DEVELOPMENT OF AN AGENT-BASED FACTORY SHOP
FLOOR SIMULATION TOOL

Albert J. Whangbo

Adyvisors
Dr. Edward Lin
Dr. Jeffrey Herrmann

Computer Integrated Manufacturing Laboratory
Institute for Systems Research
University of Maryland at College Park

August 6, 1999

SUMMARY

Manufacturing systems of the future are expected to be agile and failure-tolerant.
Current simulation tools are not well equipped to model these dynamically changing
systems. Agent-based simulation represents an attractive alternative to traditional
simulation techniques. This project aims to develop software for agent-based factory
shop floor simulation. The current version of the factory simulation software is
implemented in Java. Although the program lacks important features of a decision
support tool, it provides a flexible agent-based framework for modeling and testing shop
floor configurations.

i

TABLE OF CONTENTS PAGE

SUMMARY i
INTRODUCTION 1
BACKGROUND

Factory Simulation

Software Agents

The Cybele Infrastructure for Autonomous Agents
PROGRAM STRUCTURE

Overview

Shop Floor Agents

The Display Agent

Agent Interaction Functions

Flow Control Rules and Methods

The Graphical User Interface

Program Outputs
EXAMPLE SIMULATION RUN
SHORTCOMINGS AND FUTURE ENHANCEMENTS

o B e e S R - 2 I \ I S R S

—_—
NN

General Simulation Problems

—
\S)

Agent Function Problems

—_
(O8]

User Interface Problems
ACKNOWLEDGEMENTS
BIBLIOGRAPHY
APPENDIX: PROGRAM DOCUMENTATION

—_— =
wm AW

i1

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Organization of the program components
Interaction of shop floor agents

A “push” interaction implemented with Cybele
A “pull” interaction implemented with Cybele
The initial dialog box

Representation of the factory shop floor

Initial dialog box

Shop floor diagram

Parameter entry dialog for part generator agents
Arrival pattern dialog

Process plan dialog

Queue agent parameter dialog

The shop floor diagram during a simulation run
Statistics dialog

Log file output

v

PAGE

O© O O o0 N NN N n B

—_— e e e e
_—= = O O O

INTRODUCTION

Manufacturing systems of the future are expected to be agile and failure-tolerant.
Furthermore, these systems should be rapidly configurable to meet demands for custom
products produced efficiently in small lots (Nagel and Dove, 1991).

Current simulation tools are not well equipped to model these dynamically
changing systems. Presently, simulations must be modified to reflect each change in a
simulated environment. These software changes are cost- and labor-intensive. Agent-
based simulation represents an attractive alternative to traditional simulation techniques.
Agent-based systems are potentially more robust, adaptable, and flexible than
conventional models because tasks are carried out locally and in a modular fashion (Agre,
et al., 1995).

The goal of this project is to develop software for agent-based factory shop floor
simulation. The shop floor will be modeled as a community of autonomous, interacting
agents. The agent controls will be separate from the user interface. This structure will
ensure that the agent framework remains modular and transparent to the user. Finally, the
program will lend itself to operation over a network of computers.

The simulation software will be a versatile tool for factory shop floor design and
analysis. The modularity of the agent-based system will allow users to build and test
shop floor models of nearly any size or complexity. The software will help users gauge
shop floor performance by collecting a variety of simulation statistics. In addition, users
will be able to alter the shop floor environment during a simulation run. This function
will help users to forecast how events such as changes in equipment or capacity affect the
factory performance.

The current version of the factory simulation software is implemented in Java and
runs on a single processor. Although the program lacks important features of a decision
support tool, it provides an agent-based framework for modeling and testing shop floor
configurations. The program employs Cybele, a software package developed by
Intelligent Automation, Incorporated, to support essential agent functions such agent
creation and messaging. A simple graphical user interface (GUI) accepts shop floor
parameters from the user and updates the status of the factory components during the
simulation. The GUI also reports some basic simulation statistics.

This report provides some background information on factory simulation and
software agents. The report also details the structure of the current factory simulation
program. Finally, a sample simulation run and program deficiencies are discussed.

BACKGROUND
Factory Simulation

Computer simulation is a popular technique for modeling and analyzing
manufacturing systems. While mathematical programming models of manufacturing
systems are often unfeasible, simulations can provide insights into the complex and often
unpredictable behaviors of these systems (Kassicieh et al., 1997). Simulation is also a
powerful tool for forecasting the effects of changing system characteristics. The results
of factory simulations can provide decision-makers with valuable cost and production
information (Krishnamurthi et al., 1997).

