
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: CHROMATIN CONTROL OF 

PAPILLOMAVIRUS INFECTION   
  
 Samuel Porter, Doctor of Philosophy, 2020 
  
Dissertation directed by: Dr. Alison McBride, DNA Tumor Virus 

Section, Laboratory of Viral Diseases, National 
Institute of Allergy and Infectious Diseases, 
National Institutes of Health 

 
 
The genomes of papillomaviruses are packaged into chromatin throughout the entire 

viral lifecycle. A peculiar feature of papillomaviruses genome organization is that the 

viral DNA is associated with host histones even inside the virion particle. However, 

little is known about the nature of the epigenome within papillomavirions, or its 

biological impact on early infection. Here, we use three approaches to study the 

epigenome of papillomavirions. Papillomaviruses can be assembled in packaging 

cells by expression of the capsid proteins in the presence of the viral genome. We 

have optimized and manipulated this process to generate viruses with replicated and 

genetically modified virion DNA and have used these “quasivirions” to evaluate early 

infection of primary human keratinocytes. We have also profiled the histone 

modifications on chromatin extracted from native virions isolated from human and 

bovine warts. We find that, compared to host cells, the viral chromatin is enriched in 

histone modifications associated with transcriptionally active chromatin (including 



  

histone acetylation), and depleted in those associated with transcriptional repression. 

To examine the biological role of histone acetylation in the early virus lifecycle, we 

produced HPV quasivirions with highly acetylated chromatin by assembling the 

virions in cells treated with histone deacetylase inhibitors. We show that acetylation 

of viral chromatin results in a reduction of early viral transcription in primary 

keratinocytes indicating that the histone modifications on virion chromatin do 

influence the early stages of infection. Collectively, these studies demonstrate that 

histone modifications on virion chromatin are important for the HPV infectious cycle.  
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Chapter 1: Introduction 

 

Papillomaviruses 

Classification 

Papillomaviruses are an ancient group of viruses that have evolved alongside 

their host for at least 300-600 million years [1]. Before Homo sapiens emerged as a 

distinct species, they were likely already infected with papillomaviruses. All 

papillomaviruses belong to the family Papillomaviridae that is further subdivided into 

Firstpapillomavirinae and Secondpapillomavirinae. While the latter only has one 

genus, Firstpapillomavirinae can be further organized into genera; generally viruses 

with 60% or greater similarity of the nucleotide sequence of the L1 gene are 

considered part of the same genus [2]. Five of these genera contain papillomaviruses 

that infect humans (Alpha-, Beta-, Gamma-, Mu-, and Nupapillomavirus) and are 

known as HPVs. Bovine papillomavirus, used as a model for much of the 

foundational work in the field, belongs to the Deltapapillomavirus genus. 

Papillomaviruses that share between 71-89% L1 sequence identity are further 

grouped together into species. Viruses are further separated into types that share 90% 

or more identity in the L1 gene [3, 4]. 

In the HPV field, a virus is designated as an official reference type once the 

complete sequence has been submitted to, and validated by, the HPV Reference 

Center in Sweden.  To date, there are 225 officially recognized HPV types, although 
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there are many more non-reference types catalogued by the Papillomavirus Episteme 

database [5, 6]. 

Medical Relevance and Public Health Impact 

Infection by HPV is a significant public health burden in the United States and 

around the world. It is the most common sexually transmitted infection in the United 

States, with approximately 14,000,000 new infections each year [7]. Most infections 

are asymptomatic or cause relatively minor diseases such as genital warts (Table 1.1), 

and 90% of these infections are cleared within two years [8-10]. However, persistent 

infections with high-risk HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 

66) are associated with the development of several different types of cancer [11]. 

HPV is the etiological agent of nearly all incidences of cervical cancer. For women, 

cervical cancer is the second deadliest cancer worldwide; each year 240,000 succumb 

to the disease. This morbidity is of particular concern in the developing world, where 

about 80% of new cases occur. 

In recent years a rapidly growing body of evidence implicates HPV infections 

in a number of other cancers. In 2015, HPV was shown to be associated with 91.1% 

of anal, 75.0% of vaginal, 70.1% of oropharyngeal, 68.8% of vulvar, 63.3% of penile, 

32.0% of oral cavity, and 20.9% of laryngeal cancers [12]. In particular, the rise of 

head and neck cancers in men has reached near epidemic proportions in the last two 

decades [13]. 
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Table 1.1. Diseases Associated with HPV Infection. [10, 14] 

Disease Commonly Associated HPV Types 
Common warts 2, 4, 7 
Plantar wart 1, 2, 4 
Oral warts 2, 4 
Anogenital warts 6, 11, 42, 43, 44, 45, 51, 52, 54, 61, 72, 81, 89 
Nonmelanoma skin cancer 8, 15, 20, 23, 36, 38  
Oropharyngeal cancer 16, 18 
Oral cancer 2, 6, 7, 11, 16, 18, 32, 57 

Intraepithelial neoplasias 16, 18, 31, 33, 35, 39, 42, 44, 45, 51, 52, 53, 56, 58, 
59 

The greatest success in reducing the public health impact of HPV infection 

has been prophylactic vaccination. In 2006, the first vaccine against HPV infection 

(marketed as Gardasil) was approved by the FDA, and protected against HPV types 6, 

11, 16, and 18. The vaccine is comprised of virus-like-particles (VLPs) consisting of 

the L1 protein for each of the four HPV types [15]. Since then, two more vaccines 

have been approved. Cervarix, that provides protection against HPV 16 and 18, was 

approved in 2009. Gardasil 9, the vaccine currently in use in the United States, was 

approved in 2014 and protects against five additional HPV types (31, 33, 45, 52, and 

58). Overall, HPV vaccines are incredibly safe and effective, with efficacies well over 

90% for both males and females [16-18]. Vaccinees are effectively protected against 

cervical cancer, and in countries where vaccine uptake is high, a drastic reduction in 

rates of cervical precancer has been reported [19]. 

Unfortunately, the situation in the United States is not as positive. As of 2018, 

only half of American adolescents were up to date on their HPV vaccinations [20]. 
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The main factors influencing the low vaccination rate have been reported to be 

financial burden and negative perceptions of the vaccines by parents of patients [21]. 

Without a substantial increase in vaccine uptake, HPV infection and its associated 

diseases will remain a major public health burden in the United States for the 

foreseeable future. In the developing world, the high cost of the vaccine prevents a 

global approach to the reduction of new HPV infections [22]. 

Papillomavirus Biology 

Virions 

Papillomavirus particles are non-enveloped, icosahedral capsids with T=7d 

symmetry (Figure 1.1) [23]. Virions are comprised of the two structural proteins 

encoded in the late region of the genome: the L1 (major) and L2 (minor) capsid 

proteins. Each capsid consists of 360 individual L1 molecules arranged into 72 

pentamers (also known as capsomers). Although not strictly required for assembly, 

virions have an undefined number of L2 molecules (generally believed to be between 

12 and 72 per particle) [24, 25]. The virions are approximately 55 nm in diameter 

[23]. The capsids are stabilized by intracapsomeric disulfide bonds, which make them 

resistant to chemical and enzymatic degradation  [26-28]. 

The capsid contains a covalently closed circular DNA genome that is 

organized into nucleosomes comprised of host cellular histones H2A, H2B, H3, and 

H4 [29]. This feature is relatively novel amongst DNA viruses that infect humans as 

Polyomaviridae are the only other family of DNA viruses in this category known to 

package their genome with host histones [30].  
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Figure 1.1. Structure of the HPV16 L1 capsid. Cryo-electron microscopy was used to determine the 
structure of an HPV16 capsid, created from the PDB structure 3J6R [31]. The HPV virion is comprised 
of 360 molecules of the major structural protein L1 arranged into 72 pentamers known as capsomers. 
Full virions also contain an undetermined number of molecules of L2, the minor capsid protein (not 
shown). Adapted from [32]. 

 

Genome 

Papillomaviridae have small, circular, double stranded DNA genomes 

(approximately 8 kb in length) that are generally highly conserved across genera 

(Figure 1.2). The viral genome is organized into three main parts. The early region 

encodes proteins expressed in early and maintenance phases of the lifecycle. The late 
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region encodes the proteins expressed during the late lifecycle. The E4 protein, 

despite being encoded in the early region, is also expressed during the late lifecycle. 

The upstream regulatory region (URR) (sometimes known as the long control region 

or LCR) contains regulatory elements that modulate viral transcription, replication, 

and genome partitioning. 
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Figure 1.2. HPV18 Genome. Alpha-HPVs have circular, double stranded DNA genomes of 
approximately 8,000 base pairs. The upstream regulatory region (URR) is shown in yellow, with the 
origin of replication as a thin black bar. The early (PE) and late (PL) promoters are indicated by arrows 
at right angles. The early (AE) and late (AL) polyadenylation sites are indicated by straight black 
arrows. The early viral replication protein ORFs are colored in green and the late structural proteins in 
blue. The E4, E5, E6, and E7 genes are shown in red. Adapted from [33]. 
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All papillomavirus genomes have four conserved open reading frames 

(ORFs), encoding two replication proteins (the replicative helicase E1 and the 

helicase loader/master regulator E2) and two structural proteins (L1 and L2). HPV 

genomes also encode two spliced transcripts, for the viral repressor E8^E2 and the 

intermediate protein E1^E4. Most HPV types also express additional early proteins 

E6 and E7, which have oncogenic properties in the high-risk HPV types (Reviewed in 

[34]). 

All viral mRNAs are transcribed from the same strand of DNA. Early 

transcripts are transcribed from the early promoter located in the URR and terminate 

at the early polyadenylation site. Late viral genes are expressed from the late 

promoter (located inside the E7 ORF) and terminate at the late polyadenylation site. 

There is an additional class of transcripts known as intermediate transcripts where 

transcription initiates from the late promoter and terminates at the early 

polyadenylation site [35, 36]. Other promoters in the early region have also been 

reported [37]. Papillomaviruses use these genomic elements to synthesize a diverse 

range of polycistronic transcripts and can generate additional coding diversity from 

alternative splicing. 

Host and Tissue Tropism 

All papillomaviruses are extremely trophic for their host species and the 

tissues that they infect. HPVs specifically infect human mucosal and cutaneous 

keratinocytes. Their trophic nature is possibly due to a keratinocyte-specific 

transcriptional enhancer in the URR [38, 39]. Furthermore, different HPV types 

replicate in specific regions of the host epithelium. 
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Lifecycle 

The lifecycle of HPV is intricately entwined with the host keratinocyte 

differentiation program. The epithelium is the largest organ in the body and is 

continuously self-renewing. A single layer of dividing basal keratinocytes renew the 

epithelium by replicating by asymmetrical mitosis. After division, one cell remains a 

basal cell, while the other daughter becomes suprabasal and begins to differentiate, 

stopping cell cycle progression [40, 41]. As the cell progresses upward through the 

epithelium, it undergoes drastic global changes to its physiology. Consequently, the 

HPV lifecycle is divided into multiple stages (Figure 1.3) that are temporally and 

spatially regulated by the differentiation status of the infected keratinocyte (Figure 

1.4). 
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Figure 1.3. Three phases of HPV genome replication. After HPV enters the nucleus, it amplifies its 
genome to a low copy number and establishes a persistent infection where the genome is maintained as 
an extrachromosomal element that is faithfully passed to daughter cells in each division. As the 
infected cell begins to differentiate, the viral genome is replicated to a high level in preparation for the 
production of progeny virions. Adapted from [42]. 
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Figure 1.4. Differentiation dependent lifecycle of HPV. Virions gain access to basal keratinocytes 
through microabrasions in the host epithelium. After entry, the virus partially uncoats and is trafficked 
to the nucleus in an endosome. The vesicle gains access to the nucleus after breakdown of the nuclear 
envelope during mitosis. Once the cell cycle is complete, the virus escapes the vesicle and begins 
transcribing its early genes. The viral genome is replicated to a low copy number and establishes a 
persistent infection. As the infected cell divides, the viral genome is passed on to the daughter cells by 
tethering to the host chromatin. Once the keratinocyte begins to differentiate, the viral genome is 
replicated to high copy number and the viral late, structural genes are transcribed and progeny virions 
are assembled. Adapted from [43]. 
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Attachment and Entry 

The HPV infectious cycle begins when a virion infects a basal keratinocyte 

through microabrasions in the host epithelium. Virions can come into contact with 

keratinocytes in the upper layer of the skin, but cannot initiate a productive infection 

in these cells, as only basal keratinocytes divide in a stratified epithelium. Only 

dividing cells undergo mitosis, during which nuclear envelope breakdown occurs, a 

process that is essential for nuclear entry and initiation of the early infectious cycle 

[44]. 

The virion first interacts with the extracellular matrix through L1-mediated 

contact with heparin sulfate proteoglycans (HSPGs) expressed on the basement 

membrane. Primarily, HPVs use syndecan-1 as the attachment point; its expression is 

highest in keratinocytes compared to other cells, and it is upregulated as the 

epithelium recovers from wounds such as microabrasions [45]. HPVs have also been 

shown to bind to laminin-332 as a transient binding receptor [46]. After attachment to 

the HSPGs, the virion undergoes a conformational change that exposes L1 to 

cleavage by the serine protease Kalilkrein-8 (KLK8) [47]. After L1 cleavage, 

cyclophilin B exposes an epitope of L2 known as RG-1 (consisting of residues 17-36) 

to cleavage by furin [48-51]. Furin cleavage of L2 facilitates the transfer of the virion 

from the HSPG molecule to a still-unknown secondary receptor [52, 53]. Various 

studies have identified several possibilities for this receptor including CD63. While 

the literature remains inconclusive on the exact identity of the receptor that triggers 

endocytosis, there is consensus that the signaling cascade involves EGFR signaling 

[54]. Recent evidence has identified the Src-related kinase Abl2 as a crucial 
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downstream component and that viruses enter the cell in an asynchronous manner 

through actin-dependent, clathrin and lipid-interdependent endocytosis [55, 56].  

In the endosome, a combination of low pH and cyclophilin B removes L1 

capsomeres from the L2-DNA viral subparticle [51]. Here, γ-secretase cleaves and 

promotes the insertion of L2 into the membrane [57]. Transmembrane L2 recruits and 

binds to the retromer, a cytoplasmic endosomal coat complex normally involved in 

exporting cellular transmembrane proteins from the endosome to the trans-Golgi 

network (TGN) or plasma membrane. L2-retromer association redirects the virus-

containing endosome to the TGN [58-60]. Transmembranous L2 in the late endosome 

also binds to the cellular proteins SNX17 and SNX27 to direct vesicle trafficking 

through the cytoplasm [61, 62]. The virus remains in the lumen of the ER during 

interphase [63]. After transiting through the TGN, the DNA-L2 complex enters the 

nucleus only after nuclear membrane breakdown during mitosis and remains encased 

in a membrane vesicle until the nuclear envelope reforms at the next stage of the cell 

cycle [44, 64-66]. 

Early Nuclear Activities 

Once the nuclear membrane reforms, the L2-viral genome complex escapes 

the membrane vesicles and colocalizes with nuclear elements called nuclear domain 

10 (ND10) bodies [67]. L2 rearranges the components of the ND10 bodies, including 

displacing the restriction factor Sp100 [68-70]. At this point, the early viral promoter 

drives transcription of the early viral genes using the host transcriptional machinery. 

Among these genes are the viral replication proteins E1 and E2. E1 is the major 

replication protein and functions as a replicative helicase [71]. E2, a multifunctional 
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protein, functions in replication as the helicase loader [72]. E1 and E2 cooperatively 

bind their respective binding sites on the viral genome at the origin of replication. 

Binding induces a conformational shift that displaces E2, and recruits additional E1 

molecules to form a functional double hexamer helicase to unwind the viral DNA 

bidirectionally [73-76]. E1 then recruits cellular DNA replication machinery to bind 

and process the template during S-phase [77-79]. The HPV genome is replicated to a 

low copy number per cell [80].  

Maintenance Replication 

As the infected basal cell divides, the HPV genome is replicated along with 

the cellular genome. The virus must ensure its genome is partitioned into each 

daughter cell to maintain a persistent infection [81]. To accomplish this, the E2 

protein binds to E2 binding sites on the viral genome and, through protein-protein 

interactions (using a cellular protein, such as Bromodomain containing protein 4 

(Brd4)), tethers the viral genome to host mitotic chromosomes [82-84]. The specific 

region of the chromosome to which the E2-genome complex binds varies and is 

dependent on the HPV type [85]. This binding ensures the virus is partitioned to, and 

maintained in, approximately equal numbers in daughter cells, perpetuating persistent 

infection. 

Vegetative Viral Genome Amplification 

When infected basal cells detach from the basement membrane, they begin to 

undergo differentiation. HPV E6 and E7 protein activities dysregulate the normal 

differentiation program and block the exit from the cell cycle. These cells progress 
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through S phase and into a G2-like phase that contains cellular factors conducive for 

vegetative viral DNA replication [86, 87]. In these upper layers of the epithelium, the 

virus switches from its maintenance replication program to a productive viral genome 

amplification phase and the viral late promoter is activated, triggering the expression 

of the late genes L1 and L2 [88-90]. This replication occurs in distinct nuclear foci 

containing the viral E1 and E2 replication proteins, high levels of HPV DNA, and 

several other cellular factors [91, 92]. The process activates the cellular DNA damage 

response (DDR), whose components are hijacked by the virus to faithfully replicate 

its DNA outside of the S-phase in a recombination dependent manner [93-95]. 

Virion Assembly and Viral Shedding 

Progeny virions are assembled in the highly differentiated cells [72, 96, 97].. 

L1 and L2 contain nuclear localization sequences and are translocated to the nucleus 

after synthesis [98, 99]. The minor capsid protein L2, through an interaction with E2, 

recruits L1 to promonocytic leukemia protein (PML) bodies (also known as nuclear 

domain 10 or ND10 bodies) through a direct protein-protein interaction [100, 101], 

though it is not clear whether this interaction is important at early or late stages of 

infection Then, L1 and L2 assemble around viral DNA to form infectious particles 

[100]. VLPs can be assembled from L1 alone (Figure 1.1), but L2 enhances the 

affinity for viral DNA [102, 103]. The incorporation of the viral genome into the 

capsid is not well understood, but it is thought that packaging is not sequence 

specific, as no packaging signals have been found in the viral genome [104-106]. 

HPV may instead use a size discrimination system to selectively incorporate its own 

genome over other double stranded DNAs present in the nucleus [104]. 
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After assembly, the redox gradient present in the cornified layers of 

epithelium promotes intermolecular disulfide bonds between L1 molecules, allowing 

the capsid to fully mature [107]. As the infected cells rise to the cornified layer of the 

epithelium, they begin to die. Through a complex process mediated in part by release 

of a cascade of proteases, the corneocytes are shed into the environment in a process 

known as desquamation [108]. It is here that the nascently formed infectious virions 

are released and can encounter a new host to infect and begin the infectious cycle 

again. 

Functions of Viral Proteins 

In addition to initiating HPV replication, E1 activates the host cellular DDR 

pathways [109]. E1 works with E2 to recruit the DNA repair machinery to sites of 

viral replication [110]. In differentiated cells, viral hijacking of the ATM and ATR 

DDR pathways is required for vegetative amplification of the genome [111]. High 

concentrations of nuclear E1 are toxic to cells. To mediate this toxicity, E1 is 

transported out the nucleus when it is not needed for active genomic replication [112]. 

The E2 protein contributes to nearly all aspects of the viral lifecycle; it is involved in 

replication, transcription, and tethering of the viral genome. In viral genome 

replication, it functions to assist in the loading of the E1 helicase onto its sequence-

specific binding site through complex formation, as the binding affinity of E1 alone to 

its target sequence is significantly weaker [74, 113-115]. Additionally, E2 displaces 

nucleosomes from the viral genome and recruits the cellular DNA replication 

machinery to HPV DNA [116].  
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E2 is also known as the master transcriptional regulator of papillomaviruses; it 

binds to locations on the viral DNA known as E2 binding sites (E2BSs) and has been 

shown to recruit both active and repressive cellular transcriptional factors to the viral 

genome [117-122]. E2 can also repress transcription by interfering with the binding 

of cellular transcription factors to the viral genome [123]. Many factors govern 

whether E2 regulation of transcription is activating or repressive. E2 expression levels 

in the cell can govern whether E2 activates or represses transcription; E2 is initially 

activating at low concentrations, but becomes repressive once additional E2 proteins 

are synthesized [124]. Lastly, E2 is known to recruit cellular machinery to manipulate 

the viral chromatin, providing another way to regulate viral transcription [125]. 

Papillomaviruses express the E4 gene as a spliced transcript, that encodes the 

first few codons from E1 joined to the E4 ORF to form a protein known as E1^E4 

[126]. E1^E4 is a small protein mostly found in the cytoplasm. It is expressed during 

the intermediate or late phases of the viral life cycle, correlating with the start of 

productive viral DNA replication, although its exact role in viral genome replication 

is still not fully understood [127]. In infected cells, E1^E4 is the most abundant 

protein in the cell during the late lifecycle of HPV [128]. E1^E4 interacts with a 

range of cellular proteins, including sequestering cyclin and cyclin dependent kinases 

to induce G2/M cell cycle arrest [129, 130]. Additionally, E1^E4 aids in the release of 

progeny virions by binding to and destabilizing cornified cell envelopes and keratin 

filaments [131]. 

Alpha-HPVs encode E5, a small, hydrophobic membrane protein with 

oncogenic properties. Their major function is to increase the proliferation of infected 
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cells by intensifying the signal capacity of the epidermal growth factor receptor 

(EGFR) pathway [132, 133]. E5 also impedes host cell immune signaling in a 

multitude of ways. E5 binds to and blocks HLA-I from trafficking to the cell surface 

for antigen presentation and inhibits the maturation of MHC class II [134-136]. E5 

also interacts with the 16K subunit of the V-ATPase, impairing cell to cell 

communication [137, 138]. An additional role for E5 is to aid in the egress of progeny 

virions by inducing koilocytic vacuoles in the nucleus of infected cells [139]. 

The E6 oncoprotein is comprised of two zinc finger domains that bind to a 

multitude of cellular proteins which have helical, acidic LxxLL motifs [140]. Most 

notably, E6 interaction with cellular E6 attachment protein (E6AP) induces the 

degradation of the cell cycle regulatory protein p53 [141, 142]. This degradation is 

required for long term maintenance of the viral genome [143]. E6 also blocks 

infected, proliferating cells from senescence by telomere shortening by inducing 

telomerase expression [144]. The E6 proteins from beta and mu papillomaviruses 

bind LxxLL motifs on the mastermind-like protein (MAML), inhibiting Notch 

signaling and suppressing squamous epithelial differentiation [145]. E6 has also been 

shown to down regulate the expression of interferon responsive genes [146, 147]. 

The E7 protein is encoded by nearly all HPVs and is considered to be 

oncogenic in high-risk types. E7 binds dozens of cellular targets, with the main 

function being to maintain  infected cells that have begun to differentiate in a DNA 

synthesis competent state [148]. E7 accomplishes this in part by binding to and 

inducing the degradation of the tumor suppressor retinoblastoma protein (pRb), 

eliminating its ability to inhibit the cell from progressing from G1 into S phase. [149, 
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150]. E7 also induces global epigenetic changes in the host cell by upregulating the 

lysine-specific demethylase 6A (KDM6A) [151]. 

The E8^E2 protein is expressed from a spliced transcript that is encoded by 

the E8 ORF (overlaps the E1 ORF) fused to the 3’ end of the E2 gene. E8^E2 

competitively binds to E2BSs and recruits cellular repressive NCoR/SMRT 

complexes to restrict viral transcription and replication, and is the major reason HPV 

replicates to only a low copy number in undifferentiated cells [152]. Additionally, 

E8^E2 interacts with HDAC3 and this mediates its repressive activity [153]. E8^E2  

is also required for long-term extrachromosomal maintenance of the viral genome in 

some HPV types, but not in others [154, 155]. 

Biology of Histone Modifications 

In eukaryotic cells, the genome exists as chromatin, a complex of protein and 

DNA. Chromatin plays an enormous role in the regulation of replication and repair of 

DNA as well as transcription. On the most basic level, chromatin exists in two 

different physical states with divergent implications for transcription. 

Heterochromatin tightly compacts DNA, leaving it inaccessible to transcriptional 

machinery, and is thus generally considered transcriptionally repressed. Euchromatin 

is less condensed, and therefore more accessible, and generally provides a viable 

template for transcription. Switching between these two chromatin states is governed 

by epigenetic modulations. These can take the form of modifications to the chemical 

structure of the DNA itself (such as DNA methylation) or posttranslational 

modifications (PTMs) of the histones or other proteins bound by DNA (reviewed in 

[156]).  
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The fundamental unit of chromatin is the nucleosome, where 147 base pairs of 

DNA are wrapped around histone octamers comprised of two molecules of each core 

histone, H2A, H2B, H3, and H4 [157]. The α-helical C-terminal domain of the core 

histones engages in histone-histone interactions to form the basis of the nucleosome 

structure [158]. The N-terminal “tails” of histones are relatively unstructured [159]. 

Nucleosome occupancy (the fraction of a population of cells in which a certain region 

of DNA is bound by a nucleosome octamer) and positioning (where individual 

nucleosomes are located on the genome) are one of the primary features by which 

cells can tightly regulate gene expression [160, 161]. Nucleosomes can impede 

transcription by physically blocking access to DNA and hindering transcription factor 

binding by bending the DNA [158, 162]. A further level of regulation is achieved by 

histone PTMs. A notable feature of histone proteins is the large number and diversity 

of modifications, especially on the N-terminus tails. To date, there have been nine 

main types of histone PTMs discovered, (outlined in Table 1.2) [163, 164]. 

 

 

 

 

 

 

 

Table 1.2. Common histone modifications. 

Residue Modification Function(s) 
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Lysine 

Acetylation Transcription, replication, DNA 
repair, chromatin condensation 

Methylation (mono, di, and 
tri) Transcription, DNA repair 

Ubiquitylation Transcription, DNA repair 
SUMOylation Transcription 

Arginine Methylation (mono and di) Transcription Deimination 
Glutamic Acid ADP ribosylation Transcription 
Serine 

Phosphorylation Transcription, DNA repair, 
chromatin condensation Tyrosine 

Threonine 
Proline Isomerization Transcription 

Chromatin Regulation of Transcription 

Acetylation of histone lysine residues (particularly H3 and H4) neutralizes 

their positive charge and reduces chromatin compaction by weakening histone-DNA 

interactions and disrupting interactions between nucleosomes [163]. This results in 

the unfolding or relaxing of chromatin and is often correlated with increased 

transcription from the genomic region [165, 166]. Acetylated lysines can also serve as 

binding sites for various transcription factors and a variety of epigenetic modulators 

(writers, readers, and erasers) that impact histone PTMs and nucleosome occupancy 

[167]. Acetylation of histones is regulated by two main classes of enzymes. Histone 

acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-CoA to 

the amino group of the side chain of a lysine (generally on the N-terminus of a 

histone protein). Histone deacetylases (HDACs) perform the opposite reaction and 

remove the acetyl group. Generally, histone acetylation occurs at multiple lysine 

residues at once and is typically associated with regions of active transcription [168]. 

