
Neural Network Generation of Temporal
Sequences from Single Static Vector Inputs

using Varying Length Distal Target
Sequences

PhD Dissertation

Shaun Gittens

University of Maryland at College Park

December 14, 2006

Dissertation Committee :

Dr. Carol Espy-Wilson

Dr. Bill Gasarch

Dr. Jack Minker

Dr. Don Perlis

Dr. James Reggia (Chair)

Abstract

Training an agent to operate in an environment whose mappings are largely unknown is gener-

ally recognized to be exceptionally difficult. Further, granting such a learning agent the ability to

produce an appropriate sequence of actions entirely from a single input stimulus remains a key

problem. Various reinforcement learning techniques have been utilized to handle such learning

tasks, but convergence to optimal policies is not guaranteed for many of these methods. Tradi-

tional supervised learning methods hold more assurances ofconvergence, but these methods are

not well suited for tasks where desired actions in the outputspace of the learner, termedproximal

actions, are not available for training. Rather, target outputs from the environment aredistal from

where the learning takes place. For example, a child acquiring language who makes speech errors

must learn to correct them based on heard information that reaches his/her auditory cortex which is

distant from the motor cortical regions that control speechoutput. While distal supervised learning

techniques for neural networks have been devised, it remains to be established how they can be

trained to produce sequences of proximal actions from only asingle static input. In this research,

I develop an architecture which incorporates recurrent multi-layered neural networks that possess

some form of history in the form of a context vector into the distal supervised learning framework,

enabling it to learn to generate correct proximal sequencesfrom single static input stimuli. This is

in contrast to existing distal learning methods designed for non-recurrent neural network learners

that utilize no concept of memory of their prior behavior. Also, I adapt a technique in this research

known as teacher forcing for use in distal sequential learning settings which is shown to result

in more efficient usage of the recurrent neural network’s context layer. The effectiveness of my

approach is demonstrated by applying it to acquire varying length phoneme sequence generation

behavior using only previously heard and stored auditory phoneme sequences. The results indicate

that simple recurrent backpropagation networks can be integrated with distal learning methods to

create effective sequence generators even when they do not constantly update current state infor-

mation.

2

TABLE OF CONTENTS

1 Introduction 1

1.1 Goals . 3

1.2 Specific Aims .6

1.3 Contributions .. 7

1.4 Dissertation Organization 9

2 Background 12

2.1 Feedforward Neural Networks 12

2.1.1 Description . 12

2.1.2 Supervised Learning (Back-propagation) 13

2.1.3 Feedforward Neural Network Strengths and Limitations 18

2.2 Neural Network Sequential Processing 21

2.2.1 Training Methods for Sequential Neural Networks 23

2.2.2 Time Delay Memory Structures .. . 24

2.3 Reinforcement Learning 26

2.4 Self Organizing Maps 28

2.4.1 Description . 28

2.4.2 Hebbian Learning .29

2.4.3 Applications . 31

2.5 Distal Supervised Learning 33

i

3 Recurrent Distal Supervised Learning 38

3.1 Motivation .. 38

3.2 Forward Model as a Recurrent Neural Network 40

3.3 Training the Recurrent Distal Learner 44

3.4 Approximated Teacher Forcing 47

3.5 Use of Time Delay Memory Structures in Recurrent Distal Supervised Learning . . 50

3.6 A Distal Sequence Generation Task Using a Simple Environment 52

3.6.1 Simple Sequential Environment for Preliminary Study: Concatenation . . . 53

3.6.2 Experiment . 57

3.6.3 Conclusions . 59

3.7 Contributions of the Chapter 63

4 Sequential Processing using Self-Organizing Map Models 64

4.1 Background . 65

4.2 SARDNET . 65

4.3 Candidate-Driven SARDNET .. 69

4.3.1 Multi-node Candidate-Driven Output Mapping 73

4.3.2 Demonstrating the Utility of the Candidate-Driven SARDNET Enhance-

ments . 75

4.4 Contributions of the Chapter 77

5 Recurrent Distal Learning in Modeling the Acquisition of Phoneme Sequence Gener-

ation Behavior 79

5.1 Phoneme Sequence Generation 80

5.2 Single Phoneme Production Model 81

5.2.1 Model . 81

5.2.2 Environment . 83

5.2.3 Distal Learner / Forward Model Designs 85

ii

5.2.4 Results . 86

5.3 Framing the Distal Recurrent Learning Architecture for the Phoneme Sequence

Recurrent Task . 87

5.3.1 Setup . 87

5.3.2 Phonemes and Phoneme Sequences for Experiments 90

5.3.3 Memory Recall of Associative Map Distal Target Sequences 94

5.3.4 Environment . 95

5.3.5 Forward Model . 99

5.3.6 Simulation of the Phoneme Sequence Generator 101

5.3.7 Simulation Results .102

5.3.8 Evaluating the Efficiency of Recurrent Distal Elman Networks 106

5.3.9 Implementing Delay Line Memory Constructs 108

5.4 Contributions of the Chapter 109

6 Discussion 115

6.1 Benefits of the Distal Sequence Generation Study 116

6.2 Success in Recurrent Distal Supervised Learning 117

6.3 Issues with Training 120

6.3.1 Difficult Environment .. 120

6.3.2 Issues with Initial Random Setting of Neural Network Weight Vectors . . . 122

6.3.3 Drawbacks Faced in Dealing with Exponential Trace Memories 123

6.3.4 Forward Model . 123

6.4 Future Work .127

6.4.1 Improving Performance of Recurrent Distal SupervisedLearning Archi-

tecture . 127

6.4.2 Modeling Sequence Generating Cognitive Tasks 130

iii

6.4.3 Incorporating the Self-Halting Mechanism into the Recurrent Distal Su-

pervised Learning Architecture .. 132

A Algorithm used for the preliminary Single Phoneme Acquisition Model 141

B Creating a Smooth Mapping from a Finite Mapping 143

C Motor / Auditory Feature Tables for English Language

Phonemes for Use in Phoneme Sequence Production Task. 149

iv

LIST OF TABLES

2.1 Error back-propagation procedure for training neural networks 17

2.2 Procedure for training a self-organizing map 30

3.1 Training Procedure for a Recurrent Distal Learner 51

4.1 The SARDNET Training Procedure 66

4.2 Outline of the procedure for producing output maps in theSARDNET SOM once

presented with input vector sequence, X ={xi|1 < i < n}. 67

4.3 Outline of the procedure for producing candidate-driven outputs in the SARDNET

SOM once presented with input vector sequence, X =x[1], x[2], ..., x[n]. 71

4.4 Procedure for producing multi-node output maps in a candidate-driven SARDNET

SOM once presented with input vector sequence, x[1], x[2], ..., x[n]. 72

5.1 Reduced List of Phonemes and Their Corresponding Distinctive Motor Features. . 92

5.2 Reduced List of Phonemes and Their Corresponding Distinctive Auditory Features. 93

5.3 List of Target Phoneme Sequences. 94

5.4 Listing the best performing distal phoneme sequence generators. 105

5.5 List of Elman and Jordan Distal Architecture Simulations 107

C.1 Distinct Feature System for Consonants (Motor) 150

C.2 Distinct Feature System for Vowels (Motor) 151

C.3 Distinct Feature System for Consonants (Auditory) 152

C.4 Distinct Feature System for Vowels (Auditory) 153

v

LIST OF FIGURES

1.1 A basketball shooting example for using the distal supervised learning paradigm. . 5

2.1 An example of a typical perceptron set up. 13

2.2 Example of a standard multi-layered neural network architecture at work (taken

from http://aemc.jpl.nasa.gov/activities/bioregen.cfm) 14

2.3 Visual demonstration of standard back-propagation procedure. The error-back

propagation procedure can move a multi-layered feedforward neural network (de-

noted by the box above) incrementally towards producing some desired behavior

given an inputp[n] and its corresponding target outputy∗[n]. Here0 < n < k,

where k signifies the number of input/output pairs used to train the neural network.

Over many training steps (epochs), the weight parameter vector w (not shown) of

the neural network is adjusted using the difference vector between the target output

y∗[n] and the actual neural network outputy[n], where y[n] = h(p[n],w). 15

2.4 Elman and Jordan recurrent neural network implementations 20

2.5 An example of an unfolded recurrent neural network 23

2.6 A recurrent Jordan network using d time delay layers. 25

2.7 Reinforcement learning framework. 26

2.8 SOM which examines worldwide poverty by region. (taken from http://www.cis.hut.fi/-

research/som-research/worldmap.html) 28

2.9 Weight plots for a 10x10 SOM. 31

2.10 Basic setup for the distal learning problem. 33

2.11 Illustration of the distal supervised learning framework 35

vi

2.12 Standard setup of a distal supervised learning system utilizing feedforward neural

networks for distal learner and forward model structures. 36

3.1 An illustration of the recurrent distal supervised learning framework 41

3.2 An abstract diagram of recurrent distal supervised learning framework 45

3.3 Example setup of delay memory layers in use by the recurrent distal learner. 53

3.4 Simple Illustration of the sequential Concatenation Environment. 55

3.5 Example training pairs for the distal concatenation experiments. 56

3.6 Recurrent distal learner training performance while operating in the concatenation

environment . 60

3.7 Evaluation of approximated teacher forcing. 61

4.1 Weight plot of a 10x10 SARDNET SOM. .. . 68

4.2 Contrasting standard and multi-node candidate-driven SARDNET SOM output

schemes. 73

4.3 Mexican hat activation using multi-node candidate-driven activation. 75

4.4 Weight plots for Example Candidate-Driven SARDNET. 76

5.1 The Single Phoneme Acquisition Architecture 85

5.2 An illustration of the Phoneme Sequence Generation Domain. 88

5.3 Illustrating the setup for the Phoneme Sequence Generation distal learning task. . . 89

5.4 Recurrent distal learning architecture used to model thePhoneme Sequence Gen-

eration framework of Figure 5.3. 91

5.5 The Phoneme Sequence Generation Environment. 96

5.6 Evaluating the effectiveness of teacher forcing with regard to distal error. 110

5.7 Evaluating the effectiveness of teacher forcing with regard to proximal error. 111

5.8 First two stages of recurrent distal supervised learning 112

5.9 Final RMSE performance chart of a well-trained phoneme sequence generator . . . 113

5.10 Elman vs. Jordan distal recurrent implementations 114

vii

B.1 Simple Mapping .144

B.2 Ideal Mapping .145

B.3 Example figure of discontinuous mapping resulting from Equation A.1. 145

B.4 Radial Basis Function .. 146

B.5 Demonstrates smooth map construction with and without radial mound slimming . 147

B.6 Comparison of two map construction methods. 148

viii

Chapter 1

Introduction

What series of robot hand and arm movements is required to drawa square using a paintbrush on a

canvas? What sequence of motor commands should be issued to the brain’s primary motor cortex

which could eventually yield the verbal utterance “mother”from a subject’s mouth? These are

types of problems that are addressed in an active area of research within machine learning which

is concerned with how one trains an agent to learn to exhibit some desired time varying behavior

while acting in an external environment. Existing supervised learning strategies for training neural

nets are well studied and effective in many domains, but a teacher must provide the correct series of

desired proximal actions to the agent in order to be successful. Here, the termproximaldescribes

the immediate actions taken by the learning agent while operating in the environment. In contrast,

the termdistal describes the consequences which result in the environmentas a direct result of

the proximal actions taken by the learning agent. In the canvas painting example, for instance, the

distal target behavior sought by the trainer would be the painted square, i.e. a visual result that is

far removed from the motor control commands used to generateit, hence the term “distal”. The

series of arm joint angles required by the robot to attempt such a goal would constitute proximal

actions. In the current scenario, correct proximal targetsare not available for training the learner

(i.e., there is no teacher contribution that explicitly moves the arm through the desired movement

sequence which can be used for training.) The desired outputs sought by the teacher (e.g., the

intended square in this case, perceived visually) actuallyexist in the output parameter space of the

environment function rather than in the learner’s action space (e.g., robot arm movements.)

1

Reinforcement learning strategies are often used to handle adaptive learning problems as the

environment function is generally undefined or very difficult to characterize. Very effective meth-

ods have been developed which demonstrate learning optimalto near-optimal policies exclusively

through interaction with an external environment ([2],[31],[52],[53],[57],[58],[63]). Even so, re-

inforcement learning has its drawbacks and is far from beinga perfected science. It can be very

difficult for an agent to learn even a good policy, much less the optimal policy, in complex and

unfamiliar environments. This is even more so the case when the reward function, which drives

learning, is designed with little or no a priori teacher bias. Many of the most popular reinforcement

learning techniques studied today are not guaranteed to converge to optimal policies.

Traditional supervised learning methods have stronger convergence assurances than reinforce-

ment learning but are ill-suited for use in a distal environment. Jordan, et al. [23] demonstrates

that supervised learning can be used to train a learner situated in a complex environment where

only desired distal targets are available for training. In this framework, another neural network

(the “forward model”) can be set in serial with the learner and be trained to emulate the envi-

ronment. The additional neural net can then, in turn, be usedto assist in training the learning

agent using the target distal outputs provided by the teacher. Variations of this methodology of

learning have been shown to be particularly effective in a variety of domains. One such domain

includes studies in constructing computational simulation of brain function as it has been shown

that human brains utilize similar “forward models” in many aspects of motor task learning and de-

velopment ([4],[15],[29],[70],[71],[72]) (e.g., motor control, etc.) Some training of distal learning

agents to produce sequences or strings of actions is also demonstrated for non-sequential neural

network learners [24]. However, these methods have not beeneffectively studied in training distal

learners with recurrent links. Moreover, such recurrent networks should potentially be capable of

generating varying length series of discrete time actions even when provided with a single input

stimulus.

Unlike existing distal learning methods designed for non-recurrent neural network learners,

the methods presented here are developed in order to train recurrent neural networks which utilize

2

some type of history in the form of a context vector.Using the latter, a neural network will be better

equipped to learn the appropriate sequential proximal behavior given only a static input vector and

without being provided with information about the current state of the world. Such a distal learner

requires only a similarly designed recurrent network for its forward model and the desired distal

sequences for training. Such an architecture can be useful in that, for one, should the current state

generator (e.g., camera in a vision system, audio sensor) fail or be removed, good sequences can

presumably still be learned and completed as the learning agent can be guided by its own memory.

Also, the use of an exponential decay memory layer (described in detail in Section 2.2) in many

recurrent neural network implementations may effectivelysupplement or even replace the current

state information used to drive existing distal supervisedlearning implementations.

1.1 Goals

The goal of this research is to develop a system that can trainrecurrent neural networks situated in

a complex environment when provided with desired distal target sequences to drive learning under

the assurances afforded to a supervised learning framework. Not only could this work expand the

use of recurrent neural nets in more complex domains, but it may even improve on existing domains

of distal sequential learning tasks previously handled by reinforcement learning and non-recurrent

distal learning implementations.

Recurrent neural networks have been found to possess tremendous value in many fields ([35]).

They have been used successfully to solve or address many problems such as robot control in

producing time-series behavior. These recurrent neural networks have been shown to exhibit useful

qualities and properties including the robustness commonly found in many instances of neural

network applications. Also, they exhibit forms of fault tolerance and can be shown to generalize

very well using only training data.

However, many problems that exist in the real world are not framed in the same manner as that

presently set up for recurrent neural networks. As in any supervised learning method, the teacher or

3

”supervisor” must have available a priori all sequences therecurrent neural network should know

by the time training has concluded.

In many real world complex problem domains, the time-varying sequential behavior worth

learning takes place in some external environment. For example, Jordan ([24]) describes a case

where a person is required to learn how to propel a basketballinto a basket (Figure 1.1). All that

is known to the person (learning agent from here on) beforehand are the necessary inputs and

desired distal outcomes of the environment. In this example, the input to this learning agent would

comprise the intent to shoot the ball into the basket, and theposition of the ball in his/her visual

field could comprise the current state of the learning task. Ultimately, the desired distal outcome in

the environment sought by the agent should comprise the sights and sounds of the basketball going

through the hoop. What the learner in this task must somehow acquire is the necessary series of

arm motions required in order to successfully accomplish this task.

In order to handle the training of neural networks to operatein environments like the one

described above, Jordan suggests the creation of a separateneural network (termed a forward

model) which can be trained through its own interactions in the environment to mimic the latter’s

mapping of the learner’s proximal actions to distal consequences. When completed, this forward

model neural network can then be employed to assist in training the actual learning neural network

of interest. This use of a second neural network to assist in training the original untrained feed-

forward neural network acting in the environment is referred to in general asdistal supervised

learning.

Jordan uses some good applications to demonstrate the actual learning of time-varying proxi-

mal behavior in the output space of the learning neural network in order to accomplish the learning

of the task. At this point, many researchers have followed this paradigm to develop similar sys-

tems capable of addressing some very interesting distal problems ([27], [38], [42], [60]). This

method is a very effective way of solving the inverse modeling problem, where, once trained, the

learning neural network in question can be characterized asthe inversefunction of the unknown

environment.

4

Figure 1.1: A basketball shooting example for using the distal supervised learning paradigm.

Recurrent neural networks contain recurrent links between neural elements in order to encour-

age time-varying behavior based on action history. This information can be taken from the previous

step or even a history of previous actions in the form of an exponential trace memory. As already

mentioned, such recurrent neural networks have been shown to be very useful in real world appli-

cations. To my knowledge, the distal learning paradigm has not been extended to training recurrent

neural networks.

Also, of particular interest to this study is not merely the production of time-varying sequential

behavior through interaction in the environment, but sequential behavior that can result from just a

single static input stimulus (e.g., a picture or a single goal position.) In typical studies in which the

acquisition of correct sequence generating behavior is thegoal, the input stimulus will change with

every new time step or subsequent action of the learner. It has been shown that some trajectory

learning behavior can be demonstrated without the use of recurrency, but that is while using current

state updates from the environment at every step of the action-generating process. The typical

distal learner relies heavily on such updates to drive its neural network to generate its next action

or output. Here, a paradigm is sought that can use just a single input vector (which can be thought

of as a single plan, a thought, or intention of the system) in order to generate some time-varying

sequence of proximal actions which can yield a very specific trajectory output in environment

space.

5

Past literature has not fully addressed the problem domain of training a neural network to pro-

duce the appropriate sequential behavior necessary to yield a very specific trajectory in the environ-

ment space from a single static input stimulus. This dissertation addresses this particular problem

and maintains that adding recurrency to neural networks trained in the external environment of

interest can be the best course of action in learning to produce the correct proximal sequential

behavior from learning agents given only a single input or intention from which to work.

Jordan [24] briefly suggests how one might reconfigure his distal supervised learning frame-

work to potentially learn specific trajectories in an external environment. His modification, how-

ever, still relied heavily on using a steady stream of current state updates from the environment

to determine subsequent actions local to the agent. In addition, this modification still did not ad-

dress the handling of distal sequence generation tasks which require only single input stimuli to

generate multiple actions and, hence, multiple consequences in the environment. Here, recurrency

is added to the original distal supervised learning framework at the level of the distal learner of

interest as well as its forward model in order to further facilitate learning and to add capabilities

and functionality that could not be easily addressed under Jordan’s initial suggestion.

1.2 Specific Aims

The specific aims of this study are as follows:

1. Expand the capabilities of the existing distal supervised learning paradigm to manage train-

ing of often used recurrent neural architectures.

2. Create a model of the information processing done by cerebral cortex in learning to produce

the correct motor phoneme sequence response for a desired stored representation of the in-

tended word in associative memory. The capacity of this system to readily and efficiently

learn sequences in an external environment as well as the presence of short term memory in-

herent in the recurrency of this system will be an important factor in creating such a model.

6

The key generalization here is to generate a sequence of correct outputs for a single given

fixed input stimulus.

3. Create a SOM that can process and store phoneme or vector sequences such that unique ac-

tivation patterns for each sequence will be obtained. In designing a more efficient sequential

SOM model for this study, I incorporate modifications in the SARDNET SOM architecture

that consider which particular input vectors are most expected (candidate vectors) in calcu-

lating the correct SOM output. These modifications in uniquemapping capability will lend

themselves greatly towards enhancing the capability of my model to demonstrate a simple

form of the phoneme sequence acquisition task previously described. Here, the map organi-

zation and uniqueness of the modified SARDNET output will be analyzed and compared to

that of the original architecture.

4. Incorporate varying recurrent network architecture types and training methods into a recur-

rent distal supervised learning system. The recurrent network used primarily in this study,

often termed the Jordan network [23], is only one of many different types of recurrent net-

work architectures ([13],[8]). Numerous recurrent network training methods exist as well

([6],[35],[37],[40],[42],[43],[67],[68]) and are used successfully in varying learning tasks

and problem domains. By implementing other recurrent network types and contrasting their

performances, pros, cons, etc., I hope to ascertain which blend of recurrent architectures,

used in learner and forward model alike, could be utilized inmaximizing performance on

various types of training tasks and problems driven by desired sequences obtainable through

the environment.

1.3 Contributions

The primary contribution of my work is the modification of theexisting distal supervised learning

architecture to allow training of recurrent neural networks which operate in external environments

7

(Sections 3.1-3.3). The current distal supervised learning architecture, developed by Jordan [24],

was originally designed to train single input/single output standard feed-forward neural networks

from desired outcomes that should result from interactionswith an environment. Without consis-

tently being informed of its current state in the world aftereach action it took, a traditional distal

learner would be incapable of performing sequence generating tasks from a single unchanging

input stimulus, whereas my approach can handle such situations. I demonstrate the utility of the

modified distal learning framework by training a recurrent network in a sequential environment

called the concatenation environment whose behavior is well understood.

Second, just as in typical non-distal sequential learning tasks, recurrent networks can be useful

in their utilization of previous output memory in generating time-varying behavior while operating

in a distal setting. They become especially useful when onlya single static input vector is supplied

to the learner as it is in distal sequence generation tasks. Section 3.4 describes a method which

I adapt from a strategy referred to as teacher forcing, oftenused to improve training in standard

recurrent networks, for use in recurrent distal learning systems. Through this method, recurrent

distal learner actions are made approximately more ”correct” before being stored in memory in or-

der to hasten the training process. Though the actual correct action sequences are not available for

training, these approximated entries for memory updates tend to demonstrate noticeably improved

training results.

Third, once trained, I developed a self-organizing map to represent associative memory and

uniquely characterize a sequence of auditory feature vectors based primarily on the SARDNET

SOM architecture [21]. Though shown in previous studies to be useful in providing unambiguous

activation patterns from differing input vector sequences, some measure of ambiguity still existed

with the original SARDNET which could potentially be detrimental in the phoneme sequence

generation process previously described. In this work, I develop a modified method of produc-

ing activation patterns in the SARDNET SOM, called the candidate-driven method (Section 4.3),

which considers the closeness of the most likely candidate vector to the responsible input vector,

as well as the proximity of the current node to the winning node in the SOM’s output lattice, in

8

determining a meaningful real-valued output between 0 and 1rather than just a strict binary 0 or 1

value as in SARDNET.

Fourth, I implemented a prototype non-recurrent distal learning system capable of training neu-

ral networks to generate single motor phonemes responsiblefor yielding desired auditory phoneme

vectors from single input vectors (Section 5.2.) A key problem encountered in this implementation

was how to map outputs to the environment into their corresponding distal feedback. In order to

construct the motor-to-auditory mapping required for thissingle phoneme acquisition system, I

devised a method for creating a smooth and continuous mapping from a finite number of paired

vectors (Appendix B.) As a result, my implementation is able to take any vector in the space of

motor phonemes, including any of the motor phoneme vectors listed, and generate a reasonable

facsimile of an auditory vector feature for use in this study.

Fifth, to test this modified system on a substantial distal sequence learning problem, I designed

a simplified simulation that takes as inspiration the mannerin which humans produce phoneme

sequences in speech function acquisition, and looks to see if a recurrent neural network can be

trained in similar fashion (Section 5.3.) In order to createsuch an ambitious simulation, a se-

quential environment is constructed that accepts a sequence of motor feature vectors and responds

with a sequence of corresponding neural activity patterns emanating from associative memory.

This complex sequential environment is a composite of two non-linear component mappings: 1) a

mapping which transforms a sequence of motor phoneme feature vectors into corresponding heard

auditory vector sequences, and 2) a self-organizing map (SOM) representing associative memory

of auditory sequences.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: In Chapter 2, previous works which were per-

tinent in the creation of the architecture addressed here are reviewed. In Chapter 3, self-organizing

maps (SOMs) which are designed to accept and uniquely characterize sequential, and not single,

9

inputs are discussed. In creating a computational model of sequential cognitive function, a viable

model of cortical map activation is absolutely necessary. In the case of simulating phoneme se-

quence, or spoken word, acquisition, some approximation ofassociative memory responsible for

storing of previously heard words should be addressed. Self-organizing maps (SOM), introduced

by Kohonen in ([26]), were created in part to attempt to modelthe map formation found in the hu-

man brain and have been studied extensively for years. Few projects have addressed the need for

SOMs to adequately store sequential inputs in a manner in which each unique sequence will result

in a unique set of activations in the SOM. The one-shot, multi-winner SOM (Schultz [54]) and the

SARDNET self-organizing map (James [21]) are two very promising methods, but fall short of

guaranteeing 100% uniqueness in mapping sequences to unique SOM activations that are required

for this particular study. Also in this chapter, I address the modification I devised in making one

such construct more appropriate for this study.

In Chapter 4, I detail my own work in developing a type of distalrecurrent supervised learning

architecture which makes use of time-delay links between layers of computational processing units

in both the distal learner and the forward neural model. Specifically, this architecture is capable of

enabling distal learners to handle distal sequence generation tasks using only single input stimuli

and no current state updates in order to drive themselves in determining subsequent actions. In

Chapter 5, I discuss the results of the newly created architecture presented in Chapter 4 primarily

as an application to the study of the acquisition of the cognitive ability of phoneme sequence

generation. One of the more common uses of traditional distal supervised learning at present lies

in the creation of computational models of human cognitive task acquisition ([15],[29]). Modeling

acquisition of speech and motor control functionalities, in particular, are domains which are active

topics of study ([15],[17],[29],[70],[71]). One intention of this study is to increase the capabilities

of such distal supervised learning models of cognition to encompass more cognitive phenomena

said to occur based on the most current neuroscientific studies.

Lastly, Chapter 6 discusses the ramifications of the new distal sequential architecture intro-

duced in this dissertation and addresses potential future directions to improve it, its use in mod-

10

eling cognitive sequential tasks such as phoneme sequence generation, as well as in various other

problem domains.

11

Chapter 2

Background

2.1 Feedforward Neural Networks

2.1.1 Description

The creation of neural networks is motivated by theories of how the interactions among neuronal

cells in the brain are thought to generate cognitive functions. From what we gather from past

neurobiological studies, neurons act to either fire or not fire if they receive enough overall excitation

from other neurons that synapse to them. Put another way, intelligent function emanating from the

brain is considered to be a result of the total cooperative interactions of neurons in the brain based

on inputs it receives from input stimuli. Map formation in the cortex is another consequence of

group neural interactions in the brain.

Some of the earliest neural networks came in the form ofperceptronswhich essentially consist

of one layer of computational “neurons”, each of which receives real-valued input from all input

elements to the system via weighted connections, wij, where i and j reference neural elements and

input elements, respectively (Figure 2.1).

In essence, the set of weights, represented by weight vector, ~w, determined the output of the

perceptron. In order to ascertain the best weight vector,~w, a very simple, iterative procedure was

developed ([51].) The single-layered architecture of the perceptron, however, hindered its com-

putational power as it was shown to be able to handle only linearly separable relations between

12

Figure 2.1: An example of a typical perceptron set up.

inputs and target outputs ([34]). This insight seriously limited the effectiveness of neural network

research for some time. By equipping neural networks with another hidden layer of neural ele-

ments between the layers of input and output nodes (see Figure 2.2), it was later determined that

perceptrons can be made to classify linearly and non-linearly separable tasks alike. Furthermore,

by changing the output functions of the neural elements froma step function to smooth and differ-

entiable step-like functions, finding the best set of weights becomes an exercise in determining the

weight vector which minimizes the following error function, J(~w):

J =
1

2
(
∑

(ti − oi)
2)

It was shown that such amulti-layeredperceptron could approximate any differentiable function

when given enough input/ output examples whether linearly separable or not.

2.1.2 Supervised Learning (Back-propagation)

In a supervised learning framework, there exists a learningagent that can be characterized as some

functiony = h(p, ~w), where~w represents the internal state of the learner (in this case, the weight

vector in a neural network), p is some input vector and y wouldbe the resulting output vector.

