TECHNICAL RESEARCH REPORT

Evaluating Spatial and Textual Style of Display

by B. Shneiderman, R. Chimera, N. Jog,
R. Stimart, and D. White

T.R. 95-51

INSTITUTE FOR SYSTEMS RESEARCH]

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

QG
900

CAR-TR-763 May 1995
CS-TR-3451
ISR-TR-95-51

Evaluating spatial and textual style of displays

Ben Shneiderman*, Richard Chimera and Ninad Jog
Ren Stimartt, David White?
Human-Computer Interaction Laboratory
Department of Computer Science
Institute for Systems Research*

University of Maryland, College Park, MD 20742-3255 USA
ben@cs.umd.edu
General Electric Information Servicet
401 N. Washington Street, Rockville, MD 20850 USA

Abstract

The next generation of Graphic User Interfaces (GUIs) will offer rapid access to
perceptually-rich, information abundant, and cognitively consistent interfaces. These new
GUIs will be subjected to usability tests and expert reviews, plus new analysis methods
and novel metrics to help guide designers. We have developed and tested first generation
concordance tools to help developers to review terminology, capitalization, and
abbreviation. We have also developed a dialog box summary table to help developers spot
patterns and identify possible inconsistencies in layout, color, fonts, font size, font style,
and ordering of widgets. In this study we also explored the use of metrics such as widget
counts, balance, alignment, density, and aspect ratios to provide further clues about where

redesigns might be appropriate. Preliminary experience with several commercial projects is
encouraging.

HeAL

The Human-Computer Interaction Laboratory (HCIL) is an interdisciplinary effort within the
Center for Automation Research. The main participants are faculty, staff, and students from
the Department of Computer Science, Department of Psychology, and College of Library
and Information Services at the University of Maryland, College Park, MD.

For single copies
or a list of all HCIL
technical reports
please write to:

Human-Computer
Interaction Laboratory
A.V. Williams Building
University of Maryland
College Park MD 20742

email hcil-info@cs.umd.edu

1. INTRODUCTION AND LITERATURE REVIEW

Designing a user interface is a complex process (Hix & Hartson, 1993; Shneiderman,
1992). It begins with analysis of the users and their tasks, goes through creative stages in
which key screens are designed and reviewed, and proceeds with detailed design of
hundreds or thousands of screens, dialog boxes, form fill-in layouts, output formats,
visual information presentation, help screens, tutorials, etc. Usability testing can begin
early and be repeated with larger groups of users as the design becomes more stabilized and
complete. The development process has been sped up in remarkable ways by the presence
of user interface management systems and powerful development tools. It is possible to
build running systems with an elaborate design in weeks and make refinements in hours.

While powerful tools enable designers to create excellent systems rapidly, designers can
still produce poor designs. Commercial pressures are forcing many novice designers to
turn out larger, more numerous systems at a more rapid pace, so concerns about quality are
greater than ever. Furthermore, when several designers contribute to a large project
coordination is needed to prevent unnecessary diversity. Quality control and acceptance
testing procedures are being introduced in many organizations but system auditors are often
at a loss for evaluation methods, criteria, and norms.

The most popular and effective methods appear to be usability testing and expert reviews.
The dramatic expansion of usability testing has helped to improve designs, because
designers are forced to work to a clear schedule and feedback from structured testing has
proven to be powerful in revealing flaws early. Unfortunately usability testing cannot
reveal what performance will be after months of usage and it is usually not possible for
usability lab test participants to experience every dialog box. This “coverage” problem, a
term borrowed from software testing, is increasingly important as systems grow in
complexity and size. By contrast, expert reviews can be effective in coping with the
coverage problem by diligent examination of each dialog box, but reviewers may differ in
their opinions and can hardly be expected to notice all differences, omissions, or flaws
when there are hundreds or thousands of dialog boxes. A further problem with usability
testing and expert reviews is that they are relatively costly and time consuming compared
with automated evaluations and interface metrics.

