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Despite the success of the standard model (SM) of particle physics, a few

unsolved problems call for new physics beyond the SM. In this thesis, we focus on

one theoretical problem of the SM—Planck-electroweak (EW) hierarchy problem,

as well as two experimental facts—non-zero neutrino mass and observed baryon

asymmetry, which can not be explained by the SM. One plausible solution to the

Planck-EW hierarchy problem is Randall-Sundrum (RS) models with a warped extra

dimension, or their AdS/CFT dual composite Higgs (CH) theories. Moreover, it is

well-known that type I seesaw mechanism can naturally generate tiny but non-

zero SM neutrino mass. The same seesaw mechanism can also explain the baryon

asymmetry of the universe via leptogenesis. Therefore, in order to address these

three problems in a single model, we study a warped/composite seesaw model, a

natural embedding of the high scale type I seesaw mechanism in RS/CH framework.

In contrast to the usual high scale type I seesaw mechanism in four dimensions

(4D), 5D warped seesaw model becomes a TeV scale “inverse” seesaw like model



after Kaluza-Klein decomposition into 4D theories. In order to study leptogenesis

in warped/composite seesaw, we first develop a simplified version of this model,

as part of a general framework called hybrid seesaw. We then demonstrate that

hybrid seesaw can achieve successful leptogenesis and feature an interesting interplay

of high scale generation of the asymmetry and TeV scale washouts, which has a

larger viable parameter space and richer phenomenology than usual type I seesaw

models. To make this mechanism realistic in the full warped seesaw model, we

also study the phase transition from the high temperature black hole phase to low

temperature phase with two branes in 5D theories. According to AdS/CFT duality,

this phase transition is dual to the deconfined and confined phase transition in

strongly coupled nearly conformal 4D theories. It was previously believed that this

phase transition rate is too slow at the critical temperature, resulting in a large

amount of supercooling and low scale inflation. All primordial abundance in this

case would be significantly diluted. We analyze a new mechanism to achieve fast

phase transition around the critical temperature and thus the asymmetry generated

from high scale leptogenesis can survive until today.
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Some chapters of this thesis are based on my work in collaboration with other
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Chapter 4 is based on the ongoing project in collaboration with Kaustubh Agashe,
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Chapter 1: Introduction

After the discovery of the Higgs boson in 2012 by the Large Hadron Collider

(LHC) [1, 2], the last building block of the standard model (SM) (for a review,

see e.g. [3]) of particle physics is finally observed. Till now, the SM has achieved

a great success in experimental tests. It is truly amazing that almost all particle

phenomena we have seen so far can be described by the 17 elementary particles (and

their anti-particles) as well as their interactions in the SM. Also, all properties of the

elementary particles, including the interactions among them, can be deduced from

26 input parameters of the SM. The great success of a physical model is predicting

various phenomena using minimal amount of free parameters. In this regard, the

SM is the best model of particle physics so far.

However, the SM is not perfect both from theoretic and also experimental

point of view. Even if we completely neglect gravity, just studying the SM as a

theoretic model in the flat spacetime using quantum field theory (QFT), it is still

incomplete due to, for instance, the existence of Landau pole of the U(1)Y gauge

field, the ultimate ultraviolet (UV) scale where the theory breaks down. Of course,

the SM can not explain gravity and the theory must break down around or below

the Planck scale MPl = 1.2×1019 GeV. Therefore, the SM can only be viewed as an

1



effective field theory (EFT) below some UV scale Λ, where new physical degrees of

freedom and new interactions beyond standard model (BSM) must be considered.

All physical quantities in an interacting QFT with a UV new physics scale, also

called UV cutoff of the theory, will get quantum corrections depending on the cutoff

Λ, unless being protected by some symmetries. For example, being protected by the

gauge symmetry, the gauge boson corresponding to an unbroken gauge symmetry

is exactly massless even considering quantum corrections. The quantum correction

of fermion mass is proportional to the mass and only logarithmically depends on Λ.

Such effect is due to chiral symmetry of fermions, a global symmetry under which the

left-handed and right-handed fermions have the opposite charge. However, there is

no symmetry for elementary scalars masses. In fact, the SM Higgs mass squared gets

a quantum correction with the order of Λ2. Then the physical Higgs mass squared

would naturally be the order of Λ2. Assuming no new physics up to the Planck scale,

one would expect m2
H ∼M2

Pl. Nevertheless, the observed mass is m2
H ≈ (125GeV)2.

This indicates the new physics contribution to the m2
H should cancel each other to

a great precision, one part in 1034. Such extremely fine tuning of the fundamental

parameters to get the observed Higgs mass is often called Planck-electroweak (EW)

hierarchy problem, a theoretic imperfection of the SM.

Moreover, many concrete experimental results can not be explained within the

SM. Neutrino oscillation experiments [4–6], for instance, indicate that neutrinos,

weakly interacting neutral particles of the SM, have extremely small but non-zero

mass. The SM does not allow the mass term for neutrinos at renormalizable level

(operators with mass dimension ≤ 4). Higher dimensional operators suppressed

2



by the UV cutoff Λ may generate neutrino mass if the UV physics break lepton

number global symmetry. However, if we put Λ ∼ MPl and the coupling to be

order unity, the neutrino mass is too small compared to the observed neutrino

mass mν = O(0.1) eV [7], hence in tension with experimental facts. Also, the

observed asymmetry between the abundance of baryons and anti-baryons can not be

generated within the SM and standard cosmology. Moreover, the SM can not predict

the observed abundance of dark matter and dark energy. All of these experimental

results call for theories beyond the SM.

In this thesis, we will focus on three of the above problems of the SM: Planck-

EW hierarchy (section 1.1), neutrino mass (section 1.2) and baryon anti-baryon

asymmetry (section 1.3), and introduce plausible solutions.

1.1 Composite Higgs and Randall-Sundrum models

We first study the Planck-EW hierarchy problem. Actually, the idea of a pos-

sible solution might already exist in the strongly coupled quantum chromodynamics

(QCD) of the SM. There are light scalars predicted by QCD, for example pions

π with mass mπ ∼ 100 MeV � MPl. We don’t consider the mass of pion has a

hierarchy problem mainly because pions are composite states (made of quarks and

gluons) after QCD confinement, and thus they should not be viewed as elementary

particles all the way up to MPl. Pions may be described as “elementary” particles in

an EFT called chiral perturbation theory, which has a cutoff at ΛQCD ∼ 1 GeV in-

stead of MPl (reviewed in [8]). The cutoff of chiral perturbation theory is associated
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with the confinement scale of QCD, which can naturally be much smaller than MPl

because QCD is asymptotically free and the associated gauge coupling undergoes a

large amount of renormalization group (RG) running to become large enough in the

IR to trigger confinement. Furthermore, the minor gap between mπ and ΛQCD is

also nicely explained since pions are pseudo Nambu Goldstone bosons (pNGB) from

chiral symmetry breaking. Because of these two pieces of magic, light pion mass is

natural.

We could try to apply the same mechanism to the SM Higgs. One can imagine

the SM Higgs as composite Goldstone bosons from a new strongly coupled sector

which confines at around TeV scale. Such class of models are named composite Higgs

(CH) models [9–13]. Other than being asymptotically free like QCD, the strongly

coupled sector of CH models may involve an approximate conformal symmetry near

a strongly coupled fixed point (for a review, see [14]). The confinement scale is

originated from the spontaneous breaking of the conformal symmetry of the strongly

coupled sector. The large hierarchy between the UV cutoff ΛUV and confinement

scale Λconfine is controlled by the small perturbation to the conformal symmetry.

One way to achieve this is Goldberger-Wise stabilization (GW) mechanism [15]:1

adding a slightly relevant scalar operator OGW whose scaling dimension is 4−ε with

ε� 1. In this mechanism,

Λconfine

ΛUV

∝ e−
1
ε . (1.1)

1This mechanism was first proposed in 5D and we will discuss it in the next paragraph. Here
we present its 4D dual picture.
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Therefore Λconfine ∼ 1 TeV can be naturally achieved if ε ∼ 1/30 for ΛUV ∼ MPl.

The remaining hierarchy between mH and Λconfine is due to Higgs being pNGBs.

CH models are theoretically attractive but it is difficult to calculate physical

observables quantitatively in these models, due to the lack of perturbative control

in such strongly coupled system. Luckily, thanks to AdS/CFT duality [16–18],

the strongly coupled conformal field theory (CFT) in four spacetime dimensions

(4D) can be mapped to a weakly coupled theory in five dimensional (5D) Anti-

de sitter (AdS) spacetime including gravity. The AdS/CFT dual of CH is the

Randall-Sundrum (RS) model [19, 20]. RS models contains a finite interval of a

Poincare patch of 5D AdS bounded by two branes. In RS models, different fields

have characteristic wave functions along the extra dimension. Elementary graviton

is localized on the UV brane, thus also often called Planck brane. The SM Higgs field

is localized on the IR brane, which corresponds to TeV scale. Therefore, Planck-EW

hierarchy problem is solved due to the strong gravitational warping along the fifth

dimension between UV and IR branes. The position of IR brane can be stabilized by

GW mechanism: adding a bulk scalar with small 5D mass and appropriate boundary

conditions on two branes. In the dual 4D picture [21,22], the distance along the five

dimension can be thought at the RG scale. The UV brane corresponds to the UV

cutoff of the 4D theory while the IR brane indicates the confinement scale. SM Higgs

localized on the IR brane indicates it is a composite field. The 5D GW scalar is dual

to the scalar operator OGW in previous paragraph. The small 5D mass corresponds

to the small anomalous dimension of OGW, denoted as ε.

Assuming the cutoff of 5D RS models are much higher than the curvature

5



scale, the perturbative calculation in RS models are under theoretic control. To get

the interaction strength among different fields, one needs to calculate the overlap

of the wave functions among different fields. All observables can be calculated

using fundamental 5D parameters. It has been robustly shown that the Higgs mass

is naturally a loop factor below the IR brane scale [12, 13]. Moreover, accurate

predictions of signals of heavy excitations of SM particles can be achieved in RS

models, making the phenomenological study of RS/CH models more attractive (for

a recent summary, see, for example, [23]).

1.2 Seesaw mechanism

Now we consider the neutrino mass problem. The first trial is adding right-

handed neutrinos (N) to the SM with Yukawa interactions, yNH`, among SM

lepton doublet (`) and Higgs doublet field (H). Just like other SM charged leptons,

neutrinos obtain mass after Higgs get a vacuum expectation value (VEV). The

neutrino mass is then given by the product of Yukawa coupling y and Higgs VEV

v ≈ 174 GeV. The neutrino mass scale from neutrino oscillation data is around

0.1 eV, meaning y ∼ 10−12. Though the smallness of y is stable under quantum

corrections, having such extremely small number in the fundamental theory still

seems unnatural.

One way to naturally address tiny neutrino mass, or equivalently this tiny

Yukawa coupling constant, is so called seesaw mechanism [24–28]. There are various

types of seesaw mechanism and we will classify it more carefully in section 3.1.
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Here we only study the original high scale type I seesaw to illustrate the main idea.

Apart from the Yukawa coupling yNH` mentioned earlier, right-handed neutrinos

are also allowed to have a Majorana mass term MNNN since they are singlets of

SM gauge symmetries in type I seesaw. The scale for MN is roughly the UV cutoff

of the theory. Below the scale of MN , right-handed neutrinos N can be integrated

out. A mass dimension five operator y2 `H`H
MN

, first pointed out by Weinberg [29], is

generated. After Higgs gets a VEV, SM neutrinos acquire mass

mν ∼
y2v2

MN

. (1.2)

The heavier the right-handed neutrinos are, the lighter SM neutrinos are, hence the

term seesaw. Putting numerical values in, for y = O(0.1− 1) and mν = O(0.1) eV,

the scale for MN is 1012− 1014 GeV. Such scale can be dynamically generated from

extra gauge symmetry breaking (see e.g. [25, 26, 28, 30, 31]). In conclusion, seesaw

mechanism provides an elegant way of generating tiny neutrino mass using order

unity couplings and a UV scale.

Furthermore, seesaw mechanism has more interesting implications. Since the

heavy singlet right-handed neutrinos have a Majorana mass, the SM neutrinos are

also Majorana and the lepton number L (or more correctly baryon number minus

lepton number B − L ) global symmetry is broken. Such lepton number violation

can be tested in experiments like neutrinoless double beta decay (for a review, see

e.g. [32]). The idea of such experiments is that nucleus with proton number Z and

total nucleon number A can decay into nucleus with the same nucleon number A
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but Z + 2 protons, associated with two electrons (e−). For normal double beta

decay mode, two anti-neutrinos (ν̄e) will also be produced. However, if neutrinos

are Majorana, meaning they are the anti-particle of themselves, it is possible to have

a double beta decay mode without any neutrino emission. Therefore, such a decay

mode is called 0νββ.

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e (double beta decay)

(A,Z) → (A,Z + 2) + 2e− (neutrinoless double beta decay) (1.3)

Non-observation of this 0νββ decay mode sets a bound on the Majorana mass of

neutrinos, or the amount of lepton number violation in the SM.

