ABSTRACT

Title of Document:

A NEW APPROCH TO EVALUATING THE EFFECT OF WATERSHED STORAGE ON FLOOD SKEW

Daniel Habete, Masters of Science, 2010

Directed By:

Professor, Richard H. McCuen, Department of Civil & Environmental Engineering

Estimates of flood skew are inaccurate and the inaccuracy influences flood discharge estimates using the log Pearson Type III distribution. The skew map is commonly used despite the fact that it's inaccurate, lacks a conceptual basis, and does not reflect watershed processes. Attempts at regionalizing station skew using regression analysis have only provided marginal improvements in accuracy, possibly because the predictor variables are not good indicators of the physical characteristics that influence the variation in skewness. Therefore, a new approach is needed to improve skew estimates. This research explored the potential of using a distributed model that includes predictor variables that better represent watershed storage. The results showed that watershed storage is the main factor that affects flood skew, and that increases in watershed storage causes flood skews to be algebraically more negative.

A NEW APPROCH TO EVALUATING THE EFFECT OF WATERSHED STORAGE ON FLOOD SKEW

By

Daniel Habete

Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Masters of Science

2010

Advisory Committee: Professor Richard H. McCuen, Chair Dr. Kaye L. Brubaker Dr. Allen P. Davis © Copyright by Daniel Habete 2010

Table of contents	ii
List of Tables	iv
List of Figures	vi
CHAPTER 1: INTRODUCTION	1
1.1. PROBLEM STATEMENT	1
1.2. RESEARCH GOAL AND OBJECTIVES	6
CHAPTER 2: LITRATURE REVIEW	8
2.1. OVERVIEW OF BULLETIN 17B GUIDELINES2.1.1. Fitting log-Pearson III distribution2.1.2 Outlier analysis	8 8 9
2.2. MEAN SQUARE ERROR (MSEs)	10
2.3. SKEW MAP, RAINFALL SKEW, AND FLOOD SKEW	11
2.4. FLOOD SKEW AND UNGAGED WATERSHED	13
CHAPTER 3: INACCURACY OF REGRESSION IN DETERMINING SKEW	15
 3.1. CORRELATION AND REGRESSION ANALYSES USING ALL RECORDINATA. 3.1.1. Correlation between forest and skew. 3.1.2. Correlation between storage and skew. 3.1.3. Correlation between drainage area and skew. 	ED 16 19 19 20
3.2.1. Identifying and analyzing outliers	21
3.2.2. Effect of outliers on regression	24
3.2.3. Effect of outliers on mean square error of the station skew	25
 3.3. REGRESSION ANALYSES USING SKEW FROM PROGRAM PEAKFQ 3.3.1. Regression analyses of the systematic records 3.3.2. Regression analysis using Bulletin 17B skews as criterion variables 	26 27 29
 3.4. EFFECT OF WATERSHED STORAGE IN THE TRANSFORMATION OF RUNOFF SKEW TO RAINFALL SKEW	30 31 34
3.5. SUMMARY	38
CHAPTER 4: NEW APPROACH TO ANALYZE THE EFFECT OF WATERSHED STORAGE ON COEFFICIENT OF SKEW	40
4.1 EFFECT OF WATERSHED STORAGE ON SKEW COEFFICIENT	40
4.2 A SPATIO-TEMPORAL MODEL OF A WATERSHED4.2.1 Layout of the model4.2.2 Rainfall distribution	42 43 44

Table of Contents

4.2.3. Channel characteristics	44
4.2.4. Infiltration	45
4.2.5 Inputs of the model	45
4.3. MODEL ANALYSES	46
4.3.1. Effect of rainfall skew on flood skew	46
4.3.2. Effect of watershed storage on flood skew	49
4.4. SUMMARY	58
CHAPTER 5: CONCLUSIONS	59
Appendix	63
References	145

List of Table

TABLE 3-1. Basin characteristics for the selected drainage basins in theEastern Coastal Plain of Maryland and the computed skews
TABLE 3-2. Correlation matrix of the three watershed characteristics and skew with outliers. 18
TABLE 3-3. Summary of outlier analyses and change in skews forthe 12 stations that had at least one outlier.23
TABLE 3-4. The result of regression statistics analyses using the three watershed characteristics as predictor variable and the skew with and without outliers as a criterion variable. 24
TABLE 3-5. Results of the mean square error analysis for the twenty two stations26
TABLE 3-6. Summary outputs of regression analysis using the three watershed characteristics as predictor variables and the systematic skew as criterion variable. 28
TABLE 3-7. Summary of regression analysis using the three watershed characteristics as a predictor variables and the Bulletin 17B skew as a criterion variable. 30
TABLE 3-8. Twenty-seven rainfalls that produce negative skew (set #1)and 27 rainfalls that produce positive skew (set #2).32
TABLE 3-9. Runoff characteristics based on analyses using negative rainfall skew
TABLE 3-10. Runoff characteristics based on analyses using positive rainfall skew
TABLE 3-11. Watershed characteristics including the high and low event indices and flood skew with outliers. 36
TABLE 3-12. Correlation matrix using the skew with outlier as criterion variable and the three watershed characteristics including the two event indices as predictor variables
TABLE 3-13. Summary of goodness-of-fit statistical parameters resulted from skew with outliers regressed on the three watershed characteristics including the two event indices
TABLE 4-1. Summary of rainfall depth (in.) for -1, 0, and 1 skews

TABLE 4-2. Summary of input values to analyze the effect of rainfall skew on runoff skew.	48
TABLE 4-3. Summary of 2-yr, 10-yr, and 100-yr peak discharges and thecomputed runoff skews using the rainfall skews of -1, 0, and 1	49
TABLE 4-4. Input parameters used to show the effect of watershed roughness on flood skew.	50
TABLE 4-5. Effect on flood skew of watershed roughness on the 2-yr, 10-yr,and 100-yr (cfs) for rainfall skew of 0.0.	51
TABLE 4-6. Input parameters used to show the effect of watershed slope on flood skew.	52
TABLE 4-7. Summary of relationship between runoff skew and watershed slope	53
TABLE 4-8. Input parameters used to show the effect of ultimate infiltration constant on flood skew.	54
TABLE 4-9. Summary of change in flood skew due to change in ultimateinfiltration rate (fcu) .	55
TABLE 4-10. Summary of percentage of total infiltration, total runoff, and water remaining in storage for the selected return periods.	56

List of Figures

FIGURE 3-1. Plot of station skew with outliers vs. forest cover	19
FIGURE 3-2. Plot of station skew with outliers vs. storage.	20
FIGURE 3-3. Plot of station skew with outliers vs. drainage area	21
FIGURE 4-1. Layout of the watershed model.	44
FIGURE 4-2. Graph of total infiltration vs. Fcu for 2-year, 10-year, and 100-year rainfall depths.	57
FIGURE 4-3. Graph of total runoff vs. Fcu for 2-year, 10-year, and 100-year rainfall depths.	58

CHAPTER 1: INTRODUCTION

1.1. PROBLEM STATEMENT

Designing hydrologic structures such as detention basins, levees, dams, storm water management basins, and small water supply reservoirs requires accurate estimates of the magnitude and frequency of the peak flood for a given return period. This is necessary for the structures to perform their intended purpose efficiently. To identify the relationship between magnitude and frequency of floods for rural and unregulated streams the Interagency Advisory Committee on Water Data (IACWD) (1982), known as Bulletin 17B, recommended fitting the logarithms of an annual peak discharge record using the log Pearson Type III distribution. In order to use the log Pearson Type-III distribution, the sample mean, standard deviation, and skew of the annual peak discharge record must be computed using logarithms. The coefficient of skewness is a very sensitive statistic. Errors in estimation can result in either overestimates or underestimates of design peak discharge rates. Inaccuracies of peak discharge estimates can lead to either under sizing, which causes more drainage problems, or over sizing, which unnecessarily increases project costs.

Bulletin 17B (IACWD 1982) includes a nationwide map with contours that represent generalized estimates of the coefficient of skew. The skew map was developed as a part of the report, and the map has been used to estimate the skew coefficient for more than two decades. The skew map provides an estimate of generalized skew for all locations in the United States. It was developed for unregulated watersheds drainage areas less than

3,000 square miles. The map skew value cannot be used if flows are significantly regulated.

Mapping skew suggests that skew only varies with latitude and longitude, but geographic location cannot cause skew; therefore, a more rational assessment of the causes of skew is needed. The cause(s) of variation in skew has been hypothesized but not verified. Because accurate estimates of the skew coefficient are difficult to obtain for stations with short records of peak discharge, Bulletin 17B (IACWD 1982) recommended weighting the data-derived station skew coefficient values with the generalized skew values from the map.

Skew values can be mapped for uniform regions, i.e., regions with similar rainfall and watershed characteristics (Tasker and Stedinger 1986), but mapping may be incorrect where rainfall or watershed characteristics vary. Variation in watershed characteristics, such as mixed land use/storage areas, will likely result in different values of skew even within a small geographic area. Two adjacent watersheds, one forested and the other urbanized, should not be expected to have the same skew coefficient even though they are subject to the same rainfall. As a watershed undergoes land use change, it is widely recognized that the magnitudes of floods will change with time, so changes in the skew should be expected.

It is also important to note that the standard error of the skew map is 0.55, which is just slightly less than the standard error of the mean of the data used to develop the map (McCuen and Smith 2008). This indicates that mapping skew does not lead to significant improvements in estimates of skew, most likely because latitude and longitude do not reflect the primary causes of variation in skew.

When estimating generalized skew coefficients for annual peak discharges for sites within a specific region, Bulletin 17B (IACWD 1982) suggests either to create a skew map or to develop a prediction equation that relates skew coefficients to predictor variables for the region of interest. Predictors that are often used in skew coefficient analyses include topographic and climatic variables such as drainage area, mean annual precipitation, and basin storage. Unfortunately, attempts to develop regression equations have largely been unsuccessful as indicated by the goodness-of-fit statistics. Reasons for the poor correlations include: (1) the predictor variables are not capable of reflecting the full effect of watershed storage; (2) the variables do not vary sufficiently over the region of study; and (3) watershed mean values such as channel slope or roughness do not reflect the effect of the watershed processes.

Other studies (McCuen and Hromadka 1988, McCuen 2001) have shown that the current skew map used to estimate coefficient of skewness is inaccurate. Although watershed storage is a major factor that can affect the skew value, at present neither an accurate empirical formula nor a theoretical relation that can relate watershed storage to flood skew is available. Landwehr et al. (1978) suggested that the concept of watershed skew, which means skew that reflects the watershed processes, as a measure of generalized skew needs to be considered. This is because watershed skew has an underlying rational physical basis that the Bulletin 17B map lacks. Also watershed skew should reflect the skew of rainfall at specific location as well as the effect of watershed process on the runoff. The amount of watershed storage is a function of soil type, land cover, depression storage, and the location of the water table. In urbanized basins, flood skews may show little differences from rainfall skew, but for rural watersheds, flood

skew will vary considerably from the rainfall skew. This is due to the fact that rural areas have more watershed storage than urbanized areas. Bulletin 17B suggested that the future work should be toward development of the concept of watershed skew to get national skew map. This is not likely possible. This would be problematic because skew cannot be mapped.

Previous studies have shown that, if design accuracy needs to be improved, our understanding of uncertain variables such as the skew needs to be advanced. In addition, the physical processes that actually affect sample skew coefficients need to be known.

The skew coefficient of a peak discharge record is very sensitive to extreme values; therefore, accurate values are difficult to obtain for stations with short annual maximum discharge records. Before a new map or method for estimating skew can be developed, it is important to identify and understand the factors that can affect a sample skew. The skewness is a function of watershed processes not just climatic variation. Conceptually, runoff is caused by rainfall, and watershed characteristics transform rainfall to runoff. Therefore, the physical processes of a watershed need to be incorporated into skew estimates. At this time, our understanding of skew needs to be advanced and a different approach to computing regional skew should be developed to obtain more accurate values for local flood frequency analyses. Accurate predictions of skew are important because peak discharges estimates are very sensitive to skew, and accurate estimates of skew are needed to provide accurate peak discharge rates.

Flood skew is a central element of making estimates of T-year floods using annual maximum flood records. Station skew is sometimes adjusted using map skew with the

thought that the adjusted skew is more accurate than the station skew. However, the map skew is of concern for several reasons. First, the Bulletin 17B map is not accurate, as its mean square error is not much better than the standard error of the station skews used in developing the map. Second, many maps could have been developed from the same data that could have been equally accurate. Third, the use of a map implies that skew is location dependent, rather than being dependent on the watershed processes that influence the magnitudes of floods. A skew value taken from a map implies that skew depends only on latitude and longitude, which would imply that the map skew for a flood series of a highly urban watershed would be essentially the same as the skew for a nearby forested watershed.

As an alternative to map skew, the regional influence on the skew could be assessed using a regression analysis of regional station skews on watershed characteristics; however, the specific characteristics to use are not known. More importantly, the predictor variables ultimately used in the regression equation should help to physically understand the hydrologic processes that are important in transforming rainfall into runoff and the statistical distribution of precipitation into the statistical distribution of runoff. While past attempts at regionalizing station skews using regression analysis have provided an improved level of accuracy relative to the map, they have not been assessed to identify the physical characteristics that influence the variation in flood exceedance probabilities, i.e., the skewness.

1.2. RESEARCH GOAL AND OBJECTIVES

The hypothesis about which this research centered is that watershed and channel storages along with rainfall are the physical processes that influence the skew of an annual maximum flood series. The distribution of rainfall at any one location has a skew coefficient that is a reflection of the intensity-duration-frequency characteristics of the location. Watershed processes modify the rainfall distribution, with the change in timing, peak magnitudes, and volumes the obvious characteristics modified. The inability of regression analysis to provide highly accurate estimates of runoff skew likely results from the inability of currently computed, single-valued storage related predictor variables to reflect the time and spatial variation of storage. Variables such as the percentage of forest cover or the average watershed curve number appear not to be good predictors because of their inability to fully reflect the effect of storage on annual maximum flood peaks.

The goal of this research was to develop a better understanding of the skew coefficient of annual maximum discharges and the factors that influence its variation. To meet this goal the following objectives were studied:

- 1. To analyze the inaccuracy of estimating skew coefficients using regression equations. To meet this objective the following tasks were studied:
 - Analyze the statistical significance of correlations between station skew coefficients and storage related watershed characteristics;
 - Assess the sensitivity of station skew coefficient to outliers;
 - Perform a regression analyses using skew computed from program PeakFQ; and

- Evaluate the effect of watershed storage in the transformation of rainfall skew to runoff skew.
- 2. Complete an exploratory study to analyze the effect of watershed storage on runoff skew. To meet this objective the following tasks were undertaken:
 - Study the effect of rainfall skew on flood skew;
 - Develop a watershed model that allow for spatial variation of watershed processes; and
 - Examine the effect of watershed storage on flood skew.

CHAPTER 2: LITRATURE REVIEW

2.1. OVERVIEW OF BULLETIN 17B GUIDELINES

Hydrologic analyses are used to determine the instantaneous flood dischargefrequency relations for a given watershed; Bulletin 17B (IACWD, 1982) is the most widely used procedure for the analysis of flood magnitudes at gauged locations. The guidance recommends the use of the log-Pearson type III distribution to predict a peak discharge for any return period. Predicted peak discharge rates using the recommended method are significantly affected by the skew coefficient. Currently, the skew map is the central tool used to predict a skew coefficient despite the fact that the skew map is known to be inaccurate. Central problems are that the causes of flood skew are not fully understood, and the sample skew coefficient is very sensitive to outliers. The following sections discuss the procedures used to fit flood data to the log-Pearson type III distribution and to assess the effect of outliers.

2.1.1. Fitting log-Pearson III distribution

The estimation of peak discharge rates using a log-Pearson III type distribution requires sample estimates of the first, second, and third moments of the peak discharge record. The procedures suggested by Bulletin 17B use a record of flood magnitude (X) of sample size N. Then the logarithm of each of the X values is computed and denoted as Y. The following equations are used to compute the three log statistics:

$$Y = \log X \tag{2-1}$$

$$Y^* = \sum_{i=1}^{n} \frac{Y_i}{N}$$
 (2-2)

$$SD = \sqrt{\frac{\sum(Y - Y^*)^2}{N - 1}}$$
 (2 - 3)

$$G = \frac{N\sum(Y - Y^*)^3}{(N - 1)(N - 2)SD^3}$$
(2-4)

where Y = logarithm of annual peak flow, N = sample size, $Y^* = mean of the logarithms (has same unite as Y), SD = standard deviation of the logarithms (has the same unit as Y), and G= skew coefficient of the logarithms (dimensionless).$

2.1.2 Outlier analysis

When estimating peak discharge rates, individual flood events can significantly influence the three moments. The mean, standard deviation, and especially the skew coefficient are very sensitive to extreme events. The focus of this section is on the analysis of the effect of outliers on the coefficient of skew. The outliers can be high or low, and for each outlier two different procedures are presented in Bulletin 17B. Low outliers are low peak discharge rates that are proven to significantly differ from the remaining peak discharges. High outliers are high peak discharge rates in which the values are significantly larger than the other events. Outliers can significantly affect a sample skew coefficient; therefore, a careful analysis is required to identify the outliers.

Bulletin 17B suggests the first step is to calculate the station skew based on the annual flood record using Equation 2-4. If the calculated station skew is greater than +0.4, then the high outlier test should be applied first. If the station skew is less than -0.4, then a low outlier test should be applied first. Finally, if the station skew is between -0.4 and +0.4,

then tests should be made for both low and high outliers. The following equations are recommended by Bulletin 17B for high and low outliers calculations:

$$Y_{\rm H} = Y^* + K_{\rm N}SD$$
 (2-5)

$$Y_{\rm L} = Y^* - K_{\rm N}SD \qquad (2-6)$$

where Y_H = high outliers threshold in logarthmic unit, Y_L =low outlier threshold in logarithmic units, Y^* = mean logarthmic peak, SD = standard deviation , and K_N = LP3 deviate (see Appendix C).

2.2. MEAN SQUARE ERROR (MSEs)

Bulletin 17B provides an equation to compute the mean square error for the station skew value. The MSE is a measure of the error variation in sample skews. The MSE is a measure of accuracy and can serve as a measure of the effect of outliers. For example, assume a set of annual maximum peak discharge rate is used to calculate the station skew using Eq. 2-4. Then outliers can be identified using the methods described in section 2.1.2. Then the outliers are removed and the station skew is recomputed using the Eq. 2-4. After calculating the station skew with and without outliers, the next step is to calculate the mean square error for both skews.

$$MSE = 10^{\left[A - B\left[Log\left(\frac{N}{10}\right)\right]\right]}$$
(2-7)

where A = -0.33 + 0.08|G| if $|G| \le 0.90$ = -0.52 + 0.30|G| if |G| > 0.90B = 0.94 - 0.26 |G| if $|G| \le 1.50$ = 0.55 if |G| > 1.50 where |G| is the absolute value of the station skew calculated using Eq. 2-4, and N is the record length.

2.3. SKEW MAP, RAINFALL SKEW, AND FLOOD SKEW

Watershed change can affect the magnitude of the annual peak discharges. These changes could be due to urbanization, which decreases watershed storage, or afforestation, which increases watershed storage. Any change in the watershed that affects the watershed storage could potentially affect the accuracy of a flood-frequency analysis. The coefficient of skew is the most sensitive parameter used in a floodfrequency analysis. Its value is usually obtained from the Bulletin 17B skew map. McCuen and Smith (2008) showed that the skew map is inaccurate because the map value only varies with latitude and longitude and does not take into account the physical processes of the watershed. For small, uniform watersheds skew map showed some success, but the map cannot be accurate, if used for larger regions where watershed characteristics vary. McCuen and Smith (2008) concluded that skew map reflect the statistics of precipitation, not runoff. In order to improve the accuracy of estimates of peak discharges using the log Pearson type III distribution, runoff skew should be a function of both watershed characteristics and rainfall skew. This is because flood skew could show the effect of watershed processes, especially watershed storage.

The hydrologic processes that take place within the watershed can be thought as a model. Any model should have at least three components, namely an input, a system, and an output. In hydrologic process, watershed can act as a system, rainfall can be an input

to the system, and the runoff can be output of the system. The system, which is the watershed characteristics, can greatly influence the characteristics of the output, i.e., the runoff. The major processes in the watershed that could alter the runoff skew from that of the rainfall skew are watershed and channel storage. Therefore, if a regression equation is developed to estimate skew, factors that reflect watershed storage have to be important predictor variables. If the distribution of precipitation is known, this makes estimation of flood skew a derived distribution problem.

McCuen and Smith (2008) also showed that the factors that could affect the accuracy of estimates of skew coefficients from the annual maximum flood series. These factors were the distributions of rainfall, watershed processes, the presence of extreme events, the nonstationarity of watershed processes, and time sampling variations. Therefore, analyses of these factors before developing a skew equation could make a model better and more conceptually sound. The presence of extreme events could distort the sample watershed skew and produce a runoff skew with value larger than the rainfall skew. McCuen and Smith (2008) suggested the effect of outliers needs to be investigated before using the annual peak discharges as a criterion variable in regression analyses.

The 2-yr, 10-yr, and 100-yr rainfall depths can be used to compute rainfall skew. The rainfall depths for any station can be found from NOAA atlas website (NOAA, 2010). Eq. 2-8 was obtained from Bulletin 17B and can be used to estimate rainfall skew:

Rainfall skew =
$$-2.5 + 3.12 \left[\frac{\log(\frac{P_{100}}{P_{10}})}{\log(\frac{P_{10}}{P_2})} \right]$$
 (2-8)

where $P_2 = 2$ -yr rainfall depth (in.), $P_{10} = 10$ -yr rainfall depth (in.), and $P_{100} = 100$ -yr rainfall depth (in.).

2.4. FLOOD SKEW AND UNGAGED WATERSHED

Currently, estimates of skew are obtained for ungaged watersheds from the Bulletin 17B skew map (IACWD, 1982). This approach can lead to a inaccurate estimate of peak discharges. The standard error of the Bulletin 17B skew map is greater than 0.5 (McCuen and Hromadka 1988). This is very large error that could significantly affect the estimate of skew coefficients, and then peak discharges. Consider two adjacent watershed (with less storage) and watershed (with high storage) if the skew map used to estimate the value of skew coefficients, then the two watersheds would have similar values, because the mapped values only vary with latitude and longitude, they does not reflect the physical process that take place in the watershed. Obviously this approach is wrong, because the two watersheds had difference in watershed storage capacity; therefore, a different value of skew was expected. A watershed with high storage is expected to have a smaller skew value than a watershed with less watershed storage. McCuen and Hromadka (1988) showed that runoff skew obtained from the Rational Method and skew obtained from the map had different values for the same areas. Using the rational method for ungaged watersheds located in Baltimore, Maryland, a runoff skew was computed and found to be 0.3. This was based on varying the intensity obtained from IDF curve. On the other hand, using the Bulletin 17B skew map the skew was 0.7. The same result was obtained for an ungaged watershed located at Tucson, Arizona. Using rational method skew was found to be 0.2, but based on the Bulletin 17B skew map skew value was found to be -0.2. In both cases the differences between skew obtained from the map and from

rational methods analyses was 0.4. This is very high and could have a significant change in estimates of peak discharges.

McCuen and Hromadka (1988) showed that it is possible to develop a skew map, but this could be inaccurate because skew are not only a function of latitude and longitude, it significantly affected by watershed processes. For small watersheds, watershed storage can be a dominant variable that controls the volume of the runoff. In order to get accurate estimates of skew, predictor variables that accurately represent the watershed storage have to be incorporated into the model.

CHAPTER 3: INACCURACY OF REGRESSION IN DETERMINING SKEW

Regression analysis is one of the most commonly used statistical tools used to investigate the relationship between dependent (Criterion) and independent (predictor) variables. In this section, correlation and regression analyses are used to show the difficulties in getting accurate estimates of station skew. The first step in the regression analysis was to compute a criterion variable, i.e., skew. Skew was computed from annual peak discharge of 22 stations. The stations are located on the Eastern Coastal Plain of Maryland. The annual peak discharges can be accessed on the USGS stream gage web site. Each of the 22 annual peak discharge records had 10 or more years of record. The characteristics of individual annual peak discharges are not the same for all stations. Some of the gage records had low or/and high outliers, some of them had historic peaks, some of them had peak discharges less than the indicated value which is minimum recordable discharge at the site or greater than the indicated value which is above the recordable discharge for the site, and some of them are affected by regulation or failure of dam. To compute the station skews the following methods were made: (1) Skew calculated using Eq. 2-4, using all the annual peak discharges of each of the 22 stations with no adjustments; (2) skews were computed using the USGS program PeakFQ, which gives two kinds of skew estimates (as explained in section 3.3). The three watershed characteristics (drainage area, percentage of storage, and percentage of forest cover) for the 22 gaging stations were obtained from Dillow (1996). Storage is defined (Dillow, 1996) as the part of a drainage basin that exists as a lake, pond, or swamp; forest is defined as that part of a drainage basin where the land is covered with trees. The watershed characteristics are listed in Table 3-1.

Regression and correlation analyses were performed using an excel 2007 program (Data>>Data analysis >> regression/correlation). The purpose of the analyses was to estimate the regression line of Eq. 3-1:

$$skew = C + b_1 x_1 + b_2 x_2 + b_3 x_3 \tag{3-1}$$

where C = constant, $x_1 = \text{drainage area (sq. mi.)}$, $x_2 = \text{storage (\%)}$, $x_3 = \text{forest cover (\%)}$, and the b_i values are regression coefficients.

The ratio of the standard error of estimate and the standard deviation of the 22 skew values (Se/Sy) can be used to assess the accuracy of the regression equations. The standard deviation of the observed skew can be computed using Eq. 2-3. The standard error of estimate can be computed using the following equation:

$$S_e = \sqrt{\frac{\sum e^2}{(n-p-1)}} \tag{3-2}$$

where e = residual, which is the difference between estimated value and predicted value, n = number of observations, and p = number of predictor variables.

3.1. CORRELATION AND REGRESSION ANALYSES USING ALL RECORDED STATION DATA.

Statistical analyses were performed to identify the significance of correlation between the sample skew and the three watershed characteristics. After assembling the watershed characteristics for the 22 stations, the following steps were performed to analyze the correlation between skew and watershed characteristics:

- 1. For each of the 22 stations, the skew was computed using Eq. 2-4. (see Table 3-1)
- 2. The three watershed characteristics for the 22 gages station were collected from the USGS report (Dillow 1996).
- 3. Correlation analyses were performed on the computed skew and the three watershed characteristics using the excel 2007 program.
- 4. The correlations between the percentage of forest cover, the percentage of storage, the drainage area, and skew were analyzed.

The results of the correlation analyses are summarized in Table 3-2. The values show that forest had the strongest correlation with skew and the sign is negative. The statistical significance of the correlation coefficients of skew was tested with a one-tailed-test. The one-tailed test is used because either a negative or a positive, but not both, correlation is expected. For n=22, the degrees of freedom is 20; therefore, the critical values for the Pearson correlation coefficient were 0.2841, 0.3599, and 0.5368 for 10%, 5%, and 1%, respectively (Ayyub and McCuen 2003).

	Years	Drainage		Forest		Bulletin	skew	skew
Station	of	area	Storage	cover	Systematic	17B	with	without
number	record	(sq. mi.)	(%)	(%)	skew	skew	outliers	outliers
1485000	58	60.50	15.80	30	0.44	0.94	0.44	0.82
1485500	60	44.90	6.20	85	0.34	0.34	0.22	-0.13
1486000	56	4.80	0.00	57	-0.61	0.09	-0.61	-0.10
1486100	10	4.10	2.90	77	-0.31	0.32	-0.31	-0.31
1489000	42	7.10	0.47	33	-0.19	0.09	-0.22	-0.22
1490000	39	15.00	0.10	50	0.46	0.55	0.49	-0.01
1490800	10	3.90	0.71	29	0.28	0.54	0.28	0.28
1491000	62	113.00	1.91	35	-0.71	-0.04	-0.71	-0.28
1491050	10	3.80	0.07	25	1.91	0.96	1.98	0.18
1492000	32	5.85	0.00	26	0.71	0.71	0.71	0.42
1492050	11	8.40	0.00	23	1.29	0.88	1.28	-0.05
1492500	39	8.09	0.00	32	0.16	0.33	0.16	0.16
1492550	11	4.60	0.34	14	2.25	0.98	2.25	-0.40
1493000	61	22.30	1.54	43	0.01	0.17	-0.01	-0.01
1493500	58	12.70	0.20	8	0.98	0.83	0.90	-0.15
1494000	13	12.50	0.01	24	0.62	0.66	0.62	0.62
1495000	78	52.60	0.05	14	-0.28	0.25	-0.05	0.32
1495500	12	26.80	0.07	23	1.97	0.94	1.61	1.73
1496000	37	24.30	0.09	22	0.38	0.49	0.81	0.38
1496080	10	1.70	0.03	96	-0.45	0.23	-0.01	-0.01
1496200	27	9.03	0.02	17	0.26	0.43	0.18	0.18
1578500	44	193.00	0.00	32	0.68	0.67	0.32	0.32

TABLE 3-1. Basin characteristics for the selected drainage basins in the Eastern Coastal Plain of Maryland and the computed skews.

TABLE 3-2. Correlation matrix of the three watershed characteristics and skew with outliers.

	DA (sq. mi.)	Storage	Forest (%)	Skew
DA	1	(/-)	()-)	
DA	1			
Storage	0.19	1		
Forest	-0.06	0.18	1	
Skew	-0.23	-0.12	-0.47	1

3.1.1. Correlation between forest and skew

As indicated by the negative correlation coefficient, Fig. 3-1 shows that there was a negative relationship between skew and the percentage of forest cover. As the forest cover increases the flood skew would become algebraically more negative.