Given some set of target input/output pairs{(~pi, ~y∗

i)|1≤i≤n}, the task of the learner is to adjust

the parameter vector,~w, in such a way as to minimize the performance error between target output

13

Figure 2.2: Example of a standard multi-layered neural network architecture at work (taken from

http://aemc.jpl.nasa.gov/activities/bioregen.cfm)

vector~y∗

i and the neural network learner’s own actual output vector,~yi, given input vector~pi (see

Figure 2.3). The expected performance error, J, used to judge the effectiveness of the learner’s

training can be formulated as follows :

J =
1

2
E{(~y∗

i − ~yi)
T (~y∗

i − ~yi)}, 1 ≤ i ≤ n, (2.1)

However, rather than take into account all desired input/output pairs in determining the cost, a

more instantaneous online evaluation for the n-th input/output pair can be done as follows:

Jn =
1

2
(~y∗[n]− ~y[n])T (~y∗[n]− ~y[n]), (2.2)

In order to change the weight vector,~w, of the learner to minimize this cost function, the gradient

of J with respect to~w can be approximated as follows :

∇~wJn = − ∂~y
∂~w

T

(~y∗[n]− ~y[n]), (2.3)

Knowing this, the weight vector at time n, denoted as~wn, can then be adjusted using this equation:

~w[n] = ~w[n− 1]− η∇~wJn, (2.4)

14

p[n]

y[n] − y[n]*

y[n]

Figure 2.3: Visual demonstration of standard back-propagation procedure. The error-back propa-

gation procedure can move a multi-layered feedforward neural network (denoted by the box above)

incrementally towards producing some desired behavior given an inputp[n] and its corresponding

target outputy∗[n]. Here 0 < n < k, where k signifies the number of input/output pairs used

to train the neural network. Over many training steps (epochs), the weight parameter vectorw

(not shown) of the neural network is adjusted using the difference vector between the target output

y∗[n] and the actual neural network outputy[n], where y[n] = h(p[n],w).

whereη is a parameter which controls the rate of incremental weightvector updates. This is the

basis of most gradient descent methods of supervised neuralnetwork learning.

Theback-propagationmethod (Rumelhart [51]) is merely a form of gradient descent designed

to find the local minimum of the error function, J(~w), over weight vector space. Figure 2.3 demon-

strates a key component of the back-propagation procedure,where the difference between target

and actual outputs is propagated back through a neural network module to change the weight vec-

tor incrementally into one which more closely approximatesthe desired output. As such, solving

for the best set of weights for the neural network or multi-layer perceptron becomes a matter of

finding the weight vector,~w, which minimizes J.

The error function at this point may be minimized by approximating the gradient of this func-

tion and running some form of hill descent procedure which can provide a weight vector which

provides a gradient as close to zero as possible. The exercise for determining such weights now

becomes the task of finding the set of weights which minimize this function. Since the landscape

15

of the error function is unknown, the gradient is approximated roughly given the current weight

vector and an iterative procedure of gradient descent is employed in an effort to find the weight vec-

tor which yields the minimum of the error function (see Table2.1). This method, however, poses

problems where it often may converge to some local minima of the function instead of the global

minimum which would give the best answer. Gradient descent neural network training methods

require approximating the gradient of the error function atthe point in the weight space where

the neural network is currently, and in changing that weightvector in the negative direction of the

gradient. This, thereby, has the effect of moving it, in theory, closer to the local minima of the error

function. In many complex domains, the local minima requirea great deal of computational effort

to be found and are often not sufficient in learning the task presented to the neural network when

found.

Apart from standard hill descent techniques, other types ofweight space selectors have been

sought to find the global minima. Some such methods include genetic algorithms, evolutionary

programming, support vector machines, etc. However, a sizeable amount of the energy spent in

trying to solve this problem has been used to develop more efficient types of gradient descent

methods. Many early devices sought to improve gradient descent back propagation by manipulat-

ing or adjusting the learning rate in order to more quickly find the local minimum. Other methods

being developed sought ways to avoid getting trapped in local minima en route to better solutions

or even, ideally, a global minimum ([49], [6], [41]).

Some very powerful methods utilize the gradient information to use a more informed, pertinent

search for the global minimum given a weight-by-weight adjusting scheme or even a learning rate

per each individual weight term rather than adhering to one single learning rate for the entire gra-

dient computed term. These methods require use of the gradient just as an indicator for direction.

The actual descent is regulated by assigning an individual learning rate to each weight vector and

raising or lowering them according to the information received about the error function landscape.

Two of the most popular methods which operate in this fashioninclude Quickprop (Fahlman [14])

and RPROP (Riedmiller et al.[49], Igel et. al [19].) Presently, many such gradient descent methods

16

Error Back-propagation Procedure

repeat for each training pair,n:

1) obtain inputp[n] and target outputy∗[n].

2) compute neural net output,y = h(p[n],w).

3) compute error vector at output layer :∆i = y∗[n]− y.

4) update all weights leading to each unit in the output layer:

wji = wji + αajf
′(ini)∆i

5) for eachsubsequent layer,

- compute new Delta values for new layer:

∆j = f ′(inj)
∑

wji∆i

- then use it to update weights to the next layer:

wkj = wkj + αak∆j

end

6) repeat from step 1) until:

- performance criteria is met or

- number of training loops (epochs) is reached.

Table 2.1: Error back-propagation procedure for training neural networks

continue to be developed in seeking to enhance the way in which optimal weight vectors can be

found in the effective training of neural networks.

Effective adaptive learning schemes have been also developed which, once given the perfor-

mance of the neural network immediately following a weight change, will automatically increment

or decrement the learning rate of the neural network training algorithm and repeat the evaluation

until only improvements result. Also, there are methods which seek to substantially change the

back propagation method as it was originally designed. In one previous study Joost [22] argued

that the standard error function typically used in back-propagation is flawed in that it is polyno-

mial (namely binomial) in structure and, hence, encountersthe pitfalls inherent in executing the

17

gradient descent of such functions. For one primary pitfall, he notes that in following the opposite

direction of the gradient for a binomial function, successive gradients themselves approach 0 as

the minimum draws close, thereby substantially slowing andinhibiting the search for the global

minimum. Joost advocates the use of a different type of errorfunction which is non-polynomial

in structure and will not slow or diminish to zero the closer it gets to the local minimum. The

new error function suggested is based on the conjugate gradient function in order to circumvent

those pitfalls (Joost [22]). He argues that it works better and bypasses the shortcomings of the

polynomial error function discussed previously.

2.1.3 Feedforward Neural Network Strengths and Limitations

There are, however, limitations to the training of these neural nets. For one, there is always the

possibility of overfitting the weights of the neural network. In this situation, the neural network

may be trained to learn the relation between input/output pairs provided by the supervisor but not

be capable of generalizing from unseen inputs to new outputs. If it is the case that too many neural

elements are placed in an intermediary or hidden layer, the neural network may becomeover-

trained. By this, it means such over-partitioning of the input space may result in training the neural

network to learn only the specific relationships between thetraining inputs and their corresponding

target outputs and little else. When this occurs, the neural network can be so specific that it would

be incapable of correctly categorizing other inputs not explicitly provided in the training data. This

would not be beneficial to one who is looking to train the neural network to be able to classify

some general relationship between inputs and outputs.

When the neural network back-propagation method is run, the method is iterated many times

with each pass through the training data being called anepoch. When the training is complete (say

over tens of thousands of epochs) the multi-layered neural network should know the inputs and out-

puts that the teacher provides. Furthermore, to ensure thatneural network has not only memorized

the training data, but has also learned to generalize effectively, one can provide validation data on

which to test the neural network throughout training. Here,validation data are input/output pairs

18

which also share the same relationship as those pairs in the training data but are withheld for later

verification purposes. If the performance of the neural network should be measured (where root

mean squared error is one measure of performance success) then the validation data should score

relatively well with the neural network while training if the relation to be learned is to be ensured

or guaranteed to be found. At this point, if it is not the case that the RMSE is low compared to that

of the training data, overfitting has occurred. To avoid sucha circumstance, there are many things

a trainer may need to be wary of when training a neural network:

1. not to make the number of hidden elements too high. If this is made too high, the input space

will be partitioned far too much and the task or relation can become very specific toward the

input/output training data. By keeping the number of hidden elements low, one can ensure

that very general partitions can be found to approximate well the relation sought.

2. to provide very good representative training data for thefunction to be approximated. If

there are major holes in the input space which cannot be accounted for in the training data,

learning the appropriate function would be very difficult.

Another limitation seen in standard multi-layered feedforward neural networks lies in the inex-

plicable manner in which it encodes its approximation of theunknown function. It is quite possible

for the neural network to be trained to correctly approximate the relation suggested by the training

data provided to it by the trainer. However, there the ability for researchers to actually go in and

extract what knowledge the neural network has actually acquired is severely limited indeed. As

such, though neural networks can be very powerful tools as function approximators or classifiers,

they are not very effective tools for data mining or knowledge discovery.

As for strengths, multi-layered feedforward neural network architectures have been shown to

be extremely effective in approximating unknown functions. As will be seen later, a neural network

can approximate the workings of some unknown system and ideally, if trained efficiently, can be

used to forecast reasonably good guesses to outputs of some previously unseen arbitrary input.

This ability to generalize given only desired input/outputpairs makes applying neural networks

19

a)

1.0

a
b)

1.0

a

Figure 2.4: Two popular implementations of recurrent neural networks : the Elman network (left)

and the Jordan network (right). Ellipsoids in both cases denote layers consisting of neuronal pro-

cessing units (shown as circles). In either graph, wide arrows denote full connectivity via weighted

links amongst all units from an originating layer up to thoseof its destination layer. Thin arrows

denote a direct copy from a single unit in the originating layer to its corresponding unit in the

destination layer multiplied by some constant (default setto 1.0 .) The two implementations dif-

fer primarily in that the activations from the neural network’s hidden layer are accumulated by

the memory layer for the Elman network while the memory layerin a Jordan network copies the

activations of the neural network’s output layer. Both neural network implementations can utilize

an exponential trace memory vector with decay constant, a, for use in learning to produce desired

time-varying output behavior.

very attractive in countless complex problem domains whichgrapple with unknown relations and

functions. Also, in terms of strengths, the neural networkscan be used in developing very simple

models of human brain dynamics and function which can help shed light on the inner workings of

the human brain. In fact, many such brain computational models have indeed been developed in

attempting to capture brain phenomena documented in existing neuro-biological literature. These

same computational models can serve as effective tools in developing understanding and treatment

for afflictions of the brain ([46], [47])

20

2.2 Neural Network Sequential Processing

Neural networks have traditionally been used in learning tasks in which one input vector should

yield a single output vector. However, in some domains, the desired output would be in the form

of a series, or sequence, of vector outputs which vary over the course of discrete time steps. In

order to achieve this result, recurrent links can be introduced within a neural model between neural

elements in such a way that, even if the input vector should bekept static, a neural element can

yield a different output value with each subsequent time step. Figure 2.4 shows examples of such

neural network architectures.

There are various methods researchers have used in attempting to create neural models which

take into consideration a history of states in order to determine the subsequent output. Some archi-

tectures attempt to “parallelize” time by placing simultaneously in the input layer a finite number

of previous network inputs, outputs, and/or states which can then be processed by a subsequent

hidden or output layer. An example of such a recurrent neuralnetwork architecture is the NARX

(non-linear autoregressive with exogenous inputs) network in which a history of the previous q in-

puts,{un, ..., un−q+1}, and q network outputs,{yn, ..., yn−q+1}, comprises the input layer which is

presented to a multi-layered perceptron to eventually yield outputyn+1 ([8],[37]). In this manner,

the NARX model can be trained to consider unmistakably the history of input/output pairs which

transpired previously in order to determine the subsequentoutput. This architecture, however, can

lead to increased complexity of the learning task as the input space increases linearly with input

and output vector lengths through user-specified history length, q.

One well known recurrent network architecture is the Jordannetwork [23] which has recurrent

links from the output layer to a memory layer that is situatedat the same level as the input vector

and has its own set of weighted links to the next hidden layer (see Figure 2.4). Neural elements

in the memory layer generally have self-recurrent links which utilize a decay0 ≤ α < 1 term

which has the effect of accumulating a history of its actionsover time. Such a grouping of memory

processing units can be referred to as anexponential trace memory.

21

Giving initial memoryx(0) some known initial assignment such asx(0) = 0n, for instance, the

output dynamics of a simple two-layered Jordan network may be characterized by the following

equations :

h(t) = f(Wuu(t) + Wxx(t)), (2.5)

y(t + 1) = g(Whh(t)), (2.6)

x(t + 1) = y(t + 1) + αx(t). (2.7)

wherex is the exponential trace memory vector,y is output of the recurrent network at discrete

time step,t, and h is the hidden layer. Functionsf and g are the activation functions for the

hidden and output layers, respectively. TermsWu,Wx, andWh describe vectors corresponding to

weighted connections emanating from the input, memory, andhidden layer vectors, respectively,

to the appropriate subsequent layer. This type of recurrentnetwork architecture is appealing in that

varying length output histories can be retained and considered in estimating the desired output at

subsequent time steps without having to increase the dimensionality of the memory in the input

layer.

The Elman network is yet another instance of a recurrent neural network which effectively uses

an exponential trace memory vector in the input layer. Where this architecture differs from that of

a Jordan network is that the exponential trace memory is usedto store a history of activations from

some intermediate, or hidden, layer of processing units as opposed to the output layer (see figure

2.4).

Similarly, the output dynamics for a simple Elman network can be described as follows:

h(t) = f(Wuu(t) + Wxx(t)), (2.8)

y(t + 1) = g(Whh(t)), (2.9)

x(t + 1) = h(t) + αx(t). (2.10)

In the case of exponential trace memories as they are used in Jordan and Elman networks,

input space size is not as significant an issue as it is for the NARX architecture and models like it.

22

x

21

w12w
11

1 2

w22

x

w

. .. .

. . .

w12 w12

w21w21

11w 11w11w

22w 22w 22w

w12

w21

Time n21 n+10

x2(n+1)

x1
(n+1)x1 (0)

x2 (0)
x2(1)

x1 (1) x1
(2)

x2(2) x2(n)

x1
(n)

. . .

. . .

Figure 2.5: Recurrent network unfolding example provided inHaykin [18]. (Top) Simple recurrent

network composed of two nodes having weighted connections to themselves and each other. (Bot-

tom) Equivalent non-recurrent multi-layered feedforwardnetwork capable of producing sequences

of length n. Consequently, modern back-propagation techniques can then be derived for the latter

network to yield back-propagation in time learning rules.

However, to what history length the exponential trace memory vector can be effective in producing

the remainder of a target sequence can be an issue. This is because the effects of states stored from

previous time steps can vanish very quickly as the exponential term is continually applied to the

memory vector. In addition, this type of memory vector is quite limited as to its ability to recall

the sequence of states it was given to store.

2.2.1 Training Methods for Sequential Neural Networks

Methods for training recurrent neural networks such as those described previously have been de-

veloped and refined for years. One method training recurrentneural networks is known as back-

propagation in time [64]. By “unfolding” a network’s recurrent links and transforming it to re-

23

semble a standard, single pass multi-layered feedforward neural network, very effective weight

change rules can be inferred in much the same way as those developed for less dynamic, yet

more heavily studied non-recurrent neural network architectures (figure 2.5). More specifically,

back-propagation methods initially used exclusively for feedforward networks can be extended

for training recurrent networks. Variations of back-propagation in time methods are described in

greater detail by Williams et al. [68].

Methods have also been developed to improve existing sequential network learning techniques.

Teacher forcing ([67],[69]) is one such method. Here, the “teacher” can clamp onto a layer of

processing nodes (i.e. the memory vector), when available,the desired activation at that discrete

time step, t, rather than the erroneous activations that occur amidst the early stages of training. This

process can be implemented by supplanting Equation 2.7, theoriginal memory update equation for

Jordan networks, with following equation:

x(t + 1) = y∗(t + 1) + αx(t). (2.11)

wherey∗(t+1) is the target output vector at time t+1 provided by the supervisor as opposed to the

actual output, y(t+1), from the recurrent network itself supplied via its recurrent links. Using this

method during training in the described manner tends to assist the recurrent network to converge

faster and more readily. A new form of teacher forcing I develop is introduced in the methodology

in section 3.4.

2.2.2 Time Delay Memory Structures

In addition to the exponential decay memory structures introduced previously, another popular

form of memory structure exists in delay line structures used early in recurrent network design.

Using this architecture, at the current time step, t, the setof activations from some pre-determined

set of nodes (generally some hidden or output layer in a multi-layered feedforward recurrent net-

work) are copied directly to some memory module of nodes. Theresulting module can then be used

at the subsequent time step, t+1, as input to the network through trainable weighted connections

24

1.0

d

app

Figure 2.6: A recurrent Jordan network using d time delay layers. The node activations at memory

delay module, k, is determined at each discrete time step as the product of the contents of the

previous delay layer (k-1) and the propagation term,0 < p ≤ 1. In addition, the final delay layer

here uses a decay rate, a, such that the memory structure retains exponential trace history of actions

once the k-sized window is exceeded. Settingα = 0 restricts this memory mechanism to being a

sliding window of size d, which is very common amongst memorydelay recurrent neural networks

in prior studies.

along with the already present input vector.

Multiple memory modules can be incorporated into the recurrent module as well, separated by

delay lines from a prior memory module of the immediately previous time-step. Here, memory

contents from the (t-i)th set of activations are copied to the next memory module representing the

prior (t-i-1)st time step of activations before itself receiving the set of activations contained in the

module representing subsequent time step (t-i+1). This series of delayed activations can be made

arbitrarily long based on the goals of the recurrent neural net designer. What results, unlike in the

case of the exponential decay memory vector for a delay window length,d > 1, is an absolute

record of previous actions is taken which can be utilized by the recurrent neural network with a

greatly reduced risk of ambiguity or misinformation to within d prior times steps.

One problem that results, however is the window length, d, ofmemory observation is always

restricted to some finite number, and any memory activationsrecorded d+1 time steps prior will be

lost to the recurrent neural network, essentially falling off edge of the proverbial “sliding window”

of action history. One way this could be addressed is to make the final (t-d)th memory module

25

r[t+1]

Agent

Environment

action
a[t]

state
s[t]r[t]

reward

s[t+1]

Figure 2.7: Reinforcement learning framework.

an exponential decay memory vector just as previously discussed. In this manner, the recurrent

network readily remembers and can act on outputs it made prior to the t-d-th time step in fostering

better subsequent decision-making as opposed to forgetting that information entirely (Figure 2.6.)

2.3 Reinforcement Learning

Reinforcement learning is generally the method of choice when training agents to acquire good-

to-optimal behavior in an external environment. In this framework (see Figure 2.7), an agent, once

presented with the current state, generates an action in theenvironment. The environment then

returns some numeric score to gauge the effectiveness of theaction performed. The controller

must then modify its own internal state based on this reward/penalty signal such that, during this

learning stage, it would be more apt to select this action given the same input if a high score

(i.e. reward) was achieved. Similarly, it should be less aptto select this action if a low score (i.e.

penalty) resulted. The goal of the learner is to construct anoptimal policy which it could use to

generate behavior which would eventually yield the optimalor desired outcome at some point in

the future.

Many successes have resulted in the use of the reinforcementlearning techniques. Two very

early successes include Samuel’s checker playing program [53] and the pole balancing solution

[31]. One of the more famous successes is the TD Gammon program which, in playing itself over

26

one million times, has learned to play backgammon at an extremely high level and has gone so far

as to significantly change the way the game is played by backgammon professionals and masters

due to novel ways it has found to win [61].

Shortcomings do exist, however, with the reinforcement learning paradigm. For one, there

is currently a variety of issues such as the credit assignment problem [33] and the exploration /

exploitation dilemma which make this a difficult method to master for just about any complex

learning task. The credit assignment problem is significantin that it deals with the issue of as-

signing credit or blame accurately to each action taken by anagent in the environment. There are

potentially countless combinations of actions an agent cantake in the environment and it is often

very difficult to reward or penalize an act based on the end result of a sequence of actions. As

such, many beneficial actions can be unfairly penalized while counterproductive actions may be

rewarded just because of how well the sequence of actions to which they belong scores using the

environment’s evaluation function. Many methods have beenproposed to help solve this issue but

it is still a concern and an active topic of research within the field of reinforcement learning.

The exploration vs. exploitation dilemma is also an issue encountered often in reinforcement

learning implementations. A reinforcement learning agent, exploiting only the best sequences

of actions it has encountered, could ensure convergence to some solution but, without further

exploration of the space of actions, cannot guarantee optimal or even good solutions. Toexplore

the action space of the learner would increase the likelihood of finding good action sequences

through searching and evaluating the entire action space. However, without exploiting the good

solutions found, the agent runs the risk of never convergingand even possibly “forgetting” the good

action sequences previously discovered.The most significant hurdle, however, unlike traditional

supervised learning techniques, is that a controller is notguaranteed to find an optimal, or even a

good, policy using many of the popular forms of reinforcement learning.

27

Figure 2.8: SOM which examines worldwide poverty by region.(taken from http://www.cis.hut.fi/-

research/som-research/worldmap.html)

2.4 Self Organizing Maps

2.4.1 Description

Self organizing maps (SOMs), inspired by map formation phenomena found to occur in the pri-

mate cortex, are very effective tools for clustering unknown data as well as being an effective

method for visualizing groupings of high-dimensional input data in two dimensions. The design

of the underlying dynamics of these self-organizing maps was motivated by the way neurons are

believed to form associations with other neurons in the brain. TheHebbian rulesuggests that when

two neurons fire simultaneously after being presented with some input stimulus, their connection

is strengthened ([]). Similarly, in SOMs, connections between computational neuronal elements

in the input and output layers are strengthened when they firesimultaneously in much the same

manner observed in cortical neurons of the brain. This rule,called the Hebbian rule, forms the

basis for very powerful neurally-inspired unsupervised learning methods.

28

2.4.2 Hebbian Learning

A self organizing map is designed to have a number of output neural elements, or nodes, which

take input from all values in input vector X. The output neural computational elements are subject

to a neighborhood function which dictates how neighboring nodes are adjusted based on proximity

during training to the winning node. Each neural element j has associated with it some weight

vectorwij where1 ≤ i ≤ n (n being the number of inputs) and1 ≤ j ≤ m (m being the number of

nodes in the SOM). Each weight vector that corresponds to a neural element lies in the same vector

space that the input vectors are in. The weight vector can be considered a representative vector of

the node with which it is associated. “Training” in a SOM essentially consists of conforming all

weight vectors to represent in the two-dimensional latticeregions in the space of input data.

There are various ways to select winning nodes in a SOM. One way is to employ a winner-

takes-all approach ([26]). Using this rule, the input vector or stimulus is tested against the weight

vector of every neural network in the SOM lattice. The node whose weight vector is closest to

the input vector causes the corresponding vector to be the winner. Consequently, the output at the

winning node is set to be 1.0. All other nodes in the lattice are set to be zero.

Now in training, Hebbian learning dictates that the vector corresponding to the winning node

be made marginally closer to the input vector presented to it. In addition, the proximity of nodes

in the lattice of output elements from the winning node determines how other nodes should be

brought closer to the input vector as well. The proximity information of nodes is generally defined

when initially designing the SOM by specifying which nodes neighbor each other. A very common

scheme would be to set up a two-dimensional lattice of nodes where each element is attached to up

to four neighbors that can influence each other through the unsupervised training process (In Figure

2.8, a SOM lattice of nodes is demonstrated which actually gives every node up to six neighbors as

opposed to four). Over an extended period of training, whereneighborhoods are made to decrease

gradually over time, entire areas of the high-dimensional input data space can be denoted by a

group of similarly classified neurons in close proximity to each other.

And, much like in the feedforward multi-layered neural network described previously, a learn-

29

SOM Training Algorithm

1. Initialize SOM weights randomly.

2. Retrieve a sample input vector, x, from the input training data.

3. Calculate winning node :i(x) = argminj||x(n)− wj||, j = 1, 2, ..., l

4. Update weight vectors of all appropriate nodes (including winning

node and other nodes in neighborhoodη(n)) :

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)(x(n)− wj(n))

5. Repeat from step 2 until feature map stabilizes.

Table 2.2: Procedure for training a self-organizing map

ing rate is utilized. The Hebbian learning update rule for updating the weight vectorwj, of a

winning node, j, can be described as follows :

∆wji = η ∗ (xi − wji) (2.12)

wji = wji + ∆wji (2.13)

There are many ways in which a SOM can be trained. The standardprocedure for training a

Kohonen self-organizing map is shown in Table 2.2. Note thata SOM can take tens of thousands

of epochs or more to complete training.

The neighborhood functions can be designed to take the form of all sorts of proximity infor-

mation and characteristics. They can be defined by such characteristics as shape over an area (e.g.

box), by distance function (e.g. euclidean distance, manhattan distance.) One of the more popular

neighborhood functions, the gaussian neighborhood, is nota boolean indicator like those described

previously, but an indicator,0 < h ≤ 1, of the current node’s proximity to the winning node. What

will then result over time is that regions of SOM nodes will ultimately cluster and represent high

dimensional input data in the form of a two-dimensional lattice.

Upon completing the training procedure, a mapping should result where regions of neighboring

SOM nodes are shown together which can be taken to represent clusters or categories of the input

data. What will occur after training is that the ordering of the set of neurons can visually suggest

30

a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b) −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.9: These graphs demonstrate before-and-after snapshots that signify the training of a

standard SOM designed with a 10x10 lattice of output nodes. Note that output nodes that neighbor

each other in the lattice are shown connected by a line. Plot a) is a snapshot of the weight vectors

plotted inℜ2, each representing an output node, that comprise the SOM prior to training. Plot

b) demonstrates the self-organization that occurs following 20,000 epochs of training using the

standard SOM training algorithm of Table 2.2. The training data consisted primarily of vectors

from the set{(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T} which would explain why so many output nodes

cluster around those points near the corners.

clustering information to the trainer even in the presence of vast vector input spaces. In addition,

all weight vectors representing the SOM map nodes converge to some highly-ordered spatial or-

ganization in the input space as a result of the neighborhoodrestrictions imposed on them (Figure

2.9.)

2.4.3 Applications

Self-organizing maps have been used to assist in many areas of technology. These uses range from

the creation of cognitive models of cortical map activation([45], [48]) to the visualization of high

dimensional spaces from unordered, un-clustered data ([32]). Using a SOM, the clustering of data

inputs thought previously to be unrelated can occur, causing groupings of all types of input data

to be confined visually into a rectangular space (or map.) This map would primarily comprise

31

the activations of the two-dimensional lattice of interconnected neurons in the output layer of the

SOM. When training has been successfully completed, some nearest neighbor groupings can be

formed from which similarities or categorical informationcan be inferred or concluded.

Some would call this visual data mining. The advantage of searching or seeking groupings

in this manner is that it is very efficient, but also that it is confined to whatever sized 2D lattice

the trainer wants to define for it. So, in other words, the groupings can be visualized on a 5-by-5

lattice SOM or a 500-by-500 lattice SOM. The larger one may beable to provide visually more

information or insight into the input data and may be able to classify and map much more data than

the smaller map. Yet, the smaller map would take some order ofmagnitude less training than the

larger proposed map. Groupings can be viewed once the SOM is fully trained just much like those

shown in Figure 2.8.

The application of SOMs in the main work described in subsequent chapters is to use one as a

very simple model of associative memory storage. From this model, the processing and subsequent

comparison of resulting map sequences generated by incoming auditory phoneme streams to those

already stored in the SOM model can be made possible.

The SOM can also be used to take input data and pre-process it as input to other systems. In

other words, it can be used to cluster input data which was previously unclassified and take the

resulting mappings and redirect them as inputs to other systems. In one such application, which

will be described at great length in a future section, one researcher has a robot use a SOM in order

to ground into itself a sense of the layout of the room in whichit is expected to operate ([60]).

The robot can then use its “understanding” of the area it is attempting to travel and make good

judgments as to where it is and how to proceed next in order to get to its optimal goal position in

the room.

32

y[n]
Learner Environment

u[n−1]

x[n−1]

p[n−1]

Figure 2.10: Basic setup for the distal learning problem. At time n, the learner accepts as input

some intention p[n-1] and current state x[n-1] and must generate an action u[n-1]. The environment

then transforms that action in output space to vector y[n] and returns the resulting next state, x[n].

2.5 Distal Supervised Learning

In the classical supervised learning paradigm, target outcomes are presented explicitly by the

teacher to the learner for the purpose of training. In the case of distal supervised learning (Figure

2.10), however, the teacher is only capable of providing desired target vectors which are distal

in nature to the learner and may only be realized by the learner through its proximal interactions

in an external environment. Proximal target values which are generally provided by the teacher

in the classical supervised learning framework must now be discovered by the learner in order to

minimize the performance error, J, over the entire system oflearner plus environment. Here, the

learner, which produces proximal action u, can be characterized by the functionu = h(p, x, w),

while the environment accepts the learner’s proximal action, u, and produces the actual distal out-

put, y. Here, x is defined as the current state information used to guide the learner and w represents

the learner’s weight vector.