1.3 Leptogenesis

The last problem we try to address is the baryon anti-baryon asymmetry of

the universe. We are made of baryons, so are the stars and planets in the uni-

verse we have observed so far. This baryon overabundance can not directly come

from initial conditions of the universe, since all primordial asymmetries will be

exponentially diluted after the inflation. Therefore, the observed baryon asymme-

try (ηobs
B ≡ nB−nB̄

nγ
∼ 10−10, where nB,B̄,γ denotes the number density of baryon,

anti-baryon and photon respectively) must be dynamically generated in the early

universe. The scenario to achieve the observed baryon asymmetry is often called

baryogenesis. All theories of baryogenesis need to satisfy the following three condi-

tions, also called Sakharov conditions [33]:

8



• Baryon number (B) or lepton number (L) violation: this is needed to dynam-

ically generate a non-zero asymmetry at the first place.

• Charge conjugation (C) and Charge conjugation-Parity (CP) violation: if C

or CP were conserved, the process involving baryons would have the same rate

as C or CP conjugated process involving anti-baryons. Which means even if

baryon number is violated and some baryon asymmetry is generated from one

process, the inverse process has the same rate, resulting in zero net baryon

asymmetry.

• Out of equilibrium dynamics: equilibrium requires the net asymmetry of a

non-conserved quantum number (like B according to the first condition) to be

zero. Thus the process responsible for the generation of the asymmetry must

be out of equilibrium.

Actually the SM almost satisfies these three conditions: (i) B + L in the SM

is violated via non-perturbative quantum anomalies, the EW sphaleron process. (ii)

The weak interaction violates CP, and the CP phase in the CKM matrix is order

unity. (iii) The out of equilibrium condition is fulfilled if the EW phase transition

is first order [34, 35]. Unfortunately, the observed Higgs mass (mH ≈ 125GeV)

indicates the EW phase transition within the SM is not first order [36,37]. Therefore,

the SM can not predict the observed baryon asymmetry of the universe and some

BSM physics are necessary to achieve successful baryogenesis.

The seesaw mechanism discussed in the previous section allows a candidate

mechanism for baryogenesis, often named leptogenesis [38] (see also reviews [39,40]).
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High scale type I seesaw, for instance, satisfies Sakharov three conditions: (i) lepton

number is violated due to the Majorana mass of right-handed neutrinos. (ii) The

CP phase in the Yukawa coupling y could lead to CP violation. Also, (iii) the heavy

right-handed neutrinos can decay out of equilibrium. The idea of leptogenesis is the

following. The out-of-equilibrium decay of heavy right-handed neutrinos generate

non-zero L asymmetry. As long as the decay happens before sphaleron process goes

out of equilibrium (T ∼ 100 GeV), asymmetry in L is transferred to B asymmetry

because EW sphaleron process violates B + L but preserves B − L. In addition to

B asymmetry, leptogenesis predicts also L asymmetry of the similar size. Current

bounds on L asymmetry in the cosmic neutrinos are rather weak: . O(0.1) asym-

metry is still allowed [41]. Therefore, seesaw mechanism, together with leptogenesis,

provides plausible solutions to two problems of the SM: neutrino mass and baryon

asymmetry.

1.4 Outline of the thesis

As we discussed in previous sections, RS/CH models can solve Planck-EW

hierarchy problem and seesaw mechanism addresses the neutrino mass and baryon

asymmetry problems. To unify the solutions in one framework, we study a natural

embedding of high scale type I seesaw mechanism in the RS/CH models, namely

warped/composite seesaw in chapter 2. Since it is technically difficult to study lep-

togenesis in warped/composite seesaw, we propose a simplified 4D version, hybrid

seesaw, and analyze leptogenesis in hybrid seesaw in chapter 3. In order to make
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leptogenesis in the full warped seesaw realistic, we need to understand its full cos-

mological history. Therefore, we also study the phase transition in RS models in

chapter 4. Then we conclude in chapter 5.
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Chapter 2: Warped/composite seesaw and hybrid seesaw

In this chapter, we shall study the warped/composite seesaw model which can

address both Planck-EW hierarchy and neutrino mass problems. We first discuss the

qualitative feature of warped/composite seesaw in 4D strongly coupled CFT point

of view in section 2.1 and then discuss its 5D dual in RS framework in section 2.2.

2.1 Warped/composite seesaw: 4D view

As mentioned in chapter 1, CH models may contain a strongly coupled sector

with approximate conformal symmetry, called CFT sector, of which SM Higgs orig-

inates as the composite state. The detailed underlying gauge group structure and

field contents of the composite sector are not relevant for the qualitative discussion

in this section. Therefore we will simply denote the physics of the composite sector

as LCFT. To get the observed properties of the SM (e.g. the hierarchical charged

lepton masses), CH models also need a weakly coupled elementary sector external to

the CFT sector. The natural scale for the elementary sector is the UV cut-off of the

CH models, say MPl. Fields in the elementary sector can mix with the states in the

CFT sector with the same quantum numbers. The resulting SM particles are mass-

less states after CFT sector confines, which are generally a mixture of elementary
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and composite degrees of freedom. This scenario is called partial compositeness [42].

Now we study warped/composite seesaw—an implementation of high scale

type I seesaw mechanism in the CH framework, which can be represented by the

following Lagrangian:

L = LCFT + λNRON +
1

2
Mbare

N N2
R (2.1)

where NR is an elementary (external to CFT) right-handed fermion and ON is a

CFT operator that mixes with NR with coupling λ1 and hence interpolates left-

handed composite fermionic states. We take the bare Majorana mass of NR to be

its natural size Mbare
N .MPl. We assume that CFT sector preserves lepton number,

and the only source of lepton-number violation is the Majorana mass term Mbare
N

present in the elementary sector. It turns out that the observed neutrino mass can

be reproduced when the operator NRON is relevant, i.e. the scaling dimension of

ON is [ON ] < 5/2. In this case, the theory flows to a new IR fixed point where the

operator NRON becomes marginal so that
[
N2
R

]
> 3. For the case of Mbare

N < MPl,

renormalization group (RG) flow then drives the NR mass term to a significantly

smaller value until the singlet fermion NR gets integrated out at its physical mass,2

which can be estimated to be

Mphy
N ∼Mbare

N

(
Mbare

N

MPl

) 1
2[ON ]−4

−1

. (2.2)

1in analogy with similar effect for the SM charged fermions and gauge bosons.
2Of course, the singlet field NR will mix with composite fermion states and hence it is not quite

mass eigenstate. Still, the composite state that mixes with NR will have a mass of ∼ Mphy
N . The

resulting mass eigenstate, therefore, will have a mass ∼Mphy
N .
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Integrating out NR at this Mphy
N scale generates

∆LUV
CFT = λNRON +

1

2
Mphy

N N2
R → λ2

Mphy
N

O2
N . (2.3)

As is clear from the appearance of lepton-number breaking spurion Mphy
N , the CFT

operator O2
N is a lepton-number violating perturbation to the CFT sector. In-

tegrating out NR, therefore, effectively transfers lepton-number breaking into the

CFT sector. One notices that this is like generating Weinberg operator in type I

seesaw and a rather precise match may be seen when O is (roughly) identified with

H`.

RG running the theory further down to the TeV scale where strongly coupled

sector confines we get

∆LIR
CFT ∼

λ2

Mphy
N

(
TeV

Mphy
N

)2[ON ]−5

O2
N ∼

λ2

Mbare
N

(
TeV

MPl

)2[ON ]−5

O2
N , (2.4)

where [ON ] denotes the scaling dimension of ON and we used (hence assumed ac-

cordingly) the large-N approximation for the scaling dimension of O2
N .

Now we study the physics after confinement using “hadron” picture instead

of “quark-gluons” as physical degrees of freedom. When the CFT sector confines

at TeV scale, each operator ON , when acted on the vacuum, creates a tower of

left-handed composite fermions, with the lightest mode denoted as Ψ. They com-

bine with the right-chirality states (with the lightest mode being Ψc) generated by

another CFT operator to form composite Dirac fermions, with mass starting at
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TeV and with TeV mass gap between adjacent states, i.e, we have mΨ ∼ TeV. The

“Weinberg”-type operator in eq. (2.4) then can be viewed as generating a small

Majorana mass terms for left-handed fermion (called µ), i.e.,

µ ∼ λ2 TeV2

Mbare
N

(
TeV

MPl

)2[ON ]−5

(2.5)

Together with the ∼ TeV Dirac mass, this makes these composite fermions pseudo-

Dirac. Finally, the composite singlet has a coupling to SM Higgs and composites

with quantum numbers of SM lepton (interpolated by OL). We then obtain a cou-

pling between composite singlet (Ψc), SM Higgs and lepton via mixing of elementary

lepton with latter composites (including a different RG factor, i.e., determined by

scaling dimension of OL)3:

y ∼ λL

(
TeV

MPl

)[OL]−5/2

. (2.6)

Putting eqs. (2.5) and (2.6) together, the Lagrangian involving Ψ, Ψc takes the form

LΨ,Ψc ∼ yΨcH`+mΨΨΨc + µΨΨ. (2.7)

This Lagrangian is similar to a TeV scale seesaw mechanism called inverse seesaw

[43, 44]. Just like inverse seesaw, the SM neutrino mass is generated via exchange

3For the case of [OL] > 5/2 assumed here, the corresponding mixing is irrelevant. Note also
that a similar factor was used in the spurion/dimensional analysis estimate in eq. (2.8) above.
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of pseudo-Dirac TeV scale composite singlets (Ψ, Ψc), rendering

mν ∼
y2v2

m2
Ψ

µ ∼ λ2
Lλ

2v2

Mbare
N

(
TeV

MPl

)2([ON ]+[OL]−5)

, (2.8)

where we assume the couplings among composite states are O(1). Remarkably, al-

though the composite seesaw at UV scale has the feature of high scale type I seesaw,

the dynamics that generates SM neutrino mass after confinement is actually TeV

scale inverse seesaw. Moreover, notice [as per eq. (2.5)] that in this composite seesaw

framework, the required small Majorana mass terms for Ψ is generated dynamically

via type I seesaw mechanism.

2.2 Warped/composite seesaw: 5D view

In this section, we provide a brief discussion of warped seesaw model in 5D

RS framework. RS models are formulated in a Poincare patch of AdS5 bounded by

two branes. The metric of the AdS5 spacetime is

ds2 =
1

(kz)2

(
ηµνdx

µdxν − dz2
)
, (2.9)

where z is the coordinate of the fifth spatial dimension and k is the AdS curvature.

The UV (IR) boundary of the spacetime is at z = zh(zv). We consider all SM

fermions and gauge bosons propagating the bulk of AdS5. For concreteness, we

assume SM Higgs to be localized on the IR brane. The 5D SM gauge singlet field,

N , which is the analog of the right-handed neutrinos of the usual, 4D seesaw models,
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propagates the bulk. Like all 5D fermion fields, N can be decomposed into both left

(L) and right (R) chiralities (denoted by NL,R, respectively) from the 4D viewpoint.

NR couples to SM SU(2)L lepton doublet, in particular left-handed neutrinos, and

the Higgs on the IR brane with 5D Yukawa coupling y5D. We impose that lepton-

number is unbroken in the bulk/IR brane,4 but is broken on the UV brane. Hence, a

Majorana mass term for NR is forbidden in the bulk/IR brane, whereas it is allowed

on the UV brane. Furthermore, we assume that the order parameter for breaking

of lepton-number on the UV brane is not tuned, i.e., it is (roughly) the mass scale

corresponding to its location in the extra dimension. It is then natural to include a

Planck (or AdS curvature) scale-size Majorana mass term for NR on the UV brane.

These aspects can be summarized in the following 5D Lagrangian

−L5D 3 y5DNRH`+ cNkN̄LNR + δ(z − zh)
1

2

mN

k
NT
RCNR + h.c., (2.10)

where N is a 5D fermion field with NL/R being left(right)-chirality of N . In addition,

cNk is 5D mass parameter for N , mN is Majorana mass of NR
5 and C denotes charge

conjugation operation.

The above model was studied in [45] using so-called KK-basis where KK decompo-

sition was done without taking into account the large Majorana mass term from the

beginning. The effects of the Majorana mass was added as a posteriori process and

this leads to large Majorana masses for zero- and KK-modes and large mixing among

all modes. Hence, although analysis using KK-basis produces correct neutrino mass

4This symmetry should be gauged in the 5D model.
5 As indicated above, mN ∼ O(k) naturally.
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formula, using a basis that is vastly different from the mass basis obscures the phys-

ical picture. In particular, the results from KK-basis naively suggest (or give the

misleading impression) that the above 5D warped seesaw model is indeed of Type I

in the sense that the SM neutrino mass is generated by the dynamical exchange of

a super-heavy singlet mode, i.e., at the (effective) seesaw scale (for more discussion

of this point, see [46]).

However, as shown in [46], analysis based on the mass basis, including the Majorana

mass term from the beginning, reveals very different dynamical picture. The mass

eigenstates of 4D effective theory (after KK-decomposition) of eq. (2.10) is a tower

of pseudo-Dirac singlet fermions with tiny Majorana splitting. For the choice of

cN ∼ −0.3 that renders correct SM neutrino mass, dominant contributions to the

SM neutrino masses come from the exchange of a few low lying mass eigenstates

(cf. super-heavy modes in the KK basis). Namely, the SM neutrino mass is generated

not by an exchange of super-heavy Majorana singlet mode, but by exchanges of

O(TeV) pseudo-Dirac singlet modes. Therefore, the dynamical nature of the warped

seesaw is inverse seesaw, not Type I. Moreover, it is indeed very natural realization

of it, because the SM neutrino mass is obtained with all dimensionful parameters

taken to be near the cut-off scale and all dimensionless parameters to be O(1). This

new finding, then, re-focuses attention on LHC signals from the O(TeV) scale singlet

pseudo-Dirac fermions that arise in this model. We demonstrate in refs. [47,48] that

various kinds of interesting signals can be probed at the LHC.