The criteria for excellent interface design are still emerging from creative graphics designers
and from the results of empirical studies. Guidelines documents from Apple (1992), IBM
(1991), Microsoft (1993), and others are a first step, but many design issues are not
addressed by these already voluminous books (Brown, 1988; Galitz, 1989; Marcus,

1992). While there will always be room for innovative designs, there is a growing need
for methods that enable ordinary designers to create effective systems reliably, on-time, and
on-budget.

Interface development is greatly facilitated with widely used tools such as Visual Basic
(Microsoft Corp.), Reality, or PowerBuilder, and more complex cross-platform systems
such as Galaxy (Visix Corp.), XVT (XVT Corp.), or Open Interface (Neuron Data).
These tools can facilitate standardization across platforms and provide the software
infrastructure for new evaluation tools. Software tools to assist designers are being
implemented by practitioners for their products while researchers have begun to develop
some exploratory systems that help automate the design process (Kim & Foley, 1993;
Sears, 1994).

While automated layout holds promise for standardized situations, in more complex
situations simple automated evaluations can provide feedback to designers, even at early
stages of development. Many of the guidelines documents include recommendations about

appropriate numbers of menu items, colors, widgets, etc. Sometimes there is experimental
support for these recommendations but often they are based on only subjective judgments
and thoughtful analyses. Streveler and Wasserman (1987) proposed novel visual metrics
such as symmetry, balance, percentage of screen used, and average distance between
groups of items, but they did not apply or test these notions.

Tullis (1988a, 1988b) carried these ideas further and implemented a system for evaluating
the visual displays from character based interfaces only. He implemented metrics for
overall and local density (based on number of characters filled), grouping (number of
groups and their sizes), and layout complexity (vertical and horizontal alignment). His
metrics were partially validated in a useful series of studies and his tool was distributed.
The shift to graphic user interfaces with multiple font sizes, three dimensional widgets, etc.
means that new analyses and metrics are necessary.

The availability of more graphic design features has raised interest in spatial properties such
as balance, symmetry, regularity, alignment, proportion, horizontality, simplicity, economy,
neutrality, unity, grouping, predictability, sequentiality, etc. These and a dozen more were
identified and discussed in the context of traditional and multimedia layouts (Vanderdonckt
& Gillo, 1994). These properties were intended to serve as a basis for an automatic
placement tool (Bodart et al., 1994), however, specific metrics and acceptable ranges were
not tested. Other efforts at automatic layout may lead to useful tools for some situations
(Feiner, 1988; Kim & Foley, 1993; Byrne et al., 1994), but there is very little experience
with substantial commercial applications.

Esthetically pleasing layouts are important, but the layouts should also match the sequence
and frequency of the users’s tasks. The term “layout appropriateness” (Sears, 1993, 1994)
was chosen to convey the correspondence between layout and task. Layout
appropriateness requires more inputs concerning usage patterns, but it is far more powerful
in providing reliable evaluations and can even be used to generate layouts that would be
optimal with respect to the metric of distance traversed or other metrics. Early testing has
demonstrated its effectiveness in analyzing simple dialog boxes and complex control panels
from NASA applications.

These preliminary efforts have all been helpful in identifying potential metrics and
evaluation tools that could be used in the context of modern user interface building tools
that generated graphic user interfaces. We sought to take these ideas from the laboratory
into field testing and develop tools for professional developers working for General Electric
Information Systems.

2. OUR METHODS

Our research expanded from single screen analyses, towards evaluations across the dozens
or hundreds of dialog boxes found in many user interfaces. We focused on consistency
across screens and on feedback to designers to guide them to issues that might require
further analysis. In earlier work (Chimera & Shneiderman, 1993) we demonstrated that
consistency in color, terminology, layout, instructions, etc. does make a difference in
users’s perceptions, performance, and subjective satisfaction. While consistency is a
complex concept and sometimes violations are appropriate, some aspects of consistency
checking are candidates for automation. It would seem appropriate for designers to
preserve spatial properties such as position of similar items, size or aspect ratios of related
dialog boxes, minimal wasted space, consistent margins, and aligned, balanced layouts.
Similarly visual properties of text such as color, fonts, font sizes, font styles, and
justification of labels would be more acceptable if they were used consistently. Finally

terminological consistency, and standard spelling, abbreviations, and capitalization seems
important in simplifying an interface for novice and expert users who are first time,
intermittent or frequent users.

