Neural Network Generation of Temporal
Sequences from Single Static Vector Inputs
using Varying Length Distal Target
Sequences

PhD Dissertation
Shaun Gittens
University of Maryland at College Park
December 14, 2006

Dissertation Committee :
Dr. Carol Espy-Wilson
Dr. Bill Gasarch
Dr. Jack Minker
Dr. Don Perlis

Dr. James Reggia (Chair)

Abstract

Training an agent to operate in an environment whose magpgng largely unknown is gener-
ally recognized to be exceptionally difficult. Further, gtiag such a learning agent the ability to
produce an appropriate sequence of actions entirely fromghesinput stimulus remains a key
problem. Various reinforcement learning techniques ha@nkutilized to handle such learning
tasks, but convergence to optimal policies is not guaranteemany of these methods. Tradi-
tional supervised learning methods hold more assurancesmvergence, but these methods are
not well suited for tasks where desired actions in the owpate of the learner, termedximal
actions, are not available for training. Rather, target otstfrom the environment agistal from
where the learning takes place. For example, a child acguisinguage who makes speech errors
must learn to correct them based on heard information thahes his/her auditory cortex which is
distant from the motor cortical regions that control speaatput. While distal supervised learning
techniques for neural networks have been devised, it restaibe established how they can be
trained to produce sequences of proximal actions from osipgle static input. In this research,

| develop an architecture which incorporates recurrentifayered neural networks that possess
some form of history in the form of a context vector into thstdi supervised learning framework,
enabling it to learn to generate correct proximal sequefroes single static input stimuli. This is

in contrast to existing distal learning methods designedhém-recurrent neural network learners
that utilize no concept of memory of their prior behaviorsé| | adapt a technique in this research
known as teacher forcing for use in distal sequential legrsiettings which is shown to result
in more efficient usage of the recurrent neural network’'se@dnayer. The effectiveness of my
approach is demonstrated by applying it to acquire varyamgth phoneme sequence generation
behavior using only previously heard and stored auditogngime sequences. The results indicate

that simple recurrent backpropagation networks can bgrated with distal learning methods to

create effective sequence generators even when they domstaatly update current state infor-

mation.

1

TABLE OF CONTENTS

Introduction 1
1.1 Goals

1.2 SpecificAIms e e e 6
1.3 Contributions 7
1.4 Dissertation Organization 9
Background 12
2.1 Feedforward Neural Networks uu... 12

2.1.1 Description e 21

2.1.2 Supervised Learning (Back-propagation) 13
2.1.3 Feedforward Neural Network Strengths and Limitagion. 18
2.2 Neural Network Sequential Processing 0 oo .. 21

2.2.1 Training Methods for Sequential Neural Networks 23

2.2.2 Time Delay Memory Structures 24
2.3 ReinforcementLearning 26
24 SelfOrganizingMaps e e e 28
241 Description 8 2
2.4.2 HebbianLearning. 29
2.4.3 Applications e 13
2.5 Distal SupervisedLearning e 33

3 Recurrent Distal Supervised Learning

3.1
3.2
3.3
3.4
3.5
3.6

3.7

Motivation e

Forward Model as a Recurrent Neural Network

Training the Recurrent Distal Learner
Approximated Teacher Forcing e

Use of Time Delay Memory Structures in Recurrent Distgde3uvised Learning . .
A Distal Sequence Generation Task Using a Simple Ermisomt
3.6.1 Simple Sequential Environment for Preliminary Studgncatenation . . .
3.6.2 EXperiment e
3.6.3 Conclusions.

Contributions of the Chapter

4 Sequential Processing using Self-Organizing Map Models

4.1
4.2
4.3

Background e
SARDNET e
Candidate-Driven SARDNET
4.3.1 Multi-node Candidate-Driven Output Mapping
4.3.2 Demonstrating the Utility of the Candidate-Driven SARDBI Enhance-

5 Recurrent Distal Learning in Modeling the Acquisition of Phoneme Sequence Gener-

ation Behavior

5.1 Phoneme Sequence Generation

5.2 Single Phoneme Production Model

521 Model s
5.2.2 Environment

5.2.3 Distal Learner / Forward Model Designs

79
80

524 Results e 86

5.3 Framing the Distal Recurrent Learning Architecture fog Phoneme Sequence
RecurrentTask 87
531 Setup e e 87
5.3.2 Phonemes and Phoneme Sequences for Experiments 90
5.3.3 Memory Recall of Associative Map Distal Target Seqesnc 94
5.3.4 Environment 95
535 ForwardModel 99
5.3.6 Simulation of the Phoneme Sequence Generator. 101
5.3.7 SimulationResults 102
5.3.8 Evaluating the Efficiency of Recurrent Distal Elmanwaks 106
5.3.9 Implementing Delay Line Memory Constructs108

5.4 Contributionsofthe Chapter 109

Discussion 115

6.1 Benefits of the Distal Sequence Generation Study 116

6.2 Success in Recurrent Distal Supervised Learning 117

6.3 IssueswithTraining. e 120
6.3.1 Difficult Environment Lo 120
6.3.2 Issues with Initial Random Setting of Neural Networkigkie Vectors . . . 122
6.3.3 Drawbacks Faced in Dealing with Exponential Trace dees 123
6.3.4 ForwardModel 312

6.4 Future Work 127

6.4.1 Improving Performance of Recurrent Distal Supervisedrning Archi-
tecture e e e 127

6.4.2 Modeling Sequence Generating Cognitive Tasks 130

6.4.3 Incorporating the Self-Halting Mechanism into the iReent Distal Su-

pervised Learning Architecture

...................... 132
A Algorithm used for the preliminary Single Phoneme Acquistion Model 141
B Creating a Smooth Mapping from a Finite Mapping 143
C Motor / Auditory Feature Tables for English Language
Phonemes for Use in Phoneme Sequence Production Task. 149

2.1
2.2

3.1

4.1
4.2

4.3

4.4

5.1
5.2
5.3
5.4
5.5

Cl
C.2
C3
C4

LIST OF TABLES

Error back-propagation procedure for training neuestvorks 17
Procedure for training a self-organizingmap 30
Training Procedure for a Recurrent Distal Learner 51
The SARDNET Training Procedure 66

Outline of the procedure for producing output maps inSAKRDNET SOM once
presented with input vector sequence, Xzl <i<n}. 67
Outline of the procedure for producing candidate-dariwvetputs in the SARDNET
SOM once presented with input vector sequence,X1F, x[2], ...,x[n]. 71
Procedure for producing multi-node output maps in aicktel-driven SARDNET

SOM once presented with input vector sequence, x[1], x[2K[n]. 72

Reduced List of Phonemes and Their Corresponding Distnktotor Features. . 92

Reduced List of Phonemes and Their Corresponding Distinauditory Features. 93

List of Target Phoneme Sequences. 94
Listing the best performing distal phoneme sequencergéors. 105
List of EIman and Jordan Distal Architecture Simulasian. 107
Distinct Feature System for Consonants (Motor) 150
Distinct Feature System for Vowels (Motor) 151
Distinct Feature System for Consonants (Auditory)152
Distinct Feature System for Vowels (Auditory) 153

LIST OF FIGURES

1.1 A basketball shooting example for using the distal suiped learning paradigm. . 5
2.1 Anexample of atypical perceptronsetup. 13
2.2 Example of a standard multi-layered neural network itacture at work (taken

from http://aemc.jpl.nasa.gov/activities/biegen.cfm) 14
2.3 Visual demonstration of standard back-propagatiorcgmore. The error-back

propagation procedure can move a multi-layered feedfatwaunral network (de-

noted by the box above) incrementally towards producingesdasired behavior

given an inpufp[n] and its corresponding target outpufn]. Here0 < n < k,

where k signifies the number of input/output pairs used ia tree neural network.

Over many training steps (epochs), the weight parameteomac(not shown) of

the neural network is adjusted using the difference veatween the target output

y*[n] and the actual neural network outpdih], where y[n] = hp[n],w). 15
2.4 Elman and Jordan recurrent neural network implememtsiti. 20
2.5 An example of an unfolded recurrent neural network 23
2.6 Arecurrent Jordan network using d time delay layers. 25
2.7 Reinforcement learning framework. 26
2.8 SOM which examines worldwide poverty by region. (takemntf http://www.cis.hut.fi/-

research/som-research/worldmap.html) 28
2.9 Weightplotsforal0x10SOM. e 31
2.10 Basic setup for the distal learning problem. 33
2.11 lllustration of the distal supervised learning frarogev 35

Vi

2.12 Standard setup of a distal supervised learning systiémng feedforward neural

networks for distal learner and forward model structures. 36
3.1 Anillustration of the recurrent distal supervised teag framework 41
3.2 An abstract diagram of recurrent distal supervisedlagrframework 45
3.3 Example setup of delay memory layers in use by the recudistal learner. 53
3.4 Simple lllustration of the sequential Concatenationiémment. 55
3.5 Example training pairs for the distal concatenatioreexpents. 56
3.6 Recurrent distal learner training performance whileratpgg in the concatenation
ENVIFONMENT e 60
3.7 Evaluation of approximated teacher forcing. 61
4.1 Weight plotof a10x10 SARDNET SOM. 68
4.2 Contrasting standard and multi-node candidate-driveREBNET SOM output
schemes. e 73
4.3 Mexican hat activation using multi-node candidateefiactivation. 75
4.4 Weight plots for Example Candidate-Driven SARDNET. 76
5.1 The Single Phoneme Acquisition Architecture 85
5.2 Anillustration of the Phoneme Sequence GenerationDoma. 88
5.3 lllustrating the setup for the Phoneme Sequence Gémewistal learning task. . . 89
5.4 Recurrent distal learning architecture used to modePtimeme Sequence Gen-
eration framework of Figure 5.3. L L oo 91
5.5 The Phoneme Sequence Generation Environment. 96
5.6 Evaluating the effectiveness of teacher forcing witfard to distal error. 110
5.7 Evaluating the effectiveness of teacher forcing withard to proximal error. 111
5.8 First two stages of recurrent distal supervised legrmin. 112
5.9 Final RMSE performance chart of a well-trained phonemeeece generator . . . 113
5.10 Elman vs. Jordan distal recurrent implementations114

Vii

B.1
B.2
B.3
B.4
B.5
B.6

SimpleMapping e e 144
[deal Mapping 145
Example figure of discontinuous mapping resulting fromm&epn A.1. 145
Radial Basis Function 146

Demonstrates smooth map construction with and withalidraound slimming . 147

Comparison of two map construction methods.148

viii

Chapter 1

Introduction

What series of robot hand and arm movements is required toalsmuare using a paintbrush on a
canvas? What sequence of motor commands should be issuedimth’s primary motor cortex
which could eventually yield the verbal utterance “mothf#dm a subject’s mouth? These are
types of problems that are addressed in an active area @frobseithin machine learning which
is concerned with how one trains an agent to learn to exhaloitesdesired time varying behavior
while acting in an external environment. Existing supeggiearning strategies for training neural
nets are well studied and effective in many domains, but@tsanust provide the correct series of
desired proximal actions to the agent in order to be sucgkedsére, the ternproximaldescribes
the immediate actions taken by the learning agent whileaiey in the environment. In contrast,
the termdistal describes the consequences which result in the environaseatdirect result of
the proximal actions taken by the learning agent. In theaspainting example, for instance, the
distal target behavior sought by the trainer would be thatpdisquare, i.e. a visual result that is
far removed from the motor control commands used to genérdtence the term “distal”. The
series of arm joint angles required by the robot to attemph sugoal would constitute proximal
actions. In the current scenario, correct proximal targetsnot available for training the learner
(i.e., there is no teacher contribution that explicitly raswthe arm through the desired movement
sequence which can be used for training.) The desired augmught by the teacher (e.g., the
intended square in this case, perceived visually) acteailst in the output parameter space of the

environment function rather than in the learner’s acticacgp(e.g., robot arm movements.)

Reinforcement learning strategies are often used to hawdietige learning problems as the
environment function is generally undefined or very diffidolcharacterize. Very effective meth-
ods have been developed which demonstrate learning optralar-optimal policies exclusively
through interaction with an external environment ([2])[82],[53],[57],[58],[63]). Even so, re-
inforcement learning has its drawbacks and is far from beipgrfected science. It can be very
difficult for an agent to learn even a good policy, much legsdptimal policy, in complex and
unfamiliar environments. This is even more so the case whemeaward function, which drives
learning, is designed with little or no a priori teacher bilsiny of the most popular reinforcement
learning techniques studied today are not guaranteed teggato optimal policies.

Traditional supervised learning methods have strongerargence assurances than reinforce-
ment learning but are ill-suited for use in a distal enviremt Jordan, et al. [23] demonstrates
that supervised learning can be used to train a learnerteitua a complex environment where
only desired distal targets are available for training. His framework, another neural network
(the “forward model”) can be set in serial with the learned d® trained to emulate the envi-
ronment. The additional neural net can then, in turn, be tgeabsist in training the learning
agent using the target distal outputs provided by the teadVariations of this methodology of
learning have been shown to be particularly effective in r@etsa of domains. One such domain
includes studies in constructing computational simutatb brain function as it has been shown
that human brains utilize similar “forward models” in margpacts of motor task learning and de-
velopment ([4],[15],[29],[70],[71],[72]) (e.g., motowoatrol, etc.) Some training of distal learning
agents to produce sequences or strings of actions is alsordgrated for non-sequential neural
network learners [24]. However, these methods have not éiectively studied in training distal
learners with recurrent links. Moreover, such recurremivoeks should potentially be capable of
generating varying length series of discrete time actioes @vhen provided with a single input
stimulus.

Unlike existing distal learning methods designed for neadrrent neural network learners,

the methods presented here are developed in order to traurment neural networks which utilize

some type of history in the form of a context vedttsing the latter, a neural network will be better
equipped to learn the appropriate sequential proximalhbehgiven only a static input vector and
without being provided with information about the curretatts of the world. Such a distal learner
requires only a similarly designed recurrent network ferfdrward model and the desired distal
sequences for training. Such an architecture can be usetfhi, for one, should the current state
generator (e.g., camera in a vision system, audio sensboy fae removed, good sequences can
presumably still be learned and completed as the learniaegtagn be guided by its own memory.
Also, the use of an exponential decay memory layer (destiib@etail in Section 2.2) in many
recurrent neural network implementations may effectiwelgplement or even replace the current

state information used to drive existing distal supervisadning implementations.

1.1 Goals

The goal of this research is to develop a system that canrgainrent neural networks situated in
a complex environment when provided with desired distgldbsequences to drive learning under
the assurances afforded to a supervised learning frameWatkonly could this work expand the
use of recurrent neural nets in more complex domains, buayteren improve on existing domains
of distal sequential learning tasks previously handleddyforcement learning and non-recurrent
distal learning implementations.

Recurrent neural networks have been found to possess trenerdlue in many fields ([35]).
They have been used successfully to solve or address mahiepr® such as robot control in
producing time-series behavior. These recurrent neutadanks have been shown to exhibit useful
gualities and properties including the robustness comyntmind in many instances of neural
network applications. Also, they exhibit forms of faultéchnce and can be shown to generalize
very well using only training data.

However, many problems that exist in the real world are ravhied in the same manner as that

presently set up for recurrent neural networks. As in angsuged learning method, the teacher or

"supervisor” must have available a priori all sequencesdoarrent neural network should know
by the time training has concluded.

In many real world complex problem domains, the time-vagysequential behavior worth
learning takes place in some external environment. For plgndordan ([24]) describes a case
where a person is required to learn how to propel a basketialb basket (Figure 1.1). All that
is known to the person (learning agent from here on) beforétzae the necessary inputs and
desired distal outcomes of the environment. In this exantipéeinput to this learning agent would
comprise the intent to shoot the ball into the basket, angdsétion of the ball in his/her visual
field could comprise the current state of the learning tagtimidtely, the desired distal outcome in
the environment sought by the agent should comprise théssagial sounds of the basketball going
through the hoop. What the learner in this task must somehogwirgcis the necessary series of
arm motions required in order to successfully accomplighttsk.

In order to handle the training of neural networks to opemtenvironments like the one
described above, Jordan suggests the creation of a sepawi@ network (termed a forward
model) which can be trained through its own interactiond&nénvironment to mimic the latter’s
mapping of the learner’s proximal actions to distal congeges. When completed, this forward
model neural network can then be employed to assist in bruthie actual learning neural network
of interest. This use of a second neural network to assistinihg the original untrained feed-
forward neural network acting in the environment is reférte in general aslistal supervised
learning.

Jordan uses some good applications to demonstrate the ettrang of time-varying proxi-
mal behavior in the output space of the learning neural ndtwoorder to accomplish the learning
of the task. At this point, many researchers have followesl plaradigm to develop similar sys-
tems capable of addressing some very interesting distdlgres ([27], [38], [42], [60]). This
method is a very effective way of solving the inverse modgfpnoblem, where, once trained, the
learning neural network in question can be characterizeéfi@isiversefunction of the unknown

environment.

Figure 1.1: A basketball shooting example for using theati®iipervised learning paradigm.

Recurrent neural networks contain recurrent links betweemal elements in order to encour-
age time-varying behavior based on action history. Thiermftion can be taken from the previous
step or even a history of previous actions in the form of aroagptial trace memory. As already
mentioned, such recurrent neural networks have been stohbatery useful in real world appli-
cations. To my knowledge, the distal learning paradigm loadeen extended to training recurrent
neural networks.

Also, of particular interest to this study is not merely tleduction of time-varying sequential
behavior through interaction in the environment, but setjgebehavior that can result from just a
single static input stimulus (e.g., a picture or a singld goaition.) In typical studies in which the
acquisition of correct sequence generating behavior igtlag the input stimulus will change with
every new time step or subsequent action of the learner.slbkan shown that some trajectory
learning behavior can be demonstrated without the use ofm@acy, but that is while using current
state updates from the environment at every step of theraggoerating process. The typical
distal learner relies heavily on such updates to drive itga@enetwork to generate its next action
or output. Here, a paradigm is sought that can use just aesimgut vector (which can be thought
of as a single plan, a thought, or intention of the systemyd@eito generate some time-varying
sequence of proximal actions which can yield a very spedifiettory output in environment

space.

Past literature has not fully addressed the problem donfamioing a neural network to pro-
duce the appropriate sequential behavior necessary tbayiedry specific trajectory in the environ-
ment space from a single static input stimulus. This diasert addresses this particular problem
and maintains that adding recurrency to neural networksedain the external environment of
interest can be the best course of action in learning to m®doe correct proximal sequential
behavior from learning agents given only a single input tenition from which to work.

Jordan [24] briefly suggests how one might reconfigure higldssipervised learning frame-
work to potentially learn specific trajectories in an extrenvironment. His modification, how-
ever, still relied heavily on using a steady stream of curstate updates from the environment
to determine subsequent actions local to the agent. Iniaddthis modification still did not ad-
dress the handling of distal sequence generation taskhwdguire only single input stimuli to
generate multiple actions and, hence, multiple conse@sgndhe environment. Here, recurrency
is added to the original distal supervised learning frantkved the level of the distal learner of
interest as well as its forward model in order to furtherlftate learning and to add capabilities

and functionality that could not be easily addressed unolelah’s initial suggestion.

1.2 Specific Aims

The specific aims of this study are as follows:

1. Expand the capabilities of the existing distal superrisarning paradigm to manage train-

ing of often used recurrent neural architectures.

2. Create a model of the information processing done by carebrtex in learning to produce
the correct motor phoneme sequence response for a desired s¢presentation of the in-
tended word in associative memory. The capacity of thisesydb readily and efficiently
learn sequences in an external environment as well as teempre of short term memory in-

herent in the recurrency of this system will be an importaotdr in creating such a model.

The key generalization here is to generate a sequence @ctautputs for a single given

fixed input stimulus.

3. Create a SOM that can process and store phoneme or vect@nseg such that unique ac-
tivation patterns for each sequence will be obtained. ligésy a more efficient sequential
SOM model for this study, | incorporate modifications in tleR®ONET SOM architecture
that consider which particular input vectors are most etquefcandidate vectors) in calcu-
lating the correct SOM output. These modifications in uniqugping capability will lend
themselves greatly towards enhancing the capability of mgehto demonstrate a simple
form of the phoneme sequence acquisition task previousgrdeed. Here, the map organi-
zation and uniqueness of the modified SARDNET output will belyared and compared to

that of the original architecture.

4. Incorporate varying recurrent network architectureeypnd training methods into a recur-
rent distal supervised learning system. The recurrentoritwsed primarily in this study,
often termed the Jordan network [23], is only one of manyedéht types of recurrent net-
work architectures ([13],[8]). Numerous recurrent netwvtraining methods exist as well
([6],[35],[371,[40],[42],[43],[67],[68]) and are useduscessfully in varying learning tasks
and problem domains. By implementing other recurrent nééwygres and contrasting their
performances, pros, cons, etc., | hope to ascertain whefdbdf recurrent architectures,
used in learner and forward model alike, could be utilizethaximizing performance on
various types of training tasks and problems driven by ddssequences obtainable through

the environment.

1.3 Contributions

The primary contribution of my work is the modification of teristing distal supervised learning

architecture to allow training of recurrent neural netvgonkhich operate in external environments

(Sections 3.1-3.3). The current distal supervised legraichitecture, developed by Jordan [24],
was originally designed to train single input/single outptandard feed-forward neural networks
from desired outcomes that should result from interactisitis an environment. Without consis-
tently being informed of its current state in the world aach action it took, a traditional distal
learner would be incapable of performing sequence gengraédisks from a single unchanging
input stimulus, whereas my approach can handle such sitgati demonstrate the utility of the
modified distal learning framework by training a recurreatwork in a sequential environment
called the concatenation environment whose behavior isumelerstood.

Second, just as in typical non-distal sequential learrsgg, recurrent networks can be useful
in their utilization of previous output memory in genergtinme-varying behavior while operating
in a distal setting. They become especially useful when ardliygle static input vector is supplied
to the learner as it is in distal sequence generation taséstiod 3.4 describes a method which
| adapt from a strategy referred to as teacher forcing, af&d to improve training in standard
recurrent networks, for use in recurrent distal learningtesyis. Through this method, recurrent
distal learner actions are made approximately more "ctrbefore being stored in memory in or-
der to hasten the training process. Though the actual ¢@céion sequences are not available for
training, these approximated entries for memory updatestie demonstrate noticeably improved
training results.

Third, once trained, | developed a self-organizing map fagent associative memory and
uniquely characterize a sequence of auditory feature kett@sed primarily on the SARDNET
SOM architecture [21]. Though shown in previous studiesataigeful in providing unambiguous
activation patterns from differing input vector sequensesne measure of ambiguity still existed
with the original SARDNET which could potentially be detrintal in the phoneme sequence
generation process previously described. In this work,vebtg a modified method of produc-
ing activation patterns in the SARDNET SOM, called the caat#ellriven method (Section 4.3),
which considers the closeness of the most likely candidat#ov to the responsible input vector,

as well as the proximity of the current node to the winningenadthe SOM'’s output lattice, in

determining a meaningful real-valued output between 0 aradher than just a strict binary O or 1
value as in SARDNET.

Fourth, I implemented a prototype non-recurrent distaheg system capable of training neu-
ral networks to generate single motor phonemes resporisibjeelding desired auditory phoneme
vectors from single input vectors (Section 5.2.) A key pesblencountered in this implementation
was how to map outputs to the environment into their cornedpy distal feedback. In order to
construct the motor-to-auditory mapping required for #iisgle phoneme acquisition system, |
devised a method for creating a smooth and continuous mgyfmm a finite number of paired
vectors (Appendix B.) As a result, my implementation is ableéake any vector in the space of
motor phonemes, including any of the motor phoneme vectstexd, and generate a reasonable
facsimile of an auditory vector feature for use in this study

Fifth, to test this modified system on a substantial distqlisace learning problem, | designed
a simplified simulation that takes as inspiration the mamme&vhich humans produce phoneme
sequences in speech function acquisition, and looks tofseeecurrent neural network can be
trained in similar fashion (Section 5.3.) In order to crestieh an ambitious simulation, a se-
guential environment is constructed that accepts a seque#motor feature vectors and responds
with a sequence of corresponding neural activity pattemarating from associative memory.
This complex sequential environment is a composite of two-liteear component mappings: 1) a
mapping which transforms a sequence of motor phoneme é&®a¢gtors into corresponding heard
auditory vector sequences, and 2) a self-organizing map}S€presenting associative memory

of auditory sequences.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: In G&ap, previous works which were per-
tinent in the creation of the architecture addressed herecairewed. In Chapter 3, self-organizing

maps (SOMs) which are designed to accept and uniquely dieairesequential, and not single,

inputs are discussed. In creating a computational modedapiential cognitive function, a viable
model of cortical map activation is absolutely necessanythe case of simulating phoneme se-
guence, or spoken word, acquisition, some approximaticassbciative memory responsible for
storing of previously heard words should be addressed:dsg#nizing maps (SOM), introduced
by Kohonen in ([26]), were created in part to attempt to maldelmap formation found in the hu-
man brain and have been studied extensively for years. Fej@qs have addressed the need for
SOMs to adequately store sequential inputs in a manner ichadach unique sequence will result
in a unique set of activations in the SOM. The one-shot, rwitiner SOM (Schultz [54]) and the
SARDNET self-organizing map (James [21]) are two very pramgisnethods, but fall short of
guaranteeing 100% uniqueness in mapping sequences teusM activations that are required
for this particular study. Also in this chapter, | address thodification | devised in making one
such construct more appropriate for this study.

In Chapter 4, | detail my own work in developing a type of disedurrent supervised learning
architecture which makes use of time-delay links betwegertaof computational processing units
in both the distal learner and the forward neural model. Bipatty, this architecture is capable of
enabling distal learners to handle distal sequence gemetasks using only single input stimuli
and no current state updates in order to drive themselvesterrdining subsequent actions. In
Chapter 5, | discuss the results of the newly created archipresented in Chapter 4 primarily
as an application to the study of the acquisition of the cbgniability of phoneme sequence
generation. One of the more common uses of traditionalldisfzervised learning at present lies
in the creation of computational models of human cognitaktacquisition ([15],[29]). Modeling
acquisition of speech and motor control functionalitiesparticular, are domains which are active
topics of study ([15],[17],[29],[70],[71]). One intenticof this study is to increase the capabilities
of such distal supervised learning models of cognition tocoempass more cognitive phenomena
said to occur based on the most current neuroscientificesudi

Lastly, Chapter 6 discusses the ramifications of the newldsguential architecture intro-

duced in this dissertation and addresses potential fuioeetans to improve it, its use in mod-

10

eling cognitive sequential tasks such as phoneme sequenegagion, as well as in various other

problem domains.

11

Chapter 2

Background

2.1 Feedforward Neural Networks

2.1.1 Description

The creation of neural networks is motivated by theoriesa the interactions among neuronal
cells in the brain are thought to generate cognitive fumstioFrom what we gather from past
neurobiological studies, neurons act to either fire or neifithey receive enough overall excitation
from other neurons that synapse to them. Put another wajljgrent function emanating from the
brain is considered to be a result of the total cooperatitexaations of neurons in the brain based
on inputs it receives from input stimuli. Map formation iretbortex is another consequence of
group neural interactions in the brain.

Some of the earliest neural networks came in the formen€eptronsvhich essentially consist
of one layer of computational “neurons”, each of which reesireal-valued input from all input
elements to the system via weighted connections,where i and j reference neural elements and
input elements, respectively (Figure 2.1).

In essence, the set of weights, represented by weight yettaletermined the output of the
perceptron. In order to ascertain the best weight veatpa very simple, iterative procedure was
developed ([51].) The single-layered architecture of teecpptron, however, hindered its com-

putational power as it was shown to be able to handle onhatigeseparable relations between

12

Figure 2.1: An example of a typical perceptron set up.

inputs and target outputs ([34]). This insight serioustyiled the effectiveness of neural network
research for some time. By equipping neural networks withtserchidden layer of neural ele-
ments between the layers of input and output nodes (seed=&jRYy, it was later determined that
perceptrons can be made to classify linearly and non-lipesaparable tasks alike. Furthermore,
by changing the output functions of the neural elements fa@tep function to smooth and differ-
entiable step-like functions, finding the best set of weidigcomes an exercise in determining the

weight vector which minimizes the following error functiahw):

1 2
J = 5(2(152' —0i)%)

It was shown that such multi-layeredperceptron could approximate any differentiable function

when given enough input/ output examples whether lineahasable or not.

