanding how those datasets are reused will help ensure that informed 

decisions are made about how to best curate, preserve, and share data, as well as how 

to reward researchers who share high-value datasets. Shared datasets exist within a 

complex research ecosystem with a variety of stakeholders; accordingly, I will 

suggest how each of these stakeholders could consider acting on the findings of this 

study. Given the exploratory nature of this study, I will also propose future research 

that could build upon, confirm, and explain the findings I have presented within this 

dissertation. 

7.1 Implications of the Findings 

7.1.1 For Researchers 

The findings of this study may help allay some of the concerns that 

researchers have expressed about sharing their data. Researchers have worried that 

they might get “scooped” if they share their data – that someone else will beat them to 

publication on a discovery that they would have gone on to make themselves (Laine, 

2017).  One controversial editorial on data sharing worried that researchers who reuse 

data would end up “possibly stealing from the research productivity planned by the 

data gatherers” (Longo & Drazen, 2016, para. 3). However, the findings of this study 
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suggest that the ways in which researchers are reusing shared data make it unlikely 

they will end up scooping the original data collector in most cases. Especially for data 

in dbGaP, the context in which researchers proposed to reuse datasets often diverged 

markedly from the reason they were originally collected. These reusers are unlikely to 

scoop the original data collectors because they are looking at such different questions 

than the collectors were.  

While topics of reuse were more similar in the NIDDK repository, only about 

half of the request/dataset pairs had a semantic similarity score of 1, meaning they 

were reusing the data in the same context as the original collector. Of course, a 

semantic similarity of 1 does not mean that the reuser is doing the exact same 

research as the original collector. Semantic similarity scores are based on the MeSH 

terms assigned to use requests and datasets, which are mostly diseases or even broad 

disease categories. A use request and its corresponding dataset would have a semantic 

similarity score of 1 if they were both described as covering “Kidney Diseases,” but 

this term is sufficiently broad that the reuse and the original study could actually be 

considering quite different questions. Even so, clinical data does generally have more 

limited reuse potential than genomic data, based on the type of information contained 

in these datasets and how it is collected. The potential to be scooped is therefore 

perhaps higher for researchers sharing clinical data than those sharing genomic data.  

It should also be noted that not sharing data does not protect a researcher from 

being scooped; it happens all the time and did even before sharing data became a 

common practice.  The nature of scientific research and discovery means that there 
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are often multiple research teams around the world working on a topic at any given 

time, not because one is riding the others’ coattails, but simply because “we tend to 

make important new advances when the tools (intellectual and technical) become 

available, and others are not unlikely to do the same” (Mole, 2004, para. 10). In fact, 

in some cases, data sharing and other open science practices can actually help prevent 

scooping by establishing the primacy of one’s scientific claim. For example, 

researchers may choose to pre-register their studies using a platform such as the Open 

Science Framework (where data can also be shared), a process by which they state in 

advance their outcomes of interest. Because pre-registering or sharing data in a 

repository creates a time stamp, researchers can definitively demonstrate that they 

were the originator of an idea or discovery, helping to lessen the possibility that they 

will be scooped (or at least giving them ammunition to fight back if they are).  

 Other researchers have expressed concern that making their data publicly 

available might open them up to scrutiny of their original results by outside 

researchers (The International Consortium of Investigators for Fairness in Trial Data 

Sharing, 2016). With increasing concerns about the reproducibility of research, this 

concern is not entirely unfounded (“Reality check on reproducibility,” 2016), 

although one might argue that making sure your original results are correct before 

publishing might be the best course of action to avoid such problems. While it may 

seem that re-running analyses on the exact same dataset would necessarily lead to the 

same results and outcomes, it often turns out that this is not the case; it is entirely 

possible to use the exact same data and come to entirely different results, particularly 
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when the original authors have not clearly documented the computational methods 

they have used in their analysis. Results can be dependent on factors such as the 

specifics of the computing environment, software versions and dependencies, and 

choices the researcher makes about parameters of the analysis (Begley & Ioannidis, 

2014; Grüning et al., 2018; Stodden et al., 2012).  