FIGURE 3-1. Plot of station skew with outliers vs. forest cover.

The correlation coefficient for the skew and percentage of forest cover was -0.47. This is statistically significant at the 5% level of significance but not the 1%. The sign of the correlation was negative which is physically rational because the skew was expected to decrease as percentage of forest cover increased. High forest covers represent more storage and the negative correlation coefficient was expected.

3.1.2. Correlation between storage and skew

An inverse relationship between skew and storage is shown in Fig. 3-2. The sign of the correlation coefficient R between skew and percent of storage was negative (R=-0.12). The sign was rational because as the storage increased, the skew would be expected to

decrease. Even though the sign was rational, the magnitude of correlation is not statistically significant. The lack of significance likely results from the small range of storage values. Most of storage values are less than 0.5%, which makes it difficult to show the true effect of storage.

FIGURE 3-2. Plot of station skew with outliers vs. storage.

Given a volume of storage, when a small storm occurs, the storage will control much of the flow. However, for large storms, the storage has little effect. Thus, small amounts of storage dominate the low peaks but not the high peaks, which cause the skew to be algebraically more negative. Therefore, the negative R of -0.124 was expected.

3.1.3. Correlation between drainage area and skew

The drainage areas varied from 1.7 square miles to 193 square miles. These represent a large variation in the drainage areas. Fig. 3-3 shows an inverse relationship between skew and drainage area. In addition, the correlation analysis showed a negative relation between skew and drainage area. Large drainage areas have a more dominant channel

system, which potentially may suggest considerable channel storage. More channel storage, especially with a more pronounced and vegetated floodplain, would cause a more negative skew. As such, the computed correlation is rational in sign, but not statistically significant in magnitude. Unlike the percentage of storage, the range of drainage areas is large. In this case, the lack of a significant correlation may indicate that channel storage is not a dominant factor in the controlling the skew of flood series.

FIGURE 3-3. Plot of station skew with outliers vs. drainage area.

3.2. SENSITVITY OF STATION SKEW TO OUTLIERS

3.2.1. Identifying and analyzing outliers

In order to analyze and identify the sensitivity of a station skew to the presence of extreme events, annual peak discharges of the 22 stations were used. The outlier test was performed on each of the 22 flood records. Individual peak discharges with the following characteristics were not subject to the outlier test: (1) A discharge affected by dam failure, non-recurrent flow anomaly, (2) a discharge greater than the recordable value for the site, (3) a discharge less than the recordable value for the site, (4) peak discharges

affected by known effect of regulation or urbanization, and (5) historic peaks. For the identification of outliers the following steps were made:

- 1. The annual peak discharge record for each station was collected (see appendix A).
- 2. The skew of each record was calculated using Eq. 2-4.
- 3. Low and high outliers were identified using Eqs. 2-5 and 2-6.
- 4. Identified outliers were censored, and the skew of the remaining record was recomputed using Eq. 2-4.
- 5. The skew of the annual peak discharge record with and without outliers were assessed to show the effect of extreme events.

The sensitivity of a station skew to the characteristics of the data sample, especially the presence of extreme events, was analyzed. Twelve of the 22 stations had either high or/and low outliers that could affect the statistical distributions. The results of the sensitivity analyses are summarized in Table 3-3.

Station number	Record length	Skew with outliers	Skew without outliers	Change in skew (with outliers out – with outliers)	Type of outlier	Number of outliers	Years of occurrence
1486000	56	-0.61	-0.10	0.51	Low	1	1981
1490000	39	-0.01	0.49	0.50	High	1	2006
1491000	62	-0.71	-0.28	0.43	Low	1	1966
1495000	78	-0.05	0.32	0.37	Low	1	2002
1495500	12	1.61	1.73	0.12	High	1	1999
1492000	32	0.71	0.42	-0.29	High	1	1960
1485500	60	0.22	-0.13	-0.35	High	1	1989
1485000	58	0.44	0.38	-0.06	Both	2	19,811,989
1493500	58	0.90	-0.15	-1.05	High	2	1972, 1999
1492050	11	1.28	-0.05	-1.33	High	1	1975
1491050	10	1.98	0.18	-1.80	High	1	1967
1492550	11	2.25	-0.40	-2.65	High	1	1967

TABLE 3-3. Summary of outlier analyses and change in skews for the 12 stations that had at least one outliers.

The changes in skew ranged from -0.51 to 2.65 as shown in Table 3-3. This indicates that a station skew is very sensitive to extreme events. For example, station number 1492550 included one outlier among 11 years of record data. When the outlier was censored, the skew changed from 2.25 to -0.40. This change would have a large effect on a frequency curve and on estimates of peak discharge rates. Station number 1491050 produced a similar result; one outlier was identified in the 10 years of record. The skew value for this station changed from 1.98 to 0.18. Again, the change in skew would greatly influence the shape of the flood frequency curve.

3.2.2. Effect of outliers on regression

To analyze the effect of outliers on a regression for predicting skew, the skew values were regressed on the three watershed characteristics. Separate analyses were made for the skews based on the flood records with and without outliers. The watershed characteristics and the skew values with and without outliers are shown in Table 3-1. For these analyses the numbers of observations were 22, with the same three predictor variables. Skew with and without outliers regressed on the three watershed characteristics with the following results:

$$skew = -0.0044DA + 0.0035ST - 0.0160FT + 1.1711$$
 (3-3)

$$skew^* = 0.0004DA + 0.0271ST - 0.0072FT + 0.4004$$
 (3-4)

where *skew* =skew with outliers, *skew*^{*}=skew without outliers.

TABLE 3-4. The result of regression statistics analyses using the three watershed characteristics as predictor variable and the skew with and without outliers as a criterion variable.

Regression Statistics	with outliers	without outliers
Multiple R	0.53	0.38
R squared	0.28	0.14
Standard error (Se)	0.70	0.48
Standard deviation (Sy)	0.77	0.48
Se/Sy	0.91	1.00
$\sum e^2$	8.92	4.21
Predictor variables	3	3
Observations	22	22

The goodness-of-fit statistics of the regression analyses with and without outliers are given in Table 3-4. The results of the regression analysis without outliers resulted in

poorer accuracy compared to the results of the analysis with outliers. Removing the outliers caused the R squared to decrease by 0.14 (50% reduction). The lower R results from the removal of outliers that reduced the variation in the skew value. Removing outliers decreases the accuracy of the predicting equation as evident from the increase in Se/Sy. Removing the outliers changed the Se/Sy from 0.91 to 1.00. The Se/Sy of 0.91 indicates there was no relation between sample skew and the watershed characteristics. Removing the outliers made predictions even less accurate.

3.2.3. Effect of outliers on mean square error of the station skew

The accuracy of a station skew can be assessed using the mean square error. A small change of skew can significantly affect the mean square error (MSE) of station skew. In the previous section, outliers were identified in 12 of the 22 stations. For the 22 stations the MSEs were computed using Eq. 2-7. The results of the analyses are summarized in Table 3-5. For a station that had no outliers identified, MSEs would not change. The results of the analyses show that the low and the high extreme events significantly affected the mean square error of the station skews. Table 3-5 shows that extreme events significantly affected the MSEs. For example, for station number 1492550, the removal of the outliers decreased the MSE by 0.852. This indicates outliers have to be identified and proper treatment has to be taken.

	Years of	Years of	Clean	Show	MSE	MSE	change in MSE
Station	record	record	SKew	SKew	MSE	MSE	(With -
number	outlier	outlier	outliers	outliers	outliers	outliers	outliers)
1485000	58	57	0.44	0.05	0.1188	0.1555	-0.037
1485500	60	59	0.22	-0.13	0.1001	0.0959	0.004
1486000	56	55	-0.61	-0.10	0.1362	0.1003	0.036
1486100	10	10	-0.31	-0.31	0.4952	0.4952	0.000
1489000	42	42	-0.22	-0.22	0.1372	0.1372	0.000
1490000	39	38	0.49	-0.01	0.1694	0.1341	0.035
1490800	10	10	0.28	0.28	0.4925	0.4925	0.000
1491000	62	61	-0.71	-0.28	0.1343	0.1027	0.032
1491050	10	9	1.98	0.18	1.1858	0.5312	0.655
1492000	32	31	0.71	0.42	0.2214	0.1974	0.024
1492050	11	10	1.28	-0.05	0.6900	0.4721	0.218
1492500	39	39	0.16	0.16	0.1418	0.1418	0.000
1492550	11	10	2.25	-0.40	1.3559	0.5035	0.852
1493000	61	61	-0.01	-0.01	0.0860	0.0860	0.000
1493500	58	56	0.90	-0.15	0.1596	0.1018	0.058
1494000	13	13	0.62	0.62	0.4275	0.4274	0.000
1495000	78	76	-0.05	0.32	0.0703	0.0873	-0.017
1495500	12	11	1.61	1.73	0.8307	0.9467	-0.116
1496000	37	37	0.81	0.38	0.2091	0.2091	0.000
1496080	10	10	-0.01	-0.01	0.4686	0.4686	0.000
1496200	27	27	0.18	0.18	0.1991	0.1991	0.000
1578500	44	44	0.32	0.32	0.1394	0.1394	0.000

TABLE 3-5. Results of the mean square error analysis for the twenty two stations.

3.3. REGRESSION ANALYSES USING SKEW FROM PROGRAM PEAKFQ

Program PeakFQ was used to perform statistical flood-frequency analyses of the annual peak discharges. The program was developed based on the procedures recommended in

Bulletin 17B and is distributed by USGS. Two values of skew are computed using this program. The first one is computed from systematic record (explained below), referred to hereafter as systematic skew, and the second skew is computed from the systematic record with adjustments of low, high, historic peaks, and generalized skew based on Bulletin 17B procedures, referred to hereafter as Bulletin 17B skew.

3.3.1. Regression analyses of the systematic records

Systematic records are records of annual peak discharges obtained from a continues trace of river stage or from periodic observations (IACWD, 1982). A systematic-record analysis is the first step in estimating the statistical parameters that are used in fitting a frequency curve. Annual peak discharges that are identified as outliers are included in the systematic analysis. Annual peak discharges with the following characteristics are not included in the systematic analysis: (1) Peak discharges affected by dam failure, non-recurrent flow anomaly, (2) discharges greater than the maximum recordable value at the site, (3) discharges less than the minimum recordable value at the site, (4) peak discharges affected by regulation or urbanization, and (5) historic peaks.

The systematic skew (criterion variable) was regressed on the three watershed characters parameters (predictor variables) with the following result:

$$skew = -0.0029DA + 0.0051ST - 0.0176FT + 1.18$$
(3-5)

where skew = skew computed from systematic data, DA= drainage area (sq. mi.), ST = storage (%), and FT = forest cover (%).

Eq. 3-5 suggests that the rate of change of skew with drainage area DA is -0.0029, with the percentage of storage ST is 0.0051, and with percentage of forest cover FT is - 0.0176. The standard error for Eq. 3-5 is 0.76 (see Table 3-6). The R squared value of 0.26 was small, but it is statistically significant at the rejection probability of 1%.

Se/Sy is a good indicator for the accuracy of regression equation. Generally speaking, a value of Se/Sy less than 0.3 is very good, values between 0.3 and 0.5 are good, values between 0.5 and 0.7 are fair but if the value greater than 0.7 it is not very good , which means there is no relation between criterion and predictor variables. As shown in Table 3-6 the Se/Sy was found to be 0.93. Based on the criteria described above, Eq. 3-5 was not accurate to use it in predicting skew for this region.

TABLE 3-6. Summary outputs of regression analysis using the three watershed characteristics as predictor variables and the systematic skew as criterion variable.

Regression Statistics	
Multiple R	0.51
R squared	0.26
Se	0.76
Sy	0.82
Se/Sy	0.93
Σe^2	10.41
predictor variables	3
Observations	22
3.3.2. Regression analysis using Bulletin 17B skews as criterion variables.

The Bulletin 17B skew estimate is the same as the systematic skew analysis but with the adjustments of low outliers, high outliers, historic peaks, and generalized skew based on the Bulletin 17B procedures. The computed Bulletin 17B skews are listed in Table 3-1. Using Bulletin 17B skew as the criterion variable and the three watershed characteristics (Table 3-1) as predictor variables, regression analyses was performed and the following equation was developed:

$$skew = -0.0011 DA + 0.0249 ST - 0.0074 FT + 0.7787$$
(3-6)

Eq. 3-6 suggests that the rate of change of skew with drainage area DA is -0.0011, with the percentage of storage ST is 0.0249, and with the percentage of forest cover FT is -0.0074. The Se/Sy is 0.9. This indicated that Eq. 3-6 is not sufficiently accurate to use in predicting skew. The R squared value of 0.31 was not good but it is statistically significant. The results of the regression analyzes are summarized in Table 3-7.

The correlation matrix (see Table 3-2) showed that percentage of storage had a negative correlation coefficient. However, all the regression equations had a positive coefficient for storage, but a negative value would be expected. This discrepancy could be due to the inter correlation effect

TABLE 3-7. Summary of regression analysis using the three watershed characteristics as a predictor variables and the Bulletin 17B skew as a criterion variable.

Regression Statistics			
Multiple R	0.56		
R squared	0.31		
Se	0.29		
Sy	0.32		
Se/Sy	0.90		
Σe^2	1.48		
Predictor variables	3		
Observations	22		

3.4. EFFECT OF WATERSHED STORAGE IN THE TRANSFORMATION OF RUNOFF SKEW TO RAINFALL SKEW

Runoff is the result of rainfall and the hydrologic processes within a watershed. For a steep, impervious surface, the time distribution of runoff should have characteristics similar to those of the rainfall. Specifically, similar variations in magnitude. Additionally, the time difference between the rainfall and runoff peaks should be short. Therefore, the skew of the distribution of peak discharge should be similar to the skew of the peak rainfall distribution. For low sloped, pervious surfaces, the physical processes significantly change the magnitude and timing of the runoff such that statistical characteristics of the runoff differ from those of the rainfall. Thus, a change in skew is not unexpected. Sampling variation is another significant factor that governs values of sample skew.

3.4.1. Hypothetical data analyses and discussion of results

Two hypothetical data sets were created and analyzed, one with negative rainfall skew and the second one with positive rainfall skew. These were performed to see how a homogeneous watershed would react if only the storage variable varied. The curve numbers (CN) were used to represent the watershed storages with storage decreasing as CN increased. The curve numbers used for the analyses were 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 98. The following procedure was used for the analyses:

- Generate two sets of rainfall depths such that the logarithms of set #1 has a negative skew (-0.49) and the logarithms of set #2 has a positive skew (0.22). The skews were computed with Eq. 2-8.
- 2. Using 1 of 11 CNs, the NRCS rainfall-runoff equation was used with each of the 27 rainfalls to compute a runoff depth. The logarithms of the 27 runoff depths were computed and the skew of the logarithms was then computed for that CN. For example, when the CN of 50 is used, the runoff skew is -1.12 for rainfall set #1 (see Table 3-9) and -0.60 for rainfall set #2 (see Table 3-10).
- 3. Step 2 is repeated for each of the other 10 CNs, with the resulting runoff skews shown in Tables 3-9 and 3-10.

Set #1 Rainfa	all (in.)	Set # 2 Rainfall	(in.)
			· /
2.50	6.75	2.50	6.75
5.50	4.00	5.50	4.00
8.50	7.00	13.00	7.00
2.75	4.25	2.75	4.25
5.75	7.25	5.75	8.00
8.75	4.50	14.00	4.50
3.00	7.50	3.00	9.00
6.00	4.75	6.00	4.75
9.00	7.75	15.00	10.00
3.25	5.00	3.25	5.00
6.25	8.00	6.25	11.00
3.50	5.25	3.50	5.25
6.50	8.25	6.50	12.00
3.75		3.75	

TABLE 3-8. Twenty-seven rainfalls that produce negative skew (set #1) and 27 rainfalls that produce positive skew (set #2).

For the first set of the hypothetical rainfall depths with negative skew (see Table 3-8), the logarithmic mean, standard deviation, and skew were calculated and found to be 0.73, 0.16, and -0.49, respectively. As expected, the runoff skew of -0.51 for curve number of 98 is almost identical to the rainfall skew of -0.49, as there was little storage, i.e., high curve number. As the curve number decreased, the storage increased, and the runoff skew became algebraically more negative. So, it is important to note that the runoff skew was always algebraically more negative than rainfall skew. This result may not happen with actual data, but only because sampling variation can distort sample statistics, especially with small samples.

Curve number	log mean	log sd	log skew
50	-0.15	0.56	-1.12
55	0.02	0.45	-0.92
60	0.15	0.39	-0.82
65	0.25	0.34	-0.76
70	0.34	0.31	-0.72
75	0.42	0.28	-0.68
80	0.5	0.25	-0.65
85	0.56	0.23	-0.62
90	0.62	0.21	-0.59
95	0.68	0.19	-0.54
98	0.71	0.17	-0.51

TABLE 3-9. Runoff characteristics based on analyses using negative rainfall skew.

For the second set of rainfall depths (see Table 3-8), the rainfall skew was positive. The rainfall depths ranged from 2.5 inches to 15 inches. The logarithmic mean, standard deviation, and rainfall skew were computed as 0 .77, 0.22, and 0.22, respectively. The runoff depths were computed using the NRCS rainfall-runoff relationship. The runoff skews were computed using Eq. 2-4. The results of the analyses are summarized in Table 3-10.

Curve number	log mean	Log sd	log skew
50	-0.07	0.65	-0.60
55	0.09	0.54	-0.38
60	0.22	0.47	-0.26
65	0.32	0.42	-0.18
70	0.41	0.38	-0.12
75	0.48	0.35	-0.07
80	0.55	0.32	-0.02
85	0.61	0.29	0.02
90	0.67	0.27	0.08
95	0.72	0.25	0.14
98	0.75	0.23	0.18

TABLE 3-10. Runoff characteristics based on analyses using positive rainfall skew.

The runoff skew value became closer and closer to the rainfall skew as the curve number increased. For curve number 98 the runoff skew was 0.18 which was just slightly less than the rainfall skew of 0.22. From the analyses it was understood that watershed storage could be the primary physical process that controls the skewness of the runoff.

3.4.2. Effects of variations within peak discharges on station skew

3.4.2.1. Correlation analyses

The correlation and regression analyses of the measured data from the Eastern Coastal Plain of Maryland did not result in firm conclusions, as sampling variation distorts small sample. As discussed in the previous sections, the correlation coefficients between station skew and the three watershed characteristics were low. The results of the regression analyses showed that the R squared values are very small and the standard errors and Se/Sy values were high. The results suggest that acceptable accuracy was not achieved using regression analysis. One reason for the inaccurate skews could be the fact that annual peak discharge data are quite varied. Twelve of the 22 stations had outliers. Therefore, to examine the effect of variation within individual annual peak discharge records on station skew, the following steps were performed:

- For each of the 22 stations, the annual peak discharges were sorted from the smallest (X₁) to the largest (X_n) values.
- 2. Two indices (high and low indices) were computed using Eqs. 3-7 and 3-8; the results are shown in Table 3-11 (see appendix 1 for the annual peak discharge records used for these analyses):

$$R_{\rm L} = \frac{X_1 - X_2}{X_1 - X_{\rm n}} \tag{3-7}$$

$$R_{S} = \frac{X_{n-1} - X_{n}}{X_{1} - X_{n}} \tag{3-8}$$

in which $R_L = low$ event index, $R_S = high$ event index,

 X_1 = largest flood of record, X_2 = second largest flood of record, X_{n-1} = next to smallest flood of record, and X_n = smallest flood of record. These indices are created to assess the importance of the extreme events in a flood series.

3. For each station compute the skew using Eq. 2-4.

4. To assess the effect of extreme events, both high and low values, the two indices were created and included as predictor variables with the three watershed characteristics (DA, ST, and FT) and regression analyses were made.

				Drainage		Forest	Skow
Station	Year of				Storage	cover	with
Number	Record	R.	R	(sa mi)	(%)	(%)	outlier
Number	necora	ις	ns	(59.111.)	(70)	(70)	outlief
1485000	58	0.32	0.08	60.50	15.80	30	0.44
1485500	60	0.43	0.01	44.90	6.20	85	0.22
1486000	56	0.35	0.05	4.80	0.00	57	-0.61
1486100	10	0.24	0.11	4.10	2.90	77	-0.31
1489000	42	0.24	0.01	7.10	0.47	33	-0.22
1490000	39	0.44	0.00	15.00	0.10	50	0.49
1490800	10	0.55	0.05	3.90	0.71	29	0.28
1491000	62	0.08	0.03	113.00	1.91	35	-0.71
1491050	10	0.87	0.01	3.80	0.07	25	1.98
1492000	32	0.54	0.02	5.85	0.00	26	0.71
1492050	11	0.72	0.03	8.40	0.00	23	1.28
1492500	39	0.21	0.01	8.09	0.00	32	0.16
1492550	11	0.91	0.01	4.60	0.34	14	2.25
1493000	61	0.57	0.01	22.30	1.54	43	-0.01
1493500	58	0.33	0.00	12.70	0.20	8	0.90
1494000	13	0.18	0.02	12.50	0.01	24	0.62
1495000	78	0.42	0.03	52.60	0.05	14	-0.05
1495500	12	0.44	0.02	26.80	0.07	23	1.61
1496000	37	0.51	0.02	24.30	0.09	22	0.81
1496080	10	0.15	0.04	1.70	0.03	96	-0.01
1496200	27	0.41	0.02	9.03	0.02	17	0.18
1578500	44	0.42	0.01	193.00	0.00	32	0.32

TABLE 3-11. Watershed characteristics including the high and low event indices and flood skew with outliers.

The two indices were computed and included with the other three variables in regression analyses to predict skew. The results of a correlation analysis are shown in Table 3-12. The results showed that R_L was the dominant variable with a correlation

coefficient of 0.76. The sample skew was highly correlated with R_L more than any of the watershed characteristics. Most importantly, these analyses indicated that the individual peak discharges within a sample are very influential, possible even more than the watershed characteristics. Therefore, good correlation between station skew and watershed characteristics may be difficult to achieve with measured flood series, especially small samples.

TABLE 3-12. Correlation matrix using the skew with outlier as criterion variable and the three watershed characteristics including the two event indices as predictor variables.

	RL	Rs	Drainage area (sq.mi.)	Storage (%)	Forest cover (%)	skew
RL	1					
RS	-0.27	1				
Drainage area	-0.20	-0.07	1			
Storage	-0.15	0.49	0.19	1		
Forest cover	-0.36	0.36	-0.06	0.18	1	
Skew	0.76	-0.35	-0.23	-0.12	-0.47	1

3.4.2.2 Regression analysis

The R squared value and Se/Sy are good indicators of the goodness-of-fit of a regression analysis. From the regression analyses performed in section 3.2.2 for data with outliers, the computed R squared value was 0.28 and Se/Sy was 0.91. Removing the outliers decreased the R squared to 0.14 and increased the Se/Sy to 1.00 (see Table 3-4). In these cases, the R squared was small and the Se/Sy was large; therefore, it was concluded that regression analyses may not be accurate when estimating station skews.

In this section, a regression analysis was performed using skews based on the flood series that included outliers as the criterion variable, three watershed characteristics, and the two indices: R_L and R_S . The addition of R_L and R_S as a predictor variables increased the R squared value from 0.28 to 0.65. The results of the regression analyses are summarized in Table 3-13. The R value increased from 0.53 to 0.81. This increase could be influenced by the fact that R_L , R_S , and station skews were calculated from the same set of data. In addition, the presence of R_L and R_S decreased the Se/Sy value from 0.91 to 0.67. The two new predictor variables, i.e., R_L , and R_S , appeared to be important predictors. This partially explains why it was difficult to get an accurate regression equation that can be used to predict skew using watershed characteristics.

TABLE 3-13. Summary of goodness-of-fit statistical parameters resulted from skew with outliers regressed on the three watershed characteristics including the two event indices.

Regression Statistics	
Multiple R	0.81
R squared	0.65
Standard Error (Se)	0.52
Standard deviation (Sy)	0.77
Se/Sy	0.67
$\sum e^2$	4.32
predictor variables	5
Observations	22

3.5. SUMMARY

The results of the correlation and regression analyses showed that it was difficult to get accurate sample estimates of flood skew using the annual maximum flood series because of sampling variation and presence of extreme events. There were high variations within the predictor variables. The mean and standard deviation of percentage of storage were 1.39 and 3.53, respectively. Almost all of the storage values are less than 0.5% with the highest value of 15.8%. This variation made it impossible to show the effects of storage on skew.

CHAPTER 4: NEW APPROACH TO ANALYZE THE EFFECT OF WATERSHED STORAGE ON COEFFICIENT OF SKEW

Watersheds are always in a constant state of change either due to manmade modifications or natural causes. For a given watershed, storage could change year to year due to urbanization. Urban development could increase the percentage of imperviousness, which would affect the skew of a flood series. The percentage of storage used in the analyses in Chapter 3 is not used in this chapter to represent storage. Instead, watershed roughness, watershed slope and ultimate infiltration rate (f_{cu}) were used to represent a watershed storage. One or two extreme events in a flood series can distort the sample skew. Even small inaccuracies in a computed skew could cause inaccurate estimates of peak discharge rates. Therefore, knowledge of physical factors that influence skew is needed.

4.1 EFFECT OF WATERSHED STORAGE ON SKEW COEFFICIENT

The basic hypothesis here is that storage is the main watershed characteristic that can cause variation in a sample coefficient of skew. The physical processes of a watershed influence the skew of the annual maximum series. All physical processes, both watershed surface and channel, create storage. Wedge and prism storage are related to channel flow. Infiltration rates and soil types reflect groundwater storage. Floodplain roughness reflects surface storage. All of these factors influence the individual discharges of an annual maximum flood series. Since the antecedent moisture storage differs from storm to storm, the varying amounts of available storage introduce considerable apparent random variation into the individual discharges and thus the sample skew.

Given estimates of the 2-yr, 10-yr, and 100-yr discharges for a log-Pearson III distribution, an estimate of skew can be computed using:

$$G_s = -2.5 + 3.12 * \frac{\log\left(\frac{Q_{0.01}}{Q_{0.10}}\right)}{\log\left(\frac{Q_{0.10}}{Q_{0.50}}\right)} \tag{4-1}$$

If the second term is less than 2.5, then the skew will be negative. Therefore, negative skew results from causes where the ratio of logarithms is less than 0.8:

$$\frac{\log\left(\frac{Q_{0.01}}{Q_{0.10}}\right)}{\log\left(\frac{Q_{0.10}}{Q_{0.50}}\right)} < \frac{2.5}{3.12} = 0.8013 \tag{4-2}$$

Equation 4-2 is useful for understanding the effects of storage on flood skew.

If storage has the effect of reducing the 100-yr event more than the 2-yr and 10-yr events, then the logarithm ratio will be less than 0.8, which produces a negative skew. As the storage for the conditions of the 100-year event increases, the ratio will continue to decrease and the skew will become algebraically more negative. Qualitatively, if $\log\left(\frac{Q_{0.01}}{Q_{0.50}}\right) > \log\left(\frac{Q_{0.10}}{Q_{0.50}}\right)$, then storage has less of an effect for the larger events than the smaller events, and skew will likely be positive. As the rain becomes heavier toward the 10-yr rainfall, the ground becomes more saturated and storage is less available, which makes for higher flow velocities and volumes. But then a different type of storage must be available to cause the 100-yr discharge to be not much greater than the 10-yr discharge. This could possibly be due to variation in watershed and channel storage characteristics with the magnitude of a storm. Channel storage can be influenced by the

degree of sinuosity that is reflected by the amount of meandering or roughness. For events larger than bankfull flow, which may be about the 2-yr event, then floodplain storage may be a factor. Floodplains with high roughness reflect high storage. Watershed storage is influenced by roughness; the degree of hilliness, which influences the depression storage; and the availability of ground water storage. The extent to which these sources of storage influence the flood magnitudes will greatly influence the station skew obtained from a flood record. For a flood series to have a positive skew, the relative storage would have to continually decrease with increasing storm magnitude. Thus, floods would continually increase proportionally as rainfall increased. If, for example, channel storage even on the floodplain was minimal for all flood magnitudes, then as watershed storage was filled, the floods would increase proportionally.

The issue here is that skew is greatly influenced by the variation of storage over the range of rainfall magnitudes. Most predictor variables used in regression analyses are related to land cover (e.g., forest cover or curve number) or surface characteristics (e.g., watershed slope). It is rare that channel characteristics or soil characteristics are used as variables to predict skew. Measures of channel or floodplain storage (e.g., roughness) or infiltration parameters might make better predictors. A spatio-temporal model was developed to test this hypothesis.

4.2 A SPATIO-TEMPORAL MODEL OF A WATERSHED

In order to understand the effect of watershed storage on flood skew, a simple model was developed. In order to write a program that helps to analyze the watershed processes, answers to several questions were needed: (1) How can channel storage be measured?

(2) What physical characteristics of a channel influence storage? (3) What are the dominant characteristics that reflect watershed storage? Answers to these questions made it possible to create a simple model, spatially and temporally distributed, to show the effect of watershed and channel storage and the effects on runoff, specifically the coefficient of the skew.

4.2.1 Layout of the model

For modeling purposes 32 cells each with an area of 1 square mile was assumed. All subareas have overland flow with the direction of flow from the subbasins shown in Fig. 4-1. Some subareas flow directly into a channel section, while others contribute surface flow into a down-gradient subarea. There are nine channel sections, which are labeled as CR in the Fig. 4-1. Flow velocities are estimated using Manning's equations, both for overland flow and channel flow. The depth of the flow of the watershed surface at any time is used as the hydraulic radius. For channel flow, the hydraulic radius is computed from the bottom width and flow depth in the channel. For the floodplain, the hydraulic radius is computed from the cross-sectional area and wetted perimeter.