Many approaches to simulation exist. In discrete event simulation (DES), the
state of the modeled system is assumed to change only at discrete points in simulated
time. Changes in the system’s state are dependent on the current state of the system and
on events such as messages or component failures. Events in a discrete event simulator
are processed and managed by a global event queue, which can activate and deactivate
system components as needed during the simulation (Craig, 1996). Each event in the
queue bears a time stamp indicating when the event is to be processed. The discrete
event simulator operates by continuously removing from the queue and processing the
event with the smallest time stamp. In this sense, discrete event simulations are
sequential.

In a distributed simulation, the system is divided into parts that are then modeled
in parallel. Each component of a system is assigned a process that runs on a local clock.
Managing all the processes on a global scale requires careful synchronization. Perfect
synchronization is very difficult to achieve, since it may be difficult or impossible to
determine the precedence of two local events on a global scale. Despite these challenges,
distributed simulation offers a means of modeling large manufacturing systems in which
equipment, information, and expertise are distributed due to physical separation.

Software Agents

Software '"agents" are software entities that operate continuously and
autonomously, often within a community of other agents (Bradshaw, 1997). Individual
agents often possess specialized knowledge or expertise that can be enlisted by other
agents in the community. Ideally, agents require minimal human intervention or
guidance; instead, agents should be responsive to changes in their environments.
Furthermore, agents within a community should be able to interact with each other and
with humans to complete their individual problem solving tasks or to collaborate on
larger problems.

Agent-based systems are software systems that are designed and implemented in
terms of agents. Because of their abilities to perform specialized functions and to share
information, agents represent a powerful tool for making systems modular and scalable
(Jennings & Wooldridge, 1998). Agents can be added to, removed from, or relocated

within a system as needed. Agent-based systems are therefore appropriate for modeling
complex, changing, or unpredictable situations.

Agent-based systems are naturally suited for simulating environments in which
information, expertise, and resources must interact but are physically distributed. In such
cases, real-world entities and their interactions can be mapped directly into autonomous
agents with their own resources and expertise, and which are able to interact with other
agents to complete tasks.

Because of their ability to effectively simulate systems with distributed resources
and expertise, agents are finding many applications to manufacturing. For example, a
company may have many factories with different capabilities, and each physically
separated from the others. Furthermore, each individual factory may contain a variety of
different components, or operate under different resource or time constraints. A multi-
agent approach, in which each factory and factory component is assigned an agent, can be
used to model this system. Each agent can be given a set of plans representing its
individual capabilities. The agents can interact with each other to either simulate or
coordinate the entire factory network.

The Cybele Infrastructure for Autonomous Agents

Cybele, a software package developed by Intelligent Automation, Incorporated,
provides an infrastructure for developing and running agent-based applications. Cybele
is comprised of methods for agent creation, deployment, communication, and other
functions. While Cybele supports essential agent roles and interactions, it remains
separate from the application domain. Cybele is therefore well suited for use in a wide
range of agent-based applications.

An important feature of Cybele is its subject-based messaging scheme. Rather
than addressing a message to specific recipients, an agent posts its message to a subject
string. All agents subscribing to this subject receive the message. This method forestalls
dilemmas such as misdirected messages or irrelevant communications. More importantly,
the subject-based addressing mechanism is independent of the location of the sender or
recipient agents within the network. This feature allows agents to be added, removed, or
relocated without disrupting the flow of messages.

Messages contain any number of "key-value" string pairs. "Keys" are analogous
to labels, while "values" contain actual data. Key-value pairs are bundled with a new
message before it is sent to a subject string. Recipient agents may extract the values by
referring to the corresponding keys.

Messages and other events in Cybele are handled by an “activity.” Activities are
analogous to discrete event simulation controllers in that they maintain event queues and
process events. However, activities dispatch messages and invoke callback functions
without regard to discrete state changes. Furthermore, the activity does not process

events according to a global schedule; it processes events as they arrive in the event
queue.

PROGRAM STRUCTURE

The current factory simulation software is implemented in Java. The program is a
collection of classes that define the shop floor agents, a display agent, agent interactions,
and the graphical user interface (GUI). Interactions between the simulation components
are achieved over the Cybele agent framework.

Overview

The relationships between the program components are illustrated in Figure 1.
The user interacts with the GUI to set the agent characteristics and part process plans.
The GUI passes this information to the display agent, which in turn creates the shop floor
agents. The shop floor agents execute the bulk of the simulation. During a simulation
run, the shop floor agents access the interaction functions to perform frequent tasks such
as querying the status of other agents, passing parts, and collecting statistics. The shop
floor agents send production information back to the GUI via the display agent. The user
is then able to monitor the state of the shop floor model during the simulation.

GUI ” Display Agent

| |

USER

Agent
” Interaction

Functions

Shop Floor Agents

Flow Controls P

Figure 1. Organization of the program components

In addition to the information displayed in the GUI, the program outputs a log file
of parts passed during the simulation. This file can be used to track individual parts
through their process plans.

Shop Floor Agents
The program models the factory shop floor as a collection of autonomous agents.
There are three types of shop floor agents: part generator agents, queue agents, and

machine agents.