2.1.2 Supervised Learning (Back-propagation)

In a supervised learning framework, there exists a learagent that can be characterized as some
functiony = h(p, W), wherew represents the internal state of the learner (in this chseyeight
vector in a neural network), p is some input vector and y wdddhe resulting output vector.
Given some set of target input/output paj(g,, y;)|1<i<n}, the task of the learner is to adjust

the parameter vector, in such a way as to minimize the performance error betweagetautput

13

LIGHT

TEMPERATURE

RELATIVE
HUMIDITY

co,

NUTRIENT

eccceeccccce

Figure 2.2: Example of a standard multi-layered neural ngtvarchitecture at work (taken from

http://aemc.jpl.nasa.gov/activities/biegen.cfm)

vectory; and the neural network learner’s own actual output vegtopgiven input vectop, (see
Figure 2.3). The expected performance error, J, used tcejtiug effectiveness of the learner’s

training can be formulated as follows :

] .
J = SE{; =) ~y)h1<i<n, (2.1)

However, rather than take into account all desired inptpiaipairs in determining the cost, a

more instantaneous online evaluation for the n-th inpipieiupair can be done as follows:

[n))" (¥ [n] = ¥ln)), (2.2)

S
I
%
e
|
<

In order to change the weight vectar, of the learner to minimize this cost function, the gradient

of J with respect tav can be approximated as follows :

Vi =~ (5 [n] — ¥ln), (2.3)

Knowing this, the weight vector at time n, denotedigs can then be adjusted using this equation:
Win| = W[n — 1] — nVgJ,, (2.4)

14

yin] - yin]

pinl — e L~y

/

Figure 2.3: Visual demonstration of standard back-propaggrocedure. The error-back propa-

gation procedure can move a multi-layered feedforwardaiewtwork (denoted by the box above)
incrementally towards producing some desired behaviargan inpuip[n] and its corresponding
target outputy*[n]. Here0 < n < k, where k signifies the number of input/output pairs used
to train the neural network. Over many training steps (ephciie weight parameter vectar
(not shown) of the neural network is adjusted using the difiee vector between the target output

y*[n] and the actual neural network outpdin], where y[n] = hp[n],w).

wheren is a parameter which controls the rate of incremental werghtor updates. This is the
basis of most gradient descent methods of supervised neetxabrk learning.
Theback-propagatioomethod (Rumelhart [51]) is merely a form of gradient descesighed
to find the local minimum of the error functionwi), over weight vector space. Figure 2.3 demon-
strates a key component of the back-propagation procedinere the difference between target
and actual outputs is propagated back through a neural netmadule to change the weight vec-
tor incrementally into one which more closely approximdtesdesired output. As such, solving
for the best set of weights for the neural network or muljielaperceptron becomes a matter of
finding the weight vectowy, which minimizes J.
The error function at this point may be minimized by appraoxiimg the gradient of this func-
tion and running some form of hill descent procedure whiah geovide a weight vector which
provides a gradient as close to zero as possible. The exdorisletermining such weights now

becomes the task of finding the set of weights which minimte function. Since the landscape

15

of the error function is unknown, the gradient is approxedatoughly given the current weight

vector and an iterative procedure of gradient descent isamg in an effort to find the weight vec-

tor which yields the minimum of the error function (see Tablg). This method, however, poses
problems where it often may converge to some local minimaefanction instead of the global

minimum which would give the best answer. Gradient desceatal network training methods

require approximating the gradient of the error functiorth&t point in the weight space where
the neural network is currently, and in changing that weigdttor in the negative direction of the
gradient. This, thereby, has the effect of moving it, in tiyeoloser to the local minima of the error
function. In many complex domains, the local minima reqaigreat deal of computational effort
to be found and are often not sufficient in learning the tagls@nted to the neural network when
found.

Apart from standard hill descent techniques, other typesesfiht space selectors have been
sought to find the global minima. Some such methods includetgealgorithms, evolutionary
programming, support vector machines, etc. However, ableeamount of the energy spent in
trying to solve this problem has been used to develop moreiasiti types of gradient descent
methods. Many early devices sought to improve gradientasdszack propagation by manipulat-
ing or adjusting the learning rate in order to more quicklylfine local minimum. Other methods
being developed sought ways to avoid getting trapped irl lngaima en route to better solutions
or even, ideally, a global minimum ([49], [6], [41]).

Some very powerful methods utilize the gradient informatmuse a more informed, pertinent
search for the global minimum given a weight-by-weight ating scheme or even a learning rate
per each individual weight term rather than adhering to amgles learning rate for the entire gra-
dient computed term. These methods require use of the gitgdst as an indicator for direction.
The actual descent is regulated by assigning an individaething rate to each weight vector and
raising or lowering them according to the information reediabout the error function landscape.
Two of the most popular methods which operate in this fasmolude Quickprop (Fahlman [14])

and RPROP (Riedmiller et al.[49], Igel et. al [19].) Presentigny such gradient descent methods

16

Error Back-propagation Procedure

repeat for each training pai;
1) obtain inpufp[n] and target outpug*[n].
2) compute neural net outpyt= h(p[n],w).
3) compute error vector at output layef\; = y*[n] —y.
4) update all weights leading to each unit in the output layer
wj; = wj; + aa; f'(ing) A,
5) for each subsequent layer,
- compute new Delta values for new layer:
Aj = [f'ing) XS wjild;
- then use it to update weights to the next layer:
Wi = Wi + aapl;
end
6) repeat from step 1) until:

- performance criteria is met or

- number of training loops (epochs) is reached.

Table 2.1: Error back-propagation procedure for trainiagral networks

continue to be developed in seeking to enhance the way inlmdgptimal weight vectors can be
found in the effective training of neural networks.

Effective adaptive learning schemes have been also dexeéiapich, once given the perfor-
mance of the neural network immediately following a weidhaiege, will automatically increment
or decrement the learning rate of the neural network trgimigorithm and repeat the evaluation
until only improvements result. Also, there are methodscivtseek to substantially change the
back propagation method as it was originally designed. k& mmevious study Joost [22] argued
that the standard error function typically used in backppagation is flawed in that it is polyno-

mial (namely binomial) in structure and, hence, encourtteespitfalls inherent in executing the

17

gradient descent of such functions. For one primary pjtfeinotes that in following the opposite
direction of the gradient for a binomial function, succesgyradients themselves approach 0 as
the minimum draws close, thereby substantially slowing iahdbiting the search for the global
minimum. Joost advocates the use of a different type of déaraction which is non-polynomial

in structure and will not slow or diminish to zero the closegets to the local minimum. The
new error function suggested is based on the conjugateegrafiinction in order to circumvent
those pitfalls (Joost [22]). He argues that it works bettail Aypasses the shortcomings of the

polynomial error function discussed previously.

2.1.3 Feedforward Neural Network Strengths and Limitations

There are, however, limitations to the training of theserakenets. For one, there is always the
possibility of overfitting the weights of the neural networlk this situation, the neural network
may be trained to learn the relation between input/outpins paovided by the supervisor but not
be capable of generalizing from unseen inputs to new outffutss the case that too many neural
elements are placed in an intermediary or hidden layer, éwah network may becomever-
trained By this, it means such over-partitioning of the input spaeg nesult in training the neural
network to learn only the specific relationships betweerrdiaing inputs and their corresponding
target outputs and little else. When this occurs, the newtaark can be so specific that it would
be incapable of correctly categorizing other inputs notieitly provided in the training data. This
would not be beneficial to one who is looking to train the nenetwork to be able to classify
some general relationship between inputs and outputs.

When the neural network back-propagation method is run, tthaod is iterated many times
with each pass through the training data being callegpoth When the training is complete (say
over tens of thousands of epochs) the multi-layered neetalark should know the inputs and out-
puts that the teacher provides. Furthermore, to ensure¢uwaal network has not only memorized
the training data, but has also learned to generalize afédgtone can provide validation data on

which to test the neural network throughout training. Heedidation data are input/output pairs

18

which also share the same relationship as those pairs indiméng data but are withheld for later
verification purposes. If the performance of the neural netvshould be measured (where root
mean squared error is one measure of performance succesghthvalidation data should score
relatively well with the neural network while training ifétrelation to be learned is to be ensured
or guaranteed to be found. At this point, if it is not the cdmse the RMSE is low compared to that
of the training data, overfitting has occurred. To avoid saicircumstance, there are many things

a trainer may need to be wary of when training a neural network

1. not to make the number of hidden elements too high. If thisade too high, the input space
will be partitioned far too much and the task or relation candime very specific toward the
input/output training data. By keeping the number of hiddements low, one can ensure

that very general partitions can be found to approximaté thelrelation sought.

2. to provide very good representative training data forfthreetion to be approximated. |If
there are major holes in the input space which cannot be ateddor in the training data,

learning the appropriate function would be very difficult.

Another limitation seen in standard multi-layered feedfard neural networks lies in the inex-
plicable manner in which it encodes its approximation ofthknown function. Itis quite possible
for the neural network to be trained to correctly approxertae relation suggested by the training
data provided to it by the trainer. However, there the abfbir researchers to actually go in and
extract what knowledge the neural network has actually isedus severely limited indeed. As
such, though neural networks can be very powerful tools astilon approximators or classifiers,
they are not very effective tools for data mining or knowledtscovery.

As for strengths, multi-layered feedforward neural netnarchitectures have been shown to
be extremely effective in approximating unknown functioAs will be seen later, a neural network
can approximate the workings of some unknown system andlydéarained efficiently, can be
used to forecast reasonably good guesses to outputs of s@vieysly unseen arbitrary input.

This ability to generalize given only desired input/outpairs makes applying neural networks

19

QQQQQ@ (©00000)

40000—10000) ,;aB0O

Figure 2.4: Two popular implementations of recurrent nenetworks : the Elman network (left)

and the Jordan network (right). Ellipsoids in both casestielayers consisting of neuronal pro-
cessing units (shown as circles). In either graph, widensiaenote full connectivity via weighted
links amongst all units from an originating layer up to tho$és destination layer. Thin arrows
denote a direct copy from a single unit in the originatingelato its corresponding unit in the
destination layer multiplied by some constant (defaulttgeit.0 .) The two implementations dif-
fer primarily in that the activations from the neural netWsrhidden layer are accumulated by
the memory layer for the EIman network while the memory lagpea Jordan network copies the
activations of the neural network’s output layer. Both nengawork implementations can utilize
an exponential trace memory vector with decay constangraide in learning to produce desired

time-varying output behavior.

very attractive in countless complex problem domains wigicpple with unknown relations and
functions. Also, in terms of strengths, the neural netwaks be used in developing very simple
models of human brain dynamics and function which can hedg $lght on the inner workings of
the human brain. In fact, many such brain computational nsdugve indeed been developed in
attempting to capture brain phenomena documented in egiaguro-biological literature. These
same computational models can serve as effective tools/gl@@ng understanding and treatment

for afflictions of the brain ([46], [47])

20

2.2 Neural Network Sequential Processing

Neural networks have traditionally been used in learnisggan which one input vector should
yield a single output vector. However, in some domains, #srdd output would be in the form
of a series, or sequence, of vector outputs which vary owectlurse of discrete time steps. In
order to achieve this result, recurrent links can be intceduvithin a neural model between neural
elements in such a way that, even if the input vector shoulklepé static, a neural element can
yield a different output value with each subsequent timp.stégure 2.4 shows examples of such
neural network architectures.

There are various methods researchers have used in attgnptireate neural models which
take into consideration a history of states in order to deitee the subsequent output. Some archi-
tectures attempt to “parallelize” time by placing simukansly in the input layer a finite number
of previous network inputs, outputs, and/or states whiaghtban be processed by a subsequent
hidden or output layer. An example of such a recurrent nengbork architecture is the NARX
(non-linear autoregressive with exogenous inputs) ndétwowhich a history of the previous q in-
puts,{u,, ..., un—g+1}, and q network outputy,,, ..., yn—q+1 }, COMprises the input layer which is
presented to a multi-layered perceptron to eventuallydyaeitputy,, .1 ([8],[37]). In this manner,
the NARX model can be trained to consider unmistakably thehiof input/output pairs which
transpired previously in order to determine the subseqoatiput. This architecture, however, can
lead to increased complexity of the learning task as thetispace increases linearly with input
and output vector lengths through user-specified histargtle g.

One well known recurrent network architecture is the Joretvork [23] which has recurrent
links from the output layer to a memory layer that is situsdethe same level as the input vector
and has its own set of weighted links to the next hidden lagee Figure 2.4). Neural elements
in the memory layer generally have self-recurrent linksclhitilize a decay < a < 1 term
which has the effect of accumulating a history of its actiowsr time. Such a grouping of memory

processing units can be referred to agaponential trace memary

21

Giving initial memoryz(0) some known initial assignment such:g$) = 0™, for instance, the

output dynamics of a simple two-layered Jordan network meagharacterized by the following

equations :
h(t) = F(Wau(t) + Wa(t), (2.5)
y(t+1) = g(Wih(t)), (2.6)
z(t+1)=yt+ 1)+ ax(t). (2.7)

wherex is the exponential trace memory vectgiis output of the recurrent network at discrete
time step,t, andh is the hidden layer. Functiorfsand g are the activation functions for the
hidden and output layers, respectively. Terdiis, V.., and1V,, describe vectors corresponding to
weighted connections emanating from the input, memory,hatiden layer vectors, respectively,
to the appropriate subsequent layer. This type of recunemtork architecture is appealing in that
varying length output histories can be retained and consitie estimating the desired output at
subsequent time steps without having to increase the diomaliy of the memory in the input
layer.

The Elman network is yet another instance of a recurrentah@etwork which effectively uses
an exponential trace memory vector in the input layer. Whasearchitecture differs from that of
a Jordan network is that the exponential trace memory issstre a history of activations from
some intermediate, or hidden, layer of processing unitgpassed to the output layer (see figure
2.4).

Similarly, the output dynamics for a simple Elman network ba described as follows:

h(t) = f(Wau(t) + Wea(t)), (2.8)
y(t + 1) = g(Wyh(t)), (2.9)
2(t+1) = h(t) + az(t). (2.10)

In the case of exponential trace memories as they are useatdan) and Elman networks,

input space size is not as significant an issue as it is for &ig)Narchitecture and models like it.

22

12

22
Woq

x,(n) W

—»1—1l> Xl(n+1)
Wio
21

+
Xo(n) W,y Xo(n+1)
Time 0 1 2 e n n+1

Figure 2.5: Recurrent network unfolding example providedaykin [18]. (Top) Simple recurrent

network composed of two nodes having weighted connectmtisimselves and each other. (Bot-
tom) Equivalent non-recurrent multi-layered feedforwaetwork capable of producing sequences
of length n. Consequently, modern back-propagation teci@sigan then be derived for the latter

network to yield back-propagation in time learning rules.

However, to what history length the exponential trace mgmector can be effective in producing
the remainder of a target sequence can be an issue. Thisigdeethe effects of states stored from
previous time steps can vanish very quickly as the expoaleietim is continually applied to the
memory vector. In addition, this type of memory vector istguimited as to its ability to recall

the sequence of states it was given to store.

2.2.1 Training Methods for Sequential Neural Networks

Methods for training recurrent neural networks such asedlescribed previously have been de-
veloped and refined for years. One method training recurreantal networks is known as back-

propagation in time [64]. By “unfolding” a network’s recuntelinks and transforming it to re-

23

semble a standard, single pass multi-layered feedforwaundah network, very effective weight
change rules can be inferred in much the same way as thosepesgeor less dynamic, yet
more heavily studied non-recurrent neural network archites (figure 2.5). More specifically,
back-propagation methods initially used exclusively feedforward networks can be extended
for training recurrent networks. Variations of back-prgaton in time methods are described in
greater detail by Williams et al. [68].

Methods have also been developed to improve existing séiglieetwork learning techniques.
Teacher forcing ([67],[69]) is one such method. Here, treather” can clamp onto a layer of
processing nodes (i.e. the memory vector), when availdifsbedesired activation at that discrete
time step, t, rather than the erroneous activations thatr@idst the early stages of training. This
process can be implemented by supplanting Equation 2. dyiti@al memory update equation for

Jordan networks, with following equation:
zt+1)=y"(t+1)+ azx(l). (2.11)

wherey* (¢ + 1) is the target output vector at time t+1 provided by the sugenas opposed to the
actual output, y(t+1), from the recurrent network itselpglied via its recurrent links. Using this
method during training in the described manner tends tetaids recurrent network to converge
faster and more readily. A new form of teacher forcing | depes introduced in the methodology

in section 3.4.

2.2.2 Time Delay Memory Structures

In addition to the exponential decay memory structuredhiced previously, another popular
form of memory structure exists in delay line structuresdusarly in recurrent network design.
Using this architecture, at the current time step, t, th@fattivations from some pre-determined
set of nodes (generally some hidden or output layer in a frayléred feedforward recurrent net-
work) are copied directly to some memory module of nodes.r&kelting module can then be used

at the subsequent time step, t+1, as input to the networkigirtrainable weighted connections

24

/»,;QQQQ@

HOOOHOOO 000

Figure 2.6: A recurrent Jordan network using d time delagiayThe node activations at memory

delay module, k, is determined at each discrete time stepeaprbduct of the contents of the
previous delay layer (k-1) and the propagation tebrm; p < 1. In addition, the final delay layer
here uses a decay rate, a, such that the memory structuresretponential trace history of actions
once the k-sized window is exceeded. Setting O restricts this memory mechanism to being a
sliding window of size d, which is very common amongst menu®lay recurrent neural networks

in prior studies.

along with the already present input vector.

Multiple memory modules can be incorporated into the reantrmodule as well, separated by
delay lines from a prior memory module of the immediatelyvpras time-step. Here, memory
contents from the (t-i)th set of activations are copied ®ribxt memory module representing the
prior (t-i-1)st time step of activations before itself redeg the set of activations contained in the
module representing subsequent time step (t-i+1). Thiesef delayed activations can be made
arbitrarily long based on the goals of the recurrent neugatliesigner. What results, unlike in the
case of the exponential decay memory vector for a delay winldagth,d > 1, is an absolute
record of previous actions is taken which can be utilizedHsyrecurrent neural network with a
greatly reduced risk of ambiguity or misinformation to viitlal prior times steps.

One problem that results, however is the window length, dneimory observation is always
restricted to some finite number, and any memory activatiecsrded d+1 time steps prior will be
lost to the recurrent neural network, essentially fallifigeoge of the proverbial “sliding window”

of action history. One way this could be addressed is to mlagdinal (t-d)th memory module

25

Agent
reward state

] s[t] action
SRR alt
rt+1] s[t+1]

|-

Environment

Figure 2.7: Reinforcement learning framework.

an exponential decay memory vector just as previously dssl In this manner, the recurrent
network readily remembers and can act on outputs it made foribe t-d-th time step in fostering

better subsequent decision-making as opposed to forgéttat information entirely (Figure 2.6.)

2.3 Reinforcement Learning

Reinforcement learning is generally the method of choicenath&ining agents to acquire good-
to-optimal behavior in an external environment. In thisiieavork (see Figure 2.7), an agent, once
presented with the current state, generates an action iartvieonment. The environment then
returns some numeric score to gauge the effectiveness aidinen performed. The controller
must then modify its own internal state based on this reyartiity signal such that, during this
learning stage, it would be more apt to select this actiomergithe same input if a high score
(i.e. reward) was achieved. Similarly, it should be lesstagelect this action if a low score (i.e.
penalty) resulted. The goal of the learner is to construad@imal policy which it could use to
generate behavior which would eventually yield the optioradlesired outcome at some point in
the future.

Many successes have resulted in the use of the reinforcdesning techniques. Two very
early successes include Samuel’s checker playing progs&inaind the pole balancing solution

[31]. One of the more famous successes is the TD Gammon pnogheach, in playing itself over

26

one million times, has learned to play backgammon at anmeiehigh level and has gone so far
as to significantly change the way the game is played by backgm professionals and masters
due to novel ways it has found to win [61].

Shortcomings do exist, however, with the reinforcementrieg paradigm. For one, there
is currently a variety of issues such as the credit assighpr@blem [33] and the exploration /
exploitation dilemma which make this a difficult method tostea for just about any complex
learning task. The credit assignment problem is significarthat it deals with the issue of as-
signing credit or blame accurately to each action taken bygamt in the environment. There are
potentially countless combinations of actions an agental® in the environment and it is often
very difficult to reward or penalize an act based on the endltre$ a sequence of actions. As
such, many beneficial actions can be unfairly penalizedemolunterproductive actions may be
rewarded just because of how well the sequence of actionsihvthey belong scores using the
environment’s evaluation function. Many methods have leposed to help solve this issue but
it is still a concern and an active topic of research withmfileld of reinforcement learning.

The exploration vs. exploitation dilemma is also an issumantered often in reinforcement
learning implementations. A reinforcement learning agerploiting only the best sequences
of actions it has encountered, could ensure convergencente solution but, without further
exploration of the space of actions, cannot guarantee aptimeven good solutions. Texplore
the action space of the learner would increase the liketihaiofinding good action sequences
through searching and evaluating the entire action spacsvetkr, without exploiting the good
solutions found, the agent runs the risk of never convergimjeven possibly “forgetting” the good
action sequences previously discovered.The most signififvardle, however, unlike traditional
supervised learning techniques, is that a controller iggnaranteed to find an optimal, or even a

good, policy using many of the popular forms of reinforcetiearning.

27

Figure 2.8: SOM which examines worldwide poverty by regi@@aken from http://www.cis.hut.fi/-

research/som-research/worldmap.html)

2.4 Self Organizing Maps

2.4.1 Description

Self organizing maps (SOMs), inspired by map formation pheena found to occur in the pri-
mate cortex, are very effective tools for clustering unknatata as well as being an effective
method for visualizing groupings of high-dimensional ibgata in two dimensions. The design
of the underlying dynamics of these self-organizing maps mativated by the way neurons are
believed to form associations with other neurons in thelbrihneHebbian rulesuggests that when
two neurons fire simultaneously after being presented waithesinput stimulus, their connection
is strengthened ([]). Similarly, in SOMs, connections betw computational neuronal elements
in the input and output layers are strengthened when thegifiraltaneously in much the same
manner observed in cortical neurons of the brain. This raded the Hebbian rule, forms the

basis for very powerful neurally-inspired unsuperviseathéng methods.

28

2.4.2 Hebbian Learning

A self organizing map is designed to have a number of outputat@lements, or nodes, which
take input from all values in input vector X. The output néw@mputational elements are subject
to a neighborhood function which dictates how neighboriodes are adjusted based on proximity
during training to the winning node. Each neural elementg &ssociated with it some weight
vectorw;; wherel < ¢ < n (n being the number of inputs) and 5 < m (m being the number of
nodes in the SOM). Each weight vector that corresponds toihelement lies in the same vector
space that the input vectors are in. The weight vector cambsidered a representative vector of
the node with which it is associated. “Training” in a SOM eg&#dly consists of conforming all
weight vectors to represent in the two-dimensional lattéggons in the space of input data.

There are various ways to select winning nodes in a SOM. Oneisvio employ a winner-
takes-all approach ([26]). Using this rule, the input veaostimulus is tested against the weight
vector of every neural network in the SOM lattice. The nodeséhweight vector is closest to
the input vector causes the corresponding vector to be thieari Consequently, the output at the
winning node is set to be 1.0. All other nodes in the latticesat to be zero.

Now in training, Hebbian learning dictates that the vectmresponding to the winning node
be made marginally closer to the input vector presented to idddition, the proximity of nodes
in the lattice of output elements from the winning node detees how other nodes should be
brought closer to the input vector as well. The proximityoirmhation of nodes is generally defined
when initially designing the SOM by specifying which nodesghbor each other. A very common
scheme would be to set up a two-dimensional lattice of nodeseveach element is attached to up
to four neighbors that can influence each other through teeparvised training process (In Figure
2.8, a SOM lattice of nodes is demonstrated which actuallggevery node up to six neighbors as
opposed to four). Over an extended period of training, wheighborhoods are made to decrease
gradually over time, entire areas of the high-dimensionput data space can be denoted by a
group of similarly classified neurons in close proximity tch other.

And, much like in the feedforward multi-layered neural netkvdescribed previously, a learn-

29

SOM Training Algorithm

1. Initialize SOM weights randomly.
2. Retrieve a sample input vector, x, from the input trainiagpd
3. Calculate winning nodei(x) = argmin;||x(n) —w;||,j =1,2,...,1
4. Update weight vectors of all appropriate nodes (inclgdumning
node and other nodes in neighborhogd)) :
W, (14 1) = W; (1) + 11(1)hi00/(n) (X(n) — W;(n)

5. Repeat from step 2 until feature map stabilizes.

Table 2.2: Procedure for training a self-organizing map

ing rate is utilized. The Hebbian learning update rule fodatmg the weight vectow;, of a

winning node, j, can be described as follows :

AW, =1 % (X; — W 2.12
J

J

There are many ways in which a SOM can be trained. The starmtakdure for training a
Kohonen self-organizing map is shown in Table 2.2. Note $h80OM can take tens of thousands
of epochs or more to complete training.

The neighborhood functions can be designed to take the fémii sorts of proximity infor-
mation and characteristics. They can be defined by suchabasdics as shape over an area (e.g.
box), by distance function (e.g. euclidean distance, maahaistance.) One of the more popular
neighborhood functions, the gaussian neighborhood, ia hoblean indicator like those described
previously, but an indicatof, < h < 1, of the current node’s proximity to the winning node. What
will then result over time is that regions of SOM nodes wilimiately cluster and represent high
dimensional input data in the form of a two-dimensionaidatt

Upon completing the training procedure, a mapping shoddlt&here regions of neighboring
SOM nodes are shown together which can be taken to reprdssters or categories of the input

data. What will occur after training is that the ordering aé get of neurons can visually suggest

30

~0.2 L L L L L L ,
a_ -0.2 0 02 0.4 06 0.8 1 12

Figure 2.9: These graphs demonstrate before-and-aft@sisots that signify the training of a
standard SOM designed with a 10x10 lattice of output nodese Mhat output nodes that neighbor
each other in the lattice are shown connected by a line. Pistaasnapshot of the weight vectors
plotted in%?, each representing an output node, that comprise the SQM tpritraining. Plot

b) demonstrates the self-organization that occurs folign20,000 epochs of training using the
standard SOM training algorithm of Table 2.2. The trainirgadconsisted primarily of vectors
from the set{(0,0)7, (0, 1), (1,0)T, (1,1)*} which would explain why so many output nodes

cluster around those points near the corners.

clustering information to the trainer even in the preserfogset vector input spaces. In addition,
all weight vectors representing the SOM map nodes convergerne highly-ordered spatial or-
ganization in the input space as a result of the neighborhestdctions imposed on them (Figure

2.9.)

2.4.3 Applications

Self-organizing maps have been used to assist in many areahaology. These uses range from
the creation of cognitive models of cortical map activat{tb], [48]) to the visualization of high

dimensional spaces from unordered, un-clustered datd ([38ng a SOM, the clustering of data
inputs thought previously to be unrelated can occur, cgugioupings of all types of input data

to be confined visually into a rectangular space (or map.)s fimp would primarily comprise

31

the activations of the two-dimensional lattice of intemaeated neurons in the output layer of the
SOM. When training has been successfully completed, somestazeighbor groupings can be
formed from which similarities or categorical informatioan be inferred or concluded.

Some would call this visual data mining. The advantage ofck#iag or seeking groupings
in this manner is that it is very efficient, but also that it a@ined to whatever sized 2D lattice
the trainer wants to define for it. So, in other words, the gnogs can be visualized on a 5-by-5
lattice SOM or a 500-by-500 lattice SOM. The larger one maylble to provide visually more
information or insight into the input data and may be abldassify and map much more data than
the smaller map. Yet, the smaller map would take some orderaginitude less training than the
larger proposed map. Groupings can be viewed once the SQMyidriined just much like those
shown in Figure 2.8.

The application of SOMs in the main work described in subsatjahapters is to use one as a
very simple model of associative memory storage. From tlodet) the processing and subsequent
comparison of resulting map sequences generated by ingamuhtory phoneme streams to those
already stored in the SOM model can be made possible.

The SOM can also be used to take input data and pre-procesfppat to other systems. In
other words, it can be used to cluster input data which wagqusly unclassified and take the
resulting mappings and redirect them as inputs to otheesyst In one such application, which
will be described at great length in a future section, oneaesher has a robot use a SOM in order
to ground into itself a sense of the layout of the room in whtdls expected to operate ([60]).
The robot can then use its “understanding” of the area ittesgiting to travel and make good
judgments as to where it is and how to proceed next in ordeettdogits optimal goal position in

the room.

32

X[n—-1]

¢

n-1 u[n-1
Pl] Learner [] Environment

y[n]

Figure 2.10: Basic setup for the distal learning problem. idetn, the learner accepts as input
some intention p[n-1] and current state x[n-1] and must gege@n action u[n-1]. The environment

then transforms that action in output space to vector y[d]raturns the resulting next state, x[n].

2.5 Distal Supervised Learning

In the classical supervised learning paradigm, targetooués are presented explicitly by the
teacher to the learner for the purpose of training. In the céslistal supervised learning (Figure
2.10), however, the teacher is only capable of providingrdddarget vectors which are distal
in nature to the learner and may only be realized by the ledhmeugh its proximal interactions
in an external environment. Proximal target values whi@ ganerally provided by the teacher
in the classical supervised learning framework must nowiseodtlered by the learner in order to
minimize the performance error, J, over the entire systefearher plus environment. Here, the
learner, which produces proximal action u, can be charaegiby the function: = h(p, z,w),
while the environment accepts the learner’s proximal actip and produces the actual distal out-
put, y. Here, x is defined as the current state informatiod tsguide the learner and w represents
the learner’s weight vector.

One such example of a distal learning problem in which ordyaditarget outputs are available
is provided in Jordan [23]. He describes a scenario of a bakelayer who intends to shoot a
ball through a hoop. The correct series of proximal acti@am$hjs case, arm muscle commands)
must be learned in order to propel the ball through the aireamdronment into the hoop. Only
the distal end result of the player’s actions (“the sightd sounds of the ball entering the hoop”)
is accessible from the environment for calculating pertmoe error. An appropriate proximal

sequence of motor commands to achieve the desired goal @vadable for training from the

33

teacher. ldeally, providing the desired distal target ltesfithe sensation of the ball going through
the hoop along with the input of the current position of thé imaspace used together with the
intention to shoot the ball into the hoop must suffice for the/er to acquire the desired proximal
behavior.