One such example of a distal learning problem in which only distal target outputs are available

is provided in Jordan [23]. He describes a scenario of a basketball player who intends to shoot a

ball through a hoop. The correct series of proximal actions (in this case, arm muscle commands)

must be learned in order to propel the ball through the air andenvironment into the hoop. Only

the distal end result of the player’s actions (“the sights and sounds of the ball entering the hoop”)

is accessible from the environment for calculating performance error. An appropriate proximal

sequence of motor commands to achieve the desired goal is notavailable for training from the

33

teacher. Ideally, providing the desired distal target result of the sensation of the ball going through

the hoop along with the input of the current position of the ball in space used together with the

intention to shoot the ball into the hoop must suffice for the player to acquire the desired proximal

behavior.

In order to train the neural network in this setting using thesupervised learning paradigm,

Jordan et. al [24] introduces the idea of training an additional neural network to model the en-

vironment. Once trained, this additional neural network, also given the termforward model, can

then be used in conjunction with the system’s performance error to train the learner. This forward

model can be described by the functionŷ= f̂(x,u,v), where v is the weight vector of the forward

model and x represents the current state. Once the forward model is sufficiently trained so that its

predicted output,̂y, is within some acceptable error of the actual output, y (i.e., when̂f is capable

of approximating the environment closely) effective training of the distal learner can be achieved

(Figure 2.11). To train the forward model, any number, m, of random actions can be generated,

{ui|1 ≤ i ≤ m}, from the proximal output space of the learner and run on the environment. The

resulting outputs in environment space,{ŷi|1 ≤ i ≤ m}, can be used as target outputs to form in-

put/output pairs{(ui, ŷi)|1 ≤ i ≤ m} to train the forward model using standard back propagation

methods.

Training cannot occur in distal supervised learning using equation 2.3 as there is no way to

calculate∂y

∂w
directly, where the environment function is unknown. However, in substituting the

forward model for the environment function, we can now substitute ŷ for y which, after applying

the chain rule, yields the following learning rule:

∇wJn = − ∂u

∂w

∂ŷ

∂u
(y∗[n]− y[n]), (2.14)

Here, ∂u
∂w

refers to the gradient of the learner’s output, u, with respect to its weight vector, w. The

term ∂ŷ

∂u
refers to the gradient of the forward model’s output with respect to its input. Equation 2.4

can then be used in the same manner to update the learner’s weight vector, w.

A key component in creating a system such as this is how effectively the forward model is

34

y[n]

Learner
Forward

Model

y[n]^

x[n−1]

p[n−1] u[n−1]

. .. .

y[n]

Learner
Forward

Model

y[n]^

x[n−1]

p[n−1] u[n]

y[n] − y[n]*

Figure 2.11: (Top) Distal supervised learning framework shown here where, once again, the in-

tended distal learner accepts as input intention p[n-1] and, optionally, state x[n-1] from the envi-

ronment and responds with action u[n] which is simultaneously sent to the environment and the

forward model to generate, respectively, not only the actual output y[n] (shown in 2.10) but pre-

dicted output̂y[n] as well. (Bottom) Training the distal learner requires propagating performance

errory∗[n] − y[n] back through the forward model in order to approximate the gradient direction

for the sum squared error function essential for effectively updating the weight vector of the distal

learner.

trained. A forward model must be sufficiently trained to predict the correct output of the actual

environment to effect meaningful weight vector updates to the distal learner. However, an inter-

esting consequence of this framework is that, even if a forward model is not completely trained,

the learner can be shown to retain or even continue to learn the desired behavior throughout the

distal supervised learning training procedure. This is possible since the term(y∗[n] − y[n]) used

in training the distal learner approaches zero when the actual environmental result of the learner’s

proximal action(s) closely approximates the desired distal targets (i.e. correct proximal actions

are being generated to produce near-optimal distal outputs). As a result, due to the error gradient

35

b)

Environment

c)

a)

Figure 2.12: Standard setup of a distal supervised learningsystem utilizing feedforward neural

networks for distal learner and forward model structures.

calculations of equation 2.14, the learner’s weight vectorremains mostly unchanged by equation

2.4 so that the learner will continue to exhibit the same correct proximal behavior. As such, the

distal learner and the forward model can actually be trainedsimultaneously and in series with each

other.

Distal supervised learning methods have been used in developing neural networks which can

serve as continuous inverse mappings of environments they are placed in [24]. In addition, this

method of training neural models can be quite pertinent in computational brain modeling as for-

ward models are being shown more and more to exist in the humanbrain. These real life forward

models, believed to exist in the cerebellum, are thought to serve very similar purposes to those used

in computational distal supervised learning studies. Thatis, they are shown to be useful in learning

to anticipate the distal consequence of proximal neural actions for use in various cognitive mo-

tor function development tasks such as motor control and speech acquisition ([3], [4], [70], [71],

[72]). Developing learning agents to handle these types of problems is hardly an exact science.

36

Up until now, absolute success has been demonstrated in mostly simple environments and limited

success shown in the more difficult environments. A substantial amount of work must still be done

in making distal supervised learning a viable model of distal supervised learning problems such as

cognitive function acquisition.

37

Chapter 3

Recurrent Distal Supervised Learning

In this chapter, a modified method of distal supervised learning is presented to address learning in

sequential environments. These sequential environments are designed to accept not a single action,

as in typical distal learning problems, but a sequence of actions from an agent to then, in turn, yield

an equivalent-length sequence of distal consequences. Namely, the modifications entail replacing

the typically non-recurrent distal learner and forward model feed-forward neural networks of the

existing distal supervised learning framework presented by Jordan [24] with recurrent neural net-

works. These recurrent networks are capable of utilizing knowledge of past internal states and/or

previous actions taken in order to better acquire and produce correct proximal sequential behavior

while operating in a sequential environment, even when current state information is not present.

Also presented is a version of teacher forcing I modified for use in assisting the learning pro-

cess of a recurrent distal learner. Lastly, the effectiveness of the proposed system is demonstrated

on a sample case of recurrent distal supervised learning using a sequential environment which is

designed to be predictable and easy to comprehend for analyzing purposes.

3.1 Motivation

In most studies involving distal supervised learning, the current state is provided by the environ-

ment at every time step to the distal learner. This current state vector typically summarizes where

the distal learner is as the latter acts progressively in an environment en route to potentially accom-

38

plishing the end distal goal through its progression . For instance, consider the ball-tossing distal

supervised learning scenario provided by Jordan [24] wherea person sets out to learn how to pro-

pel a ball into a basketball hoop. The single distal target goal sought by this learner in this scenario

entails the sensations which accompany the ball entering the hoop. The proximal actions here

provided by the learner comprise the series of arm commands required to propel the ball through

the air. The current state information required by the learner from the environment throughout this

task would be the position of the ball in the learner’s visualfield that results after each arm motion

is performed.

Note that the current state provided at every time step should be distinguished from the distal

sensation or result occurring in the environment. The current state is merely information used to

assist the learner in acquiring and generating the correct proximal behavior and, technically, can

be potentially considered optional and done without (e.g. shooting the ball into the hoop with

closed eyes) if the input vector is dynamic and ever-changing throughout the task. Conversely,

there will always be a distal consequence in the environmentwhich follows as a result of one or

more proximal actions from the learner.

However, if such current state information is not availableto be presented to a typical distal

feedforward neural network which utilizes astatic and unchanging input vector, learning to pro-

duce meaningful proximal actions would be hindered tremendously. In other words, given a single

static input stimulus, training a standard neural network to produce a series of differing actions

in order to produce a desired output sequence in environmentspace would be nearly impossible.

With no current state information with which to tell where itis in deciding on the correct sequence

of moves to enact, the neural network will not be properly equipped to provide differing proximal

actions over time to eventually realize the desired distal path. The lone exception could result

if a single proximal action produced repeatedly could correctly yield the desired series of distal

consequences in the environment.

Some method could be developed which would enable a “sight-less” neural network to consider

39

its own “memory” of actions taken up to this point,

Λt−1 = {u1, u2, ..., ut−1},

in order to better identify an appropriate subsequent action, ut, en route to devising some correct

series of commands,

Λ = {u1, u2, ..., un},

needed toward achieving the distal goal. For some time, recurrent neural networks have been devel-

oped and refined extensively to do just this. However, supervised learning methods for recurrent

neural network architectures in distal problem domains required to operate in complex external

environments had never been previously addressed.

In addition, there exist problem domains where some accountof the previous actions taken

must be utilized in the learning of the task. In Ziemke [73], for example, the author demonstrates

that recurrent neural networks, in their use of contextual internal information, are better suited

than standard feedforward neural networks in many domains requiring sequential outputs. It is

therefore natural to wish to extend these capabilities to the distal environment interaction domain,

where many very difficult yet pertinent problems exist.

The purpose of the work presented in this chapter is to demonstrate procedures I developed

which are capable of training recurrent neural networks to produce a discretized series of correct

learned actions from a single intention which will ultimately cause a very specific series of desired

consequences to result in the environment. In adding recurrency to the neural networks used in

distal learning for this purpose, the idea is that these well-studied sequential generators will be

considerably more effective in achieving such behavior (Figure 3.1).

3.2 Forward Model as a Recurrent Neural Network

In a distal setting, the recurrent neural network will require the ability to, given a single input

stimulus, produce appropriate sequential behavior which could only be evaluated in the space of

40

ŷ

Sequential
Environment

y*

a) b)

c)

u

p

Figure 3.1: A more telling visual depiction of recurrent distal supervised learning. Given a static

single intention,p, as input, the recurrent distal learner (a.) will look to generate an action se-

quence,u, of n vectors. This action sequence is accepted simultaneously by the environment (c.)

and the forward model (b.) attempting to model the environment. What results are output vector

sequenceŝy andy from the forward model and the environment, respectively. These sets of vector

sequences are compared to the set of desired distal vector sequences,y∗ (not shown here), and ef-

fect parameter changes of both distal learner and forward model to eventually yield an effectively

trained recurrent distal learning neural network.

41

the external environment in which it operates. Its corresponding forward model, precisely as the

environment it looks to emulate, must be able to accept a sequence of proximal actions and map it

into a distal sequence as accurately as possible for it to be effective. Standard feedforward network

architectures are currently not sufficiently equipped to dothis effectively. Just as the sequential

environment used must both accept temporal sequences (i.e., proximal action sequences from the

learner) and produce temporal sequences (i.e., distal output sequences in the environment), the

forward model whose purpose is to emulate the latter must also be designed as a recurrent neural

network which both accepts and generates temporal sequences. However, since the particular distal

recurrent learner studied here accepts only a single input as opposed to the sequence of vectors

accepted by the forward model, two different recurrent neural network designs are addressed.

Using recurrent forward models in distal supervised learning is not a new concept. Tani [60]

used recurrent forward models to learn traversal trajectories in training a robot to learn to get to

some goal location from an arbitrary point in a room. Jordan [24] suggests the use of recurrent

forward models in training a standard feedforward distal neural network guided by current state

information to learn to reproduce specific distal trajectories effectively. Neither model, however,

addresses generating correct discrete proximal sequential behavior minus current state updates as

both continue to rely heavily on receiving streams of correct state information in their design.

In this work, recurrent forward models can take the form of a Jordan network, an Elman recur-

rent neural network, or even possibly a hybrid of the two (Section 2.2.) The task of the recurrent

forward model will be to learn to approximate as closely as possible the sequential mapping of the

actual environment. Toward this end, the recurrent forwardmodel should take in sequential ac-

tions and, ideally, should return as distal sequences precisely what the environment would. When

it is trained sufficiently to do this reasonably well, the recurrent forward model should be able to

assist the distal recurrent neural network in learning to produce the correct set of proximal actions

needed to yield the series of distal outcomes the trainer is seeking. Current standard neural network

gradient descent methods are all that is required to train the recurrent forward model here (Section

2.2.)

42

Ideally, should the forward model be capable of modeling theenvironment relation entirely

and correctly, the correct proximal behavior of the distal recurrent learner from a single static input

can be learned more readily. However, the combination of environment relation and current state

function can become exceedingly complex and, hence, extremely difficult to learn. In this case, as

long as the forward model can learn to produce the correct distal desired consequences when given

the correct, though previously unknown, proximal output sequence, it should be better equipped to

train the distal recurrent network.

Training the forward model sufficiently to, in turn, get the learner to generate the correct prox-

imal behavior is still a subject of study. Experimentation can be used to determine things such as

recurrent network type (Jordan/ Elman), length of trainingtime, hidden layer size, neuron output

functions, best gradient descent training method, etc. Caremust be exercised in ensuring the for-

ward model is not overtrained and can generalize as best as possible to the environment relation.

To be ultimately successful, as mentioned before, the forward model should be able to map closely

the sought-after proximal sequences to the desired distal sequences provided by the trainer in order

for it to provide accurate error signals in training the learner. This accuracy desired of the forward

model can actually be achieved either in training before or simultaneously while training the distal

recurrent learner.

Let U∗

i be some action sequence in the learner’s proximal output space which would yield

sequence,Yi, the i-th target distal sequence provided in environment space:

Env(U∗

i) = Y ∗

i .

The goal of the recurrent distal learner is to adjust its weight parameter sufficiently such that it can

produce sequenceU∗

i to within some acceptable root mean squared error (RMSE) oncepresented

with single vectorpi as input. Note that, if the environment function is not one-to-one, many

action sequences can potentially be mapped to the same desired distal trajectory. However, any

given forward model can guide the distal learner to only one winning solution. Conceivably, with

unlimited time and resources, the forward model could eventually make its way to obtaining the

43

correct target mapping fromU∗

i to Yi in a variety of ways. Ideally, the forward model can go about

doing this by learning to generalize the target mapping through its training from arbitrary proximal

/ distal trajectory pairs obtained via random sampling or produced from the learner.

For truly complex environments for which generalization may be difficult, actually being ca-

pable of mapping the unknown yet sought proximal action sequence,U∗

i , and mimicking the target

mapping that way could suffice. To one extreme, one could justensure that the forward model

knows to transform the “correct” proximal behavior to the distal sequential desired outcomes by

representing them as input / output pairs somewhere in its training data. This is under the assump-

tion that the correct proximal sequential behavior is available for training a priori, which is often

not the case and sometimes defeats the purpose of developingsuch a system.

In addition, to aid the recurrent forward model in learning the environment mapping, teacher

forcing ([67], [69]) can potentially be employed if the Jordan architecture is utilized. In this case,

since the desired sequential outputs for the forward model are known already (they are merely the

actual sequence of distal outcomes resulting in the environment from the same proximal actions

used as inputs), the forward model can be trained in that manner.

3.3 Training the Recurrent Distal Learner

The distal recurrent learner is trained in much the same way as the standard feedforward distal

learner. The recurrent learner is trained through interaction with environment and forward model

just as it is for the non-recurrent case. The primary differences lie in the structures of the learner

and forward model, which both require exponential memory vectors (i.e., context or state layers)

for tracing the history or action path taken thus far. The memory vector can reflect an exponen-

tial trace, meaning a decay term may be applied to the memory vector at a subsequent time step

before adding the latest action to it. In the case of exponential trace vector, a limited amount of

previous action taken can be reliably considered in making subsequent action, much like in the

non-distal case described in Section 2.5. The only difference would be the existence of the forward

44

u[n−1]
Learner

Forward

Model

y[n]^

x[n−1]

p[n−1]

. .. .

u*[n−1]

y[n] − y[n]*

Learner
Forward

Model

y[n]^

x[n−1]

p[n−1] u[n−1]

Figure 3.2: (Top) Distal supervised learning framework fortraining a recurrent neural net to learn

proximal sequences which ultimately yield desired sequential outcomes in the environment. Here,

the forward model is also a recurrent neural network. (Bottom) Proposed training procedure for

the recurrent distal learning paradigm

model necessary for training in the distal setting. The forward model can be used to transform

errors from the distal variable space of the environment to the proximal action space of the dis-

tal recurrent learner. This can be done efficiently much likethe standard, non-recurrent case by

propagating these differences between desired and predicted sequential outcomes back through the

forward model. However, since the forward model is known to be recurrent as well, the backprop-

agated error signals need to consider what was output previously in order to propagate back the

correct information. Here, the memory module can take in theprevious internal state or memory

activations and utilize that in order to propagate correctly the right error.

One issue that arises in training forward models stems from the difficulty that standard neural

network architectures have in retaining previously learned mappings or trained behavior while

adopting new ones. In this case, storing previously seen training instances for continued training

in ensuring an appropriate amount of retention of the environment function landscape can be a

45

good remedy. In training the forward model repeatedly not only on new actions produced by the

learner but in retaining recent and promising proximal actions, effective training can be ensured.

Here, once again, caching these training instances in developing an efficient forward model may

be key to training the distal learner in complex environments and in no way compromises the task

of having the latter determine on its own the correct set of proximal actions to take. As the correct

answers are not given directly to the distal recurrent learner but to the forward model, the training

task is still a very difficult one.

Considering the memory trace vector,x, the distal supervised learning procedure can now be

modified by redefining the parameterized function of the distal learner to accommodate recurrent

links and trace memory from Equations 2.5-2.7 for Jordan networks and Equations 2.8-2.10 for

Elman networks. In training the recurrent neural network inthis fashion, much of the same meth-

ods and formalisms identified in Jordan[24] remain intact. What is needed in order to expand the

existing procedure from the non-recurrent case (single input/single distal output) to the recurrent

neural network case (single input / multiple distal output)case is to use the recurrent forward model

to interpret the distal error into proximal error at each discrete time step of the distal desired se-

quence. This is a very challenging goal. For the purpose of these initial studies, the distal recurrent

learner knows the length of the desired distal trajectory and is, hence, confined to only producing

that same number of proximal actions. There are other ways inwhich the distal recurrent neural

net may be trained to execute the correct number of actions (Radio [44]) which will be addressed

in subsequent chapters. For now, it should be sufficient to use the length of the desired output

sequence as the number of proximal outputs required from thedistal recurrent learner to yield the

correct behavior. This can be done by assuming that a new action is necessary for a new distal

outcome to result in the environment. This assumption can bemade valid if no major changes in

distal consequence can occur without the learner’s direct intervention with action.

Every distal training pair in this particular study is assumed to associate one fixed input stimu-

lus,p, with some varying length distal desired sequence, Y∗. In contrast, in standard distal learning

studies, such as those proposed in Jordan[24], training pairs only have a single input,p, associated

46

with a single distal output textbfy∗. In order for this to resemble the standard distal learning archi-

tecture, it will be sufficient to first “unfold” the single input vector to the recurrent neural network

into a comparable multi-vector sequence of inputs, each corresponding with one known output of

the distal target trajectory. Each of these new input vectors would now include the corresponding

contents of the memory vector at that particular time step, whether implementing a Jordan or El-

man architecture, as well as the original fixed input vector.The combination of input and memory

vector contents from the i-th time step makes for a new input vector which can be uniquely associ-

ated to the environmental outcome at the same time step in thedesired distal output sequence. In

addition, as implied previously, they should number to as many vectors as there are in the target

trajectory. As a result, the distal recurrent learner should be able to differentiate between stimuli

while keeping in mind the memory trace of previous actions taken up until this point.

When concatenating the context history vector,xt, to the single input vector,p, at every time

step, t, a new sequence of input vectors,P = p[1], p[2], ..., p[l], can be constructed for training

the recurrent distal learner. The input sequence, P, will number in length the same as the desired

distal output sequence,Y ∗ = y∗[1], y∗[2], ..., y∗[l]. Each newly concatenated input vector,p[t] in

the newly constructed input sequence can be defined as follows:

p[t] = [p, xt], 1 ≤ t ≤ l. (3.1)

where l is the number of vectors in desired distal output sequence,Y ∗. As a result, all correspond-

ing input / output pairs〈p[t], y∗[t]〉 , 1 ≤ t ≤ l, can then be used for training using the standard

distal supervised learning procedure (Section 2.5).

3.4 Approximated Teacher Forcing

In implementing a recurrent network, it is known that all previous outputs of the network have a

hand in determining the network output at the next step. Hence it follows naturally that if any pre-

vious network output is erroneous, learning of any subsequent outputs will be seriously hindered.

Until the network outputy(t), 1 < t < l, of sequence length l is produced correctly, acquiring the

47

correct mapping to subsequent outputsy(t + 1), y(t + 2), ..., y(l) becomes increasingly difficult.

Implementing a learning scheme in which the teacher can fix the actual outputy(t) to, instead, be

the desired outputy∗(t) before learning desired outputy∗(t + 1) could potentially be significant in

alleviating this problem. Doing this allows for learning inparallel of all vectors of a target output

sequence simultaneously rather than having to wait for vector outputsy(0), y(1), y(2),, y(t− 1)

to be sufficiently correct before training on outputy(t). Such a scheme is often referred to as

teacher forcing([39]). Note that here the Jordan recurrent architecture isused, as opposed to the

Elman network, as only the external outputs are required andrecorded in the exponential trace

vector of the Jordan network. Teacher forcing would hardly be possible in an Elman network as

there would be no way in advance to know what the actual intermediate layer activations at any

arbitrary time step t should be en route to acquiring correctsequence generation capability.

Teacher forcing is a powerful tool which greatly assists in the training of recurrent neural net-

works. The trouble is that teacher forcing as discussed previously cannot readily be used to benefit

the training of a recurrent neural network in a distal setting. Namely, knowledge of the correct

proximal output sequences for the recurrent neural networkis required in order to provide accu-

rate trace memory vector contents to significantly hasten training. By definition, this information

cannot be made available to any distal learning framework for training of a recurrent distal learner.

What can be done, however, is some approximation of the correct proximal sequence can be

developed to substitute for the actual, though unknown, correct proximal sequence,U∗. En route

to deriving this approximation toU∗, the following set of equations restate the derivation of weight

changes for a standard feedforward neural network from the error calculation,Jn, at time step n

(Equations 2.1-2.4.)

Jn =
1

2
(~y∗[n]− ~y[n])T (~y∗[n]− ~y[n]),

∇~wJn = − ∂~y
∂~w

T

(~y∗[n]− ~y[n]),

Ultimately, the learner’s weight vector,~w, is updated as follows:

~w[n] = ~w[n− 1]− η∇~wJn,

48

When training a distal learner, calculation of the weight update above is restated as Equation

2.14,

∇~wJn = − ∂u

∂w

T ∂y

∂u

T

(~y∗[n]− ~y[n]),

but since the environment function,~y = Env(~u) is unknown, the gradient term(∂y/∂u) can-

not be calculated directly. However, according to Jordan [24], the gradient term(∂ŷ/∂u) can be

computed for a forward model neural network trained to mimicthat environment and taken as an

approximation of(∂y/∂u) thereby yielding the distal learner update rule,

∇~wJn ≈ −
∂u

∂w

T ∂ŷ

∂u

T

(~y∗[n]− ~y[n]) (3.2)

Here, I define a new term,∆û, used to describe the error correction obtained once the performance

error vector,∆y = ~y∗[n] − ~y[n], is propagated through the weighted connections of the forward

model,

∆û =
∂ŷ

∂u

T

∆y (3.3)

Now the distal learner weight update can be expressed as,

∇̂~wJn = − ∂u

∂w

T

∆û (3.4)

If we do indeed consider∆û as a sufficient estimate of the difference between the recurrent distal

learner’s output and the correct, yet unknown, proximal action at that time step, a fair approxima-

tion of some correct proximal sequence,U∗, can be defined aŝU = û(0), û(1), û(2), ..., û(t − 1),

where :

û(i + 1) = (u(i + 1) + ∆û(i + 1)). (3.5)

Here,∆û(i+1) is the vector of predicted proximal error obtained by propagating distal perfor-

mance error(y∗(i + 1)− y(i + 1)) back through the trained forward model. This vector, known as

the error vector used in effecting weight updates in the recurrent distal learner, can be thought of

49

as an approximation of the difference between the erroneousproximal output,u(i + 1), given by

the learner and the correct but unknown output,u∗(i + 1). Assuming the forward model is trained

effectively, their sum should come close to the correct proximal action required at time i+1.

Therefore, though desired proximal output sequenceU∗ is not directly known in order to con-

duct true teacher forcing in the context layer of the recurrent distal learner, its effect on the trace

memory vector can be approximated as follows:

x(t + 1) = (û(t + 1)) + αx(t) (3.6)

= (u(t + 1) + ∆û(t + 1)) + αx(t) (3.7)

wherex(0) = ~0. In other words, the idea is that approximated teacher forcing (Equation 3.4) can

be used in the place of standard teacher forcing (Equation 2.2.1) even when given the situation

where desired proximal output sequences are not available for training. This hypothesis will be

tested and shown to be effective in the various recurrent distal supervised learning applications

covered in this work. The entire algorithm for training a recurrent neural network is listed in Table

3.4.

3.5 Use of Time Delay Memory Structures in Recurrent Distal

Supervised Learning

In looking to utilize past output history in computing subsequent actions, one can potentially utilize

delay-line memory structures instead of, or in conjunctionwith, the exponential trace memory

input vectors described previously. Like exponential trace memory vectors, the use of such delay-

line memory structures would be a straightforward extension of what was described already in

Section 2.2.2. In merely copying the contents from the appropriate hidden or output layer to

the first delay-line memory vector and propagating those activations one-by-one with subsequent

discrete time-steps, one can potentially arrive at the samebenefits as those one would expect in a

50

Training Procedure for a Recurrent Distal Learner

RDL(g, h, Env,p, Y∗)

1. Pre-train forward model

2. Single-input / single-output re-assignment -

Given :• training pair -< p, Y ∗ >

• Input -p

• Distal Output Sequence, Y∗ = y∗[1] y∗[2] ... y∗[k]

• Initial memory vector -m(0) =~0

3. For each distal targety∗[i], 1 ≤ i ≤ k

4. Update inputpi with memorym(i-1): pi = concat(p, m(i− 1))

5. Compute:

• recurrent learner output sequence,u(i) = h(pi,w),

given inputpi and recurrent learner’s weight vectorw

• distal output,y(i) = Environment(u(i))

• estimated distal output,̂y(i)

6. Compute distal error:∆y = y∗[i]− y[i]

7. Estimate learner (proximal) error:∆û = − ∂ŷ

∂u
∆y

8. Calculate and apply update to weight vectorw:

• ∇wJn = − ∂u
∂w

∂ŷ

∂u
∆y = − ∂u

∂w
∆û

• w = w + α∇wJn

9. Update memory layerm, 0 ≤ β < 1 :

m(i) = u(i) + βm(i− 1)

or m(i) = (u(i) + ∆û(i)) + βm(i− 1) (approximated teacher forcing)

13. Re-calibrate recurrent forward model : (train on< u(i), y(i) >)

14. Endfor (step 3.)

Table 3.1: Training procedure for a recurrent distal learner.

51

simpler non-distal sequential problem domain.

However, one issue that arises in this context is the use of teacher forcing ([67], [69]). Teacher

forcing can be readily used in tapped delay-line memory applications in non-distal recurrent net-

works since the immediate desired behavior is known to the trainer and can be subsequently fur-

nished to the first delay line module to effect training speedup in learning the desired sequential

task. However, in the distal recurrent supervised learningdomain, once again, the desired proximal

behavior is probably unknown to the trainer. In this case, approximated teacher forcing can be uti-

lized in the training of the recurrent distal learner to whatshould amount to improved performance

over much of the run. Here, given the estimated proximal error provided by the forward model, the

desired proximal action can be approximated and placed on the delay-line memory queue in the

same manner as in the non-distal case. Figure 3.3 demonstrates an example recurrent distal super-

vised learning architecture in which the recurrent distal learner is outfitted with some number of

“tapped” delay-line memory vectors in the same manner as wasdescribed in Section 2.2.2. In this

particular example, the recurrent forward model is not given delay-line memory vectors to work

with. It is, however, not the case that recurrent forward models could not be given this capability

as well.

3.6 A Distal Sequence Generation Task Using a Simple Envi-

ronment

For the initial work addressing supervised recurrent network learning from distal target sequences,

a simple system is demonstrated. Here, a sequential neural network is trained in a simple en-

vironment whose characteristics and properties are well understood. This distal recurrent neural

network learns to generate varying length discrete action sequences when given single static input

vectors. These action sequences ultimately yield the desired distal target sequences provided by

the distal teacher when executed in the environment.

52

b)

Environment

...

c)

a)

Figure 3.3: An example setup of delay memory layers in use by the recurrent distal learner. Note:

delay memory modules can be added to either or both recurrentdistal recurrent learner and forward

model structures as required. In the case shown here, only the recurrent distal learner is given

delay-line memory layers.

3.6.1 Simple Sequential Environment for Preliminary Study: Concatena-

tion

I sought to identify initially a less complex environment which could serve as a first test to verify

that the proposed approach to recurrent distal supervised learning would perform as hypothesized.

Such an environment would preferably possess these properties:

1. There is an intuitive series of outputs given a sequence ofinput vectors.

2. There is a one-to-one relationship between the input sequence and the output sequence space.

In other words, given a valid sequence of outputs from the environment, only one possible

input sequence could generate it.