Part generator agents are responsible for introducing new parts onto the shop floor.
Each part generator agent is assigned a unique part type. The agent also stores the

processing sequence, or process plan, that is shared by all parts of that type. The machine
agents refer to this process plan to maintain the proper routing of parts through the shop
floor. Part generator agents use a repeating timer to create new parts. For every part
creation cycle, the timer interval is set to a uniformly distributed random value between
two user-defined bounds. This method simulates random variations in part arrival times.

Each queue agent is paired with a machine agent. A queue-machine pair
represents a single node in the shop floor network. Queue agents provide buffers for their
corresponding machine agents. Queues are implemented in Java as vector data structures.
When a queue agent receives a part, it checks the status of its companion machine agent.
If the machine agent is busy, the queue agent will hold the part until the machine
becomes available. On the other hand, if the machine is idle, then the queue passes the
part to the machine for processing. Prior to the simulation, the user must define the size
of each queue.

Machine agents simulate the processing of the parts. Machine agents have two
states: idle and busy. A machine agent is busy if it currently processing a part. If a
machine agent is idle, then it is eligible to receive a part from its queue agent for
processing. Part processing is simulated by a time delay. The delay interval, which is
similar to the part arrival interval, is set to a uniformly distributed random value between
two user-defined bounds. A machine agent is also responsible for sending a processed
part to the next node in its process plan. Because a single machine agent may process
many different kinds of parts, the agent must recognize the type of part currently being
processed, as well as the progress of the part relative to its unique process plan. Once
this information is collected, the machine agent refers to the process plan in the
appropriate part generator agent to determine the identity of the next node in the sequence.
Finally, the machine agent passes the part to the node.

Figure 2 illustrates the properties of the shop floor agents, as well as the general
flow of parts through the shop floor.

P nerator -
art Generato Queue Agent Machine Agent -
Agent !
1
Machine Buffer :
: o~ % Part
> ‘ Processing -
Timer
Part Arrival Queue
(13,5, |e-qommmmmmmmmmma o !
Part Process Plan
—— Part flow

- — . Information flow

Figure 2. Interaction of shop floor agents

The Display Agent

The display agent is responsible for starting and stopping the simulation. When
the user clicks the “Run Simulation” button in the GUI, the display agent creates the shop
floor agents based on the user-defined constraints. The display agent tallies the agents as
they are created. Once the display agent detects that all the shop floor agents are present,
it commands the part generator agents to begin producing parts, thereby starting the
simulation. When the user clicks the “Exit” button, the display agent collects several
production statistics and terminates the simulation.

Agent Interaction Functions

The factory simulation program supports a number of functions that are useful for
performing shop floor interactions. These functions, which are accessible to all of the
shop floor agents, encapsulate behaviors that are performed repeatedly during a
simulation run. Examples include status inquiries, passing parts between agents,
collecting statistics, writing to an output file, and sending information to GUL. By
expressing these often-used utilities as Java classes, instances of redundant code are
avoided.

Flow Control Rules and Methods

Several rules govern the flow of parts through the simulated factory. Parts are
stored in and dispatched from agent queues using “first-in, first-out” (FIFO) logic. Under
FIFO rules, parts are processed and passed in the order that they are received. Parts
received by an agent are placed at the end of the agent’s vector. The first part in the
vector (“first in”") is always processed and passed forward first (“first-out™).

The passing of parts between agents follows two sets of rules. The first set of
rules, called “push rules,” governs the movement of parts forward through the simulated
factory. The second set of rules, called “pull rules,” moderates the retrieval of parts from
preceding agents in the process plan. Implementing push and pull rules simultaneously
minimizes the idle times of the agents.

At every step in the process plan, the current agent checks the status of the next
agent in the sequence. If the next agent is available, the current agent sends or “pushes” a
part to that agent. If the next agent is unavailable, the current agent holds the part in its
vector. The current shop-floor simulation program employs Cybele’s messaging
framework to check agent statuses and to send parts. Figure 3 illustrates a “push”
interaction between two agents.

| PART GENERATOR AGENT 1. The part QUEUE AGENT

generator agent
checks the status
of the queue

Subscribes to “pRequest”

4 The pdate” Subscribes to “qStatus

method is called.

2.The eply method is called

| Method “makeNewPart”

Method pdate™

Subscribes to “newPart”

Method eply”

Method “newPart”

3. The queue
agent reports
its status.

5. The part
iz“ezt:’; :ena(if 6. The “newPart method
q part. is called; the part is added

to the queue.

Figure 3. A “push” interaction implemented with Cybele
NOTE: The Cybele activity structure is omitted for clarity.