FIGURE 4-1. Layout of the watershed model.

4.2.2 Rainfall distribution

The temporal distribution of rainfall is triangular over a period of 24 hours and uniform in space. Calculations are extended for an addition 24 hours to allow more of the water to drain from the system. The input is the rainfall depth for a 24-hour event for a specified return period. The rainfall values used in the analyses are 3.03 in., 5.05 in., and 7.61 in. for 2-yr, 10-yr and 100-yr events, respectively. These values yield a skew of 0.0 for the event rainfall. Other rainfall depths were used to generate rainfall skews of -1 and +1.

4.2.3. Channel characteristics

A rectangular channel was assumed with a depth equal to 1/20 of the bottom width. The channel may or may not have full flow. In order to set the bottom widths of each channel section, the 2-year, 24- hour rainfall depth was used. The main channel was assumed to

flow full for the 2-year event, with no flow on the floodplain. The widths were adjusted until full channel flow was achieved. The same fitted channel widths were used for the 10-yr and 100-yr events, which produced flow on the floodplain.

4.2.4. Infiltration

Infiltration coefficients and Manning's n were used to reflect watershed storage. The watershed storage can be modeled to reflect increased and decreased storage as storm magnitude varies. As the rainfall intensity increases, the infiltration rate increases to reflect greater pressure head. Infiltration was made to vary with time. Generally, as time advanced, then infiltration decreased because less void space was available to hold water. The Hortorian infiltration equation as commonly used was assumed as the base model, which is independent of rainfall intensity. To incorporate intensity into the model, Horton's parameter f_o was made a function of intensity or the depth of water stored on the watershed. The Horton coefficient f_o was assumed to be approximately equal to $4f_c$ and that f_o increases with rainfall intensity. Thus, the infiltration rate is:

$$f = (f_{cu} + \Delta f_c e^{-Li})[1.0 + (f_o - f_c)e^{-kt}]$$
(4-3)

where f =infiltration rate (in./hr), t =time (hr), i =rainfall intensity (in./hr), f_{cu} = ultimate infiltration rate (in./hr), $f_c = f_{cu}$, $f_o = 4f_c$, Δf_c = change in f_c due to rainfall intensity, L= intensity decay coefficient (per in./hr), and K= time decay coefficient(1/hr).

4.2.5 Inputs of the model

For each run 13 inputs are required. A separate text file needs to be prepared for each watershed. The model can be used for one analysis at a time. The inputs are:

- 1. Fcu (in./hr) for infiltration: is the ultimate infiltration
- 2. Delta f_c (in./hr) for infiltration, the dependence of ultimate infiltration on intensity
- 3. Intensity coefficient L (per in./hr) for infiltration
- 4. Storm time coefficient K (per hr) for infiltration
- 5. Rainfall depth (inch)
- 6. Baseflow(ft^3/s)
- 7. Channel width (ft)
- 8. Channel slope(ft/ft)
- 9. Watershed slope(ft/ft)
- 10. Watershed roughness
- 11. Floodplain roughness
- 12. Channel roughness
- 13. Floodplain cross section slope Z

4.3. MODEL ANALYSES

Using the developed model it was possible to investigate the effects of both rainfall skew and watershed storage on runoff skew.

4.3.1. Effect of rainfall skew on flood skew

To control rainfall skew, which is a partial determinant of runoff skew, the values of rainfall depths for 2-yr, 10-yr, and 100-yr return periods and 24-hour storms were determined from the IDF curve to produce rainfall skews of -1, 0, and +1. The rainfall skews were calculated using Eq. 2-8. The rainfall depths and the computed rainfall skews are given in Table 4-1.

Rainfall skew	2-year	10-year	100-year
-1	2.25	5.05	7.45
0	3.03	5.05	7.61
1	3.03	5.05	9.03

TABLE 4-1. Summary of rainfall depth (in.) for -1, 0, and 1 skews.

The watershed parameters selected to perform the analysis are shown in Table 4-2. The values were selected just to show the effect of variation of rainfall skew on the runoff skew. The manning 'n' values and watershed slope were assumed to have similar values as the watershed characteristics of the eastern shore of Maryland. The channel widths (ft) fitted for this step and held fixed for the rest of analyses in this chapter are 22, 35, 44, 49, 55, 60, 61, 65, 40, and 40. The channel widths were selected by performing several trials using the 2-year rainfall depth from the 0 skew distrbution until no runoff occurred on the floodplain, i.e., all flow was contained within the channel. Then to see the effect of zero rainfall skew on runoff skew, rainfall depths 3.03 in. (24-hr, 2-year), 5.05 in. (24 –hr, 10-year), and 7.61 in. (24-hr, 100-year) were used. To see the effect of negative rainfall skew on runoff skew, 2.25 in. (24-hr, 2-year), 5.05 in. (24-hr, 2-year), 5.05 in. (24-hr, 10-year) were used. Finally, rainfall depth of 3.03 in. (24-hr, 2-year), 5.05 in. (24-hr, 10-year) and 9.03 in. (24-hr, 100-year) were used to analyze the effect of a positive rainfall skew on runoff skew.

Parameters	values
Fcu (in./hr) infiltration	0.02
deltaFc (in./hr) for infiltration	0.03
intensity coeff L (per in./hr)	2
storm time coeff K (per hr)	0.8
rainfall depth (in.)	varies
Baseflow (ft^3/s)	0
channel slope (ft/ft)	0.2
watershed slope (ft/ft)	0.03
watershed roughness	0.15
floodplain roughness	0.06
channel roughness	0.04
floodplain cross slope z	50

TABLE 4-2. Summary of input values to analyze the effect of rainfall skew on runoff skew.

The 2-yr, 10-yr, and 100-yr peak discharges were obtained from the analyses of data shown in Table 4-2 and rainfall skews of -1, 0, and 1. Then using Eq. 4-1 runoff skews were computed from the results (see Table 4-3). As expected, each runoff skew was always more algebraically negative than the corresponding rainfall skew. The rainfall skew of 0 resulted in a runoff skew of -0.46. This result is rational because for a given rainfall part of the rainfall is intercepted due to infiltration and groundwater storage, which causes smaller peak discharges than would be expected at the outlet. Therefore, a negative flood skew is expected from a 0 rainfall skew. For a rainfall skew of -1, the runoff skew was -1.24. This result is also rational. The analysis using a rainfall skew of +1 resulted a runoff skew of 0.65. Again, an algebraic reduction in the skew resulted.

Rainfall skew	2-year	10-year	100-year	Runoff skew
-1	139	504	848	-1.24
0	234	514	860	-0.46
1	234	500	1076	0.65

TABLE 4-3. Summary of 2-yr, 10-yr, and 100-yr peak discharges and the computed runoff skews using the rainfall skews of -1, 0, 1.

4.3.2. Effect of watershed storage on flood skew

Watershed storage can be represented by watershed roughness, watershed slope, and infiltration characteristics. Therefore, in order to analyze the effect of watershed storage on flood skew, the above mentioned parameters were adjusted. By varying these parameters, the change of the watershed storage on flood skew was analyzed.

4.3.2.1 Watershed roughness and flood skew

Watershed roughness reflects the resistance of the surface covers to the flow of runoff. As watershed roughness increases, the velocity of the water decreases, which means that more water can be held on the watershed. The concept used here is that watershed storage is directly proportional to the watershed roughness. The model watershed roughness was varied and the effect of watershed storage on flood skew was analyzed. To analyze the effect of watershed storage on runoff skew the watershed parameters shown in Table 4-4 and rainfalls with a skew of 0 were used. Three different analyses were made, each with similar watershed characteristics, except different watershed roughness.

Watershed parameters	Analysis 1	Analysis 2	Analysis 3
Fcu(in./hr) for infiltration	0.02	0.02	0.02
deltaFc (in./hr) for infiltration	0.03	0.03	0.03
intensity coeff L (per in./hr)	2	2	2
storm time coeff K (per hr)	0.8	0.8	0.8
Baseflow (ft^3/s)	0	0	0
channel slope (ft/ft)	0.02	0.02	0.02
watershed slope (ft/ft)	0.03	0.03	0.03
watershed roughness	0.06	0.10	0.15
floodplain roughness	0.06	0.06	0.06
channel roughness	0.04	0.04	0.04
floodplain cross slope z	50	50	50

TABLE 4-4. Input parameters used to show the effect of watershed roughness on flood skew.

The watershed roughness values increased from 0.06 in the first analysis to 0.15 in the third analysis (see Table 4-5). Increasing the watershed roughness means increasing watershed storage. The peak discharges for 2-yr, 10-yr, and 100-yr event were generated with the model and using Eq. 4-1 flood skews were computed; the results are presented in Table 4-5. As the watershed storage decreased, the peak discharges increased, and the flood skew become algebraically less negative. For example, when watershed roughness increased from 0.06 to 0.15, then the flood skew changed from -0.05 to -0.46. The important observation from the results of these analyses is that the flood skew increased in magnitude as the roughness increased when the rainfalls had a skew of 0. For a relatively smooth watershed (n=0.06) the skew changed only from a rainfall skew of 0 to a runoff skew of -0.05. For the rougher watershed (n=0.15) the change in skew was much greater, i.e., 0.0 to -0.46.

	watershed roughness				Flood
Analyses	(n)	2-yr	10-yr	100-yr	skew
1	0.06	336.3	601.5	971.9	-0.05
2	0.10	276.2	577.4	929.5	-0.23
3	0.15	234.4	514.2	861.3	-0.46

TABLE 4-5. Effect on flood skew of watershed roughness on the 2-yr, 10-yr, and 100-yr(cfs) for rainfall skew of 0.0.

4.3.2.2 Watershed slope and flood skew

Watershed slope reflects the momentum of the runoff. Vegetation will offer less resistance to runoff when the slope is steep, as vegetation cannot retard the high runoff rates. The experiment here is to represent three different types of watershed storage by varying watershed slope. A steeper watershed has less watershed storage. In order to analyze the effect of watershed storage on runoff skew, rainfalls with zero skew and the watershed characteristics shown in Table 4-6 were used. The analyses were performed by only varying watershed slope.

Inputs	Analysis 1	Analysis 2	Analysis 3
Fcu(in./hr) for infiltration	0.02	0.02	0.02
deltaFc (in./hr) for infiltration	0.03	0.03	0.03
intensity coeff L (per in./hr)	2	2	2
storm time coeff K (per hr)	0.8	0.8	0.8
Baseflow (ft^3/s)	0	0	0
channel slope (ft/ft)	0.02	0.02	0.02
watershed slope (ft/ft)	0.040	0.035	0.030
watershed roughness	0.15	0.15	0.15
floodplain roughness	0.06	0.06	0.06
channel roughness	0.04	0.04	0.04
floodplain cross slope z	50	50	50

TABLE 4-6. Input parameters used to show the effect of watershed slope on flood skew.

The 2-yr, 10-yr, and 100-yr peak discharges were obtained from the model and runoff skews were computed using Equation 4-1. The results of the runoff skews are shown in Table 4-7. The analyses of the data showed that for steeper watershed slopes, i.e., decreased watershed storage, the flood skew increased and became algebraically less negative. For example, when the channel slope was reduced from 0.04 to 0.03, the flood skew changed from -0.26 to -0.46. The results show that as the slope decreased and the storage increases, and the skew becomes more negative. In all cases, the runoff skew is algebraically less than the rainfall skew of 0.

Analysis	watershed Slope (ft/ft)	2-yr	10-yr	100-yr	Flood skew
1	0.040	248.9	522.3	889.7	-0.26
2	0.035	242.1	520.7	877.2	-0.38
3	0.030	234.4	514.2	860.3	-0.46

TABLE 4-7. Summary of relationship between runoff skew and watershed slope.

4.3.2.3 Groundwater storage and flood skew

Infiltration is the process of the water penetrating the soil surface and into the pore space of the soil structures. The rate of infiltration depends on the initial water content of the soil, the level of ground water table, and the soil porosity. Infiltration will continue as long as space in the pores of the soil is available. As the infiltration capacity decreases with time, then less runoff will be intercepted before it gets in to the outlet of the watershed. The experiment here was to represent the groundwater storage by varying the infiltration parameter f_{cu} . Ground soil water storage is directly proportional to f_{cu} ; therefore, as Fcu increases, the water storage also increases.

Inputs	Analysis 1	Analysis 2	Analysis 3
Fcu(in./hr) for infiltration	0.02	0.03	0.05
deltaFc (in./hr) for infiltration	0.03	0.03	0.03
intensity coeff L (per in./hr)	2	2	2
storm time coeff K (per hr)	0.8	0.8	0.8
Baseflow (ft^3/s)	0	0	0
channel slope (ft/ft)	0.02	0.02	0.02
watershed slope (ft/ft)	0.03	0.03	0.03
watershed roughness	0.15	0.15	0.15
floodplain roughness	0.06	0.06	0.06
channel roughness	0.04	0.04	0.04
floodplain cross slope z	50	50	50

TABLE 4-8. Input parameters used to show the effect of ultimate infiltration constant on flood skew.

In order to analyze the effect of subsurface water storage on flood skew, a rainfall skew of 0 and the watershed parameters shown in Table 4-8 were used. Three separate analyses were performed by varying only f_{cu} . The 2-yr, 10-yr, and 100-yr peak discharges were obtained from the model analyses, and then using Eq. 4-1 the flood skews were computed, with the results summarized in Table 4-9. Fcu was varied from 0.02 to 0.05, in the third analysis which caused the flood skew to change from -0.46 to -0.53. Increasing f_{cu} represents increasing groundwater storage and the peak discharges decreased with the flood skew algebraically became more negative.

					Flood
Analysis	f_{cu} (in./hr)	2-yr	10-yr	100-yr	Skew
1	0.02	234.4	514.2	860.3	-0.457
2	0.03	212.5	490.8	834.5	-0.522
3	0.05	171.3	436.5	786.5	-0.530

TABLE 4-9. Summary of change in flood skew due to change in ultimate infiltration rate (f_{cu}) .

The percentage of total infiltration depth, total runoff, and water remaining in storage were part of the output of the model analyses. The results shown in Table 4-10 were found from the analyses using watershed data shown in Table 4-8 and rainfall skew of 0. The total infiltration decreased as the rainfall intensity increased, because for the 2-year rainfall intensity the soil would absorb the majority of the rainfall. As the rainfall intensity increased, the soil became more and more saturated and the storage capacity of the soil pores decreased. Eventually, the watershed acted like an impervious surface. After the soil was saturated, the infiltration rate decreased but the runoff volume increased as the rainfall intensity increased.

Analysis	parameters	2-year	10-year	100-year
	Total infiltration (%)	37.62	22.04	14.34
1	Total runoff (%)	58.03	72.53	79.77
	Water remaining in storage (%)	4.35	5.43	5.90
	Total infiltration (%)	46.19	27.91	18.50
2	Total runoff (%)	50.17	67.34	76.16
	Water remaining in storage (%)	3.64	4.75	5.34
	Total infiltration (%)	60.71	38.04	25.77
3	Total runoff (%)	36.49	57.85	69.42
	Water remaining in storage (%)	2.81	4.11	4.81

 TABLE 4-10.
 Summary of percentage of total infiltration, total runoff, and water remaining in storage for the selected return periods.

Percentage of water remaining in the storage is the water that remains in the watershed storage that would eventually drain out of the watershed over time. The change in of infiltration volumes with change in the infiltration rate f_{cu} can be shown graphically. The lines shown in Fig. 4-2 have a positive slope. This indicates a positive relationship between the percentage of total infiltration and f_{cu} . For the 2-year rainfall depth, the increase of f_{cu} from 0.02 to 0.05 caused the fraction of infiltration to increase from 37.62% to 60.71%. For the10-year rainfall depth, the same change in f_{cu} results in the fraction of infiltration increasing from 22.04% to 38.04%. For 100-year rainfall depth, the fraction of infiltration increased from 14.34% to 25.77%. Even though, all of the results follow the same trend, i.e., as f_{cu} increased, the infiltration rate increased for the 2-yr, 10-yr, and 100-yr events, it was observed that the amount of the change decreased as the as the rainfall depth increased. This is rational because for 2-year rainfall intensity, the soil pore space would be sufficient to store much of the water regardless of the ultimate infiltration capacity. As the rainfall intensity increased, then the soil became

more and more saturated which means that space for groundwater storage is not available. Thus, the percentage of runoff would increase because the watershed storage decreased.

FIGURE 4-2. Graph of total infiltration vs. Fcu for 2-year, 10-year, and 100-year rainfall depths.

During rainfall, the infiltration rate decreased until the soil is saturated. Once the soil structure is filled with water, then the excess water appears as surface runoff. The graphs shown in Fig. 4-3 have negative slopes because of the inverse relationship between total runoff and f_{cu} . As f_{cu} was increased, the runoff decreased, but the percentage change depended on the rainfall intensity. When f_{cu} was increased from 0.02 to 0.05, then the total runoff decreased from 58.03% to 36.49% for the 2-year rainfall depth, from 72.53% to 57.85% for the 10-year rainfall depth, and from 79.77% to 69.42% for the 100-year rainfall depth. In addition, Fig. 4-3 shows that the rainfall depth is directly proportional to

the percentage of runoff. For example, for f_{cu} equal to 0.02, as the rainfall was increased from 3.03 in. to 7.61 in., then the percentage of runoff increased from 58.03% to 79.77%.

FIGURE 4-3. Graph of total runoff vs. Fcu for 2-year, 10-year, and 100-year rainfall depths.

4.4. SUMMARY

The developed watershed model was able to show the effect of watershed storage on flood skew. From the analyses of the model it was clear that watershed storage is the main factor that affects the variation of flood skew. Flood skew is inversely proportional to watershed storage and always algebraically more negative than rainfall skew.

CHAPTER 5: CONCLUSIONS

The skew coefficient is an important and sensitive parameter in determining flood discharge rates using the log Pearson Type III distribution. If the accuracy of predicted discharge rates is to be improved, knowledge of skew needs to be improved. The accuracy of a skew map is limited because it wrongly assumes that skew only varies with location. A map of skew, if done properly, can only reflect the skew of the rainfall unless it is for a regionally small homogenous area. However, a national map cannot reflect variation in watershed characteristics.

The population flood skew depends on two factors: the distribution of the rainfall and the effect of watershed characteristics on individual rainfall-runoff events. A third factor is important in any individual sample flood skew, namely sampling variation and the presence of extreme events. The current approach to estimate flood skew at a site is to compute a weighted average between the sample estimate and a generalized value obtained from the Bulletin 17B skew map. The map itself is known to be inaccurate, with a standard error that is not much different from the standard deviation of the gage estimates. Since the flood records used to develop the map included both the effects of rainfall skew and the watershed characteristics for the gaged sites, mapping skew does not seem to be effective way of regionalizing skew.

Several statistical analyses were performed in Chapter 3 to show the inaccuracy of regression analyses in predicting skew. The regional analysis of the correlation between station skew with outlier and the three watershed characteristics showed that good correlation was not achieved. However, forest was the dominant predictor variable with a

correlation coefficient of -0.47. The sign was rational and the magnitude was statistically significant at 5 % level of significance; however, the resulting regression equation still did not provide good prediction.

The sensitivity analysis of the annual maximum peak discharges showed that 12 of the 22 stations had at least one outlier. The presence of the outliers significantly affected the skew (see Table 3-3). The presence of one outlier at gage number 1492550 changed the skew from 2.25 to -0.40. This is a significant change and could affect the estimate of peak discharge.

Regression analyses using skew with and without outliers indicated that the removal of the outliers decreased the accuracy of the predicting equation as evident from the increases in Se/Sy from 0.91 to 1.00. The R squared decreased from 0.28 to 0.14 (see Table 3-4). This apparent reduction in accuracy is likely the result of significant reduction of the total variation of the criterion variable when the outlier is removed. It does not imply that outliers should not be censored. The presence of outliers significantly affected the MSEs. As summarized in Table 3-5 removing outliers significantly changed the values of MSE. For example, for station 1492550, when the outlier removed the MSEs changed from 1.3559 to 0.5035.

The correlation and regression analyses of the watershed data and sample flood skew did not provide reliable results. One reason was the effect of variation within the annual maximum peak discharges was significant. Indices were computed and added as predictor variables, in addition to the drainage area, the percentage of storage, and the percentage of forest cover. R_L represents the difference between the largest and the

second largest flood records divided by the difference of the largest and the smallest flood records (see Eq. 3-7). The result of the correlation analyses indicated that skew depended on RL more than any of the watershed characteristics. The correlation coefficient for RL was 0.76 which was much higher than the forest cover (R= -0.47). Moreover, the inclusion of RL as a predictor improved the Se/Sy and sum of squares of error significantly. The regression analyses with the two indices resulted in a Se/Sy of 0.67. This value is much lower than the value obtained without indices. This analysis implied that the computed station skews were too sensitive to individual peak discharge rates.

The regression analyses for predicting flood skew demonstrate the difficulty in developing models to predict skew at ungaged sites. This observation results, in part, from the inability of traditional watershed characteristics to reflect the level of storage in a watershed. This creates the need for a better way to obtain more accurate estimated of flood skew as well as the development of watershed indices that better reflect the integration of storage throughout the watershed.

A model was developed to show the effects of watershed storage and rainfall skew on flood skew. As shown in Chapter 4, a small change in watershed storage could result a significant change in skew. This would have an impact on estimates of flood discharges. One of the problems that make it unlikely to obtain accurate estimated skew using a regression equation is because the predictor variables used in the equations do not actually represent the factors that actually affect the skew, i.e., watershed storage. In the model analyses, specific parameters were selected to represent storage. These variables are not typically used in regression analyses and the skew map does not reflect these

quantities. Watershed storage was represented by watershed roughness and watershed slope. Groundwater storage was represented by an infiltration parameter.

The analyses of the effect of rainfall skew on runoff skew showed that flood skews were algebraically more negative than the rainfall skews. For a rainfall skew of 0, the runoff skew was -0.46. For rainfall skew of -1, the runoff skew was -1.24, and for a rainfall skew of +1, the runoff skew was 0.65. Therefore, the runoff skew was always algebraically more negative than the rainfall skew.

In order to show the effect of watershed storage on flood skew, watershed roughness and watershed slope were used to represent the watershed storage. In addition f_{cu} was used to represent groundwater storage. Watershed roughness and f_{cu} were directly proportional to watershed storage. Watershed slope was inversely proportional to watershed storage. When watershed roughness increased from 0.06 to 0.15, i.e., increased watershed storage, the flood skew became more negative, i.e., from -0.15 to -0.46. When watershed slope changed from 0.03 to 0.04, i.e., increased watershed storage, the flood skew changed from -0.26 to -0.46. Finally, the effect of ground water storage on flood skew was shown by increasing f_{cu} from 0.02 to 0.05. The flood skew became more negative from -0.46 to -0.53. All of the results showed that, as watershed storage increases, the flood skew becomes more and more algebraically negative.

The results of the analyses clearly showed that channel storage and rainfall distribution affect the flood skew. Using rainfall with an array of skews and the developed model it was able to show that, as storage increases, the flood skew becomes more algebraically negative, which supports the hypothesis of this research.

Appendix

Appendix A: Outputs of the USGS program PeakFQ analyses

1485000.prt

-		148	5000.PRT			
1 Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following B	GEOLOGICAL k flow freq Bulletin 17	SURVEY uency ana -B Guidel ⁻	lysis ines	Seq.000.00 Run Date / 08/06/2010	0 Time 09:59
	PROG	CESSING OPT	IONS			
	Plot option Basin char Print optic Debug print Input peaks Input peaks	n = output = on = t = s listing = s format =	Graphics None Yes No Long WATSTORE	device peak file		
	Input files peaks (a	s used: ascii) - C	:\DOCUMEN	IS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
Q\1485000.1X1	specific	cations - P	KFQWPSF.TM	4P		
0) 1485000 ppt	Output file main - (e(s): C:\DOCUMENT	S AND SET	TINGS\DHABE	ETE\DESKTOP	\PEAK
Q\1483000.PKT						
1						
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following B	GEOLOGICAL < flow freq Bulletin 17	SURVEY uency ana -B Guidel ⁻	lysis ines	Seq.001.00 Run Date / 08/06/2010	1 Time 09:59
Station	- 01485000	POCOMOKE	RIVER NEAF	R WILLARDS	, MD	
	тыршт		S 11 M M A	PV		
Numbe Peaks Syste Histo Years Gener Skew Gage User User Plott	I N P U T not used in matic peaks ric peaks in of historic alized skew Standard ern Mean Square option base dischan supplied hig supplied low ing position	D A T A in record n analysis in analysis c record ror error rge gh outlier v outlier c n parameter	S U M M A s threshold riterion	R Y = 58 = 0 = 58 = 0.700 = 0.700 = 0.700 = 0.303 = WEIGHT = 0.00 = = = 0.00	3 3 3 0 0 0 0 3 FED 0	
********* NOTICE ********* User res	Prelimin ponsible for	nary machin r assessmen	e computat t and inte	tions. erpretation	******** 1. *******	* *
WCF134I-NO SYSTEM WCF162I-SYSTEMATI WCF198I-LOW OUTLI 1	ATIC PEAKS W C PEAKS EXCE ERS BELOW FI	VERE BELOW EEDED HIGH- LOOD BASE W	GAGE BASE OUTLIER CF ERE DROPPE	RITERION. ED. 1	0 1 2500 L 215	.0 .8 .5
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following E	GEOLOGICAL < flow freq Bulletin 17	SURVEY uency ana -B Guidel	lysis ines	Seq.001.00 Run Date / 08/06/2010	2 Time 09:59
Station	- 01485000	POCOMOKE	RIVER NEAF	R WILLARDS,	, MD	
ANNUAL FRE	QUENCY CURVE	E PARAMETER	S LOG-F	PEARSON TYP	PE III	
	FLOOD BAS	SE 		LOGARITHM	IC	
DI	EXCE SCHARGE PROE	EEDANCE BABILITY	MEAN	STANDARI DEVIATION	D N SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 215.5	1.0000 0.9828	2.8658 2.8723	0.1885 0.1742	0.441 0.940	

ANNUAL FREQU	ENCY CURVE	DISCHARGES	L485000.PRT AT SELECTED	EXCEEDANCE PROE	BABILITIES
ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17E LOWER	NCE LIMITS ESTIMATES UPPER
$\begin{array}{c} 0.9950\\ 0.9900\\ 0.9500\\ 0.8000\\ 0.6667\\ 0.5000\\ 0.4292\\ 0.2000\\ 0.1000\\ 0.0400\\ 0.0200\\ 0.0100\\ 0.9050\end{array}$	435.5 471.7 529.1 600.5 700.4 751.5 1013.0 1276.0 1681.0 2045.0 2467.0	$\begin{array}{c} 287.1\\ 308.3\\ 381.1\\ 431.3\\ 506.3\\ 594.4\\ 711.1\\ 768.6\\ 1045.0\\ 1302.0\\ 1669.0\\ 1976.0\\ 2313.0\\ 0\end{array}$	431.9 468.8 527.1 599.4 700.4 752.2 1019.0 1294.0 1294.0 1238.0 2627.0 2138.0	380.5 416.4 473.4 543.7 640.3 688.6 923.0 1144.0 1468.0 1747.0 2062.0	485.6 522.6 581.7 656.3 763.9 820.6 1128.0 1460.0 2004.0 2513.0 3128.0 3128.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 09:59

Station - 01485000 POCOMOKE RIVER NEAR WILLARDS, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
WATER YEAR 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1965 1965 1968 1969	DISCHARGE 502.0 391.0 830.0 816.0 679.0 645.0 670.0 559.0 882.0 565.0 709.0 884.0 690.0 796.0 503.0 445.0 586.0 560.0 560.0	CODES	WATER YEAR 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997 1998	DISCHARGE 1870.0 1190.0 553.0 1050.0 1070.0 722.0 754.0 662.0 534.0 2820.0 609.0 767.0 1300.0 1470.0 431.0 928.0 1050.0 1970.0	CODES
1970 1971	492.0 452.0		2000	589.0 1480.0	
1972 1973 1974 1975 1976	924.0 710.0 522.0 1000.0 567.0		2001 2002 2003 2004 2007	659.0 707.0 905.0 803.0 702.0	
1977 1978	640.0 1230.0		2008 2009	526.0 747.0	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
Х	3+8	Both of the above
L	4	Discharge less than stated value
К	6 OR C	Known effect of regulation or urbanization
Н	7	Historic peak

			1485000.prt
-	Minus-flagged	discharge	Not used in computation
	-8888.Ŏ´	No discharge	value given
	Minus flagend		utate with model would be computed

- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFg	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 09:59