Like acetylation, methylation of histone lysine residues regulates transcription 

but there are significant differences in the biochemical properties and biological 
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implications of histone methylation. Methylation does not alter the charge of the 

histone protein and there is added complexity in that there are three levels of 

methylation: each lysine can be mono-, di-, or trimethylated [156]. Histone 

methylation is catalyzed by histone specific histone methyltransferases (HMTs), that 

have far more specificity than HATs or HDACs, which normally transfer a methyl 

group to a specific residue [169]. Methylation of histones can stimulate or repress 

transcription depending on which residue is methylated and to what degree. Actively 

transcribing regions of chromatin are enriched in H3K4me3 and H3K36me3 while 

transcriptionally inactive regions are marked by high levels of H3K9me3 and 

H3K27me3 [168]. 

Chromatin and Viral Infection 

Given the intricate and essential nature of histone modifications to the life of 

the eukaryotic cell, it should come as no surprise that the viruses which infect 

these host cells manipulate these pathways to their own advantage. In recent 

years, there have been major advances in the field of examining the interplay 

of chromatin and regulation of viral infection. The genome of most viruses 

that spend a part of their infectious cycle in the nucleus is packaged into 

chromatin or a chromatin-like structure at some point in their life cycle 

(reviewed in [170]). As histone PTMs have numerous, multifaceted biological 

functions, both viruses and cellular hosts utilize them to their respective 

advantage during viral infections (Reviewed in [171]). 
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Chromatin Regulation of HPV Infection  

As the HPV genome exists in various chromatin states throughout its entire 

lifecycle, there has long been interest in epigenetic regulation of HPV infection. A 

substantial body of work has been done to investigate the role of epigenetics in HPV 

transformation of cells and HPV associated cancers (reviewed in [172]). In recent 

years several notable studies have shown that the HPV infectious cycle is subject to 

extensive and intricate epigenetic regulation, particularly the PTMs of histones on the 

viral genome [171]. 

As HPV progresses through the different phases of its differentiation-

dependent lifecycle, the structure of the viral chromatin is regulated to control viral 

gene expression at appropriate timepoints. Studies have shown that, upon 

differentiation, the viral chromatin is significantly remodeled. In undifferentiated 

cells a region corresponding to the E6 ORF is mostly free of nucleosomes, but after 

differentiation this DNase I hypersensitive region shifts to the E7 ORF, corresponding 

to the initiation of late transcripts [173]. Follow up studies have revealed that histones 

with active modifications are greatly enriched at both early and late promoter regions 

upon differentiation [174]. 

Histone Acetylation 

Viral protein regulation of histone acetylation on both the viral and cellular 

genome is critical for creating a cellular environment conducive for HPV replication 

[175]. Throughout the lifecycle, both the early and late viral promoters are enriched 

in acetylated H3 and H4, but this increases significantly after differentiation [174]. 

HPV regulates gene expression by mediating the activity of several different cellular 
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HATs. Both E6 and E7 interact with and modulate the activity of the HAT 

p300/CREB Binding Protein (CBP), which acetylates all four of the canonical 

nucleosome histones [176, 177]. After binding, p300/CBP recruit cellular 

transcriptional machinery through both its HAT activity and direct protein-protein 

interactions  [178-180]. E2 requires p300 to activate the early promoter [181]. CBP, 

modulated by the viral proteins, upregulates transcriptional activation from the URR 

in HPV18 by acetylating K14 on the H3 bound to that region [182, 183]. 

The HAT Tip60 is involved in multiple viral functions. Tip60 interaction with 

E2 assists in the repression of E6 and E7 transcription by acetylating regulatory 

regions of the URR, causing increased Brd4 binding [184, 185]. E6 destabilizes 

Tip60 when expressed alone [186]. In cells stably infected with HPV, Tip60 

expression and activity is upregulated through the action of the innate immune 

regulator STAT-5, and helps to activate the DDR, aiding in productive HPV genome 

amplification [187]. 

HPVs also hijack the activity of HDACs for their own advantage. E7-directed 

manipulation of HDACs induces the global upregulation of H3 acetylation in infected 

cells [188]. The viral repressor E8^E2 interacts with HDACs 1, 2, and 3 to assist with 

its repression of transcription from the viral early promoter [189]. E7, in complex 

with all three type I HDACs, activates cellular E2F2-mediated transcription to 

promote S-phase entry in differentiated keratinocytes [190]. E7-HDAC interaction is 

required for both stable maintenance and productive replication of the viral genome 

[191]. While the exact mechanism by which E7’s HDAC binding affects viral 

replication is not yet understood, E7 is thought to sequester HDACs away from the 



 

 

25 
 

viral genome and the resultant increase in acetylation of the viral histones promotes 

the recruitment of factors that promote homologous recombination (HR) to viral 

replication foci [192, 193]. 

Histone Methylation 

Histone methylation of both the viral and cellular chromatin also plays an 

important role in the viral lifecycle. During differentiation, the late promoter is 

enriched in the transcriptionally active modification H3K4me2 [174]. In 

undifferentiated cells, the viral chromatin is generally in a transcriptionally repressed 

state, in part due to the deposition of H3K27me3 by the polycomb repressor complex 

(PRC1/2) [194]. The expression of high risk E6 and E7 upregulates the 

methyltransferase component of PRC2 known as Enhancer of Zeste homologue 2 

(EZH2), although in an enzymatically inactive form [195, 196]. Interestingly, E7 

protein also induces expression of the demethylases KDM6A and KDM6B to 

globally reduce H3K27me3 levels, but how this impacts the epigenetic status of the 

viral genome is not well understood [197]. E7 upregulates the HMT SETD2, which 

catalyzes the deposition of transcriptionally active H3K36me3 on the viral chromatin, 

both of which are essential for viral replication [198]. H3K6me3 deposition is 

enriched at splice sites, suggesting that this modification is essential for proper 

splicing of viral transcripts [198]. Lastly, E6 also plays a role in histone methylation 

by interacting with and down regulating the activities of the HMTs CARM1, PRMT1, 

and SET7 to suppress the transcription of genes downstream of p53 [199]. 
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Summary 

In this body of work, we seek to further understand the role of histone 

modifications in the early HPV lifecycle. In particular, we are interested in the 

contents of the virion-packaged viral epigenome and its effects on viral transcription 

and replication immediately after delivery to the host nucleus. In the following 

chapters we will describe our work in: 1) improving assembly and delivery of 

recombinant HPV quasivirus particles; 2) profiling virion packaged histone PTMs in 

quasivirus and native papillomavirus particles, and 3) determining the effects of 

histone acetylation on the early HPV lifecycle. 
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Chapter 2: Materials and Methods 

 

Plasmids 

Table 2.1. List of plasmids used in this work. 

ID# Name Use Reference 
4024 pMC.BESPX-HPV18 Minicircle genome; 

HPV18 qPCR standard 
[200] 

4390 pUC18-HPV18 HPV18 viral genome  [201] 
4244 pBR322-HPV18  HPV18 viral genome [202] 
4245 pUC18-HPV18E1mut HPV18 viral genome with 

E1 mutation 
[70] 

4220 pUC18-HPV18E2I77A HPV18 viral genome with 
E2 mutation  

[203] 

4117 pBR322-HPV18Neo HPV18 viral genome with 
drug selectable marker 

[204] 

4116 pBR322-HPV18NeoE1mut HPV18 viral genome with 
drug selectable marker and 
E1 mutation 

[204] 

4280 pBR322 HPV18NeoSV40 HPV18 viral genome with 
drug selectable marker 

 

4391 pShell16 Expression vector for 
HPV16 L1/L2 

[205] 

4163 pMEP4 Empty vector [110] 
4165 pMEP9 Empty vector [110] 
4162 pMEP4/HPV18 FLAG E2 

recoded 
HPV18 E2 expression 
vector 

[203] 

4164 pMEP9-EE HPV18 E1, 
recoded  

HPV18 E1 expression 
vector  

[203] 

4097 pMA-RPPH1 RNase P  qPCR standard   
4227 pUC57-HPV18E6*I HPV18 E6*I RT-qPCR 

standard  
[70] 

4226 pUC57-HPV18E1^E4 HPV18 E1^E4 RT-qPCR 
standard  

[70] 

4228 pCMVsport6-TBP TBP qPCR standard  [70] 
0699 pMl2d-BPV1 BPV1 DNA qPCR 

standard  
[206] 
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Production of HPV Minicircle Genomes 

50 µl of electrocompetent E. coli ZYCY10P3S2T (Systems Biosciences # 

MN900A-1) were electroporated with pMC.BESPX-HPV18 [200] and allowed to 

recover in 950 µl SOC medium (Thermo Fisher #15544034) by incubating at 37°C 

for one hour shaking at 225 rpm. 20 μl culture was spread on an LB plate containing 

50 μg/ml kanamycin (KD Medical #BPL-2650) and incubated overnight at 37°C. A 

single, isolated colony was picked and used to inoculate a 14 ml round bottom test 

tube containing 5 ml LB (Thermo Fisher #10855021) supplemented with 50 μg/ml 

kanamycin (Sigma #10106801001). The culture was grown at 37°C for 6 hours 

shaking at 225 rpm. 50 μl of starter culture was used to inoculate 200 ml Terrific 

broth (Thermo Fisher #A1374301) in a 2 L beveled flask and grown overnight at 

37°C and shaking at 225 rpm. The OD600 of the culture was measured with a 

Biophotometer (Eppendorf #6133000010). When the culture reached an OD600 of 

between 6-8, 200 ml of induction mix (200 ml LB, 0.02% L-Arabinose (System 

Biosciences #MN850A-1), and 0.04 N NaOH (Sigma # S2770)) was added to the 

culture and it was grown at 32°C for 7 hours. To confirm successful induction, a 1.5 

ml aliquot of culture was processed with the Wizard Plus SV Minipreps DNA 

Purification System (Promega # A1465) to isolate DNA. 20 μl restriction digests with 

10 U BglII (NEB #R0144S) and 1X Cut Smart Buffer (NEB #B7204S) were prepared 

with 500 ng of miniprep DNA or the parental pMC.BESPX-HPV18 plasmid. The 

samples were digested for 60 minutes at 37°C, mixed with Gel Loading Dye (NEB 

#B7024S0 to a final concertation of 1X, and separated by electrophoresis on a gel of 

0.8% agarose (Lonza #50074) in TAE buffer (Quality Biological 351-008-131) with 
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0.5 ng/ml EtBr (Invitrogen #15585011). Gels were imaged on a G:Box (Syngene). If 

induction was successful, the remainder of the culture was processed with the 

NucleoBond Xtra Maxi Plus EF Maxi Kit (Machery Nagel #740426.50) per 

manufacturer’s instructions. 

Production of Recircularized HPV Genomes 

To free the HPV18 genome from the bacterial plasmid backbone, 10 μg pUC-

HPV18 or pBR322-HPV18 were digested for 60 minutes at 37°C with 50 U NcoI 

(NEB #R0193T) or EcoRI (NEB# R0101L), respectively, in a 50 μl reaction with 1X 

CutSmart Buffer. The enzyme was heat inactivated at 80°C for 20 minutes. A 1 μl 

aliquot was taken and stored at 4°C. To re-ligate the DNA, a 900 μl ligation reaction 

was set up with 49 μl digested DNA, 180 μl 10X T4 DNA Ligase Reaction Buffer 

(NEB #B0202S), and 40 U T4 Ligase (NEB #M0202S) and incubated overnight at 

16°C. To precipitate the DNA, 600 μl isopropanol and 180 μl 5M NaCl were added 

and the samples were incubated overnight at -80°C. The samples were brought to 

room temperature and centrifuged at 16,000 x g for 30 minutes at 4°C. The 

supernatant was removed, and the pellet was washed with 100 μl 70% ethanol and 

centrifuged at 16,000 x g for 30 minutes at 4°C. The supernatant was removed, and 

the pellet was briefly air dried before being resuspended in 15 μl TE. A 1 μl aliquot of 

ligated sample and digested sample were used to confirm successful re-ligation by 

agarose gel electrophoresed as described. 
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Tissue Culture 

Swiss J2/3T3 murine fibroblasts feeder cells (J2s) (ATTC #CCL-92) were 

cultured in a 37°C, 10% CO2 incubator with DMEM-10 (DMEM (Invitrogen #11960-

069) supplemented with 10% Newborn Calf Serum (NCS) (Gemini #100-504), 2 mM 

L-Glutamine (Invitrogen #25030081), 100 units/ml Penicillin, 100 µg/ml 

Streptomycin (Invitrogen #15140-163) in T175 flasks before being harvested by 

trypsinization and lethally irradiated in suspension with 6000 rads γ-irradiation.  

Primary human foreskin keratinocytes (HFKs) and bovine epidermal 

keratinocytes (BEK6) were cultured at 37°C and 5% CO2 in Rheinwald-Green F-

medium (3:1 Ham’s F12 (Life Technologies #21700075)/DMEM-high glucose, 5% 

FBS (Thermo Fisher Hyclone SH30071.03), 0.4 μg/ml hydrocortisone (Sigma 

#H4001), 8.4 ng/ml cholera toxin (Calbiochem #227036), 10 ng/ml EGF (Invitrogen 

#PHG0311), 24 μg/ml adenine (Sigma #A-2786), and 6 μg/ml insulin (Gemini #700-

112P), 100 units/ml Penicillin, 100 µg/ml Streptomycin) on a layer of lethally 

irradiated J2s. 

To co-culture HFKs, 1x106 lethally irradiated J2s were plated on a 10 cm dish 

with 10 ml DMEM-10 and incubated overnight in a 37°C, 10% CO2 incubator. The 

medium on the dish was changed to 10 ml Rheinwald-Green F-medium and 3x105 

HFKs were plated onto the feeder monolayer and incubated for three to four days in a 

37°C, 10% CO2 incubator until the HFKs were approximately 70% confluent. Media 

was changed every 48 hours. 

For differentiated (Ca++) keratinocytes, cells were grown to confluence, 

feeders were removed with Versene, and media was switched to low calcium basal 
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medium (Lonza #CC-3101) supplemented with SingleQuots for keratinocytes (Lonza 

#CC-4131) containing bovine pituitary extract, hydrocortisone, and epidermal growth 

factor for 24 hours. Media was changed to basal medium (Lonza #CC-3104) 

supplemented with 1.5 mM CaCl2 and cells were differentiated for 5 days. 

For organotypic raft cultures, 0.8 ml each of Reconstitution Buffer (2.2% 

NaHCO3, 0.05 N NaOH, 200 mM Hepes free acid) and 10X Ham’s F12 medium 

were combined in a 15 ml conical tube. To the tube, 7.6 ml Collagen Type I, from rat 

tail (Sigma #08-115) was added slowly. 2 million 3T3-Swiss albino J2 mouse 

embryonic fibroblasts were suspended in 0.4 ml FBS and gently mixed with the 

collagen solution. 0.75 ml mixture was added to 10 wells of a 12 well tissue culture 

plate (Corning #3513) and incubated at 37°C and 5% CO2 for 1 hour. Each gel was 

overlaid with 1 ml Raft Culture Medium (3:1 DMEM/F12, 10% FCS, 0.4 g/ml 

hydrocortisone, 0.01 nM cholera toxin, 5 µg/ml transferrin (Sigma #T3309)) and 

returned to incubator for 2 days. Media was removed and 1x105 keratinocytes 

suspended in 1 ml Raft Culture Medium were added to each well and incubated 

overnight. Media was replaced with Raft Culture Medium supplemented with 5 ng/ml 

epidermal growth factor and incubated until keratinocytes were confluent. A sterile 

needle was run around the edge of the well to separate the collagen gel from the wall 

and the plate was returned to incubator for several hours. A sterile raft grid was 

placed in a 10 cm plate. Raft Culture Media with 5 ng/ml EGF was added to the plate 

until it was just touching the bottom of the grid. With a sterile spatula, rafts were 

transferred to the grid and cultured for two days. Media was swapped for Raft Culture 

Media with 5 ng/ml every two days until harvest on day 10. 
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To harvest, the raft was transferred onto a circular type HA nitrocellulose 

filter and cut in half with a scalpel. Halves were fixed in 3.7% formaldehyde for 4 

hours at room temperature before being stored in 70% ethanol at 4°C. Samples from 

each type of keratinocyte were sent for embedding, sectioning and hematoxylin and 

eosin staining (American Histolabs). 

HPV Quasivirus Production 

HPV quasiviruses were produced as described in [207]. 

Transfection 

293TT cells were cultured in DMEM-10, 10% FBS, 2 mM L-Glutamine, 100 

units/ml Penicillin, 100 µg/ml Streptomycin, 1X non-essential amino acids (Thermo 

Fisher #11140050), 1 mM sodium pyruvate (Life Technologies #11360-070), 0.33 

mg/ml Hygromycin B (Roche 10843555001). Seven million cells were seeded in a T-

75 flask, in DMEM-10 without antibiotics and incubated overnight at 37°C in 10% 

CO2. 19 µg of genomic HPV18 DNA (either recircularized minicircle HPV18 or 

religated HPV18 genome), 19 µg pShell16 L1/L2 expression vector (Addgene 

#37320), 6 µg codon-optimized pMEP9-HPV18 E1, and 6 µg codon-optimized 

pMEP4-HPV18 E2 [203] were added to 2 ml Opti-MEM (Thermo Fisher 

#31985070). In a separate tube, 100 µl Lipofectamine 2000 (Invitrogen #11668019) 

was combined with 2 ml Opti-MEM. Tubes were incubated separately at room 

temperature for 10 minutes, combined, and incubated for another 20 minutes. The 

DNA/Lipofectamine complexes were added directly to cell monolayers and incubated 
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overnight. The next morning, transfection medium was aspirated and replaced with 

fresh 293TT medium without antibiotics, and cells were incubated overnight. 

Harvest and Maturation 

Transfected cells were removed from flasks by trypsinization, collected by 

centrifugation at 5,000 x g, resuspended in 1 ml PBS, and transferred to a siliconized 

microfuge tube. Cells were centrifuged at 5,000 x g and the cell pellet size was 

estimated and resuspended in 1.4 pellet volumes of DBPS (Invitrogen #14040-141) 

supplemented with 9.5 mM MgCl2. Triton X-100 (Sigma #T8787) and ammonium 

sulfate pH 9 were added to final concentrations of 0.5% and 25 mM, respectively. 25 

units Benzonase (Millipore #70664-3) and 10 units of Plasmid Safe (Lucigen 

#E3110K) were added and the cell suspension was incubated overnight at 37°C, 

inverting to mix at 1, 4, and 20 hours. 

Salt Extraction 

NaCl was added to the matured lysate to a final concentration of 850 mM and 

the samples were incubated on ice for 10 minutes and centrifuged at 5,000 x g at 4°C 

for 5 minutes. The supernatant was transferred to a new tube. The pellet was 

resuspended in DBPS containing 800 mM NaCl and centrifuged at 5,000 x g at 4°C 

for 5 minutes. The supernatant was combined with the previous supernatant and 

centrifuged once more at 5,000 x g at 4°C for 5 minutes. The clarified supernatant 

was layered onto OptiPrep ultracentrifuge gradient. 
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“Ripcord” Quasivirus Preparation 

Quasivirus preparations made with the “Ripcord” protocol were transfected 

and harvested by trypsinization as described above. The cell pellet was resuspended 

in 1.5 pellet volumes of DBPS supplemented with 9.5 mM MgCl2. Triton X-100 

(Sigma #T8787) and ammonium sulfate pH 9 were added to final concentrations of 

0.5% and 25 mM, respectively. 1 μl RNase-IT (Agilent #400720) (2 ng RNase A and 

5 U RNase T1) was added to the lysate. The cell suspension was incubated overnight 

at 37°C, inverting to mix at 1, 4, and 20 hours. Samples were centrifuged at 5,000 x g 

at 4°C for 5 minutes and the supernatant transferred to a new tube. The pellet was 

resuspended in two pellet volumes DBPS and centrifuged at 5,000 x g at 4°C for 5 

minutes. The supernatant was transferred to the new tube and the pellet was 

resuspended in one pellet volume DBPS and flash frozen in a dry ice-ethanol bath. 

The samples were thawed and the and centrifuged at 5,000 x g at 4°C for 5 minutes. 

The supernatant was transferred to the new tube. The pellet was resuspended in one 

pellet volume DBPS supplemented with 650 mM NaCl, centrifuged at 5,000 x g at 

4°C for 5 minutes. The supernatant was transferred to the new tube and the combined 

supernatants were centrifuged at 5,000 x g at 4°C for 5 minutes. 

Ultracentrifugation 

46% Optiprep solution (Optiprep (#Sigma D1556) in 1X PBS pH 7.4 (Thermo 

Fisher #70011044), supplemented with 650 mM NaCl, 920 µM CaCl2, 520 µM 

MgCl2, 2 mM KCl) was further diluted in DBPS+NaCl (1x PBS supplemented with 

625 mM NaCl, 900 µM CaCl2, 500 µM MgCl2, 2.1 mM KCl) to create solutions of 
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27%, 33%, and 39% Optiprep. 1.4 ml 27% Optiprep solution was added to 5.2 ml 

polyallomer tubes (Beckman #326819) and underlaid with equivalent volumes of 

33% and 39% Optiprep solutions. The gradients were allowed to diffuse for 1 hour. 

The double clarified lysate was loaded on top of gradients and centrifuged in a 

Sw55Ti rotor for 3.5 hours at 23,7020 x g at 16°C. Gradient tubes were removed 

from the rotors and a hole was made in the bottom with a 22 Ga needle (Monoject 

#15141-136). Ten 200 µl fractions were collected dropwise into siliconized 

microfuge tubes. 

Screening for Virus Containing Fractions 

To screen for the viral proteins, 9 µl was removed from each fraction and LDS 

Sample Buffer (Thermo Fisher #NP0007) and DTT were added to final 

concentrations of 1X and 50 mM, respectively. Samples were heated at 72°C for 10 

minutes and separated on a 26 well 4-12% Bis-Tris acrylamide gel (Thermo Fisher 

#WG1403BOX) in 1X MOPS running buffer (Thermo Fisher #NP0001). Samples 

were electrophoresed at 150V until the dye front reached the bottom of the gel at 

which point the gel was removed and fixed for 1 hour in Fixation Buffer (50% 

methanol, 7% acetic acid). The gel was stained overnight with Sypro Ruby (Thermo 

Fisher #S12000) on an orbital shaker at setting 1. The gel was washed with Wash 

Buffer (10% methanol, 7% acetic acid) for 1 minute followed by a second wash with 

H2O. The gel was imaged using UV-light (254 nm wavelength) in a G:BOX 

(Syngene). Fractions that contained both the viral L1 and L2 proteins were considered 

positive for viral capsids. 
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To screen for viral genomes, a 1 µl aliquot was taken from each fraction and 

mixed with 99 µl H2O. qPCR for HPV18 DNA was performed. Fractions that 

contained HPV18 DNA were considered positive. 

Fractions that were positive for HPV18 DNA, L1, and L2 were selected and 

pooled. 

Quantitating Viral Titer 

From each quasivirus stock, 5 µl viral stock was digested in a 20 µl reaction 

with TURBO DNA-free Kit (Invitrogen #1907) for 30 minutes at 37°C and the 

nuclease was inactivated per manufacturer’s instructions. 16 µl was removed from the 

reaction and mixed with 100 µl Capsid Digest Buffer (20 mM Tris-HCl pH 8, 20m M 

DTT, 20 mM EDTA, 0.5% (w/v) SDS, 0.2% Proteinase K (Qiagen #19133)) and 

incubated at 60°C for 20 minutes. Viral DNA was extracted with QIAquick PCR 

Purification Kit (Qiagen #28104) and eluted into 50 µl of elution buffer. qPCR for 

HPV18 DNA was performed as described and Viral Genome Equivalents (VGE) for 

the quasivirus stock were calculated. 

Quantitating Virions 

From each quasivirus stock, 5 µl was combined with LDS Sample Buffer 

(Thermo Fisher #NP0007) and DTT to final concentrations of 1X and 50 mM, 

respectively. Using Pierce BCA Protein Assay Kit (Thermo Fisher #23225), a 

standard curve of BSA from 2000 ng/µl to 0 ng/µl was prepared per manufacturer’s 

instructions. 1 µl each standard was combined with 4X LDS, and DTT to final 

concentrations in of 1X, and 50 mM, respectively. Samples were separated by SDS-
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PAGE, stained with Sypro Ruby, and imaged as described. Using the BSA standard 

curve, the mass of L1 molecules in each virus sample was calculated and from there, 

the number of virions was determined. 

Infection Assay of Primary HFKs with HPV Quasiviruses 

Seeding 

Primary HFKs were co-cultured with J2s as previously described. 1x106 

lethally irradiated J2s were plated in a 12 well plate with 12 ml J2 media (8.3x104 

cells, 1 ml media per well) and incubated overnight in a 37°C, 10% CO2 incubator. J2 

media was removed and HFKs were seeded at a density of 5x105 cells per well in 1 

ml F media per well. Plates were incubated in a 37°C, 5% CO2 incubator for 16-48 

hours until 6-12 cell colonies formed. 

Infection 

“Infection media” was prepared for each well to be infected by combining 400 

μl of F media with the calculated volume of quasivirus stock needed for an MOI of 

between 10 and 100 VGE/cell. Media on the plate was aspirated and 400 μl infection 

media was added to each well. The plate was rocked at 4°C for 60 minutes. 600 μl F 

media was added to each well. Small molecule chemical modulators were added to 

the culture media at this time. The plate was returned to the incubator until the desired 

collection time, generally 24 to 96 hours post infection. 
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Transcription Assay 

Media was aspirated from the wells. Feeders were removed using a 1000 μl 

pipette to apply 1 ml Versene to the surface of each well. Versene was aspirated and 

cells were lysed with 350 μl Qiagen Buffer RLT + 1% β-mercaptoethanol (Sigma 

#M625). Lysates were transferred to a QiaShredder (Qiagen #79656) and centrifuged 

at 16,000 x g for 2 minutes at room temperature. RNA was extracted with the RNeasy 

Mini Kit (Qiagen #74106) according to manufacturer’s instructions. During 

extraction, the optional on-column DNA digestion was performed with RNase-free 

DNase (Qiagen #79254). The RNA was quantitated using the Qubit RNA BR Assay 

Kit (Life Technologies #Q19219) on a Qubit 3.0 Fluorometer (Life Technologies 

#Q33216) and normalized to 100 ng/μl. RNA integrity was verified using the RNA 

6000 Nano Kit (Agilent #5067-1511) on a 2100 Bioanalyzer Instrument (Agilent 

#G2939BA) per manufacturer’s instructions. cDNA was synthesized from 1 μg RNA 

using the Transcriptor First Strand cDNA Synthesis Kit (Roche #04897030001) per 

manufacturer’s instructions, using oligo(dT)18 primer and random hexamer primers 

in a 20 μl reaction. After synthesis, cDNA was diluted to 50 μl in H2O. qPCR was 

performed as described for the viral transcripts E1^E4 and E6*I and the cellular 

normalizing gene TATA-Binding Protein (TBP). The amount of mRNA for each 

transcript was quantified using the corresponding standard curve and viral transcripts 

were normalized to TBP. 