According to AdS/CFT duality, the fields on the UV brane corresponds to the

elementary sector external to the CFT sector. Therefore, UV value of 5D NR field
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is dual to NR in the composite seesaw (see eq. (2.1)). Also, the lightest KK modes

of 5D fields NL/R are dual to Ψ,Ψc in eq. (2.7). The exact 5D calculation justifies

the qualitative argument of composite seesaw in section 2.1.

19



Chapter 3: Leptogenesis in the hybrid seesaw

In this chapter, we will move on the study leptogenesis in warped/composite

seesaw. To avoid the technical difficulty in full warped seesaw obscuring underline

physics in leptogenesis, we propose a simplified weakly coupled 4D model, hybrid

seesaw, which captures most of attracting features of warped/composite seesaw. The

detailed analysis of leptogenesis will be presented in this chapter based on hybrid

seesaw. We believe this result can illustrate the qualitative features of leptogenesis

in full warped/composite seesaw.

Apart from a simplified version of warped/composite seesaw, hybrid seesaw

can be generalized to a class of models which can address some issue of inverse

seesaw models. To see this point, we will introduce hybrid seesaw as a UV com-

pletion of standard inverse seesaw models in this chapter. Before diving into the

details of leptogenesis, we first review some existing seesaw models, including our

warped/composite and hybrid seesaw, in theoretic as well as phenomenological point

of view in section 3.1. Despite a bit of repetition of previous chapters, we feel it

is necessary to clarify some physical points in a collective manner. The detailed

outline of this chapter will be present at the end of section 3.1.
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3.1 Introduction

Viewing the Standard Model (SM) as an effective field theory, Majorana neu-

trino massesmν dominantly arise from the unique dimension-five Weinberg operator:

C
y2

mNP

`H`H → mν = C
y2v2

mNP

, (3.1)

where ` and H are respectively the SM lepton and Higgs doublets with vacuum

expectation value (VEV) v. Within our conventions, the new degrees of freedom

responsible for generating the operator in eq. (3.1) are assumed to be characterized

by a mass scale mNP and a leading coupling y to the SM lepton (and the Higgs)

(couplings among new states are measured by other couplings in general). We next

elaborate on the “C” parameter.

The operator in eq. (3.1) violates U(1)B−L by two units. Such a violation may

be induced directly from y2/mNP, as in ordinary type I seesaw scenarios [24–28]. In

all those cases we conventionally say U(1)B−L breaking is maximal and set C ≡ 1 to

mean that no further parameter is necessary to generate neutrino masses. On the

other hand, in all UV completions in which y2/mNP does not have spurious U(1)B−L

charge 2, eq. (3.1) will have to be proportional to some additional U(1)B−L-breaking

parameter C. In particular, when mNP � 1014 GeV and y = O(1) such U(1)B−L-

breaking parameter is forced to be very small, i.e. C � 1. Note that while in the

former case, setting C = 1 merely means effectively we did not need the C parameter,

in the latter case C � 1 encodes the required U(1)B−L breaking. The new parameter
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C � 1 in the second scenario could be a ratio of mass scales or couplings within the

new sector, or simply be controlled by a new U(1)B−L-breaking interaction to the

SM. We will refer to these models as scenarios with small U(1)B−L breaking.

UV completions of the Weinberg operator have other important physical im-

plications. The necessary source of U(1)B−L breaking indicates for example that the

UV dynamics responsible for generating eq. (3.1) may also have the possibility to

realize baryogenesis through leptogenesis [38]. Furthermore, the parameters mNP, y

control the possible collider signatures of the new particles involved, suggesting that

models with mNP ∼ TeV and y ∼ 1 certainly represent the most promising ones

experimentally.

Combining these considerations, we find that small neutrino masses may be

obtained in three qualitatively different ways, depending on whether TeV/mNP or

y or C is the small parameter suppressing mν :

(I) high-scale scenarios TeV/mNP � 1 in which C, y are not necessarily small,

such as the popular high scale seesaw model [24–28];

(II) scenarios with small couplings y � 1 and unsuppressed C and TeV/mNP, like

in low scale seasaw models;

(III) scenarios with small U(1)B−L breaking, C � 1, where y and TeV/mNP may

be unsuppressed. The inverse seesaw [43, 44] or linear seesaw [53] belong to

this latter class.

In table 3.1, we summarize how the most common realizations of the above

three classes of UV completions of eq. (3.1) compare with respect to the generation
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of small neutrino masses, the realization of successful leptogenesis, and the pos-

sibility of featuring interesting signatures at colliders. Needless to say, this table

reflects our own perspective on the topic, as well as our biases as model-builders.

For example, in the table and the remainder of the chapter we will often use the

term natural . To help the reader appreciate this terminology we hereby attempt to

provide an operative definition of this concept, which we may call Dirac natural-

ness : dimensionless couplings (like y or the new physics and SM self-couplings) are

of natural size if they are not too far from one, say of O(10−2)− O(1); mass scales

(mNP) are of natural size if they are either generated via dimensional transmutation

of natural couplings or are related to a more fundamental dynamical scale (for e.g.

the TeV, the GUT or the Planck scales) by factors of order unity; in the absence of

a symmetry reason, the differences among masses and among couplings should be

of the same order as the respective masses and couplings themselves (i.e. anarchic

masses and couplings). Our naturalness criteria is more restrictive than t’ Hooft’s

technical naturalness, which only calls for stability under quantum corrections.

We can now proceed to explain table 3.1. In High scale type-I seesaw

models the new physics is in the form of heavy Majorana right-handed neutrinos

N with coupling y ∼ 10−2 − 1 to the SM leptons. Once both a mass mNP ≡ MN

for N and the coupling y are turned on, U(1)B−L is broken collectively by y2/MN

and hence the model belongs to class (I). In these cases leptogenesis is realized

naturally [38,40]. Unfortunately, with a high scale MN ∼ 1010− 1014 GeV there are

no detectable LHC or low-energy experimental signals. Small neutrino masses can

be obtained quite elegantly. However, the required mass mNP must be a few orders
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UV seesaw model Natural mν? Signals? Leptogenesis?
High scale type I Almost No Yes
TeV scale type I Not really Possible Possible

TeV scale inverse/linear Not really Yes Possible
Hybrid Possible Yes Yes

Table 3.1: Our comparison of various UV completions of eq. (3.1): see explanation
in text.

of magnitude smaller than the known fundamental scales (say the Planck or GUT

scale of ∼ 1018 or 1016 GeV, respectively), at an intermediate value that is not fully

understood. In view of our definitions above, we may view such a scale as almost

natural.

In TeV scale type-I seesaw the U(1)B−L symmetry is again maximally

broken (C ≡ 1). However, here the small neutrino masses (mν = O(0.1) eV) are ob-

tained for mNP ≡MN ∼ TeV with tiny couplings to the SM, y ∼ 10−6.1 This model

thus belongs to our class (II). The smallness of y is considered a tuning and hence

neutrino mass is not natural according to our definition. The small y also makes the

direct production of the exotic N unlikely. To make this scenario more visible one

may consider extensions with additional gauge symmetries (B−L or LR models) so

that N may be produced via the associated gauge couplings, which can be sizable,

giving collider signals with same-sign dileptons due to Majorana nature of N (see

references in [57]). Overall, this model scores a “possible” in the experimental sig-

nals entry. Finally, leptogenesis is not natural unless one imposes quasi-degeneracy

among singlets of different generations to resonantly enhance the CP violation [58].

This cannot be achieved without additional ingredients for example in the form of

1Unless we invoke some special textures [56], which we do not consider here.
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flavor symmetry. Hence, leptogenesis scores a “possible” here as well.

TeV scale inverse seesaw (ISS) and linear seesaw (LSS) have, besides

the right-handed neutrinos (here denoted by Ψ) which couple to the SM lepton and

Higgs with Yukawa y, additional fermion singlets with left-handed chirality Ψc. The

latter are introduced such that the singlets can form a Dirac mass term mNP ≡ mΨ ∼

TeV preserving U(1)B−L. Such a symmetry is broken by a small Majorana mass

term for the singlets µ in the ISS, or by a small lepton number breaking Yukawa

coupling y′ of Ψc to the SM in the LSS. In the language introduced in eq. (3.1) this

means

C ∼ µ

mΨ

� 1 C ∼ y′

y
� 1 (3.2)

respectively, and these models belong to class (III). Since µ� TeV is not set by any

fundamental scale, and similarly the coupling y′ must be very small, the observed

neutrino mass is not obtained naturally according to our criteria. Yet, an attractive

feature here is that experimental signals from singlets Ψ,Ψc can arise from sizable

Yukawa coupling y — including a contribution to the rare process µ→ eγ as well as

direct production of singlets themselves (see for example [59] and references therein).

The model therefore scores a clear “yes” in the signal column.2

Unfortunately, as we have shown recently in ref. [54] (focusing on the case

of strong washout and anarchic couplings/masses of singlets) leptogenesis is not

2Even though we get accessibility to the singlets, it is true that it is difficult to directly probe
the very small µ-term, i.e. lepton-number breaking.
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achieved naturally in the ISS (i.e. µ 6= 0 and y′ = 0),3 according to our naturalness

criteria. We will elaborate more on this in section 3.3. We then include the effects

of quasi-degenerate mass among different generation singlets: while such possibility

provides a sizable improvement of the final asymmetry, it can barely accommodate

the observed value. We also discuss the case of weak washout and demonstrate

various subtleties, which have not been discussed in the previous literature—though

it does not change qualitatively our earlier conclusions. We further extend our

conclusions to LSS (i.e. µ = 0 and y′ 6= 0) and show that leptogenesis is not

natural there either. Another result of the present work is that even turning on both

µ, y′ still requires very small couplings y′ � y � O(10−2) to achieve a successful

leptogenesis (see also for example refs. [62, 63]). Our conclusion is that in this

scenario leptogenesis scores a “possible”.

Finally, table 3.1 includes the Hybrid seesaw [54,55] (see detailed discussion

in section 3.4). This was designed to overcome simultaneously the two limitations of

the ISS: unnaturally small µ term and difficulty in leptogenesis [54]. The essential

idea of hybrid seesaw is to introduce, on top of the ISS module, i.e. a Dirac pair

Ψ,Ψc of fermions with mNP ≡ mΨ ∼ TeV and unsuppressed coupling to leptons

y ∼ 1, a high scale type I seesaw module, namely heavy (MN � TeV) Majorana

singlets N , see figure 3.1. The theory has no bare µ-term, but the two modules

suitably mix via a IR-scale mass term mIR arising from a scalar vacuum expectation

value. In this manner, integrating out the heavy Majorana singlet generates an

3Some of these results have been obtained by others (for example, in refs. [60, 61] and more
recently, in ref. [62]).
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High Scale

TeV Scale

Weak Scale

Majorana N

MNNN

Pseudo-Dirac Ψ,Ψc

mΨΨΨ
c + µΨΨ

ℓ,H

Type I seesaw

Inverse seesaw

N → ΨΦλ

Ψ,Ψc → ℓ

µ ≪ TeV

mν ≪ mτ

SM

High Scale Genesis

Low Scale Transfer

Figure 3.1: Schematic representation of physics (seesaw and genesis) of the hybrid
model.

effective µ� TeV for Ψ4

µ ∼ m2
IR

MN

. (3.3)

Taking now mIR ∼ TeV we can explain why µ/mΨ � 1, and therefore the smallness

of neutrino masses: see left-hand side (LHS) of figure 3.1.

The structure of hybrid seesaw, and in particular the characteristic mixing

between the low and high scales modules, arises elegantly from warped extra-

4The basic idea of this model is along the lines of ref. [64], but those authors considered MN ∼
TeV instead. For this reason Leptogenesis is not as successful as in our picture, and µ is not
naturally small according to our criteria.
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dimensions (dual to composite Higgs models) [45,49–52] as shown in ref. [46]. In this

sense, the hybrid seesaw could be taken as a “toy” version of the warped/composite

one. Alternatively, the peculiar coupling structure in figure 3.1 can be enforced in

weakly-coupled 4D models via a gauge symmetry as we will see in appendix E. Be-

cause in the 5D completions mΨ ∼ mIR are both related to the same fundamental

scale (the TeV), that arises dynamically, and simultaneously MN can be effectively

reduced dynamically compared to the Planck scale [46], then it is clear that neutrino

masses can be fully natural in the hybrid picture once UV-completed (i.e., strictly

speaking, going beyond the hybrid model on which we will focus here). This ex-

plains the score “possible” in the appropriate entry in the table (i.e., why it’s not

quite an actual “yes”).

How about leptogenesis in the hybrid seesaw model? We have just seen that

neutrino masses are suppressed by C � 1, suggesting that this is a scenario with

small U(1)B−L-breaking (class (III) above). However, this is not the complete story.