53

The environment mapping,f ∗, used here (illustrated in Figure 3.5) is merely one which accepts

a sequence of input vectors{~x1, ~x2, ... , ~xk} and produces a corresponding list of output vectors

{~y1, ~y2, ... , ~yk} where each~yi is a vector consisting of a concatenation of the inputs seen thus far

plus a series of trailing 0’s to fill the remainder of its contents, if any. This can be described as

follows:

f ∗({~x1, ~x2, .., ~xk}) = {~y1, ~y2, ..., ~yk}, where ~yi =

~x1

~x2

.

.

~xi

0

.

.

0

, 1 < i < k < c. (3.8)

Here, k denotes the number of vectors in the input sequence, mdenotes the length of any input

vector, and c denotes the maximum length allowable for an input sequence to the concatenation

environment. Each input vector~xi is a column vector such that~xi ∈ ℜm while the resulting output

vector~yi will be a column vector such that~yi ∈ ℜ(m×c).

The resulting output vector will always have length equivalent to the product of the length of

the input vectors and the maximum sequence length possible.Any entries in the vector which are

not filled in through the concatenation operation are merelyset to zero. The length of the resulting

output sequence from this environment will equal the numberof vectors in the input sequence

presented to it. This constructed mapping is demonstrated in the example of Figure 3.5 for a

maximum possible sequence length of 4.

54

= .88
.43
.88

.55

.02
.55
.02

.55

.02

.11

.61
0
0

0
0

0
0

.55

.02
.43
.88

.11

.61Env()
CC

.43

Figure 3.4: A simple illustration of the sequential concatenation environment. Above, the envi-

ronment function is shown taking each vector in the input sequence in order at each time step and

concatenating it to all previously seen input vectors to form a new vector in the output sequence.

Varying line-styles (dotted, dashed, and dot-dashed) are employed to

One key property of this environment is that there is only oneinput sequence which can yield

any legal output sequence. This property greatly simplifiesthe learning task of the recurrent neural

network situated in the environment aided by the forward model. This is because the forward

model will be able to propagate back to the learner only information which it can use to learn the

precise sequence it needs to produce. If it were possible to have many potential input sequences

yield the same desired distal sequential outcome in the environment, the forward model could

assist the learner in learning to reproduce just one such proximal sequence. However, it would be

very possible for the produced sequence to be something other than the desired proximal set of

actions should a very specific proximal output be expected. This is only an issue in this setting

because, in this particular exercise, proximal accuracy iskey in measuring success for this method.

The main properties of the environment ensure us that the specific proximal outputs needed to

produce the desired distal sequences are readily derivablefor use in measuring performance. In

many other domains which utilize a distal supervised learning framework, one-to-oneness from an

environment’s input to its output space is much less of an issue.

Shown in Figure 3.5 are sample input/output sequence interactions of the concatenation envi-

ronment mapping,f ∗, (shown as black arrows) used to demonstrate the effectiveness of the recur-

rent distal learning architecture. On the bottom are three example discrete input vector sequences

55

:

+
+

01000000011110010000000000000000

01000000011110010010001100000000

01000000

01111001

00100011

+
+

11000000

10000010

01110010

11010100

+
+

+
+

+
+

10000010110000000000000000000000

10000010110000000111001000000000

10000010110000000111001011010100

1000001000000000000000000000000010001101000000000000000000000000

+

10001101000011100000000000000000

10001101

00001110

+
f*

:

f*
:

f*

01000000000000000000000000000000

Figure 3.5: Three of the ten input / output sequence pairs used in training the recurrent forward

model for the distal concatenation experiments of Section 3.6. Just like the example mapping of

Figure 3.4, the concatenation environment (shown as the black upward arrows) accepts each of the

three sequences of vector inputs, each of which being a binary vector of length eight, and trans-

forms them into corresponding concatenated vectors of the same sequence length but containing

vectors of length 32. Dotted lines are used to delineate the concatenated inputs within the resulting

output vectors

each having vector lengths of eight but varying in sequence lengths of four, two, and three, respec-

tively. The arrows denote the mapping (described in Equation 3.6.1) of these input sequences by

the concatenation environment to distal output vector sequences having the same sequence length

but all containing vectors of length thirty-two. The three proximal / distal sequence pairs shown

above are examples picked from the actual ten used in the preliminary experiment outlined in Sec-

tion 3.6. To successfully accomplish this distal sequential learning task, ideally the recurrent distal

learner will learn to produce the correct proximal output sequences (left) when presented with the

single static vector (not shown) associated to the target distal output sequence (right). Performance

results of the model are shown in Figure 3.6.

56

3.6.2 Experiment

The distal recurrent supervised framework shown in Figures3.1 and 3.2 is used in this initial

experiment where the distal learner and forward models, both recurrent Jordan networks, are set

in series with each other and assigned random initial weights. The external environment is the

concatenation mapping as described in Section 3.6.1. Ten varying length vector sequences are

generated randomly in the output space of the learner and recorded as the desired proximal output

sequences for testing the accuracy of the learner throughout the training process. These ten action

sequences are then mapped by the environment to ten distal output sequences, each having the

same sequence lengths as their proximal counterparts, which are stored and used as the desired

distal outputs for the study. Ten static input vectors of theform [0, ..., 0
︸ ︷︷ ︸

(j−1)

, 1, 0, ..., 0
︸ ︷︷ ︸

(n−j)

], where j is the

jth input vector and n is vector length 10, are associated to the ten distal output sequences as input

/ output pairs. The task is to see if the distal recurrent neural network can learn to produce the

original ten generated action sequences which would yield through the environment the desired

distal output sequences given the ten static input vectors using the proposed framework.

To begin the simulation, the forward model is first trained for 1000 epochs on 1000 varying

length input / output sequence pairs, 990 generated randomly plus the ten generated sequence pairs

discussed previously. The idea is that the better the recurrent forward model is trained to model the

concatenation environment, the more efficiently the recurrent distal learner can be trained. Then the

distal learner, presented with a static input vector, produces a vector sequence which is submitted to

the environment to yield theactual output sequence, y. The same vector sequence is also submitted

to the forward model to yield thepredicted output sequence, ŷ. Both outputs can then be used with

the desired output sequence, y∗, to yield predicted error (y∗-ŷ) and performance error (y∗-y). The

predicted and performance errors can then be used to effect weight vector updates of the forward

model and distal learner recurrent neural nets, respectively. The predicted error, which merely

measures the accuracy of the forward model over the input / output sequence pairs, can be used to

modify the forward model weight vector using standard gradient descent methods. This can then

57

be repeated for all ten static inputs to complete the epoch.

The results shown in Figure 3.6 describe key characteristics of the best training run for recurrent

distal learners in this learning task. This top-performingrecurrent distal neural network itself used

a hidden layer of 30 units while the forward model it utilizesworks with 25 units in its own

hidden layer (indicated as< 30, 25 > above both graphs.) Three error curves are shown together

to demonstrate the various interactions occurring throughout the training of this recurrent distal

learner (namely the forward model error, the distal learnererror, and the distal performance error..)

First, similar to the practice used in standard distal supervised learning, the recurrent forward

model is trained for 1000 epochs before training of the recurrent distal learner is initiated. This

stage is often referred to as thebabbling stage and enables the forward model to acquire behavioral

characteristics of the environment so that it can more aptlypropagate effective error signals back

to the recurrent distal learner. Also note that, again in a similar manner to standard distal learning,

training of the forward model continues throughout training of the recurrent distal learner. The

interaction between the recurrent distal learner and the environment provides a steady supply of

training examples which the forward model can use to train onen route to better mimicking of the

environment mapping.

The varying length sequential outputs from the recurrent distal learner, produced when given

the set of static input vectors, are compared to the set of desired proximal output sequences

throughout training to yield a proximal error training curve which closes with a RMSE of just

over 0.05 (Figure 3.6 a.) The desired proximal outputs can befound in this domain since, by de-

sign, the dynamics of the sequential environment are so wellunderstood that its inverse is easily

determined. In most complex domains, however, the proximaldesired targets for the learner cannot

be known a priori and, hence, this measurement usually cannot be determined for analysis.

The distal performance error curve, computed throughout training as the RMSE between actual

distal outcomes resulting from the learner’s interaction in the environment and the desired distal

sequential outcomes provided by the teacher for training purposes, is shown to converge to an

RMSE of just under 0.05.

58

As stated previously in Section 3.4, the error propagated through a sufficiently trained forward

model from a desired target sequence can be taken as an estimate of the difference between the

learner’s desired proximal output and its current output. Hence the sum of the learner’s current

“incorrect” output and the propagated error should yield some approximation for the correct de-

sired proximal outputs. The estimated action sequence error is the RMSE between this sum and the

actual desired proximal outputs. Figure 3.6 b. is merely a demonstration of the utility of the propa-

gated error which is itself used to modify the existing distal supervised learning rule for this work.

Plotting together the training curves e graph shows that thecurrent output plus the propagated error

is even closer to the known desired proximal outputs than just the current output alone.

Figure 3.7 offers further proof in support of the thesis thatusing the propagated error for im-

proved memory layer updates can improve training of the recurrent distal learner in sequential envi-

ronments. This figure superimposes the training curves of two recurrent distal learners attempting

to handle the same learning task described previously whileoperating in the concatenation envi-

ronment. The initial weights and training data were kept thesame between the two runs shown to

ensure that approximated teacher forcing alone, or the lackthereof, could be the contributing fac-

tor to improved training of either recurrent distal learner. Here, Figure 3.7 shows the learner using

approximated teacher forcing indeed produced the better distal performance errors, converging at

an RMSE of .0571 while the learner that did not use approximated teacher forcing was shown to

converge to .0689.

3.6.3 Conclusions

In summary, the figures of Section 3.6.2 verify the usefulness of the work described here by demon-

strating the successful training of a sample recurrent distal neural network capable of replicating

the desired distal outcome sequences in a sequential environment, namely the concatenation envi-

ronment, from single static input vectors. In Figure 3.6a.,the diminishing RMSEs of the recurrent

forward model, recurrent distal learner, and of the resultsof the latter’s proximal sequential actions

in the environment in an example recurrent distal learning system are charted throughout train-

59

a.
0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

R
M

S
E

Training Period of the Learner, <30,25>

Distal Learner
Performance Error
Predicted Error

b.
0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

R
M

S
E

Training Period of the Learner, <30,25>

Distal Learner
Estimated Action Sequence

Figure 3.6: Training performance charts of the recurrent network using distal target sequences.

ing. Figure 3.6b. charts the RMSE of the proximal sequential outputs of the same recurrent distal

learner against the RMSE of the same proximal sequential outputs plus the approximated error

attained through use of the forward model. Essentially, this chart demonstrates that even as the

proximal actions given by the recurrent distal learner improve in accuracy as training progresses,

the same proximal actions added with the error correction provided by the recurrent model are

shown to be even more correct throughout training. This demonstrates that the sum tracked by this

curve would be a more viable output to incorporate into the context, or memory, vector to enable

more efficient training. Lastly, Figure 3.7 verifies that using the sum of the learner’s less-than-

accurate proximal output at any point in its action sequencewith that estimated error correction

attained from the recurrent forward model at that time step to update the learner’s memory layer

does indeed tend to lead to better distal learner training than when the proximal output alone is

used.

Despite this initial success, this experiment helped to bring some concerns to light:

1. Forward Model Training - Preliminary experiments seemed to suggest sufficient training

of the forward model is absolutely essential to the trainingof the recurrent distal learner.

This may become difficult in more complex domains and needs tobe studied further.

60

0 500 1000 1500 2000 2500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Epochs

R
M

S
E

Training Period of the Learner, <30,25>

Distal Learner w/ Memory Approx.
Distal Learner w/o Memory Approx.

Figure 3.7: Approximated teacher forcing, or using error signals propagated through the forward

model to better approximate previous proximal output states for more effective exponential trace

memory updates, is shown above to assist the distal recurrent learner to converge better than when

it is trained without it.

2. Scalability - The relatively high computational effort required to accomplish learning in this

not-so-complex sequential environment could imply tremendous difficulty if this modified

architecture is used to train recurrent networks in truly large and complex environments.

This new system of recurrent distal supervised learning must be validated in much tougher

sequential environments to judge how effective it can trulybe. A tougher environment is

indeed introduced and used for evaluation purposes in Chapter 5.

3. Ambiguity - In many complex distal domains, the method found by the learner to yield the

end distal target output sequences is more or less irrelevant as long as it is reached. In an

environment where multiple sequential paths (sequences) can be used to arrive at the same

distal target output, the forward model will essentially ”select” one viable sequence to guide

the learner to acquire. In certain learning tasks, however,a very specific action sequence is

preferred for the learner to acquire. In a domain such as this, methods need to be developed

61

through which the forward model can be used to guide trainingof the recurrent distal learner

towards that desired proximal learned behavior.

4. Varying length sequences- This preliminary distal supervised sequential learning system

assumed a priori knowledge of the length of the desired proximal sequences which the distal

learner must be trained to produce. This is neither desirable nor practical in many truly com-

plex sequential environments. One idea to achieve the desired behavior is to train the forward

model to produce an ’End of Sequence’ (EOS) vector once a correct sequence has ended. It

would then be possible to train the distal learner to output the EOS vector after outputting

the correct number of outputs in a sequence. Something similar to this was demonstrated in

Radio et. al. [44] but not in a distal learning framework such as this.

Ultimately, these results demonstrate for the first time that, given a single, unchanging input

stimulus and a corresponding sequence of desired distal outcomes, acquisition of correct proximal

sequential behavior can indeed be attained in a sequential environment that provides no consistent

stream of current state updates. Existing systems which utilize Jordan’s distal supervised learning

procedure to train feed-forward neural networks require constant updates from the environment,

especially when provided only with static input vector, to acquire the correct learned proximal

behavior and should essentially falter when such current state updates are absent. Replacing stan-

dard feed-forward neural networks in Jordan’s architecture with recurrent multi-layered neural

networks turned out to be a very effective method of addressing supervised learning in sequential

environments. In addition, proximal error correction provided by the recurrent forward model can,

in turn, further improve training by making less-inaccurate the proximal actions taken by the re-

current distal learner before adding them to its memory layer. This, in effect, helps to encourage

noticeably better convergence in the training process for the recurrent distal learner. It is highly

improbable that any such mechanism can be developed for standard non-recurrent distal supervised

learning systems in much the same way that teacher forcing strategies are useless with regard to

non-recurrent feedforward neural networks in non-distal learning tasks.

62

3.7 Contributions of the Chapter

The work described in this chapter extends the existing distal supervised learning framework to

handle sequential learning tasks. Here, both the distal learner and the forward model which are

ordinarily created as single input/ output neural networksare replaced with recurrent neural net-

works. Such recurrent neural networks are capable of utilizing their histories of past actions to

make subsequent decisions with or without being informed oftheir current state in the world. In

doing so, the recurrent learner can thereby acquire the ability to reproduce a set of time-varying

distal target outputs in the environment from a static inputvector without the need for constantly

updating current state information.

To evaluate this proposed extension to the distal learning framework, I implemented a learn-

ing system that employed a sequential environment designedin a manner where its behavior was

predictable and easily verifiable. The sequential environment used in this particular implementa-

tion was the concatenation environment which, at every timestep, took all vectors in a sequence

accepted before the current time step and concatenated theminto one long vector. The goal of

the system was to train the recurrent distal learner to learnto output the sequence of vectors re-

sponsible for generating the desired sequence of long concatenated vectors in the environment

while presented only with a single static input vector. The system was shown to successfully train

recurrent networks to accomplish the task.

The other significant contribution demonstrated here is theintroduction of an approximated

teacher forcing strategy to assist in the training of the recurrent distal learner. In a manner which

is inspired from standard teacher forcing practices utilized in the training of standard recurrent

neural networks, more accurate memory vector updates are shown to result using feedback from

the recurrent forward model. This newly devised strategy isshown to enact quicker, and at times

more accurate, convergence to the desired sequence of outcomes.

63

Chapter 4

Sequential Processing using Self-Organizing Map Models

The purpose of this chapter is to introduce a new modificationon an effective method for process-

ing input sequences in self-organizing maps (SOMs.) Currently, one of the more effective methods

of utilizing a SOM to uniquely encode an input sequence is called the SARDNET method (James

[21]). This method presents a very computationally effective and meaningful way of encoding

an input sequence of input stimuli into a SOM. Unfortunately, at times the SARDNET procedure

does not go far enough to ensure the uniqueness of any arbitrary input sequence in its SOM output

lattice. In this chapter, I outline the method known as the SARDNET algorithm and then describe

a modification I introduce that is capable of creating even more unique output representations for

input sequences based on the proximity of each input vector to known candidate vectors. This

chapter is essential in establishing a method to properly, efficiently, concisely, and uniquely repre-

sent input vector sequences so that it can be utilized as an essential piece of the very complex distal

sequential learning task described in the next chapter (Chapter 6). There, the modified SOM can

be treated as a viable model of associative memory in humans for use as part of a very ambitious

distal learning task in a complex sequential environment, termed the phoneme sequence generation

environment, in an attempt to mimic the process by which humans acquire the ability to produce

words.

64

4.1 Background

In certain problem domains, it is conceivable that sequences of input stimuli may be required

for mapping in a self organizing map (SOM) as opposed to having static stimulus patterns. In

addition, much like in the static input case, it would be imperative that each sequence of inputs be

mapped such that the resulting output pattern will be as distinct and different as possible from any

other potential sequence of inputs. Typical implementations of Kohonen SOMs, however, lack the

functionality for handling and classifying sequential input data.

In the existing literature, there are two classes of SOM models which are designed to handle

sequential inputs. One approach, termed the One-Shot, Multi-winner SOM [54], takes a more

biologically inspired approach to accomplishing the desired computational behavior. The other,

called SARDNET [21], accomplishes the goal using a more computationally efficient method. In

this chapter, I develop a modification of the SARDNET architecture, namely in its output dynam-

ics, such that, rather than output a 1.0 at winning nodes as most SOM models do, map nodes output

a value which serves as an indicator of 1) how close the input vector in the sequence truly is with

respect to any of the anticipated, or “candidate”, input vectors to the SARDNET SOM as well as

2) how close the current map node is to the actual winning node.

4.2 SARDNET

The SARDNET architecture [21] allows for a very efficient classification of input sequences, each

identified almost uniquely by its series of map node activations. In this architecture, many rules

developed for the Kohonen Map remain intact in the SARDNET SOM. However, in creating an

output map, once a winning map node is selected for an input vector in a given vector sequence, that

map node is marked never to be used in that sequence again. Themap node would then be given

an output of 1.0. Once done, all previous activations would then be decremented by multiplying

each one by some decay constant,0 < d < 1. This is then repeated for the length of the input

sequence. The tendency of each output map produced en route to forming the final SARDNET

65

The SARDNET Training Procedure

Initialization: Clear all map nodes to zero.

MAIN LOOP: While not end of sequence

1) Identify unit whose weight vector that best matches the input.

2) Adjust weight vectors of other nodes based on user-defined

neighborhood function (e.g. gaussian)

using standard Hebbian learning.

3) Exclude the winning unit from subsequent competition.

4) Decrement activation values for all other active nodes.

RESULT: Sequence representation = activated nodes ordered by activation values

Table 4.1: The SARDNET Training Procedure

output pattern using this procedure is that only one unique input sequence that could be responsible

for producing each map. Training of the SARDNET SOM similarlyinvolves marking winning

nodes as it traverses through the input sequence. The actualtraining algorithm is listed in Table

4.1. Subsequently, the procedure used for producing an output pattern in a trained SARDNET

SOM from an input sequence is listed in Table 4.2.

Figure 4.2 demonstrates two plots of the weight vectors of a 10x10 SARDNET SOM in which

the input vectors, as well as the weight vectors, one for eachnode in the output lattice, are two-

dimensional vectors. Each input sequence ranges from two tofour vectors in length and are com-

prised solely of some combination of the following four candidate vectors,{[00]T , [01]T , [10]T ,

[11]T}. Connecting lines are shown to designate adjacency between output nodes in the output lat-

tice, each of which corresponds to some 2D weight vector. In the weight plot of Figure 4.2a., the

weight vectors of the SARDNET SOM are randomly initialized and demonstrate no organization

prior to training. The weight plot of Figure 4.2b., however,is a snapshot of the weight vectors after

training for thousands of epochs. Here, organization of theweight vectors given the neighborhood

function is immediately apparent. Also note that most node vectors look to accumulate around the

66

Output Dynamics of a Trained SARDNET SOM

1) initialize all node outputs to 0

2) selectxi in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) determine closestunmarked(winning) node and set its output to 1.0

5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.2: Outline of the procedure for producing output maps in the SARDNET SOM once

presented with input vector sequence, X ={xi|1 < i < n}.

four candidate vectors from which the list of input sequences was solely created. Also note the

relatively even distribution of weight vectors surrounding the four candidate vectors implying an

even distribution of the candidate vectors throughout the input data. An output node corresponding

to any weight vector in close proximity to one of the four candidate vectors will be among the first

to be selected and turned on once that candidate node is seen by the SARDNET SOM as input.

In addition to this procedure being very fast, it turns out that it is extremely memory and

computationally efficient as well. James et al. [21] point out that the SARDNET SOM can classify

pnl sequences utilizing onlylpn nodes in it’s output lattice, wherep is the number of possible

values of an input,n is the length of an input vector, and the maximum length of a vector sequence

is represented by the variablel. Many other previously suggested sequential SOM architectures

would tend to map each sequence to a separate map node, potentially requiringpnl map nodes.

The SARDNET architecture provides a great tool for producingpotentially unambiguous activ-

ity patterns for finite lists of input vector sequences. However, ambiguity among activity patterns

in the output maps can still occur. Truly unambiguous activation patterns result primarily when

any input vector seen anywhere in one of the set of training input vector sequences can be mapped

uniquely to one specific winning output node in the SOM. In other words, this outcome can be

ensured only if no two input vectors can be mapped to the same winning node. If potential vector

67

a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b) −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: A plot of the weight vectors used to characterizea SARDNET SOM utilizing a 10x10

lattice of output nodes. Here, the SOM is used in an unsupervised learning task of two-dimensional

input sequences, each ranging from two to four vectors in length. Plot a) shows the initial configu-

ration of random weight vectors of the SOM as plotted in two dimensions. Plot b) shows the same

SARDNET SOM after being trained using the SARDNET procedure outlined in Table 4.1.

inputs are selected solely from some finite alphabet, or set of candidate vectors, this property can

generally be expected in a reasonably-sized, well-trainedSARDNET SOM. However, where vec-

tor contents can take on not just some finite number of values,p, but any of an infinite number of

values (e.g. real valued), unique output map creation cannot be guaranteed.

To demonstrate this, let X and Y each be vector sequences of length k used as input to SARD-

NET SOM SDEX such that X =x[1], x[2], ..., x[k] and Y = y[1], y[1], ..., y[1]. We construct

sequences X and Y such that they comprise the same vectors from position 0 up until next-to-last

position, k-1, in each respective sequence (i.e.,x[i] = y[i], 0 ≤ i ≤ (k− 1).) As such, the series of

output maps produced by the SARDNET SOMSDEX will certainly be equivalent whether given

X or Y up to vector k-1 of either. An issue can easily arise if vectors x[k] and y[k] both are closest

to the weight vector of the same output node butx[k] 6= y[k]. In this scenario, this will likely

result in the same output value, 1.0, being output at the samewinning node, leading ultimately to

equivalent output map representations between the two input sequences even though the sequences

are not equivalent (i.e.,SDEX(X) = SDEX(Y) butX 6= Y .)

68

The problem occurs because the same output map node is selected and the same output value is

pre-determined even though the input vector at that time step is different. Ideally, rather than just

having the winning map node produce the same pre-determinedoutput value when it wins, a more

descriptive output score than 1.0 could be calculated and produced which could most probably be

different for two differing input vectors, even when they select the same winning node.

By knowing a priori the set of anticipated, or candidate, inputs expected to be seen by the

SOM, more informative map node activation values for the SARDNET SOM can be developed.

Such a modification in its own right could potentially offsetthe effect of output map ambiguity

substantially in the standard SARDNET SOM.

4.3 Candidate-Driven SARDNET

As a response to this issue of prevailing ambiguity in SARDNETSOMs, I devised a more infor-

mative output node dynamic which allows for more telling real numbered output node activations

than just the standard 1.0 output suggested by James et al. ([21].) Suppose it is known a priori the

entire set of possible input vectors, termed candidate vectors, seen somewhere in any input vector

sequence anywhere in the training data. Let C denote the set of candidate vectors andx[t] denote

the input vector at discrete time step, t, of the current n-length input vector sequence, X =x[1],

x[2], ..., x[n].

First, note that the training procedure remains unchanged from that used for single-winner

SARDNET SOMs described in Table 4.1. Some winning node oj, associated to weight vector wj,

can be found in the same manner as is detailed in the original SARDNET output scheme. However,

in calculating the output of a winning node in this modified version of the SARDNET SOM, rather

than use the algorithm outlined in Table 4.2, the following variables must first be calculated,

cx = argminj||cj − xt||, 1 < j < m (4.1)

wc = argmink||wk − cx||, 1 < k < n (4.2)

69

where m is the number of candidate vectors in C and n is the total number of nodes in the SOM

lattice. Vectorx[t], again, denotes the single input vector at time step t of the current input vector

sequence, X, to the SOM while vectorwk can then be defined as the weight vector which corre-

sponds to output nodeok. Hence, the variablecx signifies the closest candidate vector in C to the

input ,x[t], at time t of the current input vector sequence. Vectorwc is therefore the weight vector

of the trained SARDNET SOM which most corresponds to that bestcandidate,cx.

The following equations calculate gaussian, or radial basis, measures ranging from 0 to 1 in-

dicating the proximities of the winning node to the predicted candidate vector (eq. 4.3) as well as

the current node to the winning node in the output lattice (eq. 4.3):

gci = e−
||wc−xt||

2

2δ2 (4.3)

gcn = e
−

||oc−on||2

2γ2 (4.4)

whereδ > 0 andγ > 0 are radius terms which each determine width for their respective gaussian

curves listed above and||...|| indicates Euclidean distance. Vectoroc denotes the (i,j) lattice posi-

tion. By combining these two terms, a new, more meaningful real-valued output can be produced

at a SOM map node which can be treated as a gauge for its closeness to the intended candidate

vector :

Output(oc) = gcn ∗ gci (4.5)

See Table 4.3 for the entire candidate-driven SARDNET SOM output procedure.

One way of looking at this new candidate-based output schemeis that thegci term indicates

the proximity of the weight vector of the output node closestto the winning candidate is the actual

input vector. A perfect match, where the candidate output node has a weight vector equivalent to

the t-th input vector of X (i.e.,wn = xt), will yield a gci of e0 = 1.0. Alternately, the further a

candidate output node’s weight vector is from xt, the closer the term approaches 0. The second

70

Output Dynamics of a Trained Candidate-Driven SARDNET SOM

1) initialize all node outputs to 0

2) select input vectorx[i] in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) determine closestunmarked winning node and set its output togci ∗ gcn (Eq. 4.3)

5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.3: Outline of the procedure for producing candidate-driven outputs in the SARDNET SOM

once presented with input vector sequence, X =x[1], x[2], ..., x[n].

term,gcn, indicates how far the node currently being looked at is fromthe weight vector closest

to the winning candidate. If the current node has a weight vector equivalent to the candidate, this

term will work out to bee0 = 1.0 as well. In the event that both cases are true, the terms together

yield an output ofgwc ∗ gwi = 1.0 ∗ 1.0 = 1.0 just like in the standard SARDNET procedure.

Hence if certain weight vectors of a SARDNET SOM end up being made equivalent to the set

of candidate input vectors, the resulting candidate-driven output scheme can be reduced to the

standard SARDNET output scheme.

The scale of this output given at any node is now a much more descriptive indicator of the

closeness of a node to the input vector with respect to the setof expected vector inputs than in the

original SARDNET model. Hence, the SOM does not fall into the same pitfalls demonstrated in

the previous SARDNET example, which is content to merely place a ’1’ as output to any winner.

Though outputting ambiguous maps using this format is stillsomewhat of a possibility, it tends to

occur at a much reduced rate.

Following training, there will tend to be one node in the candidate-driven SARDNET SOM’s

output lattice whose corresponding weight vector is closerthan any other to any given candidate

input. In this case, if this candidate input vector’s “best node” has a weight vector that is not equiv-

alent to itself, the calculated output at that node when selected may approach, and yet never equal,

71

Output Dynamics of the Candidate-Driven SARDNET SOM

1) initialize all node outputs to 0

2) selectx[j] in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) for all nodes, y[i], in SARDNET SOM, SD,

- set node output at y[j] to gci ∗ gcn

5) repeat from 2) until sequence X is completed.

Table 4.4: Procedure for producing multi-node output maps in a candidate-driven SARDNET SOM

once presented with input vector sequence, x[1], x[2], ...,x[n].