Replication Assay 

Media was aspirated from wells. Feeders were removed using a 1000 μl pipette to 

spray the surface of each well with 1 ml of Versene. Versene was aspirated and cells 
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were harvested by trypsinization. Cells were resuspended in PBS and centrifuged at 

300 x g for 5 minutes. The supernatant was removed, and DNA was extracted using 

the DNeasy Blood & Tissue Kit (Qiagen # 69506). DNA was eluted into 200 μl 

elution buffer and the elution step was repeated. The eluates were combined. To 

precipitate DNA, 40 μl 3M Sodium acetate, pH 5.2 and 1320 μl 90% ethanol were 

added and the samples were incubated on ice for 30 minutes. Samples were 

centrifuged for 5 minutes at 16,000 x g at room temperature. The supernatant was 

discarded, and the pellet was washed with 100 μl 70% EtOH, and the sample was 

centrifuged at 16,000 x g for 5 minutes. The supernatant was discarded, and the pellet 

was air dried before being resuspended in 50 μl TE Buffer. DNA samples were 

quantified with a Nanodrop 1000 (Thermo Fisher). 100 ng of extracted DNA was 

digested in three 20 μl reactions with either DpnI (NEB # R0176S), MboI, or no 

enzyme (a mock digest with H2O). Digests were diluted to 50 μl total volume with 

H2O. qPCR was performed as described for HPV18 DNA on all digests and for 

normalizing gene RNase P on the mock digests. The amount of HPV18 DNA and 

RNase P were quantified using the corresponding standard curves and viral DNA 

levels were normalized to RNase P. 

qPCR 

In a 384 well plate (Life Technologies #4309849), 10 µl reactions consisting 

of 1X FastStart Universal SYBR Green Master (Roche #4913914001), 750 nM 

primer mix, and 2.5 µl sample or standard curve were performed in triplicate. The 

reaction was performed on a QuantStudio 7 Flex Real-Time PCR System (Life 

Technologies #4485701) with the temperature cycle described in Table 2.2. 40 cycles 
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in total were run using standard settings for SYBR Green reagents. The data were 

analyzed with Quant Studio Software (Life Technologies). 

Table 2.2. Temperatures for each stage of the qPCR reaction. 

Stage Temperature (°C) Time (min:sec) Cycles 
1 50 2:00 1 
2 95 10:00 1 
3 95 0:15 40 4 60 1:00 
5 95 0:15 1 
6 60 1:00 1 
7 95 0:15 1 

Fluorescent signal was measured during Stage 4 and continuously between Stages 6 

and 7. All temperature changes were 1.6°C/sec, except between Stages 6 and 7 where 

it was 0.05°C/sec. 

Standard Curves 

Standard curves for qPCR experiments were prepared by performing 10-fold 

serial dilutions of the indicated plasmid from 1x10-1 ng/µl to 1x10-8 ng/µl in 0.1 

mg/ml yeast tRNA (Invitrogen #AM7119). Table 2.3 contains the standard curves 

used in qPCR experiments. 

Table 2.3. Standard curves used in qPCR reactions. 

Standard Plasmid Name Reference 
HPV18 DNA Minicircle HPV18 [200] 
RNase P pMA-RPPH1  
E6*I pUC57-HPV18E6*I [70] 
E1^E4 pUC57-HPV18E1^E4 [70] 
TATA Binding Protein pCMVsport6-TBP Open Biosystems 

#MHS6278-
202802567 

BPV1 pMl2d-BPV1 [206] 
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Primers 

Primer mixes were prepared by combining the forward and reverse primer 

(Table 2.4) from 100 µM primer stocks to 3 µM in TE. 

Table 2.4. Oligos used in qPCR experiments 

ID# Target Direction Sequence 
3220 HPV18 DNA Forward CACAATACTATGGCGCGCTTT 
3221 Reverse CCGTGCACAGATCAGGTAGCT 
3427 RNase P  Forward CGGAGGGAAGCTCATCAGTG 
3428 Reverse TGGCCCTAGTCTCAGACCTT 
3210 E6*I Viral Transcript Forward CAAGACAGTATTGGAACTTACAGAGGTG 
3211 Reverse CTGGCCTCTATAGTGCCCAGC 
3212 E1^E4 Viral Transcript Forward CAACAATGGCTGATCCAGAAGTAC 
3213 Reverse TAGGTCTTTGCGGTGCCC 
3226 TATA Binding Protein Forward TAAACTTGACCTAAAGACCATTGCA 
3227 Reverse CAGCAAACCGCTTGGGATTA 
726 BPV1 DNA Forward TTGGTGAGGACAAGCTACAAGTTG 
727 Reverse TGGCTCCCGCCTTTTTG 

Primers against viral DNA are across DpnI restriction sites for use in the replication 

assay. Primers against viral transcripts are across splice sites. 

Production of Bovine Papillomavirus Virions 

Bovine wart tissue (3-5 g) (harvested from BPV1 infected cows by Carl 

Olson, University of Wisconsin School of Veterinary Medicine in 1986) was minced 

into 1 mm3 chunks with sterile razor blades. 15 ml Mincing Buffer (10 mM Tris-HCl 

pH 7.5, 1 mM MgCl2, 1% (w/v) Brij58 (Sigma #P5884), in PBS) was added and the 

chunks were further processed using the stopper of a 60 ml syringe (Covidien 

#8881560125) to squish into smaller pieces. Processed wart tissue was transferred 

into a 50 ml conical tube and vigorously vortexed 5 times for 2 seconds on high 

setting. 75 U Benzonase and 50 U Plasmid Safe were added and samples were 

incubated at 37°C for 1 hour. 2 mg collagenase H (Sigma #C8051) were added and 
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the pH was adjusted to 7-7.5. Samples were incubated at 37°C for 15 minutes 

followed by 4°C overnight on a rotator. The next day, samples were brought to room 

temperature, checked to ensure pH was still neutral, and 0.17 volumes (2.55 ml) 5M 

NaCl was added. After shaking for 15 minutes, samples were centrifuged at 1,000 x g 

for 5 minutes at room temperature. Supernatant was transferred into a fresh tube and 

the pellet was resuspended with Salt Extraction Buffer (10 mM Tris-HCl pH 7.5, 800 

mM NaCl, 1% Brij58, 1% PBS). Resuspended pellets were sonicated in a Vibra-Cell 

VC505 (Sonics & Materials, Inc) for 30 seconds on setting 4 and chilled on ice for 2 

minutes. This step was repeated until the solution no longer changed in viscosity 

(generally three to four times) and the samples were centrifuged at 1,000 x g for 5 

minutes at room temperature. The supernatant was combined with the previous 

supernatant and together they were centrifuged at 1,000 x g for 5 minutes at room 

temperature. The supernatant was transferred to a 40 ml polyallomer tube (Beckman 

#326823) and underlaid with 1.5 ml 39% Optiprep using a syringe and needle. The 

samples were centrifuged in a Sw32Ti rotor at 30,000 rpm for 2 hours at 16°C. The 

top of gradient was discarded and the bottom 3 ml was transferred to a 15 ml tube and 

vortexed for 5 minutes followed by centrifugation at 1,000 x g for 10 minutes at 4°C. 

The supernatant was transferred to a new tube and 900 µL DBPS+0.8M NaCl was 

added to dilute the Optiprep concentration below 15%. Gradients were prepared by 

adding 0.5 ml 15% Optiprep/0.8M NaCl and successively underlaying 0.9 ml each of 

27%, 33%, and 39% solutions and allowing to diffuse for 1 hour. Clarified lysate was 

loaded on top of the gradient. Gradients were loaded into a Sw55Ti rotor and 

centrifuged at 50,000 rpm at 16°C for 3.5 hours. 
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A 22 Ga needle was used to puncture a hole at the bottom of the tube and 10 

200 µL fractions were collected dropwise into 2.0 ml siliconized tubes. From each 

fraction a 16 µL aliquot was taken. 1 µL was diluted 1:100 in H2O and screened for 

the presence of BPV1 DNA by qPCR. The remaining 15 µL was combined with LDS 

and DTT to concentrations of 1X and 50 mM, respectively in a final volume of 30 µL 

and heated to 70°C for 10minutes. 10 µL each sample was loaded onto three separate 

26 well 4-12% Bis-Tris acrylamide gel (Thermo Fisher #WG1403BOX) in 1X MOPS 

running buffer (Thermo Fisher #NP0001) and run at 150V until dye front reached the 

bottom. Two of the gels were transferred to 0.45 µm PVDF membrane and 

immunoblots for H3 and L1 were performed. The remaining gel was fixed and 

stained with Sypro Ruby. Fractions positive for H3, BPV1 L1, and BPV1 DNA were 

combined, aliquoted, and stored at -80°C. 

Production of Wart Derived Human Papillomavirus Virions 

Extraction of virions was conducted by the Tumor Virus Molecular Biology 

Section of the Laboratory of Cellular Oncology, National Cancer Institute. A 0.65 cm 

diameter biopsy of a wart from the right palm of a 16-year-old female patient was 

minced in a petri dish with a scalpel in 0.5 ml DBPS supplemented with 10 mM 

MgCl2 and 1% Brij58 (described in [208]). The minced wart was transferred to a 

microfuge tube and the plate was washed with 0.5 ml mincing buffer, which was 

transferred to the same tube. 50 U Benzonase and 20 U Plasmid Safe was added and 

incubated for 20 minutes at 37°C. 5 mg collagenase H was added and incubated for 

30 minutes at 37°C before an overnight incubation at 4°C. 180 µl 5 M NaCl was 
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added and the sample was rocked at 4°C for 2 hours. The sample was sonicated twice 

for 1 minute at max power and then centrifuged at 5,000 x g for 5 minutes. The 

supernatant was transferred to a new tube and the pellet was washed with 0.5 ml 

DBPS+0.8 M NaCl, before centrifuging again. The supernatants were combined and 

then virions were purified by Optiprep ultracentrifugation (as described in quasivirus 

section above). 

Mass Spectrometry Analysis of Histone PTMs 

Sample Preparation 

Quasiviruses: 1.41x109 VGE HPV18WT quasiviruses (prepared as described 

in Chapter 3) were precipitated overnight at 4°C with 33% TCA. The precipitate was 

centrifuged at 20,000 x g at 4°C for 10 minutes and the supernatant was removed. 

Pellet and tube walls were washed with 1 ml cold acetone + 0.1% HCl and 

centrifuged at 20,000 x g at 4°C for 10 minutes and the supernatant was removed. 

Pellet and tube walls were washed with 1 ml cold acetone and centrifuged at 20,000 x 

g at 4°C for 10 minutes and the supernatant was removed. The pellet was dried 

overnight in a SpeedVac on low vacuum, no heat setting. The pellet was dissolved in 

60 µl buffer (54.16 mM Tris-HCl pH 8, 1X LDS Sample Buffer, 50 mM DTT) and 

heated at 70°C for 10 minutes. Samples were centrifugated 16,000 x g for 1 minute. 

The supernatant was transferred to new tube. 20 µl sample was loaded into three 

adjacent wells of a 12 well, 1.0 mm NuPAGE 4-12% SDS-PAGE gel (Thermo Fisher 

#NP0322BOX) and ran at 100V until the dye front reached the bottom of the gel. The 

gel was stained with 50 ml Coomassie staining solution (1% Coomassie G-250 
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(Thermo Fisher #20279), 2.55% ortho-phosphoric acid (Sigma #5438280250), 10% 

(w/v) ammonium sulfate (Sigma #20450), 20% ethanol) for 2 hours and washed with 

H2O overnight. Using sterile razor blades, bands corresponding to the molecular 

weight of histones (10-20 kDa) were excised from the gel and stored at -80°C. As 

controls, 293TT cells were cultured as previously described, collected by 

trypsinization, washed with PBS, and flash frozen before storage at -80°C. Samples 

were sent to our collaborators at the University of Pennsylvania (Weitzman and 

Garcia Laboratory) for further processing. 

Bovine viruses: Two 20 µl aliquots of BPV1 virion isolation stocks were 

precipitated with the addition of TCA to a final concertation 33% and incubated 

overnight at 4°C. Samples were centrifuged at 16,000 x g for 30 minutes. The 

supernatant was removed, and the pellet was washed with 1 ml cold acetone with 

0.1% HCl and centrifuged at 16,000 x g at 4°C for 10 minutes and the supernatant 

was removed. The pellet was washed with 200 µl cold acetone and centrifuged again. 

The supernatant was removed, and the pellet was allowed to air dry. The pellet was 

dissolved in 20 µl 1X LDS Sample Buffer, 50 mM DTT, heated at 70°C for 10 

minutes, and centrifuged at 16,000 x g for 1 minute. The supernatant was transferred 

to a new tube. 10 µl sample was loaded into two adjacent wells of a 12 well, 1.0 mm 

NuPAGE 4-12% SDS-PAGE gel (Thermo Fisher #NP0322BOX) and ran at 100V 

until the dye front reached the bottom of the gel. The gel was stained with 50 ml 

Coomassie staining solution for 2 hours and then de-stained with H2O for 2 hours. 

Using sterile razor blades, bands corresponding to the molecular weight of histones 
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(10-20 kDa) were excised from the gel and stored at -80°C. Samples were sent to our 

collaborators at the University of Pennsylvania for further processing. 

Sample Processing, Data Collection, and Analysis 

Our collaborators at the University of Pennsylvania and Children’s Hospital of 

Philadelphia performed the following steps. Briefly, histones were extracted from cell 

pellets or histone gel slices, propionylated, digested with trypsin, and propionylated 

again. The samples were then separated by a C18 LC column and analyzed by mass 

spectrometry. The data were searched using EpiProfile v2.3 to calculate the relative 

abundance of individual PTMs on each peptide [209]. 

Acid-Urea Polyacrylamide Gel Electrophoresis (AU-PAGE) 

For both normal acid urea (AU) and Triton acid urea (TAU) experiments, 

sample preparation was the same. 

Acid Extraction of Cellular Histones 

Cellular samples were cultured as described above. Proliferating (growing) 

samples were collected at 80% confluence. Feeders were removed with Versene 

(Thermo Fisher #15040066) before cells were collected by trypsinization and 

centrifuged at 234 x g for 5 minutes at room temperature. The supernatant was 

removed, and the pellet was resuspended in PBS before centrifuging again for 5 

minutes at room temperature. The wash was repeated, and the pellets were flash 

frozen in ethanol and dry ice and stored at -80°C. The differentiated samples were 

collected in the same way, except without the Versene wash to remove feeders. Raft 

samples were produced as described and then frozen at -80°C. 
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For each cellular control, frozen cell pellets and rafts were thawed on ice and 

histones were extracted by resuspending the pellet (or raft section) in 750 µL 0.4N 

H2SO4 and incubating for 4 hours at 4°C on a rotator. Lysates were centrifuged to 

pellet debris at 16,000 x g at 4°C for 10 minutes. The supernatants were transferred to 

new tubes and 100% TCA was added dropwise to a final concentration of 33% and 

lysates were incubated on ice overnight. Samples were centrifuged at 16,000 x g at 

4°C for 10 minutes. The supernatant was removed and discarded, and the pellet was 

washed with 100 µL ice-cold acetone and centrifuged for 5 minutes at 16,000 x g at 

4°C. The supernatant was removed, and the acetone wash was repeated. The pellets 

were air dried and dissolved in 100 µL H2O, aliquoted into 10 µL aliquots and stored 

at -80°C until use. 

Virion Preparation 

Virions were TCA precipitated as described above. The pellets were air dried 

and stored on ice until use. 

Gel Preparation 

For AU gels, 18 x 16 cm glass gel casting plates (Amersham #80-6178-99) 

were assembled according to the manufacturer’s instructions. The components of the 

separating gel were mixed (15% acrylamide, 0.1% bis-acrylamide, 6M urea, 5% 

acetic acid) and degassed before polymerization by the addition of 

tetramethylethylenediamine and ammonium persulfate to final concentrations of 

0.06% and 0.14%, respectively. The separating gels were poured to 3 cm below the 

top of the plate, overlaid with a 1 cm layer of ddH2O and allowed to polymerize for 
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2.5 hours. The stacking gel components (6% acrylamide, 0.04% bis-acrylamide, 6M 

urea) were mixed before adding tetramethylethylenediamine and ammonium 

persulfate to final concentrations of 0.06% and 0.14%, respectively. The water layer 

was removed, and the stacking gel was poured to 1.5 cm below the top of the plate, 

overlaid with H2O and allowed to polymerize for 2.5 hours. After polymerization, 

gels were placed in a running chamber filled with 4 L 5% acetic acid (AU Running 

Buffer). 500 µL AU Sample Buffer (6M urea, 5% acetic acid, 0.02% Pyronin Y, 12.5 

mg/ml protamine sulfate) was loaded directly on top of the stacking gel and the gel 

was electrophoresed at 300V overnight. 

For TAU gels, the components of the gel were mixed (15% acrylamide, 0.1% 

bis-acrylamide, 6 M urea, 5% acetic acid, 0.37% Triton X-100) before adding 

tetramethylethylenediamine and ammonium persulfate to final concentrations of 

0.06% and 0.14%, respectively. The acrylamide mixture was poured into plastic 

cassettes (13.3 x 8.7 cm) with a 12+2 well comb (BioRad #3459901) and allowed to 

polymerize for one hour. 

Electrophoresis 

Cell extracts were thawed, and normalized amounts were distributed to new 

tubes. As controls, 0.5 µg recombinant histone H3.1 (NEB #M2503S) and H3.3 (NEB 

#M2507S) were used. 10 µg cytochrome C was used as a visual marker of protein 

migration during electrophoresis. Cellular and control samples were dried by 

centrifugation in a Savant DNA 120 SpeedVac (Thermo Fisher) on low vacuum 

setting (no heat). All samples (including the TCA-precipitated virion-derived 

extracts) were dissolved in 20 µL in AU Sample Buffer (6 M urea, 5% acetic acid, 
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0.02% Pyronin Y, 12.5 mg/ml protamine sulfate) with DTT added to a final 

concentration of 50 mM and incubated at room temperature for 15 minutes. A 10-well 

comb was inserted between the glass plates and pushed against the stacking gel to 

form a seal (Figure 2.1). Samples were loaded into the space between the teeth of the 

comb and proteins were separated by electrophoresis at 200V (TAU) or 400V (AU) 

until the cytochrome C marker had just run off the bottom of the gel. 
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Figure 2.1. Loading of AU-PAGE gels. The comb was inserted roughly 1 mm into the stacking gel. 
The space between the teeth of the comb served as “wells” into which the samples were loaded. 
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Transfer 

Gels were removed from the molds and soaked in AU Transfer Buffer (0.7% 

acetic acid) for 15 minutes. 0.45 µm PVDF membrane sheets were activated in 

methanol for 30 seconds and washed with ddH2O for 1 minute before soaking in AU 

Transfer Buffer for 15 minutes. A transfer sandwich consisting of a transfer sponge, 2 

sheets of Whatman paper (GE #3030-917), the AU/TAU gel, a 0.45 µm PVDF 

membrane (Millipore # IPVH304F0), 2 sheets of Whatman paper, and a transfer 

sponge was assembled in a tray of AU Transfer Buffer and placed into a transfer 

chamber filled with AU Transfer Buffer. Transfer was conducted at 500 mA for 20 

minutes with the proteins moving out of the gel towards the membrane positioned on 

the negative anode side. Immediately after transfer, immunoblots were performed as 

described below. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Extraction 

Growing and differentiated cellular samples were cultured as described. 

Media was removed and J2 fibroblast feeder cells were removed with Versene 

(Thermo Fisher # 15040066). Keratinocyte monolayers were rinsed with ice-cold 

PBS. Growing and differentiated cells were lysed on the plate with 1 ml SDS Lysis 

Buffer (1% w/v SDS, 10 mM Tris-HCl pH 8, 1 mM EDTA pH 8) heated to 95°C. 

After scraping the plate, samples were transferred to low protein binding microfuge 

tubes and sonicated using a Bioruptor (30 seconds on, 30 seconds off, for 6 cycles, at 

high power). After sonication, samples were heated at 95°C for 10 minutes in a heat 
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block before being cooled to room temperature. To remove any debris, samples were 

centrifuged at 16,100 x g for 5 minutes. The supernatant was transferred to low 

protein binding microfuge tubes and stored at -80°C. 

For the raft samples, the samples were thawed on ice, suspended in 200 µl 

SDS Lysis Buffer and heated to 95°C for 10 minutes. Samples were sonicated using a 

Bioruptor (30 seconds on, 30 seconds off, for 6 cycles, at high power). The samples 

were ground with ReadyPrep Protein Mini Grinders (BioRad #1632146). The 

samples were centrifuged at 20,000 x g at 4°C, transferred to a new tube, and stored 

at -80°C. A Pierce BCA Protein Assay Kit (Thermo Fischer #23225) was used to 

determine protein concentrations.  

Electrophoresis 

Normalized samples were added to low protein binding tubes. To denature the 

samples, LDS Sample Buffer (Thermo Fisher #NP0007) was added to a final 

concentration of 1X, along with DTT to a final concentration of 50 mM with a total 

volume of 15 µl before heating at 70°C for 10 minutes. Before loading, samples were 

centrifuged at 16,000 x g for one minute to remove any debris. The supernatant was 

transferred to a new tube and samples were loaded onto a 12 well, 1.0 mm NuPAGE 

12% Bis-Tris Protein Gel (Thermo Fischer #NP0342BOX) with 1 L MES running 

buffer (Thermo Fischer #NP0002). To mark protein sizes, 7.5 µL Page Ruler Plus 

(Thermo Fischer #26620) was loaded into a well adjacent to samples. The gel was run 

at 150V until the dye front reached the bottom of the gel. 
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Transfer 

To transfer, the gel was removed from the cassette and a “transfer sandwich” 

was constructed. From bottom to top the sandwich consisted of: the black side of 

transfer cassette, followed by 1 sponge (Biorad #1703914), 1 sheet Whatman Filter 

Paper (GE #3030-917), the protein gel, a 0.45 µm PVDF membrane (Millipore # 

IPVH304F0) (activated in methanol and washed with H2O), another sheet of 

Whatman Filter Paper, sponge, and clear side of plastic transfer cassette. The transfer 

cassette was placed in transfer apparatus (BioRad #1703946) with 2.5 L transfer 

buffer consisting of 1X NuPAGE Transfer Buffer (Thermo Fisher NP0006) and 10% 

methanol. Transfers were conducted at 60V for 3 hours or 20V overnight. 

Immunoblots 

After transfer, the membranes were immediately placed in a Perfect Western 

Container (Gene Hunter #B144S) and stained with Ponceau S (Sigma #P7170) for 5 

minutes and washed 3 x with H2O to check for uniform loading and transfer. The 

membrane was blocked in 5% skim milk in TBST (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 0.1% Tween) for 1 hour. Primary antibodies were diluted as indicated (Table 

2.5) in 5% milk/TBST. Blots were rocked overnight in primary antibody at 4°C and 

washed 5 x 5 minutes in TBST on an orbital shaker. Horseradish peroxidase 

conjugated secondary antibodies (anti-rabbit Invitrogen #31460, anti-mouse 

Invitrogen #31430) were used at a dilution of 1:10,000 for 1 hour rocking at room 

temperature. Blots were washed 5 x for 10 minutes in TBST. To image, blots were 

immersed in 3 ml SuperSignal West Dura Extended Duration Substrate (Thermo 

Fisher #34075) for 30 seconds before placing in a transparent sheet protector. A 
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G:Box (Syngene) was used to capture immunoblot signals. Each blot was quantitated 

using Syngene GeneTools software. 

For histone modification immunoblots, after imaging, the blots were stripped 

with One Minute Plus Stripping Buffer (GM Biosciences #GM6015) per 

manufacturer’s instructions and re-probed with the pan-H3 antibody to check for even 

loading. 

Antibodies 

Table 2.5. Antibodies used in immunoblot experiments. 

Antigen Manufacturer Catalog # Dilution 
H3 Millipore 07-690 1:5000 
H3K9me3 Abcam Ab8898  1:500 
H3K27me3 Abcam Ab6147 1:200 
H3K9ac Santa Cruz sc-56616 1:200 
H3K14ac Millipore 07-353 1:1000 
H3K18ac Active Motif 39755 1:1000 
H3K4me Abcam ab8895 1:1000 
H3K4me3 Millipore 05-745 1:500 
H3K27ac Millipore 07-355 1:1000 
H3.3 Abcam ab176840 1:500 
Papillomavirus L1 Millipore MAB837 1:10000 

 

  



 

 

55 
 

 

 

 

 

 

Chapter 3: Optimization of the HPV Quasivirus Production 

System 

 

Coversheet 
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My contribution to this work was producing recombinant marker neomycin resistant 

quasiviruses and performing the quantitative colony forming assay (Figure 4A and 
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Introduction 

The efficient production of infectious papillomaviruses is difficult due to their 

strict species and tissue tropism. Furthermore, papillomaviruses will only complete 

their infectious cycle in the stratified epithelium of their specific host species. Despite 

these difficulties, several methods have been developed for the generation of virions. 

Currently, there are five commonly used methods for producing papillomavirus 

particles (reviewed in [210]).  

First, wart derived virions can be isolated from human patients that have 

natural infections or animals that have been inoculated in an experimental setting. 

This can be achieved by removing a portion of infected tissue (for example, a wart), 

disrupting the tissue by physical, chemical, and enzymatic methods, and purifying 

virions on a density gradient [211, 212]. These samples have the greatest degree of 

physiological relevance but can be difficult to obtain and do not always contain the 

desired PV type. 

Second, virus like particles (VLPs) consist of the papillomavirus capsid 

proteins (L1, or both L1 and L2) and can spontaneously self-assemble without any 

encapsidated DNA. They were first produced in insect cells using recombinant 

baculoviruses, but other production organisms, such as Saccharomyces cerevisiae, 

have also been developed. [213-215]. VLPs are mostly used in immunological studies 

of HPV, such as testing antibody binding. VLPs are also the basis for the HPV 

vaccine; these particles are sufficient to elicit a protective antibody response [216, 

217].  
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Third, viruses can be produced by keratinocytes transfected with the viral 

genome and grown in a 3D organotypic raft system that supports epithelial 

differentiation [218, 219]. Virions produced by this method contain the HPV type of 

interest and are capable of initiating a productive infectious cycle. However, this 

process is technically challenging, can be laborious and expensive, and only wild type 

genomes that can complete the entire viral life cycle can be used, limiting the breath 

of the technique for studying viral mutants. 