In order to train the neural network in this setting using siupervised learning paradigm,
Jordan et. al [24] introduces the idea of training an add#icneural network to model the en-
vironment. Once trained, this additional neural netwot&o @iven the ternforward model can
then be used in conjunction with the system’s performanag & train the learner. This forward
model can be described by the functipn f(x,u,v), where v is the weight vector of the forward
model and x represents the current state. Once the forwadeInssufficiently trained so that its
predicted outputy, is within some acceptable error of the actual output,e/,(i/.vhenf is capable
of approximating the environment closely) effective tragnof the distal learner can be achieved
(Figure 2.11). To train the forward model, any number, m,asfdom actions can be generated,
{u;|1 <i < m}, from the proximal output space of the learner and run on tiv@@ment. The
resulting outputs in environment spagg;|1 < i < m}, can be used as target outputs to form in-
put/output pairg (u;, 7;)|1 < i < m} to train the forward model using standard back propagation
methods.

Training cannot occur in distal supervised learning usiggagion 2.3 as there is no way to
calculateg—i directly, where the environment function is unknown. Hoesmvn substituting the
forward model for the environment function, we can now sty for y which, after applying

the chain rule, yields the following learning rule:

Vil =~ 5 30 4] — gl 214

Here,% refers to the gradient of the learner’s output, u, with respeits weight vector, w. The
term % refers to the gradient of the forward model’s output withpess to its input. Equation 2.4
can then be used in the same manner to update the learnegistwector, w.

A key component in creating a system such as this is how efédgtthe forward model is

34

X[n—-1]

N
p[n-1] Learner ‘ u[n-1] Forward y[n]
! Model
B = y[n]
x[n-1] yin] - yin]
e A
pln-1] Leamer 4Nl Forward- i
! Madél
R Ty > y[n]

Figure 2.11: (Top) Distal supervised learning framewor&veh here where, once again, the in-
tended distal learner accepts as input intention p[n-1] aptonally, state x[n-1] from the envi-
ronment and responds with action u[n] which is simultanBosent to the environment and the
forward model to generate, respectively, not only the daugput y[n] (shown in 2.10) but pre-
dicted outpufy[n] as well. (Bottom) Training the distal learner requiresgmgating performance
errory*[n] — y[n] back through the forward model in order to approximate ttzelignt direction
for the sum squared error function essential for effecfivgldating the weight vector of the distal

learner.

trained. A forward model must be sufficiently trained to pcethe correct output of the actual
environment to effect meaningful weight vector updateshtdistal learner. However, an inter-
esting consequence of this framework is that, even if a fotwaodel is not completely trained,
the learner can be shown to retain or even continue to leaddkired behavior throughout the
distal supervised learning training procedure. This issfiids since the terniy*[n] — y[n]) used

in training the distal learner approaches zero when theabetwironmental result of the learner’s
proximal action(s) closely approximates the desired bDist@ets (i.e. correct proximal actions

are being generated to produce near-optimal distal oytpéitsa result, due to the error gradient

35

O00O0O
OO0000O

5)

c){ —\
Environment }

o

Figure 2.12: Standard setup of a distal supervised learsystem utilizing feedforward neural

networks for distal learner and forward model structures.

calculations of equation 2.14, the learner’s weight veotonains mostly unchanged by equation
2.4 so that the learner will continue to exhibit the sameexdirproximal behavior. As such, the
distal learner and the forward model can actually be tragmeailtaneously and in series with each
other.

Distal supervised learning methods have been used in gengloeural networks which can
serve as continuous inverse mappings of environments tigeglaced in [24]. In addition, this
method of training neural models can be quite pertinent mmatational brain modeling as for-
ward models are being shown more and more to exist in the hionzam. These real life forward
models, believed to exist in the cerebellum, are thougheteesvery similar purposes to those used
in computational distal supervised learning studies.)dhey are shown to be useful in learning
to anticipate the distal consequence of proximal neurab@€tfor use in various cognitive mo-
tor function development tasks such as motor control anddpacquisition ([3], [4], [70], [71],

[72]). Developing learning agents to handle these typesablpms is hardly an exact science.

36

Up until now, absolute success has been demonstrated ifyrsmsple environments and limited
success shown in the more difficult environments. A subistiearnount of work must still be done
in making distal supervised learning a viable model of dst@ervised learning problems such as

cognitive function acquisition.

37

Chapter 3

Recurrent Distal Supervised Learning

In this chapter, a modified method of distal supervised legris presented to address learning in
sequential environments. These sequential environmeanteagigned to accept not a single action,
as in typical distal learning problems, but a sequence defrom an agent to then, in turn, yield
an equivalent-length sequence of distal consequenceseliaime modifications entail replacing
the typically non-recurrent distal learner and forward eldded-forward neural networks of the
existing distal supervised learning framework presenieddrsdan [24] with recurrent neural net-
works. These recurrent networks are capable of utilizingnkadge of past internal states and/or
previous actions taken in order to better acquire and pm®daoect proximal sequential behavior
while operating in a sequential environment, even whenetiirstate information is not present.
Also presented is a version of teacher forcing | modified fee in assisting the learning pro-
cess of a recurrent distal learner. Lastly, the effectigsrtd the proposed system is demonstrated
on a sample case of recurrent distal supervised learnimg @ssequential environment which is

designed to be predictable and easy to comprehend for anglyarposes.

3.1 Motivation

In most studies involving distal supervised learning, therent state is provided by the environ-
ment at every time step to the distal learner. This curretéstector typically summarizes where

the distal learner is as the latter acts progressively imaim@ment en route to potentially accom-

38

plishing the end distal goal through its progression . Fetance, consider the ball-tossing distal
supervised learning scenario provided by Jordan [24] whererson sets out to learn how to pro-
pel a ball into a basketball hoop. The single distal targat gought by this learner in this scenario
entails the sensations which accompany the ball enteriadhtiop. The proximal actions here
provided by the learner comprise the series of arm commaegisred to propel the ball through

the air. The current state information required by the leafrom the environment throughout this
task would be the position of the ball in the learner’s vidiedt that results after each arm motion
is performed.

Note that the current state provided at every time step shmeildistinguished from the distal
sensation or result occurring in the environment. The cuirséate is merely information used to
assist the learner in acquiring and generating the corresirpal behavior and, technically, can
be potentially considered optional and done without (elgooting the ball into the hoop with
closed eyes) if the input vector is dynamic and ever-chanpgwnoughout the task. Conversely,
there will always be a distal consequence in the environméanth follows as a result of one or
more proximal actions from the learner.

However, if such current state information is not availaiolde presented to a typical distal
feedforward neural network which utilizesstatic and unchanging input vector, learning to pro-
duce meaningful proximal actions would be hindered treroasly. In other words, given a single
static input stimulus, training a standard neural networkroduce a series of differing actions
in order to produce a desired output sequence in environspate would be nearly impossible.
With no current state information with which to tell wherésiin deciding on the correct sequence
of moves to enact, the neural network will not be properlyipped to provide differing proximal
actions over time to eventually realize the desired distdhp The lone exception could result
if a single proximal action produced repeatedly could atityeyield the desired series of distal
consequences in the environment.

Some method could be developed which would enable a “seg#-heural network to consider

39

its own “memory” of actions taken up to this point,

At—l - {ula Uz, ..., ut—1}7

in order to better identify an appropriate subsequent actig en route to devising some correct

series of commands,

A ={uy,ug, ..., u,},

needed toward achieving the distal goal. For some timermectneural networks have been devel-
oped and refined extensively to do just this. However, supetMearning methods for recurrent
neural network architectures in distal problem domainsiireqg to operate in complex external
environments had never been previously addressed.

In addition, there exist problem domains where some accolitite previous actions taken
must be utilized in the learning of the task. In Ziemke [78}, €&xample, the author demonstrates
that recurrent neural networks, in their use of contextatdrnal information, are better suited
than standard feedforward neural networks in many domagsiring sequential outputs. It is
therefore natural to wish to extend these capabilitieseadibtal environment interaction domain,
where many very difficult yet pertinent problems exist.

The purpose of the work presented in this chapter is to detratagprocedures | developed
which are capable of training recurrent neural networksrtmipce a discretized series of correct
learned actions from a single intention which will ultimigteause a very specific series of desired
consequences to result in the environment. In adding recayrto the neural networks used in
distal learning for this purpose, the idea is that these-stelllied sequential generators will be

considerably more effective in achieving such behaviagijFe 3.1).

3.2 Forward Model as a Recurrent Neural Network

In a distal setting, the recurrent neural network will requihe ability to, given a single input

stimulus, produce appropriate sequential behavior whathidconly be evaluated in the space of

40

©oop

©
O00O0
O0000O
<>

~

> (Sequential),y

Environment

\/K/\)\/

Figure 3.1: A more telling visual depiction of recurrenttdissupervised learning. Given a static
single intentionp, as input, the recurrent distal learner (a.) will look to geate an action se-
guencey, of n vectors. This action sequence is accepted simultateby the environment (c.)
and the forward model (b.) attempting to model the enviromm&/hat results are output vector
sequencey/ andy from the forward model and the environment, respectivehesk sets of vector
sequences are compared to the set of desired distal veqteerssesy* (not shown here), and ef-
fect parameter changes of both distal learner and forwamkeito eventually yield an effectively

trained recurrent distal learning neural network.

41

the external environment in which it operates. Its corresioprgy forward model, precisely as the

environment it looks to emulate, must be able to accept aesexguof proximal actions and map it

into a distal sequence as accurately as possible for it téfbetige. Standard feedforward network

architectures are currently not sufficiently equipped tahds effectively. Just as the sequential
environment used must both accept temporal sequencegp(ogimal action sequences from the

learner) and produce temporal sequences (i.e., distalbsgmuences in the environment), the
forward model whose purpose is to emulate the latter mustlssdesigned as a recurrent neural
network which both accepts and generates temporal seqgiddoeever, since the particular distal

recurrent learner studied here accepts only a single irpopposed to the sequence of vectors
accepted by the forward model, two different recurrent aknetwork designs are addressed.

Using recurrent forward models in distal supervised leggns not a new concept. Tani [60]
used recurrent forward models to learn traversal trajexgon training a robot to learn to get to
some goal location from an arbitrary point in a room. Jord24] puggests the use of recurrent
forward models in training a standard feedforward distalraenetwork guided by current state
information to learn to reproduce specific distal trajeie®effectively. Neither model, however,
addresses generating correct discrete proximal sequbahavior minus current state updates as
both continue to rely heavily on receiving streams of cdrstate information in their design.

In this work, recurrent forward models can take the form ad@dn network, an Elman recur-
rent neural network, or even possibly a hybrid of the two {6ec2.2.) The task of the recurrent
forward model will be to learn to approximate as closely assgiae the sequential mapping of the
actual environment. Toward this end, the recurrent forwaadiel should take in sequential ac-
tions and, ideally, should return as distal sequencesg@igoivhat the environment would. When
it is trained sufficiently to do this reasonably well, theugent forward model should be able to
assist the distal recurrent neural network in learning tmlpce the correct set of proximal actions
needed to yield the series of distal outcomes the traineekisg. Current standard neural network
gradient descent methods are all that is required to trameburrent forward model here (Section

2.2)

42

Ideally, should the forward model be capable of modelingagheironment relation entirely
and correctly, the correct proximal behavior of the distgurrent learner from a single static input
can be learned more readily. However, the combination off@mment relation and current state
function can become exceedingly complex and, hence, egtyediifficult to learn. In this case, as
long as the forward model can learn to produce the corretaldissired consequences when given
the correct, though previously unknown, proximal outpueance, it should be better equipped to
train the distal recurrent network.

Training the forward model sufficiently to, in turn, get tle&afner to generate the correct prox-
imal behavior is still a subject of study. Experimentati@m de used to determine things such as
recurrent network type (Jordan/ Elman), length of trairtinge, hidden layer size, neuron output
functions, best gradient descent training method, etc. @aist be exercised in ensuring the for-
ward model is not overtrained and can generalize as bestsasbpoto the environment relation.
To be ultimately successful, as mentioned before, the fiahweodel should be able to map closely
the sought-after proximal sequences to the desired desalesices provided by the trainer in order
for it to provide accurate error signals in training the tesar This accuracy desired of the forward
model can actually be achieved either in training beforemaukaneously while training the distal
recurrent learner.

Let U be some action sequence in the learner’s proximal outputespich would yield

sequencey;, the i-th target distal sequence provided in environmeatsp

Env(U}) =Y.

(2

The goal of the recurrent distal learner is to adjust its Weggarameter sufficiently such that it can
produce sequendg’ to within some acceptable root mean squared error (RMSE) jpresented
with single vectorp; as input. Note that, if the environment function is not oaehe, many
action sequences can potentially be mapped to the samediekstal trajectory. However, any
given forward model can guide the distal learner to only oimeimg solution. Conceivably, with

unlimited time and resources, the forward model could axaiyt make its way to obtaining the

43

correct target mapping frofi* to Y; in a variety of ways. ldeally, the forward model can go about
doing this by learning to generalize the target mappingudhats training from arbitrary proximal
/ distal trajectory pairs obtained via random sampling adpiced from the learner.

For truly complex environments for which generalizationynb& difficult, actually being ca-
pable of mapping the unknown yet sought proximal action eege,U;*, and mimicking the target
mapping that way could suffice. To one extreme, one couldguostre that the forward model
knows to transform the “correct” proximal behavior to thetdl sequential desired outcomes by
representing them as input / output pairs somewhere iraitsitig data. This is under the assump-
tion that the correct proximal sequential behavior is akdé for training a priori, which is often
not the case and sometimes defeats the purpose of devekpmhag system.

In addition, to aid the recurrent forward model in learnihg environment mapping, teacher
forcing ([67], [69]) can potentially be employed if the Jardarchitecture is utilized. In this case,
since the desired sequential outputs for the forward maget@own already (they are merely the
actual sequence of distal outcomes resulting in the enviesrt from the same proximal actions

used as inputs), the forward model can be trained in that Brann

3.3 Training the Recurrent Distal Learner

The distal recurrent learner is trained in much the same wayha standard feedforward distal
learner. The recurrent learner is trained through intevactith environment and forward model

just as it is for the non-recurrent case. The primary diffieess lie in the structures of the learner
and forward model, which both require exponential memogtaes (i.e., context or state layers)
for tracing the history or action path taken thus far. The menvector can reflect an exponen-
tial trace, meaning a decay term may be applied to the menentprat a subsequent time step
before adding the latest action to it. In the case of expaaleinace vector, a limited amount of

previous action taken can be reliably considered in makuigsequent action, much like in the

non-distal case described in Section 2.5. The only diffezemould be the existence of the forward

44

X[n—-1]

N
p[n-1] Learner uln-1] Forward y[n]
Model
x[n-1] yIn] - yin]
pin-1] Learner uln-1] Forw§[d/ y[n]
Modeél

u*[n-1]

Figure 3.2: (Top) Distal supervised learning frameworktfaming a recurrent neural net to learn
proximal sequences which ultimately yield desired seqakotitcomes in the environment. Here,
the forward model is also a recurrent neural network. (Bo}tBmoposed training procedure for

the recurrent distal learning paradigm

model necessary for training in the distal setting. The fodvmodel can be used to transform
errors from the distal variable space of the environmenhéroximal action space of the dis-
tal recurrent learner. This can be done efficiently much file standard, non-recurrent case by
propagating these differences between desired and peddiejuential outcomes back through the
forward model. However, since the forward model is knownaadxcurrent as well, the backprop-
agated error signals need to consider what was output pgyiin order to propagate back the
correct information. Here, the memory module can take inptleeious internal state or memory
activations and utilize that in order to propagate coryettié right error.

One issue that arises in training forward models stems flendifficulty that standard neural
network architectures have in retaining previously ledrngppings or trained behavior while
adopting new ones. In this case, storing previously seémritainstances for continued training

in ensuring an appropriate amount of retention of the enwrent function landscape can be a

45

good remedy. In training the forward model repeatedly ndy on new actions produced by the

learner but in retaining recent and promising proximaladj effective training can be ensured.
Here, once again, caching these training instances in a@wgl an efficient forward model may

be key to training the distal learner in complex environreemrtd in no way compromises the task
of having the latter determine on its own the correct set okipnal actions to take. As the correct

answers are not given directly to the distal recurrent keabait to the forward model, the training

task is still a very difficult one.

Considering the memory trace vectgr,the distal supervised learning procedure can now be
modified by redefining the parameterized function of theadlistarner to accommodate recurrent
links and trace memory from Equations 2.5-2.7 for Jordawoets and Equations 2.8-2.10 for
Elman networks. In training the recurrent neural networthis fashion, much of the same meth-
ods and formalisms identified in Jordan[24] remain intact.a¥\ib needed in order to expand the
existing procedure from the non-recurrent case (singlatismgle distal output) to the recurrent
neural network case (single input/ multiple distal outmaige is to use the recurrent forward model
to interpret the distal error into proximal error at eachcise time step of the distal desired se-
guence. This is a very challenging goal. For the purposessidlnitial studies, the distal recurrent
learner knows the length of the desired distal trajecto/ianhence, confined to only producing
that same number of proximal actions. There are other wawsdhioh the distal recurrent neural
net may be trained to execute the correct number of actiondigR44]) which will be addressed
in subsequent chapters. For now, it should be sufficient éotlis length of the desired output
sequence as the number of proximal outputs required frordighal recurrent learner to yield the
correct behavior. This can be done by assuming that a neanaistinecessary for a new distal
outcome to result in the environment. This assumption camdee valid if no major changes in
distal consequence can occur without the learner’s dinéetvention with action.

Every distal training pair in this particular study is as®ehto associate one fixed input stimu-
lus, p, with some varying length distal desired sequence |lY contrast, in standard distal learning

studies, such as those proposed in Jordan[24], trainimg paly have a single inpup, associated

46

with a single distal output textbfy In order for this to resemble the standard distal learnnabia
tecture, it will be sufficient to first “unfold” the single inp vector to the recurrent neural network
into a comparable multi-vector sequence of inputs, eactesponding with one known output of
the distal target trajectory. Each of these new input veoctauld now include the corresponding
contents of the memory vector at that particular time stegether implementing a Jordan or El-
man architecture, as well as the original fixed input veckbe combination of input and memory
vector contents from the i-th time step makes for a new inpatar which can be uniquely associ-
ated to the environmental outcome at the same time step ietieed distal output sequence. In
addition, as implied previously, they should number to asynaectors as there are in the target
trajectory. As a result, the distal recurrent learner sthdnd able to differentiate between stimuli
while keeping in mind the memory trace of previous actiokemaup until this point.

When concatenating the context history veckprto the single input vectop, at every time
step, t, a new sequence of input vectars= p[1],p[2], ..., p[l], can be constructed for training
the recurrent distal learner. The input sequence, P, witilmer in length the same as the desired
distal output sequenc&;* = y*[1],y*[2], ..., y*[l]. Each newly concatenated input vectojr] in

the newly constructed input sequence can be defined as ®llow
plt] = [p.x], 1 <t <L (3.1)

where | is the number of vectors in desired distal output sege,Y *. As a result, all correspond-
ing input / output pairgp[t],y*[t]),1 < t < [, can then be used for training using the standard

distal supervised learning procedure (Section 2.5).

3.4 Approximated Teacher Forcing

In implementing a recurrent network, it is known that all\pois outputs of the network have a
hand in determining the network output at the next step. Eérfollows naturally that if any pre-
vious network output is erroneous, learning of any subsatouatputs will be seriously hindered.

Until the network outpuy(¢), 1 < t < [, of sequence length | is produced correctly, acquiring the

47

correct mapping to subsequent outpyts+ 1),y(t + 2), ..., y(I) becomes increasingly difficult.
Implementing a learning scheme in which the teacher can é&attual outpuy(¢) to, instead, be
the desired output*(t) before learning desired outpyt(¢ + 1) could potentially be significant in
alleviating this problem. Doing this allows for learningparallel of all vectors of a target output
sequence simultaneously rather than having to wait folovexitputsy(0), y(1),y(2),,y(t — 1)
to be sufficiently correct before training on outpuft). Such a scheme is often referred to as
teacher forcing([39]). Note that here the Jordan recurrent architecturesesl, as opposed to the
Elman network, as only the external outputs are requiredraodrded in the exponential trace
vector of the Jordan network. Teacher forcing would haraiypbssible in an EIman network as
there would be no way in advance to know what the actual iredrate layer activations at any
arbitrary time step t should be en route to acquiring corsequence generation capability.
Teacher forcing is a powerful tool which greatly assistshia training of recurrent neural net-
works. The trouble is that teacher forcing as discussedqusly cannot readily be used to benefit
the training of a recurrent neural network in a distal sgttiNamely, knowledge of the correct
proximal output sequences for the recurrent neural netwgor&quired in order to provide accu-
rate trace memory vector contents to significantly hastnitrg. By definition, this information
cannot be made available to any distal learning framewark#&ning of a recurrent distal learner.
What can be done, however, is some approximation of the dgoregimal sequence can be
developed to substitute for the actual, though unknowrrecbiproximal sequencé}*. En route
to deriving this approximation t&', the following set of equations restate the derivation afive
changes for a standard feedforward neural network from tttee ealculation,.J,,, at time step n

(Equations 2.1-2.4.)

I = %(ﬁ*[N] —)" (¥*[n] — ¥in)),
oy’ . ~
Vadn = o (Y'[n] —Ynl),

48

When training a distal learner, calculation of the weightatpdabove is restated as Equation
2.14,

auT@T

Vs = “Ow Ou

(Y'[n] = Ynl),

but since the environment functiogi, = Enuv(U) is unknown, the gradient terrfdy/ou) can-
not be calculated directly. However, according to Jorda}, [the gradient ternfdy/ou) can be
computed for a forward model neural network trained to mithat environment and taken as an
approximation of 0y/0u) thereby yielding the distal learner update rule,

auT@T

_’Jn ~ —
Va ow Ou

(Y [n] = ¥ln]) (3.2)

Here, | define a new termd\0, used to describe the error correction obtained once tHierpgance
error vector,Ay = y*[n] — y[n|, is propagated through the weighted connections of thediatw

model,

Al === Ay (3.3)

Vid, = —— Al (3.4)

If we do indeed considehu as a sufficient estimate of the difference between the rectdistal
learner’s output and the correct, yet unknown, proximabacat that time step, a fair approxima-
tion of some correct proximal sequenég, can be defined ds = 0(0), 0(1),0(2), ..., a(t — 1),

where :

(i +1) = (u(e+1) + Aa(i + 1)). (3.5)

Here,Al(i + 1) is the vector of predicted proximal error obtained by prayugy distal perfor-
mance errofy*(i + 1) — y(i + 1)) back through the trained forward model. This vector, known a

the error vector used in effecting weight updates in themrect distal learner, can be thought of

49

as an approximation of the difference between the erronpamsmal outputu(i + 1), given by
the learner and the correct but unknown outptit; + 1). Assuming the forward model is trained

effectively, their sum should come close to the correct pnak action required at time i+1.

Therefore, though desired proximal output sequédntes not directly known in order to con-
duct true teacher forcing in the context layer of the reaurdéstal learner, its effect on the trace

memory vector can be approximated as follows:

X(t+1) = (Gt + 1)) + ax(t) (3.6)

=(ut+1)+A0(t+1)) + ax(t) (3.7)

wherex(0) = 0. In other words, the idea is that approximated teacherrigrfcquation 3.4) can
be used in the place of standard teacher forcing (Equat®i)2even when given the situation
where desired proximal output sequences are not availabledining. This hypothesis will be
tested and shown to be effective in the various recurremaldssipervised learning applications
covered in this work. The entire algorithm for training augent neural network is listed in Table

3.4.

3.5 Use of Time Delay Memory Structures in Recurrent Distal
Supervised Learning

In looking to utilize past output history in computing sugsent actions, one can potentially utilize
delay-line memory structures instead of, or in conjunctigth, the exponential trace memory
input vectors described previously. Like exponentialéraemory vectors, the use of such delay-
line memory structures would be a straightforward extamsibwhat was described already in
Section 2.2.2. In merely copying the contents from the gmpate hidden or output layer to
the first delay-line memory vector and propagating thoswat@ins one-by-one with subsequent

discrete time-steps, one can potentially arrive at the dagnefits as those one would expect in a

50

Training Procedure for a Recurrent Distal Learner

RDL(g, h, Env,p, Y*)
1. Pre-train forward model
2. Single-input / single-output re-assignment -
Given :e training pair -< p,Y* >
e Input-p
e Distal Output Sequence,¥= y*[1] y*[2] ... Y*[K]

e Initial memory vector m(0) =0

3. For each distal targgt|i], 1 <i <k
4. Update inpup, with memorym(i-1): p, = concat(p,m(i — 1))
5. Compute:

e recurrent learner output sequeng@) = h(p,,w),
given inputp, and recurrent learner’s weight vector
e distal outputy(i) = Environment((i))
e estimated distal outpug(:)
6. Compute distal erroiAy = y*[i] — y[i]
7. Estimate learner (proximal) erraka = —%Ay
8. Calculate and apply update to weight veator
o Vyd,=—2L0Ay = —0uAg
e W=wW-+aV,J,
9. Update memory layen, 0 < 5 < 1:
m(i) = u(i) + fm(i — 1)
or m(i) = (u(i) + Au(i)) + fm(i — 1) (approximated teacher forcing)
13. Re-calibrate recurrent forward model : (train-om (i), y(i) >)

14. Endfor (step 3.)

Table 3.1: Training procedure for a recurrent distal learne

51

simpler non-distal sequential problem domain.

However, one issue that arises in this context is the useaohes forcing ([67], [69]). Teacher
forcing can be readily used in tapped delay-line memoryieafibns in non-distal recurrent net-
works since the immediate desired behavior is known to @iedr and can be subsequently fur-
nished to the first delay line module to effect training spgeth learning the desired sequential
task. However, in the distal recurrent supervised leardomgain, once again, the desired proximal
behavior is probably unknown to the trainer. In this caspra@ximated teacher forcing can be uti-
lized in the training of the recurrent distal learner to wétaduld amount to improved performance
over much of the run. Here, given the estimated proximalgnmavided by the forward model, the
desired proximal action can be approximated and placed @dékay-line memory queue in the
same manner as in the non-distal case. Figure 3.3 demasséiaexample recurrent distal super-
vised learning architecture in which the recurrent distarher is outfitted with some number of
“tapped” delay-line memory vectors in the same manner asd@ssribed in Section 2.2.2. In this
particular example, the recurrent forward model is not gidelay-line memory vectors to work
with. It is, however, not the case that recurrent forward et®dould not be given this capability

as well.

3.6 A Distal Sequence Generation Task Using a Simple Envi-
ronment

For the initial work addressing supervised recurrent ndtearning from distal target sequences,
a simple system is demonstrated. Here, a sequential neeinabrk is trained in a simple en-

vironment whose characteristics and properties are weletgtood. This distal recurrent neural
network learns to generate varying length discrete actgiences when given single static input
vectors. These action sequences ultimately yield the elbsiistal target sequences provided by

the distal teacher when executed in the environment.

52

9

oA
a) ® b) ! O |
D) ! !
S [olal(S)
SCendeiEc
di(e! 9

c)

—

Figure 3.3: An example setup of delay memory layers in usénbydcurrent distal learner. Note:
delay memory modules can be added to either or both recutistat recurrent learner and forward
model structures as required. In the case shown here, oalyeturrent distal learner is given

delay-line memory layers.
3.6.1 Simple Sequential Environment for Preliminary Study: Concatena-
tion

| sought to identify initially a less complex environmentiain could serve as a first test to verify
that the proposed approach to recurrent distal supervesedihg would perform as hypothesized.

Such an environment would preferably possess these piegert
1. There is an intuitive series of outputs given a sequenagoot vectors.

2. Thereis a one-to-one relationship between the inputsespiand the output sequence space.
In other words, given a valid sequence of outputs from thérenment, only one possible

input sequence could generate it.

53

The environment mapping’*, used here (illustrated in Figure 3.5) is merely one whiaeats
a sequence of input vectofs, 7, ... , 7} and produces a corresponding list of output vectors
{1, ¥, --- , U} Where eachy; is a vector consisting of a concatenation of the inputs Sees far

plus a series of trailing O’s to fill the remainder of its cartie if any. This can be described as

follows:
T
Ty
fF{@, 22, ... Z}) = {th, %o, .-, Uk}, where gi=| 7 |, 1<i<k<ec (3.8)
0
0

Here, k denotes the number of vectors in the input sequendenaies the length of any input
vector, and ¢ denotes the maximum length allowable for antispquence to the concatenation
environment. Each input vectayf is a column vector such that € ™ while the resulting output
vectory; will be a column vector such thgt € R,

The resulting output vector will always have length equewalto the product of the length of
the input vectors and the maximum sequence length pos#ihieentries in the vector which are
not filled in through the concatenation operation are mesetyto zero. The length of the resulting
output sequence from this environment will equal the nundferectors in the input sequence
presented to it. This constructed mapping is demonstraigtia example of Figure 3.5 for a

maximum possible sequence length of 4.