1.0 due to the manner in which Equation 4.3 was constructed. As an additional, yet optional, step

one can elect to take at the close of the initial training phase of the candidate-driven SARDNET

SOM, one can choose to find the closest node to each candidate and set its corresponding weight

vector equivalent to that same candidate input vector. Thiswould serve to force outputs to be set

precisely to 1.0 once inputs presented to the system belong precisely to the set of expected can-

didate vectors. Such behavior would once again closely resemble that of the standard SARDNET

procedure outlined in the previous section.

This variation on the standard SARDNET SOM output procedure is most ideal for domains in

which the number of expected, or most sought after, input vectors are countably finite and available

for training. However, if such a candidate input vector set is not available or is infinite, this method

would be seriously compromised.

This map node output scheme fulfills the desired characteristics described previously and looks

to differentiate all different input vectors that seek to select the same winner. This, however, still

does not completely guarantee uniqueness, but it comes significantly closer than that of the original

SARDNET architecture.

72

a) b)

Figure 4.2: This figure illustrates the contrast between twodiffering forms of candidate-driven

SARDNET SOM output schemes. Specifically, two snapshots above demonstrate outputs pro-

duced by the same trained candidate-driven SARDNET SOM usinga) the standard output scheme

of Table 4.3 and b) the multi-node output procedure outlinedin Table 4.4. Top to bottom, both pic-

tures show the respective output generated by the trained SOM at each time step when presented

with each vector of the same four vector sequence as input (section 4.3.1.)

4.3.1 Multi-node Candidate-Driven Output Mapping

One other benefit to using the candidate-driven version of the SARDNET architecture is that this

is a method by which the SOM can be used to produce output not only from nodes which have

won, but by which all nodes across the entire SOM lattice may be used to produce outputs (see

procedure in Table 4.4.) The standard SARDNET output procedure only allows for outputs at

past and current winners. What tends to result as output maps is reminiscent of gaussian mounds

centered around winning nodes (Figure 4.3.1).

The termsgwc andgwi combined allow for the formation of Mexican hat or gaussian bell curve

73

structures in output maps. Each Mexican hat structure can beseen to emanate from the winning

nodes outward across the SOM lattice. Thegwc term can be regarded as the initial height of each

gaussian mound. So if thegwc term ends up equaling .5, a gaussian bell curve with a height

of 0.5 should result centered at the winning node outward to the rest of the SOM lattice. This

phenomenon of Mexican hat activations over a map of competing neurons is often observed in

actual neuro-biological studies of the human brain ([16], [12]). The capability of the candidate-

driven SARDNET SOM to output such Mexican hat phenomena across multiple SOM nodes can

potentially be useful in providing more realistic models ofsequential map formation in the human

cortex among competing neurons than the standard SARDNET algorithm.

Take Figures 4.3.1a. and b., for instance. Both figures are meant to signify an example of

the progression of activity patterns on a candidate-drivenSARDNET SOM en route to generating

a final output map to uniquely represent the input sequence. The SARDNET SOM consisted of

a 10 x 10 output lattice of map nodes, each of which is represented as a square in a 10x10 grid

of outputs. The outputs of the map nodes are represented on a grayscale, where the color black

signifies a map node output of 1.0, a white square signifies no output, and the intensity of a gray

square indicates a map node’s output value to either extreme. In other words, light gray would

signify a value closer to 0 while a very dark gray may signify an output value very close to 1.0.

In Figure 4.3.1 a., the normal progression of activation patterns on a trained candidate-driven

SARDNET SOM is shown when given a four-length vector input sequence. Notice here that only

one new map node, the winning node, is allowed to give an output at every new time step when a

new input vector in the sequence is introduced. Figure 4.3.1b. shows the resulting activation pat-

terns from the same SARDNET SOM presented with the same exact four-length input sequence

but in using the multi-output scheme of Table 4.4 in which allmap nodes have the opportunity to

produce outputs. What differentiates these two sets of candidate-driven SARDNET SOM activity

patterns lies in determiningwhich map nodes are allowed to produce output values: winningmap

nodes only or all nodes in the SARDNET SOM’s lattice of output nodes. Figure 4.3 merely shows

the same series of SARDNET map activations from Figure 4.3.1b. but in three dimensions (i.e.

74

a) b)

Figure 4.3: These figures illustrate the same contrast of candidate-driven outputs as shown in

Figures 4.3.1a-b. Rather than represent the real candidate-driven SARDNET SOM outputs in

grayscale, however, they are plotted in a third dimension tobetter illustrate the formation of Mex-

ican hat output structures as is often observed in neuro-scientific studies of cortical activation.

representing map node output values in the Z-axis as opposedto grayscale.) Here, the spread-

ing Mexican hat activations described previously as what the multi-output SARDNET activation

scheme is capable of producing becomes more visually evident.

4.3.2 Demonstrating the Utility of the Candidate-Driven SARDNET En-

hancements

The major improvement of this modification to the SARDNET SOM is that the new modification

lends itself to fewer occurrences of ambiguity.

Here I define three similar input vector sequences, I1, I2, and I3:

I1 = 〈[1.0, 0.0] , [0.0, 1.0]〉 , I2 = 〈[0.9, 0.31] , [0.18, 0.65]〉 , I3 = 〈[0.79, 0.02] , [0.23, 0.85]〉 .

75

a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b) −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1 (0,1) (1,1)

(0,0) (1,0)

(.6,.12)

(.52,.86)

Figure 4.4: a) The initial plot of a 2x3 SARDNET SOM discussed in Section 4.3.2 before training.

b) Plot of the same SARDNET SOM after training on two-dimensional sequential vector data made

up entirely from vectors of candidate vector set{[00]T , [01]T , [10]T , [11]T}.

Let SD4.4 denote the original output scheme for an example Candidate Sardnet SOM using a

2x3 lattice of output nodes which was previously trained on anumber of input sequences ranging

from two to four vectors in length, one of which being sequence I1 listed above. The correspond-

ing before-and-after training weight plots are shown in Figure 4.4. When presented with input

sequencesI1, I2, andI3, all three final resulting 2x3 output patterns come out looking exactly

identical:

SD4.4(I1) = SD4.4(I2) = SD4.4(I3) =
0.5 0.0 0.0

0.0 0.0 1.0
.

This is because, though they may be noticeably distinct, theinput sequences trigger the same

winning nodes and, hence, yield a 1.0 output at the same nodesregardless. The candidate-driven

output scheme, however, takes into consideration proximity of the winning node to the closest

candidate vector in determining its final output activationpattern. As such, given similar input

sequencesI1, I2, andI3, identical final output patterns are far less likely when using the same 2x3

SARDNET SOM but with the modified output dynamics (denoted byCDSD4.4):

76

CDSD4.4(I1) =
0.0 0.0 0.5

1.0 0.0 0.0
, CDSD4.4(I2) =

0.0 0.0 0.404

0.734 0.0 0.0
,

CDSD4.4(I3) =
0.0 0.0 0.457

0.86 0.0 0.0

The potential for significant reduction in the size of SARDNETSOMs using the candidate-

driven modification presented here is important as well. To offset ambiguity in the standard SARD-

NET SOM architecture, increasing the number of map nodes tends to reduce the occurrence of

ambiguous output maps. This is because with an increased number of map nodes comes much

improved opportunity for differing input vectors to activate differing nodes based on proximity to

their respective weight vectors.

Using this modification, however, one would be harder pressed to find two input vectors which

activate the same winning node in the SARDNET SOM with the sameoutput activation. As such,

in looking to create SOMs which give more unambiguous outputs, more compact map architectures

with fewer nodes, and hence, fewer calculations, can be designed. Since now two similar vector

inputs can be represented differently by the output of the same winning node, as opposed to merely

outputting a 1.0 both times, even fewer output nodes than thealready reduced number cited by

James [21] can be used to uniquely encode an input sequence.

4.4 Contributions of the Chapter

The primary contribution presented in this chapter is the modification I made to the SARDNET

self-organizing map, a neural model designed to accept and uniquely classify sequential input

data, enabling it to produce more unique representations ofinput sequences. The SARDNET

self-organizing map, although designed to output unambiguous map activations for distinct input

sequences, is shown by example to generate non-unique output maps in similar situations. Using

77

my modification, more meaningful node outputs are produced which consider, among other things,

the proximity of an input vector to the intended vector it wassupposed to resemble in calculating its

output rather than indiscriminately producing a 1.0 value as suggested in [21]. As a result, the mod-

ified candidate-driven SARDNET SOM tends to yield more uniqueoutput maps than the standard

version. If the single winner-take-all selection is set aside for the multi-output scheme in which

all output nodes are capable of firing, interesting Gaussianmounds become apparent in output

maps reminiscent of Mexican hat formations described in theneuro-scientific literature regarding

spreading cortical activation in the brain. This modified candidate-driven SARDNET SOM holds

promise in being a potentially useful tool for capturing sequential cortical brain behavior for use

in time-varying computational cognitive behavior studies.

78

Chapter 5

Recurrent Distal Learning in Modeling the Acquisition of Phoneme

Sequence Generation Behavior

In this chapter, the effectiveness of the recurrent neural network modifications made to the existing

distal supervised learning framework introduced in Chapter3 is demonstrated on a very complex

application. Namely, an experiment is designed in which a recurrent neural network is created to

undergo the same complex process that humans are believed togo through en route to acquiring the

ability to produce or generate sequences of phonemes to articulate words. Distal supervised train-

ing of a recurrent neural network is demonstrated despite itoperating in a very complex composite

mapping of two non-linear functions, one constructed usingthe smooth mapping procedure dis-

cussed in Appendix B and the other being a Candidate Driven SARDNET SOM (Chapter 4) which

is designed to take on the role of associative memory as it is thought to be utilized in the phoneme

sequence acquisition process in humans. The charts shown atthe end of the chapter demonstrate

that not only does learning occur in such a difficult sequential environment, but that there is indeed

a strong case for utilizing approximated teacher forcing (also introduced in Chapter 3) to improve

memory layer updates and, subsequently, acquisition of sequence generation behavior in distal

settings.

79

5.1 Phoneme Sequence Generation

Phoneme sequence generation refers to the process by which humans manufacture very deliberate

and specific strings of individual minimal units of spoken language, or phonemes, through motor

activity in vocal organs in order to communicate with other humans. The acquisition and ongoing

use of this cognitive behavior is certainly not well understood and many researchers continue to

struggle to explain and model the inner workings of the process (Roelofs ([50]), Dell [10], etc.)

Previous attempts at computational simulation of phoneme sequence generation vary signif-

icantly in approach and in motivation. Dell [10] developed Spreading Activation Theory (SAT)

for speech production which is favored by many and has been very influential. In it, Dell details

a connectionist model employing nodes working, initially,in parallel and, subsequently, in serial

through four levels of speech word form classifications.

The WEAVER (Word-formEncodingActivation andVERification) model (Roelofs [50], Lev-

elt, Roelofs, Meeyer [30])expands on Dell’s model of spreading activation and addresses some of

its shortcomings to create a more encompassing 6 level modelof speech production. Neither

model, however, addresses the process by which this cognitive function is acquired over time. In

particular, neither model attempts to define the role of internal models or even the role of memory

retrieval from associative memory in the human cortex in acquiring this function.

Guenther ([17]) designed a very telling model of single phoneme production which dealt with

the mapping from motor phoneme to orosensory sensation (i.e. the tactile sensation of the phoneme

being uttered.) His study proved to be very enlightening as he was able to replicate various com-

monly known traits or phenomena generally observed in the production of learned phonemes.

Among the phenomena he was able to demonstrate was co-articulation, in which the sound of a

phoneme depends directly on the previously articulated phoneme. His model, much like the model

presented here, conducted a ”babbling” stage to properly set the initial parameters of the system.

The fundamental difference between Guenther’s model and the work discussed here is that,

primarily, his model was designed to produce single phonemes in the study utilizing orosensory

80

inputs. The phonemes his model produced had a local, not distributed, representation scheme (i.e.

a single unit being on uniquely identified a particular phoneme.). Also, he did not at all represent

stored distributed cognitive representations of phonemesin associative memory as was done in this

study.

In addition, there was no attempt to represent an internal model for speech production in Guen-

ther’s simulation of phoneme acquisition. Internal models, such as motor programs believed to

exist in the cerebellum of the brain [72], seek to correctly imitate the mapping from motor com-

mands to their respective cognitive representations. There is a growing body of evidence touting

the existence of internal models in the brain which, throughcontinued interaction with the external

world, acquire the ability to forecast the consequence of a series of motor actions. This internal

model is now considered key in acquiring all types of higher level cognitive motor function capa-

bilities such as moving limbs and speech acquisition tasks ([70], [71]). The model discussed here

incorporates all of these aspects in its present form.

In discussing the development of previously constructed phoneme sequence acquisition mod-

els, it must be made clear that the task has generally been attacked in pieces, not as a whole. For

instance, the storing of heard words in associative memory,the producing of phonemes and sound

due to commands to the motor cortex emanating from Brocas area, the way sounds enter the ear

and stimulate the auditory cortex, etc. - each is so complex as to be studied and modeled sepa-

rately by researchers extensively over the years. As such, the attempt made here to create a model

of phoneme acquisition sequence as a whole is quite an ambitious task. In order to create such a

model, it was required that the task be simplified to some extent.

5.2 Single Phoneme Production Model

5.2.1 Model

First, a model of acquiring the ability to generate a correctsingle phoneme (e.g. /b/, /ae/, or /t/)

from its intent using the expected auditory phoneme was designed. This model is implemented by

81

using a standard, non-sequential distal supervised neuralnetwork where there is a standard non-

recurrent feedforward neural networks for both the distal learner and forward model. This was

done in order to gage how difficult the harder, more complex, sequence acquisition task would be.

Also, in creating this simpler setup, the environment function, to be discussed later, could be tested

for validity and effectiveness in training the distal learner. Details of the challenges encountered in

attempting to model these ambitious tasks are outlined in the upcoming sections.

This neural model was intended as a preliminary step in a veryambitious attempt to create

a system inspired by the complex process through which people: 1) accept, process, and store

language phoneme sequences of a heard word as a series of neural firings in the auditory cortex and

associative memory, and 2) subsequently produce the correct motor phoneme sequential response

via interactions between Broca’s area and the brain’s primary motor cortex. The sounds produced

as a result of the latter interaction, after passing throughthe environment (air, environmental noise,

auditory system etc.), will again evoke the intended neuralrepresentation in associative memory

after being processed by the auditory cortex.

The model, inspired by the organization of the centers of a human’s brain responsible for

speech production, is presented with some intended phonemeinput stimulus and its known au-

ditory phoneme representation. Ultimately the goal of thisexercise is to create a neural model

capable of learning the mapping from phoneme intent to the corresponding motor cortex response

which will eventually yield the desired activations in the auditory cortex. In turn, this exercise is

meant to imitate the human brain’s ability to learn to produce single intended speech sounds from

memory en route to the eventual acquisition of phoneme sequence, or full word, skill.

The portion of this model discussed here will make use of a more standard form of non-

recurrent distal learning in order to complete its learningtask. The distal learner must learn to

produce the correct motor phoneme activations in the primary motor cortex given a unique static

phoneme intent vector as input such that, when transformed by the environment, this will cor-

respond distally to the desired auditory phoneme representation in associative memory. This is

done by having some neural connections attempt to model the external motor to auditory phoneme

82

transformation and using those same connections to assist in updating the weights of the learner.

This internal forward model can be trained by generating random motor responses and associating

the ensuing neural firings in the primary auditory cortex to that motor response. As discussed in

Section 2.5, there is some evidence which suggests such forward models do indeed exist in the

brain (likely located in the cerebellum ([4],[72]).)

A source of inspiration for this approach is that, when looking at speech development in in-

fants, the ’babbling’ a baby does in the early stages appearsto be a necessary process for the

development of the forward model responsible for predicting the outcomes of various motor ac-

tions involving his/her speech organs. Here, the infant, who one might suggest ”just likes to hear

herself”, makes arbitrary noises through motor commands and can eventually associate a particular

heard sound to the motor commands that it resulted from. Oncethis “mapping” is ascertained, the

baby can thereby reproduce that sound whenever he/she intends to. Formation of an effective for-

ward model for producing phonemes, however, is generally not completed by the time an infant’s

intent surfaces to duplicate known auditory phoneme sequences. Over time, a cycle of produc-

ing increasingly improved, though incorrect, motor actionof an intended sound based on what is

stored in associative memory must be repeated continuouslyto achieve the desired result. Intent to

repeat new words and phonemes heard spoken from adults will increase the infant’s set of intended

phonemes.

5.2.2 Environment

The environment used in this study makes use of the table in Appendix B which lists the component

features that make up motor and auditory phonemes needed to construct a smooth mapping from

the former to the latter. It is important that this mapping besmooth and differentiable to help

facilitate the learning in this model’s forward connections. The manner in which this mapping is

constructed, as well as the many considerations which must be addressed, is discussed in Appendix

B.

The training method used in this computational model is the standard form of the distal super-

83

vised learning method discussed in Section 2.5 to train the internal model and motor output area

together in series as if they were one four-layered neural net but to propagate different deltas to the

appropriate components to achieve the desired results (Figure 2.11).

All input vectors to the distal learner used in this particular study take on the form

[0.1, ..., 0.1
︸ ︷︷ ︸

(j−1)

, 1, 0.1, ..., 0.1
︸ ︷︷ ︸

(n−j)

], where1 ≤ j ≤ n and vector length n varied based on the dimensionality

of the static input, learner’s output, and environment output:

1. Static input to phoneme generation area (phoneme intent) : vector length (n=39) corresponds

to the number of possible phonemes, with one unique bit set toone and all others set to

minimum value 0.1.

2. Proximal output from phoneme generation area (motor phoneme) : vector length (n=20)

corresponds to the number of features through which distinct motor phonemes can vary (see

Appendix C). Each bit is set to .1 or 1, where .1 corresponds to a’.’ and a 1 corresponds to

a ’+’.

3. External environment/internal model response (auditory phoneme) : vector length

(n=34) corresponds to the number of features through which distinct auditory phonemes can

vary. Each bit is set to .1 or 1 (see Appendix C).

The sets of motor and auditory phoneme feature vectors used in this preliminary study are

listed as tables in Appendix B. Twenty-four consonantal and fifteen vocalic motor phoneme fea-

ture vectors were merged together to form the 39 total motor phonemes used to formed the basis

of the input space for the motor-to-auditory smooth environment mapping constructed in the man-

ner described in Appendix B for this distal supervised learning task. Likewise, the 39 auditory

phoneme feature vectors are gathered in a similar manner to form the basis of the environment’s

distal output. At the same time, the 39 auditory feature vectors are used as distal target outputs

for use in training the distal learner. Minimum values of .1 are substituted for zero values in each

phoneme vector used here as zero target output values have been shown to be problematic in the

84

Feature Mapping

Motor−to−Auditory

c)

a) b)

Auditory
Feature Vector

Motor Feature
Vector

Unique
Phoneme ID

Figure 5.1: This figure demonstrates the setup for the singlephoneme acquisition model described

in Section 5.2. Here a distal learning neural network (labeled as a)), with the assistance of the

forward model (b)), is designed to learn to reproduce the correct motor phoneme vector when pro-

vided only a unique phoneme intent vector and its corresponding distal auditory phoneme vector.

This distal learner produces motor phoneme vector outputs and obtains auditory vector outputs

while operating in the motor-to-auditory phoneme transformation environment mapping (c)) (sec-

tion 5.2.2).

training of neural models using sigmoid activation functions in their output layers. Also, these

minimum values are used to assist in creating the smooth environment function using the phoneme

tables of Appendix C to offset difficulties encountered whenintroducing zero values to the smooth

mapping algorithm discussed in Appendix B.

5.2.3 Distal Learner / Forward Model Designs

This preliminary neural network model has the following capabilities :

• various gradient descent methods such as adaptive learningand momentum.

• one hidden layer (size determined experimentally)

85

• sigmoidal output at hidden and output layers

The forward neural model is a standard two layered neural netwhich is trained primarily using

the adaptive learning rate gradient descent method. The algorithm in Appendix A outlines the

procedure for training the motor output area and the forwardmodel. Figure 5.1 is a diagram of the

architecture in which the distal learner and forward model work in tandem to handle this particular

distal supervised learning task.

5.2.4 Results

The model described here has exhibited good success in handling this particular learning task.

Despite having to learn in an environment function which maps actions from one sizable domain

to another (i.e., Motor Output:{0, 1}39 → {0, 1}20) in the absence of the teacher to implicitly

provide proximal target output values, the model is capableof learning the phoneme intent to mo-

tor phoneme mapping task at a RMSE of just under 0.1. In actuality, because of the amount of

stochasticity inherent in the model (e.g. random assignment of distal learner and forward model

weight vectors and in the random selection of environment interaction generated to facilitate for-

ward model training to simulate babbling), RMSE tends to varyfrom .09 to .22 where a mean run

terminates with an RMSE of approximately 0.15.

The current model uses the following parameters:

1. Distal neural model of motor output: Hidden Layer size - 125

2. Forward model: Hidden Layer size - 54

As you will see in section 5.3, the next step in this study involves expanding this model to accept a

single static word intent vector, encoded to uniquely represent some phoneme sequence stored in

associative memory, and output the appropriate motor phoneme sequence required to generate that

word. By expanding on the distal learning paradigm of section2.5, I have developed a method of

training recurrent neural networks to accomplish just sucha complex task (section 5.3).

86

5.3 Framing the Distal Recurrent Learning Architecture for

the Phoneme Sequence Recurrent Task

5.3.1 Setup

The phoneme sequence generation model is loosely inspired by the way it is generally believed

that a human learns to produce spoken words [5]. A vastly simplified process that humans go

through in acquiring phoneme sequence generation capability is illustrated in Figure 5.2. From

here on the “learner” does not necessarily refer to the humanlearning to speak but, rather, the

cognitive region or machinery used to accomplish the acquisition of phoneme sequence generation

behavior. First, a single unchanging intent or idea of a wordresults in the recall of the correct

series of activation patterns in associative memory that the learner will try to duplicate. As such,

the learner commences to generate some time-varying sequence of motor responses largely using

his/her own speech organs. These motor commands cause some series of noises to result in the

external world which are conducted via vibrating air molecules, along with external noise, back

to the person’s hearing organ. Each acquired sound is processed by the auditory cognitive region

before being streamed to the associative memory region, where a very distinct series of activation

patterns results.

The goal of any learning process used here would be to, wherever necessary, change the makeup

of the learner’s own neural connectivity such that the learner will make steady progression towards

eventually producing the desired series of neural activitypatterns in associative memory. Ulti-

mately, the learner should acquire the capability to produce some series of motor commands which

would be responsible for reproducing the recalled set of desired distal memory activity patterns re-

trieved at the beginning of the learning process. Notice that, in this particular setup, the only input

provided to the learner required to produce the series of correct proximal motor behavior is the

single, unchanging phoneme sequence intent stimulus.

In an attempt to develop a simulation of this approximated cognitive learning process, the re-

87

Intended Phoneme Sequence
(single input stimulus) m/ah/m/ee

Generates series of

recalled memory sensations
motor commands thought to re−create

series of map activations in memory corresponding to
memory recall of sound of intended phoneme sequence

What she "wants"
to say ...

What she actually
says ...

auditory sequence

motor sequence

in associative memory evoked
 Corresponding series of activations

desired and actual sets of
neural activations are compared

actions to auditory perceptions
Transformation from motor

=?

Figure 5.2: Illustrating the Phoneme Sequence Generation Domain.

current distal supervised learning architecture illustrated in Figure 5.3 was devised. In it, some

learning agent is presented with a single static input stimulus which corresponds to a unique and

deliberate, yet initially unknown, sequence of motor phoneme commands. What is available re-

garding this phoneme sequence intent input stimulus is the series of self organizing map (SOM)

activations known to uniquely correspond to it. In other words, these map formations are meant to

signify the stored representation of the intended word in ”memory” that the distal learner would

like to duplicate. For this exercise, the task for the intended distal learning module is to then gen-

erate some sequence of vectors, in which each vector represents a motor command whose contents

signify motor phoneme features that yield some unique utterance or sound. The duration of this

motor vector sequence will always be assumed to be equivalent to the length of the target distal

88

c.

mot seq

Intended
Phoneme Sequence

(single input stimulus)

associative map
activations

Actual

=?

associative map
Desired

activations

motor actions to auditory perceptions
action sequence transformed from

aud seq

a.

d.

b.

Figure 5.3: An illustration of the setup for the Phoneme Sequence Generation distal learning task.

The previously-trained memory recall network (a.) provides the sequence of target memory activ-

ity patterns required to train the recurrent learner. Ultimately, the task given to the recurrent motor

phoneme generating model (b.), given only a single static input word intent vector, is to learn to

generate the correct sequence of motor feature vectors that, once transformed into a phoneme se-

quence of auditory feature vectors (c.), yields a series of activation patterns in associative memory

(Candidate-Driven SARDNET SOM d.) matching those produced inmemory recall.

output sequence provided for training. This sequence is then presented to the environment, which

transforms this motor phoneme sequence into a corresponding sequence of “auditory” phoneme

vectors which are based in auditory distinctive features (see Appendix C.) Finally, this series of

auditory vectors then produces some series of neural activations to occur in associative memory

that are unique to those vectors (Figure 5.2).

In this task, the motor-auditory mapping and the Candidate-Driven SARDNET SOM memory

model together make up the Phoneme Sequence Generation sequential environment (signified by

89

the enclosed dotted area in Figure 5.3.) The purpose of such an exercise is to enable the intended

recurrent neural network to learn to transform the single static intent stimulus into the appropriate

sequence of motor phonemes which would ultimately and uniquely yield the target sequence of

output memory activations made available at the beginning of the training run. The recurrent distal

learning architecture designed to approximate the processillustrated in Figure 5.3 is shown in

Figure 5.4.

5.3.2 Phonemes and Phoneme Sequences for Experiments

In developing the phoneme sequence generation model, I looked to identify: 1) a subset of key

phonetic features used to describe many commonly used English phonemes, 2) a subset of the

listed phonemes in the English language using this reduced feature set, and 3) a list of phoneme

sequences that a distal learner could conceivably acquire and learn to generate. This reduced

feature set decided on consisted of the following characteristics (note: feature categories known to

be complements of each other are paired together to reduce the parameter space to be searched): 1.

vocalic/consonantal, 2. strident/nasal, 3. voicing on/voicing off, 4. continuant/stop, and 5. height

(high/low).

Likewise, nine binary variables were determined which could adequately address ten of the

features listed in Appendix (C) believed to completely characterize the auditory reception of any

English phoneme. This reduced auditory phoneme feature setincludes: 1. continuant, 2. inter-

rupted, 3. duration (on/off), 4. terse, 5. lax, 6. F2,V H , 7. F2,L, 8. F1,L, and 9. F1,HM . The terms of

the form F1,x1
and F2,x2

refer to varying intensities of formantsf1 andf2, respectively. Formants

are peak acoustic frequencies which result from the resonance of the human vocal tract [66]. For-

mantsf1 andf2 can be particularly helpful in characterizing differing vowel sounds. Variables

x1, x2 consist of values from the set{L,HM, V H}, where ’L’ means “low”, ’HM’ means “high

medium”, and ’VH’ means “very high”.

In ascertaining which phoneme features to use, there are certain features that are discussed

heavily in the phoneme generation literature that are deemed to be very pertinent (e.g. vocalic/consonantal.)

90

intent vector

Phoneme Sequence
Generation
Environment

a) b)

c)
motor
command
sequence

recurrent
distal
learner

recurrent
forward
model

resulting memory
activity patterns

static word

Figure 5.4: Recurrent distal learning architecture used to model the Phoneme Sequence Generation

framework of Figure 5.3.

Also, high preference was given to those features that were binary in nature or were the exact com-

plement of another feature across all phonemes, vowels and consonants alike. In other words, the

presence of one feature signified the absence of another (e.g. voicing on/off, continuant vs. stop,

etc.)

Lastly, there were phonemes I deemed important (in particular, ’s’ and ’t’) that could not be

described without the use of certain very specific phonetic features. I wanted to use these phonemes

since they are included in so many viable English phoneme sequences. I also wanted to use them

because of their high capacity for clustering with other consonants like s/t and t/r. This describes

a phenomenon in which two phonetic consonant sounds can be compounded together without the

use of vowel sounds in between (e.g. “/s/+/k/”, “/n/+/t/”, etc.)

I then grouped all phonemes which could be described in the same manner through the chosen

subset of features and picked the phoneme in each group whichI believed could help construct the

91

Motor Features /s/ /t/ /r/ /aw/ /ih/

Consonantal/Vocalic 1 1 1 0 0

Voicing (on/off) 0 0 1 1 1

Continuant/Stop 1 0 1 1 1

Strident 1 0 0 0 0

Height (high) 0 0 0 0 1

Table 5.1: Reduced List of Phonemes and Their Corresponding Distinctive Motor Features.

most phoneme sequences with which to do this study. The groupof phonemes I assembled is listed

by its corresponding binary feature sets in Tables 5.1 and 5.2.