A major advancement in the area of studying papillomavirus infections was 

the development of the pseudovirus system [105]. In this system, 293TT cells are 

used to package reporter plasmids into papillomavirus capsids. 293TT cells were 

derived from the existing 293T cell line, which are human embryonic kidney (HEK) 

cells with an integrated copy of the SV40 genome, expressing small amounts of the 

SV40 T antigen. Researchers transfected the pTIH plasmid into 293T cells to stably 

express higher levels of T antigen. Reporter plasmids containing the SV40 origin of 

replication are therefore replicated to a very high copy number in these cells. The 

expression levels of the viral capsid proteins were massively enhanced by using 

plasmids that encode L1 and L2 with silent mutations to remove rare codons. To 

prevent the plasmid from being packaged, “stuffer DNA” was inserted to increase the 

size above 8 kb (HPV virions cannot efficiently package DNA greater than this size). 

To generate pseudoviruses, the plasmids expressing L1 and L2 and the reporter 

plasmids are transfected into the 293TT cells. L1 and L2 proteins spontaneously self-

assemble around the replicating reporter plasmid. These particles can be extracted 

from the cells, allowed to mature in vitro, and isolated by an iodixanol 
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ultracentrifugation gradient [220, 221]. The resulting particles are useful for studying 

viral entry, early events in infection, such as the trafficking of the viral capsid, as well 

as neutralization assays.  However, they do not contain any HPV genes and thus 

cannot complete the viral life cycle or be used to study any HPV-specific functions.  

The pseudovirus system was taken a step further by the demonstration that 

full-length papillomavirus genomes (rather than reporter viruses) could be packaged 

into papillomavirus particles, dubbed “quasiviruses” [222]. The resulting virus 

preparations can be generated at high yield, contain the desired HPV type, and have 

low cost. Quasiviruses are infectious in vivo, and are capable of infecting keratinocyte 

cell lines and primary keratinocytes isolated from humans [70, 223]. The quasivirus-

based production system has several additional advantages over other methods of 

producing infectious HPV particles. Importantly, the process allows the packaging of 

mutant or recombinant viral genomes that do not need to complete the viral life cycle, 

resulting in powerful new tools to study infection. 

Our laboratory has considerable experience using HPV18 quasiviruses for 

infection of primary human foreskin keratinocytes (HFKs) to study immediate early 

viral processes and host cell factor involvement [70, 121]. We use HPV18 genomes 

because they have more efficient replication and immortalization potential in cell 

culture compared to other common high-risk HPV types [202, 224, 225]. Using this 

genome allows for increased signal-to-noise ratios in the readouts of infection. In this 

chapter, we describe optimization of the existing quasivirus production system to 

improve the physiological relevance by increasing the genome to particle ratio, 
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streamline the workflow, and expand the capabilities of quasivirus-based infection 

assays of primary HFKs. 

Results 

HPV18 Quasiviruses Produced with HPV16 L1/L2 Capsids Exhibit Higher 

Infectivity than Those with HPV18 L1/L2 

Several laboratories in the HPV field (including ours) find that, for unknown 

reasons, HPV18 pseudovirions do not infect cells as efficiently as other HPV types 

(personal communications). To confirm this difference in infectivity of HPV18 

genome quasivirus preparations that had the L1 and L2 structural proteins from 

HPV18 (18L1/L2) or HPV16 (16L1/L2) were prepared as described in Methods, both 

containing the HPV18 genome. The resulting quasiviruses were used to infect 

primary HFKs at an MOI of 100. To determine whether furin treatment prior to 

infection would enhance infectivity of either the 18L1/L2 or 16L1/L2 viruses, 8 U/ml 

of recombinant furin or vehicle control was added to the media at the time of 

infection. At 72 hours post infection (hpi), RNA was collected and early viral 

transcripts were quantified by RT-qPCR. Cells infected with 16L1/L2-HPV18 

chimeric quasiviruses expressed significantly higher levels of HPV18 E1^E4 and 

E6*I than those infected with 18L1/L2 quasiviruses (Figure 3.1A and B). 

Furthermore, furin treatment did not significantly enhance the transcription from 

either virus, except in the E6*I from the 16L1/L2 virus, which was slightly enhanced 

(p=0.045 in an unpaired t-test). These results confirm the findings of others that the 

use of an HPV16 capsid results in higher infectivity than the use of an HPV18 capsid. 
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Furthermore, furin pretreatment is of limited benefit in the quasivirus infection of 

primary HFKs. Therefore, all further experiments used chimeric 16L1/L2-HPV18 

quasiviruses in the absence of furin. 
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Figure 3.1. HPV18 Quasiviruses Produced with HPV16 L1/L2 Capsids Exhibit Higher Infectivity 
than Those with HPV18 L1/L2. HPV18 quasiviruses were produced using the L1 and L2 capsid 
proteins from either HPV18 or HPV16. Primary HFKs were infected at an MOI of 100 in media with 
or without 8 U/ml recombinant furin. At 72 hpi, RNA was extracted and early viral transcripts were 
quantified by RT-qPCR and normalized to cellular TBP. A) E1^E4 transcription. B) E6*I 
Transcription. N=3 technical replicates of infection. Error=SD. Significance determined by an unpaired 
t-test. ***=p<0.001 ****=p<0.0001. 
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Using Minicircle DNA Technology to Improve Quasivirus Production, 

Physiological Relevance, and Infectivity 

The traditional method of producing HPV genomes involves using restriction 

enzymes to cut the genome from the bacterial plasmid backbone (Figure 3.2A) and 

performing a dilute ligation reaction to promote intra-molecular recombination. This 

process does produce recircularized 8 kb viral genomes, but it also produces multiple 

additional ligation products (Figure 3.2B). Using Minicircle DNA technology, HPV 

genomes cloned into minicircle backbones (Figure 3.2C) were transformed into E. 

coli strain ZYCY10P3S2T that expresses the PhiC31 integrase, and I-SceI homing 

endonuclease [200, 226]. These enzymes are induced by L-arabinose and digest the 

plasmid backbone and recircularize the viral genome to form an 8 kb monomer 

(Figure 3.2D). As genomes can be extracted using standard, commercially available 

plasmid maxiprep kits, this process can be easily scaled for mass production of 

recircularized genomes for HPV quasivirus production. Additionally, the super coiled 

covalently closed circular (CCC) genomes produced in this manner are more 

physiologically relevant as there is no risk of packaging alternative ligation products 

present in the traditional genome preparations. 



 

 

63 
 

 

Figure 3.2. Comparison of different HPV genome production methods. A) Map of pUC-HPV18. 
B) pBR322-HPV18 (lane 1) was digested with EcoRI to remove HPV18 genome from plasmid 
backbone (lane 2) and then ligated. DNA was precipitated (lane 3), separated on a 0.8% TAE agarose 
gel, and imaged on a UV lightbox. C) Map of pMC.BESPX-HPV18 D) E. coli ZYCY10P3S2T 
transformed with the plasmid described in C were induced to generate minicircle HPV18 genomes. 
Plasmid DNA isolated before and after induction was digested with BglII, separated on a 0.8% TAE 
agarose gel, and imaged on a UV lightbox. Lane 1: Pre-induction pMC.BESPX-HPV18 undigested; 
lane 2: pre-induction pMC.BESPX-HPV18 digested; lane 3: post-induction pMC.BESPX-HPV18 
undigested; lane 4: post-induction pMC.BESPX-HPV18 digested. CCC-covalently closed circular 
DNA. A representative genome preparation is shown. Adapted from [207] 
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To assess whether minicircle HPV18 genomes could be efficiently packaged 

into HPV quasivirions, we transfected minicircle HPV18WT genomes and a plasmid 

expressing HPV16 L1 and L2 into 293TT producer cells. Virions were extracted from 

cells, matured, and isolated by ultracentrifugation through an Optiprep density 

gradient. To measure viral titer, viral genomes were extracted and quantitated by 

qPCR. Quasiviruses produced using minicircle genomes had similar titers to those 

produced with the traditional genomic recircularization process (Figure 3.3A). To 

measure the amount of the viral capsids, virions were denatured, and virion proteins 

were separated on an SDS-PAGE gel alongside known quantities of BSA. Quasivirus 

preparations with minicircle genomes had a similar concentration of virions compared 

to preparations produced in the traditional manner (Figure 3.3B). To calculate the 

efficiency of packaging, the number of viral genomes was divided by the number of 

virions. Quasiviruses with minicircle genomes package HPV18 DNA to similar 

degrees to those that are made with recircularized genomes (Figure 3.3C). Taken 

together, these data show that using minicircle genomes to make the quasivirus 

production workflow more efficient do not compromise yield or packaging of the 

resulting viruses. 
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Figure 3.3. Viral titer and virion yield of HPV18 quasiviruses. HPV18 quasiviruses were produced 
with either minicircle or traditionally religated genomes. For both genome types, viral replication in 
293TT cells was optionally induced by the expression of E1 and E2 replication proteins by co-
transfection. A) Viral genomes were extracted from virions and quantitated by qPCR. B) Quasivirus 
preparations were separated by SDS-PAGE alongside a standard curve of BSA. Gel was stained with 
Sypro Ruby and imaged. Standard curve used to calculate quantity of virions. C) Packaging efficiency 
of quasivirus preparations. D) Yield of quasivirus preparations measured by total viral genome 
equivalents. N=1. 
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Next, we determined if there was any difference in infectivity of these viruses 

in the infection assays. HPV18 quasiviruses produced using normal and minicircle 

genomes were used to infect primary HFKs at an MOI of 100. At 72 hpi, RNA was 

harvested from infected cells. RT-qPCR was performed and the early viral transcripts 

E1^E4 and E6*I were normalized to cellular gene TATA Binding Protein (TBP). 

Cells infected with minicircle quasiviruses had significantly higher levels of early 

viral transcripts than those infected with quasiviruses made with recircularized 

genomes (Figure 3.4). Overall, these results show that the minicircle genome 

improves the ability of the quasivirus to perform the early viral functions immediately 

after infection of the host cell. 
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Figure 3.4. Infections of HFKs with different HPV18 quasivirus preparations. Primary HFKs 
were infected at an MOI of 100 with the indicated preparations of HPV18 quasivirus. RNA was 
collected at 72 hpi and viral transcripts were quantified by RT-qPCR and normalized to cellular TBP. 
Data are presented as fold change over religated, unreplicated quasivirus. N=3 biological replicates of 
infection. Error=SD. Significance determined by an unpaired t-test. *=p<0.05 **=p<0.01 
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Inducing Replication of the Viral Genomes in 293TT Packaging Cells 

293TT cells are not the natural host of papillomaviruses and the genome is 

unable to transcribe the viral proteins E1 and E2 necessary for replication of the viral 

genome. It would be advantageous to induce viral DNA replication inside these 

packaging cells for three reasons. Firstly, it might increase the maximum yield from 

each quasivirus preparation as there is a limit on how much HPV DNA can be 

transfected into the cells. Thus, one way to increase the number of viral genomes 

being packaged is to induce replication inside the 293TT cells. Secondly, we 

theorized that this would improve the packaging efficiency (genomes per particle) by 

increasing the ratio of genomes to L1 and L2 proteins inside the packaging cell. 

Lastly, nucleosomes preferentially associate with newly replicated DNA [227-229]. 

Given our interest in the virally packaged chromatin, it was especially important to 

optimize the physiological relevance of the packaged quasivirus chromatin. To induce 

replication of the viral genome inside the packaging cells, we transfected 293TT cells 

with either a recircularized or minicircle HPV18 genome, the L1/L2 expression 

plasmid, and plasmids expressing codon-optimized version of the viral replication 

proteins E1 and E2 [203]. 

To determine whether replicating viral genomes inside 293TT cells would 

result in higher titers and improved packaging, we prepared quasivirus stocks by co-

transfection of either the codon optimized E1/E2 expression plasmids or empty vector 

controls with both traditionally recircularized and minicircle HPV18 genomes. After 

virion extraction, the preparations were digested with DNase I to remove any residual 
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DNA outside the capsid and the viral genomes were extracted from the capsid and 

quantitated by qPCR for HPV18 DNA. As shown in Figure 3.3A, quasivirus 

preparations produced with the E1/E2 co-transfection had significantly higher titers of 

HPV18 for both religated and minicircle genomes. To determine if the replicated 

quasivirus preparations simply had more particles or had a higher genome to particle 

ratio (better packaging), we quantitated the amount of virion particles by calculating 

the amount of the viral L1 protein by separating virion preparations on a SDS-PAGE 

gel stained with total protein stain alongside known quantities of BSA. Quasivirus 

preparations produced with replicated genomes had comparable concentrations of 

virions to those made with unreplicated genomes (Figure 3.3B). As shown in Figure 

3.3C, the E1/E2 replicated quasiviruses had far higher numbers of packaged HPV 

genomes per particle for both genome types. The overall yield of quasiviruses 

improved as well with E1/E2 replication in the packaging cells (Figure 3.3D). The 

combined data suggest that viral genome replication inside 293TT packaging cells 

during routine quasivirus production not only increases the yield of quasivirus 

preparations, but also the physiological relevance by decreasing the relative 

percentage of “cold” capsids (without viral genomes) that could interfere with 

infection of “hot” capsids containing viral genomes. 

To see if genome replication inside the packaging cells during quasivirus 

production would impact the infectivity of these preparations, we infected primary 

HFKs at an MOI of 100. At 72 hpi RNA was harvested. To quantitatively evaluate 

the infections, RT-qPCR was performed to detect the spliced viral transcripts E1^E4 

and E6*I. The levels of viral transcripts were normalized to that of the cellular control 
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gene TBP. Cells infected with quasiviruses with genomes that were replicated in 

293TT cells showed a decrease in early viral transcription at 72 hours compared to 

genomes that had not been replicated (Figure 3.4). Additionally, we observed that the 

differences in transcriptional activity from religated and minicircle genomes 

disappeared after genome replication in 293TT cells (Figure 3.4). Therefore, 

replication of the viral genomes during packaging of HPV quasiviruses reduces early 

transcription shortly after infection. 

“Ripcord” Production of HPV Quasiviruses 

One of the major drawbacks of the existing quasivirus production method is that the 

preparations contain virions that package linearized cellular DNA. This is due to the 

addition of the nucleases Benzonase and Plasmid Safe during the maturation step. 

They serve to increase yield by freeing virions stuck to cellular DNA but, 

consequently, the host genome is cleaved into lengths of DNA the same size, or 

smaller, than the HPV genome. As the structural capsid proteins L1 and L2 

promiscuously package essentially any DNA ~8 kb or smaller without sequence 

specificity, the spontaneously self-assembling virions can result in particles 

containing cellular DNA.  

To increase the particle to infectivity ratio, we produced quasiviruses using 

the “Ripcord” method developed for HPV pseudoviruses by the Buck Laboratory 

[31]. In this protocol, during the maturation step, the DNases are omitted and RNases 

A and T1 are added instead. Additionally, the concentration of NaCl is lowered to 

reduce the solubility of capsids that are not fully matured. To determine if this would 

also enrich for HPV18 genome containing particles in quasivirus preparations, we 
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measured the viral titer of virions in ripcord and traditionally prepared quasivirus 

preparations. As expected, ripcord quasivirus preparations had a significantly reduced 

viral genome equivalents per µl (Figure 3.5A). Ripcord preparations also had a 

significantly reduced concentration of virions (Figure 3.5B). However, the percent of 

capsids containing genomes was higher in the ripcord preparations than the controls 

(Figure 3.5C). To assess whether this would result in increased infectivity, primary 

HFKs were infected at an MOI of 100 with either ripcord or normal quasivirus 

preparations. At 72 hpi, RNA was collected and RT-qPCR was performed for spliced 

early viral transcripts and viral genome replication. In agreement with our hypothesis, 

cells infected with ripcord quasiviruses had substantially higher levels of early viral 

transcripts than those infected with traditionally prepared quasiviruses (Figure 3.6A 

and B). The results suggest that the “ripcord” maturation technique substantially 

improves quasivirus infection of keratinocytes. 
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Figure 3.5. Yield and packaging of HPV18 quasivirus preparations produced with the “ripcord” 
maturation method. HPV18 quasiviruses were produced either by the “ripcord” method or traditional 
maturation and quantified. A) Viral genomes were extracted from virions and quantitated by qPCR. B) 
Quasivirus preparations were separated by SDS-PAGE alongside a standard curve of known protein 
amounts. Gel was stained with Sypro Ruby and imaged. Standard curve was used to calculate quantity 
of virions. C) Packaging efficiency of quasivirus preparations. N=3 independent preparations. 
Error=SD. Significance determined by unpaired t-test. n.s.=not significant. **=p<0.01 
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Figure 3.6. Infections of HFKs with ripcord HPV18 quasiviruses. Primary HFKs were infected at 
an MOI of 100 with ripcord or traditionally prepared HPV18 quasivirus. At 72 hpi, RNA was collected 
and viral transcripts were quantified by RT-qPCR. A) Viral transcripts E1^E4 and E6*I normalized to 
cellular gene TBP. B) Data presented as fold change over traditional quasivirus preparations. N=2 
biological replicates of infection. Error=SD. 
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Infection-Based Keratinocyte Colony Formation Assay to Study Viral 

Establishment 

The quasivirus infection system is useful for studying early events in the viral 

life cycle, but we wanted to extend this to analyze and measure the establishment of 

the viral genome in infected cells. Recombinant HPV genomes with selectable genes 

inserted into the late region have been previously developed in our laboratory (Figure 

3.7). A cassette containing a gene conferring resistance to the antibiotic neomycin 

was inserted into wildtype and E1 mutant (replication incompetent) HPV18 genomes. 

Cells that established the wildtype HPV18neo genome as an extrachromosomal 

replicon exhibited resistance to neomycin and formed colonies under selection [204]. 

To determine whether these genomes could be delivered by infection, we packaged 

the HPV18neo genome in HPV16 capsid proteins in 293TT packaging cells. 
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Figure 3.7. HPV18neo genome. The cassette conveying resistance to neomycin is inserted into the 
late region at Asp718 sites (indicated by dashed lines). Adapted from [204]. 
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To determine whether the genomes delivered by infection could be established 

as replicating extrachromosomal elements that immortalized primary keratinocytes, 

we infected primary HFKs with neomycin marker quasiviruses at an MOI of 100. At 

48 hpi, we began selection with 50 μg/ml neomycin for either seven days (short 

selection scheme) or continuously (long scheme). The two separate selection schemes 

allow us to distinguish between colonies that formed due to transient expression of 

the neomycin resistance gene and those that formed due to an established, persistently 

replicating viral genome. Cells were cultured for an additional 14 days until colonies 

were visible before being fixed in formalin and stained with methylene blue. Plates 

that underwent the “short” selection scheme showed large colonies in cells infected 

with the wildtype marker quasivirus, and smaller colonies in those infected with the 

replication incompetent E1 mutant genome (Figure 3.8A). The colonies of cells that 

underwent continuous G418 selection were smaller overall and markedly reduced in 

number (Figure 3.8B). In all cases, no colonies appeared on the mock infected plates. 

There were far fewer colonies in plates infected with the E1 mutant genome. 

Therefore, viral DNA replication is required for the establishment of persistent 

infection. 
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Figure 3.8. Recombinant HPV18 neo quasiviruses establish long-term infections in primary 
HFKs. A) HPV18neo and HPV18E1mutneo marker quasiviruses were used to infect primary HFKs at 
an MOI of 100 and selected with 50 μg/ml G418 selection for either seven days (short) or continuously 
until staining. After 16 days feeders were removed, and keratinocyte colonies were stained with 
methylene blue. B) Quantification of colonies in A. N=3 biological replicates. Error=SD. C) 
HPV18neo and HPV18E1mutneo marker quasiviruses were used to infect primary HFKs at an MOI of 
100 and selected with 50 μg/ml G418 selection for continuously until colonies formed. At 16 dpi, two 
colonies were transferred to individual plates and cultured for three passages under continual selection. 
DNA was extracted and a southern blot was performed to detect extrachromosomal HPV18 DNA. A 
and B adapted from [204]. 
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To ensure colony formation was the result of the marker genome establishing 

as a persistently maintained episome and not as a result of viral integration into the 

host chromosomes, we repeated the colony formation assay with the wildtype and E1 

mutant neomycin HPV quasiviruses. The colonies that formed were separately 

transferred to individual plates. The cells were able to proliferate in the presence of 

continual selection for at least three passages. DNA was collected and a southern blot 

was performed to detect extrachromosomal HPV DNA. As shown in Figure 3.8C, 

cells infected with wild type neomycin marker genomes contained extrachromosomal 

plasmids. Therefore, the infection-based colony formation assay is a powerful tool to 

study the establishment of persistent infection. 

Large T Directed Replication of HPV Genomes in 293TT Cells During 

Quasivirus Production 

In the HPV18neo genome, the neomycin resistance cassette is driven by an 

SV40 promoter/ori element. In SV40, the enhancer/promoter and replication origin 

overlap, and this could have the advantage of allowing the HPV18neo genome to 

replicate in the 293TT packaging cells, which stably express the SV40 Large T 

antigen. However, the neomycin resistance cassette was derived from a plasmid that 

was devoid of CpG dinucleotides to avoid deleterious effects on expression and 

persistence of the transgene [230, 231]. This could potentially render the SV40 origin 

of replication nonfunctional. Therefore, we reinstated the CpG dinucleotides in the 

SV40 origin of replication by gene synthesis. The CpG free and SV40WT HPV18neo 

genomes were transfected into 293TT cells with the plasmid expressing the HPV16 

structural proteins L1 and L2. Quasiviruses were isolated and the genomes were 
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extracted. The extracted viral genomes were digested with either DpnI or MboI to 

differentiate between genomes that had been replicated in the 293TTs and those that 

had not. Quasivirus genomes with the native SV40 origin had significantly higher 

levels of unreplicated (Figure 3.9A), replicated (Figure 3.9B), and total HPV18 DNA 

(Figure 3.9C). The CpG free genome did not replicate at all. As the concentration of 

viral particles in the two preparation was equivalent (Figure 3.9D), the packaging 

efficiency was significantly higher in quasiviruses with the native SV40 origin 

(Figure 3.9E). Taken together, the data show that Large T directed replication of the 

recombinant viral marker genome improves the production of marker genome 

quasiviruses. 
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Figure 3.9. Viral titer and virion yield of HPV18neoSV40 quasiviruses. HPV18 marker genomes 
containing a neomycin resistance cassette with a wild type or CpG free SV40 origin of replication were 
produced. Viral genomes were extracted from the virions and digested with MboI or DpnI to 
differentiate between unreplicated and replicated viral DNA. HPV18DNA was quantitated by qPCR. 
A) Unreplicated packaged viral genome equivalents. B) replicated packaged viral genome equvialents. 
C) total packaged viral genome equivalents. D) Quasivirus preparations were separated by SDS-PAGE 
alongside a standard curve of BSA. Gel was stained with Sypro Ruby and imaged. Standard curve used 
to calculate quantity of virions. E) Packaging efficiency of quasivirus preparations. N=2 to 4 technical 
replicates (viral preparations). Error=SD. Significance determined by unpaired t-test. *=p<0.05 
**=p<0.01 
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To determine if the increase in titer and packaging would affect the infectivity 

of these quasivirus preparations, we used the quasiviruses in an infection assay of 

primary HFKs. The level of early viral transcripts from the marker genomes with the 

native SV40 origin of replication was significantly lower than the transcripts from 

marker genomes with the mutated, CpG free SV40 origin (Figure 3.10A and B). 

However, the level of transcription from the neomycin resistance cassette was 

equivalent from both genomes (Figure 3.10C). Therefore, replication of the viral 

genome in packaging cells in a Large T-dependent manner has a deleterious effect on 

early viral transcription. 
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Figure 3.10. Infections of HFKs with HPV18neoSV40 quasiviruses. Primary HFKs were infected at 
an MOI of 100 with neomycin resistance marker HPV18 quasiviruses with or without a wildtype SV40 
origin of replication. At 72 hpi, RNA was collected, and viral transcripts were quantified by RT-qPCR. 
A) Viral transcripts E1^E4 and E6*I were normalized to cellular gene TBP. B) Data presented as fold 
change from traditional marker genome. C) Transcription of the neomycin resistance gene. N=2 
biological replicates of infection. Error=SD. Significance determined by an unpaired t-test. n.s.=not 
significant. *=p<0.05 
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Discussion 

The use of minicircle HPV genomes for quasivirus preparations dramatically 

streamlines the production process and has biological advantages. The original 

method, which involved restriction digestion to free the genome from the backbone 

followed by a dilute ligation, precipitation, and resuspension generated multiple 

undesired ligation products. We found that there was no difference in the titer, yield, 

or packaging of quasivirus preparations made with minicircle genomes. The finding 

that viral transcription from these genomes was increased after infection shows that 

there are enhancements to the early viral lifecycle by using minicircle genomes in 

addition to the technical benefits. This is likely explained by the minicircle genomes 

having a more uniform and consistent template; they are essentially 100% genomic 

monomers while traditional quasiviruses package an assortment of ligation products 

that may be too large to be packaged or not be able to perform all viral functions. For 

genomes cloned into the plasmid backbone using EcoRI, the cleavage site disrupts the 

E1 ORF. An incorrectly religated genome would be unable to synthesize the 

replication proteins after infection, preventing the initiation of the early viral 

lifecycle. This idea is supported by the finding that the transcriptional benefit from 

minicircle genomes was decreased when the viral genomes were induced to replicate 

inside the 293TT packaging cells. Only properly religated viral genomes will 

replicate to form additional copies of the correct size, thereby reducing the relative 

advantage of minicircles. 

The ability to induce replication of the viral genome in 293TT cells has both 

technical advantages to aid the production process and increased physiological 
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relevance. Increasing the yield from each quasivirus preparation means that more 

infections can be done with a single preparation, decreasing the variability over 

multiple experiments. Furthermore, the increase in the infectivity to particle ratio 

improves the physiological relevance of our virus preparations. In natural infections, 

the percent of virions containing genomes is higher than in traditional quasivirus 

preparations. Despite our initial predictions that this improved packaging would 

improve infectivity, we saw a decrease in early transcription. Previous studies have 

shown that the genomes of native papillomavirus virions are tightly organized into 

nucleosomes [29]. Previous studies have shown that the ordering of nucleosomes 

differs on transfected DNA dependent on its replication state [232]. The positioning 

of nucleosomes can be transcriptionally repressive, possibly explaining the decreased 

transcription we observed from quasiviruses with replicated genomes [233]. While 

this reduces viral transcription, it is likely to increase the physiological relevance.  