After each agent processes and sends a part, it checks its own status. If it is
eligible to receive a new part, the agent will request and “pull” a part from the previous
agent in the process plan. Pull rules can become complicated if an agent receives parts
from several different sources; the agent must keep an inventory of all its sources, and
broadcast part requests to only those agents. Figure 4 illustrates a pull interaction
between two agents as implemented using the Cybele messaging framework.

| PART GENERATOR AGENT | QUEUE AGENT

Subscribes to “pRequest”

Subscribes to “newPart”

2. The pdate” - “ -
method is called. Method pdate 3. If a part is 1. The queue Method “sendPart | 4. The “newPart method
available, it is sent agent sends a part is called; the part is added
to the queue agent. to the machine, to the queue.
q € then querics the Method “newPart” q
status of the part

generator agent.

Figure 4. A “pull” interaction implemented with Cybele
NOTE: The Cybele activity structure is omitted for clarity.

The Graphical User Interface

The current graphical user interface (GUI) serves two functions: to gather
simulation parameters from the user, and to return production information. When the

program is run, the initial dialog box (Figure 5) prompts the user to enter the number of
part types and the number of nodes in the shop floor model.

E%a Factory Simulation Setup !E

Enter the number of nodes:

Enter the number of part types:

Clear | et |

Figure 5. The initial dialog box

The GUI then generates and draws a representation of the shop floor layout. The
layout is displayed as a window containing icon “buttons” to represent each component
on the shop floor (Figure 6). Different icons indicate whether a component is a part
generator, queue, or machine agent. The user clicks on an icon to define the
corresponding agent’s characteristics. For part generator agents, the user provides part
arrival characteristics, a process plan, and processing time distributions for each step in
the process plan. The user must also specify the capacity of each queue agent. At
present, machine agents do not require any user inputs. However, as the program is
enhanced to include more functions, some user-defined machine characteristics may be
required.

E;i Factory Simulation =1

0 1 1 1 1

10 79514

Exit |

Back Run Simulation Statistics

Figure 6. Representation of the factory shop floor

During a simulation run, the GUI displays the number of parts currently held by
each agent. This makes it possible for the user to observe the accumulation of parts in
queues, as well as the statuses of the machine agents. The GUI also displays the total
number of outputs and the simulation duration.

Program Outputs

In addition to the information displayed by the GUI, the program generates a text
file containing a log of parts passed during the simulation. Each line in the output file
represents the passing of a single part from one agent to another. The line of text
includes details such as the sender agent, the recipient agent, the part ID number, the time
the part arrived at the sender, and the time the part was passed. The output file allows the
user to trace the paths taken by the parts through the shop floor.

EXAMPLE SIMULATION RUN
This section demonstrates the current capabilities of the simulation software.

Suppose the user wishes to simulate a simple shop floor containing two nodes that
process a single part type in sequence. In the initial dialog box (Figure 7), the user must

specify the number of nodes and the number of part types. Once this information is
entered and the user clicks “Next,” the program generates and displays a diagram of the
shop floor in a second dialog box (Figure 8).

E% Factory Simulation Setup M=] 3 [Factory Simulation =10l>)
o 1]

_ 0 0
Enter the number of nodes: D
— 4 i

Enter the number of part fypes. Part Generator 0 Queue 0 Machine o Queue 1 Machine 1

Clear | et |

0 1]

Back Run Simulation Statistics Exit |

Figure 7. Initial dialog box Figure 8. Shop floor diagram

Red button labels serve as visual cues for the user to enter simulation parameters. To edit
an agent’s characteristics, the user clicks on its icon button. When the user clicks on the
“Part Generator 0” button, the following dialog box appears:

E%Pall Generator Parameters M= E
Description: I padGeneratod

Set Arrival Pattern

SetProcess Plan

Clear DK

Figure 9. Parameter entry dialog for part generator agents

The “Part Generator Parameters” dialog allows the user to enter both the part
arrival characteristics and the process plan associated with the part generator. To define
the part arrival constraints, the user clicks the “Set Arrival Pattern” button. A new
window opens (Figure 9). The user selects a distribution type from the “Select Arrival
Pattern” list, and then enters the upper and lower bounds of the arrival interval. The
arrival characteristics are stored when the user clicks the “OK” button.

To set the process plan, the user clicks the “Set Process Plan” button in the “Part
Generator Parameters” dialog. The “Set Process Plan” dialog opens (Figure 10). To add
a machine to the process plan, the user highlights the desired machine from the
“Machines Available” list and clicks the “Add” button. The selected machine now
appears in the “Process Plan” list. This procedure is repeated until the user has added all
the desired machines to the process plan. Machines can be removed from the process

plan in a similar manner: the user selects the unwanted machine from the “Process Plan”
list, then clicks the “Remove” button.