Table 5.1 lists the five phonemes that the recurrent distal phoneme sequence generator is ex-

pected to learn and utilize in order to successfully replicate the list of phoneme sequences stored

in this study in a simple neural model of associative memory.Note that nine features are mostly

listed as pairs of complements. In order to shrink the searchspace of the distal recurrent learner,

five binary parameters are instead used in which both ’0’ and ’1’ values hold significance. Hence,

for example, phoneme /s/ can be described as consonantal, strident, and continuant, where the ’1’

denotes the presence of the first in their corresponding paired binary features. In addition, how-

ever, it also contains non-voicing characteristic, as the ’0’ entry denoting the absence of the first

of a paired parameter (in this case, voicing) implies the presence of its respective complement (the

second of the paired features.)

Likewise, Table 5.2 lists the same five phonemes shown in Table 5.1 but described using au-

ditory characteristics. Understandably, the auditory characteristics which make up each phoneme

uniquely are mostly different than those used in the motor feature listing. Here, however, there is

no need for paired complementary binary features. Not even duration (on/off) could be classified

as a strictly complementary feature as vowel phonemes do notuse either. These auditory feature

vectors were used to construct the phoneme sequences listedin Table 5.3 which were used

At the culmination of this process, a small subset of the known English phoneme alphabet

92

Auditory Features /s/ /t/ /r/ /aw/ /ih/

Continuant 1 0 1 0 0

Interrupted 0 1 0 0 0

Duration (on) 1 0 0 0 0

Duration (off) 0 1 1 0 0

Tense 1 1 0 0 0

Lax 0 0 0 1 1

F2,V H 0 0 0 0 1

F2,L 0 0 0 1 0

F1,L 0 0 0 0 1

F1,HM 0 0 0 1 0

Table 5.2: Reduced List of Phonemes and Their Corresponding Distinctive Auditory Features.

was determined for use in this study. Five phonemes, three consonants (s/ t/ r) and two vowels

(ih / aw), were deliberately selected which could be uniquely represented by the reduced set of

pertinent phoneme features chosen. Using these very commonphonemes, a list of 15 phoneme

sequences (Table 5.3) was compiled from the English language, each possessing anywhere from

2-5 phonemes. Some of these fifteen sequences contained phonemes which repeat at some point

in the sequence to increase the challenge and authenticity of the study. These phoneme sequences

were ultimately used as training data for a the Candidate-Driven SARDNET SOM that was created

to represent associative memory for the distal sequential learning task. Following training, their

resulting SARDNET output associative activations then became the only representation of this

list of phoneme sequences used anywhere in the remainder of the simulation (i.e. these phoneme

sequences were never again seen or used during training.)

The disconnect between motor and auditory feature space could be accomplished by a smooth

mapping technique I developed for the purpose of this study,which is capable of transforming a

finite mapping into one which is smooth and continuous for allinputs (Appendix B.)

93

S / IH / T

R / IH / S / T

IH / T

R / AW / T

S / T /AW / R

T / AW / S / T

S / AW / S

AW / T

S / T / R /AW

R / IH / T

S / IH / S / T

S / AW / T

S / T /IH / R

R / AW

R / IH / S / T / S

Table 5.3: List of Target Phoneme Sequences.

5.3.3 Memory Recall of Associative Map Distal Target Sequences

I employ a neural network to supply the target sequence vectors necessary for training the distal

recurrent learner. Knowing that the human brain does not explicitly store physical target distal se-

quences, this neural network is supposed to represent the memory recall of the series of associative

memory map activations which occurs when a phoneme sequenceis decided upon. This mecha-

nism is what provides the associative memory activations which serve as distal target sequences

used to drive training of the distal recurrent learner. Thisneural network employs a self-halting

mechanism which allows it to output varying length vector sequences depending on the input stim-

ulus, which, in this case, is the single intended phoneme sequence vector. It is trained to produce

a predetermined halting vector when it decides to end production of the sequence. Although the

94

self-halting mechanism was used here successfully for thisstandard recurrent neural network, the

same feature proved to be more problematic to employ for the distal recurrent neural network of

interest in this study. More research is needed on determining how to more effectively implement

this feature for state-less distal sequence generation tasks.

Once the sequence was generated and the recall done, it couldbe used as the desired distal

targets employed to drive training of the distal recurrent learner. Successful training of the distal

learner can now be defined as the extent to which the learner iscapable of producing the correct

series of motor phonemes which will ultimately yield these memory associative maps through

interaction with the environment.

In this setup, there is an environment much like that described in the previous single phoneme

generation preliminary study. What is different is that the environment accepts not one, but a

sequence of motor phoneme commands supplied to it via the distal learner.

The environment in this study is a composite mapping comprising two main components: 1)

the smooth mapping procedure which exists to transform motor phoneme feature vectors into

some corresponding equivalent auditory feature vector in auditory feature space, and 2) the self-

organizing associative memory model trained, a priori, to uniquely map the fifteen chosen phoneme

sequences (Figure 5.5). The composite sequential mapping referred to here as the phone sequence

generation environment ultimately takes in as input a sequence of real-valued motor phoneme vec-

tors, maps them into some corresponding sequence of auditory phoneme vectors, and outputs a

corresponding sequence of activity patterns in the associative memory model. The idea is that,

throughout training of the recurrent distal learner, associative memory activation maps resulting

from the learning agent’s proximal motor command sequencescould be compared to the target

associative memory map sequences generated by the neural network representing memory recall.

5.3.4 Environment

Please note that the “environment” as described here does not solely comprise theexternal envi-

ronment which maps individual sounds uttered by the learnerinto heard auditory phonemes. That

95

associative map
activations

Resulting

motor
sequence

Motor to
Auditory
Mapping

Sequential
SOM

auditory
sequence

Figure 5.5: The Phoneme Sequence Generation Environment.

portion of the environment which physically lies external to the learning agent is just the first com-

ponent of the entire distal sequential environment used in this application. As the environment in a

distal setting is required to map proximal actions (in this case, sound-generating motor commands)

to distal outcomes (in this case, associative memory activity patterns), the second component map-

ping must be incorporated in order to process the results of this initial external function before the

desired sequential mapping can me fully manifested.

This was a very challenging environment in which to test, particularly because of the variety

and complexity of the components in the environment set to work in serial. To add to the com-

plexity of this sequential composite environment mapping,there is no mechanism provided for

96

explicitly informing the learning agent as to its current state or plight. In other words, there is

no other way for the learner to take into account where or how far its prior history of actions has

taken it en route to accomplishing the distal sequential learning task than for it to remember what

it had done. In acquiring the ability to generate time-varying proximal behavior given a single,

unchanging input stimulus using the standard distal supervised learning framework, such a current

state mechanism would be essential to ensure any measure of success.

As such, to train the distal recurrent learner to blindly produce any correct sequence of motor

commands in so complex an environment without the benefit of receiving constant updates of its

own current state would truly be an accomplishment. Updatesto the recurrent distal learner on its

new current state, separate from the environment’s distal outcomes, assist the agent by giving it a

reference point as to where the series of actions taken priorto that point in time has guided it. For

instance, the visual location of the ball could be used as an indicator of the agent’s current state

in the basketball shooting example illustrated in section 1.1. The key issue of a problem domain

such as this is that, unlike other attempts at distal supervised learning, information on the learner’s

current state is unavailable for reliable guidance and usage. As there is no such stream of current

state information to be provided in this domain, most previous standard distal supervised learning

models would be ill-equipped to work well operating in this environment. This is a result of the

fact that standard distal systems rely so heavily on using their incoming current state information

to guide them to their next step.

The phoneme sequence generation environment is broken intotwo separate components. On

the one hand, there is a segment which maps the set of motor phonemes, which emanate from

the primary motor cortex, into the set of auditory phonemes,which are received by the primary

auditory cortex. This component will take the form of a smooth mapping procedure developed just

for this application and described in greater depth in Appendix B. This smooth mapping procedure

accepts as parameters two countable vector sets, the first being thedomainset and the second being

therangeset. The domain set,A = a1, a2, ..., av, contains vectors of length m and is considered a

subset of a much larger domainℜA ≡ ℜm. Likewise, the range set,B = b1, b2, ..., bv, with vectors

97

of length n, is considered a subset of rangeℜB ≡ ℜn. Both sets A and B should contain the

same number of vectors, v, for the purpose of assuming the existence of a finite mapping, f, where

f(ai) = bi, 1 ≤ i ≤ v. Smooth mapping, as outlined in Appendix B makes it possibleto construct

a new mapping,f ∗, such that a different inputa ∈ ℜA but a /∈ A will have a corresponding value

f ∗(a) ∈ ℜB based on the proximity of a to members of set A.

Obviously, the actual real world mapping from motor phonemes of the primary motor cortex

to heard auditory phonemes in the primary auditory cortex has little to do with this demonstration.

Indeed, many factors go into this actual mapping, includinginteraction with air molecules, external

noise, etc. which are either not completely understood or are too complex to model for the context

of this work. I maintain that, solely for the purpose of this particular study, all that is needed

is some continuous smooth mapping,f ∗, which can map any vector inℜA reasonably to some

corresponding output inℜB (i.e. f ∗ : ℜA → ℜB) and which reasonably interpolates a finite

mapping, f, for all vectors in A (i.e.f ∗(ai) = f(ai) = bi, 1 ≤ i ≤ v. If the environment function

can display these properties, the recurrent forward model can effectively approximate it and help

drive learning of the distal recurrent learner.

The other component of the environment in use here is the storage of auditory phonemes in

associative memory. The storage mechanism here will be a SARDNET SOM capable of accepting

sequences of phoneme inputs and, once trained, outputting acorresponding unique output map in

the output lattice of the SOM. This is to represent the uniquepattern of neural activations thought

to occur in the associative memory once a human senses or recognizes a previously sensed input

stimulus.

The purpose of the environment is to output the corresponding sequence of SOM output maps

once presented with some sequence of motor phoneme inputs. In other words, the environment first

accepts a sequence of motor phonemes representing the distal recurrent learner’s stimulation of the

primary motor cortex and then sends this sequence through the smooth mapping process to be

mapped to a corresponding sequence of auditory phonemes signifying the appropriate stimulation

of the primary auditory cortex. The resulting auditory primary sequence will then be accepted

98

by the SARDNET SOM representing associative memory and will ultimately yield some ideally

unique series of neural activations used to represent stimulation by the primary auditory cortex

in recognition of stored representation. Figure (5.5) demonstrates visually how this environment

operates.

One primary issue encountered, which is accepted as standard in distal learning architectures

as presented in Jordan [24], is that a properly trained forward model can guide a distal learner

to converge to one, and only one, correct proximal action outof potentially many. If there is

truly only one correct proximal set of actions to take in arriving at the desired distal outcome,

or if merely arriving at the desired distal outcome by any means is sufficient, then there is no

issue. However, in designing an architecture to simulate phoneme sequence generation similar

to that demonstrated by the human brain, an analog of a very specific response of the primary

motor cortex in the brain is sought of the distal learner which should correspond closely to what

is documented in existing neuro-biological studies (i.e.,motor responses demonstrating features

listed in Singh [56]). In other words, unlike most other previous distal supervised learning studies,

a very specific proximal response is required of the distal learner given a single input stimulus in

order to yield a particular desired distal trajectory. As such, the environment to be used in this study

must be carefully constructed to be as one-to-one in nature as possible, as opposed to the various

many-to-one environment mappings used in previous distal learning studies. Consequently, the

recurrent forward model designed to learn this particular one-to-one environment mapping can be

trained with the purpose of guiding the distal recurrent learner to that specific proximal course of

actions. The intent is to develop a neural model which learnsa very specific one-input-to-many

action mapping whose outputs can be verified as correct basedon expected data possessed by the

teacher.

5.3.5 Forward Model

Various properties of the proposed system seem to hold true across simulations and problem

domains. One very important observation is that the proper training of the forward model is

99

paramount to success of this or any system like it. The motivation for even providing a forward

model is to come up with a parameterized approximation of theunknown environment which could

be manipulated in order to guide and assist in the training ofthe distal sequential agent. This can be

done initially by taking random sequential walks through the environment’s input space, mapping

it using the environment to its corresponding distal sequential outputs, then using the resulting

training pairs to train the forward model even before the training of the distal learner gets under-

way. This portion of training a distal learner is often referred to as babbling. It is named as such

since it is analogous to that stage of seemingly random, but essential, stumbling through vocal

sounds in a young infant’s early language development.

An issue arises in looking to address where the sample input data should come from and in how

much such data should be used for training of the forward model such that it could best assist in

the training of the distal learner. Since the input space of many complex real-valued multi-variate

domains is, for all intents and purposes, infinite in range, the desired environment mapping may

never be fully characterized by the forward model.

One way to do this is to actually take, if available, the actually proximal sequential outputs

which would ultimately generate the desired distal output sequences, pairing them with their re-

spective target outputs, and including them in the trainingdata for the forward model. The idea is

that if the forward model trained in this manner knows directly how to map the correct, yet ”un-

known proximal answers”, then it should be more capable of training the distal learner to arrive at

these proximal answers. In other words, the forward model would be in a better position to provide

correct error training signals to the distal learner if it understood the requisite mapping between

answers and desired distal outputs.

In using the phoneme sequence generation environment, the most successful runs were con-

ducted such that the desired proximal behavior was expressly used as babbling data in the initial

training of the forward model along with their desired targets before beginning actual training of

the distal learner. In other words, during this babbling phase, the recurrent forward model explic-

itly was trained using the desired distal sequential map representations as target output sequences

100

and the phoneme sequences that were responsible for generating them as their respective input

training sequences. During the actual training of the distal recurrent learner, however, in addition

to the initial babbling forward model training data, sequential outputs of the learner were provided

to the forward model to be trained on along with their resulting sequential environment outputs. In

this manner, the forward model could be trained simultaneously with the distal recurrent learner

so that it could continue to learn to mimic the environment using the training data being generated

naturally through the interaction of recurrent distal learner and the environment.

Surprisingly, even when they are available for training, expressly providing the expected proxi-

mal answers to the forward model, though helpful, often doesnot yield a distal learner which fully

acquires the desired proximal behavior in its entirety in many complex distal sequence generation

tasks.

5.3.6 Simulation of the Phoneme Sequence Generator

As a preliminary to any training, some architectural features must be selected for both the recurrent

distal learner and the recurrent forward model. These can lead to important ramifications during

the simulation. Some of the more important architecture choices are: 1) size of both hidden layers,

2) recurrent network type (Jordan or Elman), and 3) number ofdelay lines memory modules. Once

this is done, the system’s parameters can be initialized, including that of the random setting of the

weight vectors for both neural models.

As previously discussed, the forward model goes through a babbling stage before training the

distal recurrent learner to mimic the environment mapping.There are two types of training data

used in this study for training the forward model during thisphase. Randomly created data may be

used here as well as the actual desired proximal sequential answers known to yield the distal target

sequences, assuming they are available to the trainer whichis often not the case.

In the case of randomized babbling, generated training datais constructed as 40 randomly

generated sets of vector sequences. One half are vectors made up of real valued entriesxij s.t.

0 < xij < 1, while in the other half of the babbling random data, the vector sequences comprise

101

solely randomly generated vectors of 0s and 1s.

At this point, after babbling, training of the distal recurrent learner commences in the manner

outlined in Section 3.3 in conjunction with the recurrent forward model. The recurrent forward

model will continue to be trained to learn the sequential environment mapping using the output

action sequences generated by the distal learner as inputs and their resulting distal outcomes as

target output sequences. Note also that, in addition to these output action sequences, whatever data

were used during the completed babbling stage to train the forward model are generally cached and

re-used continually by the latter throughout training of the distal recurrent learner in addition to

these output action sequences. This is because the forward model will tend to forget the mappings

learned during babbling, making that practice futile. The training of the distal recurrent learner in

the phoneme sequence generation environment is set to run, post babble stage, for 10,000 epochs

or until the distal performance error (i.e., the RMSE betweenactual and target distal sequences

occurring in the environment) becomes lower than .05. The training procedure referred to here is

just as outlined in Section 2.5.

5.3.7 Simulation Results

Four sets of numerous simulations each were run using the phoneme sequence generation input /

output data and environment. In each set of experiments, 11*11 = 121 training sessions were run,

where every combination of even numbers between 40 and 60 were used as hidden layer sizes for

both the recurrent distal learner and recurrent forward models (both designed as Jordan networks).

What varied primarily across experiments was which of the tworecurrent networks (1-2. either, 3.

both, or 4. neither) were set to do teacher forcing. Recall that in teacher forcing the precisely or

approximately correct target outputs, as opposed to the initially erroneous outputs of the untrained

neural network itself, were inserted into the memory layersin attempting to encourage quicker

learning of the training data.

Out of the total number of runs done for this study, only the top 5 runs of each set of simulations

were examined and their learning curves matched up and examined. The training of each type was

102

recorded (in steps of 20 epochs from epoch 0 through epoch 10000) and averaged over all the 5

best runs of each type to yield an average learning performance curve to represent the efficiency of

that type of architecture.

In each of the charts shown in Figure 5.6, the performance chart of the runs where absolutely no

teacher forcing (approximated nor standard) was utilized was plotted against each of the other three

types that utilized a teacher forcing strategy throughout training for either or both recurrent distal

learner or recurrent forward model. Across each of the threegraphs, the darker line represents the

same averaged training curve tracking distal error of recurrent distal learners trained without use of

any teacher forcing strategy over a number of runs. Here, onecan readily compare the averaged run

of the no-teacher-forcing architecture against the averaged runs which utilized teacher forcing in

a) recurrent distal learner only, b) both recurrent distal learner and forward model, and c) recurrent

forward model only. Note that the models which utilized approximated teacher forcing in the

recurrent distal learner clearly demonstrate a better capacity to learn up until a point, then diverge

inexplicably late in the run.

The charts of Figure 5.7 are similar to the charts shown in Figure 5.6 except to track proximal

error, averaged runs for non-teacher forced architecturesare plotted against those for architectures

which employed some teacher forcing strategy in a) the recurrent distal learner only, b) both re-

current distal learner and forward model, and c) recurrent forward model only. The proximal error

is generally not trackable as it is here as the desired proximal sequential behavior is typically un-

available to the trainer. Only due to the nature of this problem, where the trainer merely wants

to produce sequential behavior already known to the former,can we actually calculate RMSE

performance over the course of a run.

What seems to occur consistently in these graphs is that any simulations which utilize the

approximated teacher forcing in the distal recurrent learner seem initially to actually learn more

quickly than those which do not employ that scheme. Unexpectedly, however, the graphs in both

Figures 5.6 and 5.7 seem to suggest that standard teacher forcing done to the forward models,

though it may lead to quicker training time in the initial babbling stage, may actually seem some-

103

what detrimental to the distal learning process. This is a truly unexpected result, and any explana-

tion of this phenomenon would require further study.

It becomes apparent that, at least in this particular task, although using neither teacher forcing

strategy tends to cause the distal recurrent learner to acquire the correct proximal sequential be-

havior in the slowest time, it does avoid the pitfall of diverging from the correct behavior once it

is learned. Even though both sets of simulations that utilize approximated teacher forcing of the

distal recurrent learner do indeed learn quicker for time (up to, on average, a point between 3000

and 4000), something occurs in which the distal performanceerror no longer converges. This very

peculiar behavior suggests that the recurrent forward model fails to supply the correct proximal

error late in runs, somehow only after the desired proximal behavior is acquired. This peculiarity

can very well lie in the complex phoneme sequence generationenvironment, as no such behav-

ior attributable to teacher forcing was detected in the preliminary distal concatenation sequence

generation studies.

The six best performances with performance errors less than0.06 were recorded in Table 5.4.

Despite the issue with the divergence of the error curves of most simulations which include teacher

forcing strategies, the best two performances, and also four of the best six performances, included

architectures which used some form of teacher forcing. Thisobservation, plus the fact that they

tended to converge to those error rates quicker than those that used no such teacher forcing feature,

suggests that, with work, these strategies can be indeed useful in training distal sequence generating

architectures which employ Jordan recurrent neural networks.

Also listed with their best performance error are differentaccuracy rates of the distal learner

in reproducing correct motor phoneme sequences. The first metric looks at the percentage of

phoneme sequences provided by the trained distal recurrentlearner that are entirely correct. In

other words, suppose the recurrent distal learner outputs some motor phoneme sequence for each

of the fifteen phoneme sequence intent stimuli presented to it. The percentage of these fifteen

phoneme sequences which turn out to be sufficientlysimilar to the phoneme producing behavior

we hope to see can be readily calculated. A vector x is considered similar to a vector y, where

104

Teacher Number of Hidden Distal % correct % correct % correct

Forcing Layer Elements Perf Phoneme Individual Best Matched

Distal Forward Distal Forward Error Sequences Phonemes Phonemes

Leaner Model Learner Model
√

56 42 .053 66.7% (10) 84% 96%
√

44 52 .055 46.7% (7) 82% 94%

58 56 .056 66.7% (10) 88% 94%
√

46 50 .058 46.7% (7) 82% 94%

46 54 .06 33.3% (5) 74% 96%
√

60 52 .06 53.3% (8) 82% 94%

Table 5.4: A listing of the best performing distal phoneme sequence generators indicating impor-

tant architectural characteristics. These are the best of hundreds of randomly initialized runs which

varied over such key characteristics as hidden layer sizes (between 40 and 60) and teacher forc-

ing focus in both distal recurrent learner and recurrent forward models. Note that teacher forcing

techniques were employed in four of the six best performing distal recurrent learners.

x, y ∈ ℜn, if |xi − yi| < C, 0 ≤ i ≤ n, such that C is generally a real-valued constant set close to

0. For this study, C is set equal to 0.3.

Another metric measures how many phonemes generated were sufficiently similar to the re-

spective sought after motor phonemes (i.e. how many phonemes were generated correctly.) For

the last metric, each phoneme generated by the distal recurrent learner is compared to the set of five

possible phonemes and replaced by the closest one. Once all phonemes generated are transformed

in this manner, similar to the second metric, the percentageof all newly transformed phonemes

which equate correctly with their respective desired motorphoneme counterparts is calculated and

reported.

105

As an example, Figure 5.8 demonstrates the typical progression of a recurrent distal learner as

it acquires the phoneme sequence generation behavior. In the beginning, the forward model goes

through its babbling stage of learning to mimic the environment mapping before being utilized in

the training of the recurrent distal learner. The recurrentforward model is trained on the phoneme

sequence behavior known to ultimately evoke the desired series of sequential associative maps

(Figure 5.8 a).) Once babbling is concluded, training of therecurrent distal learner, as outlined in

Section 3.3 commences, while still proceeding to train, or calibrate, the forward model using the

interaction between distal learner and environment as training data (Figure 5.8 b).) Figure 5.9 then

shows the entire training run as it culminates after 10,000 epochs. Of interest is how it is apparent

that, even when experiencing problems in the middle of the training run, the recurrent distal learner

is still capable of correcting its own acquisition of correct proximal sequential behavior through

interaction with environment and recurrent forward model exclusively.

5.3.8 Evaluating the Efficiency of Recurrent Distal Elman Networks

In much the same fashion that Jordan recurrent neural networks can be trained in using the re-

current neural network modification to the distal supervised learning framework, Elman networks,

as discussed in Section 2.2, can be trained as well. In designing the recurrent distal learner, the

recurrent forward model, or both to be Elman networks, the primary difference in the handling of

the two recurrent architecture types is the source from which information is provided and stored

to the respective memory layer. One issue which arises is thefact that teacher forcing strategies

cannot be used for Elman networks, as activations from intermediate nodes cannot be predicted or

known a priori.

As there remains some debate as to which recurrent network structure, Jordan or Elman, works

best in standard, non-distal sequential learning tasks, I attempt to determine, if possible, which

mixture of the two in this recurrent distal learning framework would lend itself to the creation

of better distal recurrent learners. Would a Jordan distal recurrent network paired with an Elman

forward model fare better than one which utilizes both Jordan distal and forward neural networks?

106

Experiment Distal Forward Model

Label Network Type / Network Type /

(Short form)

ee Elman Elman

ee (no decay) Elman Elman

ej Elman Jordan

ejt Elman Jordan (*)

je Jordan Elman

jte Jordan (*) Elman

jj Jordan Jordan

jjt Jordan Jordan (*)

jtj Jordan (*) Jordan

jtjt Jordan (*) Jordan (*)

(*) - Teacher Forcing

Table 5.5: List of Elman and Jordan Distal Architecture Simulations

How would the system fare if both distal and forward models were created as Elman Networks? Is

there any benefit to using teacher forcing techniques to the Jordan portion(s) of any of these Jordan

/ Elman hybrid recurrent distal learning architectures?

A group of six new experiments of the phoneme sequence generation distal learning task, each

of which included an Elman network as either the recurrent distal learner, recurrent forward model,

or both, was run in order to test questions such as these. Eachrun comprised 121 varying length

hidden layer sizes. Table 5.5 lists each of the different combinations of new Jordan/ Elman runs

network uses in the recurrent distal supervised learning framework while listing their acronym or

experimentation shorthand name as well. In Figure 5.10, thegraph plots performances over the

best five aforementioned Jordan experiments, with and without teacher forcing, as they compare

to similarly trained simulations in which Elman networks were incorporated into one or both dis-

107

tal recurrent learner and recurrent forward model roles. The graph clearly demonstrates, oddly

enough, that architectures which utilize Elman networks aseither distal recurrent learner or recur-

rent forward model are consistently outperformed when compared with simulations which utilize

two Jordan networks, whether teacher forcing is used or not.The reason for this huge disparity is

not known currently. Future experimentation of this subject matter may indeed shed some light as

to why there is such a clear advantage to using Jordan networks in a system such as this.

5.3.9 Implementing Delay Line Memory Constructs

In order to increase the effectiveness of the proposed memory modules added to the existing dis-

tal supervised learning architecture, the capability to directly copy and store individual proximal

actions from previous time steps was incorporated into bothdistal recurrent learner and recurrent

forward model. I determined that, rather than replacing exponential memories used effectively

until now, I could add exponential decay functionality to the very last delay line memory. In this

manner, the neural network being used, whether distal learner or forward model, could still con-

sider long histories of action even when the extent of the delay line modules has been surpassed.

Figure 3.3 shows a Jordan recurrent distal learner with an arbitrary number of these delay line

modules, the last of which was, optionally, set up to use an exponential decay term in order to

accumulate arbitrarily long output histories. With the increased faculty to clearly discern the d-1

prior actions taken in addition to the accumulation of exponentially decaying outputs at the final

module, it was thought that adding this feature could noticeably improve the performance of the

distal recurrent learner. Do note that the recurrent forward model utilized in Figure 3.3 does not

utilize delay line memory modules. Memory delay line structures can be utilized for either, both,

or neither recurrent distal learner and recurrent forward model.

108

5.4 Contributions of the Chapter

The primary contribution of this chapter is to demonstrate the capabilities of the recurrent distal

supervised learning system in a challenging domain which employs a relatively complex environ-

ment. The Phoneme Sequence Generation environment was constructed by pairing the smooth

mapping procedure (Appendix B) used to facilitate the transformation of spoken motor feature

phonemes to heard auditory feature phonemes with the candidate-driven SARDNET SOM (Sec-

tion 4.3) used to represent associative memory. The recurrent distal learning framework was shown

capable of training a recurrent neural network, due to its cooperation with its accompanying re-

current forward model, to generate very accurate motor phoneme sequences that produced very

specific desired distal output behavior in the environment.This learning occurred even when the

recurrent distal learner was being presented only with a single static “intent” as input while op-

erating in this complex sequential environment. Also, approximated teacher forcing (Section 3.4)

was shown to have a very positive effect in the training of therecurrent distal learner as expected,

particularly in the beginning stages of its learning.

109

a) b)

c)

Figure 5.6: In plotting diminishing error (RMSE) against training time (epochs) over averaged

runs, the effects of three separate uses of teacher forcing techniques are shown. In plot a), the

averaged training run for teacher forcing used in the recurrent distal learner only (the training

curve labeled jt0j0) is superimposed against a curve that signifies training of the recurrent distal

learner without any form of teacher forcing (j0j0.) The remaining two plots demonstrate teacher

forcing in b) both recurrent distal learner and forward model (jt0jt0), and c) recurrent forward

model only (j0jt0) against the same non-teacher forced averaged training run. In all three graphs it

can be seen that the teacher forcing methods demonstrate comparable, if not faster, learning in the

onset of learning. Interestingly enough, though the lowestaveraged learning rates can be seen in

training curves in which teacher forcing strategies are utilized, divergence in learning can be seen

in these same teacher forcing runs during the early to middlestages of their training.

110

a) b)

c)

Figure 5.7: Similar charts to those shown in the charts featured in Figure 5.6 tracking the effects

of teacher forcing except the proximal error of the recurrent distal learner’s outputs are plotted

as opposed to the distal error in the environment. Once again, the use of teacher forcing against

the standard non-teacher-forced case (j0j0) is demonstrated here in a) recurrent distal learner only

(jt0j0), b) both recurrent distal learner and forward model(jt0jt0), and c) recurrent forward model

(j0jt0) only. A more profound positive influence is evident here early in runs as a direct result of

the use of teacher forcing than when distal error was tracked.