Using the alternative “Ripcord” maturation protocol, we could greatly 

improve the infectivity of the infection assays of primary HFKs. We attribute this to 

two factors. Firstly, it is possible that the improved particle to infectivity ratio 

decreases the number of capsids without a viral genome competing for entry at the 

receptor, resulting in a higher percentage of infection events that result in productive 

viral processes. Secondly, as the maturation step of the “ripcord” process does not 

involve the addition of nucleases, and thus should drastically reduce the amount of 

cellular DNA of sufficiently small size to be packaged, there should be a sharp 

reduction in the proportion of “infections” delivering 293TT DNA to the host 

keratinocyte. We speculate that the delivery of large amounts of random linearized 
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segments of cellular genomic DNA would trigger an innate immune response in the 

host cell, possibly shutting down real viral transcription. We can reduce the MOI and 

still get useful levels of transcription and replication, again allowing for more 

physiologically relevant infections, and extending the number of replicates of 

infection that can be conducted per quasivirus preparation. 

Our initial results from the colony formation assay provided some insight into 

HPV establishment. We observed that not all cells that were successfully infected 

established as a persistent infection. Some of the cells would be initially resistant to 

the selection for several days, but then the colony would collapse (preliminary data, 

not shown). This suggests that there is an additional event or events that govern the 

transition from the immediate early lifecycle to the establishment of the genome as a 

persistently maintained plasmid and should be studied further. Transient colonies that 

formed under short selection in cells infected with the HPV18 E1 mutant neo genome 

do not represent true establishment. These cells transiently express the neomycin 

resistance gene and this allows them to survive for a few divisions. In addition, cells 

might be infected with multiple replication incompetent marker genomes that are 

partitioned to daughter cells, allowing survival until the selection was removed. 

Future work using these methods could involve using genomes with mutated viral 

genes, siRNA depletion or CRISPR-Cas9 deletion of host cell genes, or treatment 

with epigenetic modulators to gain more insight on the factors that govern HPV 

establishment. 

The ability to induce replication of the marker HPV genomes by utilizing the 

large T expressed in the 293TT packaging cells has several advantages. Firstly, it 
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eliminates the need to co-transfect the pMEP4-E2 and pMEP9-E1 plasmids. This had 

the benefit of reducing the amount of Lipofectamine needed for the transfection, 

reducing toxicity to the packaging cells, which may improve the overall yield of the 

preparation. Secondly, E2 (and E1) can be toxic to cells when expressed in high 

amounts, so the elimination of this protein could improve the health of the 293TT 

packaging cells. The relative levels of replicated HPV18 DNA packaged by the virion 

(~90%) are comparable to the previously reported levels of quasivirus preparations 

made with E1/E2 co-transfection [121]. We speculate that the decreased transcription 

from the Large T-replicated genomes is due to the same causative factor as for the 

E1/E2-replicated genomes. 

Overall, throughout this chapter we describe significant advancements to the 

quasivirus production method. We improved the workflow, allowing for easier and 

more high-throughput production. We also took a number of steps to improve the 

physiological relevance of the resulting virions, potentially making the infection 

assays more representative of natural infections, while still maintaining the 

advantages of the quasivirus system. In addition, the ability to package recombinant 

genomes with transgene expression cassettes expands the breadth of applications that 

the quasivirus system can be used for. Together, the work described in this chapter 

materially advanced and aided the work in the subsequent sections. 
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Chapter 4: Profiling of Chromatin Modifications Packaged in 

Papillomavirus Particles 

 

Coversheet 

Some of the work in this chapter was performed by our collaborators at the 

University of Pennsylvania. For the quasivirus and BPV mass spectrometry 

experiments, Jennifer Liddle (a postdoctoral fellow in the Weitzman/Garcia 

laboratories) performed the extraction of histones from control cells, derivatization 

and digestion of viral and cellular histones, the mass spectrometry analysis of the 

histone PTMs, and the quantification of the relative abundance of individual PTMs by 

searching the data with EpiProfile 2.1 software. For the HPV1 experiments, she 

performed the extraction of histones from the virions, in addition to the work 

described above. 

I performed all other experiments and data analyses. 
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Introduction 

Post-translational modification (PTM) of the histones in cellular chromatin 

modulates many cellular processes, such as transcription, DNA replication, DNA 

repair, and differentiation. In particular, PTMs of the core histone proteins H2A, 

H2B, H3, and H4 are key to this regulation. The genomes of several DNA viruses are 

bound by cellular histones to form chromatin at various stages of the lifecycle and 

this adds an additional layer of regulation to viral transcription and replication [171]. 

In turn, host cell epigenetic processes can also modify viral chromatin as part of the 

intrinsic immune response [234]. 

In papillomaviruses, chromatin modifications regulate many aspects of the 

viral lifecycle. Transcription of viral genes is regulated by methylation of viral DNA, 

nucleosome position, histone PTMs, and associated chromatin binding factors 

(reviewed in [235]). During persistent infection, the viral mini-chromosomes are also 

attached to specific regions of the host chromosomes to partition viral genomes to 

daughter cells [91, 236]. HPV proteins also manipulate the cellular chromatin 

modifying machinery in a manner beneficial to various viral functions. For example, 

the E6 protein from oncogenic HPVs manipulates the host histone acetyl transferase 

(HAT) Tip60 to modify cellular transcriptional pathways [186]. The other viral 

oncoprotein, E7, causes global epigenetic changes in host cells by interacting with the 

histone acetyltransferase (HAT) CBP/p300 and the lysine demethylase KDM6 [197]. 

A relatively novel feature of the Papillomaviridae is that the viral genomes 

are packaged in chromatin inside the viral capsid. The viral DNA is wrapped around 

host histones into about 30-32 nucleosomes inside the capsid [237]. The 
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Polyomaviridae also share this trait; however, most other DNA viruses package their 

genome either as naked DNA or utilize other non-histone DNA binding proteins. For 

example, adenovirus protein VII binds and condenses the viral genome prior to 

packaging [238]. On the other hand, the genomes of the Herpesviridae are not 

packaged in nucleosomes, but shortly after infection they become associated with 

histones for most of the lifecycle [239, 240]. Chromatinization of incoming naked 

viral DNA gives the cell an opportunity to deposit repressive chromatin in an anti-

viral manner, but viruses often manipulate and take advantage of these responses to 

promote the viral lifecycle (Reviewed in [170]). At the late stages of a herpesvirus 

infection, histones must be stripped off the genome during packaging, and the 

genome is encapsidated as naked DNA [241-243].  

It has been recognized for decades that papillomavirus DNA is packaged in 

nucleosomes within the virion [237], but little is known about the epigenetic 

modifications on the packaged chromatin. Chromatin modifications have the potential 

to regulate immediate early transcription, and thus represent an opportunity to gain 

insight into a critical phase of the viral lifecycle that has not been extensively studied. 

In this chapter, we profile the post translational modifications (PTMs) of histones 

packaged in HPV18 quasiviruses, as well as BPV1 and HPV1 virions isolated from 

warts. We show that wart derived virions contain histones enriched in modifications 

usually associated with “active” chromatin. 
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Results 

Chromatin Modifications Packaged in HPV18 Quasivirions 

Our initial experiments used HPV quasiviruses as they are the most easily 

produced papillomavirus virions that contain a full viral genome. Quasivirions were 

produced as described in Materials and Methods using an HPV18 minicircle genome 

(supercoiled, recircularized DNA generated in bacteria) that had been replicated in 

the 293TT packaging cells by co-transfection with E1 and E2 expression vectors (too 

large to be packaged). Replication was induced in the 293TT packaging cells because 

nucleosomes are more uniformly ordered on newly replicated DNA, and previous 

studies of the nucleosomes packaged in native papillomavirus virions indicated that 

their organization is relatively uniform  [229, 237]. After purification of the 

quasivirus particles on an Optiprep gradient, virion proteins from ~2.4 x 1012 virion 

particles (1.4 x 109 VGE) were denatured, separated by SDS-PAGE and stained with 

methylene blue. The canonical histone bands (H2A, H2B, H3 and H4) were extracted 

from the gel and processed for mass spectrometry analysis of PTMs (Figure 4.1). 

Histones from the 293TT packaging cells were acid extracted and used as “input” 

controls. 
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Figure 4.1. Overview of the histone isolation and mass spectrometry experimental workflows. 
Histones are extracted from virions or cellular controls and chemically derivatized by propionic 
anhydride. This restricts proteolytic digestion with trypsin to arginine residues, after which another 
round of propionylation of the N-termini of the resulting peptides is conducted. Samples are desalted 
and run through a C18 column before DIA MS/MS mass spectrometry analysis. 
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The highly modified N-terminal histone “tails” contain many basic residues 

that would be cleaved by the trypsin digestion used for standard mass spectrometry 

(Figure 4.2). To limit digestion, the histone samples were propionylated prior to 

trypsin digestion to block proteolytic cleavage of lysine residues (Figure 4.1). As a 

result, trypsin digestion creates longer, usable peptides (5-20 amino acids in length) 

by limiting cleavage to arginine residues (Figure 4.2). After trypsin digestion, another 

round of propionylation was conducted to reduce the charge of the peptides and to 

improve subsequent chromatographic retention. The peptides were separated by 

hydrophobicity on a C18 column and loaded into the mass spectrometer where data-

independent acquisition (DIA) analysis was performed. The data were analyzed using 

EpiProfile 2.3 software [209] that enables calculation of the relative abundance of the 

modification on each histone peptide. This process also allows for the determination 

of the relative amounts of different histone H3 variants (changes in the amino acid 

sequence of this histone protein) H3.1 and H3.3 (Figure 4.3). 
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Figure 4.2. Histone peptides generated from trypsin digest after propionylation. Common 
modifications on lysines residues are indicated. Arginine and lysine residues are highlighted. 
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Figure 4.3. H3 variants. Diagram of H3 variants H3.1, H3.2, and H3.3. Differences in amino acid 
sequence are indicated in red. 
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As shown in Figures 4.4 and 4.5, and in Supplementary Table 1, the HPV18 

quasiviruses contained histones with a wide variety of PTMs. The most common 

modifications detected on the N-terminus of Histone H3 (Figure 4.4) and H4 (Figure 

4.5) were methylation and acetylation of lysine residues. For the most part, the overall 

distribution of histone PTMs in the HPV18 virions was very similar to those of the 

host 293TT cells. However, some modifications were present at different abundances 

between the virus and host cell histone samples. On histone H3, the biggest changes 

were depletions of acetylation of H3K14 (H3K14ac), dimethylation of H3K27 

(H3K27me2), and the combinatorial modification H3K27me2K36me2 (Figure 4.4B, 

D, and E). We also detected a slight increase in H3K18ac in the quasivirus (Figure 

4.4C). For histone H4, the quasivirions had a small increase in acetylation of lysine 5 

by itself, and in combination with lysines 8, 12, and 16 (H4K5ac K8ac K12ac K16ac) 

(Figure 4.5A, Supplementary Table 1). There was also a decrease in acetylation of 

K16 (Figure 4.5A). Overall, these differences were quite small; even those that were 

statistically different (by an unpaired T-test) were rarely greater than two-fold. 
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Figure 4.4. Mass spectrometry analysis of PTMs on histone H3 from HPV18 quasiviruses and 
293TT control cells. Data are presented as the relative abundance of the given modification as a 
percentage of total modified and unmodified peptides. A) TKQTAR, histone H3 amino acids 3-8. B) 
KSTGGKAPR, histone H3 amino acids 9-17. C) KQLATKAAR, histone H3 amino acids 18-40. D) 
KSAPATGGVKKPHR, histone H3 amino acids 27-40. E) KSAPSTGGVKKPHR, histone H3.3 amino 
acids 27-40. N=3 technical replicates. Error=SD. 
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Figure 4.5. Mass spectrometry analysis of PTMs on histone H4 from HPV18 quasiviruses and 
293TT control cells. Data are presented as relative abundance of the given modification as a 
percentage of total modified and unmodified peptides. A) GKGGKGLGKGGAKR, histone H4 amino 
acids 4-17. B) KVLR, histone H4, amino acids 20-23) N=3 technical replicates. Error=SD. 
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Overall, these data show that the HPV capsid is biochemically able to package 

canonical histones containing all of the most common PTMs; no modifications were 

detected in the cellular histones that were not also present on the viral samples. The 

relative abundance of the histone modifications in the virion was very similar to those 

found in the control host cells (Supplementary Table 1 and Figures 4.4-4.5). Taken 

together, the data suggest that the epigenomes of HPV quasiviruses and their 293TT 

producer cells are quite similar and there is no overall preference, biochemically or 

structurally, in packaging histone with specific PTMs. These data also demonstrate 

that our methods can detect and quantify individual PTMs on histone peptides and 

compare relative levels between virion and cellular samples. Therefore, our pipeline 

can be used for other virion and cellular sample types. 

Chromatin Post-Translational Modifications in BPV1 Virions extracted from 

Bovine Warts 

Next, we analyzed the chromatin content of native papillomavirus virions. For 

the most physiological relevance, we used virions produced by natural infections of 

papillomaviruses. One source of this type of papillomavirus virion is the wart tissue 

from cows experimentally infected with bovine papillomavirus 1 (BPV1) [119]. 

BPV1 virions were extracted from three separate batches of wart tissue 

isolated from BPV1 infected cows. Briefly, the wart tissue was minced, lysed with 

detergent, and digested with nucleases and collagenase. Next, the samples were salt 

extracted and “cushioned” before isolating by ultracentrifugation (overview in Figure 

4.6). Fractions were collected dropwise from the bottom of the gradient (Figure 

4.7D). Each fraction was tested for the presence of BPV L1 and histone H3 by 
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immunoblot (Figure 4.7A and B) and BPV1 DNA by qPCR (Figure 4.7C). 

Additionally, fractions were stained for total protein with Sypro Ruby (Figure 4.7A). 

Fractions positive for all three components were selected and pooled. To confirm the 

virions were intact, selected fractions were imaged by transmission electron 

microscopy (TEM). As shown in Figure 4.7E, the virion samples contained mostly 

intact capsids of the correct size and morphology. 
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Figure 4.6. Isolation of BPV virions from bovine wart tissue.   
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Figure 4.7. Selection of BPV1 positive fractions. 200 µL fractions were collected dropwise from the 
bottom of the BPV isolation gradient. A) Each fraction was separated by SDS-PAGE and stained for 
total protein with Sypro Ruby (top), immunoblotted for BPV L1 (middle), and histone H3 (bottom). B) 
Quantification of immunoblots in A. C) Fractions were measured for BPV1 DNA by RT-qPCR. D) 
Photograph of gradient, black arrow indicates direction of fraction collection, green arrow indicates 
approximate location of migration of BPV virions. E) Transmission electron micrograph of isolated 
BPV virions. Data are representative of 15 independent experiments. 
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Papillomaviruses are assembled in the superficial, differentiated layers of the 

host epithelium. Therefore, primary bovine keratinocytes (BEK6) were cultured 

under three conditions to serve as cellular controls for the experiments. Keratinocytes 

were grown under normal proliferative conditions; they were also induced to 

differentiate by growing to confluence and adding high levels of calcium; and finally, 

bovine keratinocyte 3D-oranotypic rafts were prepared (Figure 4.8A). Histones were 

extracted from the wart and cellular control samples using the same protocol 

described above for the quasivirus and 293TT cellular samples. Histone PTMs were 

identified by quantitative mass spectrometry and the relative abundance of each 

modification was calculated. Similar to the preliminary data with quasiviruses, the 

natural viral capsids contained histones with each modification detected in the 

cellular controls. However, in contrast to the quasiviruses, the bovine wart derived 

virus had a considerably different distribution of post translational modifications as 

compared to the cellular controls (Figures 4.9-4.15A, Supplementary Table 2). 
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Figure 4.8. Hematoxylin and Eosin stain of primary keratinocyte 3D organotypic raft culture. 
Primary bovine (A) or human (B) keratinocytes were grown in organotypic raft culture, sectioned, and 
stained.  
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Figure 4.9. Mass spectrometry analysis of PTMs on amino acids 3 to 8 from histone H3 of BPV1 
virions and bovine keratinocytes. Data are presented as relative abundance of the given modification 
as a percentage of total modified and unmodified peptides. (A) Total modifications detected on peptide 
TKQTAR, histone H3 amino acids 3-8. B-F) Relative abundance of individual modifications. 
Significance was determined by an unpaired t-test. *=p<0.05 **=p<0.01 N=3 biological replicates. 
Error=SD.  
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Figure 4.10. Mass spectrometry analysis of PTMs on amino acids 9 to 17 from histone H3 from 
BPV1 virions and bovine keratinocytes. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A) Total modifications 
detected on peptide KSTGGKAPR, histone H3 amino acids 9-17. B-G) Relative abundance of 
individual modifications. Significance was determined by an unpaired t-test. n.s.=not significant 
*=p<0.05 **=p<0.01 ***=p<0.001 N=3 biological replicates. Error=SD. 
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Figure 4.11. Mass spectrometry analysis of PTMs on amino acids 18 to 26 from histone H3 of 
BPV1 virions and bovine keratinocytes. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A) Total modifications 
detected on peptide KQLATKAAR histone H3 amino acids 18-26. B-D) Relative abundance of 
individual modifications. Significance was determined by an unpaired t-test. n.s.=not significant 
*=p<0.05 **=p<0.01 N=3 biological replicates. Error=SD. 
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Figure 4.12. Mass spectrometry analysis of PTMs on amino acids 27 to 40 from histone H3 of 
BPV1 virions and bovine keratinocytes. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A) Total modifications 
detected on peptide KSAPATGGVKKPHR, histone H3 amino acids 27-40. B-E) Relative abundance 
of individual modifications. Significance was determined by an unpaired t-test. n.s.=not significant 
*=p<0.05 **=p<0.01 N=3 biological replicates. Error=SD. 
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Figure 4.13. Mass spectrometry analysis of PTMs on amino acids 27 to 40 from histone H3.3 of 
BPV1 virions and bovine keratinocytes. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A) Total modifications 
detected on peptide KSAPSTGGVKKPHR histone H3.3 amino acids 27-40. B-F) Relative abundance 
of individual modifications. Significance was determined by an unpaired t-test. n.s.=not significant 
*=p<0.05 **=p<0.01 ***=p<0.001 N=3 biological replicates. Error=SD. 
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Figure 4.14. Mass spectrometry analysis of PTMs on amino acids 4 to 17 of histone H4 of BPV1 
virions and bovine keratinocytes. Data are presented as relative abundance of the given modification 
as a percentage of total modified and unmodified peptides. (A) Total modifications detected on peptide 
KVLR, histone H4, amino acids 20-23. B-I) Relative abundance of individual modifications. 
Significance determined by unpaired t-test. *=p<0.05 **=p<0.01 ***=p<0.001 N=3. Error=SD. 
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Figure 4.15. Mass spectrometry analysis of PTMs on amino acids 20 to 23 from histone H4 of 
BPV1 virions and bovine keratinocytes. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A) Total modifications 
detected on peptide KVLR, Histone H4, amino acids 20-23. B-I) Relative abundance of individual 
modifications. Significance was determined by an unpaired t-test. N=3 biological replicates. Error=SD. 
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Overall, the BPV virions were enriched in acetylated histone H3. We detected 

significant enrichment of acetylation on multiple lysines: H3K4 (Figure 4.9E), 

H3K14 (Figure 4.10D), and H3K18 (Figure 4.11B). There was also a large, but not 

statistically significant, increase in H3K23ac levels detected (Figure 4.11C). 

Furthermore, several combinations of these acetylated lysines were enriched in the 

virions, most significantly for K9acK14ac (Figure 4.10G) and K18acK23ac (Figure 

4.11D).  

There were also significant differences in the methylation patterns of virion-

derived histone H3. The virions had much higher levels of the modifications mono-, 

di-, and tri- methylated K4 lysine, which are associated with active chromatin (Figure 

4.9B-D). Conversely, the virions were strongly depleted for di- and tri-methylation of 

both the K9 (Figure 4.10B, C) and K27 (Figure 4.12B, C and Figure 4.13B, C) 

residues that are usually associated with repressed chromatin. An exception was that 

methylation of the K27 residue was not significantly depleted on variant H3.3 when 

compared to the organotypic raft cultured keratinocyte (Figure 4.13B, C). While there 

were only small differences in the methylation of K36 by itself, there was an 

enrichment for combinational marks such as K27me2K36me1 and K27me3K6me1 

(Figure 4.12D, E and Figure 4.13D, E). K27me3K36me2 was higher in the virion 

only on H3.3 (Figure 4.13F). 

We also detected changes in the relative abundance of combinatorial 

modifications with acetylation of one lysine and methylation of another. Acetylation 

of K14 paired with monomethylation of K9 was increased in the virions compared to 
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control cells, while the pairing with dimethylation of H3K9 was decreased (Figure 

4.10 E and F). 

To confirm the initial observations of the mass spectrometry screen, we 

performed immunoblots using antibodies specific to each of the H3 PTMs that 

showed the greatest enrichment in the virions compared to control cells. As shown in 

Figure 4.16A and C, the signal of H3K4me1, H3K4me3, H3K9ac, H3K14ac, 

H3K18ac, and H3K23ac were much higher in the virion samples compared to cellular 

controls, when the samples were normalized to the level of total histone H3 (Figure 

4.16B). This is in agreement with the initial observations in the mass spectrometry 

experiments (Figure 4.9-4.11). 
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Figure 4.16. BPV Virions were enriched in Histone H3 PTMs associated with transcriptional 
activation. A) Representative immunoblots of BPV virions and bovine keratinocyte control cells using 
antibodies against indicated PTMs of histone H3. B) Immunoblots from A were stripped and re-probed 
with antibody against all forms of histone H3 as a loading control. C) Quantification of the 
representative immunoblots shown in A. A.U.=arbitrary units. N=2 biological replicates. 
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To further confirm the increased acetylation of histone H3 in the BPV virions, 

we performed acid-urea (AU) PAGE. In AU PAGE, proteins are separated on the 

basis of size and charge. Acetylation of lysines reduces their positive charge, and so 

histones with a higher degree of acetylation will migrate more slowly through the gel. 

This technique allows us to examine overall protein acetylation levels without the 

need for specific antibodies against every possible lysine modification. As shown in 

Figure 4.17, more of the signal from the histones extracted from BPV virions was in 

the slower migrating, upper bands, when compared to the cellular lanes. This supports 

the mass spectrometry data that indicated that H3 proteins packaged in the virions are 

acetylated to a higher degree than those of the cellular controls (Figure 4.9-4.11). 
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Figure 4.17. Immunoblot of Histone H3 modified species separated by AU-PAGE. Histones were 
acid extracted from BPV1 virions and bovine cellular controls, separated by acid-urea PAGE, and 
transferred to a membrane. Immunoblot was performed using an antibody against all forms of H3. 
Slower migrating, upper bands correspond to an increase in acetylation of H3 lysines. N=1. 
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We also used immunoblots to confirm that the bovine virions were depleted 

for repressive methylation of H3 lysines 9 and 27. As shown in Figure 4.18A and C, 

the virion samples had dramatically lower signal for H3K9me3 compared to the 

cellular controls, in agreement with the mass spectrometry data (Figure 4.10C). 

However, in the immunoblots for H3K27me3 the signal from the virion samples was 

only lower than the calcium differentiated samples, and slightly from that of the raft 

(Figure 4.18 B and C), in contrast to the mass spectrometry data (Figure 4.12C). 
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Figure 4.18. BPV Virions are depleted for PTMs on histone H3 associated with transcriptional 
repression. A) Top, representative immunoblot of BPV virions and bovine keratinocyte control cells 
using antibodies against H3K9me3. Bottom, immunoblot was stripped and re-probed with antibody 
against all forms of histone H3 as a loading control. B) Top, representative immunoblot of BPV virions 
and bovine keratinocyte control cells using antibodies against H3K27me3. Bottom, immunoblot was 
stripped and re-probed with antibody against all forms of histone H3 as a loading control. C) 
Quantification of modification from the representative immunoblots shown in A and B. A.U.=arbitrary 
units. N=2 biological replicates. 
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Acetylated lysines were also enriched in histone H4, with K5, K8, and K12 

being more heavily acetylated in the virion than the growing and differentiated 

cellular controls (Figure 4.14B, C, D). Furthermore, the level of combinatorial 

acetylation of several lysines was higher in the virions; K5acK8ac, K8acK16ac, 

K5acK8acK12ac, K18acK12acK16ac, and K5acK8acK12acK16ac were enriched in 

the virions (Figure 4.14, E, F, G, H, and I). Contrariwise, levels of H4K16ac were 

higher in the control keratinocytes, although only with statistical significance in the 

raft samples. No consistent trend was found for the methylation of lysines on H4 

(Figure 4.15). 

To confirm the enrichment in lysine acetylation of H4 packed in BPV virions, 

we performed immunoblots using antibodies specific to H4 acetylated on several 

different lysines. The native BPV virions showed considerably higher levels of 

H4K5ac, H4K8ac, and H4K12ac when compared to the control keratinocytes (Figure 

4.19A, B, and C). Additionally, the virion samples had significantly higher signal of 

the combinatorial modification of tetra-acetylated H4K5ac/K8ac/K12ac/K16ac 

(Figure 4.19A, B, and C). Together these data show that bovine papillomavirus 

virions contain histone H4 with higher levels of acetylated lysines than host 

keratinocytes, which is in agreement with our initial observations from mass 

spectrometry. 
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Figure 4.19. BPV Virions are enriched in acetylated Histone H4. A) Immunoblots of BPV virions 
and bovine keratinocyte control cells using antibodies against indicated PTMs of Histone H4. B) 
Immunoblots were stripped and reprobed with antibody against histone H3 to ensure even loading. C) 
Quantification of immunoblots in A. A.U.=arbitrary units. N=1 biological replicate. 
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Histone Modifications in Wart Derived HPV1 Virions 

It was important to confirm these findings in HPV, but isolation of large 

amounts of HPV virions from warts arising from natural infections is difficult. 

Nonetheless, our collaborators were able to isolate sufficient quantities of HPV1 

virions from an HPV-positive wart from the wrist of a patient to perform quantitative 

histone PTM mass spectrometry.  