This study’s results suggest that, at least for dbGaP and the NIDDK 

repository, reproducibility studies or other attempts to replicate the original study’s 

findings are not common purposes for requesting the data. Only 11 requests for 

dbGaP and two for NIDDK indicated they intended to use the data to reproduce the 

original results. These numbers correspond to just 0.05% of all requests for dbGaP 

data and 0.36% for NIDDK data. Of these requests, most described an interest in 

reproducing the results using slightly different methods, such as using different 

software or different sampling criteria, rather than questioning the original findings. 

Only one of the requests indicated that it aimed to re-analyze the data because the 

original findings had not been confirmed in other studies; the requestor speculates 

that this finding “was a spurious result of inappropriate statistical technique.” 

However, this request is only one out of thousands, indicating that reanalyzing data 

for the purpose of debunking the original findings is not a major type of reuse.  

Of course, this is not to say that reproducibility is not a significant problem in 

biomedical research; many researchers have raised alarms over the reproducibility of 

biomedical research (Begley & Ioannidis, 2014; Ioannidis, 2005, 2014). A range of 

efforts are underway to increase reproducibility in biomedical research, such as 
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development of guidelines to enhance (National Institutes of Health, 2017b) and tools 

to encourage broader adoption of open scientific practices (Munafò et al., 2017; 

Nosek et al., 2015a; Nosek & Bar-Anan, 2012). However, it appears from this study 

that verifying or reproducing results is not a common use of shared research data. 

Limiting access to data based on an individual’s concern about possible scrutiny 

when sharing has the potential to further science and enhance human health does not 

serve the public good, particularly given that the findings of this study suggest that 

this type of reuse is rare. 

7.1.2 For Repositories and Curators 

Patterns of use requests – both temporal patterns and patterns of highly 

requested topics – can provide an evidence base for informing curation and 

preservation decisions. While it may seem desirable to preserve all biomedical data 

indefinitely, just in case it is of use at some point, doing so is not feasible, nor would 

long-term storage of certain datasets be an efficient use of funds. For example, as 

costs of genome sequencing continue to decline, in some cases it may actually be 

cheaper to just re-collect data rather than store them (Weymann et al., 2017). Curating 

data to ensure they are in a usable and discoverable form often requires significant 

human effort, and despite decreasing costs of memory and the availability of cloud 

storage, long-term preservation can come with high costs. The findings of this study 

are preliminary and do not hold across all three repositories, but at least for the data in 

dbGaP, the number of requests a dataset receives in its first year is highly predictive 
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of the number of requests it will receive over the long term. It may therefore be 

possible to make meaningful curation decisions early in the data life cycle, 

prioritizing the datasets that are most highly requested in their first few years.  

In addition to predicting future use based on early request rates, it may also be 

possible to anticipate demand for datasets based on the topics they cover. As this 

study demonstrated, datasets that focus on common diseases are more requested than 

those that focus on rare diseases. However, that is not to say that datasets covering 

rare diseases should be discarded or ignored; in fact, quite the opposite is true. Even 

though they may be less requested than datasets on more common and well-studied 

disorders, data on rare diseases are in a sense more valuable because they are more 

difficult to re-collect. Given the prevalence of diseases such as heart disease, type 2 

diabetes, and cancer, finding participants for studies on these topics would be 

relatively easy, since they affect so many people. On the other hand, it is much more 

difficult to locate patients with rare diseases by virtue of the fact that they are rare. 

Especially in the case of genomic research, which requires larger sample sizes, it is 

often necessary to pool rare disease data from multiple sites that are able to collect the 

data from small patient groups to whom they have access. Repositories have been 

described as “unequivocally essential” to rare disease research, given their important 

role in facilitating access to rare disease data that can support research that might not 

be accomplished otherwise (Raza & Hall, 2017, p. 37). In fact, bioethicists have 

argued that researchers have a responsibility to their participants to share research 

data, particularly in the case of rare diseases. These patients have freely given their 
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time and data to participate in research that they hope will lead to treatments, and 

researchers should do all they can to advance that work, including sharing data 

(Hansson et al., 2016).  