54

Env 55! 143, L11] — o | |74z | a3
;02 188, 6L 0| |88 | .88
cC = ==

0 0| | 111

0 0| |i61

Figure 3.4: A simple illustration of the sequential concat#on environment. Above, the envi-
ronment function is shown taking each vector in the inputisege in order at each time step and
concatenating it to all previously seen input vectors tonf@r new vector in the output sequence.

Varying line-styles (dotted, dashed, and dot-dashed)rapayed to

One key property of this environment is that there is only mpeit sequence which can yield
any legal output sequence. This property greatly simpliiedearning task of the recurrent neural
network situated in the environment aided by the forward ehod his is because the forward
model will be able to propagate back to the learner only miairon which it can use to learn the
precise sequence it needs to produce. If it were possiblave many potential input sequences
yield the same desired distal sequential outcome in ther@amvient, the forward model could
assist the learner in learning to reproduce just one suchirpab sequence. However, it would be
very possible for the produced sequence to be something ththe the desired proximal set of
actions should a very specific proximal output be expectdus iB only an issue in this setting
because, in this particular exercise, proximal accurakgysn measuring success for this method.
The main properties of the environment ensure us that theifgpproximal outputs needed to
produce the desired distal sequences are readily derif@blese in measuring performance. In
many other domains which utilize a distal supervised legyfiamework, one-to-oneness from an
environment’s input to its output space is much less of ameiss

Shown in Figure 3.5 are sample input/output sequence otters of the concatenation envi-
ronment mappingf™*, (shown as black arrows) used to demonstrate the effeetbgeof the recur-

rent distal learning architecture. On the bottom are thraenple discrete input vector sequences

55

10000010110000000111001011010100
: +
10000010110000000111001000000000

R 0lOOOOQOOllllOQlOOlOOOllOOOOO(

10000010110000000000000000000000; 6101 19100001110000000000000000@10000000111.10010000000000000C
: + ; +
10000010000000000000000000000000000110100000000000000000000000®1000000000000000000000000000¢

1 1 1

119&0100 0009}110 00199011
01;&0010 10001101 01111001
llQPOOOO 0106b000
10000010

*
*.

*
Y— Y— Y—

Figure 3.5: Three of the ten input / output sequence paird ustraining the recurrent forward
model for the distal concatenation experiments of Sectién Just like the example mapping of
Figure 3.4, the concatenation environment (shown as tlok blgward arrows) accepts each of the
three sequences of vector inputs, each of which being aybireator of length eight, and trans-
forms them into corresponding concatenated vectors ofdheessequence length but containing
vectors of length 32. Dotted lines are used to delineatedheatenated inputs within the resulting

output vectors

each having vector lengths of eight but varying in sequeeiegths of four, two, and three, respec-
tively. The arrows denote the mapping (described in Equegi6.1) of these input sequences by
the concatenation environment to distal output vector seges having the same sequence length
but all containing vectors of length thirty-two. The thre@ximal / distal sequence pairs shown
above are examples picked from the actual ten used in thienimaly experiment outlined in Sec-
tion 3.6. To successfully accomplish this distal sequélganing task, ideally the recurrent distal
learner will learn to produce the correct proximal outpujsences (left) when presented with the
single static vector (not shown) associated to the targédldiutput sequence (right). Performance

results of the model are shown in Figure 3.6.

56

3.6.2 Experiment

The distal recurrent supervised framework shown in Fig@&dsand 3.2 is used in this initial

experiment where the distal learner and forward modeld) bsturrent Jordan networks, are set
in series with each other and assigned random initial weigfihe external environment is the

concatenation mapping as described in Section 3.6.1. Tefngalength vector sequences are
generated randomly in the output space of the learner andded as the desired proximal output
sequences for testing the accuracy of the learner throughedraining process. These ten action
sequences are then mapped by the environment to ten disfalt@equences, each having the
same sequence lengths as their proximal counterpartshvainé stored and used as the desired

distal outputs for the study. Ten static input vectors offtren [0, ..., 0, 1,0, ..., 0], where j is the
N—— =

(-1 (n—j)
jth input vector and n is vector length 10, are associateddddn distal output sequences as input

/ output pairs. The task is to see if the distal recurrent alesetwork can learn to produce the
original ten generated action sequences which would ylelough the environment the desired
distal output sequences given the ten static input vecwrguhe proposed framework.

To begin the simulation, the forward model is first trained 600 epochs on 1000 varying
length input / output sequence pairs, 990 generated rarydaod the ten generated sequence pairs
discussed previously. The idea is that the better the restforward model is trained to model the
concatenation environment, the more efficiently the remirdistal learner can be trained. Then the
distal learner, presented with a static input vector, pcedwa vector sequence which is submitted to
the environment to yield thactual output sequencg. The same vector sequence is also submitted
to the forward model to yield theredicted output sequendge Both outputs can then be used with
the desired output sequenceé, o yield predicted error (yy) and performance error {yy). The
predicted and performance errors can then be used to efeeghtwector updates of the forward
model and distal learner recurrent neural nets, respégctivihe predicted error, which merely
measures the accuracy of the forward model over the inpuplbsequence pairs, can be used to

modify the forward model weight vector using standard gegatidescent methods. This can then

57

be repeated for all ten static inputs to complete the epoch.

The results shown in Figure 3.6 describe key charactesisfithe best training run for recurrent
distal learners in this learning task. This top-performiegurrent distal neural network itself used
a hidden layer of 30 units while the forward model it utilizesrks with 25 units in its own
hidden layer (indicated as 30,25 > above both graphs.) Three error curves are shown together
to demonstrate the various interactions occurring througlhe training of this recurrent distal
learner (namely the forward model error, the distal leaemesr, and the distal performance error..)

First, similar to the practice used in standard distal suiped learning, the recurrent forward
model is trained for 1000 epochs before training of the nesurdistal learner is initiated. This
stage is often referred to as thabbling stage and enables the forward model to acquire iy
characteristics of the environment so that it can more gptpagate effective error signals back
to the recurrent distal learner. Also note that, again imalar manner to standard distal learning,
training of the forward model continues throughout tragnof the recurrent distal learner. The
interaction between the recurrent distal learner and the@mment provides a steady supply of
training examples which the forward model can use to traiemroute to better mimicking of the
environment mapping.

The varying length sequential outputs from the recurresiiatliearner, produced when given
the set of static input vectors, are compared to the set dfedleproximal output sequences
throughout training to yield a proximal error training carwhich closes with a RMSE of just
over 0.05 (Figure 3.6 a.) The desired proximal outputs cafobed in this domain since, by de-
sign, the dynamics of the sequential environment are sownglérstood that its inverse is easily
determined. In most complex domains, however, the proxttesired targets for the learner cannot
be known a priori and, hence, this measurement usually ¢dendetermined for analysis.

The distal performance error curve, computed throughairtitrg as the RMSE between actual
distal outcomes resulting from the learner’s interactioithie environment and the desired distal
sequential outcomes provided by the teacher for trainingpgses, is shown to converge to an

RMSE of just under 0.05.

58

As stated previously in Section 3.4, the error propagatexlitih a sufficiently trained forward
model from a desired target sequence can be taken as antestifribe difference between the
learner’s desired proximal output and its current outpuénte the sum of the learner’s current
“incorrect” output and the propagated error should yielche@pproximation for the correct de-
sired proximal outputs. The estimated action sequenceisiitte RMSE between this sum and the
actual desired proximal outputs. Figure 3.6 b. is merelyrmaatestration of the utility of the propa-
gated error which is itself used to modify the existing distgpervised learning rule for this work.
Plotting together the training curves e graph shows thatuihesnt output plus the propagated error
is even closer to the known desired proximal outputs thatrtigscurrent output alone.

Figure 3.7 offers further proof in support of the thesis thsihg the propagated error for im-
proved memory layer updates can improve training of therreatidistal learner in sequential envi-
ronments. This figure superimposes the training curves ofégurrent distal learners attempting
to handle the same learning task described previously vapégating in the concatenation envi-
ronment. The initial weights and training data were keptstime between the two runs shown to
ensure that approximated teacher forcing alone, or thettaieof, could be the contributing fac-
tor to improved training of either recurrent distal learrtdere, Figure 3.7 shows the learner using
approximated teacher forcing indeed produced the betséalgerformance errors, converging at
an RMSE of .0571 while the learner that did not use approxichtgacher forcing was shown to

converge to .0689.

3.6.3 Conclusions

In summary, the figures of Section 3.6.2 verify the usefidreéshe work described here by demon-
strating the successful training of a sample recurrenaldistural network capable of replicating
the desired distal outcome sequences in a sequential emamat, namely the concatenation envi-
ronment, from single static input vectors. In Figure 3.6%,diminishing RMSESs of the recurrent
forward model, recurrent distal learner, and of the resfltbe latter’'s proximal sequential actions

in the environment in an example recurrent distal learnygjesn are charted throughout train-

59

Training Period of the Learner, <30,25> Training Period of the Learner, <30,25>
0.7 T T T

T T
O Distal Learner O Distal Learner
< Performance Error O Estimated Action Sequence
v Predicted Error

0.6 — 0.6

0.7

RMSE
RMSE

| | | | & | |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
a.l Epochs b Epochs

Figure 3.6: Training performance charts of the recurretwaoik using distal target sequences.

ing. Figure 3.6b. charts the RMSE of the proximal sequentigputs of the same recurrent distal
learner against the RMSE of the same proximal sequentiauitsifdus the approximated error
attained through use of the forward model. Essentiallyg thiart demonstrates that even as the
proximal actions given by the recurrent distal learner iowprin accuracy as training progresses,
the same proximal actions added with the error correctiaviged by the recurrent model are
shown to be even more correct throughout training. This destnates that the sum tracked by this
curve would be a more viable output to incorporate into th&ex, or memory, vector to enable
more efficient training. Lastly, Figure 3.7 verifies thatngsthe sum of the learner’s less-than-
accurate proximal output at any point in its action sequewitie that estimated error correction
attained from the recurrent forward model at that time steppdate the learner's memory layer
does indeed tend to lead to better distal learner trainiag thhen the proximal output alone is
used.

Despite this initial success, this experiment helped toghsome concerns to light:

1. Forward Model Training - Preliminary experiments seemed to suggest sufficiemitrgi
of the forward model is absolutely essential to the trairdfighe recurrent distal learner.

This may become difficult in more complex domains and neeti tstudied further.

60

Training Period of the Learner, <30,25>

T T
O Distal Learner w/ Memory Approx.
¢ Distal Learner w/o Memory Approx.

I
500

Figure 3.7: Approximated teacher forcing, or using errgnais propagated through the forward
model to better approximate previous proximal output st&te more effective exponential trace
memory updates, is shown above to assist the distal re¢ueaaner to converge better than when

it is trained without it.

2. Scalability - The relatively high computational effort required to aegmish learning in this
not-so-complex sequential environment could imply tredoers difficulty if this modified
architecture is used to train recurrent networks in trutgdaand complex environments.
This new system of recurrent distal supervised learningt in@salidated in much tougher
sequential environments to judge how effective it can thdy A tougher environment is

indeed introduced and used for evaluation purposes in Ghapte

3. Ambiguity - In many complex distal domains, the method found by thenleraio yield the
end distal target output sequences is more or less irrdl@glong as it is reached. In an
environment where multiple sequential paths (sequen@spe used to arrive at the same
distal target output, the forward model will essentiallglect” one viable sequence to guide
the learner to acquire. In certain learning tasks, howeveery specific action sequence is

preferred for the learner to acquire. In a domain such asrieshods need to be developed

61

through which the forward model can be used to guide traiafrige recurrent distal learner

towards that desired proximal learned behavior.

4. Varying length sequences This preliminary distal supervised sequential learnipgfem
assumed a priori knowledge of the length of the desired praksequences which the distal
learner must be trained to produce. This is neither desinadn practical in many truly com-
plex sequential environments. One idea to achieve theatElsehavior is to train the forward
model to produce an 'End of Sequence’ (EOS) vector once aciosequence has ended. It
would then be possible to train the distal learner to outhatEOS vector after outputting
the correct number of outputs in a sequence. Somethingasitoithis was demonstrated in

Radio et. al. [44] but not in a distal learning framework sustthas.

Ultimately, these results demonstrate for the first time, thaen a single, unchanging input
stimulus and a corresponding sequence of desired distabimgts, acquisition of correct proximal
sequential behavior can indeed be attained in a sequentiabament that provides no consistent
stream of current state updates. Existing systems whitheuiordan’s distal supervised learning
procedure to train feed-forward neural networks requinestant updates from the environment,
especially when provided only with static input vector, tajaire the correct learned proximal
behavior and should essentially falter when such curreé sipdates are absent. Replacing stan-
dard feed-forward neural networks in Jordan’s architectuith recurrent multi-layered neural
networks turned out to be a very effective method of addngssiipervised learning in sequential
environments. In addition, proximal error correction pdad by the recurrent forward model can,
in turn, further improve training by making less-inaccer#tie proximal actions taken by the re-
current distal learner before adding them to its memoryrlayais, in effect, helps to encourage
noticeably better convergence in the training processherécurrent distal learner. It is highly
improbable that any such mechanism can be developed fatasthnon-recurrent distal supervised
learning systems in much the same way that teacher forcrategtes are useless with regard to

non-recurrent feedforward neural networks in non-distafming tasks.

62

3.7 Contributions of the Chapter

The work described in this chapter extends the existingdsstpervised learning framework to
handle sequential learning tasks. Here, both the distahdeand the forward model which are
ordinarily created as single input/ output neural netwaies replaced with recurrent neural net-
works. Such recurrent neural networks are capable of imgitheir histories of past actions to
make subsequent decisions with or without being informethei current state in the world. In
doing so, the recurrent learner can thereby acquire thayatulreproduce a set of time-varying
distal target outputs in the environment from a static ingadtor without the need for constantly
updating current state information.

To evaluate this proposed extension to the distal learmamdwork, | implemented a learn-
ing system that employed a sequential environment designaananner where its behavior was
predictable and easily verifiable. The sequential enviremnused in this particular implementa-
tion was the concatenation environment which, at every stap, took all vectors in a sequence
accepted before the current time step and concatenateditiberone long vector. The goal of
the system was to train the recurrent distal learner to leaoutput the sequence of vectors re-
sponsible for generating the desired sequence of long temated vectors in the environment
while presented only with a single static input vector. Th&tem was shown to successfully train
recurrent networks to accomplish the task.

The other significant contribution demonstrated here isintreduction of an approximated
teacher forcing strategy to assist in the training of theiment distal learner. In a manner which
is inspired from standard teacher forcing practices @tilim the training of standard recurrent
neural networks, more accurate memory vector updates avensto result using feedback from
the recurrent forward model. This newly devised strategghmwvn to enact quicker, and at times

more accurate, convergence to the desired sequence ofreegco

63

Chapter 4

Sequential Processing using Self-Organizing Map Models

The purpose of this chapter is to introduce a new modificatioan effective method for process-
ing input sequences in self-organizing maps (SOMs.) Cuyente of the more effective methods
of utilizing a SOM to uniquely encode an input sequence iedahe SARDNET method (James
[21]). This method presents a very computationally effecand meaningful way of encoding
an input sequence of input stimuli into a SOM. Unfortungtatytimes the SARDNET procedure
does not go far enough to ensure the uniqueness of any ayhitpat sequence in its SOM output
lattice. In this chapter, | outline the method known as th&kBAIET algorithm and then describe
a modification | introduce that is capable of creating evememmique output representations for
input sequences based on the proximity of each input veotenown candidate vectors. This
chapter is essential in establishing a method to propdfigiently, concisely, and uniquely repre-
sent input vector sequences so that it can be utilized assentia piece of the very complex distal
sequential learning task described in the next chapter (@€hajp. There, the modified SOM can
be treated as a viable model of associative memory in huntanssé as part of a very ambitious
distal learning task in a complex sequential environmeninéd the phoneme sequence generation
environment, in an attempt to mimic the process by which msyaquire the ability to produce

words.

64

4.1 Background

In certain problem domains, it is conceivable that sequemdéanput stimuli may be required
for mapping in a self organizing map (SOM) as opposed to lgastatic stimulus patterns. In
addition, much like in the static input case, it would be imgtiwe that each sequence of inputs be
mapped such that the resulting output pattern will be agdisaind different as possible from any
other potential sequence of inputs. Typical implementetiof Kohonen SOMs, however, lack the
functionality for handling and classifying sequential inplata.

In the existing literature, there are two classes of SOM risodéich are designed to handle
sequential inputs. One approach, termed the One-Shotj-iiniber SOM [54], takes a more
biologically inspired approach to accomplishing the dasicomputational behavior. The other,
called SARDNET [21], accomplishes the goal using a more caatfamally efficient method. In
this chapter, | develop a modification of the SARDNET archiies, namely in its output dynam-
ics, such that, rather than output a 1.0 at winning nodes a$ $@M models do, map nodes output
a value which serves as an indicator of 1) how close the ingctiov in the sequence truly is with
respect to any of the anticipated, or “candidate”, inputeescto the SARDNET SOM as well as

2) how close the current map node is to the actual winning node

4.2 SARDNET

The SARDNET architecture [21] allows for a very efficient déisation of input sequences, each
identified almost uniquely by its series of map node actvati In this architecture, many rules
developed for the Kohonen Map remain intact in the SARDNET S®lgwever, in creating an
output map, once a winning map node is selected for an inghbrE a given vector sequence, that
map node is marked never to be used in that sequence agaimaghaode would then be given
an output of 1.0. Once done, all previous activations wolihtbe decremented by multiplying
each one by some decay constdnt: d < 1. This is then repeated for the length of the input

sequence. The tendency of each output map produced en cofgerting the final SARDNET

65

The SARDNET Training Procedure

Initialization: Clear all map nodes to zero.
MAIN LOOP: While not end of sequence
1) Identify unit whose weight vector that best matches tipaiin
2) Adjust weight vectors of other nodes based on user-defined
neighborhood function (e.g. gaussian)
using standard Hebbian learning.
3) Exclude the winning unit from subsequent competition.

4) Decrement activation values for all other active nodes.

RESULT: Sequence representation = activated nodes ordgractiation values

Table 4.1: The SARDNET Training Procedure

output pattern using this procedure is that only one unigpetisequence that could be responsible
for producing each map. Training of the SARDNET SOM similaryolves marking winning
nodes as it traverses through the input sequence. The actunhg algorithm is listed in Table
4.1. Subsequently, the procedure used for producing arubpgitern in a trained SARDNET
SOM from an input sequence is listed in Table 4.2.

Figure 4.2 demonstrates two plots of the weight vectors dhd@ SARDNET SOM in which
the input vectors, as well as the weight vectors, one for @aclke in the output lattice, are two-
dimensional vectors. Each input sequence ranges from tfeutovectors in length and are com-
prised solely of some combination of the following four catade vectors{[00]7, [01]%, [10]7,
[11]7}. Connecting lines are shown to designate adjacency betwegpataodes in the output lat-
tice, each of which corresponds to some 2D weight vectoménnteight plot of Figure 4.2a., the
weight vectors of the SARDNET SOM are randomly initializedl alemonstrate no organization
prior to training. The weight plot of Figure 4.2b., howevera snapshot of the weight vectors after
training for thousands of epochs. Here, organization ofstbight vectors given the neighborhood

function is immediately apparent. Also note that most nagletars look to accumulate around the

66

Output Dynamics of a Trained SARDNET SOM

1) initialize all node outputsto O

2) selectr; in sequence X,

3) multiply output of all marked nodes ly< p < 1
4) determine closesinmarkedwinning) node and set its output to 1.0
5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.2: Outline of the procedure for producing output snapthe SARDNET SOM once

presented with input vector sequence, X&|1 < i < n}.

four candidate vectors from which the list of input sequane@s solely created. Also note the
relatively even distribution of weight vectors surrourglthe four candidate vectors implying an
even distribution of the candidate vectors throughoutnipet data. An output node corresponding
to any weight vector in close proximity to one of the four calade vectors will be among the first

to be selected and turned on once that candidate node is gélem BARDNET SOM as input.

In addition to this procedure being very fast, it turns oudtth is extremely memory and
computationally efficient as well. James et al. [21] poirttbat the SARDNET SOM can classify
p™ sequences utilizing onljp™ nodes in it's output lattice, whene is the number of possible
values of an inputy is the length of an input vector, and the maximum length ofd@aresequence
is represented by the variadle Many other previously suggested sequential SOM architest
would tend to map each sequence to a separate map nodejaiyteatjuiringp™ map nodes.

The SARDNET architecture provides a great tool for produgioggntially unambiguous activ-
ity patterns for finite lists of input vector sequences. Hesveambiguity among activity patterns
in the output maps can still occur. Truly unambiguous atitvapatterns result primarily when
any input vector seen anywhere in one of the set of trainipgtimector sequences can be mapped
uniquely to one specific winning output node in the SOM. Ineotivords, this outcome can be

ensured only if no two input vectors can be mapped to the sam@mng node. If potential vector

67

0.8 1r

0.6

0.8
0.4

02
061
_02k 0.4F
-0.4f

0.2
-0.6

-0.8[

\V)

L L L L L L L L L L L 0.2 I I I I I L]
a) -1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1 b) -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.1: A plot of the weight vectors used to characteiZARDNET SOM utilizing a 10x10
lattice of output nodes. Here, the SOM is used in an unsugeshiearning task of two-dimensional
input sequences, each ranging from two to four vectors igtlerPlot a) shows the initial configu-
ration of random weight vectors of the SOM as plotted in twaelsions. Plot b) shows the same

SARDNET SOM after being trained using the SARDNET procedutérad in Table 4.1.

inputs are selected solely from some finite alphabet, orfsedmdidate vectorghis property can
generally be expected in a reasonably-sized, well-traB®BDNET SOM. However, where vec-
tor contents can take on not just some finite number of vajudsa,t any of an infinite number of
values (e.g. real valued), unique output map creation daserguaranteed.

To demonstrate this, let X and Y each be vector sequencesgthié used as input to SARD-
NET SOM SDgx such that X =x[1], x[2], ..., X[k] and Y =y[1], y[1], ..., ¥[1]. We construct
sequences X and Y such that they comprise the same vectargpfsition 0 up until next-to-last
position, k-1, in each respective sequence (¢} = y[i],0 < i < (k —1).) As such, the series of
output maps produced by the SARDNET SO x will certainly be equivalent whether given
X orY up to vector k-1 of either. An issue can easily arise itees x[k] and y[k] both are closest
to the weight vector of the same output node bkt # y[k]. In this scenario, this will likely
result in the same output value, 1.0, being output at the seim@ng node, leading ultimately to
equivalent output map representations between the twad sgguences even though the sequences

are not equivalent (i.e§Dgx(X) = SDex(Y) but X #Y.)

68

The problem occurs because the same output map node issedect the same output value is
pre-determined even though the input vector at that timgistdifferent. Ideally, rather than just
having the winning map node produce the same pre-deterroungdt value when it wins, a more
descriptive output score than 1.0 could be calculated anduymed which could most probably be
different for two differing input vectors, even when theyes# the same winning node.

By knowing a priori the set of anticipated, or candidate, ispexpected to be seen by the
SOM, more informative map node activation values for the SAIRID SOM can be developed.
Such a modification in its own right could potentially offgsbe effect of output map ambiguity

substantially in the standard SARDNET SOM.

4.3 Candidate-Driven SARDNET

As a response to this issue of prevailing ambiguity in SARDNEIMS, | devised a more infor-
mative output node dynamic which allows for more tellingl mambered output node activations
than just the standard 1.0 output suggested by James 2H|\.) (Puppose it is known a priori the
entire set of possible input vectors, termed candidateovgecseen somewhere in any input vector
sequence anywhere in the training data. Let C denote thd sahdidate vectors ant] denote
the input vector at discrete time step, t, of the currentngdle input vector sequence, Xxf1],
x[2], ..., X[n].

First, note that the training procedure remains unchangad that used for single-winner
SARDNET SOMs described in Table 4.1. Some winning nogessociated to weight vector;w
can be found in the same manner as is detailed in the orighRDBIET output scheme. However,
in calculating the output of a winning node in this modifiedsien of the SARDNET SOM, rather

than use the algorithm outlined in Table 4.2, the followirgiables must first be calculated,

C, = argmin;||C; — X[, 1 <j<m (4.1)

W, = argming||Wy — C|[, 1 <k <n (4.2)

69

where m is the number of candidate vectors in C and n is thértataber of nodes in the SOM
lattice. Vectorx[t], again, denotes the single input vector at time step hefdurrent input vector
sequence, X, to the SOM while vectay, can then be defined as the weight vector which corre-
sponds to output nodg.. Hence, the variable, signifies the closest candidate vector in C to the
input , x[t], at time t of the current input vector sequence. Veetpis therefore the weight vector
of the trained SARDNET SOM which most corresponds to that testlidatec, .

The following equations calculate gaussian, or radialdyaseasures ranging from 0 to 1 in-
dicating the proximities of the winning node to the prediceandidate vector (eq. 4.3) as well as

the current node to the winning node in the output lattice 4e8):

2
_ch*ItH

g =" T (4.3)

7‘|Dc—0n”2

Jen = € 292 (4.4)

whered > 0 and~ > 0 are radius terms which each determine width for their resgegaussian
curves listed above and..|| indicates Euclidean distance. Vectgrdenotes the (i,j) lattice posi-
tion. By combining these two terms, a new, more meaningfuivalued output can be produced
at a SOM map node which can be treated as a gauge for its cksseméhe intended candidate

vector :
Output(0.) = Gen * Gei (4.5)

See Table 4.3 for the entire candidate-driven SARDNET SOMwytrocedure.

One way of looking at this new candidate-based output scherti&t theg,; term indicates
the proximity of the weight vector of the output node clogeghe winning candidate is the actual
input vector. A perfect match, where the candidate outpderftas a weight vector equivalent to
the t-th input vector of X (i.e.w,, = x;), will yield a ¢.; of e° = 1.0. Alternately, the further a

candidate output node’s weight vector is frogm the closer the term approaches 0. The second

70

Output Dynamics of a Trained Candidate-Driven SARDNET SOM

1) initialize all node outputs to 0

2) select input vectox[i] in sequence X,

3) multiply output of all marked nodes liy< u < 1

4) determine closestinmarked winning node and set its output tog,; * g.., (EQ. 4.3)

5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.3: Outline of the procedure for producing candiditeen outputs in the SARDNET SOM

once presented with input vector sequence, ¥4, x[2], ..., X[n].

term, g.,,, indicates how far the node currently being looked at is ftbemweight vector closest
to the winning candidate. If the current node has a weightovearjuivalent to the candidate, this
term will work out to bec® = 1.0 as well. In the event that both cases are true, the termshieget
yield an output ofg,. * g, = 1.0 % 1.0 = 1.0 just like in the standard SARDNET procedure.
Hence if certain weight vectors of a SARDNET SOM end up beinglenaguivalent to the set
of candidate input vectors, the resulting candidate-driwatput scheme can be reduced to the
standard SARDNET output scheme.

The scale of this output given at any node is now a much morerigése indicator of the
closeness of a node to the input vector with respect to thef safpected vector inputs than in the
original SARDNET model. Hence, the SOM does not fall into taeme pitfalls demonstrated in
the previous SARDNET example, which is content to merelygka¢l’ as output to any winner.
Though outputting ambiguous maps using this format isstithewhat of a possibility, it tends to
occur at a much reduced rate.

Following training, there will tend to be one node in the ddate-driven SARDNET SOM’s
output lattice whose corresponding weight vector is cltsen any other to any given candidate
input. In this case, if this candidate input vector’s “bestie” has a weight vector that is not equiv-

alent to itself, the calculated output at that node whercsetemay approach, and yet never equal,

71

Output Dynamics of the Candidate-Driven SARDNET SOM

1) initialize all node outputs to O

2) seleci[j] in sequence X,

3) multiply output of all marked nodes liy< u < 1
4) for all nodes, y][i], in SARDNET SOM, SD,

- set node output at y[j] t0 g; * gen

5) repeat from 2) until sequence X is completed.

Table 4.4: Procedure for producing multi-node output masdandidate-driven SARDNET SOM

once presented with input vector sequence, x[1], X[2}x[n].

1.0 due to the manner in which Equation 4.3 was constructecanfadditional, yet optional, step
one can elect to take at the close of the initial training phafsthe candidate-driven SARDNET
SOM, one can choose to find the closest node to each candmhtehits corresponding weight
vector equivalent to that same candidate input vector. Wbisld serve to force outputs to be set
precisely to 1.0 once inputs presented to the system belmasply to the set of expected can-
didate vectors. Such behavior would once again closelynbkethat of the standard SARDNET
procedure outlined in the previous section.

This variation on the standard SARDNET SOM output procedsireast ideal for domains in
which the number of expected, or most sought after, inpubveare countably finite and available
for training. However, if such a candidate input vector setat available or is infinite, this method
would be seriously compromised.

This map node output scheme fulfills the desired charatitaridescribed previously and looks
to differentiate all different input vectors that seek ttesethe same winner. This, however, still
does not completely guarantee uniqueness, but it comeficignly closer than that of the original

SARDNET architecture.

72

trern

b
=

Pt i
i}
]
1

Figure 4.2: This figure illustrates the contrast between difi@ring forms of candidate-driven
SARDNET SOM output schemes. Specifically, two snapshots ealbewmonstrate outputs pro-
duced by the same trained candidate-driven SARDNET SOM usitlee standard output scheme
of Table 4.3 and b) the multi-node output procedure outlinethble 4.4. Top to bottom, both pic-
tures show the respective output generated by the traindd &@ach time step when presented

with each vector of the same four vector sequence as inputigeet.3.1.)