As we will see in detail below (see also [54]), the high scale module violates maxi-

mally a global U(1) carried by Ψ. Because U(1) number violation is large at scales

∼ MN � mΨ, leptogenesis can naturally proceed through the decay of N to Ψ

(analogously to type I seesaw in class (I)), followed by the asymmetry in Ψ being

transferred to the SM leptons: see right-hand side (RHS) of figure 3.1. Hence, the

hybrid model also turn out to score a “yes” in natural leptogenesis.

In particular, in ref. [54] we emphasized that high scale leptogenesis with

anarchic couplings can be realized for MN ∼ 1011 − 1016 GeV. In this work, we will

study this scenario in more detail and also explore the lower scale MN & 106 GeV
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where leptogenesis can be realized albeit with hierarchical Yukawa couplings (among

different generations of N). Such a relaxation of the lower bound on the heavy

singlet mass, compared to the ordinary type I seesaw, might be especially relevant

for resolving the SUSY gravitino problem. Overall, due to the hybrid structure, the

allowed mass window gets enlarged compared to the usual case, 109 − 1015 GeV.

Regarding possible experimental signals in the hybrid seesaw, besides signals

associated with TeV scale fermions as in the conventional ISS (as mentioned above),

the model generally predicts new TeV scale scalars potentially within the reach of

present and future colliders as we have shown in ref. [54]. Certain realizations,

like the gauge model presented in appendix E, also contain light states that may

contribute to ∆Neff and might thus be probed by CMB-Stage-IV [65]. Hence, we

put a “yes” in the experimental signals. Remarkably, this model has the ability to

realize the most attractive features of the high and low scale modules simultaneously.

This chapter is organized as follows. We begin in the next section with an

overview of scenario with small lepton-number breaking (C � 1), i.e. the ISS

and LSS models, and discuss the constraint from the non-observation of µ → eγ.

A thorough analysis of leptogenesis in these models is given in section 3.3 (see also

appendices A and D). Section 3.4 outlines our hybrid seesaw solution of the problems

of the original ISS model. Explicit UV completions of the scenario are presented

in appendix E (gauge model) and chapter 2 (warped/composite model). This is

followed by a detailed discussion of leptogenesis in the hybrid model. In section 3.5

(and appendices B and C) we will provide a systematic derivation of the necessary

analytic formalism, which we believe clarifies many of underlying physics. This
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formalism is then used in section 3.6 to identify what parameter choices give the

right baryon asymmetry, including some interesting benchmark points.

3.2 Scenarios with small U(1)B−L breaking

We begin with a review of what we will refer to as small U(1)B−L breaking

models , that according to our earlier definition have C � 1 [see eq. (3.1)]. These are

characterized by an effective theory with exotic particles not far from the TeV scale

and unsuppressed couplings to the SM, say of order 0.1 − 1. This guarantees that

these scenarios have testable consequences at colliders. Because all new degrees of

freedom are heavy, the SM neutrinos are Majorana particles. To ensure that small

neutrino masses are generated, these scenarios must possess an approximate lepton

number broken by a small dimensionless parameter. The most minimal incarnations

of this scenario has been called inverse seesaw and linear seesaw. We will focus on

these mostly for simplicity sake.

Let us add to the SM two Weyl fermions Ψ and Ψc, singlet under the SM,

carrying lepton number L(Ψ) = +1, L(Ψc) = −1 respectively. In principle we can

combine the pair of Weyl fermions into a Dirac fermion with Ψ (or iσ2Ψc∗) playing

the role of the left (right) chiralities, but we will not do it here for later convenience.

The only U(1)B−L invariant couplings, besides the kinetic terms, are:

LB−L ⊃ mΨΨΨc + yΨcH`+O(1/Λ) + h.c., (3.4)

with `,H the SM lepton and Higgs doublets, respectively. Gauge contractions are
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understood, and the flavor indices for ` (possibly carried by Ψ,Ψc as well) are not

displayed here for brevity. We will include the flavor indices in later parts whenever

they are relevant. We will take mΨ = O(TeV) as a reference value. Possible higher

dimensional operators (denoted by O(1/Λ) in eq. (3.4)) are assumed to be negligible

because they are suppressed by a large scale Λ. We will assume Λ is of the order of

the Planck scale for definiteness.

In the theory eq. (3.4) the active neutrinos remain exactly massless. In order

to obtain a realistic theory with tiny neutrino masses without adding additional

light degrees of freedom, we introduce small sources of U(1)B−L breaking. At the

renormalizable level there exist only three (B − L)-breaking couplings:5

L���B−L =
µ

2
ΨΨ +

µ′

2
ΨcΨc + y′ΨH`+O(1/Λ) + h.c.. (3.5)

The assumption that the U(1)B−L breaking terms are small reads |µ|, |µ′| � |mΨ|,

|y′| � |y|. The terms µ, µ′ correspond to small Majorana masses for the fields Ψ,Ψc.

Conventionally, the ISS model is defined by y′ = 0 while the LSS model by µ = 0.

Generally, in both of these models, µ′ is taken to be zero as well.

The new couplings appearing in eq. (3.5) can all be assigned a spurionic lepton

number, namely L(µ) = L(y′) = −2 and L(µ′) = +2. Because the accidental charges

of µ, µ′∗, y′ are the same, in generic UV completions the new couplings in eq. (3.5)

may in fact arise from a unique fundamental coupling with L = −2. In that case, a

natural consequence of naive dimensional analysis is that, at the order of magnitude

5One may also add ZΨ†iσ̄µ∂µΨc + hc. However, after a field redefinition one realizes this is
equivalent to a correction to the couplings we show.
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level,

y′

y
∼ µ

mΨ

∼ µ′∗

mΨ

. (3.6)

Of course it is possible to build a UV dynamics in such a way that this relation

is violated. Yet, the scaling in eq. (3.6) is what one expects to emerge from truly

generic UV theories. More generally, setting one of the couplings in eq. (3.5) to

zero is not always a radiatively stable assumption. For example, inspecting 1-loop

diagrams we find that starting with a non-vanishing y′ one generates (from log-

divergent piece)

y′ 6= 0 =⇒ δµ ∼ mΨ
y∗y′t

16π2
, δµ′ ∼ mt

Ψ

y′∗yt

16π2
. (3.7)

On the other hand, no renormalization effects are induced by µ, µ′ because these

correspond to a soft-breaking of U(1)B−L. That is, µ and µ′ only self-renormalize

and do not radiatively generate other terms.

Majorana masses mν for the active neutrinos, that have L(mν) = −2, must be

linear in the couplings of eq. (3.5) to leading order in the small (B − L)-breaking.

This can be readily verified by integrating out Ψ,Ψc at tree-level to obtain, in the

leading approximation:

LEFT =
1

2
(H`)t

mν

v2
(H`) + h.c.+O(1/Λ). (3.8)
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where v = 174 GeV and

mν = v2

[
yt

1

mΨ

µ
1

mt
Ψ

y −
(
y′t

1

mt
Ψ

y + yt
1

mΨ

y′
)]

. (3.9)

Note that µ′ does not enter because its U(1)B−L charge forces it to appear in front

of (H`)t(H`) as complex conjugate, which is not possible at tree-level. With the

relation eq. (3.6) the two contributions in eq. (3.8) are naturally of the same order.

The parameter introduced in eq. (3.1) may now be identified as

C ≡ max

(
y′

y
,
µ

mΨ

)
. (3.10)

Lacking a UV description of U(1)B−L breaking, it is fair to say that the small-

ness of µ, y′ is merely an assumption in our effective field theory eqs. (3.4) and

(3.5). While this model does not truly explain the size of the SM neutrino masses,

it provides an interesting laboratory to investigate the phenomenology of scenarios

with small U(1)B−L breaking. A distinctive feature of these models is the presence

of signatures in colliders (see for example [59] and references therein). For mΨ . 1

TeV and sizable y it is in fact possible to produce the pseudo-Dirac fermions at

the LHC via mixing with SM neutrinos and observe its subsequent resonant decay.

Unfortunately, we will not be able to measure the tiny couplings ∝ µ, µ′, y′ and

hence unambiguously connect the exotic particles to a mechanism for neutrino mass

generation. The reason is that in the typical benchmark models from eq. (3.8) one

derives from eq. (3.9) that µ/mΨ, y
′/y ∼ 10−10, that is certainly out of reach of
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current and future colliders.

Besides direct production of Ψc, there can be indirect signatures in rare pro-

cesses, like µ → eγ and the electron EDM. At leading order in (yv)2/m2
Ψ, the

branching ratio can be written as [66]

BRISS(µ→ eγ) ' 3αem

8π

∣∣∣∣∣∣
(
yt

v2

m†ΨmΨ

y∗

)
µe

∣∣∣∣∣∣
2

, (3.11)

where αem ≈ 1/137 is the fine structure constant, v ≈ 174 GeV the SM Higgs VEV,

and we have neglected corrections of order m2
W/m

2
Ψ. The current experimental

bound is BR(µ → eγ) < 4 × 10−13 [67]. For anarchic couplings and masses this

translates into y/mΨ . 2.7 × 10−2/TeV. However, the bound can be significantly

relaxed by using flavor symmetries. One very efficient way to achieve this is to

assume that the Lagrangian eq. (3.4) has a global U(1)e×U(1)µ×U(1)τ symmetry

under which the three generations of `, e,Ψ,Ψc transform [68].6 This assumption

forces y,mΨ, as well as the SM lepton Yukawa coupling, to be diagonal in flavor

space and therefore µ→ eγ to vanish. The symmetry U(1)e×U(1)µ×U(1)τ is then

weakly broken by the (B−L)-violating couplings in eq. (3.5) to ensure large mixing

angles in the PMNS matrix. As a result, we find a huge suppression O(C4) with

respect to the result eq. (3.11), i.e. BR(µ → eγ) ∼ BRISS(µ → eγ)C4. Similarly,

one can verify that all CP-odd phases can be removed from y,mΨ, and the first new

physics contribution to the EDMs is suppressed by at least C4. We thus see that

the non-observation of rare processes does not represent a robust constraint on this

6One may use gauge symmetries to enforce this possibility.
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scenario. The most model-independent constraints on y,mΨ come from ElectroWeak

(EW) precision tests and are of order y/mΨ . 0.1/ TeV (see for example [59] and

references therein).

3.3 Leptogenesis with small U(1)B−L breaking

In this section we present analytic estimations of the baryon asymmetry from

thermal leptogenesis in TeV scale models with small U(1)B−L breaking. We show the

results for two specific models: the inverse seesaw and linear seesaw models, as well

as combinations of the two. Our qualitative conclusions are however more general

and may extend to a broader class of models with small lepton number violation.

In section 3.3.1 we determine the size of the CP parameter, the washout factor and

the final baryon asymmetry. Our results will demonstrate that TeV scale models

with anarchic (i.e., roughly of same order but not degenerate) couplings and mass

parameters tend to predict too small baryon asymmetry. An intuitive interpretation

of the parametric dependence of these results is shown in section 3.3.2 based on the

(generalized) Nanopoulos-Weinberg theorem. Finally, in section 3.3.3, we identify

a few possibilities that can give rise to successful (sub-)TeV scale leptogenesis with

small lepton-number breaking. Conclusions similar to ours are obtained in the

numerical analysis of ref. [62].
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3.3.1 Leptogenesis in TeV scale inverse and linear seesaw

In this section, instead of studying thermal leptogenesis in the most general

model [eq. (3.4) and eq. (3.5)], we illustrate the main results in two limiting cases,

namely the ISS and LSS models. The Lagrangians we consider are

−LISS ⊃ yaαΨc
aH`α +mΨaΨaΨ

c
a +

µab
2

ΨaΨb + h.c., (3.12)

−LLSS ⊃ yaαΨc
aH`α +mΨaΨaΨ

c
a + y′aαΨaH`α + h.c., (3.13)

where α = {e, µ, τ} denotes SM lepton flavor index and a, b are the generation

indices for Ψ. Without loss of generality, we work in the basis where mΨ is diagonal

and real. For both models, we demand the singlet neutrinos come in two generations

(a, b = {1, 2}), which is the minimum number of generations required to achieve the

realistic neutrino mass matrix. Qualitative results in such two-generation model will

not differ much from three-generation one. In the rest of this section, we demand

that y & 0.01 and define7

ε ≡ µ/mΨ � 1, ε′ ≡ y′/y � 1. (3.14)

These are the natural choice of parameters for both seesaw models to obtain the

SM neutrino masses and testable collider signals. The smallness of neutrino mass is

controlled by the smallness of ε or ε′ [see eq. (3.9)].