Repositories must find a balance between focusing curation and preservation 

efforts on datasets with high reuse potential and those that may not be reused as often, 

but have value because of their rarity. Library practices may provide insight into how 

to prioritize curation and preservation of certain content without entirely discarding 

lower-use materials. For example, NLM provides enhanced indexing of certain 

journals that are searchable within its PubMed bibliographic database. The subset of 

journals that are selected for inclusion in MEDLINE (one of the underlying data 

sources searched within PubMed), based on criteria such as journal scope and 

coverage and quality of content, are indexed with additional metadata such as 

Medical Subject Heading (MeSH) terms and publication type (National Library of 

Medicine, 2019). Articles from journals that are not selected for MEDLINE indexing 

can still be searched in PubMed based on metadata such as keywords in their abstract, 

or author’s name; they just do not have the added information that comes from the 

NLM’s investment of a curator’s time that enhances the metadata associated with 

selected journals. 

Library practices can also provide guidance on how repositories might choose 

to make preservation decisions. Libraries must make choices about their collections 

based on the physical limitations of their space; there are only so many books that can 

fit on the shelves. Sometimes this means discarding items that are out of date, 



 

 

 

183 

 

damaged, or no longer used. This choice may be appropriate for some datasets in 

repositories as well, especially if technologies advance in ways that make existing 

datasets technologically obsolete. On the other hand, sometimes libraries have books 

that are not highly used, but still merit keeping, perhaps because they have historical 

value, or are still used from time to time. Off-site storage can provide a location to 

more cheaply and efficiently store less-used items, with a tradeoff in terms of 

convenience – a user must request the item and wait for it to be retrieved, rather than 

walking in to the library and simply taking it off the shelf. Repositories could take a 

similar approach of using “cold storage” for infrequently used data (Dell EMC, 

2019). Cold storage methods are more economical and computationally efficient, 

preserving high-cost and high-performance systems for frequently accessed data 

while still enabling preservation of lower-use data. Researchers who want to use a 

lower-use dataset may have to wait a little longer to get it, but they will still be able to 

get access, while the repository can help control storage costs.   

This study also demonstrated that biomedical data reuse is not evenly 

distributed among researchers around the world. Repositories could consider outreach 

to under-resourced regions to increase awareness of and access to freely available 

data resources. In many parts of the world, potential partners are already in place who 

could facilitate this outreach. For example, the NIH and other US funders support a 

variety of research and capacity building efforts in Sub-Saharan Africa (National 

Institutes of Health Fogarty International Center, 2019). Libraries and institutions that 

train researchers would be natural partners to help increase awareness and access. 
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Initiatives such as the Hinari Access to Research for Health Programme and 

Librarians without Borders, which already provide training and resources for 

librarians in underserved regions, could help to increase librarians’ knowledge of how 

to support researchers interested in working with existing research data (Medical 

Library Association, 2019; World Health Organization, 2019).   

Establishing contacts within those regions could also help encourage 

researchers to in turn deposit their data in these repositories, which could significantly 

increase the usefulness of the repository as a research resource. For example, the 

Human Health and Heredity in Africa (H3Africa) project aims to increase research 

infrastructure and expertise to collect genomic and clinical data from African 

populations (Human Health and Heredity in Africa, 2019). Repositories could greatly 

improve their representation by ingesting this type of dataset. A 2016 study found that 

over 80% of the existing genomic data in the world came from people of European 

descent; other populations made up as little as 0.05% of the existing genomic data 

(Popejoy & Fullerton, 2016). Partnering with researchers in other regions of the world 

could therefore not only increase access and use of existing data, but potentially 

create pathways to increase the diversity of subjects represented in repositories and 

thereby improve healthcare for patients of all races.  

7.1.3 For Research Funders 

As this study has demonstrated, biomedical data repositories represent a rich 

source of data to fuel research across a broad range of topics, sometimes diverging 
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widely from the original purpose for which the data were collected. The NIH has, 

accordingly, made a significant investment in curating and making available data 

arising from NIH-funded research. The recent NIH Strategic Plan for Data Science 

highlights the need to develop infrastructure and policies that help make biomedical 

research data FAIR (findable, accessible, interoperable, and reusable), thereby 

enhancing the ability of researchers to locate and reuse the data (National Institutes of 

Health, 2018b). The findings of this study suggest that researchers do have an interest 

in using shared data from repositories, and further emphasis by NIH on funding and 

policy towards increasing FAIRness of data could help increase reuse, as well as 

making reuse of data easier and lowering the barrier to entry for reusing data. 