:a Set Pattern H= E%Sel Process Plan M= E
. - Frocess Plan: Machines Available:
Select Arrival Pattern: IUnn’orm 'I

1] Machine 0

Lower Limnit {msy: I s000 1
Upper Limit (ms): |1DDDD

Remove

Ok

Cancel |

Clear Ok

Figure 10. Arrival pattern dialog Figure 11. Process plan dialog

In addition to specifying the process plan, the user must enter the time required
for each machine in the plan to process the part. By clicking on the name of a machine in
the “Process Plan” list, the user brings up a “Set Pattern” dialog box. The user enters
processing time characteristics in the same manner as the part arrivals. This procedure is
repeated until each machine in the process plan has an associated processing interval.
The process plan is set once the user clicks the “OK” button in the “Set Process Plan”
dialog. At this point, the part generator is fully defined. If there are multiple part
generators, the entire procedure must be repeated until each part generator is defined.

The user must specify the capacity of each queue. When a queue icon button is
clicked, the “Queue Parameters” dialog appears (Figure 12). This dialog box prompts the
user to enter the capacity of the queue.

[=4 Queue Parameters =]

Buffer Capacity: |15

Clear | 0K |

Figure 12. Queue agent parameter dialog

When the specifications for a shop floor agent are entered, the text label for that
agent becomes green. Once all of the text labels are green, it is possible to run the
simulation by clicking the “Run Simulation” button.

During a simulation run, the labels above the shop floor components reflect the
number of parts held by each agent. The labels above the “Back™ and “Run Simulation”
buttons display the total output and total elapsed time, respectively. The screen below
(Figure 13) shows that the part generator agent currently holds no parts, while each of the

10

other agents is holding a single part. Both machines are in the “busy” state. The total
output after approximately 80,000 milliseconds (80 seconds) is 10 units.

Eg_;,a Factory Simulation

0 1

A

Back

gRun Simulation

Statistics

IS[= E3

Exit

Figure 13. The shop floor diagram during a simulation run

Statistics such as throughput, average waiting time, and average processing time
can be viewed by clicking the “Statistics” button during a simulation run. The statistics
are not updated dynamically; each time the “Statistics” button is pressed, the “Simulation

Statistics” box offers a “snapshot” of the shop floor performance (Figure 14).

The program also outputs a text file (Figure 15). This file can be accessed from
the main program directory. Each line in the text file describes the passing of a part
between two agents. The columns from left to right represent the sender, recipient, part
ID number, time of arrival at the sender, and time sent.

Egi Simulation Statistics

Average Part Waiting Time (ms) 48.310345

Awerage Part Processing Time (ms) 8629.0

Throughput (parts/sec) 01455937
Close |

®_ SimLog - Quick Yiew

File “iew Help

Figure 14. Statistics dialog

A< B

Machined Queuel 1 390 5187 ﬂ

CQueuel Machine1 1 8217 8237

PartGend Queueld 2 6443 G489

CQueued Machined 2 B439 6319

Machinel CQueue-1 1 8528 9343

Machined CQueuel 2 B85398 11326

CQueuel Machine1 2 11346 11376

PartGend Queueld 3 13009 13119

CQueued Machined 3 13129 13149

Machinel CQueue-1 2 11386 15182

Machined Queuel 3 13168 17956

CQueuel Machine1 3 17976 18246

PartGend Queueld 4 19090 19930

CQueued tachinel 4 19935 19959 hd
[] »

|T0 edit, click Open File for Editing on the File menu.

11

Figure 15. Log file output

SHORTCOMINGS AND FUTURE ENHANCEMENTS

The factory simulation program’s shortcomings can be grouped into three

categories: general simulation problems, agent function problems, and user interface
problems.

General Simulation Problems

The simulation lacks proper exit conditions. The program should allow the user to
specify an exit condition, such as a specific simulation duration or output amount.
This could be easily implemented by checking the elapsed simulation time or the total
output of all the machines, respectively.

The simulation cannot run at faster than real time. At present, simulation runs are
carried out in real time; a 1:1 ratio exists between actual time and simulation time.
To simulate very long processing runs in a practical fashion, the program should be
able to run at faster than real time.

The simulation cannot save factory configurations. The current program does not
support the saving or loading of factory shop floor configurations. A new shop floor
must be defined before every simulation run. In the future, the ability to save and
load configurations will be essential, particularly for users who are modeling large
and complex factory systems.

Agent Function Problems

The shop floor agents are not equipped to handle situations in which more than one
part is required to begin a processing task. This is not very realistic, since it is likely
that some assembly operations require several different parts and/or more than one
part of the same type. Because machine agents in the current program are very
simply defined, steps should be taken to allow the user to define specific functions for
each machine agent. Furthermore, queue agents must be given the ability to check
the types of parts stored in their vectors, so that the proper combinations of parts can
be bundled and passed to the machines for processing.