We used primary human keratinocytes as control cells. Primary human 

foreskin keratinocytes (HFKs) were cultured in three conditions: normally 

proliferating cells; cells differentiated with high calcium; and 3D organotypic rafts 

(Figure 4.8B). Using the same methods as the bovine experiments, histones were 

extracted from the human virions and the cellular controls and were analyzed for 

histone PTMs and variants by quantitative mass spectrometry. Just as we saw in the 

native bovine samples, the wart derived human virions had a noticeable difference in 

the overall distribution of PTMs on Histone H3 (Figure 4.20A-E, Figure 4.21A-B, 

Supplementary Table 3). 
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Figure 4.20. Mass spectrometry analysis of PTMs on histone H3 from HPV1 virions and primary 
HFK control cells. Data are presented as relative abundance of the given modification as a percentage 
of total detected on that peptide. A) TKQTAR, Histone H3 amino acids 3-8. B) KSTGGKAPR, 
Histone H3 amino acids 9*17. C) KQLATKAAR histone H3 amino acids 18-26. D) 
KSAPATGGVKKPHR, histone H3 amino acids 27-40. E) KSAPSTGGVKKPHR histone H3.3 amino 
acids 27-40. N=2 technical replicates. Error=SD. 
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Figure 4.21. Mass spectrometry analysis of PTMs on Histone H4 from HPV1 virions and 
primary HFK control cells. Data are presented as relative abundance of the given modification as a 
percentage of total detected on that peptide. A) GKGGKGLGKGGAKR, Histone H4 amino acids 4-
17. B) KVLR, histone H4, amino acids 20-23. N=2 technical replicates. Error=SD. 
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In agreement with the data from BPV1 virions, the HPV1 virions were 

enriched in acetylated lysines on histone H3, primarily on lysines 9, 14, 18, and 23 

(Figure 4.22C, D, F, and G). The combinatorial modification K9acK14ac was also 

several fold higher in the virus samples compared to cell extracts (Figure 4.22E). 
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Figure 4.22. Mass spectrometry analysis of PTMs on amino acids histones H3 and H4 of HPV1 
virions and primary HFK control cells. Data are presented as relative abundance of the given 
modification as a percentage of total modified and unmodified peptides. (A-L) Relative abundance of 
individual modifications. Significance determined by an unpaired t-test. n.s.=not significant. *=p<0.05 
**=p<0.01 ***=p<0.001 ****=p<0.0001 N=2 technical replicates. Error=SD. 



 

 

125 
 

 

In further agreement, the human virions were depleted for tri-methylation on 

K9 and tri-methylation K27 of H3 (Figure 4.22B and I). The human virions were 

enriched for H3K27me2 (Figure 4.22H). There was additional depletion of H3K9me1 

(Figure 4.22A), unlike the bovine samples that were depleted for H3K9me2. Another 

difference between the human and bovine virions is that the former did not show any 

enrichment in K4 methylation, except in K4me1 when compared to the raft 

keratinocytes (Supplementary Table 3). We also detected lower levels of the 

combinatorial modifications K3H27me1K36me2 and H3K27me3K36me1 (Figure 

4.22J and K). 

The distribution of modifications on histone H4 were more similar between 

the HPV virions and control cells, though there were still some differences (Figure 

4.21A and B, Supplementary Table 3). Most notably, H4K8acK16ac was 

significantly depleted in the virions compared to the growing and calcium treated 

HFKs (Figure 4.22L). There were several additional differences that had statistical 

significance, all compared to the growing cellular samples only; the virion was 

depleted for H4K16ac, K12acK16ac, and was enriched for K5ac (Supplementary 

Table 3). 

In conclusion, the data show that wart derived human virions are enriched in histone 

post translational modifications that are associated with transcriptional activation 

when compared to the primary human foreskin keratinocyte control cells. 

Correspondingly, the data indicate that these virions are depleted for transcriptionally 
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repressive histone PTMs. This is in agreement with the data from the wart derived 

BPV virions. 

Histone Variants in Papillomavirus Virions 

In addition to histone PTMs and the differences in their relative abundance in 

the samples, we were also interested to see if there were differences in histone 

variants. These are histone proteins that have slight differences in amino acid 

sequence and are expressed from different genes. For example, the histone variant 

H3.3 has a four amino acid difference from the canonical variant H3.1 (Figure 4.3). 

Using mass spectrometry, the amount of H3.3 to total H3 was found to be five to 

eight-fold higher in the native bovine virions than the cellular controls (Figure 

4.23A). To confirm this strong enrichment of H3.3, we performed immunoblots with 

antibodies specific to H3.3 (Figure 4.23D). The BPV virions were the only samples 

with detectable levels of H3.3 on the blot (Figure 4.23E). Additionally, we separated 

H3.1 and H3.3 on the basis of hydrophobicity using Triton Acid Urea (TAU) PAGE 

and immunoblotted using an antibody against all variants of H3 (Figure 4.23F). This 

confirmed a higher ratio of H3.3:H3.1 in the virion samples compared to the controls, 

in agreement with the mass spectrometry data (Figure 4.23G). The wart derived HPV 

virions were also enriched in H3.3 by a factor of 3-5 fold (Figure 4.23B). In 

comparison, the HPV quasivirions did not shown any enrichment of H3.3; the H3.3 

levels were not significantly different from that of the control cells (Figure 4.23C). 

Overall, the data strongly suggest that wart derived virions are enriched in the histone 

H3.3. 
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Figure 4.23. Wart derived virions are enriched in the histone H3 variant H3.3. A) Mass 
spectrometry data of the amount of H3 variant H3.3 relative to total H3 levels of BPV1 virions and 
bovine control cells. N=3 biological replicates. B) Mass spectrometry analysis of the abundance of H3 
variant H3.3 relative to total H3 levels of HPV1 virions and primary human control cells. N=2 
technical replicates. C) Mass spectrometry analysis of H3 variant H3.3 in HPV18 quasivirions 
compared to packaging cells. N=3 technical replicates. Significance was determined by an unpaired t-
test. **=p<0.01 ****=p<0.0001. D) Representative immunoblot of BPV1 and bovine control cells 
with antibody against H3.3 (top) and all forms of H3 (bottom). N=2. E) Quantification of immunoblot 
in D. A.U.=arbitrary units. F) Representative H3 immunoblot from TAU PAGE gel of BPV and 
control keratinocytes. N=2 biological replicates. G) Quantification of blot in F. Data are presented as 
percent intensity of bottom band compared to sum of both bands. Error=SD. 
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Discussion 

In this study we have used mass spectrometry to profile the chromatin of HPV 

quasiviruses and showed that they contain nearly all histone modifications found in 

the cellular controls, indicating that the capsid did not exclude any modifications on 

the basis of space or chemical compatibility. However, due to the need to extract the 

histones from an SDS-PAGE gel as part of the mass spectrometry workflow, the data 

did not include any of the larger histone variants (such as macro H2A) or the larger 

histones, such as H1. The finding that the quasivirus chromatin profile was very 

similar to that of the 293TT packaging cells was not surprising; due to the 

promiscuous nature of L1 and L2 spontaneous self-assembly, the majority of 

chromatin packaged by quasiviruses is cellular genomic chromatin [220]. We suspect 

that the vast majority of the signal in these experiments is from histones bound to the 

cellular genome, not specifically to the viral DNA. However, these findings provide a 

good control for our methodology by proving that the enhanced histone modifications 

found in the BPV1 and HPV1 preparations are not artifactual. 

Future follow up studies could examine quasivirus preparations made using 

the “Ripcord” method (described in Chapters 2 and 3) to enrich for particles 

containing only the viral genome to see whether any trends become more apparent. 

Despite their many advantages as a model system for early HPV infection (discussed 

in Chapter 3), these results indicate that quasivirions are not an ideal model for 

studying the virion packaged chromatin in a physiologically relevant manner. 

However, this could also be advantageous for future experiments; if the quasivirions 

essentially mirror the make-up of the 293TT epigenome, the breadth of readily 
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available small molecule modulators of cellular chromatin modifying enzymes means 

that manipulating the packaged quasivirus chromatin would be a powerful tool to 

examine the roles of certain modifications in infection studies. 

The data from profiling the chromatin of wart derived virions clearly 

demonstrate that the viral epigenome is considerably disparate from that of the host 

cell. Virion chromatin has a unique composition, implying that it is modulated at least 

semi-independently from processes affecting the cellular chromatin. This is not 

surprising given that papillomaviruses are well documented in their ability to 

modulate host cell chromatin. We hypothesize that in the natural papillomavirus 

virions, the packaged chromatin would enhance immediate early viral transcription, 

before any viral proteins are synthesized. Unlike some other DNA viruses (such as 

Herpesviruses), Papillomaviridae do not package any tegument proteins so their 

ability to modulate the host cell environment is relatively limited (L2’s displacement 

of Sp100 being the notable exception) [69]. Thus, packaging chromatin in a state 

primed for transcription could provide an advantage to the virus. 

Tri-methylation of H3 lysine 9 (H3K9me3), in concert with its binding partner 

Heterochromatin protein 1 (HP1), causes the formation of repressive heterochromatin 

that results in the strong, constitutive repression of transcription of local genes [244]. 

Packaging histone H3 loaded with this repressive mark would pose a detriment to the 

incoming viral genomes in their ability to synthesize replication proteins E1 and E2. 

In agreement with our hypothesis, wart derived virions from both bovine and human 

tissue were strongly and significantly depleted for H3K9me3. Similarly, 

trimethylation of lysine 27 (H3K27me3) is also associated with transcriptional 
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silencing and compaction of chromatin due to its association with the polycomb 

repressive complex (PRC1/2) [244]. BPV1 virions were significantly depleted for the 

singular mark H3K27me3 on both H3.1 and H3.3, although to a lesser degree than 

H3K9me3. HPV1 virions were depleted for this modification as well, but only on 

H3.1. Notably, the bovine virion samples were depleted for H3K27me2, while the 

human virions showed an enrichment; this is one of several instances in which the 

different host species showed divergent results. The depletion of H3K27me3 could be 

explained by E7-mediated activation of KDM6A/B, which decreases the abundance 

of H3K27me3 in HPV16 infected cells [151]. Additionally, HPV16 E6/E7 have been 

shown to reduce the levels of BMI1, a component of PRC1 that stabilizes H3K27me3 

[196].  

In addition to repressive methylation, the data also showed enrichment of the 

activating methylation modification H3K4me1, known to be enriched at cellular 

enhancer regions. H3K4me1 was greatly enriched in the bovine virions compared to 

all cell types and slightly in the human virions when compared to the organotypic raft 

culture. This is interesting as previous studies report the enrichment of H3K4me1 in 

papillomavirus genome replication foci [245]. Notably, other studies have shown that 

HPV E6 inhibits the activity of the histone methyltransferase SET7 that catalyzes 

monomethylation of H3K4 [199]. BPV1 particles also showed a strong enrichment 

for H3K4me3, a hallmark of actively transcribing genomic regions, and H3K4me2 

that is associated with permissive euchromatin.  

Acetylation of lysine residues in histone proteins can serve to activate 

transcription in two ways. Firstly, the acetyl group transferred to the amine group of 
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the lysine reduces the overall positive charge of the histone, and thus its affinity for 

the negatively charged DNA, causing the structure of chromatin to become less 

compact and more accessible to transcription initiation factors. Secondly, the 

acetylation of specific lysine residues serves as a binding site or scaffold for various 

transcriptional activators. A dominant trend of the data presented in this chapter is 

that papillomavirus virions are enriched in acetylated H3 and H4 lysines, sometimes 

to quite substantial levels. In particular, H3 lysines, 4, 14, 18, and 23 were strongly 

enriched. The viral E6 and E7 proteins have been known to interact with an array of 

histone acetyltransferases and modulate their activity. In particular, p300/CBP is a 

target of several viral proteins and is known to preferentially acetylate H3K14, which 

was one of the largest enrichments seen in the data. Specifically, E2 uses P300 to 

activate the early viral promoter [246]. Additionally, E7 binds to and modulates 

HDAC1 and HDAC2 activity, a function that is important for the maintenance of the 

viral genome [190, 191, 247]. This binding has biological consequences, as E7 has 

been shown to globally increase acetylation of Histone H3 [188]. Previous work 

suggests that the effect of E6 binding to the HAT Tip60 is to destabilize it in order to 

repress the early viral promoter [186]. It is possible that the increase in acetylation in 

the virions is a result of a different HAT or that this silencing of the early promoter is 

reversed prior to packaging. Other studies have shown that the viral chromatin is 

enriched in acetylated H3 and H4 at both promoter regions at early points in the 

lifecycle, and that this enrichment becomes more pronounced at later timepoints 

[174]. Previous work from other labs in cell lines studying integrated copies of the 

HPV genome indicates that higher levels of histone H3 acetylation are associated 
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with increased transcription of the viral genes [248]. Combined, there is room for 

speculation that the viral proteins direct the host HATs and HDACs to enrich the 

histones on the viral genome for acetylation prior to packaging. 

This enrichment of acetylation on histones packaged in native papillomavirus 

particles is especially intriguing when considering recent work showing that the 

cellular Bromodomain-containing protein 4 (Brd4) serves to activate early viral 

transcription [203]. The double bromodomains of Brd4 preferentially bind pairs of 

acetylated lysines on histones, specifically H3K14ac and either H4K5ac or H4K12ac 

[249]. All three of those modifications were significantly enriched in the native BPV 

and HPV virion samples. This suggests that papillomaviruses may enrich the viral 

chromatin with these marks prior to packaging so that the genome is primed for 

transcriptional activation by Brd4 immediately after infection of the next host 

keratinocyte [203]. 

Perhaps the most striking result of our investigation was the dramatic 

enrichment of histone H3 variant H3.3 in the native virions. As H3.3 has been shown 

to become incorporated into regions of active transcription, the enrichment could be a 

natural progression from the enrichment of transcriptionally active histone PTMs. 

Alternatively, because papillomaviruses replicate outside of S-phase in a 

recombination-directed manner, there is likely little free H3.1 to load onto the high 

level of nascently forming viral DNA during the late part of the viral lifecycle, as its 

expression is under strict cell cycle control. Since H3.3 is expressed throughout the 

cell cycle, is it is possible that the observed increase in the relative abundance of the 
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variant could be a simple stochastic process due to the unique nature of HPV 

replication. 

An additional unique feature of Papillomavirus DNA replication is that it is 

dependent on the host DNA damage response (DDR) [250]. Furthermore, several of 

the modifications found to be enriched in the virions (H3K14ac, H3K18ac, H3K23ac, 

H4K8ac, H4K16ac, H4K12ac) are known to be linked to DNA damage repair 

(reviewed in [164]). Acetylation of N-terminal lysines on histones H3 and H4 are 

found at sites of homologous recombination [251]. Acetyl transferases, including 

Tip60 (known to be manipulated known to be bound by the viral E6 protein), aid the 

loading of DNA repair proteins by relaxing the surrounding chromatin [252]. All of 

this is interesting in the context of a substantial amount of work implicating the DNA 

damage response (DDR) in HPV replication [250] [192]. In fact, the HAT Tip60 is 

required for productive viral replication in the late phase of the lifecycle [187]. Other 

groups have speculated that viral proteins (such as E7) sequester HDACs from the 

viral chromatin to drive recruitment of homologous recombination (HR) machinery 

rather than non-homologous end joining (NHEJ) machinery to viral replication 

factories [193]. Thus, an alternative explanation of the enrichments of acetylated H3 

and H4 could be that these modifications are necessary for the unique replication 

mechanism of papillomaviruses during the late phase. 

Beyond priming the incoming genome for transcription of early genes or 

aiding in DDR-dependent replication, the packaged viral chromatin could confer 

other advantages to the virus lifecycle. It is possible that, regardless of the 

composition of chromatin modifications, the organization of the viral genomes into 
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nucleosomes could reduce the innate immune profile of the incoming viral genome. 

Relatively long (kilobase) segments of naked DNA are recognized as foreign while 

DNA organized into nucleosomes inhibits activation of the cGAS-STING pathway 

[253]. It is well known that the chromatinization of incoming naked DNA of other 

viruses represents a restriction target. For example, Daxx, a HCMV restriction factor, 

loads repressive chromatin onto incoming HCMV genomes, forcing the virus to 

encode a protein, pp71, to counteract it by degradation [254]. It is possible that the 

HPV skips this potential point of restriction and evades innate immune sensors. 

The data presented here also provide another potential insight into the late 

HPV lifecycle. An alternative explanation for the enrichment in histone modifications 

associated with active transcription and the depletion of transcriptionally repressive 

marks is that the L1 and L2 structural proteins assemble selectively around viral 

genomes that are transcriptionally active. This could happen from a spatial or 

temporal separation of progeny genomes into two categories: one for replication and 

another as transcriptional templates. 

We were curious as to whether any of the viral particles packaged the linker 

histone, Histone H1. Total protein stains of both quasiviruses and wart derived virions 

did not show a band of the expected molecular weight of H1, suggesting that the 

virion does not contain H1 in the expected ratio of linker histones to nucleosomes. 

Combined, these findings show that, upon entering the host cell, the viral 

genome is relatively euchromatic and readily accessible to the cellular transcription 

factors it needs to initiate expression of early genes. 
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Chapter 5: The Role of Histone Acetylation in the Early HPV 

Lifecycle 

 

Introduction 

To investigate the role of increased acetylation of lysines on viral chromatin, 

we created a method to manipulate the acetylation status of the viral histones to 

deduce the biological implications of our observations described in Chapter 4. As 

outlined in Figure 5.1, we used two strategies to increase the acetylation of the 

histones bound to the viral genome using small molecule epigenetic modulators, such 

as inhibitors of histone deacetylases (HDACs). 
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Figure 5.1. Overview of experimental design. Green stars indicate where modulators are added. 
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For our first strategy, 293TT cells were treated with the HDAC inhibitor 

sodium butyrate (NaBut) during the production of quasiviruses. There are two main 

benefits to this strategy. First, treating only the producer cells with the inhibitors 

means there are no off-target effects on the host cell that would occur if the drug was 

applied to the keratinocyte. Second, the effect is immediate, the viral chromatin is 

modified when it is released from the capsid during infection; there is no delay while 

waiting for host chromatin modifying machinery to act upon it. The drawback for this 

strategy is that the viral chromatin can be replaced after replication or interaction with 

various host immune or epigenetic machineries. 

Our second strategy was to treat the host keratinocyte with the epigenetic 

modulators during the infection assay. The strengths of this method are twofold. 

Primarily, the effect of the treatment is prolonged, possibly increasing the magnitude 

of the biological readout to detectable levels. Secondly, we can use drugs that target 

specific processes to get a more precise view of epigenetic processes affecting viral 

functions. The downsides are the off-target effects created by manipulating the 

cellular chromatin in addition to the viral chromatin. To induce hyperacetylation of 

all the histones (including those on the viral genome) the host primary HFKs were 

treated with trichostatin A (TSA). 

Combining the unique strengths of these two strategies with the breadth and 

versatility of the quasivirus production and infection assays described in Chapter 3 

provides us with powerful new ways to study the contribution of packaged viral 

histone PTMs to early papillomavirus virology. 
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Results 

Sodium butyrate treatment of 293TT packaging cells during quasivirus 

production results in viral packaging of hyperacetylated histones 

To examine the role of histone acetylation in the early phase of the infection 

cycle, we produced HPV quasiviruses with increased levels of acetylation of the 

packaged histones (compared to standard quasiviruses). To induce hyper-acetylation 

of the histones packaged into quasiviruses, we treated the 293TT packaging cells with 

3 mM sodium butyrate, which is a potent inhibitor of class I HDACs, during the 

packaging of HPV18 quasiviruses. To confirm that the treatment resulted in increased 

acetylation of the virally packaged histones, histones from both the 293TT cells and 

HPV18 quasiviruses were isolated and separated by charge using acid-urea 

polyacrylamide gel electrophoresis (AU-PAGE) [255]. An immunoblot using 

antibodies against all forms of Histones H3 and H4 was performed. Both the 

quasivirus and cellular samples produced with NaBut treatment had a great increase 

in the overall acetylation of histone H3 and H4 (Figure 5.2A). To confirm the 

increase in acetylation, we performed an immunoblot using antibodies specific to 

acetylated H3 and H4. NaBut treated quasiviruses packaged histones with higher 

levels of acetylation of lysines 5, 8, 12, and 16 of H4 and lysines 9 and 14 of H3 

when compared to control viruses (Figure 5.2B). 
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Figure 5.2. Sodium butyrate treatment of 293TT packaging cells induces hyperacetylation of 
histones in HPV quasiviruses. HPV18 quasiviruses were produced in 293TT cells treated with 3 mM 
sodium butyrate or vehicle control. Viral and cellular histones were acid extracted, separated by AU-
PAGE, and transferred to a membrane. (A) Immunoblot with antibodies against histone H4 (top) and 
H3 (bottom). (B) Immunoblot with antibodies against acetyl-H4 (top) and acetyl-H3 (bottom). N=1. 
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To confirm that our sodium butyrate treatment did not alter the packaging or 

titer of the quasiviruses, we compared the abundance of viral proteins and HPV18 

DNA in sodium butyrate treated and control quasiviruses. Sodium butyrate treatment 

did not significantly affect the concentration of packaged HPV18 genomes, (Figure 

5.3A) the titer of HPV virions (Figure 5.3B), or the packaging efficiency (genomes 

per virion) (Figure 5.3C) of quasivirus preparations. Combined, these results suggest 

that the NaBut treated quasiviruses package chromatin with increased levels of 

histone acetylation but do not have other physical differences that could alter 

infectivity. 
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Figure 5.3. Sodium butyrate treatment of 293TT packaging cells does not alter viral titer or 
packaging. HPV18 quasiviruses were produced in 293TT cells treated with 3 mM sodium butyrate or 
vehicle control. (A) Viral titer of quasivirus preparations. Viral genomes were extracted from virions 
and quantitated by qPCR. (B) Quasivirus preparations were separated by SDS-PAGE alongside a 
standard curve of BSA. Gel was stained with Sypro Ruby and imaged. Standard curve used to calculate 
quantity of viral L1 protein. (C) Packaging efficiency of quasivirus preparations. Significance 
determined by an unpaired t-test. n.s.= not significant. N=3 independent preparations. Error=SD. 
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Quasiviruses with increased histone acetylation have lower levels of viral 

transcription and replication 

To evaluate the effect of the increased acetylation of the packaged viral 

histones on the early viral lifecycle, the HPV18 quasiviruses produced with NaBut 

treatment and control quasiviruses were used to infect primary HFKs at an MOI of 

100. At 72 hours post infection, RNA was harvested, and viral transcripts were 

quantified by RT-qPCR. Contrary to expectations, infections with the hyper-

acetylated quasiviruses resulted in a significant decrease in the abundance of early 

viral transcripts E1^E4 and E6*I compared to control infections (Figure 5.4A and B). 

To assess the effect of the sodium butyrate treatment on viral replication, primary 

HFKs were infected at an MOI of 100. 72 hours post infection, total DNA was 

harvested. To distinguish between nascently replicated viral genomes and 

unreplicated genomes, the DNA was digested with DpnI and MboI, respectively, as 

well as a mock digest. The resulting DNA was quantified by qPCR. In the cells 

infected with the hyper-acetylated quasiviruses, the overall HPV18 DNA level was 

decreased (Figure 5.5A and B). The levels of viral replication from the sodium 

butyrate-treated quasiviruses were significantly decreased, while the amount of 

unreplicated viral genomes was not different (Figure 5.5A and B). Combined, these 

data suggest that the increase in viral chromatin acetylation causes a reduction in 

early viral transcription and replication. 
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Figure 5.4. HPV early transcription from HPV quasiviruses with hyperacetylated histones. 
Primary HFKs were infected at an MOI of 100 with HPV18 quasiviruses with hyperacetylated histones 
and control viruses. At 72 hpi, total RNA was harvested. Early viral transcripts were quantitated by 
RT-qPCR and normalized to cellular TBP. (A) Normalized levels of early transcripts. Significance 
determined by a paired t-test (B) Data presented as fold change from untreated quasivirus infections. 
Significance determined by an unpaired t-test. *=p<0.05 **=p<0.01 N=3 biological replicates. 
Error=SD. 
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Figure 5.5. HPV replication in cells infected with HPV quasiviruses with hyperacetylated 
histones is reduced. Primary HFKs were infected at an MOI of 100 with HPV18 quasiviruses with 
hyperacetylated histones and control viruses. At 72 hpi, total DNA was harvested. DNA was digested 
with DpnI, MboI or H2O as a control to distinguish between nascently replicated, unreplicated, and 
total viral genomes, respectively. Digested viral DNA was quantified by qPCR and normalized to 
cellular RNase P. (A) Normalized levels of HPV18 DNA. Significance determined by a paired t-test. 
(B) Data presented as fold change from untreated quasivirus infections. Significance determined by an 
unpaired t-test. n.s.=not significant *=p<0.05 ****=p<0.0001 N=3 biological replicates. Error=SD. 
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To complement the acetylated quasivirus approach, we recapitulated the 

increase in viral histone acetylation using our second approach described in Figure 

5.1. Primary HFKs were infected at an MOI of 100 with untreated HPV18 

quasiviruses. At one hour post infection, the HFKs were with treated 400 nM TSA, an 

inhibitor of class I and II HDACs, thus inducing global hyperacetylation of both 

cellular and viral histones. At 72 hpi RNA was harvested, and viral transcripts were 

quantified by RT-qPCR. Early viral transcription in the treated cells was significantly 

lower than in cells treated with the vehicle control (Figure 5.6A and B). These data 

suggest that hyperacetylation of viral chromatin has a detrimental effect on the early 

viral life cycle. 
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Figure 5.6. HPV early transcription is reduced in cells treated with HDAC inhibitor TSA. 
Primary HFKs were infected at an MOI of 100 with wildtype HPV18 quasiviruses. At 1 hpi, cells were 
treated with 400 nM TSA for 72 hours. At 72 hpi, total RNA was harvested. Early viral transcripts 
were quantitated by RT-qPCR and normalized to cellular TBP. Significance was determined by an 
unpaired t-test. *=p<0.05 **=p<0.01 N=3 biological replicates. Error=SD. 
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To determine the timing of this effect, we infected primary HFKs with HPV18 

quasiviruses with hyperacetylated chromatin and untreated controls at 100 MOI and 

harvested RNA and DNA at 24, 48, 72, and 96 hours post infection. Viral transcripts 

were quantified by RT-qPCR. Contrary to expectations, the sodium butyrate treated 

quasiviruses were not decreased in their ability to synthesize early transcripts E1^E4 