In addition to providing funding and policy guidance that will increase the 

availability and usability of biomedical research data, the NIH has also begun to 

encourage researchers to reuse data by providing funding specifically for that 

purpose. While many Funding Opportunity Announcements (FOAs) mention that 

secondary analysis or data reuse are permitted, a few of the currently active FOAs are 

intended specifically for that purpose. Some of these FOAs are specific to particular 

disorders or areas of research, such as “Secondary Analyses of Existing Alcohol 

Research Data” and “Cancer-Related Behavioral Research through Integrating 

Existing Data,” or even fund use of data from a specific repository, such as 

“Leveraging Population-based Cancer Registry Data to Study Health Disparities,” 

which funds secondary analysis of data in either the Surveillance, Epidemiology, and 

End Results (SEER) Program or the National Program of Cancer Registries (NPCR) 
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(National Institutes of Health, 2016, 2017a, 2018d). These FOAs highlight some of 

the benefits of reusing data – accelerating discovery, increasing cost-efficiency, and 

enabling access to large datasets or data on rare diseases that researchers likely would 

not be able to gather on their own.  

While these FOAs can help raise awareness of existing data resources and 

incentive their reuse, it is important to caution that support for reuse of shared data 

should not be considered an alternative to providing funding for researchers that aim 

to collect their own data. For example, an NIH pediatric cancer research effort 

proposed in 2019 features data sharing as a major focus of the initiative. While cancer 

researchers generally recognize the importance of sharing and combining data, 

especially in the context of rare cancers, some argue that making data sharing the 

emphasis in this initiative is ineffective. They point to differences in the biology of 

childhood cancers that make integrating data from multiple sources a less meaningful 

approach than in the context of adult cancers and suggest that funding other 

approaches might be more effective than prioritizing data sharing (Kaiser, 2019). Not 

all questions can be answered with existing data, and as technologies progress, older 

data may no longer be useful. Therefore, even as more data of higher quality become 

widely available, reuse of existing datasets should be considered complementary to 

rather than a replacement for research activities that involve collecting new data. 

While this may seem so obvious that it hardly seems worth noting, I believe it bears 

explicitly stating given a political climate in which some government entities are 

seeking to cut funding to federal agencies that conduct and fund research.  
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Funders also have an important role to play in thinking about how they will 

not only encourage reuse of shared data, but also reward the researchers who 

originally collected datasets that go on to be reused. As Chapter 2 discussed, the 

notion of credit and reward are foundational to scientific norms (Carpenter et al., 

2014; Durieux & Gevenois, 2010; Garfield, 2002; Holden et al., 1994; Kochen, 1987; 

Latour & Woolgar, 1986; Merton, 1942). Many researchers already balk at the idea of 

sharing data because they see it as giving away one of the products of their financial 

and intellectual investment (Longo & Drazen, 2016; The International Consortium of 

Investigators for Fairness in Trial Data Sharing, 2016). Funders (as well as research 

institutions) are in a position to encourage and incentivize data sharing by giving 

credit to researchers who have shared data that goes on to be used by others. 

As this study has demonstrated, not all biomedical datasets are reused equally. 

Some of the datasets in this study had been requested hundreds or even thousands of 

times, whereas others only had a handful of requests. Part of the variability in the 

number of requests a dataset receives is due to the type of data it contains; for 

example, NIDDK clinical datasets, with their relatively constrained uses based on the 

way the data are collected, are requested less than dbGaP genomic datasets, which are 

more interoperable and tended to be used in a range of topics that diverged more 

significantly from the original context in which the data were collected. Given the 

differences in these types of data, it would be reasonable to expect that dbGaP 

datasets, which have a wider range of uses, would be more requested. Based on these 

differences, it hardly seems fair to compare datasets from these repositories based on 
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counts of requests alone; dbGaP datasets had 103 requests on average compared to 

just 8 requests on average for NIDDK datasets. Raw counts alone simply cannot be 

used to compare dataset use across multiple repositories.  

Even within repositories, using raw request counts may be an ineffective 

means of rewarding data sharing, since dataset use may not always be equivalent to 

dataset value. As the topic request analysis in section 5.3 demonstrated, datasets that 

cover common illnesses receive more requests than datasets covering rare illnesses. 