Our goal was to give designers rapid feedback as they developed their designs and steer
them to examine certain screens in detail to see if there was a need for improvements. We
wanted to provide a kind of medical lab report (like a blood test) for a set of dialog boxes
that revealed potential anomalies but did not prescribe cures. To do this we used the
descriptions of dialog boxes generated by tools such as Visual Basic. We developed a
canonical format for dialog box descriptions that becomes the input to our evaluation
programs. Other development tools produced different descriptive outputs, but we
assumed that a knowledgeable developer could write a conversion program to put the
information in the canonical format.

We developed two reports: a dialog box summary table that gave a compact overview of
spatial and visual properties. Each row described a dialog box and each column a metric.
The second report, a concordance, was built by extracting all the words that appeared in
every dialog box and sorting them in one file with references to where they came from.

2.1 Dialog box summary table

The dialog box summary table was intended to provide designers with a compact overview
of the dozens or hundreds of dialog boxes that had been designed by the single or multiple
designers in a project. Each row represents a single dialog box and each column represents
a single metric. Typical use would be to scan down the column looking for extreme values,
spotting inconsistencies, and understanding patterns within the design.

The order of the rows was initially alphabetical and the dialog box summary table was
printed on paper, but other orders based on groupings of dialog boxes functionally (so that
all the dialog boxes related to installation or printing might be seen as a group) might be
useful. Viewing the dialog box summary table within an electronic spreadsheet would be
logical. The order of the columns was less clear to us and we simply appended new
columns as the software was created. A compact presentation which squeezed as many
columns as possible across a wide printout was seen as advantageous.

The choice of the metrics was our most critical issue. The University of Maryland and the
General Electric groups brainstormed independently for a week, consulting with colleagues
and generating two lists with approximately 40 proposed metrics each. The specific items
were grouped into categories such as consistency, spatial layout, alignment, clustering,
cluttering, color usage, fonts, attention getting, etc. The two lists had many similar items
and categories so we were encouraged. A second independent brainstorming session was
used to choose an ordered list of metrics for implementation. Highly ranked items were to
be ones that we expected to have high payoff and be easy to implement.

The implementation, written in C++, revealed problems in obtaining the required values in
a complete and consistent manner. Definitions of the metrics were revised, special

conditions were handled, and bugs were resolved one by one as the columns emerged.
The current columns are explained and a portion of the dialog box summary table is below:

Dialog Name: Name of the file in which dialog is contained.

Aspect Ratio: The ratio of the height of a dialog to its width. Numbers in the range 0.3

thru 1.7 are desirable.

Widget Totals: Counts of all the widgets and the top level widgets. Increasing difference
between all and top level counts indicates greater nesting of widgets, such as buttons inside
containers.

Non-Widget Area: The ratio of the non-widget area to the total area of the dialog,
expressed as a percentage. Numbers closer to 100 indicate high utilization, and low
numbers (< 30) indicate possibilities of redesign.

Widget Density: The number of top-level widgets divided by the total area of the dialog

(multiplied by 100,000 to normalize it). High numbers indicate that a comparatively large

number of widgets are present in a small area. This number is a measure of the 'crowding'
of widgets in the dialog.

Margins: The number of pixels between the dialog box border and the closest widget. The
left, right, top and bottom margins should all be approximately equal to each other in a
dialog, and should also be the same across different dialogs. Dialogs that contain widgets
which extend beyond the dialog's bounds (e.g., lists) give rise to negative figures for
bottom margins.

Gridedness: The ratio of the total number of widgets in a dialog to the number of distinct
X or y positions that the widgets have. This gives rise to distinct x-axis and y-axis measures
for gridedness. If all the widgets in a dialog have distinct values for the x-coordinate of
their positions, the x-gridedness will be 1. A number greater than 1 is evidence of
grouping. If the x-gridedness is greater than the y-gridedness in a single dialog, indicates
that widgets are stacked into columns rather than rows.