Machine agents lack the ability to check the status of forward queues prior to pushing
parts. Currently, machine agents automatically push parts to the next queue in the
process plan. This can result in queues overflowing. In the future, machine agents
should possess the ability to check the status of forward queues, and remain busy if
the queues are ineligible to receive processed parts.

Some shop floor agents do not implement pull rules. Pull rules are currently
implemented between part generators and the first queue agents in each process plan.
These queue agents pull parts from part generator agents. Machine agents are also
capable of pulling parts from their queue agents. However, queue agents lying
further along the process plan do not employ pull rules. This flaw arises from the fact
that these queue agents may receive parts from multiple nodes. Locating and
notifying these nodes, as well as handling the subsequent passing of parts, are
difficult and inefficient tasks. Nevertheless, methods for fully implementing pull
rules will be necessary to provide the user with a flexible decision support tool.

12

User Interface Problems

The GUI does not check dialog boxes for errors. The GUI does not currently check
the dialog boxes for valid parameters. As a result, it is possible for users to enter
parameters under which the simulation program cannot run. Future versions of the
GUI must perform error checking to ensure proper parameter entry.

Part passing rules are currently hard-coded into the program. The factory
simulation tool currently makes use of FIFO, push, and pull rules to store and pass
parts. To make the program more flexible and useful, the user should be given the
option of manually selecting or defining these rules.

Shop floor parameters cannot be changed during a simulation run. Currently, the
parameters entered prior to the beginning of the simulation remain fixed until the
simulation terminates. This limitation prohibits the user from imposing changes on
the environment such as machine failures or additions, changing queue capacities, or
variations in part arrival or processing intervals. In the future, it will be important to
allow the user to make such changes in the middle of a simulation run.

The GUI does not clearly illustrate the flow of parts through the shop floor. The
passing of parts between agents is very difficult for the user to detect, as the GUI does
not provide any visual cues for the different routes through the shop floor. The GUI
should also be capable of displaying other important shop floor properties, including
the status of the machines and queues.

ACKNOWLEDGEMENTS

I would like to thank Dr. Edward Lin for his constant patience and guidance. In
addition, I would like to thank Dr. Jeffrey Herrmann for his many insightful ideas and
suggestions for the project. Dr. Kutluhan Erol of Intelligent Automation, Incorporated,
deserves thanks for providing useful information about the nuances of the Cybele
software.

13

BIBLIOGRAPHY

Agre, J., et al. “Autoconfigurable Distributed Control Systems.” ISADS 95, Second

International Symposium on Autonomous Decentralized Systems, April 25-27,
1995, Phoenix, Arizona, USA : Proceedings. Los Alamitos, CA: IEEE Computer
Society Press, 1995. 162-168.

Balasubramanian S. and Norrie D.H. “A Multi-Agent Intelligent Design System
Integrating Manufacturing and Shop-Floor Control.” Proceedings of First

International Conference on Multi-Agent Systems (ICMAS '95), San Francisco,
California, June 12-14, 1995. 3-9.

Bradshaw, Jeffrey, ed. Software Agents. AAAI Press/MIT Press, 1997.

Cheng, Z., Capretz, M., and Minetada Osano. “A Model for Negotiation Among Agents
Based on the Transaction Analysis Theory.” ISADS 95, Second International
Symposium on Autonomous Decentralized Systems, April 25-27, 1995, Phoenix,
Arizona, USA : Proceedings. Los Alamitos, CA: IEEE Computer Society Press,
1995. 427-433.

Craig, Donald. Discrete Event Simulation Page. Memorial University of Newfoundland.
8 July 1996. <http://www.cs.mun.ca/~donald/msc/nodel 1.htmI>

Fulkerson, B., and Van Parunak. “The Living Factory: Applications of Artificial Life to

Manufacturing.” ISADS 95, Second International Symposium on Autonomous

Decentralized Systems, April 25-27, 1995, Phoenix, Arizona, USA : Proceedings.
Los Alamitos, CA: IEEE Computer Society Press, 1995. 391-397.

Hamilton, John A., Jr., Nash, David and Udo W. Pooch. Distributed Simulation. Boca
Raton, FL: CRC Press, 1997.

Jennings, N., and Michael J. Wooldridge, ed. Agent Technology Foundations,
Applications, and Markets. Springer-Verlag, 1998.

Kassicieh, Suleiman K., Ravinder, H. V., and Steven A. Yourstone. “A Decision Support
System for the Justification of Computer-Integrated Manufacturing.”

Manufacturing Decision Support Systems. 1997.

Krishnamurthy, M., Jayashankar, R., and Don T. Phillips. “A Generalized Cost Analysis
System for Manufacturing Simulation.” Manufacturing Decision Support
Systems. 1997.

Nagel, R. and R. Dove. “21* Century Manufacturing Enterprise Strategy: An Industry-
Led View.” Iacocca Institute, Lehigh University, 1991.