However, it could be argued that a dataset on a rare disease is more valuable than one 

on a common disease, regardless of how much either dataset is used. As discussed 

above, data on rare diseases is more difficult to come by and would be more difficult 

to recreate than data on common diseases, which have plenty of potential subjects to 

draw on. It could be reasonably argued that a researcher who shares a dataset on a 

very rare disease is making a significant contribution to research and to meaningfully 

improving the lives of patients who would not otherwise have been the focus of 

research beyond of the original researcher’s work, even if only a few other 

researchers use the data. To suggest that such a dataset deserves less credit than a 

dataset that is requested many times risks rewarding researchers of common diseases 

over researchers of rare diseases and could even potentially disincentivize sharing of 

rare disease data.  

Much as article citations are a flawed means of measuring the actual value or 

impact of an article (Edwards & Roy, 2017; Lane, 2010; Werner, 2015), simple 

counts of dataset reuse (whether that is measured by requests or other quantitative 
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counts) is likely an inaccurate means of determining a dataset’s impact. 

Bibliometricians have begun to call for responsible application of metrics to avoid 

creating perverse incentives or misunderstanding the actual impact of articles, and 

that field has long been characterized by efforts to develop more accurate means of 

measuring and quantifying scientific impact (Edwards & Roy, 2017; Hicks et al., 

2015). The scientific community has a rare opportunity now, as data sharing begins to 

become a more standard and formalized practice, to think carefully about how data 

sharing should be quantified, considering such questions as how value in data is 

defined and how to give credit for sharing in ways that meaningfully advance science 

and reward data sharers for meritorious contributions. The findings of this study help 

lay the foundation for future efforts aimed at determining the answers to these 

questions.  

7.2 Directions for Future Research 

This study represents some of the first research to undertake a comprehensive 

understanding of biomedical data reuse. As such, it has largely been exploratory in 

nature, but these findings suggest a wide range of potential avenues for future 

research. Some of the research directions I propose here are not currently possible, 

either because data sharing as described here is a new enough phenomenon that not 

enough historical data is yet available to conduct the analyses, or because the 

necessary data are simply not collected at present. I hope that the research I propose 

here may encourage repositories to collect the necessary data, as well as provide 
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direction for the development of infrastructure that will enable connections between 

datasets and the articles that cite them. 

7.2.1 Understanding Data Requestors and Data Reuse 

This study enabled a high-level understanding of who is requesting data, but it 

raises many additional questions about who is reusing data and patterns of reuse 

among requestors. For example, what accounts for the lower rate of requests among 

mid-career researchers, particularly associate professors, compared to early and later 

career researchers? Are there meaningful reasons behind the finding that associate 

professors are overrepresented in requests to dbGaP and underrepresented in requests 

to NIDDK, while the opposite is true for assistant professors?  

Some of these questions could be answered by examining not only use 

requests, but publications arising from these requests. If systems existed to 

automatically connect articles to the datasets they cite, it could be possible to trace 

data reuse from the point of request to the point of publication, which would enable a 

better understanding of what various requestors are actually doing with the data. 

Some efforts at developing such systems are already underway. For example, the 

Make Data Count project aims to track data reuse by using the infrastructure that 

already exists to track citations to articles (Fenner et al., 2018; Make Data Count, 

2019). However, tracking data reuse in this way requires not only that datasets have 

persistent unique identifiers that comply to a global standard, such as Digital Object 

Identifiers (DOIs), but also that authors know how to cite datasets and journals 
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correctly indicate that the citations refer to datasets. Even with the technical 

infrastructure in place, correct and complete tracking of dataset reuse will require 

significant cultural changes in science to ensure that all stakeholders in the research 

process document data citations in a way that enables tracking of data reuse. It is 

worth noting that none of the three repositories included in this study assign DOIs to 

their datasets, so tracking their reuse in publications is at present technically 

infeasible.   

An even better way of finding out what requestors are doing with the data is 

simply asking them – since the identity of requestors is known, survey research could 

elicit further information about why requestors had chosen to reuse data, what they 

intended to do with it, what they actually did with it, and the impact that shared data 

has had on their research. This research could enable a deeper understanding of the 

nuances of data reuse that could inform repository plans and policies, funding 

decisions, and outreach to researchers.  