4.3.1 Multi-node Candidate-Driven Output Mapping

One other benefit to using the candidate-driven version@&ARDNET architecture is that this
is a method by which the SOM can be used to produce output rgtfilmm nodes which have
won, but by which all nodes across the entire SOM lattice mayded to produce outputs (see
procedure in Table 4.4.) The standard SARDNET output praeedualy allows for outputs at
past and current winners. What tends to result as output rsapsniniscent of gaussian mounds
centered around winning nodes (Figure 4.3.1).

The termgy,,. andg,,; combined allow for the formation of Mexican hat or gaussiat turve

73

structures in output maps. Each Mexican hat structure caseée to emanate from the winning
nodes outward across the SOM lattice. ThHeterm can be regarded as the initial height of each
gaussian mound. So if the,. term ends up equaling .5, a gaussian bell curve with a height
of 0.5 should result centered at the winning node outwardhéorést of the SOM lattice. This
phenomenon of Mexican hat activations over a map of competeurons is often observed in
actual neuro-biological studies of the human brain ([162]]. The capability of the candidate-
driven SARDNET SOM to output such Mexican hat phenomena aaragdtiple SOM nodes can
potentially be useful in providing more realistic modelsefjuential map formation in the human
cortex among competing neurons than the standard SARDNB©Tit.

Take Figures 4.3.1a. and b., for instance. Both figures arennteasignify an example of
the progression of activity patterns on a candidate-drivV@RDNET SOM en route to generating
a final output map to uniquely represent the input sequenbe. SARDNET SOM consisted of
a 10 x 10 output lattice of map nodes, each of which is reptedess a square in a 10x10 grid
of outputs. The outputs of the map nodes are represented myscgle, where the color black
signifies a map node output of 1.0, a white square signifiesutijput, and the intensity of a gray
square indicates a map node’s output value to either extrémether words, light gray would
signify a value closer to 0 while a very dark gray may signifiycaitput value very close to 1.0.

In Figure 4.3.1 a., the normal progression of activationgoat on a trained candidate-driven
SARDNET SOM is shown when given a four-length vector inputusggge. Notice here that only
one new map node, the winning node, is allowed to give an datpevery new time step when a
new input vector in the sequence is introduced. Figure B.3%hows the resulting activation pat-
terns from the same SARDNET SOM presented with the same exactdngth input sequence
but in using the multi-output scheme of Table 4.4 in whichnadip nodes have the opportunity to
produce outputs. What differentiates these two sets of datelidriven SARDNET SOM activity
patterns lies in determininghich map nodes are allowed to produce output values: winmag
nodes only or all nodes in the SARDNET SOM’s lattice of outpod@s. Figure 4.3 merely shows

the same series of SARDNET map activations from Figure 4.3biib in three dimensions (i.e.

74

Figure 4.3: These figures illustrate the same contrast oflidate-driven outputs as shown in
Figures 4.3.1a-b. Rather than represent the real candidigess SARDNET SOM outputs in
grayscale, however, they are plotted in a third dimensidretter illustrate the formation of Mex-

ican hat output structures as is often observed in neusnsfic studies of cortical activation.

representing map node output values in the Z-axis as opposgayscale.) Here, the spread-
ing Mexican hat activations described previously as whatnttulti-output SARDNET activation

scheme is capable of producing becomes more visually eviden

4.3.2 Demonstrating the Utility of the Candidate-Driven SARDNET En

hancements

The major improvement of this modification to the SARDNET SQGiMhat the new modification
lends itself to fewer occurrences of ambiguity.

Here | define three similar input vector sequencgd,) and k:

I, = {[1.0,0.0],[0.0,1.0)) , I = ([0.9,0.31] , [0.18,0.65]) , Iy = ([0.79,0.02] , [0.23,0.85]) .

75

1)
0.8

0.6 o8l

0.4

061
0.2

-0.2f
02
-0.4f

ok of 00 @0

-0.81

L L L L L L L L L L 02 I I I I I L]
a) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 b) -0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 4.4: a) The initial plot of a 2x3 SARDNET SOM discusse&ection 4.3.2 before training.
b) Plot of the same SARDNET SOM after training on two-dimenalsequential vector data made

up entirely from vectors of candidate vector §gt0]”, [01)7, [10]7, [11]7}.

Let SD,4 denote the original output scheme for an example Candidan&aSOM using a
2x3 lattice of output nodes which was previously trained arumber of input sequences ranging
from two to four vectors in length, one of which being sequehdisted above. The correspond-
ing before-and-after training weight plots are shown inufgy4.4. When presented with input
sequenceg;, I,, and 3, all three final resulting 2x3 output patterns come out lagkéexactly

identical:

0.5 0.0 [0.0
SDya(l1) = SDya(l2) = SDya(l3) =

0.0/0.0]1.0

This is because, though they may be noticeably distinct,ithat sequences trigger the same
winning nodes and, hence, yield a 1.0 output at the same nmedasdless. The candidate-driven
output scheme, however, takes into consideration proxiwifitthe winning node to the closest
candidate vector in determining its final output activatgaitern. As such, given similar input
sequence$,, I, andIs, identical final output patterns are far less likely whemgshe same 2x3

SARDNET SOM but with the modified output dynamics (denoted’klyS D, 4):

76

0.00.0/05 0.0 |0.0]0.404
CDSDy4(I}) = CDSDy (1) = :

1.0 0.0 0.0 0.734 | 0.0| 0.0

0.0 | 0.0 |0.457

0.86|0.0| 0.0

The potential for significant reduction in the size of SARDNEDMSs using the candidate-
driven modification presented here is important as well. fliedbambiguity in the standard SARD-
NET SOM architecture, increasing the number of map nodedstém reduce the occurrence of
ambiguous output maps. This is because with an increasetderuoh map nodes comes much
improved opportunity for differing input vectors to actigaliffering nodes based on proximity to
their respective weight vectors.

Using this modification, however, one would be harder prsséind two input vectors which
activate the same winning node in the SARDNET SOM with the santput activation. As such,
in looking to create SOMs which give more unambiguous ostpubre compact map architectures
with fewer nodes, and hence, fewer calculations, can bguegi Since now two similar vector
inputs can be represented differently by the output of theesainning node, as opposed to merely
outputting a 1.0 both times, even fewer output nodes tharalteady reduced number cited by

James [21] can be used to uniquely encode an input sequence.

4.4 Contributions of the Chapter

The primary contribution presented in this chapter is thaliffzation | made to the SARDNET
self-organizing map, a neural model designed to accept aiguely classify sequential input
data, enabling it to produce more unique representationspoft sequences. The SARDNET
self-organizing map, although designed to output unanthigumap activations for distinct input

sequences, is shown by example to generate non-uniquet mogps in similar situations. Using

77

my modification, more meaningful node outputs are produdeidmconsider, among other things,
the proximity of an input vector to the intended vector it wapposed to resemble in calculating its
output rather than indiscriminately producing a 1.0 valsisuggested in [21]. As a result, the mod-
ified candidate-driven SARDNET SOM tends to yield more uniquiput maps than the standard
version. If the single winner-take-all selection is setladior the multi-output scheme in which
all output nodes are capable of firing, interesting Gaussiannds become apparent in output
maps reminiscent of Mexican hat formations described im#heo-scientific literature regarding
spreading cortical activation in the brain. This modifieddidate-driven SARDNET SOM holds
promise in being a potentially useful tool for capturing @ewtial cortical brain behavior for use

in time-varying computational cognitive behavior studies

78

Chapter 5

Recurrent Distal Learning in Modeling the Acquisition of Phoneme

Sequence Generation Behavior

In this chapter, the effectiveness of the recurrent newg®Vork modifications made to the existing
distal supervised learning framework introduced in Chaptsrdemonstrated on a very complex
application. Namely, an experiment is designed in whichcament neural network is created to
undergo the same complex process that humans are beliegedtmugh en route to acquiring the
ability to produce or generate sequences of phonemes tolate words. Distal supervised train-
ing of a recurrent neural network is demonstrated despijedtating in a very complex composite
mapping of two non-linear functions, one constructed usiregsmooth mapping procedure dis-
cussed in Appendix B and the other being a Candidate Driven SMRDSOM (Chapter 4) which
is designed to take on the role of associative memory ashbisght to be utilized in the phoneme
sequence acquisition process in humans. The charts shawe and of the chapter demonstrate
that not only does learning occur in such a difficult seq@etivironment, but that there is indeed
a strong case for utilizing approximated teacher forcingo(@troduced in Chapter 3) to improve
memory layer updates and, subsequently, acquisition afeseg generation behavior in distal

settings.

79

5.1 Phoneme Sequence Generation

Phoneme sequence generation refers to the process by winadmis manufacture very deliberate
and specific strings of individual minimal units of spokendaage, or phonemes, through motor
activity in vocal organs in order to communicate with othemtans. The acquisition and ongoing
use of this cognitive behavior is certainly not well undeost and many researchers continue to
struggle to explain and model the inner workings of the pse¢&oelofs ([50]), Dell [10], etc.)

Previous attempts at computational simulation of phoneeggiasnce generation vary signif-
icantly in approach and in motivation. Dell [10] developeaar&ading Activation Theory (SAT)
for speech production which is favored by many and has begniniuential. In it, Dell details
a connectionist model employing nodes working, initiaifyparallel and, subsequently, in serial
through four levels of speech word form classifications.

The WEAVER Word-formEncodingActivation andvERification) model (Roelofs [50], Lev-
elt, Roelofs, Meeyer [30])expands on Dell's model of spregdictivation and addresses some of
its shortcomings to create a more encompassing 6 level naddgbeech production. Neither
model, however, addresses the process by which this cegithction is acquired over time. In
particular, neither model attempts to define the role ofrimiemodels or even the role of memory
retrieval from associative memory in the human cortex iruaaag this function.

Guenther ([17]) designed a very telling model of single e production which dealt with
the mapping from motor phoneme to orosensory sensationt{eaactile sensation of the phoneme
being uttered.) His study proved to be very enlighteningeag/as able to replicate various com-
monly known traits or phenomena generally observed in tlelystion of learned phonemes.
Among the phenomena he was able to demonstrate was colaitay in which the sound of a
phoneme depends directly on the previously articulatech@ime. His model, much like the model
presented here, conducted a "babbling” stage to propetriyneenitial parameters of the system.

The fundamental difference between Guenther's model amdvidrk discussed here is that,

primarily, his model was designed to produce single phorseimé¢he study utilizing orosensory

80

inputs. The phonemes his model produced had a local, noibditsd, representation scheme (i.e.
a single unit being on uniquely identified a particular phrarg. Also, he did not at all represent
stored distributed cognitive representations of phoneémassociative memory as was done in this
study.

In addition, there was no attempt to represent an interndietfor speech production in Guen-
ther's simulation of phoneme acquisition. Internal mogdslsch as motor programs believed to
exist in the cerebellum of the brain [72], seek to correatijtate the mapping from motor com-
mands to their respective cognitive representations. eltsea growing body of evidence touting
the existence of internal models in the brain which, throoghtinued interaction with the external
world, acquire the ability to forecast the consequence @rees of motor actions. This internal
model is now considered key in acquiring all types of higlesel cognitive motor function capa-
bilities such as moving limbs and speech acquisition ta§k¥,([71]). The model discussed here
incorporates all of these aspects in its present form.

In discussing the development of previously constructaeshpine sequence acquisition mod-
els, it must be made clear that the task has generally besrkatt in pieces, not as a whole. For
instance, the storing of heard words in associative menttogyproducing of phonemes and sound
due to commands to the motor cortex emanating from Brocas #reavay sounds enter the ear
and stimulate the auditory cortex, etc. - each is so commeo de studied and modeled sepa-
rately by researchers extensively over the years. As shelgttempt made here to create a model
of phoneme acquisition sequence as a whole is quite an ambitask. In order to create such a

model, it was required that the task be simplified to somengxte

5.2 Single Phoneme Production Model

5.2.1 Model

First, a model of acquiring the ability to generate a corsaegyle phoneme (e.g. /b/, /ael, or /)

from its intent using the expected auditory phoneme wagdesl. This model is implemented by

81

using a standard, non-sequential distal supervised neataork where there is a standard non-
recurrent feedforward neural networks for both the distatther and forward model. This was

done in order to gage how difficult the harder, more complegusnce acquisition task would be.

Also, in creating this simpler setup, the environment fiorgtto be discussed later, could be tested
for validity and effectiveness in training the distal learnDetails of the challenges encountered in
attempting to model these ambitious tasks are outlinedarufftoming sections.

This neural model was intended as a preliminary step in a asrlgitious attempt to create
a system inspired by the complex process through which pedl accept, process, and store
language phoneme sequences of a heard word as a seriesalffimegs in the auditory cortex and
associative memory, and 2) subsequently produce the ton@or phoneme sequential response
via interactions between Broca’s area and the brain’s pyimaotor cortex. The sounds produced
as a result of the latter interaction, after passing thrahgtenvironment (air, environmental noise,
auditory system etc.), will again evoke the intended netgpiesentation in associative memory
after being processed by the auditory cortex.

The model, inspired by the organization of the centers of mdnis brain responsible for
speech production, is presented with some intended phomgue stimulus and its known au-
ditory phoneme representation. Ultimately the goal of #xsrcise is to create a neural model
capable of learning the mapping from phoneme intent to tieesponding motor cortex response
which will eventually yield the desired activations in thedéory cortex. In turn, this exercise is
meant to imitate the human brain’s ability to learn to praglsmgle intended speech sounds from
memory en route to the eventual acquisition of phoneme seguer full word, skill.

The portion of this model discussed here will make use of aenstandard form of non-
recurrent distal learning in order to complete its learniagk. The distal learner must learn to
produce the correct motor phoneme activations in the pgimeotor cortex given a unique static
phoneme intent vector as input such that, when transformyeithdo environment, this will cor-
respond distally to the desired auditory phoneme reprasentin associative memory. This is

done by having some neural connections attempt to modektkenal motor to auditory phoneme

82

transformation and using those same connections to assigidating the weights of the learner.
This internal forward model can be trained by generatingoammotor responses and associating
the ensuing neural firings in the primary auditory cortexhattmotor response. As discussed in
Section 2.5, there is some evidence which suggests suclafdmvodels do indeed exist in the
brain (likely located in the cerebellum ([4],[72]).)

A source of inspiration for this approach is that, when logkat speech development in in-
fants, the 'babbling’ a baby does in the early stages apgedos a necessary process for the
development of the forward model responsible for predictime outcomes of various motor ac-
tions involving his/her speech organs. Here, the infanty whe might suggest "just likes to hear
herself’, makes arbitrary noises through motor commandsan eventually associate a particular
heard sound to the motor commands that it resulted from. @neémapping” is ascertained, the
baby can thereby reproduce that sound whenever he/shelstienFormation of an effective for-
ward model for producing phonemes, however, is generaliyompleted by the time an infant’s
intent surfaces to duplicate known auditory phoneme sempgnOver time, a cycle of produc-
ing increasingly improved, though incorrect, motor actidran intended sound based on what is
stored in associative memory must be repeated continutwalshieve the desired result. Intent to
repeat new words and phonemes heard spoken from adultsevilase the infant’s set of intended

phonemes.

5.2.2 Environment

The environment used in this study makes use of the table ireAghix B which lists the component
features that make up motor and auditory phonemes needehstrect a smooth mapping from
the former to the latter. It is important that this mappingdmeooth and differentiable to help
facilitate the learning in this model’s forward connecsomhe manner in which this mapping is
constructed, as well as the many considerations which nestitdressed, is discussed in Appendix
B.

The training method used in this computational model is thedard form of the distal super-

83

vised learning method discussed in Section 2.5 to trainrte¥nal model and motor output area
together in series as if they were one four-layered neutdjutdo propagate different deltas to the
appropriate components to achieve the desired resultar@-g11).

All input vectors to the distal learner used in this part@eidtudy take on the form

[9.1, - 0.1,1,0.1, .., O.U, wherel < j < nand vector length n varied based on the dimensionality

(G-1) (n—)
of the static input, learner’s output, and environment atitp

1. Static input to phoneme generation area (phoneme intentjtovkength (n=39) corresponds
to the number of possible phonemes, with one unique bit sehé&and all others set to

minimum value 0.1.

2. Proximal output from phoneme generation area (motor phojiemector length (n=20)
corresponds to the number of features through which distiiator phonemes can vary (see
Appendix C). Each bitis set to .1 or 1, where .1 corresponds.tmad a 1 corresponds to

a'+.

3. External environment/internal model response (auditogyngme) : vector length
(n=34) corresponds to the number of features through whgtindt auditory phonemes can

vary. Each bitis setto .1 or 1 (see Appendix C).

The sets of motor and auditory phoneme feature vectors us#ds preliminary study are
listed as tables in Appendix B. Twenty-four consonantal aftéléin vocalic motor phoneme fea-
ture vectors were merged together to form the 39 total mdtonpmes used to formed the basis
of the input space for the motor-to-auditory smooth enwvinent mapping constructed in the man-
ner described in Appendix B for this distal supervised leayriask. Likewise, the 39 auditory
phoneme feature vectors are gathered in a similar mannernothe basis of the environment’s
distal output. At the same time, the 39 auditory feature arscare used as distal target outputs
for use in training the distal learner. Minimum values of t& aubstituted for zero values in each

phoneme vector used here as zero target output values haneshewn to be problematic in the

84

a)

Unique —_

Phoneme ID
Motor Featura%

Vector R
Motor-to—Auditory

0000

Feature Mapping

Auditory
Feature Vectol

Figure 5.1: This figure demonstrates the setup for the spigbmeme acquisition model described
in Section 5.2. Here a distal learning neural network (lebbeds a)), with the assistance of the
forward model (b)), is designed to learn to reproduce theecbmotor phoneme vector when pro-
vided only a unique phoneme intent vector and its corresipgndistal auditory phoneme vector.
This distal learner produces motor phoneme vector outpudsosétains auditory vector outputs
while operating in the motor-to-auditory phoneme transfation environment mapping (c)) (sec-

tion 5.2.2).

training of neural models using sigmoid activation funedn their output layers. Also, these
minimum values are used to assist in creating the smootinamaient function using the phoneme
tables of Appendix C to offset difficulties encountered whroducing zero values to the smooth

mapping algorithm discussed in Appendix B.

5.2.3 Distal Learner / Forward Model Designs

This preliminary neural network model has the following ahiities :
¢ various gradient descent methods such as adaptive leaanthgnomentum.

e one hidden layer (size determined experimentally)

85

e sigmoidal output at hidden and output layers

The forward neural model is a standard two layered neuraheath is trained primarily using
the adaptive learning rate gradient descent method. Tleiddon in Appendix A outlines the
procedure for training the motor output area and the forwaodel. Figure 5.1 is a diagram of the
architecture in which the distal learner and forward modailliwn tandem to handle this particular

distal supervised learning task.

5.2.4 Results

The model described here has exhibited good success inihgribis particular learning task.

Despite having to learn in an environment function which smagtions from one sizable domain
to another (i.e., Motor Outpyi, 1}*° — {0,1}°) in the absence of the teacher to implicitly
provide proximal target output values, the model is capablearning the phoneme intent to mo-
tor phoneme mapping task at a RMSE of just under 0.1. In atguakcause of the amount of
stochasticity inherent in the model (e.g. random assighmkdistal learner and forward model
weight vectors and in the random selection of environmeetrattion generated to facilitate for-
ward model training to simulate babbling), RMSE tends to Yemyn .09 to .22 where a mean run

terminates with an RMSE of approximately 0.15.

The current model uses the following parameters:
1. Distal neural model of motor output: Hidden Layer size’5 12
2. Forward model: Hidden Layer size - 54

As you will see in section 5.3, the next step in this study imes expanding this model to accept a
single static word intent vector, encoded to uniquely repné some phoneme sequence stored in
associative memory, and output the appropriate motor pherssquence required to generate that
word. By expanding on the distal learning paradigm of sec®@n | have developed a method of

training recurrent neural networks to accomplish just sacbmplex task (section 5.3).

86

5.3 Framing the Distal Recurrent Learning Architecture for

the Phoneme Sequence Recurrent Task

5.3.1 Setup

The phoneme sequence generation model is loosely inspyréloebway it is generally believed
that a human learns to produce spoken words [5]. A vastly Iffiegh process that humans go
through in acquiring phoneme sequence generation cayaiilillustrated in Figure 5.2. From
here on the “learner” does not necessarily refer to the huleeming to speak but, rather, the
cognitive region or machinery used to accomplish the adouisof phoneme sequence generation
behavior. First, a single unchanging intent or idea of a weslilts in the recall of the correct
series of activation patterns in associative memory trataarner will try to duplicate. As such,
the learner commences to generate some time-varying segjoémotor responses largely using
his/her own speech organs. These motor commands cause sggged noises to result in the
external world which are conducted via vibrating air molesyualong with external noise, back
to the person’s hearing organ. Each acquired sound is pedds/ the auditory cognitive region
before being streamed to the associative memory regiormenheery distinct series of activation
patterns results.

The goal of any learning process used here would be to, whenecessary, change the makeup
of the learner’s own neural connectivity such that the leawill make steady progression towards
eventually producing the desired series of neural actpéjterns in associative memory. Ulti-
mately, the learner should acquire the capability to predimne series of motor commands which
would be responsible for reproducing the recalled set afeléslistal memory activity patterns re-
trieved at the beginning of the learning process. Noticg thdhis particular setup, the only input
provided to the learner required to produce the series akcbproximal motor behavior is the
single, unchanging phoneme sequence intent stimulus.

In an attempt to develop a simulation of this approximateghdove learning process, the re-

87

Intended Phoneme Sequencge
(single input stimulus)

series of map activations in memory corresponding t
memory recall of sound of intended phoneme sequen

¥

What she "wants"
tosay ...

Generates series of
motor commands thought to re-create
recalled memory sensations

desired and actual sets of — 1)
neural activations are comparegd I

(oo sequenes)

What she actually
says ...

Corresponding series of activations
in associative memory evoked
ll auditory sequence

Transformation from motor))
actions to auditory perceptions. ﬂ

Figure 5.2: lllustrating the Phoneme Sequence Generationdh.

current distal supervised learning architecture illusglan Figure 5.3 was devised. In it, some
learning agent is presented with a single static input dtimmwhich corresponds to a unique and
deliberate, yet initially unknown, sequence of motor phpaecommands. What is available re-
garding this phoneme sequence intent input stimulus iséhessof self organizing map (SOM)
activations known to uniquely correspond to it. In other dgrthese map formations are meant to
signify the stored representation of the intended word ieritory” that the distal learner would
like to duplicate. For this exercise, the task for the intmhdistal learning module is to then gen-
erate some sequence of vectors, in which each vector repsesenotor command whose contents
signify motor phoneme features that yield some unique aniss or sound. The duration of this

motor vector sequence will always be assumed to be equivieéhe length of the target distal

88

[Desired]
Lassociative mag

[activations
LT
INEEEEENE

Intended
Phoneme Sequence
(single input stimulus)
a.

| == |
. ‘ =
|\ T \
J |

associative mag
activations

i
'l aud seq /

; action sequence transformed from
' C. | motor actions to auditory perceptions

Figure 5.3: An illustration of the setup for the Phoneme &&ge Generation distal learning task.
The previously-trained memory recall network (a.) progitlee sequence of target memory activ-
ity patterns required to train the recurrent learner. Utiety, the task given to the recurrent motor
phoneme generating model (b.), given only a single stapatimvord intent vector, is to learn to

generate the correct sequence of motor feature vectorsiing transformed into a phoneme se-
guence of auditory feature vectors (c.), yields a seriesfation patterns in associative memory

(Candidate-Driven SARDNET SOM d.) matching those producedemory recall.

output sequence provided for training. This sequence s pinesented to the environment, which
transforms this motor phoneme sequence into a corresppiseiquence of “auditory” phoneme
vectors which are based in auditory distinctive featureg @&ppendix C.) Finally, this series of
auditory vectors then produces some series of neural Hotigato occur in associative memory
that are unique to those vectors (Figure 5.2).

In this task, the motor-auditory mapping and the Candidatee SARDNET SOM memory

model together make up the Phoneme Sequence Generatiansafjanvironment (signified by

89

the enclosed dotted area in Figure 5.3.) The purpose of suekeacise is to enable the intended
recurrent neural network to learn to transform the singléisintent stimulus into the appropriate
sequence of motor phonemes which would ultimately and wiygyeld the target sequence of
output memory activations made available at the beginnitigeotraining run. The recurrent distal
learning architecture designed to approximate the proilessrated in Figure 5.3 is shown in

Figure 5.4.

5.3.2 Phonemes and Phoneme Sequences for Experiments

In developing the phoneme sequence generation model, étbtkidentify: 1) a subset of key
phonetic features used to describe many commonly useddbnglionemes, 2) a subset of the
listed phonemes in the English language using this reduestdife set, and 3) a list of phoneme
sequences that a distal learner could conceivably acquulelesarn to generate. This reduced
feature set decided on consisted of the following chareties (note: feature categories known to
be complements of each other are paired together to redegathmeter space to be searched): 1.
vocalic/consonantal, 2. strident/nasal, 3. voicing oring off, 4. continuant/stop, and 5. height
(high/low).

Likewise, nine binary variables were determined which daadlequately address ten of the
features listed in Appendix (C) believed to completely chteaze the auditory reception of any
English phoneme. This reduced auditory phoneme featurmdetes: 1. continuant, 2. inter-
rupted, 3. duration (on/off), 4. terse, 5. lax, 6.k, 7. R 1, 8. F 1, and 9. k y,. The terms of
the form F ,, and k,, refer to varying intensities of forman§ and f,, respectively. Formants
are peak acoustic frequencies which result from the resmnaithe human vocal tract [66]. For-
mants f; and f, can be particularly helpful in characterizing differingwel sounds. Variables
x1, o consist of values from the s¢f., H M,V H}, where 'L’ means “low”, 'HM’ means “high
medium”, and 'VH’ means “very high”.

In ascertaining which phoneme features to use, there ataircdeatures that are discussed

heavily in the phoneme generation literature that are ddeéaiee very pertinent (e.g. vocalic/consonantal.

90

recurrent recurrent
distal forward
learner model

static word
intent vector

motor

command c) SN

sequence
Phoneme Sequenc

Generation
& Environmej‘th \

resulting memory
activity patterns

%\)\/

Figure 5.4: Recurrent distal learning architecture usedddetthe Phoneme Sequence Generation

framework of Figure 5.3.

Also, high preference was given to those features that waesyin nature or were the exact com-
plement of another feature across all phonemes, vowels@mboants alike. In other words, the
presence of one feature signified the absence of anothen@aing on/off, continuant vs. stop,
etc.)

Lastly, there were phonemes | deemed important (in paaictd’ and 't") that could not be
described without the use of certain very specific phonetatures. | wanted to use these phonemes
since they are included in so many viable English phonemeesesgs. | also wanted to use them
because of their high capacity for clustering with othersmrants like s/t and t/r. This describes
a phenomenon in which two phonetic consonant sounds canrbpazmded together without the
use of vowel sounds in between (e.qg. “/s/+/k/”, “In/+/t/tc g

| then grouped all phonemes which could be described in time $aanner through the chosen

subset of features and picked the phoneme in each group Whétieved could help construct the

91

Motor Features Isl It/ Irl law/ [ih/
Consonantal/Mocalicl 1 1 O 0
Voicing (on/off) O 0 1 1 1
Continuant/Stop 1 0 1 1 1
Strident 1 0 0 O 0
Height (high) 0O 0 0 O 1

Table 5.1: Reduced List of Phonemes and Their Correspondstinbiive Motor Features.

most phoneme sequences with which to do this study. The griopiponemes | assembled is listed
by its corresponding binary feature sets in Tables 5.1 a&d 5.

Table 5.1 lists the five phonemes that the recurrent distah@ime sequence generator is ex-
pected to learn and utilize in order to successfully repdiche list of phoneme sequences stored
in this study in a simple neural model of associative membigte that nine features are mostly
listed as pairs of complements. In order to shrink the segpelee of the distal recurrent learner,
five binary parameters are instead used in which both 0’ &hdalues hold significance. Hence,
for example, phoneme /s/ can be described as consonarnitiénst and continuant, where the '1’
denotes the presence of the first in their corresponding¢dimary features. In addition, how-
ever, it also contains non-voicing characteristic, as heentry denoting the absence of the first
of a paired parameter (in this case, voicing) implies thaeg@mee of its respective complement (the
second of the paired features.)