Area Balances: A measure of how evenly widgets are spread out over the dialog box.
There are two measures: a horizontal balance, which is the ratio of the total widget area in
the left half of the dialog to the total widget area in the right half of the dialog; and the
vertical balance, which uses top area divided by bottom area. Dialogs in which all widgets
are vertically centered have a horizontal balance of 1 (Left Area = Right Area). In general
we expect the horizontal balance to be greater than 1 because many dialogs typically consist
of large-size widgets in the left and top halves, and small widgets (such as buttons) at the
right and bottom.

Distinct Typefaces: Typeface consists of a font, font-size, bold and italics information.
Each distinct typeface in all the dialog boxes is randomly assigned to an integer and is
described in detail at the end of the table. For each dialog box all the integers representing
the distinct typefaces are listed so that the typeface inconsistencies can be easily spotted
locally within each dialog box and globally among all the dialog boxes. The idea is that a
distinct typeface should be used for all the dialog boxes. Occurrence of too many typefaces
within a dialog box may not be desired.

Distinct Colors: (This column is not shown below because of lack of space) All the
distinct background colors in a dialog box are displayed. Each distinct color in all the dialog
boxes has been randomly assigned to an integer for display and comparison convenience
and is described in detail at the end of the table. The purpose of this metrics is to check if all
the dialog boxes have the same background colors. Multiple background colors in a dialog
box may indicate inconsistency.

This table reveals some interesting anomalies that led to reconsiderations of designs. The
test user interface had about 140 dialog boxes and was a well-reviewed and polished

design. Very few obvious bugs appeared but many interesting questions were raised as we
reviewed the detailed analysis. For example the varying aspect ratios were a surprise and
irregular margins were a sign of lack of coordination. The gridedness values did lead to
some review of layouts, but we are not yet sure about how to refine this measure. The
balance ratios were effective in finding unusual layouts which will be reconsidered. The
unusual variety in typefaces in contacts.cft were a surprise and it turned out to be the
work of a specific designer who had created other dialog boxes of the application with his
distinctive style. Similar surprises occurred in the distinct typefaces and colors columns.