Station - 01485000 POCOMOKE RIVER NEAR WILLARDS, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
WATER YEAR 1989 1998 1979 2000 1993 1978 1980 1980 1983 1977 1975 1996 1972 2003 1962 1953 2004 1962 1953 2004 1962 1953 2004 1961 1986 2009 1985 1977 1961 2002 2007 1955 1977 1990 1955 1977 1990 1955 1976 1960 1957 1968 2009	RANKED DISCHARGE 2820.0 1970.0 1870.0 1480.0 1470.0 1300.0 1230.0 1070.0 1070.0 1050.0 1050.0 1000.0 928.0 924.0 905.0 884.0 830.0 882.0 830.0 846.0 803.0 796.0 767.0 754.0 747.0 754.0 747.0 754.0 747.0 754.0 747.0 722.0 710.0 709.0 690.0 679.0 672.0 670.0 672.0 670.0 672.0 672.0 670.0 659.0 645.0 645.0 645.0 645.0 567.0 562.0 560.0 562.0 560.0	SYSTEMATIC RECORD 0.0169 0.0339 0.0508 0.0678 0.0847 0.1017 0.1186 0.1356 0.1525 0.1695 0.1864 0.2034 0.2203 0.2373 0.2542 0.2712 0.2881 0.3051 0.3220 0.3390 0.3559 0.3729 0.3898 0.4068 0.4237 0.4407 0.44576 0.4746 0.4915 0.5085 0.5254 0.5763 0.5788 0.5742 0.6610 0.66710 0.6780 0.6949 0.7119 0.7288 0.7458 0.7458	BULL.17B ESTIMATE 0.0169 0.0339 0.0508 0.0678 0.0847 0.1017 0.1186 0.1356 0.1525 0.1695 0.1864 0.2034 0.2203 0.2373 0.2542 0.2712 0.2881 0.3051 0.3220 0.3390 0.3559 0.3729 0.3729 0.3898 0.4068 0.4237 0.4407 0.4576 0.4746 0.4746 0.4576 0.4746 0.4746 0.4576 0.5085 0.5254 0.5254 0.5254 0.5254 0.5254 0.5254 0.5424 0.5593 0.5763 0.5763 0.5763 0.5763 0.5932 0.6102 0.6271 0.6441 0.6610 0.6780 0.6780 0.67288 0.7458 0.7458
1957 1982 1969 1988 2008 1974 1965 1950 1970 1971 1966	559.0 553.0 541.0 534.0 526.0 522.0 503.0 502.0 492.0 452.0 445.0	0.7627 0.7797 0.7966 0.8136 0.8305 0.8475 0.8644 0.8814 0.8983 0.9153 0.9322	0.7627 0.7797 0.7966 0.8136 0.8305 0.8475 0.8644 0.8814 0.8983 0.9153 0.9153 0.9322
1995	431.0	0.9492	0.9492
1951	391.0	0.9661	0.9661
1981	190.0	0.9831	0.9831

End PeakFQ analysis. Stations processed : 1 Number of errors : 0 Stations skipped : 0 Station years : 58

1

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.) For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01485000 USGS POCOMOKE RIVER NEAR WILLARDS,

For the station below, the following records were ignored: FINISHED PROCESSING STATION:

1					
1 Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 09:59
	PR	ROCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ir output ion nt iks listing iks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABETE\DESKTOP\PE
Q\1485500.TXT	specif	fications -	PKFQWPSF.T	MP	((((((((((
0\1485500 PRT	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
_					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	6. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 09:59
Station	- 01485500	NASSAWANGO	CREEK NEA	R SNOW HILL	, MD
	INPUT	D A T A	S U M M A	RY	
Numb Peal Syst Hist Year Gene Skev Gage User User Plot	per of peaks as not used coric peaks s of histor ralized ske Standard e Mean Squar option base disch supplied l ting positi	in record in analysis in analys ic record error e error harge igh outlier ow outlier on paramete	is threshold criterion r	= 60 = 0 = 0 = 0.700 = 0.550 = 0.303 = WEIGHT = 0.0 = = 0.00	ED
********* NOTICE ******** User re	Prelin sponsible f	inary machi	ne computa nt and int	tions. erpretation	********
WCF1341-NO SYSTE WCF195I-NO LOW C WCF162I-SYSTEMAT 1	UTLIERS WER TIC PEAKS EX	S WERE BELOW RE DETECTED CEEDED HIGH	GAGE BASE BELOW CRIT -OUTLIER C	ERION. RITERION.	98.1 1 3635.2
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 09:59
Station	- 01485500	NASSAWANGO	CREEK NEA	R SNOW HILL	, MD
ANNUAL FF	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYP	E III
	FLOOD E	BASE		LOGARITHMI	с
] 	EX DISCHARGE PR	CEEDANCE COBABILITY	 MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	$1.0000 \\ 1.0000$	2.7761 2.7761	0.2765 0.2765	0.216 0.336

		1	L485500.PRT		
ANNUAL FREQU	ENCY CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE PROE	BABILITIES
ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17E LOWER	ENCE LIMITS BESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200 0.0100	$141.6 \\ 159.2 \\ 223.5 \\ 271.2 \\ 346.8 \\ 441.6 \\ 576.3 \\ 646.0 \\ 1007.0 \\ 1377.0 \\ 1953.0 \\ 2469.0 \\ 3067.0 \\ 3067.0 \\ 0 \\ 2760.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$131.8 \\ 150.4 \\ 218.2 \\ 268.4 \\ 347.5 \\ 445.8 \\ 583.7 \\ 654.2 \\ 1013.0 \\ 1369.0 \\ 1906.0 \\ 2374.0 \\ 2903.0 \\ $	134.8 152.9 218.8 267.4 344.2 440.2 576.3 646.8 1017.0 1403.0 2022.0 2597.0 3286.0	105.4 120.6 178.0 221.5 291.6 379.5 502.1 564.1 869.9 1163.0 1597.0 1970.0 2389.0 2861.0	$177.9 \\ 197.4 \\ 268.0 \\ 319.8 \\ 402.1 \\ 506.7 \\ 660.3 \\ 742.4 \\ 1196.0 \\ 1695.0 \\ 2524.0 \\ 3307.0 \\ 4252.0 \\ 527.0 \\ 537.0 \\$

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 09:59

Station - 01485500 NASSAWANGO CREEK NEAR SNOW HILL, MD

WATER YEAR DISCHARGE CODES WATER YEAR DISCHARGE CODES 1950 215.0 1980 1210.0 1951 1952 1953 258.0 486.0 1981 1982 1983 181.0 386.0 806.0 988.0 1954 430.0 1984 864.0 1955 920.0 1985 635.0 1956 1957 348.0 542.0 434.0 445.0 1986 1987 1958 1959 761.0 597.0 1988 400.0 1989 3930.0 636.0 546.0 1960 361.0 1990 1961 653.0 1991 695.0 1210.0 1962 669.0 1992 615.0 597.0 1963 1993 1964 1994 1760.0 121.0 200.0 1995 171.0 739.0 1965 1966 1996 1997 1998 1999 2000 452.0 434.0 1967 660.0 1968 1969 1970 2300.0 480.0 437.0 598.0 1320.0 781.0 347.0 1320.0 760.0 1971 2001 1972 1973 2002 1100.0 564.0 787.0 2003 1974 1975 365.0 615.0 2004 2005 1170.0 1976 1977 1978 2006 437.0 699.0 416.0 463.0 2007 2008 1270.0 338.0 1979 1940.0 2009 470.0

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
X	3+8	Both of the above
L	4	Discharge less than stated value
K	6 OR C	Known effect of regulation or urbanization
H	7	Historic peak

Minus-flagged discharge -- Not used in computation -8888.0 -- No discharge value given Minus-flagged water year -- Historic peak used in computation _

_

1

Program PeakFg	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	TOILOWING BUILETIN 17-B GUIDELINES	08/06/2010 09:59

Station - 01485500 NASSAWANGO CREEK NEAR SNOW HILL, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
WATER YEAR 1989 1979 1972 2000 19780 1972 2000 19780 1993 2005 2005 1984 1983 2005 1955 1984 1973 1995 1967 1967 1967 1963 1977 1967 1967 1967 1977 1967 1977 1967 1970 2006 1986	RANKED DISCHARGE 3930.0 2300.0 1940.0 1760.0 1320.0 1210.0 1210.0 1210.0 1170.0 1100.0 988.0 920.0 864.0 806.0 787.0 781.0 761.0 761.0 761.0 761.0 769.0 699.0 699.0 699.0 699.0 699.0 699.0 635.0 63.	SYSTEMATIC RECORD 0.0164 0.0328 0.0492 0.0656 0.0820 0.0984 0.1148 0.1311 0.1475 0.1639 0.1803 0.1967 0.2131 0.2295 0.2459 0.2623 0.2787 0.2951 0.3115 0.3279 0.3443 0.3607 0.3770 0.3934 0.4098 0.4262 0.4426 0.4426 0.44590 0.44590 0.4754 0.4918 0.5082 0.5246 0.5574 0.5574 0.5574 0.5574 0.5577 0.6685 0.6685 0.7049 0.7213 0.7213 0.7277	BULL.1/B ESTIMATE 0.0164 0.0328 0.0492 0.0656 0.0820 0.0984 0.1148 0.1311 0.1475 0.1639 0.1803 0.1967 0.2131 0.2295 0.2459 0.2623 0.2787 0.2951 0.3115 0.3279 0.3443 0.3607 0.3770 0.3934 0.4098 0.4262 0.4426 0.4426 0.4426 0.4426 0.44918 0.4098 0.4754 0.4918 0.5082 0.5410 0.5574 0.5574 0.5574 0.5574 0.55738 0.55738 0.55738 0.5574 0.5574 0.5574 0.5574 0.5574 0.5574 0.5573 0.6666 0.6230 0.66393 0.6625 0.6721 0.6885 0.7049 0.7277
1968	$\begin{array}{r} 434.0\\ 434.0\\ 430.0\\ 416.0\\ 400.0\\ 386.0\\ 365.0\\ \end{array}$	0.7213	0.7213
1986		0.7377	0.7377
1954		0.7541	0.7541
1976		0.7705	0.7705
1988		0.7869	0.7869
1982		0.8033	0.8033
1974		0.8197	0.8197
1988	400.0	0.7869	0.7869
1982	386.0	0.8033	0.8033
1974	365.0	0.8197	0.8197
1960	361.0	0.8361	0.8361
1956	348.0	0.8525	0.8525
1971	347.0	0.8689	0.8689
2008	338.0	0.8852	0.8852
1951	258.0	0.9016	0.9016
1950	215.0	0.9180	0.9180
1966	200.0	0.9344	0.9344

		1485500.PRT			
1981	181.0	0.9508	0.9508		
1995	171.0	0.9672	0.9672		
1965	121.0	0.9836	0.9836		

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	60

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01485500 USGS NASSAWANGO CREEK NEAR SNOW HI

For the station below, the following records were ignored:

1						
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / 08/06/2010	Гіте 10:00
	PR	OCESSING OP	TIONS			
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	ITS AND SET	TINGS\DHABET	E\DESKTOP\PEAK
Q\1486000.TXT	specif	ications -	PKFQWPSF.T	MP		
	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHAB	ETE\DESKTOP\I	PEAK
Q\1486000.PRT						
T						
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / 08/06/2010	Гіте 10:00
Station -	01486000	MANOKIN BRA	NCH NEAR P	RINCESS AND	NE, MD	
	тмрит	D A T A	<u> </u>	RY		
Numb Peak Syst Hist Year Gene Skev Gage User User Plot	er of peaks s not used ematic peaks oric peaks s of histor ralized ske Standard e Mean Squar option base disch supplied h supplied l tting positi	in record in analysis s in analysis ic record w rror e error arge igh outlier ow outlier on paramete	is threshold criterion r	$ \begin{array}{rcl} = & 56\\ = & 0\\ = & 0\\ = & 0.700\\ = & 0.550\\ = & 0.300\\ = & WEIGH\\ = & 0.0\\ = &\\ = &\\ = & 0.00 \end{array} $	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
********* NOTICE ******** User re	Prelim sponsible f	inary machi or assessme	ne computa nt and int	tions. erpretation	********	*
WCF134I-NO SYSTE WCF198I-LOW OUTL WCF163I-NO HIGH 1	MATIC PEAKS IERS BELOW OUTLIERS OR	WERE BELOW FLOOD BASE HISTORIC P	GAGE BASE WERE DROPP EAKS EXCEE	ED. ED. HHBASE	0.0 1 18.3 . 859.3) 7 5
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	llysis ines	Seq.001.002 Run Date / 08/06/2010	Гіте 10:00
Station -	01400000	MANUNIN DKA		ANI ANI	¥⊑, ™D	
ANNUAL FR	EQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYP	PE III	
	FLOOD B	ASE		LOGARITHM	IC	
[EX DISCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDARI DEVIATIO	D N SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 18.7	1.0000 0.9821	2.1376 2.1494	0.3082 0.2803	-0.611 0.091	

71

ANNUAL FREQU	JENCY CURVE	1 DISCHARGES	L486000.PRT AT SELECTED	EXCEEDANCE PROB	ABILITIES
ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17B LOWER	NCE LIMITS ESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200	 49.6 62.1 81.7 106.0 139.7 156.8 242.1 324.5 445.5 547.9	14.8 19.3 38.3 53.5 77.9 107.8 147.5 166.7 252.3 321.4 404.8 463.3	 48.3 61.1 81.0 105.6 139.7 157.0 244.3 330.5 460.6 574.5	 38.8 50.0 68.1 90.5 121.0 136.0 207.5 272.3 362.8 436.6	 60.3 73.9 95.4 122.4 161.2 181.7 290.3 403.4 579.6 736.3
0.0100 0.0050 0.0020	661.1 786.0 971.2	518.3 570.1 634.0	704.3 852.6 1082.0	515.9 601.2 724.3	915.8 1121.0 1435.0

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01486000 MANOKIN BRANCH NEAR PRINCESS ANNE, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
WATER YEAR 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1965 1966 1967 1968 1969	DISCHARGE 97.0 84.0 210.0 41.0 237.0 54.0 154.0 174.0 111.0 184.0 152.0 218.0 224.0 140.0 38.0 46.0 72.0 126.0 547.0	CODES	WATER YEAR 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	DISCHARGE 58.0 127.0 126.0 347.0 80.0 90.0 84.0 179.0 145.0 129.0 105.0 204.0 303.0 60.0 137.0 122.0 332.0 257.0 316.0	CODES
1970 1971	311.0 194.0		2001	70.0	
1975 1976 1977 1978 1979	265.0 97.0 79.0 355.0 361.0		2003 2004 2005 2006 2007	72.0 305.0 349.0 97.0 176.0	
1980 1981	201.0 13.0		2008 2009	117.0 73.0	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
X	3+8	Both of the above
L	4	Discharge less than stated value
K	6 OR C	Known effect of regulation or urbanization
H	7	Historic peak

- Minus-flagged discharge -- Not used in computation

1486000.PRT -8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01486000 MANOKIN BRANCH NEAR PRINCESS ANNE, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
WATER YEAR 1969 1979 1978 2005 1985 1998 2000 2001 1970 2004 1994 1975 1999 1955 1963 1962 1953 1962 1953 1960 1971 1960 1971 1960 1957 1960 1957 1964 1996 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1968 1997 1996 1997 1996 1997 1996 1997 1996 1997 1996 1997 1996 1997 1996 1997 1996 1997 1997	RANKED DISCHARGE 547.0 361.0 355.0 349.0 347.0 332.0 316.0 314.0 311.0 305.0 201.0 257.0 237.0 224.0 218.0 210.0 201.0 194.0 184.0 179.0 176.0 174.0 152.0 145.0 140.0 152.0 145.0 140.0 152.0 145.0 126.0 127.0 126.0 127.0 126.0 127.0 126.0 127.0 126.0 127.0 126.0 127.0 126.0 127.0 126.0 127.0 127.0 126.0 127.0 127.0 126.0 127.0 120.0 127.0 120.0 127.0 120.0 127.0 120.0 127.0 120.0 127.0 120.0 1	SYSTEMATIC RECORD 0.0175 0.0351 0.0526 0.0702 0.0877 0.1053 0.1228 0.1404 0.1579 0.1754 0.1930 0.2105 0.2281 0.2456 0.2632 0.2807 0.2982 0.3158 0.3333 0.3509 0.3684 0.3860 0.4035 0.4211 0.4386 0.4561 0.4737 0.4912 0.5088 0.5263 0.5439 0.5614 0.5789 0.5965 0.6140 0.6316 0.6491 0.6647 0.6842 0.7018 0.7193 0.7368	BULL.17B ESTIMATE 0.0175 0.0351 0.0526 0.0702 0.0877 0.1053 0.1228 0.1404 0.1579 0.1754 0.1930 0.2105 0.2281 0.2456 0.2632 0.2807 0.2982 0.3158 0.3333 0.3509 0.3684 0.3860 0.4035 0.4211 0.4386 0.4635 0.4211 0.4737 0.4912 0.5088 0.5263 0.5439 0.5614 0.5789 0.5614 0.5789 0.5614 0.6667 0.6316 0.6491 0.6667 0.6816 0.6491 0.6667 0.6816 0.7193 0.7368 0.7368
1988	84.0	0.7544	0.7544
1986	80.0	0.7719	0.7719
1977	79.0	0.7895	0.7895
2009	73.0	0.8070	0.8070
1967	72.0	0.8246	0.8246
2003	72.0	0.8421	0.8421
1977	79.0	0.7895	0.7895
2009	73.0	0.8070	0.8070
1967	72.0	0.8246	0.8246
2003	72.0	0.8421	0.8421
2002	70.0	0.8596	0.8596
1995	60.0	0.8772	0.8772
1982	58.0	0.8947	0.8947
1956	54.0	0.9123	0.9123
1966	46.0	0.9298	0.9298
1954	41.0	0.9474	0.9474
1965	38.0	0.9649	0.9649
1981	13.0	0.9825	0.9825

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	56
2		

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01486000 USGS MANOKIN BRANCH NEAR PRINCESS

For the station below, the following records were ignored:

1 Program_PeakFq	ų. s	. GEOLOGICA	SURVEY	. .	Seq.000.000
Ver. 5.2 11/01/2007	Annual pea following	ak flow free Bulletin 13	quency ana 7-B Guidel	lysis ines	Run Date / Time 08/06/2010 10:00
	PR(DCESSING OP	TIONS		
	Plot optic Basin chan Print opt Debug prin Input peal Input peal	on = r output = ion = nt = <s listing="<br"><s format="</td"><td>= Graphics = None = Yes = No = Long = WATSTORE</td><td>device peak file</td><td></td></s></s>	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input file peaks	es used: (ascii) - (C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q\1486100.TXT	specif	ications - I	PKFQWPSF.T	MP	
	Output fi ⁻ main -	le(s): C:\DOCUMEN ⁻	TS AND SET	TINGS\DHAB	ETE\DESKTOP\PEAK
Q\1486100.PRT					
1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICAI ak flow free Bulletin 13	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:00
Statio	on - 0148610	00 ANDREWS	BRANCH NE	AR DELMAR,	MD
	INPUT	рата	S U M M A	RY	
Numb Peaks Syst Histo Years Gene Skew Gage User User Plot	er of peaks s not used - matic peaks oric peaks s of histor alized skeu Standard eu Mean Square option base discha supplied li supplied li cing positio	in record in analysis s in analysis ic record rror e error arge igh outlier on parameter	is threshold criterion r	= 10 $ = 10 $ $ = 0.700 $ $ = 0.700 $ $ = 0.300 $ $ = WEIGH $ $ = $ $ = $ $ = 0.00$)))))) 3 FED)
********* NOTICE ********* User re:	Prelim sponsible fo	inary machin or assessmen	ne computa nt and int	tions. erpretatio	******** 1. ******
WCF134I-NO SYSTEM WCF195I-NO LOW ON WCF163I-NO HIGH (1	MATIC PEAKS JTLIERS WERH DUTLIERS OR	WERE BELOW E DETECTED I HISTORIC PI	GAGE BASE BELOW CRIT EAKS EXCEE	ERION. DED HHBASE	0.0 36.6 . 254.3
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICAI ak flow free Bulletin 13	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:00
Statio	on - 0148610	00 ANDREWS	BRANCH NE	AR DELMAR,	MD
ANNUAL FRI	EQUENCY CUR	/E PARAMETEI	RS LOG-	PEARSON TY	PE III
	FLOOD BA	ASE		LOGARITHM	IC
 D:	EX0 EX0 ESCHARGE PR0	CEEDANCE DBABILITY	MEAN	STANDARI DEVIATIO	 D N SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	1.0000 1.0000	1.9847 1.9847	0.2066	-0.314 0.316

Program PeakFg	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01486100 ANDREWS BRANCH NEAR DELMAR, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1967 1968 1969 1970	155.0 77.0 147.0 70.0		1972 1973 1974 1975	$112.0 \\ 191.0 \\ 58.0 \\ 118.0$	
1971	93.0		1976	42.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag	ged discharge Not used in computation

-8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01486100 ANDREWS BRANCH NEAR DELMAR, MD

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1973	191.0	0.0909	0.0909
1967	155.0	0.1818	0.1818
1969	147.0	0.2727	0.2727

		1486100.PRT		
1975	118.0	0.3636	0.3636	
1972	112.0	0.4545	0.4545	
1971	93.0	0.5455	0.5455	
1968	77.0	0.6364	0.6364	
1970	70.0	0.7273	0.7273	
1974	58.0	0.8182	0.8182	
1976	42.0	0.9091	0.9091	

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	10

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01486100 USGS ANDREWS BRANCH NEAR DELMAR, M

For the station below, the following records were ignored:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLO Annual peak flow following Bullet	GICAL SURVEY frequency ana in 17-B Guidel	alysis lines	Seq.000.000 Run Date / Time 08/06/2010 10:00	
	PROCESSIN	G OPTIONS			
	Plot option Basin char outpu Print option Debug print Input peaks list Input peaks form	= Graphics t = None = Yes = No ing = Long at = WATSTORE	s device E peak file		
a) 1480000 TVT	Input files used peaks (ascii)	: - C:\DOCUMEN	NTS AND SETT	INGS\DHABETE\DESKTOP\PE	AK
Q\1489000.1X1	specification	s - PKFQWPSF.1	ГМР		
Q\1489000.prt	Output file(s): main - C:\DOC	UMENTS AND SET	TTINGS\DHABE	TE\DESKTOP\PEAK	
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLO Annual peak flow following Bullet	GICAL SURVEY frequency ana in 17-B Guidel	alysis lines	5eq.001.001 Run Date / Time 08/06/2010 10:00	
Station	- 01489000 FAULKN	ER BRANCH AT F	EDERALSBURG	, MD	
	ΤΝΡυτ ΒΑΤ	а ѕимма	ARY		
Numb Peak	er of peaks in rec s not used in anal	ord ysis	= 42 = 0		
Hist	oric peaks in anal	ysis	= 42		
Year Gene	s of historic reco ralized skew	rd	= 0.700		
	Standard error		= 0.550		
Skew	option		= 0.303 = WEIGHT	ED	
Gage User	base discharge	lier threshold	0.0 = 0.0 = t		
User	supplied low outl	ier criterion			
PIOL	ting position para	lieter	= 0.00		
********* NOTICE ********* User re	Preliminary m sponsible for asse	achine computa ssment and int	ations. terpretation	******* *******	
WCF134I-NO SYSTE	MATIC PEAKS WERE B	ELOW GAGE BASE	⊑.	0.0	
WCF195I-NO LOW O WCF163I-NO HIGH	UTLIERS WERE DETEC OUTLIERS OR HISTOR	TED BELOW CRIT IC PEAKS EXCEE	FERION. EDED HHBASE.	17.1 3493.9	
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLO Annual peak flow following Bullet	GICAL SURVEY frequency ana in 17-B Guidel	alysis lines	Seq.001.002 Run Date / Time 08/06/2010 10:00	
Station	- 01489000 FAULKN	ER BRANCH AT F	EDERALSBURG	, MD	
ANNUAL FR		VIETEKS LOG-	LOCARTTUMT	- 111	
	FLUUD DASE				
D 	EXCEEDANC ISCHARGE PROBABILI	E TY MEAN	DEVIATION	SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 1.000 0.0 1.000	0 2.3887 0 2.3887	0.4277 0.4277	-0.188 0.086	

78

	ANNUAL	FREQUENC	Y CURVE	1 DISCHARGES	489000.PRT AT SELECTED	EXCEEDANCE	PROBABILITIES
	ANNUA EXCEEDAN PROBABIL	AL ICE BI .ITY E	ULL.17B STIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
1	0.995 0.990 0.900 0.800 0.666 0.500 0.429 0.200 0.042 0.000 0.042 0.000 0.042 0.000 0.000 0.000	50 10 10 10 10 10 10 10 10 10 1	21.0 26.4 49.6 69.9 106.4 158.3 241.3 287.7 558.0 872.0 1412.0 1934.0 2573.0 3348.0 4616.0	$16.3 \\ 21.6 \\ 46.0 \\ 68.0 \\ 107.9 \\ 164.3 \\ 252.4 \\ 300.4 \\ 564.8 \\ 846.1 \\ 1285.0 \\ 1673.0 \\ 2110.0 \\ 2599.0 \\ 3332.0 \\ 1673.0 \\ 2599.0 \\ 3332.0 \\ 1673.0 \\ 2599.0 \\ 3332.0 \\ 1673.0 \\ 2599.0 \\ 3332.0 \\ 160.0 \\ 160.0 \\ 10$	$18.2 \\ 23.5 \\ 47.0 \\ 67.5 \\ 104.5 \\ 157.1 \\ 241.3 \\ 288.6 \\ 568.7 \\ 905.2 \\ 1512.0 \\ 2132.0 \\ 2931.0 \\ 3957.0 \\ 5768.0 \\ 1000 \\ 5768.0 \\ 100$	$\begin{array}{c} 11.4\\ 15.0\\ 31.7\\ 47.4\\ 76.8\\ 119.4\\ 187.0\\ 224.0\\ 426.2\\ 642.5\\ 988.9\\ 1305.0\\ 1675.0\\ 2105.0\\ 2779.0\end{array}$	32.7 39.9 69.6 94.7 139.4 203.7 311.0 373.7 773.0 1291.0 2272.0 3302.0 4643.0 6365.0 9368.0
1							

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01489000 FAULKNER BRANCH AT FEDERALSBURG, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1950	38.0		1971	156.0	
1951	39.0		1972	283.0	
1952	1/5.0		1973	211.0	
1953	58.0		1974	130.0	
1954	45.0		1975	1680.0	
1955	433.0		1976	189.0	
1956	94.0		1977	76.0	
1957	198.0		1978	319.0	
1958	440.0		1979	120.0	
1959	230.0		1001	129.0	
1960	720.0		1082	738 0	
1962	298.0		1982	657 0	
1963	203.0		1984	1290 0	
1964	138 0		1985	735 0	
1965	492.0		1986	185.0	
1966	33.0		1987	900.0	
1967	911.0		1988	550.0	
1968	205.0		1989	341.0	
1969	192.0		1990	383.0	
1970	199.0		1991	262.0	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
Х	3+8	Both of the above
L	4	Discharge less than stated value
К	6 OR C	Known effect of regulation or urbanization
н	7	Historic peak
- N	/inus-flag -8888.0	ged discharge Not used in computation No discharge value given

- Minus-flagged water year -- Historic peak used in computation

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01489000 FAULKNER BRANCH AT FEDERALSBURG, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1975 1984 1979 1967 1987 1982 1985 1960 1983 1988 1965 1955 1990 1989 1978 1961 1963 1972 1991 1959 1973 1968 1962 1970 1957 1969 1976 1957 1969 1976 1955 1957 1969 1977 1964 1952 1971 1954 1951 1951 1950 1950	$\begin{array}{c} 1680.0\\ 1290.0\\ 1070.0\\ 901.0\\ 901.0\\ 911.0\\ 900.0\\ 738.0\\ 735.0\\ 728.0\\ 657.0\\ 550.0\\ 492.0\\ 440.0\\ 443.0\\ 383.0\\ 383.0\\ 341.0\\ 319.0\\ 298.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 283.0\\ 298.0\\ 299.0\\ 99.0\\ 199.0\\ $	$\begin{array}{c} 0.0233\\ 0.0465\\ 0.0698\\ 0.0930\\ 0.1163\\ 0.1395\\ 0.1628\\ 0.1860\\ 0.2093\\ 0.2326\\ 0.2558\\ 0.2791\\ 0.3023\\ 0.3256\\ 0.3488\\ 0.3721\\ 0.3953\\ 0.4186\\ 0.4419\\ 0.4651\\ 0.4484\\ 0.5116\\ 0.5349\\ 0.5581\\ 0.5814\\ 0.6047\\ 0.6279\\ 0.6512\\ 0.6744\\ 0.6047\\ 0.6279\\ 0.6512\\ 0.6744\\ 0.6977\\ 0.7209\\ 0.7442\\ 0.7674\\ 0.6977\\ 0.7209\\ 0.7442\\ 0.7674\\ 0.6977\\ 0.7209\\ 0.7442\\ 0.7674\\ 0.6977\\ 0.8140\\ 0.8372\\ 0.8605\\ 0.8837\\ 0.9070\\ 0.9302\\ 0.9535\\ 0.9767\\ \end{array}$	$\begin{array}{c} \text{0.0233}\\ 0.0465\\ 0.0698\\ 0.0930\\ 0.1163\\ 0.1395\\ 0.1628\\ 0.1860\\ 0.2093\\ 0.2326\\ 0.2558\\ 0.2791\\ 0.3023\\ 0.3256\\ 0.3488\\ 0.3721\\ 0.3953\\ 0.4186\\ 0.4419\\ 0.4651\\ 0.4484\\ 0.5116\\ 0.5349\\ 0.5581\\ 0.5814\\ 0.5814\\ 0.5814\\ 0.5814\\ 0.6047\\ 0.6279\\ 0.6512\\ 0.6744\\ 0.6047\\ 0.6279\\ 0.6512\\ 0.6744\\ 0.6977\\ 0.7209\\ 0.7424\\ 0.7907\\ 0.8140\\ 0.8372\\ 0.8635\\ 0.8837\\ 0.9070\\ 0.9302\\ 0.9535\\ 0.9767\\ \end{array}$
1			

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	42

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01489000 USGS FAULKNER BRANCH AT FEDERALSBU