14

Appendix: Program Documentation

15

public class FactorySimulation2

Description

Constructors

Methods

public class

Description

Constructors

Methods

Contains the main method for the simulation program. Starts up Cybele,
creates TheDisplayAgent, and opens the first dialog box.

No constructors.

Public static void main(String args[])
Starts up Cybele, creates the log file, and creates
TheDisplayAgent. Creates and opens an instance of the
Setupl dialog box.

TheDisplayAgent implements IAIHandler

TheDisplayAgent uses information from the graphical user interface to
create the other factory agents. The TheDisplayAgent class also contains
methods for starting and ending the simulation.

Public TheDisplayAgent (String title)
Subscribes TheDisplayAgent to “setup” and “terminate”
messages.
Public void drawSetup2 (IAIEvent ev)
The method drawSetup?2 is the callback function for “setup”
messages. Creates and opens an instance of the Setup?2 dialog box.
Public static void makeAgents(Vector partVector,
Vector queueVector)
Creates the PartGenerator, TheQueue, and TheMachine
agents. PartGenerator agents are created from the PartGen
objects contained in partVector. TheQueue agents are created
from QueueObject objects contained in queueVector. One

TheMachine agent is created for every TheQueue agent.

public static void addToList (int type)
Counts the number of agents created. If all of the agents have been
created, addToList broadcasts the “begin” message to the
PartGenerator agents.

public void terminate (IATIEvent ev)

Terminates the simulation. Closes the log file, reports final
production statistics, and terminates Cybele.

16

public class PartGenerator implements TIATHandler

Description

Constructors

Methods

Instances of the PartGenerator class are agents that manage the creation
and distribution of Part objects. Each PartGenerator is dedicated to a
unique part type. It is assumed that every Part object of a particular type
will follow the same process plan.

public PartGenerator (String 1, PartGen partGen)

Sets the parameters for a new PartGenerator using the
information contained within a PartGen object. Establishes the
process plan and the probability distribution of part arrival times.
Includes a Vector of infinite capacity for holding new Part objects
as they are created. Subscribes to “checkPlan,” “pRequest,”
and “begin” messages specific to the PartGenerator’s ID
number.

public void begin(IATIEvent ev)
Responds to the “begin” message sent by TheDisplayAgent.
Sets the initial real timer to begin part creation.

public void MakeNewPart (IATEvent ev)
This method creates a new Part object. The Part object is
assigned an ID number and added to the Part Vector. The method
then queries the first queue in the process plan for availability. Sets a
real timer that allows the method to repeat itself recursively.

public void update (IAIEvent ev) throws IOException
Sends or holds a Part object based on the status of the first queue in
the process plan. If the queue is available, update sends the first part
in the Part Vector; if the queue is unavailable, update holds the
Part object.

public void checkPlan (IAIEvent ev)
Accepts inquiries from TheMachine agents to identify the next
node in a Part object’s process plan. Using a process indicator
contained within the Part object, checkPlan locates the Part
object’s current status relative to the process plan.

17

public class
Description

Constructors

Methods

public class

Description

Constructors

Methods

TheQueue implements TIATHandler

Receives and stores incoming parts for the associated machine agent.

Public TheQueue (String name, QueueObject
queueObject)
Sets the parameters for a new queue agent, with queueObject as a
template. Subscribes to gStatus, newPart, and mRequest
messages specific to the queue’s ID number.

public void reply (IAIEvent ev)
Returns the current queue status (full or available) to the previous step
in the process plan.

public synchronized void newPart (IAIEvent ev)
Receives a new part from a part generator agent and stores it in a
queue vector. Queries the status of the associated machine agent.

public void sendPart (IAIEvent ev) throws IOException
Verifies the status of the machine, then passes a part to the machine
for processing. Collects some production statistics.

TheMachine implements TIATHander

Simulates machine functions such as part retrieval from the queue and part
processing.

public TheMachine (String name)
Sets the parameters for a new machine with name as an ID number.
Subscribes to mStatus, process, and sendNext messages
specific to the ID number.

public void reply (IATIEvent ev)
Returns the current machine status to the queue.

public void getPart (IAIEvent ev) throws IOException
Receives a new part from the queue. Adds the part to a vector, and
sets the current status of the machine to “busy.” Queries the Part
Generator agent for the next node in the process plan.

public synchronized void process (IAIEvent ev)
Gathers part processing time information. Creates and sets a real
timer according to user-defined constraints stored in the Part
Generator.

public void sendNext (IAIEvent ev) throws IOException
Sends the finished part to the next step in the process plan. Collects
some production statistics and sets the machine status to “idle.”