No. Dialog Agpect -WIDGET-- Non- Widget --- MARGI N S --- Gridedness -Balances-- Distinet
Name Ratio TOTALS Widget Density Left Right Top Rottam X Y Area Ratius Typefaces
(H/W) All Top- Area widget/ {pixels) Horiz Vert
Level (%) area (L/R) (T/B)
1 aboutedi.cft 0.49 6 g5 74.4 76 64 30 8 6 1.0 1.0 1.0 0.7 1
2 actlog.cft 0.67 i6 14 ~-0.0 60 0 6 0 -241 2.0 1.4 1.1 0.4 1
3 addexp.cft 0.43 3 2 46.0 38 8 33 8 17 1.0 1.0 1.1 3.2 1
4 addfamdf.cft 0.77 25 13 28.3 74 8 26 8 4 1.3 2.6 1.0 0.7 1
5 addr.cft 0.73 47 8 23.9 36 8 26 8 4 1.1 2.7 1.1 0.9 1
6 addrbk.cft 0.84 45 29 15.5 177 0 13 0 6 1.7 2.2 1.1 0.8 1
7 addsec.cft 0.50 7 6 32.9 84 8 23 8] 1.2 2.0 1.5 0.8 1
8 addseg.cft 0.63 7 6 42.4 103 16 23 8 12 1.0 2.0 1.4 0.6 1
9 addstand.cft 0.41 3 2 60.9 44 24 38 24 12 1.0 1.0 L.0 2.1 L
10 admpwd.cft 0.70 14 6 31.9 63 16 21 8 5 1.0 2.0 1.0 0.7 1
11 adrmsg.cft 0.74 28 14 23.2 61 8 21 8 7 1.4 2.3 1.0 0.5 1
12 adrmsg2.cft 0.74 28 14 23.0 61 8 21 8 6 1.4 2.3 1.0 0.5 1
13 adrmsg3.cft 0.76 28 14 24.7 60 8 13 8 7 1.4 2.3 1.0 0.5 1
14 advsched.cft 0.82 4 3 35.6 42 16 23 16 13 1.0 1.5 1.0 1.3 1
15 afile2.cft 0.66 4 3 47.7 57 16 33 8 13 1.0 1.5 1.0 1.6 1
16 alertl.cft 0.47 5 4 42.4 129 8 18 8 4 1.0 1.3 1.0 1.5 1
17 archive.cft 0.57 23 14 44.6 86 8 33 8 26 1.6 1.8 0.9 0.6 1
18 archok.cft 0.60 13 12 48.8 130 8 11 8 6 1.5 3.0 1.1 1.1 1
19 asgnfam.cft 0.49 12 11 50.8 82 16 7 8 3 1.2 2.2 1.0 0.4 1
20 autoff.cft Q.42 10 9 38.7 87 16 23 8 4 1.1 3.0 1.2 0.8 1
21 autofile.cft 0.39 10 5 34.1 74 16 31 16 4 1.2 1.7 1.3 0.7 1
22 autoupd.cft 0.37 8 5 52.6 89 16 26 8 4 1.0 1.7 1.1 1.1 1
23 hacknow.cft 0.49 12 11 56.4 102 24 24 8 14 1.4 2.8 0.8 1.0 1
24 btmail.cft 0.48 3 2 50.3 109 8 20 8 10 1.0 1.0 1.0 3.1 1
25 uildel.cft 0.58 4 3 38.8 56 8 18 8 11 1.0 1.5 1.0 1.7 1
26 co.eft 0.44 3 2 76.5 76 32 49 16 15 1.0 1.0 1.1 1.4 1
27 chgstat.cft .43 3 2 47.6 87 8 20 8 7 1.0 1.0 0.9 2.9 1
28 ckdoc.cft 0.55 3 2 47.9 47 8 31 8 12 lL.0 1.0 1.0 3.5 1
29 conhost.cft 0.47 3 2 46.7 55 8 13 8 14 1.0 1.0 0.9 3.8 1
30 connect.oft 0.61 17 16 49.7 142 16 31 16 2 1.8 1.8 0.6 1.9 1
31 contacts.cft 0.73 105 13 -358.8 47 8 12 8 -1403 1.6 1.9 1.3 0.3 1234
32 create.cft 0.71 92 12 0.2 44 0 14 0 9 4.0 1.3 1.0 0.9 L
33 dbback.cft 0.37 14 5 45.2 65 16 29 16 11 1.0 1.7 1.1 0.8 1
34 dearch.cft 0.53 15 14 48.6 119 8 11 8 5 1.8 3.5 1.3 0.8 1
35 dearch2.cft 0.59 10 S 41.1 68 24 26 0 16 1.1 4.5 1.5 1.2 1
36 dearchok.cft 0.63 10 9 35.2 63 16 26 8 12 1.0 4.5 1.6 1.0 1
37 delconf.cft 0.41 6 5 63.2 118 16 14 16 7 1.7 1.0 0.9 2.7 1
38 dociduti.cft 0.69 29 3 23.8 14 16 28 16 16 1.5 1.5 1.3 1.0 1
Maximum 1.00 170 31 97.5 271 80 56 24 27 4.4 4.5 6.2 8.6
Minimuam 0.32 3 2 0.0 14 0 0 0 0 1.0 1.0 0.3 0.0
Average 0.60 17 8 35.3 86 11 19 7 7 1.6 1.7 1.1 1
1 = MS Sans serif 8,25 Bold 2 = MS Sans Serif 8.25 3 = MS Sansg Serif 9.75 Buld Italic
4 = MS Sans Serif 8.25 Bold Italic 5 = Arial 8.25 Bold 6 = MS Sans Serif 18 Rold

MS Sans Serif 9.75 Bold

Minimum, maximum, and average values were computere for the metrics. Dialog boxes
with extreme values should be examined as candidates for redesign.