Likewise, Table 5.2 lists the same five phonemes shown ineTaldl but described using au-
ditory characteristics. Understandably, the auditoryrabiristics which make up each phoneme
uniquely are mostly different than those used in the motatufies listing. Here, however, there is
no need for paired complementary binary features. Not eveation (on/off) could be classified
as a strictly complementary feature as vowel phonemes dasweither. These auditory feature
vectors were used to construct the phoneme sequencesitisiedle 5.3 which were used

At the culmination of this process, a small subset of the km&mglish phoneme alphabet

92

Auditory Features /s/ [t/ Ir[[law/ [ih/
Continuant 1 0 1 O 0
Interrupted O 1 0 O 0
Duration (on) 1 0 0 O 0
Duration (off) O 1 1 0 0
Tense 1 1 0 O 0
Lax O 0 0 1 1
Fovu 0O 0 0 O 1
For 0O 0 0 1 0
Fio 0O O O O 1
Fiam O 0 0 1 0

Table 5.2: Reduced List of Phonemes and Their Correspondsignbiive Auditory Features.

was determined for use in this study. Five phonemes, thrasot@ants (s/ t/ r) and two vowels
(ih / aw), were deliberately selected which could be uniguepresented by the reduced set of
pertinent phoneme features chosen. Using these very comimmmemes, a list of 15 phoneme
sequences (Table 5.3) was compiled from the English laregusarh possessing anywhere from
2-5 phonemes. Some of these fifteen sequences containedmésnvhich repeat at some point
in the sequence to increase the challenge and authenti¢hy study. These phoneme sequences
were ultimately used as training data for a the CandidateeQriSARDNET SOM that was created
to represent associative memory for the distal sequemighing task. Following training, their
resulting SARDNET output associative activations then bexghe only representation of this
list of phoneme sequences used anywhere in the remaindee sfrhulation (i.e. these phoneme
sequences were never again seen or used during training.)

The disconnect between motor and auditory feature spadd belaccomplished by a smooth
mapping technique | developed for the purpose of this stwttych is capable of transforming a

finite mapping into one which is smooth and continuous fomgduts (Appendix B.)

93

S/IH/T
R/IH/SIT
IH/T
R/IAW/T
S/TIAW/R
TIAW/SIT
S/AW/S
AW /T
S/T/IR/AW
R/H/IT
S/IH/ISIT
S/IAW/T
S/TNH/R
R /AW
R/IH/ISITIS

Table 5.3: List of Target Phoneme Sequences.

5.3.3 Memory Recall of Associative Map Distal Target Sequences

| employ a neural network to supply the target sequence k&ckecessary for training the distal
recurrent learner. Knowing that the human brain does ndtaithp store physical target distal se-
guences, this neural network is supposed to represent tmomeecall of the series of associative
memory map activations which occurs when a phoneme sequedeeided upon. This mecha-
nism is what provides the associative memory activationghvberve as distal target sequences
used to drive training of the distal recurrent learner. Tiesral network employs a self-halting
mechanism which allows it to output varying length vectaqsnces depending on the input stim-
ulus, which, in this case, is the single intended phonemeesesg vector. It is trained to produce

a predetermined halting vector when it decides to end prtaatuof the sequence. Although the

94

self-halting mechanism was used here successfully forstarsdard recurrent neural network, the
same feature proved to be more problematic to employ for igtaldecurrent neural network of
interest in this study. More research is needed on detengnimbw to more effectively implement
this feature for state-less distal sequence generati&a.tas

Once the sequence was generated and the recall done, itlm®uiged as the desired distal
targets employed to drive training of the distal recurreatrher. Successful training of the distal
learner can now be defined as the extent to which the learmaipeble of producing the correct
series of motor phonemes which will ultimately yield thesemory associative maps through
interaction with the environment.

In this setup, there is an environment much like that desdrib the previous single phoneme
generation preliminary study. What is different is that tim@ienment accepts not one, but a
sequence of motor phoneme commands supplied to it via tked Giarner.

The environment in this study is a composite mapping conm@isvo main components: 1)
the smooth mapping procedure which exists to transform mghoneme feature vectors into
some corresponding equivalent auditory feature vectouditary feature space, and 2) the self-
organizing associative memory model trained, a priorijtigquely map the fifteen chosen phoneme
sequences (Figure 5.5). The composite sequential mapgiaged to here as the phone sequence
generation environment ultimately takes in as input a secgief real-valued motor phoneme vec-
tors, maps them into some corresponding sequence of aygianmeme vectors, and outputs a
corresponding sequence of activity patterns in the asseeimemory model. The idea is that,
throughout training of the recurrent distal learner, asgiM® memory activation maps resulting
from the learning agent’s proximal motor command sequenoefd be compared to the target

associative memory map sequences generated by the netwatkespresenting memory recall.

5.3.4 Environment

Please note that the “environment” as described here ddesoledy comprise thexternal envi-

ronment which maps individual sounds uttered by the leamerheard auditory phonemes. That

95

sequence

/—v—\

Motor to
Auditory

Mapping

auditory
sequence

Sequentia
SOM

Resulting
associative map
activations

Figure 5.5: The Phoneme Sequence Generation Environment.

portion of the environment which physically lies exterrathe learning agent is just the first com-
ponent of the entire distal sequential environment useligepplication. As the environment in a
distal setting is required to map proximal actions (in tlase;, sound-generating motor commands)
to distal outcomes (in this case, associative memory &¢atterns), the second component map-
ping must be incorporated in order to process the results®fritial external function before the
desired sequential mapping can me fully manifested.

This was a very challenging environment in which to testtipalarly because of the variety
and complexity of the components in the environment set ttkwoserial. To add to the com-

plexity of this sequential composite environment mappthgre is no mechanism provided for

96

explicitly informing the learning agent as to its currerdtstor plight. In other words, there is

no other way for the learner to take into account where or rawit$ prior history of actions has

taken it en route to accomplishing the distal sequentiaihiag task than for it to remember what
it had done. In acquiring the ability to generate time-viagyproximal behavior given a single,

unchanging input stimulus using the standard distal sugpesidearning framework, such a current
state mechanism would be essential to ensure any measurecefss.

As such, to train the distal recurrent learner to blindlyduee any correct sequence of motor
commands in so complex an environment without the benefig@diving constant updates of its
own current state would truly be an accomplishment. Updatése recurrent distal learner on its
new current state, separate from the environment’s distabones, assist the agent by giving it a
reference point as to where the series of actions takenforibiat point in time has guided it. For
instance, the visual location of the ball could be used asdicator of the agent’s current state
in the basketball shooting example illustrated in sectidn The key issue of a problem domain
such as this is that, unlike other attempts at distal supedMiearning, information on the learner’s
current state is unavailable for reliable guidance and eisAg there is no such stream of current
state information to be provided in this domain, most presistandard distal supervised learning
models would be ill-equipped to work well operating in thisszeonment. This is a result of the
fact that standard distal systems rely so heavily on usiag thcoming current state information
to guide them to their next step.

The phoneme sequence generation environment is broketwaoteeparate components. On
the one hand, there is a segment which maps the set of motoeptes, which emanate from
the primary motor cortex, into the set of auditory phonemeésch are received by the primary
auditory cortex. This component will take the form of a snomapping procedure developed just
for this application and described in greater depth in ApipeB. This smooth mapping procedure
accepts as parameters two countable vector sets, the firgtthedomainset and the second being
therangeset. The domain set§ = a4, as, ..., a,, contains vectors of length m and is considered a

subset of a much larger domait = R™. Likewise, the range sefy = by, bs, ..., b, With vectors

97

of length n, is considered a subset of rafd¢@ = R". Both sets A and B should contain the
same number of vectors, v, for the purpose of assuming tiséegde of a finite mapping, f, where
f(a;) = b;,1 <i < wv. Smooth mapping, as outlined in Appendix B makes it posdnstruct
a new mappings*, such that a different input € ®“ buta ¢ A will have a corresponding value
f*(a) € RE based on the proximity of a to members of set A.

Obviously, the actual real world mapping from motor phongrkthe primary motor cortex
to heard auditory phonemes in the primary auditory cortexditiée to do with this demonstration.
Indeed, many factors go into this actual mapping, includmgraction with air molecules, external
noise, etc. which are either not completely understoodetar complex to model for the context
of this work. | maintain that, solely for the purpose of thigrgcular study, all that is needed
is some continuous smooth mapping, which can map any vector it reasonably to some
corresponding output ifR? (i.e. f* : R4 — RPF) and which reasonably interpolates a finite
mapping, f, for all vectors in A (i.ef*(a;) = f(a;) = b;, 1 <1 < v. If the environment function
can display these properties, the recurrent forward magleletfectively approximate it and help
drive learning of the distal recurrent learner.

The other component of the environment in use here is thaggoof auditory phonemes in
associative memory. The storage mechanism here will be a SERCSOM capable of accepting
sequences of phoneme inputs and, once trained, outputtiogesponding unique output map in
the output lattice of the SOM. This is to represent the unjggtéern of neural activations thought
to occur in the associative memory once a human senses @niges a previously sensed input
stimulus.

The purpose of the environment is to output the correspgnsiguence of SOM output maps
once presented with some sequence of motor phoneme inpuatthdr words, the environment first
accepts a sequence of motor phonemes representing tHeelistaent learner’s stimulation of the
primary motor cortex and then sends this sequence througsrttooth mapping process to be
mapped to a corresponding sequence of auditory phonenrey/sig the appropriate stimulation

of the primary auditory cortex. The resulting auditory paity sequence will then be accepted

98

by the SARDNET SOM representing associative memory and Withately yield some ideally
unique series of neural activations used to represent ktiron by the primary auditory cortex
in recognition of stored representation. Figure (5.5) destrates visually how this environment
operates.

One primary issue encountered, which is accepted as sthimddistal learning architectures
as presented in Jordan [24], is that a properly trained fatwaodel can guide a distal learner
to converge to one, and only one, correct proximal actionafytotentially many. If there is
truly only one correct proximal set of actions to take in\ang at the desired distal outcome,
or if merely arriving at the desired distal outcome by any nees& sufficient, then there is no
issue. However, in designing an architecture to simulanpme sequence generation similar
to that demonstrated by the human brain, an analog of a vegifgpresponse of the primary
motor cortex in the brain is sought of the distal learner Wwhshould correspond closely to what
is documented in existing neuro-biological studies (neotor responses demonstrating features
listed in Singh [56]). In other words, unlike most other poas distal supervised learning studies,
a very specific proximal response is required of the distainer given a single input stimulus in
order to yield a particular desired distal trajectory. Aslsuhe environment to be used in this study
must be carefully constructed to be as one-to-one in natupmssible, as opposed to the various
many-to-one environment mappings used in previous disthing studies. Consequently, the
recurrent forward model designed to learn this particutea-to-one environment mapping can be
trained with the purpose of guiding the distal recurrentrieato that specific proximal course of
actions. The intent is to develop a neural model which learmsry specific one-input-to-many
action mapping whose outputs can be verified as correct lmasegpected data possessed by the

teacher.

5.3.5 Forward Model

Various properties of the proposed system seem to hold wuess simulations and problem

domains. One very important observation is that the propening of the forward model is

99

paramount to success of this or any system like it. The mmtwdor even providing a forward
model is to come up with a parameterized approximation ofithkenown environment which could
be manipulated in order to guide and assist in the trainingeflistal sequential agent. This can be
done initially by taking random sequential walks througé #émvironment’s input space, mapping
it using the environment to its corresponding distal setakoutputs, then using the resulting
training pairs to train the forward model even before thening of the distal learner gets under-
way. This portion of training a distal learner is often reger to as babbling. It is named as such
since it is analogous to that stage of seemingly random, $sergial, stumbling through vocal
sounds in a young infant’s early language development.

An issue arises in looking to address where the sample irggatshould come from and in how
much such data should be used for training of the forward fsgeh that it could best assist in
the training of the distal learner. Since the input space afiyrcomplex real-valued multi-variate
domains is, for all intents and purposes, infinite in range,desired environment mapping may
never be fully characterized by the forward model.

One way to do this is to actually take, if available, the altyuaroximal sequential outputs
which would ultimately generate the desired distal outmefuences, pairing them with their re-
spective target outputs, and including them in the trainiata for the forward model. The idea is
that if the forward model trained in this manner knows digebbw to map the correct, yet "un-
known proximal answers”, then it should be more capableanhiing the distal learner to arrive at
these proximal answers. In other words, the forward modeldvoe in a better position to provide
correct error training signals to the distal learner if iderstood the requisite mapping between
answers and desired distal outputs.

In using the phoneme sequence generation environment, dsesuccessful runs were con-
ducted such that the desired proximal behavior was expressid as babbling data in the initial
training of the forward model along with their desired tdasgeefore beginning actual training of
the distal learner. In other words, during this babblinggghdhe recurrent forward model explic-

itly was trained using the desired distal sequential mapesgmtations as target output sequences

100

and the phoneme sequences that were responsible for gegetam as their respective input
training sequences. During the actual training of the tisteurrent learner, however, in addition
to the initial babbling forward model training data, seciedroutputs of the learner were provided
to the forward model to be trained on along with their resglgequential environment outputs. In
this manner, the forward model could be trained simultasgowith the distal recurrent learner
so that it could continue to learn to mimic the environmemmgshe training data being generated
naturally through the interaction of recurrent distal te&arand the environment.

Surprisingly, even when they are available for trainingaressly providing the expected proxi-
mal answers to the forward model, though helpful, often dudyield a distal learner which fully
acquires the desired proximal behavior in its entirety imyneomplex distal sequence generation

tasks.

5.3.6 Simulation of the Phoneme Sequence Generator

As a preliminary to any training, some architectural feesunust be selected for both the recurrent
distal learner and the recurrent forward model. These caoh i@ important ramifications during
the simulation. Some of the more important architecturecdsoare: 1) size of both hidden layers,
2) recurrent network type (Jordan or Elman), and 3) numbdetay lines memory modules. Once
this is done, the system’s parameters can be initializetljding that of the random setting of the
weight vectors for both neural models.

As previously discussed, the forward model goes througtballrey stage before training the
distal recurrent learner to mimic the environment mappihere are two types of training data
used in this study for training the forward model during hiise. Randomly created data may be
used here as well as the actual desired proximal sequensiaieas known to yield the distal target
sequences, assuming they are available to the trainer wehatten not the case.

In the case of randomized babbling, generated training idatanstructed as 40 randomly
generated sets of vector sequences. One half are vectoes upaof real valued entries;; s.t.

0 < z;; < 1, while in the other half of the babbling random data, the @estquences comprise

101

solely randomly generated vectors of Os and 1s.

At this point, after babbling, training of the distal recemt learner commences in the manner
outlined in Section 3.3 in conjunction with the recurremward model. The recurrent forward
model will continue to be trained to learn the sequentiairemment mapping using the output
action sequences generated by the distal learner as inpdithair resulting distal outcomes as
target output sequences. Note also that, in addition t@tbefput action sequences, whatever data
were used during the completed babbling stage to train thweafol model are generally cached and
re-used continually by the latter throughout training of thistal recurrent learner in addition to
these output action sequences. This is because the forvaate mvill tend to forget the mappings
learned during babbling, making that practice futile. Tianing of the distal recurrent learner in
the phoneme sequence generation environment is set toasihbabble stage, for 10,000 epochs
or until the distal performance error (i.e., the RMSE betwaetual and target distal sequences
occurring in the environment) becomes lower than .05. Taiaitrg procedure referred to here is

just as outlined in Section 2.5.

5.3.7 Simulation Results

Four sets of numerous simulations each were run using theeph® sequence generation input /
output data and environment. In each set of experiment4,113*121 training sessions were run,
where every combination of even numbers between 40 and 6®wsed as hidden layer sizes for
both the recurrent distal learner and recurrent forwardetsoboth designed as Jordan networks).
What varied primarily across experiments was which of ther®eourrent networks (1-2. either, 3.
both, or 4. neither) were set to do teacher forcing. Recallitheeacher forcing the precisely or
approximately correct target outputs, as opposed to thiallgierroneous outputs of the untrained
neural network itself, were inserted into the memory layarattempting to encourage quicker
learning of the training data.

Out of the total number of runs done for this study, only theSwouns of each set of simulations

were examined and their learning curves matched up and egamr he training of each type was

102

recorded (in steps of 20 epochs from epoch 0 through epocd0)@hd averaged over all the 5
best runs of each type to yield an average learning perfarenamrve to represent the efficiency of
that type of architecture.

In each of the charts shown in Figure 5.6, the performance ohtene runs where absolutely no
teacher forcing (approximated nor standard) was utilizad plotted against each of the other three
types that utilized a teacher forcing strategy throughiaihing for either or both recurrent distal
learner or recurrent forward model. Across each of the tgraphs, the darker line represents the
same averaged training curve tracking distal error of recudistal learners trained without use of
any teacher forcing strategy over a number of runs. Herecaneeadily compare the averaged run
of the no-teacher-forcing architecture against the awstagns which utilized teacher forcing in
a) recurrent distal learner only, b) both recurrent digather and forward model, and c) recurrent
forward model only. Note that the models which utilized apgmated teacher forcing in the
recurrent distal learner clearly demonstrate a betteragp@ learn up until a point, then diverge
inexplicably late in the run.

The charts of Figure 5.7 are similar to the charts shown inif€ip.6 except to track proximal
error, averaged runs for non-teacher forced architecaneplotted against those for architectures
which employed some teacher forcing strategy in a) the renudistal learner only, b) both re-
current distal learner and forward model, and c) recurrentdrd model only. The proximal error
is generally not trackable as it is here as the desired pab@eguential behavior is typically un-
available to the trainer. Only due to the nature of this peoblwhere the trainer merely wants
to produce sequential behavior already known to the formwem, we actually calculate RMSE
performance over the course of a run.

What seems to occur consistently in these graphs is that amylaions which utilize the
approximated teacher forcing in the distal recurrent leaseem initially to actually learn more
quickly than those which do not employ that scheme. Unexuaidgthowever, the graphs in both
Figures 5.6 and 5.7 seem to suggest that standard teachergf@one to the forward models,

though it may lead to quicker training time in the initial dihg stage, may actually seem some-

103

what detrimental to the distal learning process. This isily tinexpected result, and any explana-
tion of this phenomenon would require further study.

It becomes apparent that, at least in this particular td#igagh using neither teacher forcing
strategy tends to cause the distal recurrent learner taoractiie correct proximal sequential be-
havior in the slowest time, it does avoid the pitfall of digirg from the correct behavior once it
is learned. Even though both sets of simulations that aetéigproximated teacher forcing of the
distal recurrent learner do indeed learn quicker for tinfety on average, a point between 3000
and 4000), something occurs in which the distal performa&ne® no longer converges. This very
peculiar behavior suggests that the recurrent forward hfads to supply the correct proximal
error late in runs, somehow only after the desired proxinedlavior is acquired. This peculiarity
can very well lie in the complex phoneme sequence generatiwimonment, as no such behav-
ior attributable to teacher forcing was detected in theimiakry distal concatenation sequence
generation studies.

The six best performances with performance errors less@#hwere recorded in Table 5.4.
Despite the issue with the divergence of the error curvesaostisimulations which include teacher
forcing strategies, the best two performances, and alsoofiihe best six performances, included
architectures which used some form of teacher forcing. ®h&ervation, plus the fact that they
tended to converge to those error rates quicker than thaseskd no such teacher forcing feature,
suggests that, with work, these strategies can be indeéd ursiaining distal sequence generating
architectures which employ Jordan recurrent neural nétsvor

Also listed with their best performance error are differaaturacy rates of the distal learner
in reproducing correct motor phoneme sequences. The firgsicnleoks at the percentage of
phoneme sequences provided by the trained distal recuaamier that are entirely correct. In
other words, suppose the recurrent distal learner outjpuate snotor phoneme sequence for each
of the fifteen phoneme sequence intent stimuli presentet tdhe percentage of these fifteen
phoneme sequences which turn out to be sufficiesittyilar to the phoneme producing behavior

we hope to see can be readily calculated. A vector x is coreide@milar to a vector y, where

104

Teacher Number of Hidden| Distal | % correct | % correct| % correct
Forcing Layer Elements | Perf | Phoneme | Individual | Best Matched
Distal | Forward| Distal | Forward| Error | Sequences Phonemes Phonemes
Leaner| Model | Learner| Model
Vv 56 42 .053 | 66.7% (10) 84% 96%
v 44 52 055 | 46.7% (7)| 82% 94%
58 56 .056 | 66.7% (10) 88% 94%
v 46 50 058 | 46.7% (7)| 82% 94%
46 54 06 | 33.3%(5)| 74% 96%
vV 60 52 .06 | 53.3% (8) 82% 94%

Table 5.4: A listing of the best performing distal phonemgussce generators indicating impor-
tant architectural characteristics. These are the bestrafieds of randomly initialized runs which

varied over such key characteristics as hidden layer siztsvéen 40 and 60) and teacher forc-
ing focus in both distal recurrent learner and recurrenvéod models. Note that teacher forcing

techniques were employed in four of the six best performistatrecurrent learners.

x,y € R if|x; —y;| < C,0 <1 <mn,such that Cis generally a real-valued constant set close to

0. For this study, C is set equal to 0.3.

Another metric measures how many phonemes generated wéogestly similar to the re-
spective sought after motor phonemes (i.e. how many phonemaes generated correctly.) For
the last metric, each phoneme generated by the distal esttlearner is compared to the set of five
possible phonemes and replaced by the closest one. Ondwaktmes generated are transformed
in this manner, similar to the second metric, the percentdgdl newly transformed phonemes
which equate correctly with their respective desired mptarneme counterparts is calculated and

reported.

105

As an example, Figure 5.8 demonstrates the typical progres$ a recurrent distal learner as
it acquires the phoneme sequence generation behaviore Imetlfinning, the forward model goes
through its babbling stage of learning to mimic the envirentrmapping before being utilized in
the training of the recurrent distal learner. The recurferward model is trained on the phoneme
sequence behavior known to ultimately evoke the desiredssef sequential associative maps
(Figure 5.8 a).) Once babbling is concluded, training ofrémurrent distal learner, as outlined in
Section 3.3 commences, while still proceeding to train,alibcate, the forward model using the
interaction between distal learner and environment asitrgidata (Figure 5.8 b).) Figure 5.9 then
shows the entire training run as it culminates after 10,q@tks. Of interest is how it is apparent
that, even when experiencing problems in the middle of thiaitrg run, the recurrent distal learner
is still capable of correcting its own acquisition of corecoximal sequential behavior through

interaction with environment and recurrent forward modelasively.

5.3.8 Evaluating the Efficiency of Recurrent Distal EIman Networks

In much the same fashion that Jordan recurrent neural nketwean be trained in using the re-
current neural network modification to the distal supeigarning framework, EIman networks,
as discussed in Section 2.2, can be trained as well. In dagidgine recurrent distal learner, the
recurrent forward model, or both to be Elman networks, thgry difference in the handling of
the two recurrent architecture types is the source from vhitormation is provided and stored
to the respective memory layer. One issue which arises ifattiedhat teacher forcing strategies
cannot be used for EIman networks, as activations fromrnmerate nodes cannot be predicted or
known a priori.

As there remains some debate as to which recurrent netwoidste, Jordan or Elman, works
best in standard, non-distal sequential learning taskeingt to determine, if possible, which
mixture of the two in this recurrent distal learning framelvevould lend itself to the creation
of better distal recurrent learners. Would a Jordan dist@lmrent network paired with an Elman

forward model fare better than one which utilizes both Jomiatal and forward neural networks?

106

Experiment Distal Forward Model
Label Network Type /| Network Type /
(Short form)

ee Elman Elman

ee (no decay Elman Elman

ej Elman Jordan

ejt Elman Jordan (*)

je Jordan Elman

jte Jordan (*) Elman

i Jordan Jordan

jjt Jordan Jordan (*)

itj Jordan (*) Jordan

jtit Jordan (*) Jordan (*)

(*) - Teacher Forcing

107

Table 5.5: List of EIman and Jordan Distal Architecture Satians

How would the system fare if both distal and forward modelsanzeated as Elman Networks? Is
there any benefit to using teacher forcing techniques todidad portion(s) of any of these Jordan
/ Elman hybrid recurrent distal learning architectures?
A group of six new experiments of the phoneme sequence gemedastal learning task, each
of which included an Elman network as either the recurrestadliearner, recurrent forward model,
or both, was run in order to test questions such as these. raaagtomprised 121 varying length
hidden layer sizes. Table 5.5 lists each of the differentlmaations of new Jordan/ Elman runs
network uses in the recurrent distal supervised learniagéwork while listing their acronym or
experimentation shorthand name as well. In Figure 5.10gthph plots performances over the
best five aforementioned Jordan experiments, with and witteacher forcing, as they compare

to similarly trained simulations in which Elman networksreéncorporated into one or both dis-

tal recurrent learner and recurrent forward model rolese graph clearly demonstrates, oddly
enough, that architectures which utilize ElIman networksiteer distal recurrent learner or recur-
rent forward model are consistently outperformed when aregbwith simulations which utilize
two Jordan networks, whether teacher forcing is used orTw. reason for this huge disparity is
not known currently. Future experimentation of this subjeatter may indeed shed some light as

to why there is such a clear advantage to using Jordan netwoeksystem such as this.

5.3.9 Implementing Delay Line Memory Constructs

In order to increase the effectiveness of the proposed memodules added to the existing dis-
tal supervised learning architecture, the capability tectly copy and store individual proximal
actions from previous time steps was incorporated into datal recurrent learner and recurrent
forward model. | determined that, rather than replacingoeemtial memories used effectively
until now, | could add exponential decay functionality te tery last delay line memory. In this
manner, the neural network being used, whether distal éeannforward model, could still con-
sider long histories of action even when the extent of thaydihe modules has been surpassed.
Figure 3.3 shows a Jordan recurrent distal learner with bitrary number of these delay line
modules, the last of which was, optionally, set up to use groeantial decay term in order to
accumulate arbitrarily long output histories. With thergesed faculty to clearly discern the d-1
prior actions taken in addition to the accumulation of exgially decaying outputs at the final
module, it was thought that adding this feature could natitye improve the performance of the
distal recurrent learner. Do note that the recurrent fodwaodel utilized in Figure 3.3 does not
utilize delay line memory modules. Memory delay line stawes can be utilized for either, both,

or neither recurrent distal learner and recurrent forwaod ah

108

5.4 Contributions of the Chapter

The primary contribution of this chapter is to demonstrae ¢apabilities of the recurrent distal
supervised learning system in a challenging domain whicpleys a relatively complex environ-
ment. The Phoneme Sequence Generation environment wasuobed by pairing the smooth
mapping procedure (Appendix B) used to facilitate the tramsétion of spoken motor feature
phonemes to heard auditory feature phonemes with the catedittiven SARDNET SOM (Sec-
tion 4.3) used to represent associative memory. The retudigtal learning framework was shown
capable of training a recurrent neural network, due to itgpeoation with its accompanying re-
current forward model, to generate very accurate motor @mansequences that produced very
specific desired distal output behavior in the environm@is learning occurred even when the
recurrent distal learner was being presented only with glsistatic “intent” as input while op-
erating in this complex sequential environment. Also, agppnated teacher forcing (Section 3.4)
was shown to have a very positive effect in the training ofrdwirrent distal learner as expected,

particularly in the beginning stages of its learning.

109

0.3 03

024 024

——jaio § 015 — a0
—jtojo g —— it

0.1 4

w
a 015 4
[

14

0.05 4 0.05 4

Epochs Epechs

b)

0.3

0.25 4

0.2 4

w JE—
[RER 190
H — oo

0.1 4

Epochs

c)

Figure 5.6: In plotting diminishing error (RMSE) againstimiag time (epochs) over averaged
runs, the effects of three separate uses of teacher foreoimigues are shown. In plot a), the
averaged training run for teacher forcing used in the recurdistal learner only (the training
curve labeled jt0j0) is superimposed against a curve tigaif@s training of the recurrent distal
learner without any form of teacher forcing (j0j0.) The renirag two plots demonstrate teacher
forcing in b) both recurrent distal learner and forward nmqgéjt0), and c) recurrent forward
model only (jOjt0) against the same non-teacher forcedsaeat training run. In all three graphs it
can be seen that the teacher forcing methods demonstrafeacainte, if not faster, learning in the
onset of learning. Interestingly enough, though the lovaestaged learning rates can be seen in
training curves in which teacher forcing strategies arkzetl, divergence in learning can be seen

in these same teacher forcing runs during the early to mitdiges of their training.

110

RMSE

—jaa
—_jmjn

RMSE

—Japo
— Jtojtn

1} 2000 4000 6000 8000 10000 12000 1} 2000 4000 6000 8000 10000 12000
Epochs Epochs

—jgio
—jojtn

1} 2000 4000 6000 8000 10000 12000
Epochs

RMSE

c)

Figure 5.7: Similar charts to those shown in the charts fedtin Figure 5.6 tracking the effects
of teacher forcing except the proximal error of the recurstal learner's outputs are plotted
as opposed to the distal error in the environment. Once ati@@ruse of teacher forcing against
the standard non-teacher-forced case (jOjO) is demoadthare in a) recurrent distal learner only
(jt0j0), b) both recurrent distal learner and forward magi€jt0), and c) recurrent forward model
(jOjt0) only. A more profound positive influence is eviderra early in runs as a direct result of

the use of teacher forcing than when distal error was tracked

111

——Fll
—#—Proximal

Distal

RMSE
=

0 100 200 300 400 500 600
Epochs

a)

08

U7-’

064

0.5 4 W — FM
g iy

044 \ —s— Proximal
r R estonsty iy st

05 4 R Distal

02 bage

0.1 4

0 T T T T
0 1000 2000 3000 4000 5000
Epochs

Figure 5.8: Two stages of the same training run are demdedtfar a well-trained phoneme se-
guence generator where diminishing error (RMSE) is trackedhart a) the initial babbling phase
is evident in which the recurrent forward model (FM) alon&@ned for 105 epochs, after which
training commences for the recurrent distal learner (§gphiby diminishing error through epoch
505). In chart b), continued improvement in training theureent forward model is demonstrated
by the sustained decrease of error through 4500+ epochsding the sharp descent seen at just

over epoch 3500.)