For the station below, the following records were ignored: FINISHED PROCESSING STATION:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis R ines C	eq.000.000 un Date / Time 18/06/2010 10:00
	PR	OCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
0\1490000 TYT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETTI	NGS\DHABETE\DESKTOP\PEA
Q\1490000.1X1	specif	ications -	PKFQWPSF.T	MP	
Q\1490000.prt	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABET	TE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	s lysis F ines C	eq.001.001 un Date / Time 18/06/2010 10:00
Statio	on - 01490000	CHICAMACO	MICO RIVER	NEAR SALEM,	MD
		D A T A	с II М М А		
Nur	INPUI wher of neaks	in record	5 U M M A	кт - 39	
Nur Pea Sy: Hi: Yea Gei Ska Gaa Usa Usa Pla	mper of peaks aks not used stematic peaks ars of histor heralized ske Standard e Mean Squar w option ge base disch er supplied h er supplied h btting positi	in record in analysis s in analysis ic record w rror e error arge igh outlier ow outlier on paramete	is threshold criterion r	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D
**************************************	E Prelim responsible f	inary machi or assessme	ne computa nt and int	tions. erpretation.	*******
**WCF109W-PEAKS V **WCF113W-NUMBER WCF134I-NO SYS WCF162I-SYSTEM WCF195I-NO LOW WCF002J-CALCS (1	VITH MINUS-FL OF SYSTEMATI FEMATIC PEAKS ATIC PEAKS EX OUTLIERS WER COMPLETED. R	AGGED DISCH C PEAKS HAS WERE BELOW CEEDED HIGH E DETECTED ETURN CODE	ARGES WERE BEEN REDU GAGE BASE -OUTLIER C BELOW CRIT = 2	BYPASSED. CED TO NSYS RITERION. ERION.	$ \begin{array}{c} 1 \\ = 38 \\ 0.0 \\ 1 \\ 1366.8 \\ 39.3 \end{array} $
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis R ines C	eq.001.002 un Date / Time 18/06/2010 10:00
Statio	on - 01490000	CHICAMACO	MICO RIVER	NEAR SALEM,	MD
ANNUAL I	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYPE	III
	FLOOD B	ASE		LOGARITHMIC	
	EX DISCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	$1.0000 \\ 1.0000$	2.3648 2.3648	0.2897 0.2897	0.464 0.549

ANNUAL	FREQUENCY	CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUA EXCEEDAN PROBABIL	L CE BU ITY ES	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.995 0.990 0.950 0.800 0.666 0.500 0.429 0.200	0 0 0 0 7 0 2 2	58.5 64.4 86.6 103.5 130.8 166.1 218.0 245.6 396.1 561.0	55.5 61.8 85.0 102.5 130.9 167.1 220.0 247.9 398.0 559.1	54.961.184.1101.4129.3165.2218.0246.1402.4580.0	40.0 44.9 63.9 78.8 103.3 135.2 181.3 205.2 327.5 450.7	77.1 83.9 108.9 127.8 158.5 198.9 260.8 295.2 498.8 746.7
0.040 0.020 0.010 0.005 0.002	$\begin{array}{cccc} 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 0 & & 1 \\ 0 & & 2 \end{array}$	836.3 100.0 422.0 815.0 469.0	822.5 1070.0 1367.0 1723.0 2304.0	892.6 1211.0 1625.0 2166.0 3154.0	642.2 815.1 1018.0 1255.0 1632.0	1201.0 1670.0 2280.0 3069.0 4468.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01490000 CHICAMACOMICO RIVER NEAR SALEM, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1951 1952	85.0 326.0		1971 1972	210.0 300.0	
1953	152.0		1973	542.0	
1954	106.0		1974	168.0	
1955	314.0		1975	4/8.0	
1956	78.0		1976	166.0	
1957	260.0		1977	163.0	
1958	285.0		1978	326.0	
1959	202.0		1979	-1030.0	D
1960	419.0		1980	233.0	
1961	470.0		2001	403.0	
1962	157.0		2002	67.0	
1963	230.0		2003	436.0	
1964	176.0		2004	241.0	
1965	182.0		2005	309.0	
1966	128.0		2006	1840.0	
1967	518.0		2007	507.0	
1968	226.0		2008	104.0	
1969	169.0		2009	74.0	
1970	218.0				

Explanation of peak discharge qualification codes

PeakFC CODE	Q NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	ð 2.0	Discharge greater than stated value
X	0+C	Both of the above
L	4	Discharge less than stated value
К	6 OR C	Known effect of regulation or urbanization
н	7	Historic peak
-	Minus-flag	ged discharge Not used in computation
-	Minus-flag	ged water year Historic peak used in computation

Program Pea Ver. 5.2 11/01/2007	kFq	U.S. Annual pea following	GEOLOGIC ak flow fr Bulletin	AL SUR equenc 17-B G	VEY y anal uideli	ysis nes		Seq.001.004 Run Date / 08/06/2010	1 Time 10:00
:	Station -	- 01490000	CHICAMAC	OMICO	RIVER	NEAR	SALEM	, MD	

EMPIRICAL FREQUENCY CURVES WEIBULL PLOTTING POSITION	EMPIRICAL	FREQUENCY	CURVES		WEIBULL	PLOTTING	POSITIONS
--	-----------	-----------	--------	--	---------	----------	-----------

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
YEAR 2006 1973 1967 2007 1975 1961 2003 1960 2001 1952 1958 1955 2005 1972 1958 1957 2004 1980 1968 1970 1963 1968 1970 1965 1964 1969 1974 1969 1977 1962 1953 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1964 1977 1965 1976 1977 1965 1964 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1964 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1976 1977 1965 1956 1977 1966 1977 1959 1956 1957 1957 1958 1977 1965 1964 1977 1965 1954 1957 1956 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1957 1956 1956 1957 1956	DISCHARGE 1840.0 542.0 518.0 507.0 478.0 470.0 436.0 419.0 403.0 326.0 326.0 314.0 309.0 260.0 241.0 233.0 230.0 241.0 233.0 230.0 241.0 230.0 241.0 176.0 169.0 169.0 168.0 166.0 163.0 157.0 152.0 128.0 104.0 85.0 260.0 27	RECORD 0.0256 0.0513 0.0769 0.1026 0.1282 0.1538 0.2051 0.2051 0.2308 0.2564 0.2821 0.3077 0.3333 0.3590 0.3846 0.4103 0.4359 0.4615 0.4615 0.4872 0.5128 0.5385 0.5641 0.5897 0.6154 0.6410 0.6667 0.6923 0.7179 0.7436 0.7692 0.7949 0.8205 0.8462 0.8718 0.8974 0.231	ESTIMATE 0.0256 0.0513 0.0769 0.1026 0.1282 0.1538 0.2551 0.2051 0.2051 0.2308 0.2564 0.3077 0.3333 0.3590 0.3846 0.4103 0.4472 0.5128 0.5385 0.5641 0.5897 0.6154 0.6410 0.6667 0.6923 0.7179 0.7436 0.7692 0.7949 0.8205 0.8462 0.8718 0.8974 0.0211 0.0256 0.8974 0.0211 0.0256 0.0211 0.2051 0.2077 0.3333 0.3590 0.4615 0.5841 0.5897 0.6154 0.7692 0.7436 0.7692 0.7949 0.8205 0.8462 0.8974 0.8974 0.2021
2009 2002 1979	74.0 67.0 -1030.0	0.9487 0.9744	0.9487 0.9744

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	39

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01490000 USGS CHICAMACOMICO RIVER NEAR SALE

For the station below, the following records were ignored:

1				
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEC Annual peak fl following Bull	LOGICAL SURVEY ow frequency ar etin 17-B Guide	alysis lines	Seq.000.000 Run Date / Time 08/06/2010 10:00
	PROCESS	ING OPTIONS		
	Plot option Basin char out Print option Debug print Input peaks li Input peaks fo	= Graphic put = None = Yes = No sting = Long rmat = WATSTOR	s device E peak file	
	Input files us peaks (asci	ed: i) - C:\DOCUME	NTS AND SETT	INGS\DHABETE\DESKTOP\PEAK
Q\1490800.TXT	specificati	ons - PKFQWPSF.	ТМР	
0\1490800 PRT	Output file(s) main - C:\D	: OCUMENTS AND SE	TTINGS\DHABE	TE\DESKTOP\PEAK
1				
-				
Program PeakFq Ver. 5.2 11/01/2007	U.S.GEC Annual peak fl following Bull	LOGICAL SURVEY ow frequency ar etin 17-B Guide	alysis lines	Seq.001.001 Run Date / Time 08/06/2010 10:00
Stati	on - 01490800 OL	DTOWN BRANCH AT	GOLDSBORO,	MD
		та снам		
Num Pea Sys His Yea Gen Ske Gag Use Use Plo	INPUT DA ber of peaks in r ks not used in ar tematic peaks in toric peaks in ar rs of historic re eralized skew Standard error Mean Square err w option e base discharge r supplied high c r supplied low ou tting position pa	TASUMM ecord alysis analysis alysis cord or utlier threshol tlier criterior rameter	A R Y = 10 = 0 = 10 = 0 = 0.699 = 0.550 = 0.303 = WEIGHT = 0.0 d = = 0.00	ED
********* NOTICE ******** User n	Preliminary esponsible for as	machine comput sessment and ir	ations. Iterpretation	******* *******
WCF134I-NO SYST WCF195I-NO LOW WCF163I-NO HIGH 1	EMATIC PEAKS WERE OUTLIERS WERE DET OUTLIERS OR HIST	BELOW GAGE BAS ECTED BELOW CRI ORIC PEAKS EXCE	E. TERION. EDED HHBASE.	0.0 50.5 780.6
Program PeakFq Ver. 5.2 11/01/2007	U.S.GEC Annual peak fl following Bull	DLOGICAL SURVEY ow frequency ar etin 17-B Guide	alysis lines	Seq.001.002 Run Date / Time 08/06/2010 10:00
Stati	on - 01490800 OL	DIOWN BRANCH AT	GOLDSBORO,	MU
ANNUAL F	REQUENCY CURVE PA	RAMETERS LOG	-PEARSON TYP	E III
	FLOOD BASE		LOGARITHMI	с
-	EXCEEDA DISCHARGE PROBABI	NCE LITY MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	$\begin{array}{ccc} 0.0 & 1.0 \\ 0.0 & 1.0 \end{array}$	000 2.2977 000 2.2977	0.2921 0.2921	0.284 0.541

ANNUAL FREQUE	NCY CURVE	1 DISCHARGES	L490800.PRT AT SELECTED	EXCEEDANCE PRO	BABILITIES
ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR BULL. 17 LOWER	ENCE LIMITS B ESTIMATES UPPER
$\begin{array}{c} 0.9950\\ 0.9900\\ 0.9500\\ 0.8000\\ 0.6667\\ 0.5000\\ 0.4292\\ 0.2000\\ 0.1000\\ 0.0400\\ 0.0200\\ 0.0100\\ 0.0050 \end{array}$	49.3 54.4 73.5 88.0 111.5 142.0 186.8 210.7 341.0 484.0 723.0 951.8 1232.0 1574.0	$\begin{array}{r} 42.0\\ 47.8\\ 69.5\\ 85.8\\ 111.9\\ 144.9\\ 192.3\\ 216.9\\ 345.7\\ 478.4\\ 686.2\\ 873.0\\ 1090.0\\ 1342.0\end{array}$	$\begin{array}{r} 37.0\\ 42.9\\ 64.6\\ 80.7\\ 106.4\\ 138.9\\ 186.8\\ 212.7\\ 364.1\\ 557.5\\ 965.8\\ 1483.0\\ 2334.0\\ 3800.0 \end{array}$	18.4 21.4 34.1 44.8 63.5 88.9 126.3 145.5 238.6 324.9 450.6 558.8 681.1 820.0	80.8 87.3 111.3 129.5 159.8 201.5 270.5 311.6 590.3 988.7 1833.0 2824.0 4252.0 6287.0

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:00

Station - 01490800 OLDTOWN BRANCH AT GOLDSBORO, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1967 1968 1969 1970 1971	690.0 125.0 100.0 170.0 235.0		1972 1973 1974 1975 1976	340.0 350.0 68.0 200.0 170.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag	ged discharge Not used in computation

-8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1

Program Peak	Fq		U. S. (GEOLOGICA	AL SURVEY		Seq.001.004	4
Ver. 5.2		An	nualpeak	flow fre	quency a	nalysis	Run Date /	Time
11/01/2007		†0	llowing B	ulletin 1	L/-B Guid	elines	08/06/2010	10:00
	Station	-	01490800	OLDTOWN	BRANCH A	T GOLDSBORO,	MD	

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1967	690.0	0.0909	0.0909
1973	350.0	0.1818	0.1818
1972	340.0	0.2727	0.2727

		149080)0.PRT
1971	235.0	0.3636	0.3636
1975	200.0	0.4545	0.4545
1970	170.0	0.5455	0.5455
1976	170.0	0.6364	0.6364
1968	125.0	0.7273	0.7273
1969	100.0	0.8182	0.8182
1974	68.0	0.9091	0.9091

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	10

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01490800 USGS OLDTOWN BRANCH AT GOLDSBORO,

For the station below, the following records were ignored:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:01
	PR	OCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q\1491000.TXT	specif	ications -	PKFQWPSF.T	MP	
0\1491000 PPT	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABI	ETE\DESKTOP\PEAK
1					
T					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:01
Station	- 01491000	CHOPTANK	RIVER NEAR	GREENSBOR	D, MD
	тирит		с н м м л	P V	
Numb Peak Syst Hist Year Gene Skew Gage User User Plot	er of peaks s not used ematic peaks oric peaks s of histor ralized skee Standard e Mean Squar option base disch supplied h ting positio	in record in analysis s in analysis ic record w rror e error arge igh outlier ow outlier on paramete	threshold criterion r	$\begin{array}{c} \mathbf{R} \mathbf{Y} \\ = & 62 \\ = & 0 \\ = & 0 \\ = & 0.700 \\ = & 0.550 \\ = & 0.500 \\ = & 0.500 \\ = & 0.000 \\ = & 0.000 \end{array}$	2) 2)))) 3 TED)
********* NOTICE ********* User re	Prelim sponsible f	inary machi or assessme	ne computa nt and int	tions. erpretation	********]. ********
WCF134I-NO SYSTE WCF198I-LOW OUTL WCF163I-NO HIGH	MATIC PEAKS IERS BELOW OUTLIERS OR	WERE BELOW FLOOD BASE HISTORIC P	GAGE BASE WERE DROPP EAKS EXCEE	ED DED HHBASE	0.0 1 220.2 . 13510.5
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:01
Station	- 01491000	CHOPTANK	RIVER NEAR	GREENSBOR	D, MD
ANNUAL FR	EQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TY	PE III
	FLOOD B	ASE		LOGARITHM	IC
 D	EX ISCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDARI DEVIATION	D N SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 220.2	1.0000 0.9839	3.2713 3.2826	0.3259 0.2989	-0.713 -0.041

ANNUAL	FREQUEN	CY CURVE	1 DISCHARGES	491000.PRT AT SELECTED	EXCEEDANCE PRO	BABILITIES
ANNUA EXCEEDAN PROBABII	AL NCE I LITY I	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR BULL. 17 LOWER	ENCE LIMITS B ESTIMATES UPPER
0.999 0.990 0.900 0.800 0.666 0.500 0.429 0.200 0.100 0.044 0.024	50 00 00 00 57 00 92 00 00 00 00	 613.2 791.3 1076.0 1431.0 1926.0 2177.0 3426.0 4616.0 6333.0 7759.0	$164.9 \\ 222.9 \\ 476.1 \\ 686.6 \\ 1033.0 \\ 1464.0 \\ 2040.0 \\ 2318.0 \\ 3553.0 \\ 4531.0 \\ 5684.0 \\ 6470.0 \\ 1000 \\ 1$	 596.5 777.8 1066.0 1426.0 1926.0 2180.0 3455.0 4694.0 6524.0 8088.0	476.4 636.1 895.8 1221.0 1666.0 1886.0 2928.0 3865.0 5154.0 6188.0	749.4 945.6 1259.0 1655.0 2228.0 2529.0 4115.0 5738.0 8213.0 10360.0
0.010 0.005 0.002	00 50 : 20 :	9307.0 10990.0 13420.0	7191.0 7854.0 8649.0	9831.0 11780.0 14700.0	7282.0 8442.0 10080.0	12780.0 15480.0 19520.0

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01491000 CHOPTANK RIVER NEAR GREENSBORO, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1948 1949 1950 1951 1952 1953 1954 1955	$1600.0 \\ 1700.0 \\ 1050.0 \\ 840.0 \\ 3640.0 \\ 1330.0 \\ 1180.0 \\ 1140.0 \\ 989.0 \\ 0$		1979 1980 1981 1982 1983 1984 1985 1986 1986	$\begin{array}{c} 6110.0\\ 904.0\\ 638.0\\ 877.0\\ 3260.0\\ 2600.0\\ 1410.0\\ 1090.0\\ 2060.0\\ \end{array}$	
1950 1957 1958 1959 1960	4140.0 4380.0 758.0 5040.0		1987 1988 1989 1990 1991	1090.0 2510.0 1960.0 1260.0	
1961 1962 1963 1964	2400.0 1580.0 1890.0 1890.0		1992 1993 1994 1995	744.0 2260.0 4800.0 1490.0	
1965 1966 1967 1968	525.0 150.0 6970.0 1620.0		1996 1997 1998 1999	2810.0 5120.0 3120.0 6420.0	
1969 1970 1971 1972 1973	1620.0 1650.0 1570.0 2760.0 2660.0		2000 2001 2002 2003 2004	3130.0 5240.0 406.0 3090.0 2470.0	
1974 1975 1976 1977 1978	944.0 2860.0 2080.0 386.0 3180.0		2005 2006 2007 2008 2009	2610.0 2860.0 4720.0 2390.0 2890.0	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
X	3+8	Both of the above
L	4	Discharge less than stated value
K	6 OR C	Known effect of regulation or urbanization

7 Historic peak н

Minus-flagged discharge -- Not used in computation
 -8888.0 -- No discharge value given
 Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01491000 CHOPTANK RIVER NEAR GREENSBORO, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1967	6970.0	0.0159	0.0159
1999	6420.0	0.0317	0.0317
1979	6110.0	0.0476	0.0476
2001	5240.0	0.0635	0.0635
1997	5120.0	0.0794	0.0794
1960	5040.0	0.0952	0.0952
1994	4800.0	0.1111	0.1111
2007	4720.0	0.1270	0.1270
1958	4380.0	0.1429	0.1429
1958	4140.0	0.1587	0.1587
1952	3640.0	0.1746	0.1746
1983	3260.0	0.1905	0.1905
1978	3180.0	0.2063	0.2063
2000	3130.0	0.2222	0.2222
1998	3120.0	0.2381	0.2381
2003	3090.0	0.2540	0.2540
2009 1975 2006 1996 1972 1973 2005 1984 1989 2004 1961 2008 1993 1976 1987 1990 1963	2890.0 2860.0 2860.0 2810.0 2660.0 2610.0 2600.0 2510.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2470.0 2080.0 2080.0 1960.0 1890.0	0.2698 0.2857 0.3016 0.3175 0.3333 0.3492 0.3651 0.3810 0.3968 0.4127 0.4286 0.4444 0.4603 0.4762 0.4762 0.4921 0.5079 0.5238	0.2698 0.2857 0.3016 0.3175 0.3333 0.3492 0.3651 0.3810 0.3968 0.4127 0.4286 0.4444 0.4603 0.4463 0.4463 0.44762 0.4921 0.5079 0.5238
1964 1949 1970 1968 1969 1948 1962 1971 1995 1985 1985 1991 1954 1955 1986 1950 1956 1956 1956 1956 1974 1980 1982	$1890.0 \\ 1700.0 \\ 1650.0 \\ 1620.0 \\ 1620.0 \\ 1620.0 \\ 1580.0 \\ 1580.0 \\ 1570.0 \\ 1490.0 \\ 1490.0 \\ 1410.0 \\ 1260.0 \\ 1180.0 \\ 1140.0 \\ 1090.0 \\ 1090.0 \\ 1090.0 \\ 1090.0 \\ 989.0 \\ 944.0 \\ 904.0 \\ 877.0 \\ 170000000000000000000000000000000000$	0.5397 0.5556 0.5714 0.5873 0.6032 0.6190 0.6349 0.6508 0.6667 0.6825 0.6984 0.7143 0.7302 0.7460 0.74619 0.7778 0.7937 0.8095 0.8254 0.8413 0.8571	0.5397 0.5556 0.5714 0.632 0.6190 0.6349 0.6508 0.6667 0.6825 0.7143 0.7143 0.7302 0.7460 0.77619 0.7778 0.7937 0.8095 0.8254 0.8413 0.8571
1951	840.0	0.8730	0.8730
1959	758.0	0.8889	0.8889

		1491000.prt		
1992	744.0	0.9048	0.9048	
1981	638.0	0.9206	0.9206	
1965	525.0	0.9365	0.9365	
2002	406.0	0.9524	0.9524	
1977	386.0	0.9683	0.9683	
1966	150.0	0.9841	0.9841	
2002 1977 1966	406.0 386.0 150.0	0.9524 0.9683 0.9841	0.9524 0.9683 0.9841	

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	62

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01491000 USGS CHOPTANK RIVER NEAR GREENSBOR

For the station below, the following records were ignored:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:01
	PR	OCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q\1491050.TXT	specif	ications -	PKFQWPSF.T	MP	
0\1491050 ppt	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHAB	ETE\DESKTOP\PEAK
1					
T					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:01
Station	- 01491050	SPRING BR	ANCH NEAR	GREENSBORO	, MD
	тлрит	ΠΑΤΔ	S II M M A	RY	
Numb Peak Syst Hist Year Gene Skew Gage User User Plot	er of peaks sonot used cematic peaks soft peaks sof histor ralized ske Standard e Mean Squar option base disch supplied h supplied h	in record in analysis s in analysis ic record w rror e error arge igh outlier on paramete	is threshold criterion r	= 1 = 1 = 0.70 = 0.55 = 0.30 = WEIGH = 0. = =	0 0 0 0 0 0 3 TED 0
********* NOTICE ********* User re WCF134I-NO SYSTE WCF162I-SYSTEMAT WCF195I-NO LOW C	Prelim sponsible f MATIC PEAKS IC PEAKS EX UTLIERS WER	inary machi or assessme WERE BELOW CEEDED HIGH E DETECTED	ne computa nt and int GAGE BASE -OUTLIER C BELOW CRIT	tions. erpretatio RITERION. ERION.	**************************************
1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:01
Station	- 01491050	SPRING BR	ANCH NEAR	GREENSBORO	, MD
ANNUAL FR	EQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TY	PE III
	FLOOD B	ASE		LOGARITHM	IC
 D	EX ISCHARGE PR	CEEDANCE DBABILITY	MEAN	STANDAR DEVIATIO	 D N SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	1.9333 1.9333	0.4177 0.4177	1.978 0.960

		1	L491050.prt		
ANNUAL FREQUEN	CY CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE PROB	ABILITIES
ANNUAL EXCEEDANCE I PROBABILITY I	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17B LOWER	NCE LIMITS ESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200 0.0100	16.8 18.1 23.8 28.8 37.8 51.0 73.7 87.2 178.5 311.1 606.0 972.2 1531.0	32.6 32.8 34.2 36.1 40.5 48.4 64.0 74.2 154.7 300.7 722.7 1402.0 2718.0	13.9 15.2 21.1 26.3 35.7 49.6 73.7 88.4 197.6 392.2 997.3 2135.0 4896.0	5.0 5.6 8.6 11.4 16.9 25.7 41.5 50.8 107.4 175.6 301.4 435.0 614.4	31.6 33.6 42.2 49.6 63.2 84.2 124.0 150.6 384.5 870.1 2435.0 5132.0 10580.0

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01491050 SPRING BRANCH NEAR GREENSBORO, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1967 1968 1969 1970	965.0 42.0 33.0 95.0		1972 1973 1974 1975 1976	70.080.041.0150.060.0	
19/1	02.0		1970	00.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag	ged discharge Not used in computation

- 8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01491050 SPRING BRANCH NEAR GREENSBORO, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1967	965.0	0.0909	$0.0909 \\ 0.1818 \\ 0.2727$
1975	150.0	0.1818	
1970	95.0	0.2727	

	1491050.prt		
82.0	0.3636	0.3636	
80.0	0.4545	0.4545	
70.0	0.5455	0.5455	
60.0	0.6364	0.6364	
42.0	0.7273	0.7273	
41.0	0.8182	0.8182	
33.0	0.9091	0.9091	
	82.0 80.0 70.0 60.0 42.0 41.0 33.0	$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	10

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01491050 USGS SPRING BRANCH NEAR GREENSBORD

For the station below, the following records were ignored:

1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (Seq.000.000 Run Date / Time 08/06/2010 10:01
	PR	OCESSING OP	TIONS		
	Plot optic Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABETE\DESKTOP\PEA
Q\1492000.1X1	specif	ications -	PKFQWPSF.T	MP	
0\1492000.PRT	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
-					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (Seq.001.001 Run Date / Time 08/06/2010 10:01
Statio	n - 0149200	0 BEAVERDA	M BRANCH A	T MATTHEWS,	MD
	тыршт	ΠΛΤΛ	с н м м л	RV	
Numb Peak Syste Hist Year Gene Skew Gage User User Plot	INPUT er of peaks s not used ematic peaks foric peaks s of histor ralized sket Standard e Mean Squard option base disch supplied h ting positio	DATA in record in analysis s in analysis ic record w rror e error arge igh outlier on paramete	S U M M A is threshold criterion r	R Y = 32 = 0 = 32 = 0 = 0.700 = 0.550 = 0.303 = WEIGHTI = 0.0 = = = 0.00	ED
**************************************	Prelim sponsible fo	inary machi or assessme	ne computa nt and int	tions. erpretation	********
WCF1341-NO SYSTEM WCF162I-SYSTEMAT: WCF195I-NO LOW OU 1	JTLIERS WER	WERE BELOW CEEDED HIGH E DETECTED	GAGE BASE -OUTLIER C BELOW CRIT	RITERION. ERION.	1 2109.8 40.1
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (5eq.001.002 Run Date / Time 08/06/2010 10:01
Statio	1 - 0149200	U BEAVERDA	M BRANCH A	T MATTHEWS,	MD
ANNUAL FRI	EQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYPI	III
	FLOOD B	ASE		LOGARITHMI	2
 D: 	EX ESCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	1.0000 1.0000	2.4640 2.4640	0.3320 0.3320	0.711 0.707

			1	492000.PRT		
	ANNUAL FREQUE	ENCY CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE PRO	BABILITIES
	ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR BULL. 17 LOWER	ENCE LIMITS B ESTIMATES UPPER
1	0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200 0.0050 0.0020	67.1 73.4 98.2 117.9 151.2 196.2 266.2 304.9 532.2 806.5 1311.0 1837.0 2529.0 3436.0 5069.0	$\begin{array}{c} 67.3\\ 73.6\\ 98.3\\ 117.9\\ 151.2\\ 196.1\\ 266.0\\ 304.7\\ 532.0\\ 806.6\\ 1312.0\\ 1840.0\\ 2535.0\\ 3447.0\\ 5092.0\\ \end{array}$	62.5 69.1 94.7 114.9 148.9 194.9 266.2 305.9 544.3 846.2 1443.0 2120.0 3093.0 4499.0 7394.0	$\begin{array}{r} 42.3\\ 47.3\\ 67.3\\ 83.7\\ 112.1\\ 151.1\\ 211.0\\ 243.4\\ 420.6\\ 614.6\\ 941.3\\ 1258.0\\ 1653.0\\ 2142.0\\ 2972.0\\ \end{array}$	$\begin{array}{r} 92.9\\ 100.5\\ 129.8\\ 152.8\\ 191.9\\ 245.8\\ 333.0\\ 383.7\\ 711.5\\ 1162.0\\ 2094.0\\ 3172.0\\ 4715.0\\ 6904.0\\ 11220.0\end{array}$
T						

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01492000 BEAVERDAM BRANCH AT MATTHEWS, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1950	181.0		1966	181.0	
1951	148.0		1967	693.0	
1953	222.0		1969	180.0	
1954	133.0		1970	238.0	
1955	476.0		1971	562.0	
1956	109.0		1972	357.0	
1957	1020.0		1973	441.0	
1958	1050.0		1974	150.0	
1959	231.0		1975	301.0	
1960	2200.0		1976	201.0	
1961	251.0		1977	76.0	
1962	162.0		1978	804.0	
1963	307.0		1979	674.0	
1964	116.0		1980	159.0	
TA02	545.0		1981	T30.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
– M – M	inus-flag -8888.0 inus-flag	ged discharge Not used in computation No discharge value given ged water year Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

1492000.PRT Station - 01492000 BEAVERDAM BRANCH AT MATTHEWS, MD

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1960 1958 1957 1978 1967 1979 1971 1965 1955 1973 1972 1963 1975 1952 1968 1961 1970 1959 1953 1976 1953 1976 1981 1950 1966 1969 1962 1960 1974 1951 1954 1954 1954 1956 1977	$\begin{array}{c} 2200.0\\ 1050.0\\ 1020.0\\ 804.0\\ 693.0\\ 674.0\\ 562.0\\ 545.0\\ 476.0\\ 441.0\\ 357.0\\ 307.0\\ 307.0\\ 307.0\\ 269.0\\ 251.0\\ 269.0\\ 251.0\\ 238.0\\ 231.0\\ 222.0\\ 201.0\\ 190.0\\ 181.0\\ 180.0\\ 162.0\\ 159.0\\ 159.0\\ 150.0\\ 148.0\\ 133.0\\ 116.0\\ 109.0\\ 76.0\\ \end{array}$	0.0303 0.0606 0.0909 0.1212 0.1515 0.1818 0.2121 0.2424 0.2727 0.3030 0.3333 0.3636 0.3939 0.4242 0.4545 0.4545 0.4848 0.5152 0.5455 0.5758 0.6061 0.6364 0.6667 0.6970 0.7273 0.7576 0.7879 0.8182 0.8485 0.8788 0.9091 0.9394 0.9697	0.0303 0.0606 0.0909 0.1212 0.1515 0.1818 0.2121 0.2424 0.2727 0.3030 0.3333 0.3636 0.3939 0.4242 0.4545 0.4545 0.4545 0.5455 0.5758 0.5758 0.6061 0.6364 0.6667 0.6970 0.7273 0.7576 0.7879 0.8182 0.8485 0.8788 0.9091 0.9394 0.9697