111

a)

b)

Figure 5.8: Two stages of the same training run are demonstrated for a well-trained phoneme se-

quence generator where diminishing error (RMSE) is tracked.In chart a) the initial babbling phase

is evident in which the recurrent forward model (FM) alone istrained for 105 epochs, after which

training commences for the recurrent distal learner (signified by diminishing error through epoch

505). In chart b), continued improvement in training the recurrent forward model is demonstrated

by the sustained decrease of error through 4500+ epochs (including the sharp descent seen at just

over epoch 3500.)

112

Figure 5.9: The final RMSE chart of the recurrent distal learner demonstrated in Figure 5.8 is

shown here as it is trained for 10,000+ epochs.

113

Figure 5.10: This graphic plots the performances of recurrent distal supervised architectures which

utilized Elman recurrent distal learners and/or Elman forward models against performances of ar-

chitectures only using Jordan architectures. The labels can be explained most efficiently by exam-

ple. The point “ej” represents the mean performance of recurrent distal supervised architectures

using an Elman distal learner and Jordan forward model. The point “jjt”, however, represents the

mean performance of architectures using both a Jordan distal learner and a Jordan forward model

(with the forward models alone employing a teacher forcing strategy to enhance its learning task.)

Clearly, any architecture that utilized an Elman recurrent learner was significantly outperformed

by any similar architecture that used solely two Jordan recurrent neural networks.

114

Chapter 6

Discussion

In this work, I demonstrate a modification of the existing distal supervised learning framework for

training a recurrent neural network to produce sequences ofvarying length outputs which, when

accepted by some sequential environment, yields the desired sequence of outcomes associated with

the single static input stimulus presented to it. Moreover,it is shown that the same approximated

proximal error vector supplied by the forward model to introduce effective weight vector updates

in the distal learner can, in turn, be used to induce more effective updates of the recurrent distal

learner’s memory vector and, thereby, further improve training. This work is indeed significant

in that now recurrent distal learners capable of considering its history of previous actions can be

trained in environments in which the learner’s current state is inaccessible. In fact, the results of

these modifications are particularly distinct from those ofother distal supervised learning tech-

niques in that they allow for the effective creation of recurrent distal neural networks that are far

less dependent on current state information than those distal learners trained using standard dis-

tal learning methods which tend to be heavily reliant on thatinformation in satisfactorily making

future decisions. The efficiency of the modified distal learning framework is demonstrated first

on a simpler sequential concatenation environment, then later on a very ambitious phoneme se-

quence generation environment in which the recurrent distal learner seeks to acquire the ability to

pronounce words in a similar manner as humans do. The following chapter discusses further the

significance of the findings of this work as well as possible future directions for improving and

extending this research.

115

6.1 Benefits of the Distal Sequence Generation Study

The role of neural networks with recurrent structures is becoming increasingly apparent. There

are those, including Ziemke [73], who argue that there existproblems in robotic tasks in which

a given state may be attained using several different actionpaths (e.g., the state arrived at may

appear the same even though the path taken to achieve it was very different.) Learning tasks such

as these can potentially lead to very difficult problems in which the current state is not sufficient to

uniquely determine what the next agent action should be. Termed ”perceptual aliasing” by White-

head and Ballard ([65]), such issues may be addressed by including mechanisms commonly used in

sequential processing neural network simulations which expressly utilize past experience to more

efficiently promote correct future decision making. This isbut one of many potential applications

which demonstrate the necessity for continued research into recurrency in neural models in all

areas addressed by feed-forward networks.

Currently, there is no known work which addresses the use of recurrent neural networks in

distal problem domains. However, the simulations run in Section 5.3.7 demonstrate that recurrent

neural networks can indeed play a key role in creating neuralmodels capable of learning to produce

appropriate proximal sequential behavior to ultimately yield a series of desired distal outcomes

while operating in a complex environment. Moreover, the fact that the distal recurrent learner does

all of this while receiving no external updates of its own current state from the environment makes

the task that much more intriguing.

While recurrent neural networks have been shown to be effective in managing distal sequence

generation tasks, employing them to handle challenging non-sequential distal learning problems

may prove to be extremely fruitful as well. Incorporating prior action history into the decision-

making process by the employment of recurrent links and various memory module constructs

may indeed enhance the training of standard distal feedforward neural network architectures in

non-sequence generation tasks. It might even be possible todemonstrate improved training per-

formance over standard non-recurrent distal learning systems that rely heavily on a consistent

116

source of current state information but utilize no concept of memory. This could potentially be the

case if the current state information supplied to non-recurrent distal learners can be shown to be

inaccurate, noisy, or ambiguous. More experiments would berequired to determine under which

circumstances the more memory-reliant recurrent distal learning systems might definitively be able

to outperform standard, non-recurrent distal learning systems that rely exclusively on current state

information.

6.2 Success in Recurrent Distal Supervised Learning

The architecture introduced here was demonstrated to work well in two sequential environments:

1) concatenation and 2) phoneme sequence acquisition and generation, the second of which is an

exceptionally complex composite of two non-linear functions. The system was shown to work

very well in the concatenation problem, which featured a less complex environment which boasted

no ambiguity issues among environment outputs. The phonemesequence generation architecture

however, proved to be a much more challenging system to master. Ultimately, spanning a range

of numerous simulations, when given 15 actual English phoneme sequences to acquire, the distal

recurrent learner was able to produce at least 10 phoneme sequences correctly (Section 5.4).

Once again, it may be possible to incorporate the recurrent structures used in this study into

existing distal supervised learning systems. Judging fromthe successful results seen in the distal

recurrent learner training tasks of Sections 3.6 and 5.3, itis my belief that recurrent distal learners

should be able to perform at least as well when substituted for feed-forward neural networks in

standard, non-sequential distal learning systems developed over the years. In cases where current

state updates can be ambiguous, for example, being equippedwith knowledge of previous action

history may be sufficient for a distal learning agent to breakties and determine what the best

subsequent action should be.

As of this study, I illustrate a distal learning architecture I devised that can begin to handle distal

sequence generation tasks acquired through interaction inan environment devoid of current state

117

information streams. Previously, all problems distal in nature required an agent which accepted

some form of current state information it could use to drive its selection of a subsequent action.

This reliance on ”seeing” at all times can be quite limiting and a hindrance. If the all-important

state information should become noisy, inaccurate, or cease, the effectiveness of any system relying

on it is significantly compromised.

There are agent situations and problem domains in which, once supplied with a single in-

put stimulus or command, a correct sequence of actions is merely required to be executed in its

external working environment. Previously, this type of problem was scarcely addressed. Distal

recurrent supervised learning systems can now be constructed to ”blindly” adapt and learn to op-

erate in external environments without receiving any information about their current state. Rather,

as is typical of recurrent neural network applications, theuse of self-loops and various memory

structures can allow the acting agent to ”remember” arbitrarily long histories of its own proximal

commands and act accordingly to accomplish the given task (section 2.2).

Of key significance is the existence of adaptive learning problems in which a given state would

require different actions depending on what the agent had done leading up to that point in time. For

instance, for the phoneme sequence generation task, suppose an agent intends to say ”baby” (pro-

nounced b/ae/b/ee) and the current state information provided to it is merely the fact that ’b’ was

the last phoneme uttered. The dilemma posed to the learning agent now becomes which phoneme

should it utter next: the ’ae’ or the ’ee’? It was necessary inthat instance for the agent to know

the series of phonemes uttered up to that point before it could make an informed subsequent de-

cision even when provided current state updates. This is termed ”perceptual aliasing” (Whitehead

[65]) and there are numerous complex robot domains in which this type of phenomenon must be

handled. Distal supervised learning systems up to this point have largely done little or nothing

to address this type of problem. Instead, most instantiations of distal supervised learning systems

tend to be content with solely using its view of the world at a given time, to decide on its subse-

quent action. This is not to say relying on current state inputs is a bad idea. Rather, it is the case

that relying solely on current state updates can ultimatelylimit the capabilities of a learning agent.

118

By using recurrent neural networks in distal supervised problems, not only sequence generation

problems can be addressed, but also systems which can benefitfrom having some notion of ”his-

tory” in completing their purpose. Though the system described here was shown not to need next

state information in determining subsequent actions, it isnot the case that it cannot utilize current

state updates when they are effective. In fact, further workmay reveal that the use of current state

updates as employed in existing non-recurrent distal supervised learning systems, coupled with the

memory structures addressed in the current work, may potentially bring about even more robust,

fault-tolerant distal learners that consider where they have been in addition to where they currently

are in deciding on their next move. The use of memories and histories in the determination of sub-

sequent action is a valid step forward in the design of adaptive agents that are capable of avoiding

the pitfalls of perpetual aliasing issues while learning tooperate in complex environments.

Incorporating delay line structures in distal recurrent networks, just as discussed in Section

5.3.9, can be a powerful tool for generating sequences in environments. This idea of incorporating

delay line structures could hold credence since it enables the recurrent learner and/or forward

model to clearly discern the first few actions taken and utilize that information in order to yield

the subsequent outputs or actions. In contrast, a standard recurrent neural network will tend to

lose information over time when using an exponential trace memory as it continually applies the

decay term to prior memory layer node activations. Further work in this area would be required

to determine just how much delay line memory structures can improve upon the current recurrent

distal learning architecture.

By what was just described, one might think that if one delay line memory structure can often

bring about improved performance, adding arbitrarily moredelay lines should continually bring

about additional improvements.

Another observation of interest is that the Jordan networks, particularly those employing teacher

forcing techniques, tended to outperform the Elman networks as learners and forward models in

the phoneme sequence generation study. This was somewhat unexpected since it was often the case

that Elman networks would converge more readily to the desired levels of performance in standard

119

non-distal sequential training problems than Jordan networks. Somehow, that did not translate to

distal sequence generation problem domains. Again, it is unclear why this might be the case. If

anything, it was believed that the Elman forward model couldmore capably mimic the environ-

ment than the Jordan model and be able to utilize its reuse of its own internal state representations

via its hidden layer to most effectively assist in training the recurrent distal learner. This, in fact,

was not the case and, ultimately, Jordan network architectures using teacher forcing strategies in

the distal sequence generation domain prevailed (section 5.10.)

6.3 Issues with Training

6.3.1 Difficult Environment

Issues concerning the phoneme sequence model varied greatly. There the biggest, most significant

issue was probably the challenges presented by the very ambitious and very ambiguous phoneme

sequence generation environment. More study may be required in order to make such an already

complex composite function of non-linear components less ambiguous for the study. As a result

of the ambiguity that remained in the sequential environment, it seemed particularly challenging

for the recurrent forward model to be able to guide the recurrent distal learner to produce the

desired sequential proximal behavior (namely the actual motor phoneme sequences responsible for

producing the target output associative maps used for training.) As such, it became very difficult

to get entire motor phoneme sequences to come out as hoped. Often in distal supervised learning

studies, very little is done to track the error of the proximal answers or actions of the distal learner.

Indeed,distal error is tracked, and often used to drive training. If proximal error were to be tracked,

however, it would imply that the proximal answers were indeed determinable by the trainer, and

that would obviate the need for designing a distal supervised system in which desired proximal

behavior is inaccessible. Success in distal supervised learning tasks is generally not measurable

by error to some expected proximal behavior but by error to some desired set of distal outcomes

in the environment. Even though many times in the phoneme sequence generation task the learner

120

would be shown to have been trained down to a RMSE performance less than 0.1, some of the

motor phoneme sequences we would hope would yield this targeted distal behavior would not be

the proximal sequences sought after. Rather, the resulting proximal sequential behavior exhibited

by the recurrent distal learner would, due to inherent ambiguity issues, potentially be a completely

different action sequence still capable of yielding distalsequential behavior very close to that

targeted distal behavior.

It was largely due to the phoneme sequence generation environment in its complexity and

ambiguity that the precise desired proximal sequential behavior was not always achieved. More

specifically, the nature of the final map representations given by the SARDNET SOM representing

associative memory served to cause the most significant challenges. Because the SARDNET SOM

maps are primarily sparse, any SARDNET output maps resultingfrom actions of the recurrent dis-

tal learner will only show a difference in distal output fromthe result of its first action or phoneme

by several bits at most.

The sparsity of the environment output certainly played a major role in the manner in which

the recurrent distal learner could be trained, since training in this manner is driven by distal perfor-

mance error. To further improve on the performance shown here, the sparsity of the SOM outputs

could be kept as minimal as possible. One way to do this would be to keep the SOM output lattice

dimensions to a minimum, hence reducing the number of 0 outputs as much as possible. Through

trial and simulation, a SARDNET map with a 4x4 output lattice did pretty well to store the rep-

resentations of 15 phoneme sequences (Table 5.3) consisting of an alphabet of the five auditory

phonemes listed in Table 5.2. A 3x3 SARDNET SOM lattice could potentially suffice, particularly

if repetitions of phonemes in the desired phoneme sequencesstored in the maps were kept to a

minimum or eliminated entirely.

Another way sparseness issues could be diminished in creating these distal output maps may

involve using the Mexican hat multi-output feature coveredin Section 4.3.1. This feature would

allow ALL node outputs to fire, substantially limiting the number of non-firing SOM lattice nodes.

Given that this Mexican hat output feature may very well be more neuro-biologically plausible in

121

attempting to simulate cognitive function, it may be worthwhile to see how well the distal recurrent

supervised learning system would fare in using these types of outputs.

It is still quite difficult to train such a system correctly. It is a fact that there are very many

methods one can use to attempt to train the system properly. Apparently, if the environment does

not lend itself to easy or straightforward solutions, it canbe very tough to obtain proximal correct

sequential behavior on the part of recurrent distal learner. If the environment is privy to arriving

at similar environmental outcomes from multiple differingproximal action trajectories, (that is, if

more than one proximal set of actions can yield the same environment distal output), and if a very

specific proximal answer is being sought , as in the phoneme sequence generation task, then there

may be difficulty in finding the true answer.

Also, it can be quite a challenge to generate sequential environment data randomly to appropri-

ately train the recurrent forward model in effectively sampling the environment space so that it can

accurately learn to mimic it during its babbling stage and throughout the extent of the simulation

run. A method for finding a good way to generate good ”random” yet directed training data which

could effectively train the forward model to best enable it to assist in training the recurrent distal

learner will be effectively investigated further.

6.3.2 Issues with Initial Random Setting of Neural Network Weight Vectors

Another factor which potentially restricted the effectiveness of the phoneme sequence generation

model had to do with the randomness of the model. There seems to be a dependence in the manner

in which the parameters are initially and randomly set once the experiments begin. If one were to

run the system 10 times with the same makeup, architecture, etc. using 10 differing random seeds,

the resulting behavior among them can vary greatly. The initial setting of random weights of the

recurrent forward model and distal learner neural networkshave much to do with how successful

such a model can become. Methods can be investigated in orderto determine more ways to make

this issue more of a non-issue. The randomness issue is likely one that is present in many standard

distal supervised learning systems and is not specific to just the augmented systems examined in

122

this work

6.3.3 Drawbacks Faced in Dealing with Exponential Trace Memories

One drawback to using exponential trace memories as outlined here, is the concern for the length

of output sequences capable of being learned by the system. Using exponential decay memories

holds the benefit of maintaining arbitrarily long historiesin a very compact vector representation.

In theory, they can hold potentially infinite histories without end. However, once decay terms are

applied to prior outputs, it becomes more and more difficult to discern how long ago an output

was first activated. For instance, if an output was set to 1.0 at time t ≥ 1, that output is copied

to the same position in the trace memory at timeot+1 but with diminished intensity. Assuming

an exponential memory decay of .5, in producing an arbitrarily long output sequence greater than

five, the output at the same position is reduced from a 1.0 at time t toot+5 = (1
2
)4 = 0.0625.

This can be quite difficult for an untrained neural network todifferentiate from the subsequent

output ot+6 = (1
2
)5 = 0.03125. As such, it is foreseeable that any Jordan recurrent network

utilizing an exponential trace memory module could potentially have a problem blindly generating

subsequent actions past a certain point without help from current state updates. Utilizing a mixture

of exponential trace and delay line memory structures can potentially offset this issue to an extent.

Also, using larger output values that will not deteriorate quite as quickly as the standard output 1.0

does may assist some in this regard. This issue would need to be addressed seriously if this feature

is to be fully utilized.

6.3.4 Forward Model

Forward Model Training Data

The appropriate training of the forward model is ultimatelyparamount to the effective training

of the distal recurrent learner. One significant challenge seems to be how one can best train the

forward model to be of maximum service to the recurrent distal learner. One way of doing this, if

123

available, is to train the forward model, not the distal recurrent learner, using the expected proximal

answers and their corresponding desired target distal sequences as input / output pairs. Of course,

this is rarely useful because the point of developing distalsupervised learning systems is that the

proximal answers are generally not known. In the phoneme sequence generation model described

here, for example, the best performance was most often obtained when the forward model was

trained to efficiently map the correct proximal motor phoneme sequences to their corresponding

target distal output maps. Of course, these particular distal output maps would be one and the same

as those provided at the start of training and used as target sequences to train the distal recurrent

learner in the first place.

One can argue that using this strategy in this fashion is justified for this particular task since the

purpose of the system described in Section 5.3 is not to find correct proximal behavior previously

unknown to the trainer. Rather, the goal of the proposed system is to replicate as closely as possible

the process of phoneme sequence generation studied extensively in neuro-biological study. In fact,

one could argue that incorporating the proximal answers in the training of the recurrent forward

model can be tantamount to the visual and aural guidance coaching by some coach (e.g., teacher,

parent, etc.) in teaching the pronunciation of a word, or in swinging a bat, to a child, for instance.

Alternately, one can merely generate a sufficient number of randomly created actions in the

output space of the learner to be supplied as training instances for a forward model. Once the

proximal action sequences are randomly generated, they canbe applied to the environment to yield

their corresponding distal sequential outcomes. At this point, these pairs of sequential proximal

actions and distal consequences can be used to train the forward model on the resulting set of

training instances. Though the latter is the easiest mannerof forward model preparation, there are

no guarantees that the data generated could be good or promising enough to prepare the forward

model to fully and effectively train the recurrent distal learner.

A phenomenon I observed while conducting these recurrent distal learning simulations is that

the forward model should at least be able to generalize the mapping of the desired proximal so-

lutions, whatever they may be, to their corresponding distal target outputs in order to be entirely

124

successful. In the case of complex environments such as the one employed here, generalization in

this fashion can be highly unlikely. In such an environment,the forward model would probably

have to see and learn to map every set of correct proximal actions in order to even hope to train

the distal recurrent learner to learn to produce them. This could potentially be done through ran-

dom generation of training instances and through subsequent interactions between distal recurrent

learner and the environment. But to anticipate generating enough proximal sequences to enable

the forward model to properly sample the sequential input space in such a complex, non-linear

environment can likely be unrealistic and can require a tremendous amount of computing power,

space, and simulation time.

In the absence of extensive computing resources, supplyingthe forward model with some

amount of correct proximal behavior up front can give the forward model a better chance to fur-

ther generalize to the environment mappings necessary for effective training of the distal recurrent

learner. In trying to do the phoneme sequence generation task with both types of data (i.e., both

randomly constructed and also the known proximal answers tothe problem) it became apparent

that the simulations which employed forward models trainedwith known proximal answers tended

to lead their corresponding distal recurrent learners to converge at a greater rate than those which

utilized randomly generated data to train the forward model. Recall that in distal recurrent su-

pervised learning experiments proximal actions need to be generated and supplied to the forward

model for training purposes during babbling and training stages. Another factor that is directly

manipulatable by the trainer is the size of the recurrent forward model’s hidden layer. A forward

model whose hidden layer is too small can be ill-equipped to sufficiently partition and, subse-

quently, be able to propagate effective error signals in training the recurrent distal neural network.

More research can be done to determine what types of data can be best used to train the forward

models of complex environment functions effectively without the use of known proximal answers.

However, although recurrent forward models tend to work better once trained on the proxi-

mal answers, such a strategy is not at all sufficient to createforward models which can effectively

guide any given recurrent distal learner to learn the correct proximal behavior every time. Often in

125

simulations of the phoneme sequence generation task, even when trained on the correct proximal

behavior down to a very low performance error, many forward models were incapable of propa-

gating back effective error signals in the training of its corresponding recurrent distal learner. Part

of the success of training a successful distal learning system apparently relies heavily on the initial

random parameter settings of both the recurrent forward model and the recurrent distal learner.

Oddly enough, unlike in recurrent distal learners, incorporating delay line memory structures

in forward models has not demonstrated improved performance in the distal recurrent training

task. Moreover, one would think that architectures with delay line memory constructs either in

the forward model or in the distal recurrent learner would outperform those that employ neither.

Rather, simulations that employed distal recurrent learners that contained at most one delay line

memory structure and forward models with no delay line memory structure tended to do noticeably

better than any other distal recurrent supervised learningsystem setup.

Furthermore, it is not necessarily the case that more memorydelay lines in either recurrent

forward model or distal learner implies better performanceover fewer delay lines. Similar experi-

ments demonstrated that use of two or more delay line memory structures in either or both forward

model or distal learner did not necessarily improve learning. In fact, in many cases learning was

shown to be hindered in comparison to systems utilizing onlyone delay line. This result can very

likely be isolated to distal sequential problem domains using environments of this type or level of

complexity. Still, further study can be done to determine the cause of this phenomenon.

In noting the importance of the forward model training data in the success of training the re-

current distal learner, certain methods were developed in an attempt to improve the forward model

training as it looked to mimic/model the environment of the phoneme sequence production system.

One such attempt included the caching of past babbled outputsequences made by the recurrent

distal learner and their corresponding distal outcomes to be used multiple times in training the

recurrent forward model. The idea here was to see, in the absence of more training data, if the for-

ward model could be made to learn the sequential environmental mapping better. Experimentally,

it was determined that such a strategy was not convincingly effective, whether such data was held

126

or cached for two or more time periods or just one (the latter being standard practice in most distal

supervised learning systems.) This was just one instance ofthe strategy which did not work.

Also, rather than update a forward model just once on a given set of babbled data, I thought

that updating or training it on the new data more than once during the same epoch could potentially

help it to train better. Such an action would allow the forward model to learn more precisely what

the true mapping of every randomly created or recurrent distal learner generated proximal action

sequence could be, further allowing it to approximate the environment mapping appropriately. In

this case, it did not work out experimentally as well as expected. Why this did not work is as yet

unknown.

Currently, what works is to keep the actions generated by the recurrent distal learner in forward

model training for only one epoch and to delete it before the next forward model epoch or update

can begin. It seems sufficient enough for the recurrent forward model to use a recurrent distal

learner’s attempt at generating a good sequential proximalresponse, given the static input stimulus

presented to it, and its corresponding distal sequential outcome as training data in one step.

6.4 Future Work

6.4.1 Improving Performance of Recurrent Distal Supervised LearningAr-

chitecture

A good deal of success was demonstrated in observing the performance of this newly proposed

distal supervised learning system which employs recurrentlinks in both the distal learner as well

as the forward model while also utilizing cumulative memorylayer strategies in either. However,

some aspects of the newly proposed architecture can be investigated for further improvement of this

new system. One such aspect of learning which can be investigated further is the effect of varying

the number of hidden layers included in either or both recurrent distal learner and forward model.

If more than two hidden layers are incorporated in either neural network component, activations

127

from up to all hidden layers can potentially be recorded and used in exponential trace memories.

The new possibilities may grant either recurrent network increased computational capability to

further partition the environment mapping into segments from which more informed decisions can

be made in generating good subsequent actions. Further experiments in this direction may produce

even better sequence generation performance than that found in the present study.

Another potential aspect of this work which could be investigated further is the effects of dif-

ferent output functions to the hidden layers (and possibly the output layers) to see if further im-

provement can be made in training distal sequence generation neural systems. Utilizing recurrent

neural networks in which layers of nodes employ the tangent hyperbolic (Tanh) output function,

in particular, may enable these networks to successfully converge at significantly higher rates than

those networks which employ standard logistic output functions. There may be increased benefit

in using Tanh output functions just because of the increasedrange of output possibilities that the

affected nodes can perform. In essence, the Tanh(x) has a range of−1 ≤ Tanh(x) ≤ 1 while the

standard logistic function (sig(x)) has a more limited range of 0 ≤ sig(x) ≤ 1. A direct result of

this change in output function is that weight vectors have a larger range of possible answers, which

may be good or bad.

Another significant consequence of switching to an output function with a greater range is that

with Elman and Jordan/ Elman hybrid recurrent architectures, their memory trace modules will

now be made to handle negative activations. This may be even less the case with Jordan networks

since eventually, at least in the phoneme sequence acquisition task as described in this text, each

of their output units, and hence their memory contents, would all eventually be in the range of, or

very near (0,1). This modification could, in fact, have a verysignificant effect on the training of

the learner. Future simulations augmenting recurrent distal learners and recurrent forward models

alike in this manner should show just how beneficial, or detrimental, such a change can result.

One issue to be addressed in the use of Tanh output nodes is itsaccuracy in depicting actual

neuronal behavior in neural model simulations of brain behavior. It is known that neurons tend

to either be inactive (0 output) or firing (1.0 output). This makes it easy to classify neurons as

128

semi-binary in nature. The problem is that nodes of a neural network utilizing the Tanh hyperbolic

function output can potentially output negative numbers. To my knowledge, there is no concept of

negative activations emanating from neurons in the brain, just negative connections. For problem

domains such as these it would seem that sticking to output node functions which produce outputs

in the range (0, 1) would be most beneficial.

It is certainly the case that neurons are known to inhibit as well as excite other neighboring

nodes once activated. But inhibition in neural networks is typically already addressed in the way

the weights can be negative or positive. So positive activation of a node in a neural network can

actually inhibit a neighboring neuron by virtue of the weight connecting the two being negative

in value. By having neurons which can produce both positive and negative outputs, you can no

longer express a relation that one neuron will always inhibit a particular neighbor. That is, unless

connecting weights are somehow restricted to positive values, which could indeed defeat the pur-

pose of switching to Tanh output nodes. If it is indeed the case that inhibition/excitation relations

exist between neurons in the brain, such relations would potentially be nullified in corresponding

neural simulations if tangent hyperbolic nodes were being used.

Yet another area of interest I could investigate would be that of the role of radial basis networks

in improving the use of neural networks in distal problem domains, whether sequential or not. The

update procedure would certainly change significantly as the formulation of outputs and weight

updates between radial basis networks and standard feed-forward networks differ substantially. But

if something were to come of this research, much could be gained in taking advantage of the radial

basis nodes’ ability to classify clusters. Currently, it is not clear how one would utilize the gradient

of the radial basis forward model as one would the gradient ofa feedforward forward model. It

may be the case that only the distal learner or the forward model, and not both simultaneously,

could be capable of being constructed from radial basis nodes.

129

6.4.2 Modeling Sequence Generating Cognitive Tasks

Another direction for future research is to progress into more advanced bi-hemispheric neural

models of brain activity. In previous studies, we implemented a bi-hemispheric neural model, two

feed-forward neural networks with hidden layers that contributed to each other’s activation via a

positively or negatively weighted pathway (Reggia, Gittens, et al. [46], [47].) The inclusion of

this pathway was inspired by the corpus callosum known to connect the right and left hemispheres

in the brain. The joined neural networks were capable of being trained in tandem to produce

sequences of phoneme vectors in an effort to test potential factors which could attribute to the

emergence of lateralization in the brain. In the study, experiments suggested that a number of

factors can have a role in contributing to lateralization, including size of the hemisphere as well

as plasticity and speed. From these same experiments, otherobservations from neurobiological

studies could also be potentially inferred. For example, negative, or inhibitory, contribution on

the part of the corpus callosum through which the hemispheres communicate showed evidence of

mirrored activations between hemispheric hidden layers connected homotopically.

Additional lesioning studies were conducted in which activations of hidden layer neural units

of either hemisphere of the bi-hemispheric model were deliberately turned off to simulate damage

to the brain as a result of stroke or brain trauma, for instance. This series of experiments was

designed in order to study not only factors contributing to functional lateralization in the brain but

also factors which assist most in recovery of damage to the brain. It was found that the simulated

corpus callosum assisted in having the non-damaged region of the hemisphere to adequately pick

up function lost by the acute lesion in the damaged hemisphere. There was evidence of much of

the phenomena seen in the actual studies of stroke damage in patients. For instance, for positive

contributing corpus callosum, the corresponding area connected homotopically to the lesioned por-

tion of the damaged hemisphere in the non-damaged hemisphere experienced reduced inhibition.

Also, the neural contributions of neighboring neurons in the damaged model themselves lacked

activation and their contribution lessened as well.