7.2.2 Long-term Temporal Patterns 

Many scientific research processes, including article citations, follow temporal 

patterns, and understanding these patterns can help make predictions about future 

performance as well as enable the development of meaningful metrics to evaluate the 

phenomenon in question. While this research was only able to find such patterns in 

requests for one of the repositories, the findings were in line with patterns observed in 

similar phenomena, such as article citations. With only two repositories to consider 
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here, it is possible that this study simply did not have enough data to draw on, so 

repeating this analysis with requests from other repositories could provide more 

meaningful results. It might also be possible to use counts of downloads or views for 

this analysis, in order to include repositories that do not require submission of a use 

request. While other parts of this study relied on use requests to understand reuse, for 

this analysis, that level of detail is not required, and simple annual counts of use – 

whether in the form of downloads, views, or requests – may be adequate.  

This analysis could also yield more meaningful results if repeated again in a 

few years, when a longer period of request data is available. For example, the 90th 

percentile dbGaP datasets received more requests in the final year of available data 

than any previous year, so considering how the pattern of requests progresses over 

time could help answer some remaining questions. Will request rates continue to 

increase each year? It seems likely that request rates would peak and then start to 

decline at some point, but when will that be? Revisiting this analysis in perhaps two 

to five years could give a more complete picture of the temporal patterns of reuse. 

The temporal analysis is also an area of research that could benefit from better 

connections between datasets and articles citing them. Use requests for datasets are 

almost certainly driven in part by the publication of articles in which researchers 

describe their reuse – citations to the datasets increase their visibility as well as 

potentially suggesting new types of reuse, when they are used in contexts that diverge 

from the original reason they were collected. The ability to track citations to datasets 
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could help explain some of the temporal patterns in requests and provide additional 

predictive power to models aimed at forecasting future patterns of reuse.  

7.2.3 Understanding Reuse Within the Broader Research Context 

Biomedical datasets are part of a complex research ecosystem that includes 

other research inputs and outputs, such as articles, code and software, and research 

funding, to name just a few. This study has provided insight into some patterns of 

reuse, but understanding the drivers behind those patterns likely requires looking to 

the broader context of how those datasets are situated within the research ecosystem.  

As I have emphasized, the ability to connect datasets with the articles that cite 

them is crucial for understanding the context of how datasets are reused. In addition, 

comparing reuse of datasets by topic to the broader research funding context and the 

global disease burden could help provide insight into why some topics are more 

requested than others. These findings could identify disease areas for which datasets 

are under-utilized and could potentially benefit from outreach to research 

communities. 

7.3 Conclusion 

This study has provided a clearer picture of biomedical data reuse – who is 

reusing data, what they are doing with it, and why some datasets are more highly 

requested. The findings presented here demonstrate that biomedical data sharing is 

not a single phenomenon, but can take a range of forms that are in many cases driven 

by the type of data in question. Patterns of reuse differ between genomic and clinical 
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data, with the former being used in more meta-analyses and across a range of topics 

that diverges more from the original purpose for which the data were collected, while 

the latter tend to be reused on their own in studies that are more similar to the purpose 

for which they were collected. Reuse is also driven by the topic of the dataset, with 

more datasets covering common diseases being requested more highly than those 

covering rare diseases. Beyond the value of a dataset’s topic in predicting the number 

of requests it receives, its performance early in its life is also useful in predicting how 

many requests it will accrue over time. Finally, data are reused by researchers from 

around the world and from a range of career stages, though they are in many cases 

most highly requested by the researchers who have the most resources with which 

they could collect their own data – later career researchers in the United States – as 

opposed to earlier career researchers and those in less-funded countries who could 

potentially benefit the most from having data available for reuse.  

These findings are a first step in better understanding this complex 

phenomenon, and suggest potential avenues for future research, as well as policy and 

curation directions for funders and repositories. A vast amount of biomedical research 

data is already available, and this amount is only going to continue to grow as data 

sharing policies are put in place, especially when NIH eventually adopts a sharing 

policy that applies to all NIH funding. Understanding how those datasets are being 

reused is crucial to ensuring that data are shared in ways that enable meaningful reuse 

and that the datasets with the most value are properly curated and preserved. Many 
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questions still remain, but this study has taken some important first steps in better 

understanding data reuse.  
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Appendix A: Examples of Requests for Each Type of Reuse 

The following table provides examples of use requests from dbGaP and NIDDK that 

exemplify the types of reuse described here. Request text is reproduced exactly from 

the original without corrections or addition of spelled-out acronyms. 