A second part of the dialog box summary table (shown below) displays information on
frequently used buttons: OK, Cancel, Help and Close. The columns enabled us to spot the
highly inconsistent sizes and relative placements of these buttons in this application.

Presence of OK and Cancel Buttons: If a dialog has OK or Cancel buttons, their
height and width in pixels are printed. The idea is that they should have the same sizes,

and designers can verify the presence of these fundamental controls.

OK and Cancel Button Relative Positions: For dialogs that have both OK and
Cancel buttons, this metric indicates their relative position. If the Cancel button is to the
right of the OK button, the offset in pixels is printed as x + offset, else if it is below the
OK button, it is printed as y + offset.

Help and Close Button Sizes: If a dialog has Help or Close buttons, their height and
width in pixels are printed. The size of the buttons should be consistent.

No. Dialog Box OK Cancel Relative Help Close
Name Button Button Position Button Button
(height,width) (height, width)
1 aboutedi.cft 25,89
2 actlog.cft 25,123
3 addexp.cft 25,97
4 addfamdf.cft 25,173 25,73 vy + 7 25,73
5 addr.cft 25,81 25,81 v+ 7 25,81
6 addrbk.cft 25,89
7 addsec.cft 25,73 25,73 v + 7 25,73
8 addseg.cft 25,73 25,73 v+ 7 25,73
9 addstand.cft 25,89
10 admpwd . cft 25,65 25,65 vy + 7 25,65
11 adrmsg.cft 25,57 25,57 v+ 7 25,57
12 adrmsg2.cft 25,57 25,57 v + 7 25,57
13 adrmsg3.cft 25,57 25,57 y + 7 25,57
14 advsched.cft 25,97
15 afile2.cft 25,65
16 alertl.cft 25,97
17 archive.cft 25,73 25,73 X + 23 25,73

2.2 Concordance

The idea of the string concordance output is to list all occurrences of words that appear in

labels, buttons, menus, user messages, etc. throughout the user interface canonical format
file. Designers can use the concordance to identify many aspects of appropriate word use
such as spelling, case consistency, passive/active voice, noun/verb choice, etc.

There is a short format and a long format of the string concordance. Both formats create a
file that is an ascii table with multiple columns. The first column of both formats lists
individual words one per line sorted in alphabetical order. Occurrences in different case are
preserved as unique occurrences of words, and are listed in the sorted list after one another
so that uses of different case is clearly pointed out. The normal sort order is a..zA..Z, but
this would separate occurrences of “find” from “Find” or “FIND” and so our program
sorted words by aAbB...zZ.

The short format lists the word and number of times the word appears. The long format
identifies the files in which the word appears (see below). The word “Message” appears
18 times in the files whose names follow it, “Message:” appears 2 times, and further down
the list the term “messages” (uncapitalized) appears once and “msgs” appears once. These
variant forms are spelling errors and may be acceptable, but they may be something that
should be reconsidered.

Message 18
addr .cft addr.cft dociduti.cft

docsearc.cft
docsort.cft
ffadd.cft
moreinfo.cft
profile.cft

docsearc.cft
docsort.cft
in.cft
moreinfo.cft
profile.cft

docsearc.cft
famdef.cft
moreinfo.cft
moreinfo.cft
profile.cft

Message:
profile.cft remfam.cft
MessagelIDs 1
dociduti.cft
Messages 4
archive.cft autofile.cft autofile.cft
profile.cft
messages 1
dbback.cft
msgs 1
dbback.cft

3. TESTING OUR METHODS

Our testing has included applying the metrics to a prototype application, reviewing the
results for concept validity, and gathering reactions from developers. The prototype with
140 highly varied dialog boxes was a GE Information Services’ Electronic Data
Interchange application. The user interface was written in Microsoft Visual Basic,
independently of our efforts to create metrics to evaluate the spatial, and textual aspects of
displays. The prototype simulated typical actions to show what the user would see. It
.served as the portion of the functional specification to which the final product was
designed. It also was used in an early usability test to confirm the design concepts.