112

08

0.7 1

0.6 _L
c 05 4 l\. —+FM

. ;

9 04 - ! —=— Proximal
5 Ntgngest A
m \

03 v Distal

0.2, e, et
01 & -

0

0 2000 4000 6OOO 8OO0 10000 12000
RMSE

Figure 5.9: The final RMSE chart of the recurrent distal lead@monstrated in Figure 5.8 is

shown here as it is trained for 10,000+ epochs.

113

018

0.16 1 + gjt .
+je + g

+ jie + ee + ee (no decay)

0.14 4

0.12 4

01

RMSE

0.08 q
+ jtjt .t

0.06 A it *j

0.04 4

0.02 4

Type of architecture

Figure 5.10: This graphic plots the performances of recudtistal supervised architectures which
utilized Elman recurrent distal learners and/or EIman toxlvmodels against performances of ar-
chitectures only using Jordan architectures. The lab&l®eaexplained most efficiently by exam-
ple. The point “ej” represents the mean performance of reatidistal supervised architectures
using an Elman distal learner and Jordan forward model. Divé fjjt’, however, represents the

mean performance of architectures using both a Jordari iataer and a Jordan forward model
(with the forward models alone employing a teacher forcingtegy to enhance its learning task.)
Clearly, any architecture that utilized an Elman recurreatrer was significantly outperformed

by any similar architecture that used solely two Jordanmreot neural networks.

114

Chapter 6

Discussion

In this work, | demonstrate a modification of the existingalisupervised learning framework for
training a recurrent neural network to produce sequencearging length outputs which, when
accepted by some sequential environment, yields the destiguence of outcomes associated with
the single static input stimulus presented to it. Moreokes, shown that the same approximated
proximal error vector supplied by the forward model to idinoe effective weight vector updates
in the distal learner can, in turn, be used to induce more&ffe updates of the recurrent distal
learner's memory vector and, thereby, further improventrey. This work is indeed significant
in that now recurrent distal learners capable of considetmhistory of previous actions can be
trained in environments in which the learner’s currentestatinaccessible. In fact, the results of
these modifications are particularly distinct from thoseotifer distal supervised learning tech-
nigues in that they allow for the effective creation of reeut distal neural networks that are far
less dependent on current state information than thosal distrners trained using standard dis-
tal learning methods which tend to be heavily reliant on thitrmation in satisfactorily making
future decisions. The efficiency of the modified distal Ie#agniramework is demonstrated first
on a simpler sequential concatenation environment, thien ¢an a very ambitious phoneme se-
guence generation environment in which the recurrentldestaner seeks to acquire the ability to
pronounce words in a similar manner as humans do. The fallpwhapter discusses further the
significance of the findings of this work as well as possibkeirfel directions for improving and

extending this research.

115

6.1 Benefits of the Distal Sequence Generation Study

The role of neural networks with recurrent structures isob@ag increasingly apparent. There
are those, including Ziemke [73], who argue that there gxigsblems in robotic tasks in which
a given state may be attained using several different agiaths (e.g., the state arrived at may
appear the same even though the path taken to achieve it wadifferent.) Learning tasks such
as these can potentially lead to very difficult problems inclitihe current state is not sufficient to
uniquely determine what the next agent action should bené&dr’perceptual aliasing” by White-
head and Ballard ([65]), such issues may be addressed bylinglmechanisms commonly used in
sequential processing neural network simulations whigiressly utilize past experience to more
efficiently promote correct future decision making. Thivig one of many potential applications
which demonstrate the necessity for continued researchr@aurrency in neural models in all
areas addressed by feed-forward networks.

Currently, there is no known work which addresses the useairrent neural networks in
distal problem domains. However, the simulations run inti8a&.3.7 demonstrate that recurrent
neural networks can indeed play a key role in creating nenoalels capable of learning to produce
appropriate proximal sequential behavior to ultimatelgigia series of desired distal outcomes
while operating in a complex environment. Moreover, the faat the distal recurrent learner does
all of this while receiving no external updates of its ownreut state from the environment makes
the task that much more intriguing.

While recurrent neural networks have been shown to be efeectimanaging distal sequence
generation tasks, employing them to handle challengingssguential distal learning problems
may prove to be extremely fruitful as well. Incorporatingopraction history into the decision-
making process by the employment of recurrent links andouarimemory module constructs
may indeed enhance the training of standard distal feedi@hweural network architectures in
non-sequence generation tasks. It might even be possildlentmnstrate improved training per-

formance over standard non-recurrent distal learningesystthat rely heavily on a consistent

116

source of current state information but utilize no concéphemory. This could potentially be the
case if the current state information supplied to non-nexurdistal learners can be shown to be
inaccurate, noisy, or ambiguous. More experiments woultehaired to determine under which
circumstances the more memory-reliant recurrent distahlag systems might definitively be able
to outperform standard, non-recurrent distal learningesgs that rely exclusively on current state

information.

6.2 Success in Recurrent Distal Supervised Learning

The architecture introduced here was demonstrated to welkinvtwo sequential environments:
1) concatenation and 2) phoneme sequence acquisition aedagen, the second of which is an
exceptionally complex composite of two non-linear funeto The system was shown to work
very well in the concatenation problem, which featured a tEsnplex environment which boasted
no ambiguity issues among environment outputs. The phorsepeence generation architecture
however, proved to be a much more challenging system to mdglimately, spanning a range
of numerous simulations, when given 15 actual English pirensequences to acquire, the distal
recurrent learner was able to produce at least 10 phonernersees correctly (Section 5.4).

Once again, it may be possible to incorporate the recurtemttares used in this study into
existing distal supervised learning systems. Judging fileersuccessful results seen in the distal
recurrent learner training tasks of Sections 3.6 and 5i8 nity belief that recurrent distal learners
should be able to perform at least as well when substitutedetx-forward neural networks in
standard, non-sequential distal learning systems desdloper the years. In cases where current
state updates can be ambiguous, for example, being equigie@nowledge of previous action
history may be sufficient for a distal learning agent to break and determine what the best
subsequent action should be.

As of this study, | illustrate a distal learning architeelidevised that can begin to handle distal

sequence generation tasks acquired through interactian environment devoid of current state

117

information streams. Previously, all problems distal ituna required an agent which accepted
some form of current state information it could use to drigeselection of a subsequent action.
This reliance on "seeing” at all times can be quite limitingdaa hindrance. If the all-important
state information should become noisy, inaccurate, or;elas effectiveness of any system relying
on it is significantly compromised.

There are agent situations and problem domains in whiche snpplied with a single in-
put stimulus or command, a correct sequence of actions islynerquired to be executed in its
external working environment. Previously, this type oflgeon was scarcely addressed. Distal
recurrent supervised learning systems can now be corstrtt’blindly” adapt and learn to op-
erate in external environments without receiving any imfation about their current state. Rather,
as is typical of recurrent neural network applications, uke of self-loops and various memory
structures can allow the acting agent to "remember” anbiyrbong histories of its own proximal
commands and act accordingly to accomplish the given tasiti¢ 2.2).

Of key significance is the existence of adaptive learnindgplems in which a given state would
require different actions depending on what the agent had tading up to that point in time. For
instance, for the phoneme sequence generation task, suap@gent intends to say "baby” (pro-
nounced b/ae/b/ee) and the current state information geedvio it is merely the fact that 'b’ was
the last phoneme uttered. The dilemma posed to the leargent aow becomes which phoneme
should it utter next: the 'ae’ or the 'ee’? It was necessarthat instance for the agent to know
the series of phonemes uttered up to that point before idomalke an informed subsequent de-
cision even when provided current state updates. Thisnseter’perceptual aliasing” (Whitehead
[65]) and there are numerous complex robot domains in whihtype of phenomenon must be
handled. Distal supervised learning systems up to thistpaue largely done little or nothing
to address this type of problem. Instead, most instantiatad distal supervised learning systems
tend to be content with solely using its view of the world atiaeg time, to decide on its subse-
guent action. This is not to say relying on current state isgia bad idea. Rather, it is the case

that relying solely on current state updates can ultimdieli the capabilities of a learning agent.

118

By using recurrent neural networks in distal supervisedlprab, not only sequence generation
problems can be addressed, but also systems which can Hemafihaving some notion of "his-
tory” in completing their purpose. Though the system désctihere was shown not to need next
state information in determining subsequent actions,nbisthe case that it cannot utilize current
state updates when they are effective. In fact, further waaly reveal that the use of current state
updates as employed in existing non-recurrent distal siget learning systems, coupled with the
memory structures addressed in the current work, may paligritring about even more robust,
fault-tolerant distal learners that consider where thejehmeen in addition to where they currently
are in deciding on their next move. The use of memories arndrigs in the determination of sub-
sequent action is a valid step forward in the design of adapigents that are capable of avoiding
the pitfalls of perpetual aliasing issues while learningperate in complex environments.

Incorporating delay line structures in distal recurrentvoeks, just as discussed in Section
5.3.9, can be a powerful tool for generating sequences im@mients. This idea of incorporating
delay line structures could hold credence since it enalblesé¢current learner and/or forward
model to clearly discern the first few actions taken andagtithat information in order to yield
the subsequent outputs or actions. In contrast, a standawdrent neural network will tend to
lose information over time when using an exponential traeenary as it continually applies the
decay term to prior memory layer node activations. Furtherkvin this area would be required
to determine just how much delay line memory structures ggrave upon the current recurrent
distal learning architecture.

By what was just described, one might think that if one delag lhemory structure can often
bring about improved performance, adding arbitrarily mdeday lines should continually bring
about additional improvements.

Another observation of interest is that the Jordan netwgdticularly those employing teacher
forcing techniques, tended to outperform the Elman netwasklearners and forward models in
the phoneme sequence generation study. This was somevexgiaated since it was often the case

that EIman networks would converge more readily to the dddavels of performance in standard

119

non-distal sequential training problems than Jordan nddsvdSomehow, that did not translate to
distal sequence generation problem domains. Again, it ¢ean why this might be the case. If
anything, it was believed that the EIman forward model cautute capably mimic the environ-
ment than the Jordan model and be able to utilize its reuds ohin internal state representations
via its hidden layer to most effectively assist in trainihg recurrent distal learner. This, in fact,
was not the case and, ultimately, Jordan network architestusing teacher forcing strategies in

the distal sequence generation domain prevailed (sectidn)5

6.3 Issues with Training

6.3.1 Difficult Environment

Issues concerning the phoneme sequence model variedygidatke the biggest, most significant
issue was probably the challenges presented by the verytiaogand very ambiguous phoneme
sequence generation environment. More study may be rebmirerder to make such an already
complex composite function of non-linear components lesbiguous for the study. As a result
of the ambiguity that remained in the sequential envirortméseemed particularly challenging
for the recurrent forward model to be able to guide the rexurdistal learner to produce the
desired sequential proximal behavior (namely the actuabnmaoneme sequences responsible for
producing the target output associative maps used foritigainAs such, it became very difficult
to get entire motor phoneme sequences to come out as hopixh i@fistal supervised learning
studies, very little is done to track the error of the proXiar@swers or actions of the distal learner.
Indeeddistal error is tracked, and often used to drive training. If proximrror were to be tracked,
however, it would imply that the proximal answers were irtldeterminable by the trainer, and
that would obviate the need for designing a distal supedvesstem in which desired proximal
behavior is inaccessible. Success in distal supervisediteptasks is generally not measurable
by error to some expected proximal behavior but by error toesdesired set of distal outcomes

in the environment. Even though many times in the phonemeaeseg generation task the learner

120

would be shown to have been trained down to a RMSE performassethan 0.1, some of the
motor phoneme sequences we would hope would yield thistedgistal behavior would not be

the proximal sequences sought after. Rather, the resultmgrpal sequential behavior exhibited

by the recurrent distal learner would, due to inherent aoitygssues, potentially be a completely
different action sequence still capable of yielding disgafjuential behavior very close to that
targeted distal behavior.

It was largely due to the phoneme sequence generation enwvanat in its complexity and
ambiguity that the precise desired proximal sequentiabbien was not always achieved. More
specifically, the nature of the final map representationsrgby the SARDNET SOM representing
associative memory served to cause the most significarieclgals. Because the SARDNET SOM
maps are primarily sparse, any SARDNET output maps resutiomg actions of the recurrent dis-
tal learner will only show a difference in distal output frahe result of its first action or phoneme
by several bits at most.

The sparsity of the environment output certainly played gom@le in the manner in which
the recurrent distal learner could be trained, since tngim this manner is driven by distal perfor-
mance error. To further improve on the performance showe, like sparsity of the SOM outputs
could be kept as minimal as possible. One way to do this woelld likeep the SOM output lattice
dimensions to a minimum, hence reducing the number of 0 ¢&iggImuch as possible. Through
trial and simulation, a SARDNET map with a 4x4 output lattice pretty well to store the rep-
resentations of 15 phoneme sequences (Table 5.3) cogsdtan alphabet of the five auditory
phonemes listed in Table 5.2. A 3x3 SARDNET SOM lattice couteptially suffice, particularly
if repetitions of phonemes in the desired phoneme sequestoe=d in the maps were kept to a
minimum or eliminated entirely.

Another way sparseness issues could be diminished in ogetitese distal output maps may
involve using the Mexican hat multi-output feature coveire&ection 4.3.1. This feature would
allow ALL node outputs to fire, substantially limiting thember of non-firing SOM lattice nodes.

Given that this Mexican hat output feature may very well beenweuro-biologically plausible in

121

attempting to simulate cognitive function, it may be worlfile to see how well the distal recurrent
supervised learning system would fare in using these typestputs.

It is still quite difficult to train such a system correctlyt i$ a fact that there are very many
methods one can use to attempt to train the system propeplyarkntly, if the environment does
not lend itself to easy or straightforward solutions, it tewery tough to obtain proximal correct
sequential behavior on the part of recurrent distal learti¢he environment is privy to arriving
at similar environmental outcomes from multiple differipgpximal action trajectories, (that is, if
more than one proximal set of actions can yield the same@mwient distal output), and if a very
specific proximal answer is being sought , as in the phonegesee generation task, then there
may be difficulty in finding the true answer.

Also, it can be quite a challenge to generate sequential@mwvient data randomly to appropri-
ately train the recurrent forward model in effectively sdimpthe environment space so that it can
accurately learn to mimic it during its babbling stage anmdulghout the extent of the simulation
run. A method for finding a good way to generate good "randoet’djrected training data which
could effectively train the forward model to best enableiatsist in training the recurrent distal

learner will be effectively investigated further.

6.3.2 Issues with Initial Random Setting of Neural Network Weight Vecbrs

Another factor which potentially restricted the effechiess of the phoneme sequence generation
model had to do with the randomness of the model. There seebesa dependence in the manner
in which the parameters are initially and randomly set oheeeixperiments begin. If one were to
run the system 10 times with the same makeup, architectiereyging 10 differing random seeds,
the resulting behavior among them can vary greatly. Thalrgetting of random weights of the
recurrent forward model and distal learner neural netwbek@ much to do with how successful
such a model can become. Methods can be investigated intordetermine more ways to make
this issue more of a non-issue. The randomness issue ig tikelthat is present in many standard

distal supervised learning systems and is not specific tafigsaugmented systems examined in

122

this work

6.3.3 Drawbacks Faced in Dealing with Exponential Trace Memories

One drawback to using exponential trace memories as odtheee, is the concern for the length
of output sequences capable of being learned by the systsing Exponential decay memories
holds the benefit of maintaining arbitrarily long historiasa very compact vector representation.
In theory, they can hold potentially infinite histories watit end. However, once decay terms are
applied to prior outputs, it becomes more and more diffiauitiscern how long ago an output
was first activated. For instance, if an output was set to tlthre ¢ > 1, that output is copied
to the same position in the trace memory at tiope, but with diminished intensity. Assuming
an exponential memory decay of .5, in producing an arbiyréong output sequence greater than
five, the output at the same position is reduced from a 1.0va tito o5 = (3)* = 0.0625.
This can be quite difficult for an untrained neural networkdifferentiate from the subsequent
outputos ¢ = (%)5 = 0.03125. As such, it is foreseeable that any Jordan recurrent nktwor
utilizing an exponential trace memory module could potdlytihave a problem blindly generating
subsequent actions past a certain point without help framentistate updates. Utilizing a mixture
of exponential trace and delay line memory structures céenpially offset this issue to an extent.
Also, using larger output values that will not deterioratét€ as quickly as the standard output 1.0

does may assist some in this regard. This issue would needaddressed seriously if this feature

is to be fully utilized.

6.3.4 Forward Model
Forward Model Training Data

The appropriate training of the forward model is ultimatphramount to the effective training
of the distal recurrent learner. One significant challeregnss to be how one can best train the

forward model to be of maximum service to the recurrent tisner. One way of doing this, if

123

available, is to train the forward model, not the distal reent learner, using the expected proximal
answers and their corresponding desired target distabsegs as input / output pairs. Of course,
this is rarely useful because the point of developing dsti@lervised learning systems is that the
proximal answers are generally not known. In the phonemeesese generation model described
here, for example, the best performance was most oftennastavhen the forward model was
trained to efficiently map the correct proximal motor phoeesequences to their corresponding
target distal output maps. Of course, these particulaaldisitput maps would be one and the same
as those provided at the start of training and used as taggeksces to train the distal recurrent
learner in the first place.

One can argue that using this strategy in this fashion iffipfor this particular task since the
purpose of the system described in Section 5.3 is not to fin@coproximal behavior previously
unknown to the trainer. Rather, the goal of the proposed systéo replicate as closely as possible
the process of phoneme sequence generation studied exlgmsineuro-biological study. In fact,
one could argue that incorporating the proximal answergeéntttaining of the recurrent forward
model can be tantamount to the visual and aural guidancénocwpby some coach (e.g., teacher,
parent, etc.) in teaching the pronunciation of a word, omimging a bat, to a child, for instance.

Alternately, one can merely generate a sufficient numbeaiflomly created actions in the
output space of the learner to be supplied as training instafor a forward model. Once the
proximal action sequences are randomly generated, thdyecapplied to the environment to yield
their corresponding distal sequential outcomes. At thistpthese pairs of sequential proximal
actions and distal consequences can be used to train tharfbmodel on the resulting set of
training instances. Though the latter is the easiest mavfrferward model preparation, there are
no guarantees that the data generated could be good or prgraisough to prepare the forward
model to fully and effectively train the recurrent distadteer.

A phenomenon | observed while conducting these recurratdldearning simulations is that
the forward model should at least be able to generalize thgpim@ of the desired proximal so-

lutions, whatever they may be, to their corresponding tiatget outputs in order to be entirely

124

successful. In the case of complex environments such aswheraployed here, generalization in
this fashion can be highly unlikely. In such an environméné, forward model would probably
have to see and learn to map every set of correct proximalrectn order to even hope to train
the distal recurrent learner to learn to produce them. Toisddcpotentially be done through ran-
dom generation of training instances and through subseéduieractions between distal recurrent
learner and the environment. But to anticipate generatimgigim proximal sequences to enable
the forward model to properly sample the sequential inpatspn such a complex, non-linear
environment can likely be unrealistic and can require a émghous amount of computing power,
space, and simulation time.

In the absence of extensive computing resources, supptimdgorward model with some
amount of correct proximal behavior up front can give thevemd model a better chance to fur-
ther generalize to the environment mappings necessaryfémtige training of the distal recurrent
learner. In trying to do the phoneme sequence generati@ntidis both types of data (i.e., both
randomly constructed and also the known proximal answete@roblem) it became apparent
that the simulations which employed forward models traiéd known proximal answers tended
to lead their corresponding distal recurrent learners tvexge at a greater rate than those which
utilized randomly generated data to train the forward mod&tcall that in distal recurrent su-
pervised learning experiments proximal actions need todoegted and supplied to the forward
model for training purposes during babbling and trainireges. Another factor that is directly
manipulatable by the trainer is the size of the recurrewdod model’s hidden layer. A forward
model whose hidden layer is too small can be ill-equippeduticiently partition and, subse-
guently, be able to propagate effective error signals initng the recurrent distal neural network.
More research can be done to determine what types of dataechedb used to train the forward
models of complex environment functions effectively withthe use of known proximal answers.

However, although recurrent forward models tend to workdvednce trained on the proxi-
mal answers, such a strategy is not at all sufficient to crfeateard models which can effectively

guide any given recurrent distal learner to learn the copexximal behavior every time. Often in

125

simulations of the phoneme sequence generation task, dven trained on the correct proximal
behavior down to a very low performance error, many forwaatiels were incapable of propa-
gating back effective error signals in the training of itsregponding recurrent distal learner. Part
of the success of training a successful distal learningesysipparently relies heavily on the initial
random parameter settings of both the recurrent forwardeiatt the recurrent distal learner.

Oddly enough, unlike in recurrent distal learners, incoagiog delay line memory structures
in forward models has not demonstrated improved performamahe distal recurrent training
task. Moreover, one would think that architectures withagidine memory constructs either in
the forward model or in the distal recurrent learner woulthetform those that employ neither.
Rather, simulations that employed distal recurrent leartigat contained at most one delay line
memory structure and forward models with no delay line mgmstucture tended to do noticeably
better than any other distal recurrent supervised leasystem setup.

Furthermore, it is not necessarily the case that more membeligy lines in either recurrent
forward model or distal learner implies better performaoeer fewer delay lines. Similar experi-
ments demonstrated that use of two or more delay line mentiugtsres in either or both forward
model or distal learner did not necessarily improve leagnim fact, in many cases learning was
shown to be hindered in comparison to systems utilizing onky delay line. This result can very
likely be isolated to distal sequential problem domainsg&invironments of this type or level of
complexity. Still, further study can be done to determired¢huse of this phenomenon.

In noting the importance of the forward model training datdhe success of training the re-
current distal learner, certain methods were developed attampt to improve the forward model
training as it looked to mimic/model the environment of tt®peme sequence production system.
One such attempt included the caching of past babbled osgmuences made by the recurrent
distal learner and their corresponding distal outcomesetaiged multiple times in training the
recurrent forward model. The idea here was to see, in thenabs# more training data, if the for-
ward model could be made to learn the sequential enviroraherapping better. Experimentally,

it was determined that such a strategy was not convincirffggtive, whether such data was held

126

or cached for two or more time periods or just one (the latt@ndpstandard practice in most distal
supervised learning systems.) This was just one instaniteeaftrategy which did not work.

Also, rather than update a forward model just once on a gie¢wfsbabbled data, | thought
that updating or training it on the new data more than onceduiihe same epoch could potentially
help it to train better. Such an action would allow the forsvarodel to learn more precisely what
the true mapping of every randomly created or recurrenaldisarner generated proximal action
sequence could be, further allowing it to approximate therenment mapping appropriately. In
this case, it did not work out experimentally as well as expecWhy this did not work is as yet
unknown.

Currently, what works is to keep the actions generated byatb@rent distal learner in forward
model training for only one epoch and to delete it before #e forward model epoch or update
can begin. It seems sufficient enough for the recurrent fatwmaodel to use a recurrent distal
learner’s attempt at generating a good sequential proxiesglonse, given the static input stimulus

presented to it, and its corresponding distal sequentigbooe as training data in one step.

6.4 Future Work

6.4.1 Improving Performance of Recurrent Distal Supervised LearningAr-

chitecture

A good deal of success was demonstrated in observing therpeiice of this newly proposed
distal supervised learning system which employs recutieks in both the distal learner as well
as the forward model while also utilizing cumulative memiayer strategies in either. However,
some aspects of the newly proposed architecture can beigatesl for further improvement of this
new system. One such aspect of learning which can be ine¢stigurther is the effect of varying
the number of hidden layers included in either or both remurdistal learner and forward model.

If more than two hidden layers are incorporated in eitheralenetwork component, activations

127

from up to all hidden layers can potentially be recorded asgtun exponential trace memories.
The new possibilities may grant either recurrent netwodteased computational capability to
further partition the environment mapping into segmernaaifivhich more informed decisions can
be made in generating good subsequent actions. Furthermegoes in this direction may produce
even better sequence generation performance than that iotine present study.

Another potential aspect of this work which could be invgetied further is the effects of dif-
ferent output functions to the hidden layers (and possiidydutput layers) to see if further im-
provement can be made in training distal sequence generagiaral systems. Utilizing recurrent
neural networks in which layers of nodes employ the tanggpetbolic (Tanh) output function,
in particular, may enable these networks to successfullyeage at significantly higher rates than
those networks which employ standard logistic output fiumst There may be increased benefit
in using Tanh output functions just because of the incressege of output possibilities that the
affected nodes can perform. In essence, the Tanh(x) hagia cdr-1 < Tanh(z) < 1 while the
standard logistic function (sig(x)) has a more limited r@rd0 < sig(x) < 1. A direct result of
this change in output function is that weight vectors hawagdr range of possible answers, which
may be good or bad.

Another significant consequence of switching to an outpuoction with a greater range is that
with Elman and Jordan/ ElIman hybrid recurrent architectutieeir memory trace modules will
now be made to handle negative activations. This may be egsrithe case with Jordan networks
since eventually, at least in the phoneme sequence acouitsk as described in this text, each
of their output units, and hence their memory contents, dailleventually be in the range of, or
very near (0,1). This modification could, in fact, have a v&ignificant effect on the training of
the learner. Future simulations augmenting recurrendldisarners and recurrent forward models
alike in this manner should show just how beneficial, or detrtal, such a change can result.

One issue to be addressed in the use of Tanh output nodesaigacy in depicting actual
neuronal behavior in neural model simulations of brain baia It is known that neurons tend

to either be inactive (0 output) or firing (1.0 output). Thiskas it easy to classify neurons as

128

semi-binary in nature. The problem is that nodes of a newtaVaork utilizing the Tanh hyperbolic
function output can potentially output negative numbewsnily knowledge, there is no concept of
negative activations emanating from neurons in the brast,jegative connections. For problem
domains such as these it would seem that sticking to outplé fuctions which produce outputs
in the range (0, 1) would be most beneficial.

It is certainly the case that neurons are known to inhibit af as excite other neighboring
nodes once activated. But inhibition in neural networks @Bdglly already addressed in the way
the weights can be negative or positive. So positive aabimadf a node in a neural network can
actually inhibit a neighboring neuron by virtue of the weiglonnecting the two being negative
in value. By having neurons which can produce both positiveét reggative outputs, you can no
longer express a relation that one neuron will always inflparticular neighbor. That is, unless
connecting weights are somehow restricted to positiveeglwhich could indeed defeat the pur-
pose of switching to Tanh output nodes. If it is indeed theed¢hat inhibition/excitation relations
exist between neurons in the brain, such relations wouldmiatly be nullified in corresponding
neural simulations if tangent hyperbolic nodes were besegu

Yet another area of interest | could investigate would bedhthe role of radial basis networks
in improving the use of neural networks in distal problem dams, whether sequential or not. The
update procedure would certainly change significantly asfénmulation of outputs and weight
updates between radial basis networks and standard feedrtbnetworks differ substantially. But
if something were to come of this research, much could besgeimtaking advantage of the radial
basis nodes’ ability to classify clusters. Currently, it olear how one would utilize the gradient
of the radial basis forward model as one would the gradierat f&fedforward forward model. It
may be the case that only the distal learner or the forwardemaehd not both simultaneously,

could be capable of being constructed from radial basissiode

129

6.4.2 Modeling Sequence Generating Cognitive Tasks

Another direction for future research is to progress intaenadvanced bi-hemispheric neural
models of brain activity. In previous studies, we impleneei bi-hemispheric neural model, two
feed-forward neural networks with hidden layers that dboted to each other’s activation via a
positively or negatively weighted pathway (Reggia, Gittestsal. [46], [47].) The inclusion of
this pathway was inspired by the corpus callosum known tmeotthe right and left hemispheres
in the brain. The joined neural networks were capable of d#iained in tandem to produce
sequences of phoneme vectors in an effort to test potemit#brls which could attribute to the
emergence of lateralization in the brain. In the study, arpents suggested that a number of
factors can have a role in contributing to lateralizatiorgluding size of the hemisphere as well
as plasticity and speed. From these same experiments, atkervations from neurobiological
studies could also be potentially inferred. For examplgatiee, or inhibitory, contribution on
the part of the corpus callosum through which the hemisghesenmunicate showed evidence of
mirrored activations between hemispheric hidden layenfieoted homotopically.

Additional lesioning studies were conducted in which attns of hidden layer neural units
of either hemisphere of the bi-hemispheric model were deditely turned off to simulate damage
to the brain as a result of stroke or brain trauma, for insganthis series of experiments was
designed in order to study not only factors contributinguioctional lateralization in the brain but
also factors which assist most in recovery of damage to theblt was found that the simulated
corpus callosum assisted in having the non-damaged regjithhe emisphere to adequately pick
up function lost by the acute lesion in the damaged hemigphEnere was evidence of much of
the phenomena seen in the actual studies of stroke damagdients. For instance, for positive
contributing corpus callosum, the corresponding areaectead homotopically to the lesioned por-
tion of the damaged hemisphere in the non-damaged hemesphkperienced reduced inhibition.
Also, the neural contributions of neighboring neurons ie thmaged model themselves lacked
activation and their contribution lessened as well.