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

End PeakFQ analysis. Stations processed : 1 Number of errors : 0 Stations skipped : 0 Station years : 32

1

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01492000 USGS BEAVERDAM BRANCH AT MATTHEWS,

For the station below, the following records were ignored:

1						
- Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	AL SURVEY equency ana 17-B Guidel	lysis ines	Seq.000.000 Run Date / 08/06/2010) Time 10:01
	PR	ROCESSING OF	TIONS			
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ar output ion nt uks listing uks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
a) 1402050 TVT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABE	ſE\DESKTOP\PEAK
Q\1492050.1X1	specif	ications -	PKFQWPSF.T	MP		
Q\1492050.prt 1	Output fi main -	le(s): C:\DOCUMEN	ITS AND SET	TINGS\DHABE	ETE\DESKTOP	\PEAK
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre 9 Bulletin 1	AL SURVEY equency ana 17-B Guidel	lysis ines	Seq.001.003 Run Date / 08/06/2010	L Time 10:01
	Station - 014	92050 GRAV	/EL RUN AT	BEULAH, MD		
	INPUT	рата	S U M M A	RY		
NU Pe Sy Hi Ye Ge Ge Us Us Pl	mber of peaks aks not used stematic peaks storic peaks ars of histor neralized ske Standard e Mean Squar ew option ge base disch er supplied h er supplied l otting positi	in record in analysis sin analysis in analysis ic record w error e error arge nigh outlier ow outlier on paramete	threshold criterion	= 11 = 0 = 11 = 0 = 0.700 = 0.550 = 0.303 = WEIGHT = 0.0 = = = 0.00	L))))) ED)	
********* NOTIC ******** User	E Prelin responsible f	iinary machi for assessme	ne computa ent and int	tions. erpretatior	********	**
WCF134I-NO SYS WCF162I-SYSTEM WCF195I-NO LOW 1	TEMATIC PEAKS ATIC PEAKS EX OUTLIERS WER	WERE BELOW CEEDED HIGH RE DETECTED	/ GAGE BASE I-OUTLIER C BELOW CRIT	RITERION. ERION.	1 550 21	0 .4 .1
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	AL SURVEY equency ana 17-B Guidel	lysis ines	Seq.001.002 Run Date / 08/06/2010	2 Time 10:01
	Station - 014	92050 GRAV	/EL RUN AT	BEULAH, MD		
ANNUAL	FREQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYP	PE III	
	FLOOD E	BASE		LOGARITHMI	C	
	EX DISCHARGE PF	CEEDANCE COBABILITY	MEAN	STANDARD DEVIATION) N SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	1.0000 1.0000	2.0324 2.0324	0.3392 0.3392	1.285 0.878	

ANNUAL FREQUENCY CURVE DISCHARGES AT SELECTED EXCEEDANCE PROBABILITI ANNUAL EXCEEDANCE BULL.17B PROBABILITY ESTIMATE SYSTEMATIC PROBABILITY' PROBABILITY ESTIMATE 0.9950 27.1 35.1 23.0 10.6 44 0.9900 29.1 36.3 25.0 11.8 47 0.9500 37.2 41.8 33.7 0.9000 43.8 46.8 40.8 0.9000 55.3 5.9 52.9 30.1 82 0.6667 71.1 69.3 69.6 42.4 104 0.5000 96.2 91.6 96.2 62.2 14.3 0.4292 110.4 104.6 111.5 73.1 168 0.2000 196.8 189.3 211.8 132.6 0.1000 306.5 306.7 361.2 196.2 0.1000 <th></th> <th></th> <th></th> <th>1492050.PRT</th> <th></th> <th></th>				1492050.PRT		
ANNUAL EXCEEDANCE PROBABILITYBULL.17B ESTIMATESYSTEMATIC RECORDPROBABILITY PROBABILITY ESTIMATE95-PCT CONFIDENCE LIM FOR BULL. 17B ESTIMATE LOWER0.995027.135.123.010.6440.990029.136.325.011.8470.950037.241.833.717.0580.900043.846.840.821.6670.800055.355.952.930.1820.666771.169.369.642.41040.500096.291.696.262.21430.4292110.4104.6111.573.11680.2000196.8189.3211.8132.63520.1000306.5306.7361.2196.26640.0400519.1557.8735.0301.91460	ANNUAL F	REQUENCY CURVE	DISCHARGES	5 AT SELECTED	EXCEEDANCE	PROBABILITIES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANNUAL EXCEEDANC PROBABILI	E BULL.17B TY ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY ESTIMATE	95-PCT CONI FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.0200 752.4 860.7 1295.0 404.0 2574 0.0100 1073.0 1314.0 2376.0 531.1 4452 0.0050 1512.0 1988.0 4591.0 689.4 7577	$\begin{array}{c} 0.9950\\ 0.9900\\ 0.9500\\ 0.9000\\ 0.8000\\ 0.6667\\ 0.5000\\ 0.4292\\ 0.2000\\ 0.1000\\ 0.0400\\ 0.0200\\ 0.0100\\ 0.0100\\ 0.0050\end{array}$	$\begin{array}{c} 27.1 \\ 29.1 \\ 37.2 \\ 43.8 \\ 55.3 \\ 71.1 \\ 96.2 \\ 110.4 \\ 196.8 \\ 306.5 \\ 519.1 \\ 752.4 \\ 1073.0 \\ 1512.0 \end{array}$	35.1 36.3 41.8 46.8 55.9 69.3 91.6 104.6 189.3 306.7 557.8 860.7 1314.0 1988.0	23.0 25.0 33.7 40.8 52.9 69.6 96.2 111.5 211.8 361.2 735.0 1295.0 2376.0 4591.0	$10.6 \\ 11.8 \\ 17.0 \\ 21.6 \\ 30.1 \\ 42.4 \\ 62.2 \\ 73.1 \\ 132.6 \\ 196.2 \\ 301.9 \\ 404.0 \\ 531.1 \\ 689.4 \\ 689.$	$\begin{array}{r} 44.8\\ 47.5\\ 58.3\\ 67.0\\ 82.4\\ 104.7\\ 143.8\\ 168.2\\ 352.8\\ 664.0\\ 1460.0\\ 2574.0\\ 4452.0\\ 7577.0\\ 5200.0\\ 7577.0\\ 0\end{array}$

Program PeakFg	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01492050 GRAVEL RUN AT BEULAH, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1966 1967 1968 1969 1970 1971	53.0 220.0 95.0 97.0 145.0 81.0		1972 1973 1974 1975 1976	120.0 85.0 71.0 690.0 36.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION	
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak	
– M	inus-flag -8888.0	ged discharge Not used in computation No discharge value given	

- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01
	Station - 01492050 GRAVEL RUN AT BEULAH	, MD

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1975	690.0	0.0833	0.0833
1967	220.0	0.1667	0.1667

	1492050.PRT		
145.0	0.2500	0.2500	
120.0	0.3333	0.3333	
97.0	0.4167	0.4167	
95.0	0.5000	0.5000	
85.0	0.5833	0.5833	
81.0	0.6667	0.6667	
71.0	0.7500	0.7500	
53.0	0.8333	0.8333	
36.0	0.9167	0.9167	
	$145.0 \\ 120.0 \\ 97.0 \\ 95.0 \\ 85.0 \\ 81.0 \\ 71.0 \\ 53.0 \\ 36.0 \\ $	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	11

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01492050 USGS GRAVEL RUN AT BEULAH, MD

For the station below, the following records were ignored:

1			0200011111			
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	6. GEOLOGICA ak flow fre Bulletin 1	AL SURVEY equency ana 17-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:0	1
	PR	OCESSING OF	TIONS			
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ir output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
Q\1492500.TXT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DE	SKTOP\PEAK
	specif	ications -	PKFQWPSF.T	MP		
Q\1492500.prt	Output fi main -	le(s): C:\DOCUMEN	ITS AND SET	TINGS\DHAB	ETE\DESKTOP\PEAK	
1						
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre Bulletin 1	AL SURVEY equency ana 17-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:0	1
Station -	01492500 s	ALLIE HARRI	S CREEK NE	AR CARMICH	AEL, MD	
	INPUT	DАТА	S U M M A	RY		
Numb Peak Syst Hist Year Gene Skew Gage User User Plot	er of peaks s not used ematic peaks s of histor ralized ske Standard e Mean Squar option base disch supplied h ting positi	in record in analysis in analysis ic record w error e error arge igh outlier on paramete	threshold criterion	= 3 = 3 = 0.70 = 0.55 = 0.30 = WEIGH = 0. = = = 0.0	9 0 9 0 0 0 3 TED 0	
********** NOTICE ********* User re	Prelim sponsible f	inary machi or assessme	ne computa ent and int	tions. erpretatio	********* n. ********	
WCF134I-NO SYSTE WCF195I-NO LOW C WCF163I-NO HIGH 1	MATIC PEAKS UTLIERS WER OUTLIERS OR	WERE BELOW E DETECTED HISTORIC F	V GAGE BASE BELOW CRIT PEAKS EXCEE	ERION. DED HHBASE	0.0 27.2 . 2082.3	
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pe following	5. GEOLOGICA ak flow fre Bulletin 1	AL SURVEY equency ana .7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:0	1
Station -	01492500 s	ALLIE HARRI	S CREEK NE	AR CARMICH	AEL, MD	
ANNUAL FR	EQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TY	PE III	
	FLOOD B	ASE		LOGARITHM	IC	
 D 	EX ISCHARGE PR	CEEDANCE COBABILITY	MEAN	STANDAR DEVIATIO	D N SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	$1.0000 \\ 1.0000$	2.3765 2.3765	0.3527 0.3527	0.156 0.329	

	ANNUAL	FREQUENC	Y CURVE	1 DISCHARGES	492500.PRT AT SELECTED	EXCEEDANCE	PROBABILITIES
	ANNUA EXCEEDAN PROBABIL	IL ICE BU .ITY ES	ULL.17B STIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
1	0.995 0.990 0.900 0.800 0.666 0.500 0.429 0.200 0.100 0.040 0.040 0.020 0.010 0.005 0.002	0 0 0 0 0 7 7 0 2 0 0 0 0 0 0 0 0 0 0 0	37.8 43.9 67.8 86.8 119.0 162.0 227.6 263.3 463.8 690.4 1077.0 1450.0 1911.0 2475.0 3413.0	$\begin{array}{c} 33.1\\ 39.5\\ 64.9\\ 85.3\\ 119.5\\ 164.9\\ 233.0\\ 269.5\\ 468.1\\ 682.3\\ 1029.0\\ 1349.0\\ 1726.0\\ 2170.0\\ 2874.0 \end{array}$	$\begin{array}{r} 34.2\\ 40.5\\ 65.0\\ 84.5\\ 117.2\\ 161.0\\ 227.6\\ 263.9\\ 472.2\\ 716.1\\ 1154.0\\ 1604.0\\ 2193.0\\ 2964.0\\ 4364.0\\ \end{array}$	$\begin{array}{c} 23.2\\ 27.7\\ 46.6\\ 62.4\\ 89.7\\ 126.9\\ 182.7\\ 212.3\\ 368.7\\ 531.2\\ 788.6\\ 1023.0\\ 1300.0\\ 1624.0\\ 2140.0\end{array}$	53.7 61.2 $89.9112.3149.9201.2282.6328.9612.8970.81643.02349.03276.04481.06624.0$
T							

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01492500 SALLIE HARRIS CREEK NEAR CARMICHAEL, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1952 1953 1954 1955 1956 1957 1958 1959	327.0 214.0 116.0 1030.0 91.0 155.0 75.0		1972 1973 1974 1975 1976 1977 1978 1979	290.0 502.0 202.0 233.0 304.0 69.0 784.0 631.0	
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	$1240.0 \\ 154.0 \\ 135.0 \\ 286.0 \\ 71.0 \\ 51.0 \\ 71.0 \\ 1180.0 \\ 304.0 \\ 136.0 \\ 219.0 \\ 220.0 \\ 124.0 \\ 125.0$		1980 1981 2001 2002 2003 2004 2005 2006 2007 2008 2009	$\begin{array}{c} 282.0\\ 161.0\\ 313.0\\ 86.0\\ 273.0\\ 352.0\\ 151.0\\ 604.0\\ 388.0\\ 204.0\\ \end{array}$	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFC CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag -8888.0 Minus-flag	ged discharge Not used in computation No discharge value given ged water year Historic peak used in computation

	1492500.prt	
Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:01

Station - 01492500 SALLIE HARRIS CREEK NEAR CARMICHAEL, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1960 1967 1955 1978 1979 2007 1958 2008 2004 2005 1952 2001 1968 1976 1972 1963 1976 1972 1963 1975 1971 1970 1953 2009 1974 1971 1970 1953 2009 1974 1981 1957 1961 2006 1969 1962 1954 1956 2002 1959 1964 1956 2002	1240.0 1180.0 1030.0 784.0 631.0 604.0 577.0 502.0 388.0 352.0 352.0 327.0 313.0 304.0 290.0 286.0 286.0 288.0 273.0 233.0 220.0 219.0 214.0 204.0 202.0 161.0 155.0 154.0 155.0 154.0 155.0 154.0 155.0 154.0 155.0 161.0 136.0 155.0 161.0 155.0 161.0 155.0 161.0 155.0 161.0 155.0 161.0 175.0 161.0 175.0 161.0 175.0 175.0 161.0 175.0	0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3750 0.3750 0.4000 0.4250 0.4500 0.4750 0.5250 0.5500 0.5750 0.6600 0.6750 0.6750 0.7250 0.7250 0.7250 0.7250 0.7250 0.7500 0.7750 0.7250 0.7500 0.7750 0.7250 0.7500 0.7750 0.7250 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7500 0.7500 0.7500 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7750 0.7500 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7750 0.7500 0.7500 0.7750 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7250 0.7500 0.7500 0.7500 0.7250 0.75000 0.75000 0.750000000000	0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.4250 0.4250 0.4250 0.4250 0.5250 0.5500 0.5250 0.55750 0.6600 0.6250 0.65750 0.7250 0.7250 0.7250 0.7750 0.7750 0.8000 0.8250 0.8250 0.8500 0.8250 0.9250 0.9250 0.9250 0.9250 0.9250
1			

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	39
•		

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored: FINISHED PROCESSING STATION: 01492500 USGS SALLIE HARRIS CREEK NEAR CARM For the station below, the following records were ignored: FINISHED PROCESSING STATION:

1			
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLOGICAL Annual peak flow freq following Bulletin 17	SURVEY uency analysis -B Guidelines	Seq.000.000 Run Date / Time 08/06/2010 10:02
	PROCESSING OPT	IONS	
	Plot option = Basin char output = Print option = Debug print = Input peaks listing = Input peaks format =	Graphics device None Yes No Long WATSTORE peak file	
0\1492550 TYT	Input files used: peaks (ascii) - C	:\DOCUMENTS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q(1492990.1X1	specifications - P	KFQWPSF.TMP	
Q\1492550.prt	Output file(s): main - C:\DOCUMENT	S AND SETTINGS\DHAB	ETE\DESKTOP\PEAK
1			
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLOGICAL Annual peak flow freq following Bulletin 17	SURVEY uency analysis -B Guidelines	Seq.001.001 Run Date / Time 08/06/2010 10:02
St	ation - 01492550 MILL CR	EEK NEAR SKIPTON, M	D
NI	INPUI DAIA	SUMMARY _ 1	1
Pe Sy Hi Ye Ge Sk Ga US US US	maks not used in analysis estematic peaks in analysis storic peaks in analysis ears of historic record eneralized skew Standard error Mean Square error Mean Square error en supplied er supplied er supplied high outlier er supplied low outlier cotting position parameter	s = 1 s = 1 = 0.70 = 0.55 = 0.30 = WEIGH = 0. threshold = riterion = = 0.0	0 1 0 0 0 0 3 TED 0
********* NOTIC ******** User	E Preliminary machin responsible for assessmen	e computations. t and interpretatio	******** n. ********
WCF134I-NO SYS WCF162I-SYSTEM WCF195I-NO LOW 1	TEMATIC PEAKS WERE BELOW NATIC PEAKS EXCEEDED HIGH- OUTLIERS WERE DETECTED B	GAGE BASE. OUTLIER CRITERION. ELOW CRITERION.	0.0 1 874.7 23.9
Program PeakFq Ver. 5.2 11/01/2007	U. S. GEOLOGICAL Annual peak flow freq following Bulletin 17	SURVEY uency analysis -B Guidelines	Seq.001.002 Run Date / Time 08/06/2010 10:02
St	ation - 01492550 MILL CR	EEK NEAR SKIPTON, M	D
ANNUAL	FREQUENCY CURVE PARAMETER	S LOG-PEARSON TY	PE III
	FLOOD BASE	LOGARITHM	IC
	EXCEEDANCE DISCHARGE PROBABILITY	STANDAR MEAN DEVIATIO	D N SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 1.0000 0.0 1.0000	2.1601 0.3744 2.1601 0.3744	2.247 0.983

			1	492550.PRT		
	ANNUAL FREQU	JENCY CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE PRO	BABILITIES
	ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR BULL. 17 LOWER	ENCE LIMITS B ESTIMATES UPPER
1	$\begin{array}{c} 0.9950\\ 0.9900\\ 0.9500\\ 0.9000\\ 0.8000\\ 0.6667\\ 0.5000\\ 0.4292\\ 0.2000\\ 0.1000\\ 0.0400\\ 0.0200\\ 0.0100\\ 0.0050\\ 0.0020\\ \end{array}$	$\begin{array}{r} 34.0\\ 36.4\\ 46.2\\ 54.5\\ 69.4\\ 90.6\\ 125.8\\ 146.3\\ 278.3\\ 459.1\\ 838.2\\ 1285.0\\ 1939.0\\ 2888.0\\ 4819.0 \end{array}$	$\begin{array}{c} 67.2\\ 67.3\\ 68.5\\ 70.5\\ 76.0\\ 86.6\\ 108.3\\ 122.7\\ 235.4\\ 435.6\\ 1001.0\\ 1892.0\\ 3597.0\\ 6860.0\\ 16180.0\\ \end{array}$	$\begin{array}{c} 29.4\\ 31.7\\ 41.9\\ 50.7\\ 66.3\\ 88.6\\ 125.8\\ 147.9\\ 302.2\\ 553.5\\ 1251.0\\ 2413.0\\ 4897.0\\ 10610.0\\ 33320.0\end{array}$	12.6 13.9 19.8 25.2 35.5 51.0 77.4 92.6 180.1 280.6 458.8 641.4 879.9 1191.0 1751.0	$\begin{array}{c} 58.5\\ 61.8\\ 75.4\\ 87.0\\ 107.8\\ 139.0\\ 195.7\\ 232.2\\ 527.9\\ 1078.0\\ 2655.0\\ 5105.0\\ 9630.0\\ 17880.0\\ 39750.0\\ \end{array}$
T						

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01492550 MILL CREEK NEAR SKIPTON, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1966 1967 1968 1969 1970	99.0 1520.0 190.0 88.0 165.0		1972 1973 1974 1975 1976	105.0 135.0 59.0 165.0 72.0	
1971	140.0		20.0		

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
– M	linus-flag -8888.0	ged discharge Not used in computation No discharge value given

- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GE	Seq.001.004		
Ver. 5.2	Annual peak f	Run Date / Time		
11/01/2007	following Bul	08/06/2010 10:02		
	Station - 01492550	MILL CREEK NEAR	SKIPTON,	MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1967	1520.0	0.0833	0.0833
1968	190.0	0.1667	0.1667

		1492550.PRT		
1970	165.0	0.2500	0.2500	
1975	165.0	0.3333	0.3333	
1971	140.0	0.4167	0.4167	
1973	135.0	0.5000	0.5000	
1972	105.0	0.5833	0.5833	
1966	99.0	0.6667	0.6667	
1969	88.0	0.7500	0.7500	
1976	72.0	0.8333	0.8333	
1974	59.0	0.9167	0.9167	

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	11

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01492550 USGS MILL CREEK NEAR SKIPTON, MD

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1 Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre 9 Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:02	
	PF	OCESSING OP	TIONS			
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ir output ion nt iks listing iks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
o) 1402000 TYT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	INGS\DHABETE\DESKTOP\F	РΕΑК
Q\1495000.1X1	specif	ications -	PKFQWPSF.T	MP		
Q\1493000.prt	Output fi main -	le(s): C:\DOCUMEN	ITS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK	
1						
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana .7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:02	
Statio	n - 01493000) UNICORN B	RANCH NEAR	MILLINGTOM	, MD	
			с II M M A	B X		
Nition	INPUI har of posks	DAIA in record	S U M M A	к ү 61		
Pea Sys His Yea Gen Ske Gag Use Use Plo	ks not used tematic peaks toric peaks rs of histor eralized ske Standard e Mean Squar w option e base disch r supplied h r supplied tting positi	in analysis in analysis in analysis ic record error re error harge high outlier ow outlier on paramete	is threshold criterion r	= 59 = 0.685 = 0.555 = 0.303 = WEIGHT = 0.0 = = 0.00	ED	
********* NOTICE ******** User r	Prelin esponsible f	inary machi for assessme	ne computa nt and int	tions. erpretatior	******	
**WCF109W-PEAKS W **WCF113W-NUMBER WCF134I-NO SYST WCF195I-NO LOW WCF163I-NO HIGH WCF002J-CALCS C	ITH MINUS-FL OF SYSTEMATJ EMATIC PEAKS OUTLIERS WEF OUTLIERS OF OMPLETED. F	AGGED DISCH C PEAKS HAS WERE BELOW E DETECTED HISTORIC P ETURN CODE	ARGES WERE BEEN REDU GAGE BASE BELOW CRIT EAKS EXCEE = 2	BYPASSED. CED TO NSYS ERION. DED HHBASE.	$3 = 59 \\ 0.0 \\ 43.5 \\ 2730.5$	
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:02	
Statio	n - 01493000) UNICORN B	RANCH NEAR	MILLINGTOM	, MD	
ANNUAL F	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYP	'E III	
	FLOOD E	BASE		LOGARITHM	C	
-	E> DISCHARGE PF	CEEDANCE CBABILITY	MEAN	STANDARI DEVIATION	SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	1.0000 1.0000	2.5373 2.5373	$0.3175 \\ 0.3175$	0.014 0.167	

ANNUAL F	REQUENCY	CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUAL EXCEEDANC PROBABILI	- Ce Bui ITY ES	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000		58.8 107.3 136.9 185.3 247.4 337.6 384.9 633.3	52.9 63.4 103.8 135.1 186.1 251.1 344.0 391.9 637.2	54.9 65.2 104.4 134.5 183.6 246.5 337.6 385.4 639.8	41.0 49.2 81.9 108.1 151.6 207.8 288.0 329.0 534.2	77.5 89.2 132.9 166.0 219.8 290.0 395.4 452.6 773.1
0.1000 0.0400 0.0200 0.0100 0.0050 0.0020	$ \begin{array}{c} 1 \\ 2 \\ $	890.2 291.0 650.0 065.0 541.0 280.0	880.4 1244.0 1555.0 1902.0 2287.0 2861.0	908.5 1341.0 1741.0 2218.0 2788.0 3713.0	732.9 1027.0 1280.0 1562.0 1878.0 2352.0	1132.0 1729.0 2294.0 2973.0 3784.0 5094.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01493000 UNICORN BRANCH NEAR MILLINGTON, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1964 1965 1966 1967 1968 1969 1970 1971 1973 1974 1975 1976 1977	$\begin{array}{c} -310.0\\ 277.0\\ 222.0\\ 282.0\\ 383.0\\ 253.0\\ 157.0\\ 359.0\\ 167.0\\ 630.0\\ 370.0\\ 116.0\\ 1060.0\\ 429.0\\ 246.0\\ 226.0\\ 106.0\\ 85.0\\ 582.0\\ 226.0\\ 106.0\\ 226.0\\ 106.0\\ 226.0\\ 106.0\\ 226.0\\ 106.0\\ 226.0\\ 106.0\\ 266.0\\ 430.0\\ 296.0\\ 524.0\\ 1020.0\\ 467.0\\ 108.0\\ 365.0\\ 332.0\\ 108.0\\ \end{array}$	G	1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009	$\begin{array}{c} 697.0\\ 366.0\\ 61.0\\ 178.0\\ 825.0\\ 382.0\\ 351.0\\ 193.0\\ 220.0\\ 193.0\\ 220.0\\ 193.0\\ 220.0\\ 193.0\\ 224.0\\ 175.0\\ 403.0\\ 224.0\\ 175.0\\ 434.0\\ 649.0\\ 204.0\\ 1090.0\\ 1160.0\\ 510.0\\ 2600.0\\ 498.0\\ 649.0\\ 94.0\\ 775.0\\ 731.0\\ 495.0\\ 731.0\\ 495.0\\ 736.0\\ 641.0\\ 172.0\\ \end{array}$	
1978	482.0				

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value

X	3+8	Both of the above	
L	4	Discharge less than stated value	
K	6 OR C	Known effect of regulation or urbanization	
H	7	Historic peak	
-	Minus-flage	ged discharge Not used in computation	

- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01493000 UNICORN BRANCH NEAR MILLINGTON, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
WATER YEAR 1999 1997 1996 1960 1972 1983 2003 2007 2004 1979 1994 2001 2005 1977 1967 1971 1967 1971 1996 1967 1971 1996 1967 1978 1973 1969 1961 1984 1955 1984 1955 1975 1975 1975 1975 1975 1975 1975	RANKED DISCHARGE 2600.0 1160.0 1090.0 1060.0 1020.0 825.0 775.0 736.0 731.0 697.0 649.0 649.0 649.0 649.0 649.0 649.0 649.0 510.0 498.0 495.0 482.0 482.0 482.0 482.0 483.0 495.0 482.0 467.0 434.0 430.0 397.0 383.0 382.0 370.0 383.0 382.0 370.0 383.0 382.0 370.0 383.0 382.0 351.0 351.0 351.0 351.0 351.0 351.0 351.0 352.0 226.0 227.0 266.0 227.0 266.0 224.0 226.0 224.0 222.0 220.0 204.0 193.0 182.0 178.0	SYSTEMATIC RECORD 0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500 0.1667 0.2333 0.2500 0.2667 0.2833 0.3000 0.3167 0.3833 0.3500 0.3667 0.3833 0.3500 0.3667 0.4833 0.4000 0.4167 0.4333 0.5500 0.5667 0.5833 0.5500 0.5667 0.5833 0.5000 0.5667 0.5833 0.6000 0.5667 0.5833 0.6000 0.5667 0.7833 0.7000 0.7667 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7833 0.8000 0.767 0.7835 0.8000 0.767 0.7835 0.8000 0.767 0.7835 0.8000 0.767 0.7835 0.8000 0.767 0.7835 0.8000 0.767 0.7835 0.7800 0.767 0.7835 0.7800 0.767 0.7835 0.7800 0.	BULL.17B ESTIMATE 0.0167 0.0333 0.0500 0.0667 0.0833 0.1000 0.1167 0.1333 0.1500 0.2167 0.2333 0.2500 0.267 0.2833 0.3000 0.3167 0.3833 0.3000 0.3167 0.3833 0.3500 0.3667 0.3833 0.4000 0.4167 0.4333 0.4500 0.467 0.4833 0.5500 0.5667 0.5833 0.5500 0.5667 0.5833 0.5500 0.5667 0.6633 0.5500 0.6667 0.6833 0.7000 0.7167 0.7333 0.7500 0.7667 0.7833 0.8007
1974 1956 1954	172.0 168.0 167.0 157.0	0.8333 0.8500 0.8667 0.8833	0.8333 0.8500 0.8667 0.8833

		149300	0.PRT
1959	116.0	0.9000	0.9000
1977	108.0	0.9167	0.9167
1965	106.0	0.9333	0.9333
2002	94.0	0.9500	0.9500
1966	85.0	0.9667	0.9667
1981	61.0	0.9833	0.9833
1948	-310.0		
1963	-840.0		

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	61

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01493000 USGS UNICORN BRANCH NEAR MILLINGTO