A translator was written to convert Visual Basic .FRM files into the canonical format that
could then be inputted to the evaluation program. Screen shots were also taken of all the
dialog boxes in the prototype and printed out. Output from the metric evaluation program
was then scanned for patterns and anomalies that were compared to the screen printouts.
Several iterations of generating output, comparing to the screen printouts and reworking the
program took place until a stable and accurate set of metrics were produced. These metrics
were then shown to developers and quality assurance people at GE Information Services
for preliminary feedback.

We are in the process of repeating the testing with a GE Information Services’ commercial
product. This application (also written in Visual Basic) contains a larger and more complex
set of dialog boxes. The output of the metric evaluation program will then be given to a
number of developers and quality assurance specialists for feedback.

4. CONCLUSIONS AND FUTURE WORK

As the complexity of GUI's increase, developers are finding they need more help in the
analysis and testing of their designs. Quality assurance is also finding it increasingly
difficult to adequately test all aspects of current user interfaces. Initial feedback on the
metric evaluation program from these groups at GE Information Services indicate a definite
perceived value in such tools. And while the feedback was positive on the concept and
initial output, several issues and suggestions were raised. In its current format, the output
needs to be manually scanned for anomalies and patterns. There is a desire to have these
highlighted by the tool.

For developers:

- prescriptive directions on how to correct the interface problems. While in some cases, it
is obvious what to do such as when there are multiple capitalization strategies for the
“Cancel” button, or different fonts and button sizes are being used. Easier still would be a
message telling them to use x font with a particular capitalization as it is encountered. The
more difficult cases like widget density or gridedness is more of a mystery.

- a tool which is interactive that displays the problems as they are encountered. This may
be beyond current processing speeds of most PC’s, but intuitively it seems right to correct
the problem as they go rather than discovering it in a printout and then finding their way
back to the location in the application.

- a tool that is usable in all of their development environments, i.e. if they are using C++
or some of the new cross platform development tools, they want the same capability as we
showed them with Microsoft Visual Basic. This supports the canonical format approach
and implies a need to have a translator from whichever environment they are using.

For Quality Assurance people:

- a summative tool that checks across the entire application and reports back those areas
that have problems.

- an indicator of the severity of the problem. While any item uncovered as an issue is
probably worth trying to resolve, they are worried more about those items that have a large
user impact than those that do not.

- a check for consistency of wording and layout. To do it manually is becoming very
difficult. There are so many different things to look at that it is often a challenge just to
make sure they have seen every dialog box. They would also like the evaluation tool to
validate against the design specification.

There are many measures that were not attempted in this first effort. We needed to start
someplace and the metrics we chose represented a variety of things to look at so we could
test the concept. We know from this initial exploration that we are touching only the tip of
the iceberg which are the aspects of displays that could be evaluated automatically. Where
it is practically possible, assessment against industry standards should be undertaken. We
need to expand the number of metrics to get better measures on usage consistency and if
possible get at conformity to an organization’s “look and feel” for their products.

Perhaps the hardest part for future refinement of the evaluation tools is to provide the
“goodness” measures for the metric values. Its clearly what is needed for those not
schooled in human factors. In many cases it is acceptable if there is not a clear, research
supported recommendation. Educated judgments will suffice to provide the rules for
development and to gain the consistency across applications.

The next steps are underway to develop a tool that provides some of how the developers
would like to use the metrics thus far established. Below is a sample layout.

The tool will allow developers and quality assurance specialists to view on-line summative
metrics for multiple dialog boxes and metrics for individual dialog boxes all with anomaly
highlighting. They would receive feedback from whatever dialog box has focus by
pressing the “Analyze” button. Once the dialog box has been analyzed the reviewers could
walk through each set of discrepancies or review the scores for that dialog box.

Our first attempts led to lengthy outputs of uncertain merit, but as we refined our choices of
metrics the outputs became more provocative and productive. New ideas flowed more
easily and new metrics, output formats, and theories of automated evaluation emerged. We
are still at the beginning phases, but see that there is potential for these evaluation tools
since they are quick and simple to apply, and they reveal interesting properties of complex

designs.