(Figure 5.7A and B) and E6*I (Figure 5.7C and D) until 72 hours after infection. At 

earlier timepoints, the transcription from the hyperacetylated quasiviruses was 

slightly, but not significantly higher. We observed a nearly identical trend with viral 

replication as well. Total viral genome copy number (Figure 5.8A and B) and the 

level of nascent viral replication (Figure 5.8C and D) were not significantly different 

in cells infected with the sodium butyrate treated viruses at immediate early time 

points (24 and 48 hpi), but differences became more apparent as time since infection 

progressed. The level of unreplicated DNA was very similar until 96 hours post 

infection (Figure 5.8E and F). These data suggest that the lack of robust activation of 

the early viral life cycle of the hyperacetylated quasiviruses does not occur 

immediately after entry into the host cell. 
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Figure 5.7. HPV quasiviruses with hyperacetylated histones have reduced transcription at later 
time points. Primary HFKs were infected at an MOI of 100 with HPV18 quasiviruses with 
hyperacetylated histones and control viruses. At 24, 48, 72, and 96 hpi, total RNA was harvested. Early 
viral transcripts were quantitated by RT-qPCR and normalized to cellular TBP. (A) Normalized E1^E4 
transcription. (B) Data are presented as fold change from untreated control infections at the indicated 
timepoint. (C) Normalized E6*I transcription. (D) Data are presented as fold change from control 
infections at the indicated timepoint. Significance was determined by a paired t-test. n.s.= not 
significant.  *=p<0.05 N=3 biological replicates. Error=SD. 
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Figure 5.8. HPV quasiviruses with hyperacetylated histones have reduced replication at later 
time points. Primary HFKs were infected at an MOI of 100 with HPV18 quasiviruses with 
hyperacetylated histones and control viruses. At 24, 48, 72, and 96 hpi, total DNA was harvested. 
DNA was digested with DpnI, MboI or H2O as control to distinguish between nascently replicated, 
unreplicated, and total viral genomes, respectively. Digested viral DNA was quantified by qPCR and 
normalized to cellular RNase P. (A) Total HPV18 DNA. (B) Data presented as fold change from 
control infections at the indicated timepoint. (C) Replicated (DpnI resistant) HPV18 DNA. (D) Data 
are presented as fold change from control infections at the  indicated timepoint. (E) Input (MboI 
resistant) HPV18 DNA. (F) Data are presented as fold change from control infections at the indicated 
timepoint. Significance was determined by a paired t-test. n.s.= not significant. *=p<0.05 N=3 
biological replicates. Error=SD. 
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“Ripcord” quasiviruses produced with sodium butyrate treatment have reduced 

viral early transcription 

We next investigated the mechanism by which the apparent repression (or 

lack of activation) occurred. First, we hypothesized that the hyperacetylated cellular 

chromatin packaged by the quasivirus system (see Chapter 3) could be causing the 

effect. To test this theory, we generated “ripcord” HPV18 quasiviruses (produced to 

reduce packaging of cellular chromatin) with and without the sodium butyrate 

treatment. The quasiviruses were used to infect primary HFKs. At 72 hpi, total RNA 

was harvested, and viral transcripts were quantified using RT-qPCR. Cells infected 

with the “ripcord”, sodium butyrate treated quasiviruses had significantly lower levels 

of viral transcripts than untreated controls (Figure 5.9A and B). These data suggest 

that the introduction of hyperacetylated cellular chromatin by the quasivirus is not 

responsible for the decrease in early viral functions. 
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Figure 5.9. HFKs infected with “ripcord”, sodium butyrate treated quasiviruses express lower 
levels of viral early transcripts. Primary HFKs were infected at an MOI of 10 with HPV18 “ripcord” 
quasiviruses with hyperacetylated histones and control viruses. At 72 hpi, total RNA was harvested, 
and early viral transcripts were quantified by RT-qPCR and normalized to cellular TBP. (A) 
Normalized viral transcripts. (B) Data are presented as fold change from untreated quasivirus 
infections. Significance determined by an unpaired t-test. *=p<0.05 **p<0.01 N=2 biological 
replicates. Error=SD. 
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Viral replication is not necessary for decreased transcription from quasiviruses 

with increased histone acetylation 

Additionally, we wanted to determine whether viral DNA replication inside 

the host keratinocyte was required for the observed reduction in transcription. To test 

this, we generated HPV quasiviruses containing a translation termination linker 

(TTL) mutation in the E1 gene (E1mut), rendering them replication incompetent.  We 

used these viruses, produced with and without NaBut treatment in the 293TT cells, to 

infect primary HFKs at 100 MOI. 72 hours after infection, RNA was extracted and 

early viral transcription was measured by RT-qPCR. As expected, transcription from 

the E1 mutant viruses was decreased compared to wildtype controls (Figure 5.10A 

and C), but the relative difference between the sodium butyrate treated viruses and the 

untreated controls was very similar (Figure 5.10B and D), implying that decreased 

transcription is not due to decreased replication of the viral genome. 
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Figure 5.10. Viral replication is not necessary for decreased transcription from hyperacetylated 
quasiviruses. Primary HFKs were infected at an MOI of 100 with replication incompetent or wildtype 
HPV18 quasiviruses with hyperacetylated histones and control viruses. At 72 hpi, total RNA was 
harvested, and early viral transcripts were quantified by RT-qPCR and normalized to cellular TBP. (A) 
Normalized E1^E4 transcription. (B) Data are presented as fold change from untreated quasivirus 
infections. (C) Normalized E6*I transcription. (D) Data are presented as fold change from untreated 
quasivirus infections. Significance determined by a paired t-test. *=p<0.05 **=p<0.01 N=3 biological 
replicates. Error=SD. 
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Brd4-E2 complex formation is not necessary for decreased transcription from 

hyperacetylated quasiviruses 

Our next hypothesis was that the decrease in transcriptional activity in 

quasiviruses with hyperacetylated histones was mediated by increased binding of the 

E2-Brd4 (Bromodomain containing protein 4) complex to the viral chromatin. 

Cellular Brd4 contains two bromodomains that bind to the acetylated lysines on the 

N-terminal histone tails [256]. Brd4 forms a complex with the viral E2 protein that 

represses viral transcription [125]. To test whether the increased acetylation of the 

quasiviral histones promoted repressive Brd4-E2 complex binding, we produced 

HPV18 quasiviruses with a mutation in the E2 protein (I77A) that prevents binding to 

Brd4 with and without the sodium butyrate treatment [121]. Primary HFKs infected 

with these quasivirus preparations showed the same phenomena of significantly 

decreased E1^E4 (Figure 5.11A and B) and E6*I transcription (Figure 5.11C and D) 

regardless of the ability for E2 and Brd4 to form a complex. These data indicate that 

the Brd4-E2 complex formation is not the mechanistic driving force behind our 

observations. 
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Figure 5.11. Brd4-E2 complex formation is not necessary for decreased transcription from 
hyperacetylated quasiviruses. HPV18 quasiviruses with either wildtype genomes or mutation I77A in 
E2 (preventing binding to cellular Brd4) were produced with or without sodium butyrate treatment and 
used to infect primary HFKs at an MOI of 100. At 72 hpi, total RNA was harvested, and early viral 
transcripts were quantified by RT-qPCR and normalized to cellular TBP. (A) Normalized E1^E4 
transcription. (B) Data presented as fold change from untreated quasivirus infections. (C) Normalized 
E6*I transcription. (D) Data presented as fold change from untreated quasivirus infections. 
Significance determined by a paired t-test. *=p<0.05 **=p<0.01 N=3 biological replicates. Error=SD. 
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Sp100 is not responsible for decreased transcription from hyperacetylated 

quasiviruses 

We next examined an another cellular bromodomain-containing protein, Sp100. 

Sp100 co-localizes to incoming HPV genomes and has been shown to be a restriction 

factor for HPV infection, repressing early viral transcription [69, 70]. To determine if 

increased Sp100 binding to acetylated histones was repressing the early viral 

lifecycle, we used a series of Near-Diploid Immortalized Human Keratinocyte 

(NIKS) Sp100 (-/-) cell lines generated in our lab using CRISPR-Cas9. We infected 

parental and Sp100 (-/-) NIKS cells with the NaBut treated and control quasiviruses. 

After 72 hours, RNA was collected, and early transcripts quantified were by RT-

qPCR. While the overall magnitude of the transcriptional effect was lower than in 

primary HFKs, there was very little difference between the Sp100 deficient cell lines 

and the controls in terms of the relative transcription levels from the acetylated and 

control viruses (Figure 5.12A and B). The data imply that the Sp100 protein is not 

mediating decreased transcription from hyperacetylated quasivirus chromatin. 
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Figure 5.12. Sp100 is not responsible for decreased transcription from hyperacetylated 
quasiviruses. Sp100 (-/-) NIKS or wildtype control cells were infected at an MOI of 100 with HPV18 
quasiviruses with hyperacetylated histones and control viruses. At 72 hpi, total RNA was harvested, 
and early viral transcripts were quantified by RT-qPCR and normalized to cellular TBP.  Data are 
presented as normalized to control cells with untreated quasivirus. (A) E1^E4 transcription. (B) E6*I 
transcription. Significance was determined by an unpaired t-test. n.s.=not significant. *=p<0.05 N=2 
biological replicates. Error=SD. 
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Discussion 

In Chapter 4 we showed that native papillomavirus virions are enriched in 

acetylation of lysine tails on the N-terminus of histone H3 and H4. We initially 

hypothesized that this was to prime the incoming viral genome for immediate early 

viral transcription. Following this logic, we theorized that keratinocytes infected with 

quasiviruses packaging hyperacetylated histones would have higher levels of early 

viral transcripts. However, our experimental data showed the opposite results. 

Transcription from quasiviruses produced in 293TTs treated with sodium butyrate 

was significantly lower.  

Replication assays showed that cells infected with the NaBut treated and 

control quasiviruses showed no difference in the levels of unreplicated HPV18 DNA 

through the first 72 hours of the infection. This suggests that the two quasivirus 

preparations have no difference in their ability to bind to and enter the host cell, 

giving increased confidence that this is not a viral entry-mediated phenomenon. 

However, given that the assay does not distinguish where in the cell the genomes are 

located, we cannot rule out the possibility that the quasiviruses produced in sodium 

butyrate-treated 293TT packaging cells are somehow defective in their ability to 

effectively traffic to the nucleus. 

We also speculated that the sodium butyrate treatment to the 293TT cells 

during packaging could have induced off target effects and induced acetylation of 

lysines on the viral L1 and L2 proteins. L2 directs the incoming viral particle to the 

nucleus and is responsible for displacing the restriction factor Sp100 upon arrival [69, 

257]. L2 has a number of lysines that could potentially be acylated, possibly affecting 
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these functions. To test this hypothesis, we partnered with the Protein Chemistry 

Section of NIAID’s Research Technologies Branch to detect any differences in 

acetylation of lysines on the capsid proteins. They attempted to perform mass 

spectrometry on the viral capsid proteins from quasivirus preparations produced with 

and without sodium butyrate treatment. However, the amino acid sequence of L1 and 

L2 made this method technically challenging. They also tried to detect differences in 

the charge of the capsid proteins by isoelectric focusing and 2D SDS-PAGE, but 

those results were inconclusive. 

Due to the nonspecific packaging by L1/L2 in the 239TT cells, quasiviruses 

can package and deliver linearized segments of host chromatin to cells upon infection 

[221]. We theorized that hyperacetylated, linear segments of the cellular genome 

being introduced to the cell could trigger an innate immune response. Utilizing the 

“ripcord” method of quasivirus production to reduce the packaged cellular DNA, we 

observed that the magnitude of the transcriptional effect was in fact larger, ruling out 

this potential artifact. Combined with our data showing that the quasivirus titer, virion 

abundance, and packaging were not affected by the sodium butyrate treatment, we 

postulate that this is a true transcriptional observation. 

Our data showing that replication-incompetent, highly acetylated quasiviruses 

exhibited decreased transcription was important for several reasons. By showing that 

replication is not necessary for the decrease in transcription from highly acetylated 

quasiviruses, it is possible that the reduced viral replication is due to lower expression 

of the viral replication proteins E1 and E2, rather than an alternative scenario in 

which the decreased replication provides fewer transcriptional templates. In addition, 



 

 

160 
 

once the virus undergoes replication, the histones that are loaded onto the progeny 

genomes could be acetylated at reduced levels, removing the effect of the sodium 

butyrate treatment. Because in this experiment, all transcription occurs from 

unreplicated genomes, we can have increased confidence that the sodium butyrate-

induced acetylation of the viral histones is either directly or indirectly responsible for 

the transcriptional effects. 

Possibly the most perplexing data from the experiments presented above was 

the time course infection assay. Initially, we expected that any differences would be 

most pronounced at the earliest timepoints after infection. On the contrary, the 

transcriptional and replicative effects only became significant at 72 hours after the 

virus was introduced to the cells. Given that the hyperacetylation of the histones on 

the viral genome would be removed by displacement of histones from the viral 

genome during the first round of replication, this result was surprising. There are two 

explanations for this observation of delayed onset transcriptional repression. First, it 

is possible that the hyperacetylated quasivirus genomes trigger an antiviral host 

response that takes place over 24 to 48 hours. Second, because the infections occur 

when the keratinocytes are only ~5-10% confluent, there are likely quasivirions 

transiently attached to the J2 feeder cells at early time points. By the later timepoints 

the keratinocytes cover much of the well, potentially becoming exposed to additional 

rounds of infection as they divide. It is possible that the NaBut treated quasiviruses 

are restricted from successful infection during these later viral entry events in a 

manner that does not occur with the control quasiviruses. 
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In the work presented here, we were unable to identify a mechanism for the 

decrease in transcription from highly acetylated quasiviruses. We hypothesized that, 

if there was a cellular protein involved in this regulation, it would be one with 

specificity for binding to acetylated histone tails. We speculated that the most likely 

candidate would be a histone acetylation reader protein containing a bromodomain. 

We examined the role of two bromodomain-containing proteins that were previously 

shown to bind to HPV chromatin and regulate viral functions, Brd4 and Sp100 [70, 

91, 125, 258]. Our data indicate that these two bromodomain-containing proteins are 

not solely responsible for transcriptional repression. Future work in this area could 

use bromodomain inhibitors to see if there are additional, yet to be identified, cellular 

proteins mediating this response. Alternatively, a newly identified class of histone 

reader domains called plant homeodomain (PHD) fingers (one is present in Sp100 

isoform C) could be involved in this process [259, 260]. Proteins with these domains 

can bind to histone H3 with acetylated lysines, so it stands to reason they would be 

likely to bind to the incoming viral chromatin in the sodium-butyrate treated 

quasivirus infections [261]. 

It is possible that the hyperacetylated chromatin is somehow more 

immunogenic, alerting the cell’s innate immune system to the virus’s presence. 

Future studies to continue this work should involve looking at the levels of cellular 

anti-viral proteins in cells infected with the treated and untreated quasiviruses. 

Alternatively, we could produce hyperacetylated “pseudoviruses” to determine if this 

phenomenon is specific to papillomavirus genomes or if it would occur for all foreign 

DNA delivered by papillomavirus capsids. 
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It is interesting that the alternative strategy of inducing acetylation of the 

histone bound to the viral genome by treating the host cell with the HDAC inhibitor 

TSA gave nearly identical results. While it does mirror the observations obtained with 

hyperacetylated quasiviruses, it is possible that the repressive effects on viral 

transcription by the sodium butyrate treatment in 293TTs and TSA treatment in the 

HFKs are caused by two separate mechanisms. As the keratinocytes were 

continuously cultured in the presence of the drug throughout the infection, the 

histones bound to the viral genomes would have been hyperacetylated throughout the 

duration of the experiment, while in the experiments with the NaBut treated 

quasiviruses, the hyperacetylation may have been lost after the first round of viral 

replication. In agreement with our results, a previous study showed that cell lines that 

maintain the HPV31 genome as an extrachromosomal element exhibited a reduction 

in E2 and E7 transcription following TSA treatment [262]. Another study 

demonstrated that inducing global hyperacetylation in infected cells with a different 

HDAC inhibitor, Vorinostat, can reduce productive viral genome replication during 

the late stage of the lifecycle [263]. One possible explanation for these results is that 

treatments with these inhibitors epigenetically activates transcription from all of the 

viral genomes in a cell. Some groups have speculated that in natural infections there 

exists a small subset of transcriptionally active genomes; it is possible that the TSA 

treatment throws off this balance [174]. Other studies carried out in cells with  

integrated HPV genomes have shown that TSA treatment increases the expression of 

the oncogenes E6 and E7 [248].  
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A previous study has shown that treating host cells with TSA immediately 

prior to infection treatment reduces early HSV-1 replication [264]. The authors of this 

work suggest that the HDAC inhibitor increased expression of cellular antiviral 

defenses, leading to repression of the HSV lifecycle. Future work using our system 

should involve examining the transcription of antiviral factors in infected 

keratinocytes treated with TSA. There is ample additional evidence in the literature to 

support the use of HDAC inhibitors as a means of pharmaceutical antiviral 

intervention [265]. 

While other studies describe a positive a correlation between acetylation of 

histones on the viral genome and HPV transcription and replication, our results 

appear to be contradictory. However, it is possible that the methods for inducing 

hyperacetylation of the viral chromatin were detrimental to the lifecycle because the 

acetylation was likely evenly distributed across the viral genome, rather than being 

enriched in certain areas (such as the early and late promoters) as has been seen in 

work by other groups in untreated cells [174] . This could induce transcription factor 

binding all over the genome rather than in desired areas. To address this, we could 

target histone acetylation to the early and late promoter regions by utilizing 

acetylation transferases (such as p300) complexed to a deactivated Cas9 and targeted 

to specific regions of the viral genome using gRNAs [266]. Alternatively, future 

experiments could involve using epigenetic modulators that have more specific 

targets than TSA or sodium butyrate. 

In this chapter we describe a system to selectively modify the PTMs of 

packaged histones in papillomavirus particles and examine their role in the early 
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infectious cycle. Future experiments could use epigenetic modulators or siRNAs that 

target more specific enzymes, such as individual HATs or HDACs or other epigenetic 

processes such as histone or DNA methylation. Additionally, further work could 

combine the infection-based colony forming assay developed in Chapter 3 to 

determine the role of viral histone modifications on the establishment of the viral 

genome as a persistently maintained episome. 



 

 

165 
 

Chapter 6: Discussion 

 

In this dissertation, we use a wide variety of techniques to explore how the 

HPV infectious cycle is regulated by chromatin modifications. We focus particularly 

on the early phase of infection, immediately after the incoming virus is delivered to 

the nucleus. Chapter 3 describes optimization of recombinant HPV quasivirus 

production. In Chapter 4, these quasiviruses were analyzed for histone modifications 

by mass spectrometry in comparison to native virions isolated from patients and 

animals. We showed that native virions have a distinct profile of chromatin 

modifications when compared to host cells, and that they are enriched in activating 

chromatin marks (particularly acetylation of histones H3 and H4) and depleted in 

repressive modifications (certain lysine methylations). Chapter 5 describes 

experiments that analyze the biological significance of these modifications by 

modulating the acetylation of histone H3 and H4 in quasiviruses and evaluating the 

effect on early infection of keratinocytes. 

One of the goals we had for improving the preparation of HPV quasiviruses 

was to improve the particle to infectivity ratio. Pseudovirus preparations have far 

higher titer and infectivity to particle ratios, in part because of the Large T antigen-

directed replication of the packaged reporter plasmid inside the 293TT packaging 

cells. We described two different ways to induce replication of the viral genome in 

the 293TT packaging cells: co-expression of the E1/E2 viral replication proteins and 

the insertion of a native SV40 origin of replication into the late region of the viral 

genome. Both methods increased yields of quasivirus preparations and improved the 
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ratio of viral genomes to capsids. However, surprisingly, this did not result in an 

increase in early viral transcription in infected keratinocytes; transcription was lower 

at 72 hours post infection. We postulate that replication induces the ordered assembly 

of nucleosomes on the viral DNA but, in turn, this is repressive for early 

transcription. 

To test this hypothesis, future work could involve isolating chromatin from 

293TT-replicated and unreplicated quasivirus virions and performing a nucleosome 

positioning assay to determine if there is any difference in the ordering of 

nucleosomes. The ordering of nucleosomes is known to have enormous importance in 

the initiation of transcription [233]. These assays have been performed using 

chromatin isolated from other viruses, such as SV40 [267]. Initial studies of the 

nucleosomes packaged by papillomavirus virions showed that the length of spacer 

DNA between nucleosomes is variable, suggesting that the nucleosomes are located 

at specific sites, rather than at regular intervals [29]. Other studies have reported that 

there are two nucleosomes specifically positioned within the HPV URR in the viral 

genome in infected cells, one of which overlaps the Sp1 site of the early promoter 

[268]. This region of the viral genome has a weaker affinity for nucleosomes than the 

rest, suggesting nucleosomes are likely displaced to initiate viral transcription [269]. 

We propose that DNA replication of the viral genome in 293TT cells causes 

nucleosomes to be loaded into the URR in a manner that is suboptimal for the 

initiation of transcription. E1 and E2 induce changes in nucleosome positioning, 

however, as the unreplicated genomes are packaged in the absence of the viral 

replication proteins, it is plausible that their nucleosome positioning differs, resulting 
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in increased ability for transcription factors to bind immediately upon arrival in the 

nucleus [269, 270]. 

Additionally, it is possible that inducing replication in the 293TT cells 

(outside of the normal context of viral genome replication in keratinocytes and 

without other viral gene products present) induces repressive modifications in the 

viral chromatin, causing the decreased transcription. To determine if this is 

responsible for our effect, we could use the histone modification profiling techniques 

we described in Chapter 4 to look at the differences in the histone PTMs between 

quasiviruses with replicated and unreplicated genomes. Lastly, we could perform a 

time course of infection, to see if the magnitude or direction of our transcriptional 

effect changes at earlier timepoints, as occurred in the sodium butyrate treated 

quasiviruses in Chapter 5. 

Like the E1/E2-replicated quasiviruses, the “ripcord” virus preparations had 

an increased percentage of capsids containing viral genomes. However, unlike 

inducing replication of the viral genome in packaging cells, producing quasiviruses 

using the “ripcord” maturation method did result in higher transcription of viral early 

genes in infected cells. Another possibility is that the “ripcord” quasiviruses are more 

effective in the delivery of viral DNA to the host cell than normal quasiviruses. This 

could be tested by performing infections at the same MOI and performing our assay 

to detect unreplicated HPV18 DNA at early timepoints post infection. Additionally, 

we considered the possibility that the “ripcord” quasiviruses packaged less linearized, 

digested cellular DNA than traditional quasiviruses preparations. This could help 

determine if the mechanistic explanation for our observation involved entry or 
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transcriptional regulation. To determine if this is the case, we could calculate the 

quantity of non-viral DNA in each type of preparation by extracting all packaged 

DNA and measure its quantity and then subtracting the amount of viral DNA 

(determined by qPCR for HPV18 DNA). 

In Chapter 4, we describe a quantitative approach to profile the global 

modifications present on histones in native papillomavirus particles. We 

demonstrated that quasivirus particles had an overall very similar chromatin 

modification profile to the 293TT cells in which they are packaged. In the native 

papillomavirus virion isolated from bovine and human warts, the composition of the 

virion epigenome differed significantly from that of the uninfected host cell. We 

detected large enrichments in histone PTMs associated with transcriptional activation, 

particularly histone H3 acetylation (H3K4ac, H3K14ac, H3K18ac, and H3K23ac) and 

H4 acetylation (H4K5ac, H4K8ac, and H412ac). We also detected trends in the 

enrichment of the methylation of the lysines associated with activating transcription 

(H3K4me1 and H3K4me3) and depletion of transcriptionally repressive methylation 

(H3K9me3 and H3K27me3). The first study to look at histone modifications 

packaged in small DNA tumor viruses examined the acetylation of histones packaged 

in SV40 virions and found that histones H3 and H4 were extensively acetylated [271]. 

More recent studies conducted similar experiments using BK polyomavirus particles, 

and they report an enrichment of acetylated and methylated H3 and H4 in the virions 

compared to host cells (and the presence of many additional modifications), 

suggesting that the viral chromatin is in a transcriptionally active state while 

packaged in the polyomavirus capsid, in agreement with our data [272]. Combined 
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our data, and that in the literature, suggest that amongst small DNA tumor viruses that 

package chromatinized genomes, there is conservation in the preferential packaging 

of acetylated histones and that whatever benefit this provides the virus, it is not 

unique to the Papillomaviridae. 

To further advance this project, we need to answer the critical question of how 

these modifications are distributed around the viral genome. Future work could 

include isolating chromatin from virions and performing ChIP-PCR or ChIP-seq 

using antibodies against the modifications we identified to be most enriched in the 

virions (H3K4me1, H3K4me3, H3K9ac, H3K18ac). We predict that there will be a 

higher level of these histone modifications at the early and late promoter regions, as 

previous studies have shown that, in viral chromatin isolated from infected cells, both 

the promoter regions are enriched in acetylated H3 and H4 throughout the productive 

lifecycle, but that this enrichment is largely increased at the late promoter upon 

differentiation [174]. The data from these proposed experiments could help determine 

a model for explaining our observations of increased activating histone PTMs in the 

virion. If we detect more signal at the late promoter, then this would suggest that the 

enrichment of the active modifications is likely due to the preferential packaging of 

genomes actively transcribing the late genes. Alternatively, if the data shows more 

intense acetylation at sites around the early promoter, this would suggest that the 

virus selects these modifications to be packaged to better prime the incoming viral 

genome to initiate transcription upon arrival in the nucleus. 

One of the limitations of our study was that the control cells for the native 

bovine and human papillomavirus virions, while primary, were uninfected. This 
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prevents us from making strong conclusions about whether the enrichments and 

depletions of histone PTMs we detected were the result of selective packaging or if 

the virus induced global changes to the cellular epigenome. We performed the 

experiments described in Chapter 4 using BPV1 infected wart tissue as controls for 

the bovine virions in the mass spectrometry and immunoblot experiments, but 

ultimately decided that the tissue was too heterogeneous; it contained a range of cells 

at various stages of differentiation and with different viral loads. As packaging occurs 

only in the most differentiated cells, and previous studies have shown a dramatic 

change in the viral chromatin modifications once differentiation occurs, it was not an 

ideal comparison [174]. For the human virions, there was simply not enough excised 

tissue to both isolate a sufficient quantity of virions and use warts as controls for the 

same infection. To address this, future work could involve the production of 

infectious virions from transfected primary HFKs grown in 3D organotypic raft 

culture. Virions could be isolated from this tissue and, as controls, the upper most 

layer of the infected raft (where the productive viral replication and virion assembly 

occurs) could be extracted using laser capture microdissection. This would allow the 

direct comparison of the chromatin composition of virions to the cells in which they 

were assembled, allowing us to more confidently determine whether the enrichments 

and depletions we reported are due to global changes in infected cells (and the 

enrichments are therefore simply stochastic) or if there is true selective packaging. 

After we discovered that native papillomavirus virions were significantly 

enriched in acetylated H3 and H4, we determined what role this played in the early 

infection cycle using the quasivirus infection system. We produced HPV quasiviruses 
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in the presence of the HDAC inhibitor sodium butyrate. This resulted in 

hyperacetylation of the packaged viral histones. Unexpectedly, after infection we 

detected a decrease in viral early gene expression from these viruses. We 

recapitulated the result using TSA treatment of newly infected cells, implying that 

this was not an artifact of the sodium butyrate treatment. We were unable to 

determine a specific mechanism to explain the decreased viral transcription that we 

observed but did rule out several including acetylated 293TT chromatin packaged in 

quasivirus preparations, viral replication, increased repression by the E2-Brd4 

complex, and increased host Sp100 binding. While we did show that these viruses 

have increased overall levels of histone acetylation we did not check for the presence 

or absence of repressive methylation. It is possible that the HDAC inhibitor treatment 

in the packaging cells induced off target effects resulting in a mixture of repressive 

methylation and activating acetylation on the packaged histones.  