7Since we mostly assume couplings and masses are anarchic in this section, we will simply use
variables without generation or flavor indices to show the parametric dependence.
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To be concrete here we will present the case of the ISS model. Similar con-

clusions can be drawn for the LSS model, as we emphasize at the end of section

3.3.1 and a more quantitative analysis is shown in the appendix A. Starting from

eq. (3.12), we can write

µ =

µ1 µ̄

µ̄ µ2

 , (3.15)

where we define µa(µ̄) as the diagonal (off-diagonal) parts of µ matrix. In general,

the µ matrix is complex. However, since we assume all the phases of each element

are order one, and yet we will be doing order of magnitude parametric estimation,

including those will make at most O(1) changes, but will not modify the parametrics

of our estimations. For the sake of simplicity, then we simply treat all elements as

real numbers. Assuming µa ∼ µ̄� mΨa , |mΨ2 −mΨ1|, we can diagonalize the Ψ,Ψc

mass matrix to first order in εa ≡ µa/mΨa(a = 1, 2) and µ̄/mΨa . Defining four

Majorana states (Ψ̃i, i = 1, 2, 3, 4) with real masses (mi, i = 1, 2, 3, 4) we have

−Lmass
ISS ⊃ hiαΨ̃iH`α +

1

2
miΨ̃iΨ̃i + h.c.. (3.16)
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To first order in εa and µ̄/mΨ, their masses and couplings hiα are given as (ref. [69])

m1 ' mΨ1

(
1− ε1

2

)
; h1α '

i√
2

(
y1α +

ε1

4
y1α + ε̄1y2α

)
m2 ' mΨ1

(
1 +

ε1

2

)
; h2α '

1√
2

(
y1α −

ε1

4
y1α − ε̄1y2α

)
m3 ' mΨ2

(
1− ε2

2

)
; h3α '

i√
2

(
y2α +

ε2

4
y2α − ε̄2y1α

)
m4 ' mΨ2

(
1 +

ε2

2

)
; h4α '

1√
2

(
y2α −

ε2

4
y2α + ε̄2y1α

)
, (3.17)

where

ε̄1 =
µ̄mΨ2

m2
Ψ2
−m2

Ψ1

, ε̄2 =
µ̄mΨ1

m2
Ψ2
−m2

Ψ1

. (3.18)

From eq. (3.17), we see that (Ψ̃1, Ψ̃2) and (Ψ̃3, Ψ̃4) form pseudo-Dirac pairs with

small Majorana mass splitting. The mass splitting between a pseudo-Dirac pair is

only controlled by diagonal µa while both µa and µ̄ modify the Yukawa couplings.

Taking the limit µa, µ̄ → 0, one can easily find that m1 = m2, m3 = m4 and

h1α = ih2α, h3α = ih4α, as expected for pure Dirac states.

3.3.1.1 CP asymmetry

Now we are ready to calculate the CP asymmetry from the decay of each

Majorana state Ψ̃i → `αH, (`αH)∗. After summing over SM lepton flavor α, we
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get:8

εi ≡
∑

α

[
Γ(Ψ̃i → `αH)− Γ(Ψ̃i → `αH

∗)
]

∑
α

[
Γ(Ψ̃i → `αH) + Γ(Ψ̃i → `αH∗)

] =
1

8π

∑
j 6=i

Im[(hh†)2
ij]

(hh†)ii
fij, (3.19)

where fij ≡ fv
ij + f self

ij comprises a contribution from vertex corrections [73]

fv
ij = g

(
m2
j

m2
i

)
; g(x) =

√
x

[
1− (1 + x) ln(1 +

1

x
)

]
, (3.20)

as well as a self energy correction to the decay [60,61]

f self
ij =

(m2
i −m2

j)mimj

(m2
i −m2

j)
2 +m2

iΓ
2
j

. (3.21)

Here Γj ≡ (hh†)jjmj/(8π) is the decay width of Ψ̃j.

Let’s take a close look at ε1 and ε2 in eq. (3.19):

ε1 =
1

8π(hh†)11

Im[(hh†)2
12f12 + (hh†)2

13f13 + (hh†)2
14f14],

ε2 =
1

8π(hh†)22

Im[(hh†)2
21f21 + (hh†)2

23f23 + (hh†)2
24f24]. (3.22)

Given that the pseudo-Dirac pairs are almost degenerate in mass, the number den-

sity of two states are approximately the same. As a result (see appendix D), it is

appropriate to consider ε1 + ε2 and ε3 + ε4 as the effective CP asymmetry for each

8Assuming anarchy of Yukawa couplings hiα, the lepton asymmetry produced will be distributed
among all the lepton flavors in roughly equal proportion. For simplicity, we ignore the small
differences in the various flavor asymmetries and sum over α. When couplings are hierarchical
flavor effects [70–72] could play a more relevant role, and we will briefly mention about it in
section 3.3.3.
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generation. Due to the pseudo-Dirac nature, one finds that

(hh†)2
13 ' −(hh†)2

23 ' −(hh†)2
14 ' (hh†)2

24 ; f13 ' f14 ' f23 ' f24 . (3.23)

This means that when we consider the sum of ε1 and ε2, parts involving f13 and f14

in ε1 will cancel against the corresponding parts with f23 and f24 in ε2 to first order.

Also, if we consider the generic parameter region of the ISS, i.e.,

µa ∼ µ̄� Γi � mΨa ∼ |mΨ2 −mΨ1|, (3.24)

and no hierarchies in mass or couplings among singlet generations and SM flavors,

we would get ε̄1,2 ∼ µ̄/mΨ1,2 and

−f self
12 ' f self

21 ∼ ε1

(
mΨ1

Γ2

)2

, fv
12 − fv

21 ∼ ε1,

(f13 − f14) ∼ ε2 , (f13 − f14 − f23 + f24) ∼ ε1ε2. (3.25)

Therefore, the terms involving f self
12 and f self

21 dominate in ε1+ε2, giving [see eq. (3.22)]

ε ≡ ε1 + ε2 ∼
Im[(yy†)2

12]

(yy†)2
11

ε̄1
µ1/mΨ1

(yy†)11/(16π)
+O

(
ε2 Γ

mΨ

)
+O

(
ε̄2 Γ

mΨ

)
∼ µ̄

mΨ

µ

Γ
(3.26)

where we have dropped the family indices for µ and Γ to show only the parametric

dependence. To go from the first line of eq. (3.26) to the second line, we only kept

the dominant piece based on our choice of parameter region of ISS in eq. (3.24).
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Similarly, ε3 + ε4 can be obtained by changing index 1→ 2 and 2→ 1 in eq. (3.26),

resulting in the same parametric dependence.

For completeness, we also show the parametric dependence of ε1,2:

ε1 ≈ −ε2 = O

(
µ̄

mΨ

µ

Γ

)
+O

(
µ

mΨ

Γ

mΨ

)
+O

(
µ̄

mΨ

Γ

mΨ

)
. (3.27)

We only use ε1 + ε2 instead of individual ε1 or ε2 in our study of leptogenesis.

However, they are relevant for the argument in appendix D.

If we assume µ ∼ µ̄ and enforce mν ∼ 0.05 eV via eq. (3.9), eq. (3.26) becomes

(see also refs. [60, 61])

ε ∼ µ

mΨ

µ

Γ
∼ 16πm2

νm
2
Ψ

y6v4
∼ 10−10

( mΨ

TeV

)2
(

10−2

y

)6

. (3.28)

As we will see shortly [eq. (3.29)], |ε| should be & 10−7 to generate the observed

baryon asymmetry via leptogenesis and eq. (3.28) falls short by three orders of

magnitude. From eq. (3.28), it seems that one can obtain a larger value by reducing

Yukawa couplings y. However, this approach will not allow us to obtain sufficient

baryon asymmetry once we, as required, include the washout effects. We will discuss

this in the following section.
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3.3.1.2 Washout and baryon asymmetry

The final baryon asymmetry through leptogenesis from decays of Ψ̃i → `αH, (`αH)∗

can be parametrized as follows

Y∆B ≡
nB − nB̄

s
∼ 10−3ε η, (3.29)

where nB(B̄) is the number density of baryons (anti-baryons) and s is the total

entropy density of the thermal bath. The pre-factor ∼ 10−3 comes from relativistic

number density of Ψ̃i normalized to the entropy density s. The efficiency factor

η is always less than unity and parametrizes the effect of washout processes. It is

obtained by solving the Boltzmann equations. The efficiency of leptogenesis can be

parametrized by the so-called washout factor [40]

Ki ≡
Γi

H(T = mi)
(3.30)

where H(T ) ∼ √g∗ T 2/MPl is the Hubble rate with T being the thermal bath

(photon) temperature, g∗ the number of relativistic degrees of freedom and MPl =

1.22×1019 GeV the Planck mass. In the ISS scenario, due to the approximate lepton
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number conservation, the washout from inverse decay is actually controlled by [74]9

Keff ∼ Kδ2, (3.31)

where δ ≡ |∆m|/Γ ' µ/Γ with ∆m = m2 − m1 or m4 − m3. Also, we dropped

generation index for simplicity of notation and we will do so below when there is

no chance of confusion. Consistently, this quantity vanishes in the lepton number

conserving limit. Notice that we can express eq. (3.26) as

ε ∼ Γ

mΨ

δ2, (3.32)

where we have taken µ̄ ∼ µ.

If Keff > a few, the washout from inverse decay (H`α, (H`α)∗ → Ψ̃i) is efficient

(strong washout regime) and η ∼ 1/Keff (see appendix B.2.2). In this regime,

substituting eqs. (3.32) and (3.31) into eq. (3.29), the baryon asymmetry is estimated

to be

Y∆B ∼ 10−3√g∗
mΨ

MPl

∼ 10−18
( mΨ

1TeV

)
, (3.33)

where we have taken
√
g∗ ∼ 10. This analytic estimation was first obtained in our

9The appearance of δ2 may be understood as follows. In the limit µ→ 0, since lepton number
is preserved, no process can washout (or produce) the asymmetry. Therefore, the effective washout
factor must vanish as µ→ 0. Another (more technical) way to see this is to recall that the washout
from the inverse decay can be obtained by the on-shell part of ∆L = 2 H` ↔ (H`)∗ scattering.
Due to the near degeneracy, this scattering gets contribution from both s-channel Ψ̃1 and Ψ̃2 and
importantly, most of their contributions cancel. The surviving piece comes from interference of
the two and is proportional to δ2.
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earlier paper [54]. Clearly, a TeV scale mΨ will result in a too small asymmetry

compared to the observed value Y obs
∆B ≈ 9 × 10−11 [75]. Remarkably, in the strong

washout regime, the final baryon asymmetry (Y∆B) for the ISS model with anarchic

couplings and masses reduces to the simple formula [eq. (3.33)] which does not

depend on µ and y.

To complete our discussion, we also need to consider the weak washout regime,

where Keff < 1. ISS model has a peculiar feature that the production of singlets is

controlled by K [eq. (3.30)], whereas the washout is controlled by Keff [eq. (3.31)].

Assuming no initial abundance of Ψ̃i, there are two cases in weak washout region

and the corresponding efficiency factors η are

η ∼


Keff (Keff < 1 and K > 1 with no initial Ψ̃i)

K ×Keff (Keff < 1 and K < 1 with no initial Ψ̃i),

(3.34)

as derived in appendix B.2.1. We emphasize that such parametric dependence of

η is qualitatively different from that of usual type I seesaw (i.e., η ∼ K2). To the

best of our knowledge, this analytic result, especially which of Keff , K should ap-

pear in η, has not been discussed in the literature. The intuitive understanding of

this parametric dependence is as follows. Firstly note that neglecting the washout,

there will be opposite and equal amounts of asymmetry generated during the pro-

duction and decay of singlets Ψ̃i. These opposite sign asymmetries would cancel

each other resulting in zero asymmetry. However, including the effect of washout,

the asymmetry generated earlier (i.e. during the production of the singlets) expe-
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riences more washout and the cancellation among the opposite sign asymmetries is

not perfect anymore. The net asymmetry is therefore suppressed by the washout

factor Keff . This factor is seen in both lines of eq. (3.34). Secondly, the asymme-

try generated during production and decay of singlets are each proportional to the

maximum yield of the singlets or equivalently to their yield when T = mΨ, which is

O(1) for K > 1 while parametrically suppressed by K when K < 1 . This explains

the extra suppression by K in the second line of eq. (3.34). See appendix B.2.1 for

more detail.

If we, on the other hand, assume Ψ̃i acquires thermal initial abundance with

zero initial asymmetry,10 the efficiency factor is of the order

η ∼ O(1) (Keff < 1 with thermal initial Ψ̃i). (3.35)

Putting everything together, in the weak washout regime, we have

Y∆B ∼ 10−3ε η ∼


10−3√g∗ mΨ

Mpl
(Keff) (Keff < 1 with thermal initial Ψ̃i)

10−3√g∗ mΨ

Mpl
(Keff)2 (Keff < 1 and K > 1 with no initial Ψ̃i)

10−3√g∗ mΨ

Mpl
(Keff)2K (Keff < 1 and K < 1 with no initial Ψ̃i).

(3.36)

We see that in all cases the final baryon asymmetry in the weak washout regime

Keff < 1 is smaller compared to that of strong washout in eq. (3.33). Therefore,

10For instance, if Ψ̃i is charged under new gauge symmetries (e.g. U(1)B−L), they can acquire
an initial thermal abundance.
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Model CP asymmetry (ε) Efficiency (η) Baryon asymmetry (Y∆B)

Inverse seesaw Γ
mΨ
δ2 .

(
Γ
H
δ2
)−1

. 10−3√g∗ mΨ

Mpl
∼ 10−18

(
mΨ

1TeV

)
Linear seesaw Γ

mΨ
ε′2 .

(
Γ
H
ε′2
)−1

. 10−3√g∗ mΨ

Mpl
∼ 10−18

(
mΨ

1TeV

)
Table 3.2: Summary of the parametric dependence of CP asymmetry, washout,
baryon asymmetry in inverse [see eq. (3.12)] and linear seesaw [see eq. (3.13)]. The
parameters ε, ε′ are defined in eq. (3.14), wheres δ below eq. (3.31).

the TeV scale ISS model with anarchic mass and coupling cannot provide successful

leptogenesis.