Reuse Type dbGaP Example NIDDK Example 

Original 
research 

We propose to conduct a 
genome-wide scan for genetic 
associations with secondary 
phenotypes captured in the case-
control sample, such as body-
mass-index, lipid levels, fasting 
blood sugar, and serum 
creatinine measures using a 
novel secondary analysis 
approach. The analysis proposed 
represents a comprehensive and 
statistically rigorous genome-
wide search of secondary 
phenotypic associations, and as 
such, is likely to contribute to 
our understanding of the 
underlying biologic process of 
peripheral arterial disease 
(PAD). 

Cardiovascular disease is the 
leading cause of mortality 
among Hemodialysis patients. 
Prior research suggests that 
volume status and vascular 
stiffness are associated with 
cardiovascular disease. These 
factors are thought to be related 
to the rate of ultrafiltration, 
Hemodialysis session length, 
dialysate sodium concentration 
and phosphate intake. Though 
analysis of data from the HEMO 
Study, we seek to clarify the 
relationships of the relationships 
of these factors to one another as 
well as to cardiovascular 
outcomes among Hemodialysis 
patients. 

Meta-analysis The main goal of this research is 
to re-define the place multiple 
sclerosis (MS) occupies in the 
human disease landscape. MS is 
a complex autoimmune disorder 
of the central nervous system 
and is the second most common 
cause of neurological disability 
in adults after trauma. We will 
use de-identified genetic 
information from studies 
performed on other 
neurological, autoimmune, and 
unrelated diseases to better 

Our goal of this study is to 
improve clinical outcomes in 
health. Hypertension is a topic 
that influences millions of lives 
around the world. As such, 
optimal targets for patients is of 
upmost importance. 
Furthermore, it is possible that 
optimal targets are not 
consistent by subpopulation 
groups. The NIDDK has offered 
access to guideline influencing 
studies: specifically the AASK 
and the MDRD trial. Our goal of 
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Reuse Type dbGaP Example NIDDK Example 

understand their similarities and 
differences with MS on a 
genome-wide scale. 

our study will be to utilize 
advances from both these 
studies and pool data together to 
find new, meaningful clinical 
insights. 

Comparison or 
control 

Some children have severe 
seizures and other issues with 
their brains. Occasionally brain 
tissue is removed from these 
kids for surgical reasons. By 
RNA sequencing these samples 
we might be able to understand 
the cause, course and treatments 
for the disease. The GTex data 
allows us to compare these sick 
kids to normal individuals so 
that we can better understand 
what is going wrong in the kids. 

The primary aim of this 
community participatory project 
is to conduct a translational 
study of the CDC Diabetes 
Prevention Program’s successful 
clinic-based lifestyle 
intervention delivered in 
Community settings by 
community residents. 
Community residents at 
increased risk of type 2 diabetes 
based on BMJ, along with other 
risk factors, form the target 
population. Outcome measures 

include anthropometrics (e.g., 
BMJ, waist circumference), 
eating habits, and physical 
activity habit. The DPP data will 
be used to form comparison 
groups to examine the outcome 
of the community based 
lifestyle, intervention program. 

Validation The aim of our project is to 
better understand how 
oncogenic events cooperate 
during the early stages of lung 
cancer and during its malignant 
progression. To achieve this 
goal we are using multiple 
mouse models of lung cancer to 
study how gene gain and loss of 
function influences 
tumorigenesis. The dbGAP 
dataset will provide a valuable 
resource to help validate that 
recurrent genomic changes seen 
in our mouse models are 

To date the majority of studies 
have focused on chronic kidney 
disease as a single entity with 
respect to outcomes. We have 
preliminary data to suggest that 
in heart failure populations this 
may not be correct and that the 
underlying pathophysiology 
may be highly relevant with 
respect to the adverse prognosis. 
To date we have validated these 
findings in 4 heart failure 
datasets. Interestingly, there did 
not appear to be any relationship 
between heart failure severity 
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Reuse Type dbGaP Example NIDDK Example 

relevant to the human disease. 
Ultimately, our goal is to 
identify new targets for 
diagnosis, prognosis and 
personalized treatment of 
patients.” 