‘ e ~ Window Analysis

Text Analysis

Misspellings Detected: 2
thiss
Insm

Spelling Variants Detected: 0

-1 Layout Analysis:

Margin Discrepancies: Left =5, Right =10
Top =10, Bottom =12

Wdiget Count:

ACKNOWLEDGEMENTS

We appreciate the support for this project from GE Information Services and the Maryland
Industrial Partnerships program. We are grateful for draft comments from Vic Basili,
Catherine Plaisant,and Anne Rose, and for programming assistance from Rohit Mahajan.

REFERENCES

Apple Computer, Inc. (1992), Macintosh Human Interface Guidelines, Addison-Wesley
Publishing Co., Reading, MA.

Bodart, F., Hennebert, A.-M., Leheureux, J.-M., and Vanderdonckt, J. (1994), “Towards
a dynamic strategy for computer-aided visual placement”’, In Catarci, T., Costabile, M.,
Levialdi, S., and Santucci, G. (Editors), Proc. Advanced Visual Interfaces Conference

‘94, ACM Press, New York, 78-87.

Brown, C. M. (1988), Human-Computer Interface Design Guidelines, Ablex Publishing
Co., Norwood, NIJ.

Byrne, M., Wood, S., Sukaviriya, P., Foley, J., and Kieras, D. (1994), “Automating
Interface Evaluation”, Proc. of CHI'94, ACM, New York, 232-237.

Chimera, R. and Shneiderman, B. (1993), “User interface consistency: An evaluation of
original and revised interfaces for a videodisk library”, In Sparks of Innovation in
Human-Computer Interaction (B. Shneiderman, editor), Ablex Publishers, Norwood, NJ,
259-271.

Feiner, S. (1988), “A grid-based approahc to automating display layout”, Proc. of
Graphics Interface ‘88, 192-197.

Galitz, W. O. (1989), Handbook of Screen Format Design: Third Edition, Q. E. D.
Information Sciences, Inc., P. O. Box 181, Wellesley, MA 02181.

Hix, D. and Hartson, H. R. (1993), Developing User Interfaces: Ensuring Usability
Through Product & Process, John Wiley & Sons, New York, NY.

IBM (1991), Systems Application Architecture: Common User Access, Advanced
Interface Design Reference, IBM Document SC34-4290-00, Cary, NC.

Kim, W. and Foley, J. (1993), “Providing high-level control and expert assistance in the
user interface presentation design”, Proc. of CHI’93, ACM, New York, 430-437.

Marcus, A. (1992), Graphic Design for Electronic Documents and User Interfaces, ACM
Press, New York, NY.

Sears, A. (1993), “Layout Appropriateness: A metric for evaluating user interface widget
layouts”, IEEE Transactions on Software Engineering 19, 7, 707-719.

Sears, A. (1994), “Using automated metrics to design and evaluate user interfaces”,
DePaul University Dept of Computer Science Technical Report #94-002, Chicago, IL.

Shneiderman, B. (1992), Designing the User Interface: Strategies for Effective Human-
Computer Interaction: Second Edition, Addison-Wesley Publ. Co., Reading, MA.

Streveler, D. and Wasserman, A. (1987), “Quantitative measures of the spatial properties
of screen designs”, Proc. of INTERACT ‘87, Elsevier Science, Amsterdam, 125-133.

Tullis, T. S. (1988a), “Screen design”, In Helander, M. (Editor), Handbook of Human-
Computer Interaction, Elsevier Science, Amsterdam, The Netherlands, 377-411.

Tullis, T. S. (1988b), “A system for evaluating screen formats: Research and application”,
In Hartson, H. Rex, and Hix, Hartson, Advances in Human-Computer Interaction:
Volume 2, Ablex Publishing Corp., Norwood, NJ, 214-286.

Vanderdonckt, J. and Gillo, X. (1994), “Visual techniques for traditional and multimedia
layouts”, In Catarci, T., Costabile, M., Levialdi, S., and Santucci, G. (Editors), Proc.
Advanced Visual Interfaces Conference ‘94, ACM Press, New York, 95-104.