18

public class

Description

Constructors

Methods

public class

Description

Constructors

Methods

Part

Part is a class that defines the attributes of Part objects, including data that
are required by every component in the simulation.

public Part(int t)
Creates an instance of the Part class with part type t.

public Part(String p,String in,String out,int t,int 1)
Creates an instance of the Part class with part ID p, time-in stamp
in, time-out stamp out, part type t, and index value 1.

public void assignPartId()
Assigns a part ID number to the Part object. ID numbers are
incremented and assigned as Part objects are created.

PartGen

The PartGen class defines the attributes of PartGen objects. The
characteristics of PartGen objects, in turn, are used to define
PartGenerator agents.

public PartGen (int i)
Creates an instance of the PartGen class containing an 1D number 1
and a Vector of probability distribution parameters.

public void setPlan(String[] plan)
Establishes a process plan for the PartGen object. The process plan
is passed to setPlan from the GUI via the plan array.

public void setTimes (int index, int[] a)
Adds elements to a Vector of probability distribution parameters.
Each element contains an array of integers and represents the
distribution of processing times at each step in the process plan.

public class QueueObject

Description

Constructors

Methods

The QueueObject class defines the attributes of QueueObject objects.
QueueObject objects are used as templates for creating TheQueue agents.

public QueueObject(int i)
Creates an instance of the QueueObject class with ID number i
and a queue capacity of 0.

public void setCapacity (int c)
Sets the capacity of the queue to c.

19

public class

Description

Constructors

Methods

public class

Description

Constructors

Methods

public class

Description

Constructors

Methods

TimeKeeper

TimeKeeper records the elapsed time of the simulation. This information
can be imprinted as a time stamp on a Part object.

No constructors.

public static String stamp()
Returns the elapsed time of the simulation (in milliseconds) as a
String.

Messenger

The Messenger class contains methods that streamline the message-passing
required for implementing push and pull rules between the various simulation
components.

No constructors.

public static void query(String sender, String recipient)
Sends a message from sender to recipient querying the current
status of the recipient queue or machine.
public static void respond(String sender, String
recipient, String status)
Sends a message from sender to recipient containing the
current status of sender.
public static void checkPlan (String sender, String
recipient, string index)
Sends a message from sender to recipient requesting
information about a Part object at step index in the process plan.

Dispatcher

Contains a method for passing Part object data from one factory component
to another.

No constructors.

public static void sendToNext (String dest, String ID, int
t, int i)
Passes the part ID (ID), the part type (t), and the current process
index number (i) to agent dest.

20

public class

Description

Constructors

Methods

public class

Description

Constructors

Methods

Trace

The Trace class contains methods for creating, writing to, and closing a
FileWriter object.

No constructors.

public static void create(String filename) throws
IOException
Creates and attaches a FileWriter object to a new file called
filename.
public static void put(String sender, String recipient,
String partId, String timeIn, String timeOut) throws
IOException
Adds a line of text to the output file every time a part is transferred
from one factory component to another. The text includes the name
of the sender (sender), the name of the recipient (recipient),
the part ID number (partId), the time the part was received by the
sender (t ime In), and the part the time was sent (t imeOut).
public static void end() throws IOException

Closes the FileWriter object.

RandomNumbers

A uniformly distributed random number generator.

public RandomNumbers (int[] params)
Creates an instance of the Random class. The seed value for the
random number generator is derived from information contained
within the params array. The params array takes the form {a.b,c},
where a is the type of distribution, b is the lower bound, and c is the
upper bound.

public double sample()
Returns a random number. Random numbers returned by the
RandomNumbers class are uniformly distributed between the lower
and upper bounds specified in the params array.

21

public class

Description

Constructors

Methods

public class

Description

Constructors

Methods

DisplayCount

Contains a method for updating counter labels in the Setup?2 dialog window.

No constructors.

public static void sendCountToDisplay (String name,
int id, int count)
Passes name, id, and count to the Setup?2 dialog window by
broadcasting a message to “count.”
Statistics

The Statistics class contains methods for computing production
statistics such as average part waiting time, average part processing time, and
throughput.

No constructors.

public static void countTotalParts ()
Increments the total number of parts produced by the PartGenerator

agents.
public static void countQueueParts ()

Increments the total number of parts received by TheQueue agents.
public static void countFinishedParts ()

Increments the total number of outputs from the factory model.
public static void addQueueTime (String timeIn,
String timeOut)

Calculates the interval in milliseconds between timeOut and

timeIn. Adds this value to the total amount of time spent by parts

in all queues.
public static void addMachineTime (String timeln,
String timeOut)

Calculates the interval in milliseconds between timeOut and

timeIn. Adds this value to the total amount of time spent by parts

in all machines.
public static float averageWait()

Returns the ratio of the total queue time (t imeInQueue) to the total

number of parts queued during the simulation (queueParts).
public static float averageProcessing()

Returns the ratio of the total machine time (t imeInMachine) to the

total number of finished parts (finishedParts).
public static float throughput(String time)

Returns the ratio of finished parts to simulation time.

22