An analogous calculation for the LSS model is shown in appendix A and the

parametric dependences of the final baryon asymmetry of the two seesaw models

are in fact the same, as we summarize in table 3.2. Therefore, we conclude that

TeV scale ISS and LSS model with anarchic parameters (y,mΨ, µ or y′) and sizable

y cannot give rise to successful leptogenesis.

3.3.2 Nanopoulos-Weinberg theorem

As discussed in the previous section, the CP asymmetries in TeV scale ISS

and LSS models are small because they are respectively ε ∝ δ211 and ε′2, where δ, ε′

are the tiny parameters characterizing the small lepton number violation. We will

argue in this section that this feature can indeed be anticipated due to Nanopoulos-

Weinberg (NW) theorem (ref. [76]) and similar conclusions can be drawn in some

11One might wonder why the lepton-number violation is captured by ε ∼ µ/mΨ in the case
of the neutrino mass, and by δ ∼ µ/Γ in the case of CP-violation (and leptogenesis). This may
follow from the fact that while the generation of mν is off-shell phenomenon (i.e. simply integrate
out Ψ̃’s), that of CP-violation and related asymmetry generation occurs near on-shell. Especially,
when the genesis goes through the resonance-enhancement, on top of parametric lepton-number
violation ε, it acquires extra kinematic (resonance-)enhancement ∼ mΨ/Γ, yielding the associated

net breaking parameter ∼
(

µ
mΨ

) (
mΨ

Γ

)
∼ δ.
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variations of ISS or LSS models, or combination of both.

The NW theorem states that, in the CP-violating decay process, if the particle

can decay only through baryon (lepton) number violating parameters (e.g. Type-

I), a nonzero CP asymmetry can be generated starting at third order in baryon

(lepton) number violating parameters. In addition, the generalized version of the

NW theorem (refs. [77, 78]) says that, if the decaying particle, on the other hand,

can decay through both baryon (lepton) number violating and conserving couplings,

the CP asymmetry may be generated at second order in baryon (lepton) number

violating parameters.

Now we apply both theorems to check our results for the ISS and LSS models.

The CP asymmetry in decay width is given in eq. (3.26) for ISS and eq. (A.9) for

LSS:

∑
i

∑
f

|Γ(Ψ̃i → f)− Γ(Ψ̃i → f̄)| ∝


Im[(yy†)2

12]δ2 (ISS)

Im[(yy†)12(y′y′†)12] (LSS),

(3.37)

where we sum over almost degenerate Ψ̃i states and all final states f .

For the ISS, if we assign the lepton number charges L(`) = L(Ψ) = −L(Ψc) =

1, the Yukawa coupling y is lepton number conserving and µ is the only lepton

number violating parameter. Then Ψ,Ψc can decay also via number-conserving

interactions and, following the extended version of the NW theorem, the CP asym-

metry should be O(µ2). The CP asymmetry in eq. (3.37) indeed contains δ2, hence
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∝ µ2.

Similarly for the LSS, we can always assign lepton number such that only one

of y or y′ violates lepton number. Since Ψ,Ψc can decay through either y or y′, it

always follows the extended NW theorem. Therefore, we expect the CP asymmetry

is proportional to two powers of y and two powers of y′, which matches the result

in eq. (3.37).

In general, NW theorem forces the CP asymmetry from singlets decay to be

O(δ2) or O(ε′2), which is suppressed in models with small lepton number breaking.

Adding further lepton number conserving decay channels or new generations of

leptons would not alter this result.

3.3.3 Possible variations to achieve successful leptogenesis

Our discussion so far assumed anarchic couplings and masses and considered

either a small µ or a small y′, separately. In this subsection we relax these assump-

tions with the aim of looking for models with small U(1)B−L violation that can

result in larger final asymmetry compared to eq. (3.33).

3.3.3.1 Inverse seesaw with degeneracy among different generations

We first consider the possibility that the singlet masses are quasi-degenerate

among different generations :

∆mΨ ≡ |mΨ2 −mΨ1|, (3.38)
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with µ � ∆mΨ � mΨ1 ,mΨ2 so that our previous formulae in section 3.3.1 still

apply. Although quasi-degeneracy in mass within a pseudo-Dirac pair is naturally

obtained due to approximate lepton number, to realize quasi-degeneracy in mass

among singlets of different generations in a natural way, an approximate family

symmetry is necessary as was done, for example, in the resonant leptogenesis sce-

nario [79–81]. In scenarios with minimal flavor violation, even if ∆mΨ is set to

zero at the tree level, generally Yukawa couplings might break the family symmetry,

generating ∆mΨ at loop level of the size12

∆mΨ

mΨ

&
y2

16π2
. (3.39)

In this case, the ε̄1,2 which parametrically is given by (see eq. (3.18))

ε̄1 ∼ ε̄2 ∼
µ̄

∆mΨ

, (3.40)

can be enhanced. Substituting eq. (3.40) into eq. (3.26), one has

ε ∼ µ

mΨ

µ

Γ

mΨ

∆mΨ

. (3.41)

When two generations are nearly degenerate, thus, the CP asymmetry is enhanced

compared to eq. (3.26) by a factor of mΨ

∆mΨ
. The washouts are nevertheless un-

12For recent work on leptogenesis in minimal flavor violation models with degeneracy among
different generations of singlets, see for example, [82].
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changed.13 So the final result scales as

Y∆B ∼ 10−3√g∗
mΨ1

Mpl

mΨ

∆mΨ

. (3.42)

The right size of Y∆B may be obtained by choosing the right size for mΨ

∆mΨ
. How-

ever, we are not completely free to choose its value here. In particular, our analysis

is done under the assumption that ∆mΨ � µ14 and (technical) naturalness indi-

cates that ∆mΨ/mΨ & y2/16π2. Combining these two with the constraint from

the neutrino mass, i.e. mν ∼ y2v2µ/m2
Ψ, gives rise to an upper bound on the en-

hancement factor mΨ/∆mΨ � 107. Therefore, we conclude that while degeneracy

among different singlet generation can induce a significant enhancement in the final

asymmetry, whether or not the actual observed quantity can be accounted requires

a careful numerical study. We find it quite likely that the observed asymmetry may

be explained by this effect, but only in a small corner of the parameter space with

y ∼ 10−3 for mΨ ∼ TeV.

13The contribution to Keff has two pieces in the non-degenerate case: Keff =

K
[
O(µ

2

Γ2 ) +O( µ
2

m2
Ψ

)
]
. The second term is suppressed compared to the first one and thus we only

keep the first term in the previous estimation. In the case we discussed here, where there is de-
generacy among different generations, the first term is still unchanged. This is because the first
term is controlled by the mass splitting within each generation, which will not be modified by

the degeneracy among different generations. The second term, however, is enhanced by
m2

Ψ

∆m2
Ψ

:

K µ2

m2
Ψ

m2
Ψ

∆m2
Ψ

. Now these two terms are comparable due to the assumption in eq. (3.39) and the

parametric dependence of Keff remain the same as in eq. (3.31).
14Implicitly, we also assumed Γ � µ to get a concrete expression. However, a straightforward

check can confirm that while CP and washout factor will change (basically replacing µ/Γ with
Γ/µ), the final asymmetry will be the same as the one we show above.
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3.3.3.2 Inverse seesaw + linear seesaw

ISS and LSS models were treated separately in the previous discussions, see

eqs. (3.12) and (3.13). Now we consider scenarios in which both µ, y′ are non-

vanishing:15

−LISS+LSS ⊃ yaαΨc
aH`α + (mΨ)aΨaΨ

c
a +

(µ)ab
2

ΨaΨb + y′aαΨaH`α + h.c.. (3.43)

For this model we will only consider one generation of singlets. Nothing qualitatively

new happens when more generations are included (unless they are nearly degenerate,

in which case one can use the results of the previous subsection). As previously

shown in ref. [74], the CP asymmetry is parametrized as

ε ∼ Γ

mΨ

(
O(δ2) +O(δε′

mΨ

Γ
) +O(ε′2)

)
. (3.44)

Following the analysis in ref. [74], the washout can be worked out as

Keff ∼ Γ

H

(
O(δ2) +O(ε′2) +O(εε′)

)
. (3.45)

Based on eqs. (3.44) and (3.45), it is obvious that in the limit where y′ → 0 or µ→ 0,

we recover the results for the ISS or LSS (at tree level) models (see table 3.2).

Now we would like to find if there exists a range of parameters where the

15In principle there could also be µ′ΨcΨc term, see eq. (3.5). However, such a term does not
enter neutrino mass formula and has similar effects as µ in leptogenesis. Therefore we neglect it
in this study.
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asymmetry is larger than eq. (3.33). To do this, let us first focus on the strong

washout regime for definiteness. Under this hypothesis the final asymmetry is given

by ε/Keff and

Y∆B ∼ 10−3√g∗
mΨ

Mpl

×

1 +O
(
ε′2

δ2

)
+O

(
ε′mΨ

δΓ

)
1 +O

(
ε′2

δ2

)
+O

(
ε′Γ
δmΨ

)
 . (3.46)

For ε′/δ � Γ/mΨ or ε′/δ � mΨ/Γ one can readily see that the square bracket in

eq. (3.46) becomes of order unity. In these limits, one can check that terms only

involving µ (when ε′/δ � Γ/mΨ) or y′ (when ε′/δ � mΨ/Γ) will be dominant in

both neutrino mass formula [eq. (3.8)] and leptogenesis [see eqs. (3.44) and (3.45)].

Clearly, these limits correspond to the cases studied above, namely the ISS and LSS

respectively.

The only unexplored region of parameter space is Γ/mΨ � ε′/δ � mΨ/Γ,

where we have

[· · · ] ∼ mΨ

Γ

O
(
ε′

δ

)
1 +O

(
ε′2

δ2

) . (3.47)

Here [· · · ] refers to the expression inside the square bracket in eq. (3.46) and is

maximized at ε′ ∼ δ. Interestingly, in this regime, the neutrino mass formula is

dominated by terms containing y′, whereas both µ and y′ have a significant im-

pact on the asymmetry. Because both y′, µ are necessary here, this case does not

correspond to any model we discussed before. The final asymmetry is given by

Y∆B ∼ 10−3√g∗ mΨ

Mpl

mΨ

Γ
. This result is enhanced by a factor mΨ/Γ compared to the
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typical value in eq. (3.33).

Let us therefore consider δ ∼ ε′. First of all, such condition might be real-

ized quite naturally starting with a LSS framework and generating a µ term from

radiative corrections. This way one expects [see eq. (3.7)]

δ =
µ

Γ
∼ yy′mΨ

16π2
× 16π

y2mΨ

∼ 1

π
ε′,

which is not far from the required relation. Then we can relax the assumption of

strong washout (Keff > 1) and estimate the final baryon asymmetry more generally.

In this regime Keff ∝ y′2, K ∝ y2 and the SM neutrino mass mν ∝ yy′. This

implies that in the weak washout region (i.e., Keff < 1) we always have K > 1 for

mΨ ∼ TeV. We thus have only two of the options previously considered in eq. (3.36).

Finally, the baryon asymmetry scales as

ε ∼ ε′2, Keff ∼ Γ

H
ε′2,

⇒ Y∆B ∼


10−3 ε

Keff ∼ 10−3√g∗ mΨ

Mpl

mΨ

Γ
(Keff > 1)

10−3εKeff (Keff < 1 with no initial Ψ̃i)

10−3ε (Keff < 1 with thermal initial Ψ̃i).

(3.48)

These values are shown in figure 3.2 as a function of y with mΨ = 1 TeV. Figure 3.2

indicates the observed baryon asymmetry can be obtained if y = O(10−5 − 10−4).

To conclude, we found that successful leptogenesis is achievable in scenarios

of ISS + LSS with δ ∼ ε′, provided the Yukawa couplings are small enough. The
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Figure 3.2: The baryon asymmetry Y∆B as a function of y in the case where δ ∼ ε′ in
ISS+LSS models. Here mΨ is fixed to be 1 TeV. The blue dashed line shows result
with initial thermal abundance of Ψ̃i while the solid brown line shows the results
with no initial Ψ̃i abundance. The vertical dotted lines indicate the border between
the strong and weak washout regions. The orange line shows where the observed
baryon asymmetry is obtained. Here we only plot the region where y > y′, meaning
y >
√
yy′ ∼

√
mνmΨ/v2 ≈ 10−6. When y < y′, the results can be simply obtained

by the exchange the role of y and y′.

Yukawa coupling needed for leptogenesis, y = O(10−5 − 10−4), clearly lies outside

of the window of our naturalness criteria and is also too small to provide signals at

colliders. Therefore, we will not consider this option any further.

3.3.3.3 Other mechanisms

There are several alternative options that may allow us to achieve a successful

TeV scale (or lower) leptogenesis in scenarios with small U(1)B−L breaking. We here

mention a few that were originally realized in the context of type I seesaw model

with singlet fermions. We will however not discuss them in detail because they all

require unnatural couplings or flavor symmetries.

As a first option, if there is certain hierarchical structure in the Yukawa cou-

pling yaα (i.e. deviations from anarchical as well as natural values), lepton flavor
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effects can play an important role [70–72] in enhancing the efficiency since an op-

timal regime can be realized by having the lepton asymmetry stored in the lepton

flavors that suffer the least washout. As we have touched upon earlier, a second

option is allowing quasi-degeneracy in singlet mass of different generations—as in

resonant leptogenesis [79–81]. This can be realized by imposing approximate fam-

ily symmetry. In ref. [83], while total lepton number violation can be very small

(or even conserved), both lepton flavor effects and quasi-degenaracy among mass of

singlets have been utilized to achieve leptogenesis at around TeV scale.