We also discovered that native papillomavirus virions were enriched in the 

histone H3 variant H3.3, and there are several implications for the viral lifecycle that 

could be explored in future work. First would be the roles of H3.3 chaperones in the 

HPV lifecycle. H3.3 utilizes different chaperones than the canonical variant H3.1 to 

be assembled into nucleosomes in a replication independent manner [273, 274]. 

These chaperones include the Daxx/ATRX complex and the HIRA complex, which 

load H3.3 into transcriptionally repressive and active regions, respectively [273, 275]. 

Daxx is found at HPV replication foci [276]. However, the role of Daxx in HPV 

replication and transcription remains unclear. In studies done in U2OS cells, Daxx 

depletion was detrimental to transient viral transcription, while in another study 
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conducted in primary HFKs, Daxx depleted cells do not show significant differences 

in HPV transcription or replication, suggesting that Daxx is not responsible for the 

H3.3 enrichment in virion chromatin [70, 276]. Our results show that the viral 

chromatin appears to be euchromatic, at least immediately prior to packaging, raising 

the possibility that Daxx is not involved in manipulating the viral chromatin during 

productive replication. This would implicate HIRA as the factor responsible for 

directly loading H3.3 onto the viral chromatin during the late viral genome replication 

prior to packaging.  

Furthermore, the chromatin-associated oncoprotein DEK is upregulated by E7 

and promotes proliferation of HPV positive cancer cells (although studies exploring 

its role in productive infections have yet to be performed) [277, 278]. DEK regulates 

the balance of H3.3 deposition by acting as a “gatekeeper”, regulating the access to 

soluble H3.3 by the different chaperones and has been shown to localize to ND-10 

bodies [279]. Given that some ND-10 body components are found associated with 

late replication foci, it is plausible that DEK and HIRA together play an important 

role in enriching the late viral chromatin in the histone H3 variant H3.3 [258]. What 

biological function H3.3 has on viral activities is not known. It is possible that H3.3 

enrichment is simply due to the replication of the viral genome outside of S-phase. To 

explore this idea, we could perform ChIP-qPCR for H3.3 in growing and 

differentiated cells to determine whether there is an increase in H3.3 binding to the 

viral genome during late, productive replication. 

To examine the role of H3.3 in the early lifecycle, HPV quasiviruses could be 

produced in 293TT cells that are either depleted for H3.3 using siRNA or have H3.3 
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over expressed from an expression vector. These viruses would be used to infect cells 

and look for any differences in early transcription. To examine the role of H3.3 in the 

late viral lifecycle, we could explore the use of siRNA depletion of histone H3.3 or 

the chaperones DEK and HIRA in differentiated cells containing the viral genome 

and assess the impact on productive viral amplification.  

The goal of this dissertation was to gain further insight into the manner by 

which the early HPV lifecycle was regulated by chromatin modifications. We have 

shown, in agreement with a wide body of previous studies, that HPV infection is 

extensively regulated in an epigenetic fashion. Our results indicated that the 

chromatin packaged in papillomavirus virions is extensively modified and has a 

structure that is overall quite distinct from that of the host cell. Our data lays the 

foundation for future experiments to uncover crucial mechanisms that govern 

immediate early viral processes. 

Additionally, the work presented in this dissertation could have implications 

for the development of therapeutics for treating HPV infection. While vaccination is 

the best prophylactic treatment of HPV infection, there are still hundreds of thousands 

of new cases each year, in addition to those who have already been infected before 

vaccination [280]. In Chapter 5, we showed that the treatment of host cells with the 

HDAC inhibitor TSA substantially restricted the early viral gene expression. Previous 

studies have shown that the late HPV lifecycle can be abrogated by treatment of 

HDACs such as Vorinostat [263]. Our findings complement a growing body of work 

suggesting that HPV’s intricate association with the cellular histone acetylation 

machinery could be a potent target for antiviral development.  
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Appendices 
 
Supplementary Table 1. Relative abundance of histone PTMs in HPV quasivirus virions and 293TT control cells. 

Histone Peptide Modification Mean QsV Mean 
293TT 

Fold 
Change 

p 
value 

H3 

KSTGGKAPR 

K4me1 13.52% 17.00% 0.80 0.5703 

K4me2 1.01% 0.74% 1.36 0.6018 

K4me3 0.32% 0.26% 1.24 0.7137 

K4ac 0.30% 0.06% 5.36 0.0396 

KSTGGKAPR 

K9me1 9.55% 9.55% 1.00 0.3366 

K9me2 20.37% 20.55% 0.99 0.8959 

K9me3 10.52% 12.22% 0.86 0.0611 

K9ac 0.15% 0.39% 0.40 0.0748 

K14ac 8.19% 14.14% 0.58 0.0401 

K9me1K14ac 4.47% 7.08% 0.63 0.2237 

K9me2K14ac 14.09% 16.00% 0.88 0.6452 

K9me3K14ac 6.01% 6.20% 0.97 0.9264 

K9acK14ac 0.88% 0.91% 0.96 0.8416 

KQLATKAAR 

K23me1 0.06% 0.08% 0.82 0.3143 

K18me1 0.15% 0.12% 1.20 0.0181 

K18me1K23me1 0.01% 0.01% 0.57 0.3912 

K18ac 2.01% 0.91% 2.20 0.0187 

K23ac 40.85% 47.65% 0.86 0.3319 

K18acK23ac 1.93% 1.40% 1.38 0.0150 

KSAPATGGVKKPHR 

K36me1 0.94% 1.17% 0.80 0.5999 

K27me1 1.02% 1.01% 1.01 0.1398 

K27me2 28.03% 32.71% 0.86 0.0000 
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K36me2 15.26% 10.26% 1.49 0.4382 

K27me3 6.31% 3.97% 1.59 0.8047 

K36me3 1.14% 1.23% 0.93 0.8608 

K27me2K36me1 8.05% 5.65% 1.43 0.1995 

K27me1K36me2 4.91% 4.12% 1.19 0.0803 

K27me1K36me1 0.94% 0.66% 1.43 0.0126 

K27me3K36me1 1.79% 1.54% 1.16 0.0257 

K27me1K36me3 1.85% 1.77% 1.04 0.0348 

K27me2K36me2 16.02% 29.38% 0.55 0.0279 

K27me3K36me2 2.90% 4.52% 0.64 0.0444 

K27ac 0.01% 0.00% 2.26 0.0058 

KSAPSTGGVKKPHR 

K36me1 1.12% 1.05% 1.06 0.5736 

K27me1 2.18% 1.92% 1.14 0.9247 

K27me2 11.85% 14.99% 0.79 0.2026 

K36me2 3.70% 4.09% 0.90 0.4317 

K27me3 12.44% 12.65% 0.98 0.2054 

K36me3 3.38% 3.28% 1.03 0.7558 

K27me2K36me1 8.71% 9.18% 0.95 0.0862 

K27me1K36me2 10.39% 7.26% 1.43 0.3494 

K27me1K36me1 2.07% 2.63% 0.78 0.0452 

K27me3K36me1 4.02% 3.19% 1.26 0.3926 

K27me1K36me3 2.55% 1.56% 1.64 0.8329 

K27me2K36me2 22.30% 29.85% 0.75 0.0074 

K27me3K36me2 4.55% 5.44% 0.84 0.0156 

K27ac 0.03% 0.01% 2.45 0.4538 

H4 GKGGKGLGKGGAKR 

K5ac 2.14% 1.09% 1.97 0.0025 

K8ac 2.26% 1.73% 1.31 0.1473 

K12ac 5.35% 5.29% 1.01 0.8731 
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K16ac 27.00% 34.30% 0.79 0.0487 

K5acK8ac 0.55% 0.59% 0.94 0.5060 

K5acK12ac 1.98% 1.03% 1.92 0.0045 

K5acK16ac 1.52% 0.82% 1.86 0.0001 

K8acK12ac 0.59% 0.85% 0.70 0.2232 

K8acK16ac 3.77% 2.87% 1.32 0.0223 

K12acK16ac 6.54% 5.85% 1.12 0.0691 

K5acK8acK12ac 0.70% 0.37% 1.87 0.0052 

K5acK8acK16ac 0.58% 0.34% 1.71 0.0271 

K5acK12acK16ac 1.77% 0.73% 2.43 0.0007 

K8acK12acK16ac 2.14% 1.65% 1.30 0.0277 

K5acK8acK12acK16ac 1.62% 1.54% 1.05 0.2181 

KVLR 

K20me1 6.47% 7.68% 0.84 0.0382 

K20me2 81.90% 82.69% 0.99 0.4687 

K20me3 1.95% 2.20% 0.89 0.0358 

K20ac 0.02% 0.00% 41.12 0.0055 
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Supplementary Table 2. Relative abundance of histone PTMs in BPV virions and bovine keratinocyte control cells. 

Histone Peptide Modification 
Mean 
BPV 

Mean 
Growing 

Fold 
Change 

p-
value 

Mean 
Ca++ 

Fold 
Change 

p-
value 

Mean 
Raft 

Fold 
Change 

p-
value 

H3 

KSTGGKAPR 

K4me1 37.31% 6.19% 6.03 0.0029 7.65% 4.88 0.0032 7.30% 5.11 0.0035 

K4me2 8.68% 0.76% 11.42 0.0389 0.69% 12.49 0.0380 0.51% 17.02 0.0367 

K4me3 3.25% 0.30% 10.75 0.0342 0.31% 10.53 0.0336 0.18% 17.88 0.0314 

K4ac 0.61% 0.11% 5.67 0.0408 0.12% 5.03 0.0409 0.11% 5.74 0.0386 

KSTGGKAPR 

K9me1 6.32% 5.64% 1.12 0.5406 6.12% 1.03 0.8582 5.28% 1.20 0.4339 

K9me2 6.40% 18.33% 0.35 0.0012 17.76% 0.36 0.0023 19.34% 0.33 0.0008 

K9me3 2.77% 15.87% 0.17 0.0019 17.68% 0.16 0.0005 16.82% 0.16 0.0031 

K9ac 3.46% 0.62% 5.58 0.2275 1.19% 2.92 0.3052 1.26% 2.74 0.3167 

K14ac 31.57% 14.97% 2.11 0.0851 10.95% 2.88 0.0572 8.78% 3.60 0.0438 

K9me1K14ac 13.49% 8.54% 1.58 0.0058 8.34% 1.62 0.0008 8.66% 1.56 0.0008 

K9me2K14ac 11.76% 15.99% 0.74 0.0414 17.76% 0.66 0.0020 21.35% 0.55 0.0003 

K9me3K14ac 2.78% 6.87% 0.40 0.0949 6.73% 0.41 0.1099 8.06% 0.35 0.0450 

K9acK14ac 5.52% 1.16% 4.76 0.0010 1.44% 3.84 0.0053 0.83% 6.66 0.0015 

KQLATKAAR 

K23me1 0.23% 0.17% 1.37 0.5533 0.07% 3.28 0.1631 0.18% 1.30 0.5972 

K18me1 0.16% 0.14% 1.21 0.7393 0.11% 1.51 0.2648 0.18% 0.93 0.7904 

K18me1K23me1 0.00% 0.00% 0.00 0.4226 0.00% N/A N/A 0.00% N/A N/A 

K18ac 8.38% 4.77% 1.76 0.0879 3.19% 2.63 0.0147 3.41% 2.46 0.0126 

K23ac 40.94% 29.18% 1.40 0.2767 23.68% 1.73 0.0517 23.72% 1.73 0.0505 

K18acK23ac 13.29% 3.52% 3.78 0.0037 2.73% 4.87 0.0102 1.90% 6.99 0.0090 

KSAPATGGVKKPHR 

K36me1 0.56% 1.55% 0.36 0.0011 1.62% 0.35 0.2277 0.86% 0.65 0.0558 

K27me1 6.27% 9.93% 0.63 0.1220 4.73% 1.33 0.4740 8.47% 0.74 0.2664 

K27me2 17.01% 33.28% 0.51 0.0087 32.51% 0.52 0.0106 30.79% 0.55 0.0255 

K36me2 5.05% 3.10% 1.63 0.6953 1.44% 3.50 0.4903 1.54% 3.27 0.5010 

K27me3 6.89% 11.11% 0.62 0.0086 14.41% 0.48 0.0047 11.50% 0.60 0.0151 

K36me3 4.83% 4.36% 1.11 0.6405 3.76% 1.28 0.5615 1.83% 2.63 0.0079 
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K27me2K36me1 14.19% 5.94% 2.39 0.0238 6.67% 2.13 0.0322 8.98% 1.58 0.0780 

K27me1K36me2 3.96% 3.60% 1.10 0.5843 3.55% 1.12 0.5635 3.74% 1.06 0.7259 

K27me1K36me1 1.59% 1.89% 0.84 0.1578 0.98% 1.62 0.0231 1.56% 1.02 0.8158 

K27me3K36me1 7.74% 3.10% 2.50 0.0385 3.71% 2.09 0.0474 4.44% 1.74 0.0775 

K27me1K36me3 1.24% 1.70% 0.73 0.3443 1.98% 0.63 0.1831 1.71% 0.73 0.3382 

K27me2K36me2 12.16% 8.02% 1.52 0.5280 15.04% 0.81 0.6752 12.98% 0.94 0.8957 

K27me3K36me2 10.97% 2.75% 3.99 0.2583 4.27% 2.57 0.3311 5.01% 2.19 0.3749 

K27ac 0.23% 0.17% 1.32 0.8306 0.00% N/A 0.4226 0.03% 7.21 0.4799 

KSAPSTGGVKKPHR 

K36me1 1.69% 4.67% 0.36 0.0029 3.00% 0.56 0.4782 3.26% 0.52 0.0242 

K27me1 1.98% 5.05% 0.39 0.0128 4.31% 0.46 0.0584 5.69% 0.35 0.0141 

K27me2 10.11% 25.70% 0.39 0.0070 17.74% 0.57 0.0100 10.89% 0.93 0.6575 

K36me2 9.97% 6.07% 1.64 0.0399 6.25% 1.60 0.1366 7.10% 1.40 0.0721 

K27me3 3.50% 10.37% 0.34 0.0006 7.35% 0.48 0.0012 4.58% 0.76 0.1001 

K36me3 5.11% 6.99% 0.73 0.1676 9.28% 0.55 0.0258 4.77% 1.07 0.7728 

K27me2K36me1 12.42% 6.34% 1.96 0.0171 7.02% 1.77 0.0398 6.96% 1.78 0.0288 

K27me1K36me2 7.55% 7.20% 1.05 0.7593 6.10% 1.24 0.5341 11.97% 0.63 0.0185 

K27me1K36me1 2.86% 1.76% 1.63 0.1411 0.09% 31.11 0.0011 2.38% 1.20 0.2712 

K27me3K36me1 4.24% 1.82% 2.33 0.0138 0.88% 4.81 0.0012 2.57% 1.65 0.0168 

K27me1K36me3 1.35% 2.64% 0.51 0.1674 2.09% 0.64 0.6042 4.18% 0.32 0.0022 

K27me2K36me2 23.66% 3.06% 7.74 0.0016 13.81% 1.71 0.1890 18.85% 1.26 0.1229 

K27me3K36me2 9.07% 2.08% 4.36 0.0226 2.03% 4.47 0.0204 5.88% 1.54 0.1362 

K27ac 0.85% 0.16% 5.25 0.2557 0.00% N/A 0.1942 0.34% 2.54 0.3637 

H4 GKGGKGLGKGGAKR 

K5ac 5.04% 2.50% 2.02 0.0233 2.24% 2.25 0.0104 3.31% 1.52 0.2297 

K8ac 4.75% 1.84% 2.57 0.0563 1.54% 3.07 0.0486 1.28% 3.72 0.0361 

K12ac 4.01% 5.21% 0.77 0.0126 3.30% 1.22 0.0377 3.58% 1.12 0.1265 

K16ac 19.34% 25.60% 0.76 0.1137 29.29% 0.66 0.0528 33.42% 0.58 0.0130 

K5acK8ac 2.31% 0.88% 2.61 0.0080 0.68% 3.38 0.0083 1.23% 1.88 0.1162 

K5acK12ac 1.50% 1.43% 1.05 0.7700 0.90% 1.66 0.0610 1.09% 1.37 0.1611 
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K5acK16ac 1.08% 0.65% 1.65 0.1085 0.32% 3.37 0.0262 0.31% 3.46 0.0513 

K8acK12ac 0.69% 0.64% 1.08 0.7299 0.25% 2.77 0.0741 0.72% 0.95 0.9462 

K8acK16ac 3.63% 2.32% 1.56 0.0412 1.97% 1.84 0.0151 1.41% 2.57 0.0426 

K12acK16ac 3.33% 6.07% 0.55 0.0000 3.26% 1.02 0.4947 3.82% 0.87 0.1999 

K5acK8acK12ac 1.77% 1.02% 1.73 0.0077 0.60% 2.96 0.0003 0.81% 2.17 0.0017 

K5acK8acK16ac 0.82% 0.13% 6.41 0.0792 0.08% 10.13 0.0704 0.05% 15.90 0.0667 

K5acK12acK16ac 0.64% 0.69% 0.93 0.8103 0.21% 2.99 0.1266 0.13% 4.75 0.0901 

K8acK12acK16ac 2.45% 2.00% 1.22 0.1451 0.98% 2.50 0.0169 1.17% 2.09 0.0106 

K5acK8acK12acK16ac 2.01% 0.78% 2.57 0.0416 0.45% 4.48 0.0321 0.38% 5.31 0.0356 

KVLR 

K20me1 38.73% 47.33% 0.82 0.2019 16.54% 2.34 0.0235 40.78% 0.95 0.9228 

K20me2 44.76% 27.95% 1.60 0.1179 60.23% 0.74 0.1654 36.36% 1.23 0.6026 

K20me3 9.37% 2.75% 3.40 0.0929 15.33% 0.61 0.1612 14.35% 0.65 0.3391 

K20ac 1.86% 0.00% N/A 0.0631 0.89% 2.08 0.2421 0.46% 4.01 0.1078 
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Supplementary Table 3. Relative abundance of histone PTMs in HPV virions and human keratinocyte control cells. 

Histone Peptide Modification 
Mean 
HPV 

Mean 
Growing 

Fold 
Change 

p-
value 

Mean 
Ca++ 

Fold 
Change 

p-
value 

Mean 
Raft 

Fold 
Change 

p-
value 

H3 

KSTGGKAPR 

K4me1 26.82% 24.56% 1.09 0.4227 26.54% 1.01 0.9092 10.07% 2.66 0.0068 

K4me2 0.05% 0.00% N/A 0.1974 0.00% N/A 0.1974 0.00% N/A 0.1974 

K4me3 0.00% 0.00% N/A N/A 0.00% N/A N/A 0.00% N/A N/A 

K4ac 0.08% 0.00% N/A 0.1921 0.00% N/A 0.1921 0.00% N/A 0.1921 

KSTGGKAPR 

K9me1 5.95% 18.98% 0.31 0.0034 25.15% 0.24 0.0000 8.36% 0.71 0.2649 

K9me2 7.75% 6.18% 1.26 0.4093 4.98% 1.56 0.2534 24.86% 0.31 0.0005 

K9me3 0.09% 4.34% 0.02 0.0005 4.29% 0.02 0.0000 20.12% 0.00 0.0002 

K9ac 0.43% 0.13% 3.25 0.0182 0.04% 10.56 0.0306 0.00% 204.12 0.0744 

K14ac 29.92% 13.85% 2.16 0.0079 11.26% 2.66 0.0221 6.27% 4.77 0.0002 

K9me1K14ac 15.88% 25.07% 0.63 0.0811 25.90% 0.61 0.0977 12.79% 1.24 0.3863 

K9me2K14ac 8.83% 2.07% 4.26 0.2819 1.64% 5.40 0.2680 8.22% 1.07 0.8922 

K9me3K14ac 0.76% 0.65% 1.17 0.7804 0.71% 1.07 0.8929 5.70% 0.13 0.0094 

K9acK14ac 2.04% 0.42% 4.88 0.0400 0.35% 5.89 0.0281 0.00% N/A 0.0642 

KQLATKAAR 

K23me1 0.00% 0.00% N/A N/A 0.00% N/A N/A 0.00% N/A N/A 

K18me1 0.18% 0.00% N/A 0.0413 0.00% N/A 0.0413 0.00% N/A 0.0413 

K18me1K23me1 0.00% 0.00% N/A N/A 0.00% N/A N/A 0.00% N/A N/A 

K18ac 3.85% 0.00% N/A 0.0028 0.00% N/A 0.0028 0.00% N/A 0.0028 

K23ac 72.42% 47.46% 1.53 0.0200 43.72% 1.66 0.0500 22.66% 3.20 0.0010 

K18acK23ac 7.20% 9.10% 0.79 0.2575 7.73% 0.93 0.6842 2.55% 2.82 0.0647 

KSAPATGGVKKPHR 

K36me1 0.00% 0.29% 0.00 0.0774 0.53% 0.00 0.0687 0.00% N/A N/A 

K27me1 3.54% 3.92% 0.90 0.6043 3.18% 1.11 0.5906 6.64% 0.53 0.4293 

K27me2 49.40% 41.79% 1.18 0.0010 42.97% 1.15 0.0005 45.54% 1.08 0.2708 

K36me2 0.12% 3.49% 0.03 0.0001 0.09% 1.22 0.8071 0.00% N/A 0.2253 

K27me3 9.35% 13.39% 0.70 0.0094 14.70% 0.64 0.0008 18.89% 0.50 0.0084 

K36me3 0.52% 0.82% 0.63 0.5388 2.69% 0.19 0.2485 0.00% N/A 0.2195 
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K27me2K36me1 11.40% 13.40% 0.85 0.5809 15.99% 0.71 0.2800 10.68% 1.07 0.8683 

K27me1K36me2 1.84% 5.08% 0.36 0.0048 2.73% 0.67 0.1912 0.00% N/A 0.0073 

K27me1K36me1 0.53% 0.14% 3.85 0.1937 0.00% N/A 0.1676 0.19% 2.78 0.1785 

K27me3K36me1 1.57% 3.28% 0.48 0.0668 6.16% 0.25 0.0065 9.27% 0.17 0.0031 

K27me1K36me3 0.49% 1.42% 0.35 0.1348 0.51% 0.97 0.9011 0.00% N/A 0.0617 

K27me2K36me2 13.24% 5.24% 2.53 0.2586 7.87% 1.68 0.3633 6.11% 2.17 0.2529 

K27me3K36me2 4.38% 1.06% 4.12 0.1676 1.86% 2.36 0.2311 1.06% 4.12 0.1153 

K27ac 0.19% 0.02% 8.23 0.0083 0.00% N/A 0.0727 0.00% N/A 0.0727 

KSAPSTGGVKKPHR 

K36me1 0.00% 0.00% N/A N/A 0.01% 0.00 0.3739 0.00% N/A N/A 

K27me1 4.66% 0.00% N/A 0.1485 67.09% 0.07 0.0093 0.00% N/A 0.1485 

K27me2 45.44% 41.29% 1.10 0.6158 29.60% 1.54 0.1332 31.01% 1.47 0.0963 

K36me2 0.05% 11.65% 0.00 0.0307 0.51% 0.09 0.4161 0.00% N/A 0.5000 

K27me3 6.53% 12.33% 0.53 0.2374 0.29% 22.67 0.0000 2.23% 2.93 0.0694 

K36me3 0.01% 0.03% 0.50 0.0778 1.96% 0.01 0.3709 0.00% N/A 0.1129 

K27me2K36me1 12.58% 30.00% 0.42 0.0085 21.97% 0.57 0.2056 26.34% 0.48 0.3136 

K27me1K36me2 1.95% 0.45% 4.31 0.0212 0.00% N/A 0.0080 0.00% N/A 0.0080 

K27me1K36me1 0.52% 0.00% N/A 0.2091 0.00% N/A 0.2091 0.00% N/A 0.2091 

K27me3K36me1 2.17% 0.00% N/A 0.0482 0.19% 11.55 0.0018 9.09% 0.24 0.2735 

K27me1K36me3 0.00% 0.00% N/A N/A 0.00% N/A N/A 0.00% N/A N/A 

K27me2K36me2 9.54% 9.06% 1.05 0.9021 18.63% 0.51 0.1958 3.74% 2.55 0.2143 

K27me3K36me2 3.11% 0.00% N/A 0.1222 0.00% N/A 0.1222 0.00% N/A 0.1222 

K27ac 0.00% 0.00% N/A N/A 0.00% N/A N/A 0.00% N/A N/A 

H4 GKGGKGLGKGGAKR 

K5ac 7.04% 2.00% 3.52 0.0440 3.95% 1.78 0.1088 7.07% 1.00 0.9877 

K8ac 7.04% 3.75% 1.88 0.1072 4.04% 1.74 0.1092 7.07% 1.00 0.9877 

K12ac 7.04% 3.57% 1.97 0.0845 4.24% 1.66 0.1114 7.07% 1.00 0.9877 

K16ac 7.04% 34.49% 0.20 0.0019 17.86% 0.39 0.0731 7.07% 1.00 0.9877 

K5acK8ac 0.00% 0.00% N/A N/A 0.15% 0.00 0.1869 0.14% 0.00 0.1092 

K5acK12ac 0.00% 0.43% 0.00 0.0346 0.15% 0.00 0.1869 0.14% 0.00 0.1092 
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K5acK16ac 0.00% 1.01% 0.00 0.0261 0.15% 0.00 0.1869 0.14% 0.00 0.1092 

K8acK12ac 0.00% 0.68% 0.00 0.0132 0.15% 0.00 0.1869 0.14% 0.00 0.1092 

K8acK16ac 0.01% 4.54% 0.00 0.0000 1.11% 0.01 0.0058 0.15% 0.05 0.0913 

K12acK16ac 0.70% 7.52% 0.09 0.0029 1.19% 0.59 0.6098 1.09% 0.64 0.6984 

K5acK8acK12ac 0.00% 0.84% 0.00 0.0203 0.10% 0.00 0.1346 0.01% 0.00 0.3632 

K5acK8acK16ac 0.00% 0.37% 0.00 0.0658 0.00% 0.00 0.1334 0.01% 0.00 0.3632 

K5acK12acK16ac 0.00% 1.12% 0.00 0.0009 0.00% N/A N/A 0.01% 0.00 0.3632 

K8acK12acK16ac 0.00% 2.66% 0.00 0.0004 0.17% 0.00 0.0720 0.01% 0.00 0.3632 

K5acK8acK12acK16ac 0.00% 1.55% 0.00 0.0002 0.02% 0.00 0.3632 12.30% 0.00 0.0834 

KVLR 

K20me1 14.67% 2.30% 6.37 0.1238 15.32% 0.96 0.8758 3.50% 4.19 0.0857 

K20me2 58.49% 88.58% 0.66 0.2005 75.28% 0.78 0.3384 94.48% 0.62 0.1619 

K20me3 0.26% 2.93% 0.09 0.0052 1.22% 0.21 0.1100 0.00% N/A 0.5000 

K20ac 10.83% 0.00% N/A 0.1952 0.00% N/A 0.1952 0.00% N/A 0.1952 
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