The drawback to such an initial study was the lack of feasibility of the architecture as one

130

to truly model the phoneme sequence, or any intelligent cognitive motor function, acquisition

process. Despite the fact that behavior resembling actual neuro-biological phenomena was shown

to be replicated in the test experiments, many aspects of theactual brain process evaded the original

design. For one, the model used primarily a local representation of inputs and outputs. That is,

inputs and outputs each specified a phoneme or phoneme sequence by a single neuron being on

or off, which is unlikely. Secondly, there was little use of many processes known to have a role

in the phoneme sequence generation process. There was, for instance, no existing interaction with

the external environment, no distinction between motor andauditory features, and certainly no

mention of stored representation of sequences in associative memory.

Once this model is completed, a more realistic, feasible, and complex bi-hemispheric model

can be constructed, in which the following can be asserted:

1. Babbling can be construed as the training of the forward speech model from observations

of random motor actions in the environment. This step is deemed necessary for training the

forward speech model and can be introduced as a precursor andstepping stone to language

acquisition.

2. Two hemispheric regions can accept as an input stimulus a distributed representation of

phoneme sequence intent.

3. Each hemispheric region can have access to the forward speech model in acquiring the

phoneme sequence acquisition skill following the initial babbling stage and through con-

tinued babbling during the actual distal sequential learning task. Forward models are widely

believed to hold a significant role in acquiring language production skill in humans.

4. Interaction does indeed occur in an external environmentthat transforms motor phonemes

to auditory phonemes and accesses unique activation maps ofstored phoneme sequence

representations in associative memory.

5. Both models of left and right hemispheres can again work in parallel and conjunctively

131

through use of the intermediary corpus callosum.

Another potential plan for future research would be to expand on the phoneme sequence ac-

quisition model discussed in Chapter 5. With work, more phonemes, and hence more phoneme

sequences, could be learned by the model. Also, a more biologically plausible self-organizing map

such as the one-shot, multi-winner SOM (Shultz [54]) could be investigated to replace the efficient,

yet implausible, SARDNET SOM which is used to represent associative memory in the model.

6.4.3 Incorporating the Self-Halting Mechanism into the RecurrentDistal

Supervised Learning Architecture

Finally, it would be useful to re-visit the idea of incorporating the self-halting functionality in

this recurrent distal supervised architecture. The self-halting feature proved to be very difficult to

implement in an already tough phoneme sequence acquisitiontask. One feature which could be

implemented at a later date, is the self-halting mechanism.Given time constraints, limited success

was achieved in enabling the distal learner to acquire the ability to output a halting signal to stop

itself from producing a sequence of arbitrary length ratherthan being told ahead of time how many

actions to produce in a sequence. Initial success was seemingly hampered by the difficulty of hav-

ing to learn to output a halting signal which was significantly different from other legal recurrent

distal learner action vectors in addition to learning to operate in such a complex environment which

proved to be too challenging a task at this early stage of the study.

132

BIBLIOGRAPHY

[1] Barto, A.G.,Reinforcement Learning, Handbook of Brain theory and Neural Networks, MIT

Press, Cambridge, MA, pp. 804-809.

[2] Barto, A.G., R.S. Sutton, and C.W. Anderson, Neuronlike elements that can solve difficult

learning control problems,IEEE Transactions on Systems, Man, and Cybernetics, 13:835-

846.

[3] Blakemore, S.-J., Daniel Wolpert, and Chris Frith, Why can’t you tickle yourself?,NeuroRe-

port: Review, Lippincott Williams and Wilkins, August, 2000, pp. 11-16.

[4] Blakemore, S.-J., Chris D. Frith, and Daniel M. Wolpert, The cerebellum is involved in

predicting the sensory consequences of action,NeuroReport: Brain Imaging, Lippincott

Williams and Wilkins, July, 2001, pp. 1879-1884.

[5] Bloom, L., Language acquisition in its development context. Handbook of child psychology:

Vol. 2. Cognition, Perception, and Language., In D. Kuhn and R.S. Siegler (Eds.), New York:

Wiley, 1998, 5th ed., pp. 309-370.

[6] Campolucci, P., A. Uncini, and F. Piazza, A unifying view of gradient calculations and learn-

ing for locally recurrent neural networks, 1997.

[7] Carlson, A.B., 1986.Communication systems, New York: McGraw-Hill.

[8] Chen, S., S. Billings, and P. Grant, Non-linear system identification using neural networks,

International Journal of Control, 1990,51:1191-1214.

133

[9] D’Autrechy, C.L., and J. Reggia, 1989. An Overview of Sequence Processing by Connection-

ist Models,University of Maryland Dept. of Computer Science Technical Report, UMIACS-

TR-89-82 (also CS-TR-2301), Institute for Advanced Computer Studies, Department of Neu-

rology, UMAB and Department of Computer Science, Universityof Maryland, College Park,

MD 20742.

[10] Dell, G., Spreading activation theory of retrieval in sentence production,Psych. Reviews,

1986,93:283-321

[11] Dennis, S., Behavior with an implicit teacher in connectionist networks.

[12] Donoghue, J., S. Leibovic, and J. Sanes, Organization of the forelimb area in squirrel monkey

motor cortex.,Experimental Brain Research, 1992,89:1-19.

[13] Elman, J.L., 1990. Finding structure in time,Cognitive Science, 14:179-211.

[14] Fahlman, S.E., An Empirical Study of Learning Speed in Back-Propagation Networks.,

Carnegie Mellon University Computer Science Dept. TechnicalReport, CMU-CS-88-162

1988.

[15] Flanagan, J.R., and Alan M. Wing, The Role of Internal Models in Motion Planning and

Control: Evidence from Grip Force Adjustments during Movements of Hand-Held Loads,

The Journal of Neuroscience, Society for Neuroscience, 17(4):1519-1528

[16] Georgopoulos, A., R. Kettner, and A. Schwartz, Primate motor cortex and free arm move-

ments to visual targets in three-dimensional space. II, Coding of the directions of movement

by a neural population.,J. Neuroscience, 1988,8:2928-2937.

[17] Guenther, F.H., 1995. Speech sound acquisition, coarticulation, and rate effects in a neural

network model of speech production,Psychological Review, 102:594-621.

[18] Haykin, S.,Neural Networks: A Comprehensive Foundation, Prentice Hall, Inc., 1999.

134

[19] Igel, C, and Michael Husken, Improving the Rprop LearningAlgorithm, 2000, pp. 115–121.

[20] Jakobsen, R., G. Fant, and M. Halle,Preliminaries to Speech Analysis: the Distinctive Fea-

tures and their Correlates, MIT Press, 1951.

[21] James, D.L., and Risto Miikkulainen, SARDNET: A Self Organizing Feature Map for Se-

quences,Advances in Neural Processing Systems, 1995.

[22] Joost, M., Wolfram Schiffmann, Speeding Up Backpropagation Algorithms by Using Cross-

Entropy Combined with Pattern Normalization.,International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 1998,6(2): 117-126

[23] Jordan, M., Attractor dynamics and parallelism in a connectionist sequential machine,Pro-

ceedings of the Eighth Annual Conference of the Cognitive Science Society, Englewood

Cliffs, NJ: Erlbaum, pp. 531–546, 1986.

[24] Jordan, M., and D. Rumelhart, 1992. Forward models: Supervised learning with a distal

teacher,Cognitive Science, 16(3):307-354.

[25] Kaebling, L.P., M.L. Littman, and A.W. Moore, Reinforcement Learning: A Survey,Journal

of Artificial Intelligence Research, 1996,4:237-285.

[26] Kohonen, T., Self-organizing formation of topologically correct features maps,Biological

Cybernetics, 1982,43(1):59-69.

[27] Karniel, A., R. Meir, and G. Inbar, Polyhedral mixture oflinear experts for many-to-one

mapping inversion, 1998.

[28] Karniel, A., Three creatures named ’forward model’,Neural Networks, Elsevier Science Ltd.,

2002,15:305-307.

[29] Kawato, M., Internal models for motor control and trajectory planning,Current Opinion in

Neurobiology, Elsevier Science Ltd., 1999,9:718-727.

135

[30] Levelt, W.J.M., Roelofs, A., and Meyer, A.S., A theory oflexical access in speech production,

Behavioral and Brain Sciences, 1999,22, 1-38.

[31] Michie, D., and R.A. Chambers, BOXES: An experiment in adaptive control,Machine Intel-

ligence 2, Oliver and Boyd, 1968, pp. 137-152.

[32] Merkl D., and A. Rauber. Alternative ways for cluster visualization in self-organizing maps.

In Proceedings of the Workshop on SelfOrganizing Maps, Espoo, Finland, June 4-6, 1997,

106-111.

[33] Minsky, M., Steps toward artificial intelligence,Proceedings of the Institute of Radio Engi-

neers, 1963,49:8-30.

[34] Minsky, M., Seymour Papert,Perceptrons, an introduction to computational geometryThe

MIT Press, 1969.

[35] Mozer, M., Neural net architectures for temporal sequence processing, Predicting the future

and understanding the past, A. Weigend and N. Gershenfeld, Redwood City, CA: Addison-

Wesley Publishing, 1993.

[36] McClelland, J. L.,and J.L. Elman, Interactive processes in speech perception: The TRACE

model, Parallel distributed processing: Explorations in the microstructure of cognition.Vol-

ume II: Psychological and biological models, MIT Press, 1986, pp.58-121.

[37] Narendra, K.S., and K. Parthasarthy, Identification and control of dynamical systems using

neural networks,IEEE Transactions on Neural Networks, 1990,1:4-27.

[38] Nikovski, D., Sridhar Ramakrishna, Rajani Kanth Koneru,Srinivas Jamhed, and et al., Distal

supervised learning for solving inverse kinematic problems,

[39] Pearlmutter, B.A., Gradient calculations for dynamic recurrent neural networks: A survey,

IEEE Transactions on Neural Networks 6(1995), no. 5, 1212–1228.

136

[40] Pineda, F.J., 1989.Recurrent backpropagation and the dynamical approach to adaptive neu-

ral computation, Neural Computation,1:161-172

[41] Poggio, T., and F. Girosi, Networks for approximation and learning,Proceedings of the IEEE,

78(9):1481-1497, 1990.

[42] Puskorius, G.V., and L.A. Feldkamp, Neurocontrol of nonlinear dynamical systems with

Kalman filter-trained recurrent networks,IEEE Transactions on Neural Networks, 1994,

5:279-297.

[43] Puskorius, G.V., L.A. Feldkamp, and L.I. Davis Jr., Dynamic neural network methods applied

to on-vehicle idle speed control,Proceedings of the IEEE, 1996,84:1407-1420.

[44] Radio, M., J. Reggia, and R.S. Berndt, Learning word pronunciations using a recurrent neural

network, University of Maryland Dept. of Computer Science Technical Report, Department

of Computer Science, University of Maryland, College Park, MD20742, 2001.

[45] Reggia, J., C. D’Autrechy, G. Sutton, and M. Weinrich, A competitive distribution theory of

neo-cortical dynamics,Neural Computation, 1992, 4:287-317.

[46] Reggia, J., S. Gittens, S. Goodall, and Y. Shkuro, Lateralization and lesioning of a two hemi-

sphere model of single-word reading,Proc. Second Intl. Workshop on Neural Models of Brain

and Cognitive Disorders1998.

[47] Reggia, J., S. Gittens, and J. Chhabra, Post-lesion lateralization shifts in a computational

model of single-word reading,Laterality, 1999.

[48] Reggia, J., S. Goodall, and S. Levitan, Cortical map asymmetries in the context of transcal-

losal excitatory influences,NeuroReport, 2001, 13(8):1609-14.

[49] Riedmiller, M., and Heinrich Braun, A Direct Adaptive Method for Faster Backpropagation

Learning: The RPROP Algorithm, Institut fur Logik, Komplexitat und Deduktionssyteme,

University of Karlsruhe, W-7500 Karlsruhe, FRG, 1993.

137

[50] Roelofs, A., The WEAVER model of word-form encoding in speech productions,Cognition,

1997,64:249-284.

[51] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning internal representations by error

propagation,Parallel Distributed Processing: Explorations in the Microstructure of Cogni-

tion, MIT Press, Cambridge, MA,1:318–362, 1986.

[52] Rummery, G.A., and M. Niranjan, On-line Q-learning using connectionist systems,Technical

Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge University.

[53] Samuel, A. L., Some studies in machine learning using the game of checkers,IBM Journal

on Research and Development, 1959,3:211-229.

[54] Shultz, R., Temporal Sequence Representation in One-Shot, Multi-Winner Self-Organizing

Maps, University of Maryland, Dissertation Proposal, August 15, 2002.

[55] Singh, S., and J. Black, A study of twenty-six intervocalic consonants as spoken and recog-

nized by four language groups,Journal of the Acoustic Society of America, 39(2):372-387,

1966.

[56] Singh, S.,Distinctive Features: Theory and Validation, University Park Press, 1976.

[57] Sutton, R.S., Temporal Credit Assignment in Reinforcement Learning, Ph.D. thesis, Univer-

sity of Amherst.

[58] Sutton, R.S., Learning to predict by the method of temporal differences,Machine Learning,

1988,3:9-44.

[59] Sutton, R.S.,Reinforcement learning: An Introduction, MIT Press, 1998.

[60] Tani, J., Model-Based Learning for Mobile Robot Navigation from the Dynamical Systems

Perspective,IEEE Trans. System, Man and Cybernetics (Part B), Special Issue on Learning

Autonomous Robots, 1996, Vol. 26, No. 3:421-436.

138

[61] Tesauro, G., TD-Gammon, A self-teaching Backgammon program, achieves master-level

play,Neural Computation, 6:215-219.

[62] Toudeft, A., and Patrick Gallinari, Distal learning for inverse modelling of dynamical sys-

tems.

[63] Watkins, C.J.C.H., Learning from Delayed Rewards, Ph.D. thesis, Cambridge University.

[64] Werbos, P.J., Backpropagation through time: What it doesand how to do it,Proceedings of

the IEEE, 1990,78:1550-1560.

[65] Whitehead, S., Ballard, D.H., Learning to perceive and act by trial and error.,Machine Learn-

ing, 1991,7:45-83.

[66] Wikipedia contributors. Formant. Wikipedia, The Free En-

cyclopedia. December 13, 2006, 07:02 UTC. Available at:

http://en.wikipedia.org/w/index.php?title=Formant&oldid=94008153. Accessed January

29, 2007.

[67] Williams, R.J., and Z. Zipser, 1989. A learning algorithm for continually running fully recur-

rent neural networks,Neural Computation, 1:270-280.

[68] Williams, R.J., and J. Peng, An efficient gradient–basedalgorithm for on–line training of

recurrent network trajectories,Neural Computation 2(1990), no. 4, 490–501.

[69] Williams, R.J., and D. Zipser, Gradient–based learningalgorithms for recurrent networks and

their computational complexity,Backpropagation: Theory, Architectures and Applications

(Y. Chauvin and D. E. Rumelhart, eds.), Lawrence Erlbaum Publishers, Hillsdale, N.J., 1995,

pp. 433–486.

[70] Witney, A.G., Philipp Vetter, and Daniel M. Wolpert, The influence of previous experience

on predictive motor control,NeuroReport: Motor Systems, Lippincott Williams and Wilkins,

March, 2001,12(4):649-653.

139

[71] Wolpert, D.M., Zoubin Ghahramani, Michael I. Jordan, An Internal Model for Sensorimotor

Integration,Science, 269:1880-1882.

[72] Wolpert, D.M., R. Chris Miall, and Mitsuo Kawato 1998. Internal models in the cerebellum,

Elsevier Science Ltd., pp. 338-347.

[73] Ziemke, T., Remembering how to behave: Recurrent neural networks for adaptive robot be-

havior,Recurrent Neural Networks: Design and ApplicationsCRC Press. 1999. pp. 341-375.

140

Appendix A

Algorithm used for the preliminary Single Phoneme Acquisition Model

procedureBABBLE(maxepochs, errorthreshold)

% — Initialize variables — %

Broca← Broca’s area neural model% distal controller

FM← forward model neural net

X ← list of phoneme intent vectors

Y ∗ ← list of target audio phonemes% distal target values

U∗ ← list of motor phonemes needed to produceY ∗ distally % Broca’s task is to

come up with the motor phoneme list on its own

distal error←∞

epochs← 0

% — Initial Babbling Phase to train forward connections (forward model) — %

[rand motor list, randaudio list] ← generate random motor/audio phoneme pairs% for

use in babbling stages

train FM on training pairs [randmotor list, randaudio list]

% — Training the Distal Learner, Broca’s area — %

do

U← Broca(X)% list of outputs of Broca’s area when presented with X as list ofinputs

Y ← Env(U)% list of actual outputs resulting from applying Broca’s motor response to

141

the environment

dWkj ← 0

dWji ← 0

for eachphoneme intent xin X do

actualdelta← Y ∗

x − Yx

train FM on training pair [Ux, Yx]

[dW x
kj, dW x

ji] ← calculate update weight matrices to Broca based on delta values

propagated back through the forward model

dWkj ← dWkj + dW x
kj

dWji ← dWji + dW x
ji

end

Broca.Wkj ← Broca.Wkj + dWkj % update Broca weight matrices

Broca.Wji ← Broca.Wji + dWji

train FM on training pairs [randmotor list, randaudio list] % continue random

babbling to further train forward connections

epochs← epochs + 1

distal error← calculate error of Broca’s output (RMSE(Broca(X),U∗))

until (epochs< max epochs) or (distalerror> error threshold)

end

142

Appendix B

Creating a Smooth Mapping from a Finite Mapping

Constructing a smooth environment mapping from the space containing the set of motor feature

vectors to that containing the set of auditory feature vectors presented a particular challenge. A

candidate environment function,f ∗, sought to complete a task such as this would preferably have

a particular set of specific properties. Let A and B be finite sets such that|A| = |B|, A ⊂ ℜm,

andB ⊂ ℜn. Define some finite mapping f:A→B such that f(A)=B. The idea is to construct the

new smooth mapping,f ∗, that preserves the finite mapping f but is as smooth and differentiable

as is feasibly possible. This way, where f(a), fora ∈ ℜm but a /∈ A, would be undefined,f ∗(a)

would be some reasonable approximation for a counterpart inℜn. Once it behaves in this fashion,

the environment function can be approximated effectively by a multi-layered feedforward neural

network. The latter can in turn be used to propagate back the error of the actual distal output,

which is a distal consequence of the controller’s local action, from the desired target distal output.

To illustrate this problem, the following table demonstrates a very simple environment function,

f:ℜ → ℜ+. Do note the domain and range of this function overℜm andℜn, respectively, is as

defined previously with m=n=1.

A f(A) = B

0.4 0.6

1.6 1.8

2.9 0.4

As one potential candidate for a smooth mapping alternative, f ∗, for f, we can set f of each

143

m

a

Figure B.1: Simple Mapping

member of A to the member of B to which it is associated (i.e.f ∗(¬A) = 0). For all other values

m∈R, set f(m) = 0 (see Figure B.1). As such, this function satisfiesthe requirement that f(A) =

B. However, no other information is encoded here, which is essential in training the controller

effectively. Ideally, a function such as the one in Figure B.2is sought. Using this function, any

arbitrary m, even if it is not in A, has a defined f(m) whose value is dependent on the known values

of B. A controller which offers some action m can then use the environment to judge how far off it

was from achieving it’s distal target and also modify itselfto offer an action which is closer to the

one required.

Unfortunately, arriving at a function such as the one in figure B.2 is not trivial. One way to

approximate such a function is by using radial basis functions like that shown in Figure B.4. A

radial basis function takes on the formr(x) = exp(||x − c||2/r2), where the radius r determines

the width of the resulting bell curve and c denotes the center. Here,0 < r(x) ≤ 1, where r(x) = 1 if

x = c and r(x) approaches 0 the further x is from c. Radial basis functions are used successfully in

training radial basis neural nets [41] which have been shownto organize and learn from clustered

input data better than standard neural networks.

Let y be the member of A such that||x− c|| is minimized (i.e. the closest A candidate in A to

x). Initially, we will calculatef ∗(x) as follows :

A.1 y = argminm||x−m||,m ∈ A

f ∗(x) = f(y)× ry(x)

144

a

m

Figure B.2: Ideal Mapping

m

a

Figure B.3: Example figure of discontinuous mapping resulting from Equation A.1.

, wherery(x) is defined as the radial basis function centered at y. For x in A, y = x, ry(x) = 1,

andf ∗(m) = f(m) × 1 = f(m). Otherwise,f ∗(x) is assigned a multiple of the corresponding

auditory phoneme to that closest motor feature vector, y, inA to x. The magnitude of this multiple

will correspond inversely to the distance of x to the closestmember of A.

The most significant problem with the functionf ∗ is that it is highly discontinuous. The func-

tion landscape changes abruptly midway between neighboring members of A (Figure B.3). One

way to offset such extreme discontinuities could incorporate adding a smoothing factor to Equa-

tion A.1 which takes into consideration the proximity of allcandidate elements of the domain A in

calculatingf ∗(x).

The new environment function,f ∗(x), is now calculated as follows:

A.2 g(m,x) = 1/(||x−m||)b; m ∈ A, b ≥ 1,M = |A|

h(m,x) = g(m,x)/
∑M

y g(y, x); y ∈ A

145

c

1

r

Figure B.4: Radial Basis Function

f ∗(x) =
∑M

z [h(z, x)× f(z)× rz(x)]; z ∈ A

Here, g(m,x) is a measure for the proximity of the member m of set A to the input vector x.

The smaller||x−m||, the larger g(m,x) becomes. The function h(m,x) is essentially a normalized

version of g(m,x) such that0 < h(m,x) < 1. As a result, h(m,x) will approach 1 if x is very

close to some member m∈A. A consequence of this is h(y,x) for all other y∈A will approach

0 since
∑

z h(z, x) = 1. Functionf ∗(x) will then take on most of the characteristics of f(m).

Otherwise, should x be found to be midway between two or more members of A,f ∗(x) should take

on characteristics of all of their corresponding mappings of the target set B.

One drawback to constructing the environment mapping,f ∗, in this manner is that it requires

significantly more computation than that of Equation A.1. Even so, however, the resulting mapping

is sufficiently smooth enough for the forward model to learn to approximate. Figure B.6 demon-

strates two candidate function landscapes for transforming a finite mapping f to a smooth mapping

f ∗:[-1,1]2 →[0,1] based on Equations A.1 and A.2.

One issue encountered in creating a function in this fashionis that those members m∈A which

have large values for f(m)∈B can have radial basis mounds which disproportionately dominate

values off ∗(x) within some proximity of m despite the presence of other nearby radial basis

mounds. This can have undesirable results where some large radial basis mounds envelope smaller

ones or even create “false” mounds not centered around a member in A (figure B.5). As such,

further improvement tof ∗(x) can be obtained by ”slimming” the radial basis componentassigned

146

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.5: (Left)The smooth mapping procedure shown without radius slimming. Notice that

members of the domain with the smallest corresponding f∗(x), (x=-.5 and x=1), have no radial

basis mounds as they are being dominated by mounds of memberswith very large f∗(x). Also

notice the false mound created to the far left which corresponds to no member of the domain set,

A. (Right) The same procedure using the radius slimming modification. By reducing the radii of

the tallest mounds, the false mound disappears and the radial basis mounds for the members with

small f∗ are much more apparent.

147

Figure B.6: Here two mapping methods are compared using Equation A.1 (left) and using Equation

A.2 (right). The finite relation used to create these smooth mappings is as follows : (-1,-1)→0,

(1,-1)→0, (1,-1)→1, (1,1)→1.

to a member m in A with maximum height f(m) in B. This can be achieved by reducing the radius

term, r, in the radial basis portion off ∗(x) for larger values of f(y) and gradually increasing radii

for mounds with smaller maximum heights.

Another obstacle in constructing the environment functionin this manner stems from having to

deal with zero output. When approximating a smooth function in this fashion, not only is it difficult

to approximate zero valued outputs but since a radial basis mound of height zero is essentially non-

existent it can contribute very little to the weighted averages introduced in the construction of this

mapping. To alleviate the problem to a degree, some minimum value greater than zero can be

assigned to replace all zeros in the feature vectors of A and B,thereby giving even null values

radial basis information which can be utilized.

148

Appendix C

Motor / Auditory Feature Tables for English Language

Phonemes for Use in Phoneme Sequence Production Task.

This section lists the essential English language phonemesused in the preliminary work of the

single phoneme acquisition model (section 5.2) and intended for use in creating the proposed

phoneme sequence acquisition computational brain model (section 5.3). Each column represents

the vectors of known features which characterize a given phoneme. The tables are divided into

motor phoneme and auditory phoneme tables and further divided into vowel and consonant tables.

Here, motor phonemes denote commands which are produced through the primary motor cortex

to produce a phonetic sound, while an auditory phoneme denotes the phonetic sound impressed on

the primary auditory cortex upon hearing.

These tables were provided by Schultz [54] by combining feature systems from work done by

Jakobsen, et al.[20] and Singh et al. ([55],[56]). Featuresknown to be present in a phoneme are

denoted by a ’+’ in the column while their absence is signaledby a ’-’. Altogether, there are forty-

one such phonemes but three are omitted as they are functionally equivalent to other phonemes

already listed. In simulations for this study, each phonemecolumn can be regarded as vectors in

the space{0,1}21 for motor phonemes and{0,1}34 for auditory phonemes by replacing ’+’s and

’-’s by 1’s and 0’s, respectively.

149

IPA p b m t d n Ù Ã k g f v T D s z S Z w r l j h N

Keyboard compatible p b m t d n tch dj k g f v th– th+ s z sh zh w r l y h ng

Consonantal +

Vocalic .

Anterior + + + + + + + + + + + + + . . .

Coronal . . . + + + + + + + + + + + . + + . . .

+Voicing . + + . + + . + . + . + . + . + . + + + + + . +

–Voicing + . . + . . + . + . + . + . + . + + .

Continuant + + + + + + + + + + + + + .

Stop + + + + + + + + + + +

Nasal . . + . . + +

Strident + + . . + + . . + + + +

Height: VH .

H + + + + + + + . . + . +

M .

L . + .

VL .

Advancement: F .

FC .

C .

BC .

C + + + +

Table C.1: Distinct Feature System for Consonants (Motor)

150

IPA o a e u @ i I E æ 2 U O Ä ai @U

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u aw er ai au

Consonantal

Vocalic + + + + + + + + + + + + + + +

Anterior

Coronal

+Voicing + + + + + + + + + + + + + + +

–Voicing

Continuant + + + + + + + + + + + + + + +

Stop

Nasal

Strident

Height: VH . . . + . + + +

H + . . . +

M + . + . + + . +

L + . + . + . . .

VL . + + + .

Advancement: F . . + . . + + + + + .

FC + + . +

C + . .

BC +

C + + . + + + . + +

Table C.2: Distinct Feature System for Vowels (Motor)

151

IPA p b m t d n Ù Ã k g f v T D s z S Z w r l j h N

Keyboard compatible p b m t d n tch dj k g f v th– th+ s z sh zh w r l y h ng

Consonantal +

Vocalic .

Compact + + + + + + +

Diffuse + + + + + + + + + + + +

Grave + + + + +

Acute . . . + + + + + + +

Nasal . . + . . + +

Oral + + . + + . + + + + + + + + + + + + + + + + + .

Tense + . . + . . + . + . + . + . + . + + .

Lax . + . . + . . + . + . + . + . + . +

Continuant + + + + + + + + +

Interrupted + + . + + . + + + +

Strident + + + +

Mellow + + . . + +

+Voicing . + + . + + . + . + . + . + . + . + + + + + . +

–Voicing + . . + . . + . + . + . + . + . + + .

+Duration + + + +

–Duration + + + + + + + + + + + + + + + + + + + +

+(Af)Frication + + . . + + + + + + + + + .

–(Af)Frication + + + + + + . . + + + + + + . +

Liquid + + . . .

Glide + . . + . .

Retroflex +

F2,V H .

F2,H .

F2,HM .

F2,LM .

F2,L .

F2,V L/F1,V H .

F1,H .

F1,HM .

F1,LM .

F1,L .

F1,V L .

Table C.3: Distinct Feature System for Consonants (Auditory)

152

IPA o a e u @ i I E æ 2 U O Ä ai @U

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u aw er ai au

Consonantal

Vocalic + + + + + + + + + + + + + + +

Compact

Diffuse

Grave

Acute

Nasal

Oral

Tense + + + + . + + + .

Lax + . + + + + + + . . +

Continuant

Interrupted

Strident

Mellow

+Voicing + + + + + + + + + + + + + + +

–Voicing

+Duration

–Duration

+(Af)Frication

–(Af)Frication

Liquid

Glide

Retroflex + . .

F2,V H . . + . . + +

F2,H + + + .

F2,HM + + . . + . .

F2,LM . + +

F2,L + + . . .

F2,V L/F1,V H + . . + +

F1,H . + . . + . . . +

F1,HM + . . . + . . .

F1,LM + . + + + +

F1,L . . . + . . +

F1,V L + +

Table C.4: Distinct Feature System for Vowels (Auditory)

153