The drawback to such an initial study was the lack of feagjbdf the architecture as one

130

to truly model the phoneme sequence, or any intelligent iblwgnmotor function, acquisition
process. Despite the fact that behavior resembling actwabrbiological phenomena was shown
to be replicated in the test experiments, many aspects aftival brain process evaded the original
design. For one, the model used primarily a local represientaf inputs and outputs. That is,
inputs and outputs each specified a phoneme or phoneme sedgogia single neuron being on
or off, which is unlikely. Secondly, there was little use o&ny processes known to have a role
in the phoneme sequence generation process. There wasstange, no existing interaction with
the external environment, no distinction between motor aditory features, and certainly no
mention of stored representation of sequences in asseacagmory.

Once this model is completed, a more realistic, feasibld, amplex bi-hemispheric model

can be constructed, in which the following can be asserted:

1. Babbling can be construed as the training of the forwarédpenodel from observations
of random motor actions in the environment. This step is dgkbnecessary for training the
forward speech model and can be introduced as a precursatguing stone to language

acquisition.

2. Two hemispheric regions can accept as an input stimulustabdted representation of

phoneme sequence intent.

3. Each hemispheric region can have access to the forwaetlspaodel in acquiring the
phoneme sequence acquisition skill following the initiabbling stage and through con-
tinued babbling during the actual distal sequential leagask. Forward models are widely

believed to hold a significant role in acquiring languagedpiadion skill in humans.

4. Interaction does indeed occur in an external environrtf@tttransforms motor phonemes
to auditory phonemes and accesses unique activation magtered phoneme sequence

representations in associative memory.

5. Both models of left and right hemispheres can again workairalfel and conjunctively

131

through use of the intermediary corpus callosum.

Another potential plan for future research would be to exiban the phoneme sequence ac-
quisition model discussed in Chapter 5. With work, more phoe®ge and hence more phoneme
sequences, could be learned by the model. Also, a more Izalggplausible self-organizing map
such as the one-shot, multi-winner SOM (Shultz [54]) coddrivestigated to replace the efficient,

yet implausible, SARDNET SOM which is used to represent aasee memory in the model.

6.4.3 Incorporating the Self-Halting Mechanism into the RecurrentDistal

Supervised Learning Architecture

Finally, it would be useful to re-visit the idea of incorporng the self-halting functionality in
this recurrent distal supervised architecture. The sallirig feature proved to be very difficult to
implement in an already tough phoneme sequence acquisitskn One feature which could be
implemented at a later date, is the self-halting mechaniiren time constraints, limited success
was achieved in enabling the distal learner to acquire thigyaio output a halting signal to stop
itself from producing a sequence of arbitrary length rathan being told ahead of time how many
actions to produce in a sequence. Initial success was sgrhammpered by the difficulty of hav-
ing to learn to output a halting signal which was significauwlifferent from other legal recurrent
distal learner action vectors in addition to learning torapein such a complex environment which

proved to be too challenging a task at this early stage ofttigys

132

BIBLIOGRAPHY

[1] Barto, A.G.,Reinforcement Learnindgdandbook of Brain theory and Neural Networks, MIT
Press, Cambridge, MA, pp. 804-809.

[2] Barto, A.G., R.S. Sutton, and C.W. Anderson, Neuronlikeraats that can solve difficult
learning control problemdEEE Transactions on Systems, Man, and Cyberneti8835-

846.

[3] Blakemore, S.-J., Daniel Wolpert, and Chris Frith, Why ¢aou tickle yourself?NeuroRe-
port: Review Lippincott Williams and Wilkins, August, 2000, pp. 11-16.

[4] Blakemore, S.-J., Chris D. Frith, and Daniel M. Wolpert,eTberebellum is involved in
predicting the sensory consequences of actiayuroReport: Brain ImagingLippincott

Williams and Wilkins, July, 2001, pp. 1879-1884.

[5] Bloom, L., Language acquisition in its development cahtelandbook of child psychology:
Vol. 2. Cognition, Perception, and Language.D. Kuhn and R.S. Siegler (Eds.), New York:
Wiley, 1998, 5th ed., pp. 309-370.

[6] Campolucci, P., A. Uncini, and F. Piazza, A unifying vielgpadient calculations and learn-

ing for locally recurrent neural networks, 1997.
[7] Carlson, A.B., 1986Communication systemidew York: McGraw-Hill.

[8] Chen, S., S. Billings, and P. Grant, Non-linear system fifieation using neural networks,

International Journal of Contrgl1990,51:1191-1214.

133

[9] D’Autrechy, C.L., and J. Reggia, 1989. An Overview of SeaeeProcessing by Connection-
ist Models,University of Maryland Dept. of Computer Science Technieggdt UMIACS-
TR-89-82 (also CS-TR-2301), Institute for Advanced Computediet, Department of Neu-
rology, UMAB and Department of Computer Science, Universitiylaryland, College Park,
MD 20742.

[10] Dell, G., Spreading activation theory of retrieval iangence production?sych. Reviews

1986,93:283-321
[11] Dennis, S., Behavior with an implicit teacher in conmeeist networks.

[12] Donoghue, J., S. Leibovic, and J. Sanes, Organizafitmedorelimb area in squirrel monkey

motor cortex. Experimental Brain Researcth992,89:1-19.
[13] Elman, J.L., 1990. Finding structure in tin@pgnitive Sciengel4:179-211.

[14] Fahiman, S.E., An Empirical Study of Learning Speed irclBRropagation Networks.,
Carnegie Mellon University Computer Science Dept. Techrighort CMU-CS-88-162
1988.

[15] Flanagan, J.R., and Alan M. Wing, The Role of Internal Meda Motion Planning and
Control: Evidence from Grip Force Adjustments during Moveiseof Hand-Held Loads,

The Journal of Neuroscience, Society for Neurosciehd@):1519-1528

[16] Georgopoulos, A., R. Kettner, and A. Schwartz, Primat#gancortex and free arm move-
ments to visual targets in three-dimensional space. Il, @pdf the directions of movement

by a neural populationJ. Neurosciencel988,8:2928-2937.

[17] Guenther, F.H., 1995. Speech sound acquisition, icodation, and rate effects in a neural

network model of speech productidPsychological Reviewl02594-621.

[18] Haykin, S.,Neural Networks: A Comprehensive FoundatiBrentice Hall, Inc., 1999.

134

[19] Igel, C, and Michael Husken, Improving the Rprop Learnidgorithm, 2000, pp. 115-121.

[20] Jakobsen, R., G. Fant, and M. HalRreliminaries to Speech Analysis: the Distinctive Fea-

tures and their CorrelatesMIT Press, 1951.

[21] James, D.L., and Risto Miikkulainen, SARDNET: A Self Ongang Feature Map for Se-

guencesAdvances in Neural Processing Systeh@95.

[22] Joost, M., Wolfram Schiffmann, Speeding Up BackpropiagaAlgorithms by Using Cross-
Entropy Combined with Pattern Normalizatiomternational Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systel898,6(2). 117-126

[23] Jordan, M., Attractor dynamics and parallelism in amectionist sequential machineyo-
ceedings of the Eighth Annual Conference of the Cognitiven8ei&ociety Englewood

Cliffs, NJ: Erlbaum, pp. 531-546, 1986.

[24] Jordan, M., and D. Rumelhart, 1992. Forward models: 8uged learning with a distal
teacherCognitive Sciencel6(3):307-354.

[25] Kaebling, L.P., M.L. Littman, and A.W. Moore, Reinfomoent Learning: A Surveylournal
of Artificial Intelligence Resear¢gii996,4:237-285.

[26] Kohonen, T., Self-organizing formation of topolodigacorrect features map®iological

Cybernetics1982,43(1):59-69.

[27] Karniel, A., R. Meir, and G. Inbar, Polyhedral mixture lofear experts for many-to-one

mapping inversion, 1998.

[28] Karniel, A., Three creatures named 'forward modiural NetworksElsevier Science Ltd.,

2002,15:305-307.

[29] Kawato, M., Internal models for motor control and ti&@y planning,Current Opinion in

Neurobiology Elsevier Science Ltd., 1999;718-727.

135

[30] Levelt, W.J.M., Roelofs, A., and Meyer, A.S., Atheorylexical access in speech production,
Behavioral and Brain Sciencg$999,22, 1-38.

[31] Michie, D., and R.A. Chambers, BOXES: An experiment in dda@pcontrol,Machine Intel-
ligence 2 Oliver and Boyd, 1968, pp. 137-152.

[32] Merkl D., and A. Rauber. Alternative ways for clusterwadization in self-organizing maps.
In Proceedings of the Workshop on SelfOrganizing Maps, &spimland, June 4-61997,
106-111.

[33] Minsky, M., Steps toward artificial intelligenc@roceedings of the Institute of Radio Engi-
neers 1963,49:8-30.

[34] Minsky, M., Seymour PaperEerceptrons, an introduction to computational geométhe

MIT Press, 1969.

[35] Mozer, M., Neural net architectures for temporal sewa@eprocessing, Predicting the future
and understanding the past, A. Weigend and N. Gershenfettlyéts City, CA: Addison-
Wesley Publishing, 1993.

[36] McClelland, J. L.,and J.L. EIman, Interactive processespeech perception: The TRACE
model, Parallel distributed processing: Explorationshia tnicrostructure of cognition/ol-

ume II: Psychological and biological modeMIT Press, 1986, pp.58-121.

[37] Narendra, K.S., and K. Parthasarthy, Identificatiod aantrol of dynamical systems using

neural networkslEEE Transactions on Neural Networki990,1:4-27.

[38] Nikovski, D., Sridhar Ramakrishna, Rajani Kanth Kone3univas Jamhed, and et al., Distal

supervised learning for solving inverse kinematic proldem

[39] Pearimutter, B.A., Gradient calculations for dynamecurrent neural networks: A survey,

IEEE Transactions on Neural Networkg95), no. 5, 1212-1228.

136

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Pineda, F.J., 198Recurrent backpropagation and the dynamical approach tptide neu-

ral computation Neural Computatiori:161-172

Poggio, T., and F. Girosi, Networks for approximatiarldearningProceedings of the IEEE
78(9):1481-1497, 1990.

Puskorius, G.V., and L.A. Feldkamp, Neurocontrol oinfiwear dynamical systems with
Kalman filter-trained recurrent network#£EE Transactions on Neural Network$994,

5:279-297.

Puskorius, G.V.,, L.A. Feldkamp, and L.l. Davis Jr., ynic neural network methods applied
to on-vehicle idle speed contrdtyoceedings of the IEEE.996,84:1407-1420.

Radio, M., J. Reggia, and R.S. Berndt, Learning word proiafions using a recurrent neural
network, University of Maryland Dept. of Computer Sciencef@cal Report, Department

of Computer Science, University of Maryland, College Park, RIID’42, 2001.

Reggia, J., C. D’Autrechy, G. Sutton, and M. Weinrich, Angeetitive distribution theory of

neo-cortical dynamicsyeural Computation1992, 4:287-317.

Reggia, J., S. Gittens, S. Goodall, and Y. Shkuro, LétEtion and lesioning of a two hemi-
sphere model of single-word readir®yoc. Second Intl. Workshop on Neural Models of Brain

and Cognitive Disorder4998.

Reggia, J., S. Gittens, and J. Chhabra, Post-lesioralegation shifts in a computational

model of single-word reading.aterality, 1999.

Reggia, J., S. Goodall, and S. Levitan, Cortical map asgtries in the context of transcal-

losal excitatory influence$yeuroReport2001, 13(8):1609-14.

Riedmiller, M., and Heinrich Braun, A Direct Adaptive Metd for Faster Backpropagation
Learning: The RPROP Algorithm, Institut fur Logik, Kompléxi und Deduktionssyteme,
University of Karlsruhe, W-7500 Karlsruhe, FRG, 1993.

137

[50] Roelofs, A., The WEAVER model of word-form encoding in spl productionsCognition
1997,64:249-284.

[51] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Leainternal representations by error
propagationpParallel Distributed Processing: Explorations in the Mistructure of Cogni-

tion, MIT Press, Cambridge, MAL:318-362, 1986.

[52] Rummery, G.A., and M. Niranjan, On-line Q-learning wseonnectionist systems$echnical

Report CUED/F-INFENG/TR 16@&ngineering Department, Cambridge University.

[53] Samuel, A. L., Some studies in machine learning usimggaime of checker$BM Journal

on Research and Developmgh959,3:211-229.

[54] Shultz, R., Temporal Sequence Representation in One-Shiti-Winner Self-Organizing
Maps, University of Maryland, Dissertation Proposal, Asgl5, 2002.

[55] Singh, S., and J. Black, A study of twenty-six intervoca@onsonants as spoken and recog-
nized by four language group3ournal of the Acoustic Society of Ameri&9(2):372-387,
1966.

[56] Singh, S.Distinctive Features: Theory and Validatipdniversity Park Press, 1976.

[57] Sutton, R.S., Temporal Credit Assignment in Reinforceinhearning, Ph.D. thesis, Univer-

sity of Amherst.

[58] Sutton, R.S., Learning to predict by the method of terapdifferencesMachine Learning
1988,3:9-44.

[59] Sutton, R.S.Reinforcement learning: An IntroductipMIT Press, 1998.

[60] Tani, J., Model-Based Learning for Mobile Robot Navigatfrom the Dynamical Systems
Perspectivel EEE Trans. System, Man and Cybernetics (Part B), Speciaklss Learning

Autonomous Robqt4996, Vol. 26, No. 3:421-436.

138

[61] Tesauro, G., TD-Gammon, A self-teaching Backgammorgiaim, achieves master-level

play, Neural Computation6:215-219.

[62] Toudeft, A., and Patrick Gallinari, Distal learningrfmverse modelling of dynamical sys-

tems.
[63] Watkins, C.J.C.H., Learning from Delayed Rewards, PhhBsis, Cambridge University.

[64] Werbos, P.J., Backpropagation through time: What it doeshow to do itProceedings of
the IEEE 1990,78:1550-1560.

[65] Whitehead, S., Ballard, D.H., Learning to perceive artgdrial and error.Machine Learn-
ing, 1991,7:45-83.

[66] Wikipedia contributors. Formant. Wikipedia, The Free En-
cyclopedia. December 13, 2006, 07:02 UTC. Available at:
http://en.wikipedia.org/w/index.php?title=Formani&o=94008153. Accessed January
29, 2007.

[67] Williams, R.J., and Z. Zipser, 1989. A learning algonitfior continually running fully recur-

rent neural network$\eural Computationl:270-280.

[68] Williams, R.J., and J. Peng, An efficient gradient—baakgrithm for on—line training of

recurrent network trajectorielleural Computation 21990), no. 4, 490-501.

[69] Williams, R.J., and D. Zipser, Gradient—based learmilggrithms for recurrent networks and
their computational complexityBackpropagation: Theory, Architectures and Applications
(Y. Chauvin and D. E. Rumelhart, edd.awrence Erlbaum Publishers, Hillsdale, N.J., 1995,
pp. 433-486.

[70] Witney, A.G., Philipp Vetter, and Daniel M. Wolpert, €hinfluence of previous experience
on predictive motor controNeuroReport: Motor Systemisippincott Williams and Wilkins,

March, 2001,12(4):649-653.

139

[71] Wolpert, D.M., Zoubin Ghahramani, Michael I. Jordam Iternal Model for Sensorimotor
Integration,Science2691880-1882.

[72] Wolpert, D.M., R. Chris Miall, and Mitsuo Kawato 1998. émhal models in the cerebellum,

Elsevier Science Ltd., pp. 338-347.

[73] Ziemke, T., Remembering how to behave: Recurrent newaarks for adaptive robot be-

havior,Recurrent Neural Networks: Design and Applicati®@iRC Press. 1999. pp. 341-375.

140

Appendix A

Algorithm used for the preliminary Single Phoneme Acquisition Model

procedure BABBLE (maxepochs, errorthreshold
% — Initialize variables — %
Broca«< Broca’s area neural modes distal controller
FM «— forward model neural net
X « list of phoneme intent vectors
Y* « list of target audio phonemé@s distal target values
U* < list of motor phonemes needed to prodicedistally % Broca’s task is to
come up with the motor phoneme list on its own
distalerror« oo

epochs— 0

% — Initial Babbling Phase to train forward connections (fordianodel) — %
[rand-motor list, randaudialist] «+ generate random motor/audio phoneme piror
use in babbling stages

train FM on training pairs [randgnotor list, rand audiallist]

% — Training the Distal Learner, Broca’'s area — %
do
U <« Broca(X)% list of outputs of Broca’s area when presented with X as lighjodts

Y «— Env(U) % list of actual outputs resulting from applying Broca’'s miotesponse to

141

the environment
dWy; <0
dWj; <0
for each phoneme intent i X do
actualdelta— Y — Y,
train FM on training pairl/,, Y,]
[dW;, dW] + calculate update weight matrices to Broca based on deltavalu
propagated back through the forward model
AWy« dWi; + dW,
dWj; « dWj; + dW3
end
Broca.W,; < Broca.W,; + dIV;; % update Broca weight matrices
Broca.W,; < Broca.W,; + dWW;
train FM on training pairs [randnotor list, rand audialist] % continue random
babbling to further train forward connections
epochs— epochs + 1
distalerror«+ calculate error of Broca’s output (RMSE(Broca(X}))
until (epochs< maxepochs) or (distaérror > errorthreshold)

end

142

Appendix B

Creating a Smooth Mapping from a Finite Mapping

Constructing a smooth environment mapping from the spactaicomg the set of motor feature
vectors to that containing the set of auditory feature wscppesented a particular challenge. A
candidate environment functiofi;, sought to complete a task such as this would preferably have

a particular set of specific properties. Let A and B be finitis seich thatA| = |B|, A € R™,

and B C R". Define some finite mapping f-AB such that f(A)=B. The idea is to construct the
new smooth mapping;*, that preserves the finite mapping f but is as smooth andrdift@able
as is feasibly possible. This way, where f(a), fioe R buta ¢ A, would be undefinedf*(a)
would be some reasonable approximation for a counterpd®irOnce it behaves in this fashion,
the environment function can be approximated effectivglyabmulti-layered feedforward neural
network. The latter can in turn be used to propagate backmioe ef the actual distal output,
which is a distal consequence of the controller’s localaxtirom the desired target distal output.
To illustrate this problem, the following table demonstsad very simple environment function,
f:%* — R*. Do note the domain and range of this function o%&r andR", respectively, is as

defined previously with m=n=1.

A | f(A) =B
04| 06
16| 1.8
29| 04

As one potential candidate for a smooth mapping alternafitefor f, we can set f of each

143

Figure B.1: Simple Mapping

member of A to the member of B to which it is associated (f€—-A) = 0). For all other values
meR, set f(m) = 0 (see Figure B.1). As such, this function satighesrequirement that f(A) =
B. However, no other information is encoded here, which i®m®issl in training the controller
effectively. Ideally, a function such as the one in Figure B.2ought. Using this function, any
arbitrary m, even if itis not in A, has a defined f(m) whose eakidependent on the known values
of B. A controller which offers some action m can then use therenment to judge how far off it
was from achieving it's distal target and also modify itdelbffer an action which is closer to the
one required.

Unfortunately, arriving at a function such as the one in #gBr2 is not trivial. One way to
approximate such a function is by using radial basis funetiike that shown in Figure B.4. A
radial basis function takes on the forrtw) = exp(||x — c||*/r?), where the radius r determines
the width of the resulting bell curve and c denotes the cehtere,0 < r(z) < 1, where r(x) = 1 if
x = ¢ and r(x) approaches 0 the further x is from c. Radial basistfons are used successfully in
training radial basis neural nets [41] which have been shovarganize and learn from clustered

input data better than standard neural networks.

Let y be the member of A such thigt: — ¢|| is minimized (i.e. the closest A candidate in A to

x). Initially, we will calculate f*(x) as follows :

Al y = argming,|lz —ml||,m e A

(@) = fly) x ry(z)

144

Figure B.2: Ideal Mapping

/\

Il Il

Figure B.3: Example figure of discontinuous mapping resglitirom Equation A.1.

, wherer,(z) is defined as the radial basis function centered at y. For x ip AX, r,(z) = 1,
and f*(m) = f(m) x 1 = f(m). Otherwise,f*(x) is assigned a multiple of the corresponding
auditory phoneme to that closest motor feature vector, A& tmx. The magnitude of this multiple
will correspond inversely to the distance of x to the closestber of A.

The most significant problem with the functigh is that it is highly discontinuous. The func-
tion landscape changes abruptly midway between neighdponembers of A (Figure B.3). One
way to offset such extreme discontinuities could incorpoedding a smoothing factor to Equa-
tion A.1 which takes into consideration the proximity of @indidate elements of the domain A in

calculatingf*(x).

The new environment functiorf;*(x), is now calculated as follows:
A2 g(m,z) =1/(llz —m|))’sm € A,b>1,M = |4

h(m,z) = g(m.2)/ 32," 9(y,2);y € A

145

Figure B.4: Radial Basis Function

Fr(@) = Mz, 2) x f(2) x r(@)]; 2 € A

Here, g(m,x) is a measure for the proximity of the member medfAsto the input vector x.
The smallet|x — ml||, the larger g(m,x) becomes. The function h(m,x) is essiyndaanormalized
version of g(m,x) such that < h(m,z) < 1. As a result, h(m,x) will approach 1 if x is very
close to some memberd@A. A consequence of this is h(y,x) for all otheey will approach
0 since)_h(z,z) = 1. Function f*(x) will then take on most of the characteristics of f(m).
Otherwise, should x be found to be midway between two or mabers of A f*(x) should take
on characteristics of all of their corresponding mappinghe target set B.

One drawback to constructing the environment mappjtigin this manner is that it requires
significantly more computation than that of Equation A.1ef&g0, however, the resulting mapping
is sufficiently smooth enough for the forward model to learmpproximate. Figure B.6 demon-
strates two candidate function landscapes for transf@mitinite mapping f to a smooth mapping
f*:[-1,1]* —[0,1] based on Equations A.1 and A.2.

One issue encountered in creating a function in this fasisitimat those membersad which
have large values for f(rgB can have radial basis mounds which disproportionatelyidata
values of f*(x) within some proximity of m despite the presence of other Imgaadial basis
mounds. This can have undesirable results where some kg basis mounds envelope smaller
ones or even create “false” mounds not centered around a ereémi (figure B.5). As such,

further improvement tg*(x) can be obtained by "slimming” the radial basis comporsssigned

146

09r

0.8

0.7

0.6

0.5

0.4r

03

0.2

0.1r

Figure B.5: (Left)The smooth mapping procedure shown withradius slimming. Notice that
members of the domain with the smallest correspondig,f (x=-.5 and x=1), have no radial
basis mounds as they are being dominated by mounds of memiibrsery large f(x). Also
notice the false mound created to the far left which corredpdo no member of the domain set,
A. (Right) The same procedure using the radius slimming mzatibn. By reducing the radii of
the tallest mounds, the false mound disappears and the badia mounds for the members with

small f are much more apparent.

147

Figure B.6: Here two mapping methods are compared using Bguatl (left) and using Equation
A.2 (right). The finite relation used to create these smoaodippings is as follows : (-1,-130,
(1,-1)—0, (1,-1)—1, (1,1)—1.

to a member m in A with maximum height f(m) in B. This can be aetgeby reducing the radius
term, r, in the radial basis portion g¢f(x) for larger values of f(y) and gradually increasing radii
for mounds with smaller maximum heights.

Another obstacle in constructing the environment funciiotinis manner stems from having to
deal with zero output. When approximating a smooth functiahiis fashion, not only is it difficult
to approximate zero valued outputs but since a radial basigchof height zero is essentially non-
existent it can contribute very little to the weighted agg@msintroduced in the construction of this
mapping. To alleviate the problem to a degree, some minimalmevgreater than zero can be
assigned to replace all zeros in the feature vectors of A aritiddeby giving even null values

radial basis information which can be utilized.

148

Appendix C

Motor / Auditory Feature Tables for English Language

Phonemes for Use in Phoneme Sequence Production Task.

This section lists the essential English language phonersed in the preliminary work of the
single phoneme acquisition model (section 5.2) and intérfde use in creating the proposed
phoneme sequence acquisition computational brain modeli¢gs 5.3). Each column represents
the vectors of known features which characterize a givemem®. The tables are divided into
motor phoneme and auditory phoneme tables and furthereativitto vowel and consonant tables.
Here, motor phonemes denote commands which are producmeyththe primary motor cortex
to produce a phonetic sound, while an auditory phoneme dsitloé phonetic sound impressed on
the primary auditory cortex upon hearing.

These tables were provided by Schultz [54] by combininguieasystems from work done by
Jakobsen, et al.[20] and Singh et al. ([55],[56]). Featkresvn to be present in a phoneme are
denoted by a '+’ in the column while their absence is signaled '-’. Altogether, there are forty-
one such phonemes but three are omitted as they are furlttieqaivalent to other phonemes
already listed. In simulations for this study, each phonewiamn can be regarded as vectors in
the spacg0,1}*' for motor phonemes anfD,1}3* for auditory phonemes by replacing '+'s and

'-'s by 1's and 0’s, respectively.

149

0ST

IPA p bmt dny¢g & k gf v 6 & s z [3 wWr
Keyboard compatible p b m t d n tch d k g f v th- th+ s z sh zh w

I j hoy
r Iy hgn

Consonantal + + + + + + + + + + + + + + + + + + 4+ + + + + +
\ocalic
Anterior + + + o+ o+ o+ L+ o+ o+ o+ + o+ +
Coronal T T S S S R = + + + + + . o+ +
+Voicing e L e S L e S e
—\oicing + ..+ ..+ o+ L+ L+) + .+ +
Continuant e e ...+ o+ + + + + 4+ + + + + + +
Stop + + + 4+ 4+ 4+ 4+ 4+ o+ o+ +
Nasal A +
Strident I s T SR R . + 4+ + o+
Height: VH
+ + + 4+ + + 4+ + .+
M
+
VL
Advancement: F
FC
C
BC
C e N : e +

Table C.1: Distinct Feature System for Consonants (Motor)

IPA o a e u o 1 | ¢ & a U o0 o a ovu

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u aw er ai au

TGT

Consonantal
Vocalic + + + + o+ + + + + + + + + + +
Anterior
Coronal
+\oicing + + + + 4+ + + + + o+ + + + + +
—\oicing
Continuant + + + + + + + + + + + + + + +
Stop
Nasal
Strident
Height: VH . A S . .o S
H .. : : T +
M + .+ . + Ce . .o + .+
L .o : . . A T .+
VL .o+ :) N . .+
Advancement: F N . + + + o+ .o .+
FC . . + Ce . . + .+
C . . Ce . . +
BC . . Ce .t
C + + .+ . e e + + .+ +

Table C.2: Distinct Feature System for Vowels (Motor)

[AS])

IPA pbmt dnt¢g & k gfve & s z [3 wrl j hoyg

Keyboard compatble p b m t d n tch df k g f v th- th+ s z sh zh w r | y hlgn

Consonantal + 4+ + + + + 4+ o+ + 4+ o+ o+ o+ O+ + 4+ + o+ o+ o+ o+ o+ 4+ o+
Vocalic

Compact T T T T . B s .
Diffuse + + 4+ + + o+ . ..+ + 4 + + +

Grave + + ++ 4

Acute R T R + o+

Nasal P R e . P
Oral + 0+ .+ o+ L+ o+ o+ o+ o+ o+ o+ o+ + + + + + + + + 4+
Tense T T S S + .+ T
Lax R + .+ L+ + Lo+ L+

Continuant PR B S S R S I S N

Interrupted + + .+ + .+ o+ o+ o+

Strident T . + o+

Mellow P R

+Voicing Lo+ o+ L+ o+ + .+ .+ + Lo+ + + + 4+ + .+
—\oicing T T S R + .+ 0.+
+Duration PR L . + + + o+

—Duration + 4+ + + + + 4+ o+ o+ o+ o+ o+ o+ o+ R S A
+(Af)Frication L. A + . .+ 4+ + + + + 4+ + 4+
—(Af)Frication + + + o+ + o+ Lo+ o+ . L. . + + + + .+
Liquid P P . A

Glide PR L . P T
Retroflex P L . Lo . .+

Fovi

FQ,U

Fz,HM

Fy par

Fr

Fyvi/Five

Fl,ll

F],HM

Fi o

Fir

Five

Table C.3: Distinct Feature System for Consonants (Auditory)

€at

IPA oa e u o i | & @& & [T

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u

> ai ou

aw er a au

Consonantal

Vocalic + o+ o+ o+ o+ o+ o+ o+ o+ o+ + o+
Compact

Diffuse

Grave

Acute

Nasal

Oral

Tense + o+ o+ o+ +

Lax + . + + o+ 4+ + +
Continuant

Interrupted

Strident

Mellow

+Voicing + + + o+ o+ + + + o+ 4+ + +
—\oicing

+Duration

—Duration

+(Af)Frication

—(Af)Frication

Liquid

Glide

Retroflex

Fyva .o + . . + o+

Fou .oo+ o+

Fz,HM A . . + +

Fy par .+

oy + +
Fyvi/Five L L.+

Fip R . + . . . +

Fiam L+ . .+
Fi o + .+

Fip T .+

Fiyr P + .. +

Table C.4:

+ o+ o+
+ o+
+
+ o+ o+
+
+
+
+
+ o+ o+

Distinct Feature System for Vowels (Auditory)