Finally we should mention an alternative mechanism for leptogenesis. While

the present work focuses on leptogenesis from decays of singlets, the lepton asym-

metry can also be realized via flavor oscillation among singlets, as first pointed out

by Akhmedov, Rubakov and Smirnov (ARS) [84]. One distinguishing feature of the

ARS mechanism is that leptogenesis must occur at a scale higher than the singlet

mass, T > mNP, when oscillations among sterile neutrinos can be important. Al-

though the total lepton number is approximately conserved, flavor oscillation among

singlets can create an asymmetry in some singlet flavor. The singlets that are in

thermal equilibrium can subsequently transfer their asymmetry to the SM lepton

doublets and finally, via the EW sphalerons, to the baryon sector. Requiring the

generation of lepton asymmetry takes place while the EW sphalerons are still ac-

tive (T & 100 GeV), implies the mass of new singlets involved in ARS leptogenesis

must be well below the weak scale, mNP < 100 GeV. They may hence be probed in

neutrinoless double beta decay experiments and high intensity beam experiments.

In this scenario, a hierarchy in yaα is needed such that at least one of the singlets
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does not reach thermal equilibrium until after EW sphaleron processes freeze out to

prevent the washout of the asymmetry. According to our earlier definition, a certain

amount of unnaturalness is thus required to realize this mechanism as well. In the

context of ISS model, ARS leptogenesis with GeV scale singlets has been studied in

refs. [85, 86].

3.4 General idea of the hybrid seesaw

Low-scale seesaw models with small lepton-number violation are confronted

with several issues that make them not fully satisfactory. In particular, the required

smallness of lepton-number breaking terms, the central ingredient for the seesaw

mechanism, is often left unexplained. Even though the requirement C � 1 is

consistent with the criteria of technical naturalness, one finds it not fully convincing

because it has no clear origin within that description. In this sense the smallness

of neutrino masses is not truly explained. The second major issue was discussed in

section 3.3 and corresponds to the difficulty with regard to the question of explaining

the observed baryon-anti-baryon asymmetry of the Universe via leptogenesis.

In this work, we will show that there exists a rather simple and motivated

extension that addresses both issues. Before we get to more technical discussions,

however, in this section we present a qualitative description of our model. We hope

this makes the big picture and expected outcomes more transparent, which often

could be obscured by otherwise essential details. For concreteness of discussion, in

the rest of the chapter, we will focus on an extension of the inverse seesaw model.
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3.4.1 Natural µ term and successful leptogenesis

Our hybrid seesaw model (proposed in [54] and also discussed in [55]) is based

on the following Lagrangian:

−L ⊃ yaαΨc
aH`α + κaΨ

c
aΦκΨa + λiaNiΦλΨa +

1

2
MNiNiNi + H.c., (3.49)

where H and `α (α = e, µ, τ) are the SM Higgs and lepton doublets and the SU(2)L

contraction is left implicit. The new fermions Ni, (Ψc
a,Ψa) and the two complex

scalars Φκ and Φλ are SM gauge singlets. We assume Φκ and Φλ have masses and

develop vacuum expectation values of order the TeV scale. As a result (Ψc
a,Ψa) get

a mass of that order as well. On the other hand we will take MNi � TeV. Our

model is therefore the marriage of a TeV scale module (Ψ,Ψc,Φλ,Φκ) and a heavy

module (Ni).

The model in eq. (3.49) represents a very special combination of the standard

type I and the inverse seesaw. Specifically, the fermions Ni are analogous to those

of the type I seesaw, whereas (Ψc
a,Ψa) play the role of the pseudo-Dirac fermions

present in the usual inverse seesaw model of section 3.2. However, to realize our

hybrid version of the seesaw it is crucial that there is no direct coupling between

the heavy module N and the SM, i.e. `H. The heavy sector interacts with the SM

only via the TeV module, see figure 3.1. This ensures that the virtual exchange of

Ni does not generate neutrino masses, but rather a small Majorana mass term for

Ψa (after the scalar Φλ acquires VEV).

57



To be more specific, the connection with eqs. (3.4) and (3.5) in section 3.2 or

eq. (3.12) in section 3.3 can be made clear by noting that integrating out the heavy

Majorana singlet N , we get

µab =
∑
i

λiaλib 〈Φλ〉2
MNi

(3.50)

mΨa = κa 〈Φκ〉 . (3.51)

Using this in eq. (3.9), the SM neutrino mass is found to be (dropping flavor

indices for simplicity)

mν ∼
[

(yv)2

MN

](
λ〈Φλ〉
κ〈Φκ〉

)2

. (3.52)

The first factor in eq. (3.52) is the usual neutrino mass formula in high-scale type-I

seesaw, i.e., the one we would have obtained had N directly coupled to `H. Instead,

here the TeV-scale particles Ψ,Ψc,Φλ,Φκ mediate lepton number violation from the

heavy singlet N to the SM sector: see LHS of figure 3.1. This is the origin of the

second factor in the SM neutrino mass formula above, which may thus be viewed as

a “modulation” by TeV-scale physics.

Moving on to the leptogenesis, we have seen in section 3.3 that generically

models with C � 1 and natural couplings and masses fail to produce the observed

baryon asymmetry. Hence, the inverse seesaw should be equipped with a primordial

baryon asymmetry. In the hybrid model of eq. (3.49) the latter in fact originates
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from the decays

Ni → ΦλΨa. (3.53)

These do not induce an asymmetry in the SM ` directly, but first in Ψ. The asym-

metry in Ψ is then distributed to Ψc via sizable κ and then eventually into SM

lepton number asymmetry via a large Yukawa y in eq. (3.49). Again, just like in the

case of neutrino mass generation, we see that the TeV-scale particles (Ψ,Ψc,Φκ and

Φλ) acts as a mediator of lepton number violation from Ni to the SM (see RHS of

figure 3.1). In addition, decays of Ψ,Ψc can lead to washout of the UV asymmetry.

Thus, this process is completed through an interesting and subtle interplay between

physics at UV and IR (details of which are discussed in the following two sections).

Remarkably, with a single move, we have cured the two most important hurdles of

the inverse seesaw model. Namely, the structure of the hybrid seesaw model is such

that the small neutrino masses are controlled by the small Majorana mass of Ψ as

in the usual inverse seesaw model. The twist here is that the smallness of this Ma-

jorana mass is explained by a version of high-scale type I seesaw and baryogenesis

is then primarily achieved by the decay of the associated heavy fermions (as in the

standard type I high-scale seesaw).

There are, however, several aspects that tell us eq. (3.49) is incomplete. (a)

We introduced new scalar fields that undergo symmetry breaking phase transition16

16As we will discuss in detail later, dynamical scalars, as opposed to their VEVs, are required
in order to be able to set thermal equilibrium between the SM and the singlet sectors in the early
Universe and enable leptogenesis within the singlet sector.
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and, given that phenomenologically the size of their VEV needs to be O(TeV),

those scalars suffer from a naturalness problem. Unless we can explain why the new

scalars are at the TeV scale, we have provided no convincing explanation of why the

neutrinos are light. To achieve this the ultimate theory must therefore be able to

solve the hierarchy problem. (b) As we emphasized above, the Lagrangian eq. (3.49)

is not the most general one involving the SM and the new fields introduced here.

Symmetries or new mechanisms must be invoked in order to avoid other interaction

terms (for example, a direct coupling of N to SM lepton and Higgs or bare Majorana

mass terms for Ψ, Ψc) that would otherwise completely spoil our conclusions. This

problem is much easier to solve than the previous one, since the required global

symmetries may for example emerge as accidental symmetries of an underlying UV

completion of eq. (3.49) with gauge symmetries (as demonstrated in appendix E).

Interestingly, the hybrid seesaw structure can be realized in warped/composite

seesaw in chapter 2. First of all, elementary NR in composite seesaw (see eq. (2.1))

is roughly analogous to that N in eq. (3.49). In the hybrid seesaw model, N mixes

with Ψ (once Φλ acquires VEV), which matches on to elementary NR mixing with

composite singlet interpolated by ON (via the λNRON coupling). The VEVs of Φκ

and Φλ represent the confinement scale of composite Higgs sector. In particular,

there could be a composite scalar associated with “fluctuations” of the confinement

scale (dilaton), which can play the role of the physical scalar Φλ with its mass being

naturally ∼ TeV, i.e., the compositeness scale. So, the issue (a) mentioned above,

i.e., hierarchy problem for scalars, is absent. Moving on, as we have already briefly

mentioned in section 2.1, due to the fact that theory consists of a weakly coupled
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(external) sector and a CFT sector, the absence of any other interaction terms but

the linear coupling λNON is completely natural. Therefore, in the toy version,

hybrid seesaw, a direct coupling of N (corresponds to elementary NR) to SM Higgs

(composite) and SM lepton is forbidden. Similarly, (bare) Majorana mass terms for

Ψ, Ψc are not allowed since CFT sector preserves lepton-number. Thus, the issue

(b) of the hybrid seesaw model, i.e., the particular structure of the Lagrangian, is

solved.

Finally, regarding the neutrino mass, the TeV-modulation factor mentioned in

eq. (3.52), corresponds to an RG running in composite seesaw. Matching eq. (2.8)

with eq. (3.52) using eq. (2.6) and identifying MN with Mbare
N , we get

( 〈Φλ〉
κ〈Φκ〉

)2

↔
(

TeV

MPl

)2[ON ]−5

, (3.54)

and thus can naturally be much larger or smaller than 1. Specifically, if this mod-

ulation factor is (much) larger than unity, then Mbare
N as large as MPl can still give

the required SM neutrino mass.

Rather than focusing on a specific solution of the above issues (a) and (b), in

this work we will take a more model-independent approach and analyze in detail

the physics of the low energy picture eq. (3.49). In our minds eq. (3.49) should be

interpreted as a toy model capturing the main qualitative features of the warped

realization or any other UV completion of the hybrid framework.

Before moving on to study the details of our toy model, we mention that the

same Lagrangian eq. (3.49) was considered previously in [64] with MNi = O(TeV).
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From our results, however, MNi � O(TeV) turns out to be a necessary condition to

achieve a successful baryogenesis. We will hence not consider that possibility.

3.5 Formalism for the hybrid genesis

Our hybrid seesaw model is defined by the Lagrangian in eq. (3.49). Without

loss of generality, we work in the basis where κ andMN are real positive and diagonal.

For definiteness, we have chosen a minimal model a = 1, 2, 3 and i = 1, 2 required to

explain two light neutrino mass differences and leptogenesis.17 The hybrid seesaw

model consists of states at high scale, ∼MN , and states at ∼ TeV scale. As we will

discuss in detail, the entire process of genesis is comprised of two steps: high scale

leptogenesis (both generation and washout) at T ∼ MN and low scale washout at

T ∼ mΨ. In particular, one important result that we show in section 3.5.2.3 and

section 3.5.2.4 is that seemingly complicated physics at intermediate scales does

not induce additional washout of the asymmetry generated at T ∼ MN , and hence

establishing a clean two-step structure of hybrid genesis.

We begin with a general discussion of generation of asymmetries in particle

number based on symmetry argument in section 3.5.1, which is valid for any model.

In section 3.5.2, we provide a qualitative assessment of leptogenesis specific to our

hybrid seesaw model, and then present a quantitative study in section 3.5.3. The

formalism developed in this section will be used in section 3.6 to map out in detail

the parameter space which works for leptogenesis in our hybrid model.

17 In section 3.6.2.2, when we consider certain hierarchy in y, three generation of Ni is required
to obtain a realistic neutrino mass matrix.
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3.5.1 Generalities

Before delving into the specifics of our hybrid seesaw model, we provide a

brief discussion on generic aspects of the generation of particle number asymme-

tries viewed from symmetries of the underlying physics. Once the Lagrangian is

given, all the symmetries (and corresponding charges of fields) of the theory can

be analyzed. In particular, all the U(1) symmetries can be identified and as we

will demonstrate below, they will play an important role in understanding particle

asymmetry generation.

Viewing each parameter in the Lagrangian as symmetry breaking parameter,

by comparing the rates of processes to the Hubble rate, one realizes that the notion

of symmetry can be more general than the symmetry of the Lagrangian. Namely,

some of U(1) symmetries unseen in the Lagrangian may arise when processes me-

diated by couplings that break those symmetries are slow compared to the Hubble

rate. In this sense, the notion of symmetry in the history of the Universe, now

including those already seen from the Lagrangian, are to be understood as tempera-

ture dependent concept. In particular, they would be broken or restored, depending

on the temperature T . Let us take the case of the EW sphaleron processes as an ex-

ample to illustrate this idea. Due to the mixed SU(2)L anomaly, the EW sphaleron

configuration breaks B + L [89] while preserving B − L. At high temperatures its

rate is given approximately by Γ���B+L ∼ 250α5
WT . At temperature T & 1012 GeV,

the EW sphaleron processes are slower than the Hubble rate and hence inactive.