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1493500.PRT

1					
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual pea following	GEOLOGICA lk flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (5eq.000.000 Run Date / Time 08/06/2010 10:02
	PRC	CESSING OP	TIONS		
	Plot optic Basin char Print opti Debug prir Input peak Input peak	on output on it s listing s format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
a) 1402500 TVT	Input file peaks (es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABETE\DESKTOP\PEAK
Q\1493500.1X1	specifi	cations -	PKFQWPSF.T	MP	
Q\1493500.prt	Output fil main -	e(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual pea following	GEOLOGICA k flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (5eq.001.001 Run Date / Time 08/06/2010 10:02
Station	- 01493500	MORGAN CR	EEK NEAR K	ENNEDYVILLE	, MD
	тлрит	ΠΔΤΔ	с II м м д	RV	
Numbe Peaks Syste Histo Years Gener Skew Gage User User Plott	r of peaks not used watic peaks is of histori alized skew Standard er Mean Square option base discha supplied lo ing positic	in record n analysis in analysis c record ror e error arge gh outlier w outlier n paramete	is threshold criterion r	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ED
******** NOTICE ******** User res	Prelimi ponsible fo	nary machi or assessme	ne computa nt and int	tions. erpretation	*******
WCF134I-NO SYSTEM WCF162I-SYSTEMATI WCF195I-NO LOW OU 1	ATIC PEAKS C PEAKS EXC ITLIERS WERE	WERE BELOW EEDED HIGH DETECTED	GAGE BASE -OUTLIER C BELOW CRIT	RITERION. ERION.	0.0 2 6374.4 26.6
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual pea following	GEOLOGICA k flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis i ines (Seq.001.002 Run Date / Time 08/06/2010 10:02
Station	- 01493500	MORGAN CR	EEK NEAR K	ENNEDYVILLE	, MD
ANNUAL FRE	QUENCY CURV	/E PARAMETE	RS LOG-	PEARSON TYPI	III
	FLOOD BA	SE		LOGARITHMI	
DI	EXC SCHARGE PRO	CEEDANCE DBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0	1.0000 1.0000	2.6144 2.6144	0.4214 0.4214	0.904 0.828

			1	L493500.prt		
	ANNUAL FR	EQUENCY CURVE -	- DISCHARGES	AT SELECTED	EXCEEDANCE P	ROBABILITIES
	ANNUAL EXCEEDANCE PROBABILIT	BULL.17B Y ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONF FOR BULL. LOWER	IDENCE LIMITS 17B ESTIMATES UPPER
	0.9950 0.9900 0.9000 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200 0.0100	$\begin{array}{c} 70.9\\ 78.1\\ 108.0\\ 133.5\\ 179.4\\ 246.6\\ 360.5\\ 428.0\\ 874.7\\ 1506.0\\ 2866.0\\ 4502.0\\ 6926.0\\ 10490.0\\ 17810.0 \end{array}$	$\begin{array}{c} 75.7\\ 82.5\\ 110.9\\ 135.3\\ 179.7\\ 244.9\\ 356.2\\ 422.6\\ 867.5\\ 1509.0\\ 2921.0\\ 4655.0\\ 7276.0\\ 11200.0\\ 19470.0\end{array}$	$\begin{array}{c} 68.1 \\ 75.4 \\ 105.6 \\ 131.3 \\ 177.7 \\ 245.5 \\ 360.5 \\ 428.9 \\ 888.6 \\ 1559.0 \\ 3071.0 \\ 4991.0 \\ 8002.0 \\ 12720.0 \\ 23330.0 \end{array}$	$\begin{array}{r} 47.9\\ 53.6\\ 77.5\\ 98.5\\ 137.0\\ 194.1\\ 290.4\\ 346.5\\ 698.5\\ 1158.0\\ 2070.0\\ 3094.0\\ 4529.0\\ 6524.0\\ 10380.0\end{array}$	$\begin{array}{r} 96.4\\ 105.1\\ 141.0\\ 171.3\\ 225.6\\ 305.7\\ 444.8\\ 529.7\\ 1136.0\\ 2088.0\\ 4362.0\\ 7358.0\\ 12150.0\\ 19730.0\\ 36700.0 \end{array}$
1						

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01493500 MORGAN CREEK NEAR KENNEDYVILLE, MD

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1963 1964 1965 1966 1967 1968 1967 1968 1969 1970 1971 1972 1973	208.0 622.0 428.0 269.0 630.0 291.0 293.0 834.0 446.0 1530.0 477.0 198.0 301.0 160.0 823.0 307.0 426.0 340.0 760.0 7500.0 912.0	CODES	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1995 1996 1997 1998 1999 2000 2001 2002	162.0 440.0 127.0 672.0 430.0 736.0 103.0 297.0 194.0 588.0 359.0 571.0 174.0 303.0 743.0 277.0 936.0 825.0 356.0 11200.0 493.0 210.0 54.0	CODES
1974 1975 1976 1977 1978	466.0 376.0 525.0 86.0 1430.0		2003 2004 2005 2007 2008	308.0 2560.0 280.0 755.0 111.0	
1979	876.0		2009	163.0	

INPUT DATA LISTING

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D	3	Dam failure, non-recurrent flow anomaly
G	8	Discharge greater than stated value
х	3+8	Both of the above
L	4	Discharge less than stated value
К	6 OR C	Known effect of regulation or urbanization
н	7	Historic peak

			1493500.PRT	
-	Minus-flagged	discharge	Not used in	computation
	-8888.0	No discharge	value given	
	And a second CT a second second			والمتحدث والمتحد والمتحد والمتحد والمحاد والمحاد

- Minus-flagged water year -- Historic peak used in computation

1

Program PeakFg	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01493500 MORGAN CREEK NEAR KENNEDYVILLE, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
WATER YEAR 19972 20040 1972 20040 1973 1973 1973 1977 1967 1977 1967 1977 1967 1977 1977	RANKED DISCHARGE 11200.0 7500.0 2560.0 1530.0 1430.0 936.0 912.0 876.0 825.0 823.0 760.0 743.0 736.0 672.0 630.0 672.0 630.0 672.0 630.0 672.0 588.0 571.0 525.0 493.0 477.0 466.0 446.0 446.0 446.0 446.0 446.0 446.0 397.0 359.0 356.0 359.0 359.0 359.0 359.0 359.0 359.0 359.0 359.0 301.0 291.0 291.0 280.0 277.0 269.0	SYSTEMATIC RECORD 0.0169 0.0339 0.0508 0.0678 0.0847 0.1017 0.1186 0.1356 0.1525 0.1695 0.1695 0.1864 0.2034 0.2203 0.2373 0.2542 0.2712 0.2881 0.3051 0.3220 0.3390 0.3559 0.3729 0.3898 0.4068 0.4237 0.4407 0.44576 0.4746 0.4915 0.5085 0.5254 0.5763 0.57712 0.66102 0.6610 0.6780 0.6949 0.7119 0.7288	BULL.17B ESTIMATE 0.0169 0.0339 0.0508 0.0678 0.0847 0.1017 0.1186 0.1356 0.1525 0.1695 0.1864 0.2034 0.2203 0.2373 0.2542 0.2712 0.2881 0.3051 0.3220 0.3390 0.3559 0.3729 0.3898 0.4068 0.4237 0.4407 0.4576 0.4746 0.4746 0.4746 0.4746 0.4746 0.4746 0.45593 0.52540000000000000000000000000000000000
2005	280.0	0.6949	0.6949
1995	277.0	0.7119	0.7119
1954	269.0	0.7288	0.7288
2001	210.0	0.7458	0.7458
1951	208.0	0.7627	0.7627
1962	198.0	0.7797	0.7797
1988	194.0	0.7966	0.7966
1982 1992 2009 1980 1964 1966 1982 2008 1986 1986 1985	$ \begin{array}{r} 194.0 \\ 174.0 \\ 162.0 \\ 160.0 \\ 129.0 \\ 127.0 \\ 111.0 \\ 103.0 \\ 86.0 \\ \end{array} $	0.7966 0.8136 0.8305 0.8475 0.8644 0.8814 0.8983 0.9153 0.9322 0.9492	0.7966 0.8136 0.8305 0.8475 0.8644 0.8814 0.8983 0.9153 0.9322 0.9492
1977	86.0	0.9661	0.9661
2002	54.0	0.9831	0.9831

End PeakFQ analysis. Stations processed : Number of errors : Stations skipped : Station years : 1 0 0 58

1

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored: FINISHED PROCESSING STATION: 01493500 USGS MORGAN CREEK NEAR KENNEDYVILL

For the station below, the following records were ignored: FINISHED PROCESSING STATION:

1 Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow free Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:02
	PF	ROCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ir output ion nt iks listing iks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
0\1494000 TYT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABETE\DESKTOP\PEAK
Q\1494000.1X1	specif	ications -	PKFQWPSF.T	MP	
Q\1494000.prt	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:02
Station	n - 01494000) SOUTHEAST	CREEK AT	CHURCH HILL	, MD
	тырит		с II М М А	D V	
Numb	INPUI	DAIA in record	SUMMA	кт - 14	
Peal Syst Hist Yean Gene Skev Gage User User Plot	ks not used ematic peaks so of histor eralized ske Standard e Mean Squar voption base disch supplied h supplied h ting positi	in analysis in analysis in analysis ic record w error e error narge igh outlier ow outlier on paramete	is threshold criterion r	= 1 = 13 = 0 = 0.694 = 0.550 = 0.303 = WEIGHT = 0.0 = = 0.00	ED
********* NOTICE ********* User re	Prelin esponsible f	inary machi for assessme	ne computa nt and int	tions. erpretation	* * * * * * * * * * * * * * * * * * * *
**WCF109W-PEAKS WI **WCF113W-NUMBER (WCF134I-NO SYSTE WCF163I-NO HIGH WCF195I-NO LOW (WCF002J-CALCS CC 1	TH MINUS-FL DF SYSTEMATJ MATIC PEAKS OUTLIERS OF DUTLIERS WEF DMPLETED. F	AGGED DISCH C PEAKS HAS WERE BELOW HISTORIC P E DETECTED ETURN CODE	ARGES WERE BEEN REDUU GAGE BASE EAKS EXCEEI BELOW CRIT = 2	BYPASSED. CED TO NSYS DED HHBASE. ERION.	$ \begin{array}{c} 1 \\ = 13 \\ 0.0 \\ 2007.1 \\ 123.0 \end{array} $
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA eak flow fre g Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	5eq.001.002 Run Date / Time 08/06/2010 10:02
Station	n - 01494000) SOUTHEAST	CREEK AT	CHURCH HILL	, MD
ANNUAL F	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TYP	E III
	FLOOD E	BASE		LOGARITHMI	c
 [E> DISCHARGE PF	CEEDANCE CBABILITY	MEAN	STANDARD DEVIATION	SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	2.6962 2.6962	0.2788 0.2788	0.623 0.664

114

ANNUAL	FREQUENCY	CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUA EXCEEDAN PROBABIL	AL ICE BU .ITY ES	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.995 0.990 0.950 0.800 0.666 0.500 0.429 0.200 0.100 0.040 0.020	50 50 50 50 57 50 57 50 50 50 50 50 50 50 50 50 50	141.4 153.2 197.7 231.5 286.6 357.8 463.0 519.0 826.8 168.0 745.0 304.0 997.0	138.0 150.3 195.9 230.5 286.6 358.8 465.0 521.3 828.9 1167.0 1732.0 2276.0 2943.0	119.7 132.9 182.1 218.8 277.4 352.4 463.0 522.6 867.7 1297.0 2161.0 3193.0 4783.0	$\begin{array}{r} 68.3\\76.7\\110.2\\137.4\\183.8\\245.5\\335.8\\382.3\\611.8\\831.2\\1160.0\\1449.0\\1783.0\end{array}$	$\begin{array}{c} 212.7\\ 227.1\\ 280.6\\ 321.2\\ 388.5\\ 479.7\\ 626.9\\ 712.6\\ 1272.0\\ 2039.0\\ 3613.0\\ 5411.0\\ 7955.0\end{array}$
0.005	50 3 20 5	853.0 297.0	3762.0 5131.0	7312.0 13350.0	2168.0 2772.0	11520.0 18470.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01494000 SOUTHEAST CREEK AT CHURCH HILL, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1952	804.0		1959	328.0	
1953	413.0 297.0		1960	-8888.0 620.0	
1955 1956	990.0 253.0		1962 1963	372.0 428.0	
1957 1958	1560.0 1320.0		1964 1965	313.0 218.0	

Explanation of peak discharge qualification codes

NWIS CODE	DEFINITION	
3	Dam failure, non-recurrent flow anomaly	
ð	Discharge greater than stated value	
3+8	Both of the above	
4	Discharge less than stated value	
6 OR C	Known effect of regulation or urbanization	
7	Historic peak	
inus-flag -8888.0	ged discharge Not used in computation No discharge value given	
	NWIS CODE 3 8 3+8 4 6 OR C 7 inus-flag -8888.0	NWIS CODE DEFINITION 3 Dam failure, non-recurrent flow anomaly 8 Discharge greater than stated value 3+8 Both of the above 4 Discharge less than stated value 6 OR C Known effect of regulation or urbanization 7 Historic peak inus-flagged discharge Not used in computation -8888.0 No discharge value given

- Minus-flagged water year -- Historic peak used in computation

1

Program Pea Ver. 5.2 11/01/2007	kFq U.S. Annual pea following	GEOLOGICAL SURVE k flow frequency Bulletin 17-B Gui	EY analysis idelines	Seq.001.004 Run Date / Time 08/06/2010 10:02
	Station - 01494000	SOUTHEAST CREEK	AT CHURCH HILL	., MD
EMPIRICAL	FREQUENCY CURVES	WEIBULL PLOTTING	G POSITIONS	
WATER	RANKED	SYSTEMATIC	BULL.17B	

		149400	DO.PRT
YEAR	DISCHARGE	RECORD	ESTIMATE
1957 1958 1955 1952 1961 1963 1953 1962 1959 1964	$ \begin{array}{c} 1560.0\\ 1320.0\\ 990.0\\ 804.0\\ 620.0\\ 428.0\\ 413.0\\ 372.0\\ 328.0\\ 313.0\\ 207.0\\ \end{array} $	0.0714 0.1429 0.2143 0.2857 0.3571 0.4286 0.5000 0.5714 0.6429 0.7143	$\begin{array}{c} 0.0714\\ 0.1429\\ 0.2143\\ 0.2857\\ 0.3571\\ 0.4286\\ 0.5000\\ 0.5714\\ 0.6429\\ 0.7143\\ 0.7453\end{array}$
1956	253.0	0.8571	0.8571
1965	218.0	0.9286	0.9286
1960	-8888.0		

1

End PeakFQ analysis. Stations processed Number of errors	:	1 0
Stations skipped		0
Station years	:	14

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01494000 USGS SOUTHEAST CREEK AT CHURCH HIL

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:02
	PR	OCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
0\1495000 TYT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PE4
Q(1+33000.1X1	specif	ications -	PKFQWPSF.TM	MP	
Q\1495000.prt	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHAB	ETE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:02
Sta	tion - 014950	00 BIG ELK	CREEK AT I	ELK MILLS,	MD
	тырит			D V	
Nin	Thrui mher of neaks	in record	3 U M M A	- 7	8
Nui Pea Sy: Hi: Ye: Gei Ski Gai Usi Usi Pla	mber of peaks aks not used stematic peaks ars of histor neralized ske Standard e Mean Squar ew option ge base disch er supplied h otting positi	in record in analysis s in analys ic record w rror e error arge igh outlier ow outlier on paramete	is threshold criterion r	= 7 = 7 = 0.67 = 0.55 = 0.30 = WEIGH = 0.1 = = -0.0	8 2 6 0 0 3 0 3 TED 0
**************************************	E Prelim responsible f	inary machi or assessme	ne computa nt and inte	tions. erpretatio	******** 1. ********
**WCF109W-PEAKS N **WCF113W-NUMBER WCF134I-NO SYS WCF198I-LOW OU WCF163I-NO HIG WCF002J-CALCS (1	WITH MINUS-FL OF SYSTEMATI TEMATIC PEAKS TLIERS BELOW H OUTLIERS OR COMPLETED. R	AGGED DISCH C PEAKS HAS WERE BELOW FLOOD BASE HISTORIC P ETURN CODE	ARGES WERE BEEN REDUC GAGE BASE WERE DROPPI EAKS EXCEEN = 2	BYPASSED. CED TO NSY ED. DED HHBASE	$5 = \frac{2}{76} \\ 0.0 \\ 1 \\ 467.4 \\ . \\ 17347.8$
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel ⁻	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:02
Sta	tion - 014950	00 BIG ELK	CREEK AT I	ELK MILLS,	MD
ANNUAL	FREQUENCY CUR	VE PARAMETE	RS LOG-I	PEARSON TY	PE III
	FLOOD B	ASE		LOGARITHM	IC
	EX DISCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDAR DEVIATIO	D SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 467.4	1.0000 0.9868	3.4551 3.4623	0.2688	-0.275 0.208

117

1495000.PRT

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

ANNUAL EXCEEDANCE PROBABILITY	BULL.17B ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFIDE FOR BULL. 17B LOWER	NCE LIMITS ESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4292 0.2000 0.1000 0.0400 0.0200 0.0100	 1156.0 1397.0 1770.0 2222.0 2842.0 3153.0 4695.0 6175.0 8345.0 10190.0 12230.0	493.8 597.1 984.0 1270.0 1711.0 2238.0 2934.0 3272.0 4833.0 6177.0 7931.0 9264.0 10610.0	 1137.0 1382.0 1760.0 2217.0 2842.0 3156.0 4725.0 6254.0 8544.0 10530.0 12790.0	961.2 1188.0 1541.0 1968.0 2543.0 2826.0 4165.0 5382.0 7092.0 8498.0 10020.0	 1344.0 1600.0 1996.0 2484.0 3173.0 3530.0 5388.0 7285.0 10210.0 12790.0 15740.0
0.0050 0.0020	14490.0 17870.0	$11970.0 \\ 13800.0$	15370.0 19330.0	$11670.0 \\ 14080.0$	19100.0 24270.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01495000 BIG ELK CREEK AT ELK MILLS, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
WATER YEAR 1884 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1946 1947 1948 1949 1950 1951 1952 1955 1955 1956 1957 1957	DISCHARGE -18000.0 3020.0 7530.0 2620.0 4720.0 -3250.0 10600.0 2310.0 2620.0 2700.0 5680.0 3380.0 2860.0 2380.0 6030.0 7088.0 2860.0 2320.0 2120.0 1720.0 3400.0 2620.0 3280.0 2740.0 1340.0 5860.0 1540.0 2880.0 28	CODES H G	WATER YEAR 1970 1971 1972 1973 1974 1975 1976 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	DISCHARGE 2640.0 4030.0 8720.0 2010.0 2040.0 4540.0 1530.0 1670.0 5120.0 4250.0 853.0 2030.0 1740.0 1670.0 1740.0 1740.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1670.0 1740.0 1740.0 1360.0 1350.0 3980.0 5220.0 3090.0 7030.0 17030.0	CODES
1955 1956 1957 1958 1959 1960	5860.0 1540.0 2880.0 2590.0 3420.0 6180.0		1994 1995 1996 1997 1998 1999	5220.0 3090.0 7030.0 5110.0 1380.0 9780.0	
1961 1962 1963 1964 1965 1966	1610.0 2180.0 1620.0 3030.0 2020.0 3690.0		2000 2002 2003 2004 2005 2006	4370.0 381.0 3570.0 5270.0 2360.0 2890.0	
1967 1968 1969	6120.0 1570.0 1050.0		2007 2008 2009	3220.0 1350.0 2290.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag -8888.0 Minus-flag	ged discharge Not used in computation No discharge value given ged water year Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01495000 BIG ELK CREEK AT ELK MILLS, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
1937	10600.0	0.0130	0.0130
1999	9780.0	0.0260	0.0260
1972	8720.0	0.0390	0.0390
1933	7530.0	0.0519	0.0519
1946	7080.0	0.0649	0.0649
1996	7030.0	0.0779	0.0779
1960	6180.0	0.0909	0.0909
1967	6120.0	0.1039	0.1039
1945	6030.0	0.1169	$0.1169 \\ 0.1299 \\ 0.1429 \\ 0.1558 $
1955	5860.0	0.1299	
1941	5680.0	0.1429	
1985	5410.0	0.1558	
2004	5270.0	0.1688	0.1688
1947	5220.0	0.1818	0.1818
1994	5220.0	0.1948	0.1948
1978	5120.0	0.2078	0.2078
1997	5110.0	0.2208	0.2208
1989	5030.0	0.2338	0.2338
1935	4720.0	0.2468	0.2468
1975	4540.0	0.2597	0.2597
2000	4370.0	0.2727	0.2727
1979	4250.0	0.2857	0.2857
1988	4180.0	0.2987	0.2987
1971	4030.0	0.3117	0.3117
1993	3980.0	0.3247	0.3247
1966	3690.0	0.3377	0.3377
2003	3570.0	0.3506	0.3506
1959	3420.0	0.3636	0.3636
1950	3400.0	0.3766	0.3766
1942	3380.0	0.3896	0.3896
1952	3280.0	0.4026	0.4026
2007	3220.0	0.4156	0.4156
1995	3090.0	0.4286	0.4286
1964	3030.0	0.4416	0.4416
1932	3020.0	0.4545	0.4545
2006	2890.0	0.4675	0.4675
1957	2880.0	0.4805	0.4805
1943	2860.0	0.4935	0.4935
1953	2740.0	0.5065	0.5065
1940	2700.0	0.5195	0.5195
1970 1934 1939 1951	2640.0 2620.0 2620.0 2620.0 2620.0	0.5325 0.5455 0.5584 0.5714	0.5325 0.5455 0.5584 0.5714
1958	2590.0	0.5844	0.5844

		149500)O.PRT
1944	2380.0	0.5974	0.5974
2005	2360.0	0.6104	0.6104
1938	2310.0	0.6234	0.6234
2009	2290.0	0.6364	0.6364
1962	2180.0	0.6494	0.6494
1987	2180.0	0.6623	0.6623
1948	2120.0	0.6753	0.6753
1974	2040.0	0.6883	0.6883
1981	2030.0	0.7013	0.7013
1965	2020.0	0.7143	0.7143
1973	2010.0	0.7273	0.7273
1990	2010.0	0.7403	0.7403
1982	1740.0	0.7532	0.7532
1949	1720.0	0.7662	0.7662
1977	1670.0	0.7792	0.7792
1983	1670.0	0.7922	0.7922
1963	1620.0	0.8052	0.8052
1961	1610.0	0.8182	0.8182
1968	1570.0	0.8312	0.8312
1956	1540.0	0.8442	0.8442
1976	1530.0	0.8571	0.8571
1984	1480.0	0.8701	0.8701
1998	1380.0	0.8831	0.8831
1991	1360.0	0.8961	0.8961
1992	1350.0	0.9091	0.9091
2008	1350.0	0.9221	0.9221
1954	1340.0	0.9351	0.9351
1969	1050.0	0.9481	0.9481
1986	880.0	0.9610	0.9610
1980	853.0	0.9740	0.9740
2002	381.0	0.9870	0.9870
1936	-3250.0		
1884	-18000.0		
1			

End BookEO analysis		
Enu reakry analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	78

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01495000 USGS BIG ELK CREEK AT ELK MILLS, M

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1					
- Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:02
	PR	OCESSING OF	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
0\1405500 TVT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q\1493300.1X1	specif	ications -	PKFQWPSF.T	MP	
Q\1495500.prt	Output fi main -	le(s): C:\DOCUMEN	ITS AND SET	TINGS\DHAB	ETE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:02
Sta	tion - 014955	00 LITTLE	ELK CREEK	AT CHILDS,	MD
	тлрит	ΠΑΤΑ	с имма	RY	
Nur	mber of peaks	in record	5 6 11 11 7	= 1	2
Sy: Pei Sy: Fi Sk Gei Us: Us: Plo	aks not used stematic peaks storic peaks ars of histor heralized ske Standard e Mean Squar woption ge base disch er supplied l otting positi	in analysis s in analysis in analysis ic record w rror e error arge igh outlier ow outlier on paramete	threshold criterion	= 1 = 1 = 0.67 = 0.55 = 0.30 = WEIGH = 0. = = = 0.0	2 2 0 0 2 0 3 TED 0
**************************************	E Prelin responsible f	inary machi or assessme	ne computa ent and int	tions. erpretatio	******** n. *****
**WCF109W-PEAKS N **WCF113W-NUMBER WCF134I-NO SYS WCF162I-SYSTEM/ WCF195I-NO LOW WCF002J-CALCS (1	VITH MINUS-FL OF SYSTEMATJ FEMATIC PEAKS ATIC PEAKS EX OUTLIERS WEF COMPLETED. F	AGGED DISCH C PEAKS HAS WERE BELOW CEEDED HIGH E DETECTED ETURN CODE	IARGES WERE BEEN REDU GAGE BASE I-OUTLIER C BELOW CRIT = 2	BYPASSED. CED TO NSY RITERION. ERION.	s = 10
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana .7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:02
Sta	tion - 014955	00 LITTLE	ELK CREEK	AT CHILDS,	MD
ANNUAL I	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TY	PE III
	FLOOD E	ASE		LOGARITHM	IC
	E> DISCHARGE PF	CEEDANCE OBABILITY	MEAN	STANDAR DEVIATIO	 D N SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	3.2563 3.2563	0.1898 0.1898	1.967 0.937

1495500.PRT

ANNUAL	FREQUENCY	CURVE I	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUA EXCEEDAN PROBABIL	ICE BU ITY ES	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.995 0.990 0.950 0.900 0.800 0.666 0.500	0 0 10 10 10 10 10 10 10 10 10 10 10	851.7 883.6 005.0 096.0 242.0 426.0 687.0	1160.0 1163.0 1186.0 1216.0 1283.0 1392.0 1581.0	778.7 812.5 948.2 1051.0 1211.0 1408.0 1687.0	489.0 517.5 629.5 717.5 861.8 1045.0 1300.0	1138.0 1172.0 1303.0 1404.0 1570.0 1790.0 2137 0
0.429 0.200 0.100 0.040 0.020 0.010 0.010 0.005 0.002	1 1 <t< td=""><td>821.0 520.0 240.0 377.0 415.0 641.0 092.0 430.0</td><td>1690.0 2361.0 3192.0 4750.0 6413.0 8656.0 11680.0 17350.0</td><td>1832.0 2639.0 3597.0 5477.0 7712.0 11200.0 16900.0 31360.0</td><td>1300.0 2001.0 2498.0 3188.0 3761.0 4393.0 5096.0 6153.0</td><td>2335.0 3574.0 5170.0 8223.0 11500.0 15930.0 21860.0 32870.0</td></t<>	821.0 520.0 240.0 377.0 415.0 641.0 092.0 430.0	1690.0 2361.0 3192.0 4750.0 6413.0 8656.0 11680.0 17350.0	1832.0 2639.0 3597.0 5477.0 7712.0 11200.0 16900.0 31360.0	1300.0 2001.0 2498.0 3188.0 3761.0 4393.0 5096.0 6153.0	2335.0 3574.0 5170.0 8223.0 11500.0 15930.0 21860.0 32870.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01495500 LITTLE ELK CREEK AT CHILDS, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1949 1950	1120.0 1700.0		1955 1956	5400.0 1520.0	
1951	1540.0		1957	1890.0	
1953 1954	1600.0 1280.0		1989 1999	-2370.0	H H

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G	3 8	Dam failure, non-recurrent flow anomaly Discharge greater than stated value
Х	3+8	Both of the above
L	4	Discharge less than stated value
К	6 OR C	Known effect of regulation or urbanization
н	7	Historic peak
- N	Minus-flag	ged discharge Not used in computation

-8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:02

Station - 01495500 LITTLE ELK CREEK AT CHILDS, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
YEAR	DISCHARGE	RECORD	ESTIMATE

1495500.PRT

1955	5400.0	0.0909	0.0909
1952	2420.0	0.1818	0.1818
1957	1890.0	0.2727	0.2727
1950	1700.0	0.3636	0.3636
1958	1620.0	0.4545	0.4545
1953	1600.0	0.5455	0.5455
1951	1540.0	0.6364	0.6364
1956	1520.0	0.7273	0.7273
1954	1280.0	0.8182	0.8182
1949	1120.0	0.9091	0.9091
1989	-2370.0		
1999	-8700.0		

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	12

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored: FINISHED PROCESSING STATION: 01495500 USGS LITTLE ELK CREEK AT CHILDS, M

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1						
- Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following B	GEOLOGICA k flow free Bulletin 17	_ SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:0	e 03
	PRO	CESSING OPT	FIONS			
	Plot option Basin char Print optio Debug prin Input peaks Input peaks	n = output = on = t = s listing = s format =	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
0\1496000 TYT	Input files peaks (a	s used: ascii) - (TS AND SETT	INGS\DHABETE\DB	ESKTOP\PEAK
Q\1490000.1X1	specifi	cations - A	PKFQWPSF.T	MP		
Q\1496000.prt	Output file main - G	e(s): C:\DOCUMENT	ΓS AND SET	TINGS\DHABE	TE\DESKTOP\PEAH	K
1						
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following B	GEOLOGICAI k flow free Bulletin 17	- SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:(e 03
Stat	ion - 01496000	O NORTHEAS	ST CREEK A	T LESLIE, M	D	
	тырит			D V		
Num	INFUI her of neaks	in record	3 U M M A	– 37		
Num Pea Sys His Yea Gen Ske Gag Use Use Plo	ber of peaks ' ks not used in tematic peaks toric peaks in rs of historic eralized skew Standard er Mean Square w option e base discha r supplied hig r supplied loo tting position	in record n analysis in analysis c record ror error rge gh outlier w outlier o n parameter	threshold	= 37 = 1 = 36 = 0 = 0.670 = 0.670 = 0.550 = 0.303 = WEIGHT = 0.0 = = = 0.00	ED	
********* NOTICE ******** User r	Prelimin esponsible for	nary machin r assessmen	ne computa nt and int	tions. erpretation	******** *********	
**WCF109W-PEAKS W **WCF113W-NUMBER WCF134I-NO SYST WCF195I-NO LOW WCF163I-NO HIGH WCF002J-CALCS C	ITH MINUS-FLAG OF SYSTEMATIC EMATIC PEAKS N OUTLIERS WERE OUTLIERS OR H OMPLETED. RE	GGED DISCH/ PEAKS HAS WERE BELOW DETECTED E HISTORIC PE FURN CODE =	ARGES WERE BEEN REDU GAGE BASE BELOW CRIT EAKS EXCEE = 2	BYPASSED. CED TO NSYS ERION. DED HHBASE.	$ \begin{array}{c} 1 \\ = 36 \\ 0.0 \\ 412.2 \\ 5944.3 \end{array} $	
Program PeakFq Ver. 5.2 11/01/2007	U.S. Annual peal following B	GEOLOGICA k flow frec Bulletin 17	_ SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:0	e 03
Stat	ion - 01496000	O NORTHEAS	ST CREEK A	T LESLIE, M	D	
ANNUAL F	REQUENCY CURVI	E PARAMETER	RS LOG-	PEARSON TYP	E III	
	FLOOD BAS	SE		LOGARITHMI	с	
-	EXCI	EEDANCE BABILITY	MEAN	STANDARD DEVIATION	SKEW	
- SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	3.1946 3.1946	0.2196 0.2196	0.382 0.486	