and the strength of this 
interaction. As a result it is 
possible that the above 
described observations may not 
be restricted to heart failure 
populations and thus we are 
requesting the MDRD dataset to 
investigate these findings 

Statistical 
methods 

We are requesting the late onset 
Alzheimers disease data to apply 
the statistical methods that we 
develop for mapping complex 
genetic traits. Complex genetic 
traits are caused by more than 
one disease gene and/or non-
genetic traits. Our methods take 
into account this fact to map the 
disease genes. We have 
developed a method that does 
not require disease model 
specification, i.e., the 
inheritance pattern of the disease 
in a family, which is unknown in 
real life but many methods need 
its specification. To study its 
properties, we have applied the 
method to simulated data. Now 
we need to apply it to a real data 
and so we are requesting this 
family data. 

In most longitudinal medical 
researches, the spacing of visits 
is usually the same for all 
subjects (unbalanced design). In 
this study, we will evaluate how 
unbalanced design with 
increasing the frequency of 
visits in the high risk group will 
influence the precision of 
covariate effect estimation in 
interval-censored time to event 
data. The TN01 study used this 
type of unbalanced design, we 
will use data from this study to 
illustrate how this unbalanced 
design is beneficial in term of 
improving precision in risk 
factor estimation.” 
 

Software or 
tool 
development 

The goal of this research is to 
create software for physician 
researchers which allow them to 
rapidly identify common genetic 
changes among patients 
suffering from the same disease. 
That knowledge will enable 
physicians to better diagnose 
and treat disease of all types. 
The real world data requested 
for this project will ensure that 
the software we develop meets 

Computer simulation models 
would enable researchers to 
assess the comparative-
effectiveness and cost-
effectiveness of alternative 
strategies for the prevention and 
treatment of type 2 diabetes. 
However, due to constantly 
evolving treatment landscape, 
these models need to be 
repeatedly updated as new 
evidence becomes available to 
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Reuse Type dbGaP Example NIDDK Example 

the needs of clinical personnel. inform their structure or input 
values. This project aim to 
update the stroke, coronary heart 
disease, and nephropathy sub-
models in MMD by using both 
secondary individual-level data 
available through NIH 
repository and summary data 
published in the literature. 

Infrastructure The Autism Sequencing 
Consortium (ASC) is an 
organization of more than 20 
research groups. The ASC seeks 
to collectively exploit DNA 
sequencing to resolve a 
substantial fraction of the 
genetic factors that contribute to 
Autism Spectrum Disorders 
(ASD). Mount Sinai School of 
Medicine serves as the 
bioinformatic Hub of the ASC. 
As the Hub, we store and share 
sequence data and call variants 
with ASC members, and provide 
them with a computing platform 
on which they can perform 
analyses. The main goal of this 
work is to identify rare genetic 
variants that associate with ASD 
to better understand the 
underlying causes of ASD. 

[No requests for this use type in 
this repository.] 

Reproducibility 
or reanalysis 
study 

We wish to replicate the work of 
Alexandrov et al. (Nature 2013; 
reviewed in Martincorena 
Science 2015) counting the 
number of mutations that 
correspond to various mutational 
signatures. For this we begin 
with a list of mutations available 
through TCGA .maf files; we 
must then add the local genetic 
context for these mutations, e.g. 

An analysis in the DCCT, 
suggested that men were at 
increased risk for severe 
hypoglycaemia. This has not 
been replicated in other studies. 
We hypothesise that gender 
difference is not a risk factor for 
severe hypoglycaemia, and that 
the effect found in the DCCT 
was a spurious result of 
inappropriate statistical 
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Reuse Type dbGaP Example NIDDK Example 

the preceding and following 
nucleotides for each single-
nucleotide mutation, and this 
information is in the requested 
data from TCGA. 

technique. 
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Appendix B: Custom Stopwords Used in LDA 

This list contains stopwords that were removed from the NHLBI and NIDDK datasets 

descriptions for the LDA topic modeling.  

 

background 

center 

conclusions 

data 

design 

grant 

individual   

measure/measures 

objectives 

outcome 

participant/participants 

research 

sample/samples 

source 

study/studies 

supported 
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Appendix C: Topic Model Term Charts 
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