ANNUAL	FREQUENCY	CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUA EXCEEDAN PROBABIL	AL ICE BU .ITY ES	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.995	50	535.7 579.6	510.1 557.3	506.4 553.3	395.2 434.8	666.0 713.4
0.900)0)0 1	734.9 845.5 015.0	838.9 1016.0	831.2 1006.0	578.1 682.5 844.4	996.8 1179.0
0.666 0.500 0.429	57 1)0 1)2 1	221.0 503.0 645.0	1228.0 1516.0 1660.0	$1216.0 \\ 1503.0 \\ 1648.0$	1040.0 1302.0 1431.0	1405.0 1729.0 1899.0
0.200	$ \begin{array}{cccc} 0 & 2 \\ 0 & 3 \\ 0 & 4 \end{array} $	357.0 055.0 104.0	2367.0 3044.0 4039.0	2387.0 3136.0 4317.0	2033.0 2578.0 3347.0	2824.0 3820.0 5437.0
0.020		018.0	4889.0	5407.0 6715.0	3986.0 4687.0	6938.0 8727.0
0.003	20 9	051.0	8489.0	10930.0	6604.0	14280.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

Station - 01496000 NORTHEAST CREEK AT LESLIE, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
WATER YEAR 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1963 1964	DISCHARGE 1340.0 1640.0 2410.0 1870.0 834.0 2590.0 858.0 1850.0 3220.0 1210.0 2790.0 1020.0 814.0 1020.0	CODES	WATER YEAR 1968 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983	DISCHARGE 912.0 1440.0 1770.0 2040.0 4800.0 1560.0 2120.0 3410.0 893.0 1120.0 3140.0 2190.0 689.0 930.0 1120.0 1480.0	CODES
1965 1966 1967	1050.0 2000.0 4060.0		1984 1999	1660.0 -9000.0	н

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
– M	1inus-flag	ged discharge Not used in computation

-8888.0 -- No discharge value given - Minus-flagged water year -- Historic peak used in computation

1496000.PRT

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

Station - 01496000 NORTHEAST CREEK AT LESLIE, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER	RANKED	SYSTEMATIC	BULL.17B
YEAR	DISCHARGE	RECORD	ESTIMATE
WATER YEAR 1972 1967 1975 1958 1978 1960 1955 1952 1979 1974 1974 1971 1966 1953 1957 1970 1984 1950 1973 1983 1951 1969 1949 1959 1977 1982 1965 1961 1964 1968 1968 1976	RANKED DISCHARGE 4800.0 4060.0 3410.0 3220.0 3140.0 2790.0 2590.0 2410.0 2190.0 2190.0 2040.0 2040.0 2000.0 1870.0 1870.0 1850.0 1770.0 1660.0 1640.0 1660.0 1480.0 1460.0 1460.0 1440.0 1560.0 1440.0 1210.0 120.0 1020.0 930.0 912.0 893.0	SYSTEMATIC RECORD 0.0270 0.0541 0.1081 0.1351 0.1622 0.2162 0.2432 0.2703 0.2973 0.3243 0.3514 0.3784 0.4054 0.4324 0.4595 0.4865 0.5135 0.5405 0.5676 0.5946 0.6216 0.6486 0.6757 0.7027 0.7297 0.7568 0.7838 0.8108 0.8378	BULL.17B ESTIMATE 0.0270 0.0541 0.0811 0.1081 0.1351 0.1622 0.2432 0.2703 0.22432 0.2703 0.3243 0.3514 0.3784 0.4054 0.4324 0.4595 0.4865 0.5135 0.5405 0.5465 0.5946 0.6216 0.64865 0.5946 0.6216 0.64865 0.5946 0.6757 0.7027 0.7297 0.7297 0.7568 0.7838 0.8108 0.8378
1956	838.0	0.8649	0.8649
1962	838.0	0.8919	0.8919
1954	834.0	0.9189	0.9189
1963	814.0	0.9459	0.9459
1980	689.0	0.9730	0.9730
1999	-9000.0		

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	37

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored: FINISHED PROCESSING STATION: 01496000 USGS NORTHEAST CREEK AT LESLIE, MD For the station below, the following records were ignored: FINISHED PROCESSING STATION:

1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	6. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:03
	PR	OCESSING OP	TIONS		
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on ir output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SETT	INGS\DHABETE\DESKTOP\PEAK
Q\1496080.1X1	specif	ications -	PKFQWPSF.T	MP	
0\1496080.PRT	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	6. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:03
Station - 01	496080 NORT	HEAST RIVER	TRIBUTARY	NEAR CHARL	ESTOWN, MD
	тмрит	рата	S U M M A	RY	
Num Pea Sys His Yea Gen Ske Gag Use Use Plo	ber of peaks ks not used tematic peaks rs of histor eralized ske Standard e Mean Squar w option e base disch r supplied h r supplied l tting positi	in record in analysis in analysis ic record w error e error arge igh outlier ow outlier on paramete	is threshold criterion r	= 10 = 0 = 10 = 0 = 0.671 = 0.550 = 0.303 = WEIGHT = 125.0 = = = 0.00	ED
**************************************	Prelin esponsible f	inary machi or assessme	ne computa nt and int	tions. erpretation	******
WCF133I-SYSTEMA WCF195I-NO LOW WCF163I-NO HIGH 1	TIC PEAKS BE OUTLIERS WER OUTLIERS OF	ELOW GAGE BA RE DETECTED HISTORIC P	SE WERE NO BELOW CRIT EAKS EXCEE	TED. ERION. DED HHBASE.	2 125.0 126.9 958.8
Program PeakFq Ver. 5.2 11/01/2007	U. S Annual pe following	5. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:03
Station - 01	496080 NORT	HEAST RIVER	TRIBUTARY	NEAR CHARL	ESTOWN, MD
ANNUAL F	REQUENCY CUR	VF PARAMETE	RS 10G-	PFARSON TYP	F TTT
	FLOOD E	ASE		LOGARITHMI	- C
-	EX DISCHARGE PF	CEEDANCE COBABILITY	MEAN	STANDARD DEVIATION	SKEW
- SYSTEMATIC RECORD BULL.17B ESTIMATE	125.0 125.0	0.8000 0.8000	2.4565 2.4565	0.2829 0.2829	-0.448 0.253

ANNUAL FR	EQUENCY CURVE	DISCHARGES	1496080.PRT AT SELECTED	EXCEEDANCE PRO	BABILITIES
ANNUAL EXCEEDANCE PROBABILIT	BULL.17B Y ESTIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CONFID FOR BULL. 17 LOWER	ENCE LIMITS B ESTIMATES UPPER
$\begin{array}{c} 0.8000 \\ 0.6667 \\ 0.5000 \\ 0.4292 \\ 0.2000 \\ 0.1000 \\ 0.0400 \\ 0.0200 \\ 0.0100 \end{array}$	211.5 278.4 312.8 490.3 669.6 945.1 1189.0	168.5 225.4 300.3 336.4 499.6 635.0 804.5 927.9	206.8 278.4 315.7 520.2 757.1 1203.0 1704.0 2437.0	135.4 191.8 219.6 346.6 456.1 604.9 724.8	296.9 400.2 460.0 839.3 1329.0 2254.0 3228.0 4505.0
0.0050	1787.0 2280.0	1165.0 1316.0	3542.0	991.5 1192.0	6161.0 9092.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	TOTTOWING BUTTELIN 17-B GUIDETINES	08/08/2010 10:03

Station - 01496080 NORTHEAST RIVER TRIBUTARY NEAR CHARLESTOWN, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1967 1968 1969 1970 1971	260.0 125.0 125.0 480.0 395.0	L L	1972 1973 1974 1975 1976	615.0 150.0 215.0 700.0 320.0	

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
- 1	Minus-flag -8888.0	ged discharge Not used in computation No discharge value given

- Minus-flagged water year -- Historic peak used in computation

Program PeakFo Ver. 5.2 11/01/2007	q U.S Annual pe following	. GEOLOGICAL SU ak flow frequen Bulletin 17-B	RVEY cy analysis Guidelines	Seq.001.004 Run Date / Time 08/06/2010 10:03
Station ·	- 01496080 NORT	HEAST RIVER TRI	BUTARY NEAR CHA	ARLESTOWN, MD
EMPIRICAL FR	EQUENCY CURVES -	- WEIBULL PLOTT	ING POSITIONS	
WATER	RANKED	SYSTEMATIC	BULL.17B	
YEAR	DISCHARGE	RECORD	ESTIMATE	
1975	700 0	0 0909	0 0909	
1972	615 0	0 1818	0 1818	
1970	480.0	0.2727	0.2727	
1971	395.0	0.3636	0.3636	
1976	320.0	0.4545	0.4545	
1967	260.0	0.5455	0.5455	
1974	215.0	0.6364	0.6364	

			1496080.prt		
	1973	150.0	0.7273	0.7273	
	1968	125.0			
	1969	125.0			
1					

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	10

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored: FINISHED PROCESSING STATION: 01496080 USGS NORTHEAST RIVER TRIBUTARY NEA

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Time 08/06/2010 10:03
	PR	DCESSING OP	TIONS		
	Plot optio Basin cha Print opt Debug prin Input peal Input peal	on r output ion nt <s listing<br=""><s format<="" td=""><td>= Graphics = None = Yes = No = Long = WATSTORE</td><td>device peak file</td><td></td></s></s>	= Graphics = None = Yes = No = Long = WATSTORE	device peak file	
0\1496200 TYT	Input filo peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\DESKTOP\PEAK
Q\1490200.1X1	specif	ications -	PKFQWPSF.T	MP	
Q\1496200.prt	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABE	TE\DESKTOP\PEAK
1					
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / Time 08/06/2010 10:03
Station -	01496200 PR	INCIPIO CRE	EK NEAR PR	INCIPIO FUR	RNACE, MD
	тыршт		симма	PV	
Num	her of peaks	in record	5 0 M M A	= 27	7
Pea Sys His Yea Gen Ske Gag Use Use Plo	ks not used tematic peaks toric peaks rs of histor eralized skew Standard e Mean Squard w option e base discha r supplied h r supplied h r supplied h tting positio	in analysis s in analysis ic record rror e error arge igh outlier on paramete	is threshold criterion r	= 26 = 26 = 0.665 = 0.555 = 0.303 = WEIGHT = 0.6 = = = 0.00	L 5 1 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1 1
********* NOTICE ******** User re	Prelim esponsible fo	inary machi or assessme	ne computa nt and int	tions. erpretatior	********). ******
**WCF109W-PEAKS W **WCF113W-NUMBER (WCF134I-NO SYST WCF195I-NO LOW (WCF163I-NO HIGH WCF002J-CALCS C(1	ITH MINUS-FL/ DF SYSTEMATIC EMATIC PEAKS DUTLIERS WERI OUTLIERS OR DMPLETED. RI	AGGED DISCH C PEAKS HAS WERE BELOW E DETECTED HISTORIC P ETURN CODE	ARGES WERE BEEN REDU(GAGE BASE BELOW CRITI EAKS EXCEEN = 2	BYPASSED. CED TO NSYS ERION. DED HHBASE.	$5 = \begin{array}{c} 1 \\ 26 \\ 0.0 \\ 150.4 \\ 7739.9 \end{array}$
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / Time 08/06/2010 10:03
Station -	01496200 PR:	INCIPIO CRE	EK NEAR PR	INCIPIO FUF	RNACE, MD
ANNUAL F	REQUENCY CUR	/E PARAMETE	RS LOG-	PEARSON TYP	PE III
	FLOOD B	ASE		LOGARITHM	IC
	EX DISCHARGE PR	CEEDANCE DBABILITY	MEAN	STANDARI DEVIATION	D SKEW
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	3.0330 3.0330	0.3420 0.3420	0.257 0.426

ANNUAL F	FREQUENCY	CURVE	DISCHARGES	AT SELECTED	EXCEEDANCE	PROBABILITIES
ANNUAI EXCEEDANO PROBABILI	_ CE BUI ITY ES ⁻	LL.17B TIMATE	SYSTEMATIC RECORD	'EXPECTED PROBABILITY' ESTIMATE	95-PCT CON FOR BULL. LOWER	FIDENCE LIMITS 17B ESTIMATES UPPER
0.9950 0.9900 0.9500 0.8000 0.6667 0.5000 0.4297 0.2000	0 10 0 20 7 10 2 11 0 20 0 20	194.3 221.5 327.1 410.4 550.0 736.6 021.0 175.0 049.0 047.0	171.6 200.7 313.7 402.9 551.7 748.5 1043.0 1201.0 2069.0 3018.0	170.0198.6308.8394.9538.5729.61021.01180.02105.03223.0	107.2 126.6 206.2 272.7 388.4 546.0 783.1 908.5 1567.0 2244.0	289.2 323.4 452.6 552.8 721.1 951.3 1321.0 1535.0 2884.0 4660.0
0.0400 0.0200 0.0100 0.0050 0.0020	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	773.0 468.0 584.0 210.0 660.0	4581.0 6048.0 7810.0 9915.0 13320.0	5319.0 7586.0 10700.0 15020.0 23460.0	3315.0 4294.0 5449.0 6812.0 8991.0	8146.0 11960.0 17150.0 24130.0 37050.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

Station - 01496200 PRINCIPIO CREEK NEAR PRINCIPIO FURNACE, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
1967	4260.0		1981	1270.0	
1968	634.0		1982	759.0	
1969	7060.0		1983	1060.0	
1970	896.0		1984	1850.0	
1971	1260.0		1985	1610.0	
1972	3020.0		1986	177.0	
1973	1210.0		1987	1010.0	
1974	934.0		1988	932.0	
1975	3050.0		1989	850.0	
1976	741.0		1990	660.0	
1977	745.0		1991	631.0	
1978	2120.0		1992	386.0	
1979 1980	$ \begin{array}{r} 1150.0 \\ 345.0 \end{array} $		1999	-3430.0	Н

Explanation of peak discharge qualification codes

PeakFC CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
-	Minus-flag -8888.0 Minus-flag	ged discharge Not used in computation No discharge value given ged water year Historic peak used in computation

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

1496200.PRT

Station - 01496200 PRINCIPIO CREEK NEAR PRINCIPIO FURNACE, MD

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
WATER YEAR 1969 1975 1972 1978 1984 1985 1981 1971 1973 1979 1983 1987 1974 1988 1970 1989 1982 1977 1976	RANKED DISCHARGE 7060.0 4260.0 3050.0 3020.0 2120.0 1850.0 1610.0 1270.0 1260.0 1270.0 1260.0 1210.0 1060.0 1010.0 934.0 932.0 896.0 850.0 759.0 745.0 741.0	Contemporation of the second o	BULL.178 ESTIMATE 0.0370 0.0741 0.1111 0.1481 0.1852 0.2222 0.2593 0.2963 0.3333 0.3704 0.4074 0.4474 0.4444 0.4815 0.5185 0.5556 0.5926 0.6296 0.6296 0.6296 0.6667 0.7037 0.7407
1976 1990 1968 1991	660.0 634.0 631.0	0.7778 0.8148 0.8519	0.7778 0.8148 0.8519
1983 1987 1974 1988	1010.0 934.0 932.0	0.4444 0.4815 0.5185 0.5556	0.4444 0.4815 0.5185 0.5556
1982 1977 1976 1990 1968 1991 1992	759.0 745.0 741.0 660.0 634.0 631.0 386.0	0.6667 0.7037 0.7407 0.7778 0.8148 0.8519 0.8889	0.6667 0.7037 0.7407 0.7778 0.8148 0.8519 0.8889
1980 1986 1999	345.0 177.0 -3430.0	0.9259 0.9630	0.9259 0.9630

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

1

End PeakFO analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	27

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01496200 USGS PRINCIPIO CREEK NEAR PRINCIPI

For the station below, the following records were ignored:

FINISHED PROCESSING STATION:

1						
- Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.000.000 Run Date / Ti 08/06/2010 10	ime D:03
	PR	OCESSING OP	TIONS			
	Plot opti Basin cha Print opt Debug pri Input pea Input pea	on r output ion nt ks listing ks format	= Graphics = None = Yes = No = Long = WATSTORE	device peak file		
0\1578500 TVT	Input fil peaks	es used: (ascii) -	C:\DOCUMEN	TS AND SET	TINGS\DHABETE\	\DESKTOP\PEAK
Q(1378300.1X1	specif	ications -	PKFQWPSF.T	MP		
Q\1578500.PRT	Output fi main -	le(s): C:\DOCUMEN	TS AND SET	TINGS\DHABI	ETE\DESKTOP\PE	EAK
1						
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.001 Run Date / T ⁻ 08/06/2010 10	ime D:03
Statio	on - 01578500	OCTORARO	CREEK NEAR	RISING SU	N, MD	
	тлрит	ΠΔΤΔ	ς η ω ω α	RV		
Nur	ber of peaks	in record	50004	= 44	4	
Pei Sys His Yea Ger Ské Gaa Use Use Pla	stematic peaks storic peaks storic peaks storic peaks storic peaks stantard standard e Mean Square woption ge base disch er supplied h otting positio	in analysis s in analysis in analysis ic record w rror e error e error arge igh outlier on paramete	is threshold criterion r	= 2! = 1! = 0.65 = 0.55 = 0.30 = WEIGH = 0.6 = = = 0.00	5 9 0 2 2 0 3 TED 0	
********** NOTICE ********* User i	E Prelim responsible fo	inary machi or assessme	ne computa nt and int	tions. erpretatio	********** n. ********	
**WCF109W-PEAKS W **WCF113W-NUMBER WCF134I-NO SYST WCF163I-NO HIGH WCF195I-NO LOW WCF002J-CALCS (1	VITH MINUS-FL OF SYSTEMATIO EMATIC PEAKS OUTLIERS OR OUTLIERS WER COMPLETED. R	AGGED DISCH C PEAKS HAS WERE BELOW HISTORIC P E DETECTED ETURN CODE	ARGES WERE BEEN REDU GAGE BASE EAKS EXCEE BELOW CRIT = 2	BYPASSED. CED TO NSYS DED HHBASE ERION.	S = 25 19 0.0 . 45012.0 656.0	
Program PeakFq Ver. 5.2 11/01/2007	U.S Annual pea following	. GEOLOGICA ak flow fre Bulletin 1	L SURVEY quency ana 7-B Guidel	lysis ines	Seq.001.002 Run Date / T 08/06/2010 10	ime D:03
Statio	on - 01578500	OCTORARO	CREEK NEAR	RISING SU	N, MD	
ANNUAL I	REQUENCY CUR	VE PARAMETE	RS LOG-	PEARSON TY	PE III	
	FLOOD B	ASE		LOGARITHM	IC	
	EX DISCHARGE PR	CEEDANCE OBABILITY	MEAN	STANDARI DEVIATIO	D N SKEW	
SYSTEMATIC RECORD BULL.17B ESTIMATE	0.0 0.0	1.0000 1.0000	3.7351 3.7351	0.3889 0.3889	0.679 0.665	

133

1578500.	PRT
----------	-----

ANNUAL	FREQUENCY	CURVE	DISCHARGES	AT	SELECTED	EXCEEDANCE	PROBABILITIES

ANNUAL			'EXPECTED	95-PCT CONFI	DENCE LIMITS
EXCEEDANCE	BULL.17B	SYSTEMATIC	PROBABILITY'	FOR BULL. 1	7B ESTIMATES
PROBABILITY	ESTIMATE	RECORD	ESTIMATE	LOWER	UPPER
0.9950	941.9	952.6	808.3	436.2	1530.0
0.9900	1054.0	1064.0	924.5	506.0	1680.0
0.9500	1503.0	1509.0	1393.0	806.0	2273.0
0.9000	1873.0	1877.0	1777.0	1071.0	2755.0
0.8000	2522.0	2522.0	2447.0	1559.0	3602.0
0.6667	3438.0	3433.0	3389.0	2272.0	4828.0
0.5000	4924.0	4914.0	4924.0	3433.0	6950.0
0.4292	5775.0	5763.0	5812.0	4082.0	8252.0
0.2000	11060.0	11040.0	11570.0	7777.0	17650.0
0.1000	17900.0	17910.0	19710.0	11980.0	32480.0
0.0400	31350.0	31460.0	38050.0	19310.0	67700.0
0.0200	46210.0	46490.0	61880.0	26620.0	113600.0
0.0100	66690.0	67260.0	100800.0	35930.0	186100.0
0.0050	94690.0	95770.0	165600.0	47730.0	299000.0
0.0020	147700.0	149900.0	325900.0	68250.0	546600.0

1

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.003
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

Station - 01578500 OCTORARO CREEK NEAR RISING SUN, MD

INPUT DATA LISTING

WATER YEAR	DISCHARGE	CODES	WATER YEAR	DISCHARGE	CODES
WATER YEAR 1884 1918 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948	DISCHARGE -60000.0 -27700.0 980.0 34500.0 2910.0 17200.0 9340.0 2280.0 5970.0 4250.0 5080.0 3630.0 35000.0 2780.0 8300.0 7820.0 5900.0 3550.0 4040.0	CODES H H	WATER YEAR 1952 1953 1954 1955 1956 1957 1958 1963 1965 1966 1967 1968 1969 1970 1970 1971 1972 1973 1974 1975	DISCHARGE -9240.0 -6400.0 -1930.0 -7960.0 -2090.0 -1450.0 -6870.0 -568.0 -1980.0 -2220.0 -1580.0 -2830.0 -11800.0 -29000.0 -4880.0 -5460.0 -17300.0	CODES
1949 1950 1951	3550.0 2900.0 -5600.0	К	1976 1977 1999	-6250.0 -2950.0 -24600.0	к К Н

Explanation of peak discharge qualification codes

PeakFQ CODE	NWIS CODE	DEFINITION
D G X L K H	3 8 3+8 4 6 OR C 7	Dam failure, non-recurrent flow anomaly Discharge greater than stated value Both of the above Discharge less than stated value Known effect of regulation or urbanization Historic peak
- 1	Minus-flag -8888.0 Minus-flag	ged discharge Not used in computation No discharge value given ged water vear Historic peak used in comput

Minus-flagged water year -- Historic peak used in computation

Program PeakFq	U. S. GEOLOGICAL SURVEY	Seq.001.004
Ver. 5.2	Annual peak flow frequency analysis	Run Date / Time
11/01/2007	following Bulletin 17-B Guidelines	08/06/2010 10:03

Station - 01578500 OCTORARO CREEK NEAR RISING SUN, MD

EMPIRICAL FREQUENCY CURVES -- WEIBULL PLOTTING POSITIONS

WATER YEAR	RANKED DISCHARGE	SYSTEMATIC RECORD	BULL.17B ESTIMATE
1942 1933 1935 1936 1944 1945 1938 1946 1940 1939 1948 1941	$\begin{array}{c} 35000.0\\ 34500.0\\ 17200.0\\ 9340.0\\ 8300.0\\ 7820.0\\ 5970.0\\ 5970.0\\ 5980.0\\ 4250.0\\ 4040.0\\ 3630.0 \end{array}$	$\begin{array}{c} 0.0500\\ 0.1000\\ 0.1500\\ 0.2000\\ 0.3000\\ 0.3500\\ 0.4000\\ 0.4500\\ 0.5000\\ 0.5500\\ 0.6000 \end{array}$	$\begin{array}{c} 0.0500\\ 0.1000\\ 0.1500\\ 0.2000\\ 0.2500\\ 0.3000\\ 0.3500\\ 0.4000\\ 0.4500\\ 0.5000\\ 0.5500\\ 0.6000 \end{array}$
1947 1949 1934 1950 1943 1937 1932	3550.0 3550.0 2910.0 2900.0 2780.0 2280.0 980.0	0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500	0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500
1965	-568.0		
1957	-1450.0		
1954	-1930.0		
1966	-1980.0		
1956	-2090.0		
1968	-2220.0		
1970	-2830.0		
1977	-2950.0		
1973	-4880.0		
1974	-5460.0		
1951	-5600.0		
1976	-6250.0		
1953	-6400.0		
1958	-6870.0		
1967	-6870.0		
1963	-7370.0		
1955	-7960.0		
1952	-9240.0		
1971	-11800.0		
1975	-1/300.0		
1999	-24600.0		
1918	-27700.0		
1972	-29000.0		
1884	-60000.0		

1

End PeakFQ analysis.		
Stations processed	:	1
Number of errors	:	0
Stations skipped	:	0
Station years	:	44

Data records may have been ignored for the stations listed below. (Card type must be Y, Z, N, H, I, 2, 3, 4, or *.) (2, 4, and * records are ignored.)

For the station below, the following records were ignored:

FINISHED PROCESSING STATION: 01578500

USGS OCTORARO CREEK NEAR RISING SU

1578500.PRT

For the station below, the following records were ignored: FINISHED PROCESSING STATION:
Appendix B: Annual peak flow frequency analyses curve for systematic records and Bulletin 17B estimates (the points can be seen in appendix A outputs).

Appendix C: Outlier test K value

The Values on the table below contains 10-percent significant level K values used in the outlier test.

Sample	KN	Sample	KN	Sample	KN	Sample	KN
Size	Value	Size	Value	Size	Value	Size	Value
10	2.036	45	2.727	80	2.940	115	3.064
11	2.088	46	2.736	81	2.945	116	3.067
12	2.134	47	2.744	82	2.949	117	3.070
13	2.175	48	2.753	83	2.953	118	3.073
14	2.213	49	2.760	84	2.957	119	3.075
15	2.247	50	2.768	85	2.961	120	3.078
16	2.279	51	2.775	86	2.966	121	3.081
17	2.309	52	2.783	87	2.970	122	3.083
18	2.335	53	2.790	88	2.973	123	3.086
19	2.361	54	2.798	89	2.977	124	3.089
20	2.385	55	2.804	90	2.981	125	3.092
21	2.408	56	2.811	91	2.984	126	3.095
22	2.429	57	2.818	92	2.989	127	3.097
23	2.448	58	2.824	93	2.993	128	3.100
24	2.467	59	2.831	94	2.996	129	3.102
25	2.486	60	2.837	95	3.000	130	3.104
26	2.502	61	2.842	96	3.003	131	3.107
27	2.519	62	2.849	97	3.006	132	3.109
28	2.534	63	2.854	98	3.011	133	3.112
29	2.549	64	2.860	99	3.014	134	3.114
30	2.563	65	2.866	100	3.017	135	3.116
31	2.577	66	2.871	101	3.021	136	3.119
32	2.591	67	2.877	102	3.024	137	3.122
33	2.604	68	2.883	103	3.027	138	3.124
34	2.616	69	2.888	104	3.030	139	3.126
35	2.628	70	2.893	105	3.033	140	3.129
36	2.639	71	2.897	106	3.037	141	3.131
37	2.650	72	2.903	107	3.040	142	3.133
38	2.661	73	2.908	108	3.043	143	3.135
39	2.671	74	2.912	109	3.046	144	3.138
40	2.682	75	2.917	110	3.049	145	3.140
41	2.692	76	2.922	111	3.052	146	3.142

42	2.700	77	2.927	112	3.055	147	3.144
43	2.710	78	2.931	113	3.058	148	3.146
44	2.719	79	2.935	114	3.061	149	3.148

References

Dillow, J. J. (1996). "*Technique for estimating magnitude and frequency of peak flows in Maryland*." U.S. Geological Survey, Towson, Md.

IACWD (1982). "Guidelines for determining flood flow frequency." Bulletin 17B, Hydrologic subcommittee, U.S. Geological Survey, Reston, Va.

Landwehr, J. M., Matalas, N.C., and Wallis, J.R. (1978). "Some comparisons of flood statistics in real and log space." *Water Resources Planning and Management*, 14(5), 902-920.

McCuen, R. H. (2001). Generalized flood skew: Map versus watershed skew. *Journal of Hydrologic Engineering*, 6(4), 293-299.

McCuen, R. H., and Ayyub, B.M. (2003). *Probability, statistics, and reliablity for engineers and scientists.* Boca Raton: Chapman and Hall/CRC press LLC.

McCuen, R.H., and Hromadka, T. V. (1988). "Flood skew in hydrologic design on ungaged Watersheds." *Jornal of Irrigation and Drainage Engineering*, ASCE, 114(2), 301-310.

McCuen, R. H., and Smith, Eric (2008). Origion of flood skew. *Journal of Hydrologic Engineering*, 13(9), 771-775.

NOAA. *National Weather Service*. Retrieved 06 20, 2009, from Precipitation Frequency Server:http://dipper.rws.noaa.gov/hdsc/pdfs/

Tasker, G.D. (1978). "Flood frequency analysis with a generalized skew coefficient." *Water Resources*, 14(2), 373-376.

Tasker, G.D., and Stedinger, J.R. (1986). "Regional skew with weighted LS regression." Journal *Water Resources Planing and Management, ASCE*, 112(2), 225-237.

USGS. *National Water Information System*. Retrieved May 16, 2009, from Peak Stream Flow for Maryland: http://nwis.waterdata.usgs.gov/md/nwis/peak