In that regime, U(1)B and U(1)L are separately good symmetries. At intermediate
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temperatures, 100 GeV . T . 1012 GeV, on the other hand, the EW sphaleron

processes are fast and only the B − L remains as a good symmetry. At even lower

temperature, T . 100 GeV, the process gets Boltzmann suppressed, Γsph ∝ e−Esph/T

where Esph ∼ mW/αW , again making both U(1)B and U(1)L good symmetries.

To be more specific, now we will define exact, effective and approximate sym-

metries as follows. Let us take Γ
�x

to be the rate of a process that violates a spe-

cific U(1)x. For example, the EW sphaleron processes contribute to Γ���B+L. At a

given temperature T ∗, Γ
�x
(T ∗) falls into one of the following three possibilities: (i)

Γ
�x
(T ∗)� H(T ∗); (ii) Γ

�x
(T ∗)� H(T ∗); and (iii) Γ

�x
(T ∗) ∼ H(T ∗). For case (i), the

x-violating process is fast enough and thus the corresponding U(1)x is broken at T ∗.

In case (ii), although the symmetry-violating process exists, it is very slow compared

to the Hubble rate. To a good approximation, the corresponding U(1)x is a good

symmetry at T ∗ and therefore we call it an effective symmetry. We emphasize that

there is a special case in (ii) where Γ
�x
(T ∗) = 0, meaning there is no x-violating

process for such U(1)x. Typically, gauged U(1) symmetries like U(1)Y of the SM

will have this property. For an obvious reason, we call such symmetry as exact

symmetry. It is crucial to identify exact/effective symmetries because they act as

conservation laws at the temperature of interest and determine the spectator effects.

Finally, processes of type (iii) have rates of the order of the Hubble rate and are to

be described by non-equilibrium dynamics using the Boltzmann equations (BEs).

The associated symmetry is special in that it is neither a perfectly good effective

symmetry nor gets completely violated.18 Therefore, in the rest of the discussion,

18For these processes, two out of three Sakharov conditions i.e. the out-of-equilibrium and U(1)x
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we will refer to it as an approximate symmetry.

For a particle i, we can describe asymmetry in its number density as n∆i ≡

ni−ni∗ with ni and ni∗ respectively the number density of itself and its antiparticle.

If they carry a charge qxi under a U(1)x, they will contribute to the corresponding

charge asymmetry:

n∆x =
∑
i

qxi n∆i. (3.55)

It is shown in refs. [87, 88] that one can invert the relation above to express n∆i in

term of n∆x as follows19

n∆i =
∑
x

Rixn∆x, (3.56)

where Rix can be constructed from charges carried by all the particles under all

U(1)x of a model. Hence the analysis of asymmetry generation which involves

various particles and interactions in the thermal bath at certain range of temperature

T ∗ boils down to identifying exact/effective or approximate U(1) symmetries as

discussed above. From eq. (3.56), it is clear that in the absence of U(1) or only with

exact/effective U(1) such that n∆x = 0 for all x, all particle asymmetries vanish.

Hence, for successful genesis, it is necessary to have at least one approximate U(1)

which allows for n∆x 6= 0, although existence of such U(1) alone is not a sufficient

condition. The actual size of final asymmetry requires further quantitative study of

non-equilibrium physics via BEs. In the next section, we will discuss the viability of

violation conditions, are met. If the last ingredient i.e. C and CP violation is also met, a nonzero
U(1)x asymmetry can develop.

19A pedagogical derivation of this result is given in ref. [88]. Explicitly, we have Rix =
giξi

∑
y q

y
i (J−1)yx where Jyx =

∑
i giξiq

x
i q
y
i with gi the gauge/family degrees of freedom of particle

i. Also, ξi is the statistical factor which goes to 1 (2) for relativistic fermion (boson) and becomes
exponentially suppressed for non-relativistic particle.

65



hybrid-genesis by identifying the exact/effective symmetries as well as approximate

symmetries. The latter allows the development of nonzero asymmetries at a specific

temperature regime.

3.5.2 Hybrid genesis: qualitative description

We now move on to our hybrid model: we start by discussing a crucial in-

gredient which is common to all leptogenesis models, namely, the EW sphaleron

processes which communicate the asymmetry in the lepton sector to the baryon

sector. In particular, they are active in the temperature range T+
EWSp > T > T−EWSp.

The upper bound is estimated to be T+
EWSp ∼ 1012 GeV [90] while the lower bound

is determined from lattice simulation to be T−EWSp = 132 GeV and occurs after EW

phase transition at T = 159 GeV [91]. Generically, the genesis will occur through

one of the following two scenarios:

(A) If high scale genesis takes place and completes at Tg > T+
EWSp, since baryon

number B remains to be a good symmetry, genesis occurs through generation

of an asymmetry in the approximate symmetry U(1)L (lepton number). We

denote Y∆L ≡ n∆L/s where n∆L is lepton charge asymmetry defined as in

eq. (3.55) normalized by entropic density s = 2π2

45
g?T

3. Here, g? is the number

of relativistic degrees of freedom of the Universe at temperature T .20

20 As we will see later, in our model, we will have to extend the definition of lepton number to
include particles beyond the SM. Here and for the rest of the work, we assume all lepton flavors
Lα are not conserved. This is in accordance with our consideration where all the dimensionless
couplings are taken to have ‘natural’ values & O

(
10−2

)
. For instance, taking |yaα| ∼ 0.05 − 0.5,

lepton flavors are not conserved for T . 1013 − 1015 GeV (for the estimation, one can use the
rate calculated in for e.g. refs. [92, 93]). This allows us to assume that the asymmetry is equally
distributed among the three lepton flavors, simplifying the analysis.
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When the temperature drops below T+
EWSp, while both L and B are no longer

conserved by the EW sphaleron processes, B − L remains conserved and the

asymmetry in this conserved charge is related to the generated lepton asym-

metry as Y∆(B−L)

(
T < T+

EWSp

)
= −Y∆L (Tg).

(B) On the other hand, if leptogenesis takes place and completes at T−EWSp < Tg <

T+
EWSp, instead of L, the generation of asymmetry is described directly in terms

of Y∆(B−L) (Tg).

Barring the low scale washout that we will discuss later in section 3.5.2.4, the

baryon asymmetry will be frozen at T−EWSp and we have21

Y∆B

(
T−EWSp

)
= d Y∆(B−L), (3.57)

where d is an order one number which depends on number of relativistic degrees of

freedom at T−EWSp. Assuming only the SM number of relativistic degrees of freedom

(excluding the top quark) at T−EWSp after EW symmetry breaking, we have d = 30
97

[94, 95] which is the value we will use in this work.

Having understood these two cases separately, it is useful to introduce a new

symbol ∆ to denote asymmetry in both cases as follows:

∆ =


−∆L, scenario (A),

∆(B − L), scenario (B).

(3.58)

21Y∆B includes the contributions of the quarks which are in chemical equilibrium. For instance,
if all quarks are in chemical equilibrium, we simply have Y∆B =

∑
a (Y∆Qa + Y∆ua + Y∆da).
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In principle, leptogenesis can happen across T+
EWSp. However, such possibility

may correspond to a very small portion of the parameter space, and for simplicity,

we will not consider this possibility further. In practice, for MN1 > 1012 GeV, we

will assume scenario (A) while for MN1 < 1012 GeV, we will consider scenario (B).

3.5.2.1 Symmetries of the hybrid model

We now identify the exact/effective U(1) symmetries as well as approximate

ones of the hybrid model. From the Lagrangian eq. (3.49), we have seven types of

fields {H,Φλ, Φκ, `α,Ψ
c
a,Ψa, Ni}. Let us first identify exact symmetries of the the-

ory. For this, we note that the Majorana mass of Ni implies that they cannot carry

any conserved charge. Together with hypercharge conservation and three interaction

terms in eq. (3.49), we get five constraints and have 7− 1− 4 = 2 exact U(1) sym-

metries, provided the scalar potential does not break them (tree-level breaking) and

they can be made gauge-anomaly free (loop-level breaking). These two symmetries

are chosen to be U(1)B−L and U(1)λ−B with particle charge assignments shown in

table 3.3. We denote the first one as U(1)B−L since, although it is not exactly the

same as (B−L) (accidental) symmetry of the SM, as far as charges of SM particles

are concern, it coincides with the baryon minus lepton number of the SM. Notice

that SU(2)L − SU(2)L − U(1)B−L mixed anomaly vanishes. For this reason, in

scenario (B) when EW sphaleron processes are in thermal equilibrium, U(1)B−L re-

mains conserved. Under U(1)λ−B, the rest of SM particles carry the charges same as

U(1)L−B. One readily see that U(1)λ−B is also free from SU(2)L−SU(2)L−U(1)λ−B
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anomaly and hence is also preserved by the EW sphaleron processes.

For later purpose, we will call fully-symmetric those realizations in which

both U(1) symmetries are preserved. The model based on gauge symmetries pre-

sented in appendix E is such an example: in that case U(1)B−L is a gauge symmetry

while U(1)λ−B arises as an accidental global symmetry. On the other hand, in the

scenario where eq. (3.49) originates from warped extra dimension, the two global

symmetries are absent since Φκ,λ are identified with a single real field — the dilaton.

As we indicated in previous sections, in this case we view eq. (3.49) as a good proxy

or toy version of would-be effective theory coming from warped extra dimensional

theory. Scenarios like these, in which the scalars Φκ,λ are real, will be called non-

symmetric models. We expect that a study of this case may capture main features

of physics of genesis in warped extra dimensional theory. As we will see in the next

section, while detailed dynamics can differ, the difference in the final asymmetry

between the fully-symmetric and non-symmetric scenarios is just order one. Finally,

in section 3.5.2.3 we will briefly comment on the case where only one combination

of U(1)B−L, U(1)λ−B is preserved by the scalar potential.

Having identified the exact symmetries, we now move on to finding the ap-

proximate ones. Recall that when we counted the number of constraints to figure

out the exact U(1)’s, we used the fact that MN disallows charges for Ni’s. In the

limit λia → 0 or MNi → 0, however, a new U(1) emerges. This approximate lepton

number is broken by the coexistence of λia and MNi and, as we discuss below, it is

in this charge that the asymmetry gets generated via high scale genesis. We define

such approximate symmetry as the extended lepton number L′ and the associated
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U(1)B−L U(1)λ−B
`α −1 1
Ψa 0 1
Ψc
a +1 −1
N 0 0
Φκ −1 0
Φλ 0 −1

Table 3.3: Charge assignments of `α,Ψa,Ψ
c
a,Φκ,Φλ under the two global symmetries

of the fully-symmetric model. The former coincides with the baryon minus lepton
number of the SM particles. Besides the lepton doublet `α, we do not show the
charges of the rest of SM particles. In the gauge model presented in Appendix E,
U(1)B−L is a gauge symmetry while U(1)λ−B remains an accidental global symmetry.
Under U(1)λ−B, the rest of SM particles carry the charges same as U(1)L−B. On
the other hand, the two symmetries are absent in the non-symmetric model
originated from warped extra dimension since Φκ,λ, which are identified with the
dilaton, are real.

Y∆L′ (hence its U(1) charges) is given as22

Y∆L′ =
∑
α

Y∆`α +
∑
α

Y∆eα +
∑
a

Y∆Ψa −
∑
a

Y∆Ψca , (3.59)

where eα denotes the SM right-handed lepton for a given flavor α. It may be worth

mentioning that the above extended lepton number (L′) is to be distinguished from

the lepton number (L) of the SM. Notice, however, that when all heavy states (Ψa,

Ψc
a and also Φκ) eventually disappear from the thermal bath, the two coincide.

Similarly to eq. (3.58) defined for general case, we define ∆ for the hybrid model.

Since there is little chance for confusion and we will consider only hybrid model

22The contribution from right-handed charged leptons eα in eq. (3.59) will be absent if the
corresponding charge lepton Yukawa interactions are out of thermal equilibrium for e.g. T & 1012

GeV [70–72].
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from now on, we decided to use the same symbol.

∆ =


−∆L′, scenario (A)

∆(B − L′), scenario (B).

(3.60)

The breaking of this approximate symmetry at high temperatures is captured by

the following processes: decays and inverse decays Ni ↔ ΦλΨa, Ni ↔ (ΦλΨa)
∗ and

scatterings ΦλΨa ↔ (ΦλΨb)
∗, ΨaΨb ↔ (ΦλΦλ)

∗. Below, we discuss how these pro-

cesses can be studied to understand the generation and washout of the asymmetry

in the ∆ charge.

3.5.2.2 High scale leptogenesis (T ∼MN)

The dynamics of genesis at high scale ∼ MN is essentially the same as that

of the usual type-I seesaw model: the high scale leptogenesis proceeds via out of

equilibrium decay of heavy Ni and if involved couplings provide needed CP-violation,

non-zero asymmetry may be generated in approximate U(1)L′ charge.

Starting with the generation, asymmetry is created via out-of-equilibrium de-

cay of Ni: Ni → ΦλΨa, Ni → (ΦλΨa)
∗. Concretely, Ni decays more often to ΦλΨa

than to (ΦλΨa)
∗ if these processes occur with CP-violation. A non-zero CP-violation

arises through the interference of tree and one-loop diagrams. When this happens,

the number density of Ψa may be larger than that of Ψ∗a, i.e. non-zero asymmetry

in Y∆Ψa is created.

However, this immediately raises the question of erasing the asymmetry via
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the inverse decay: ΦλΨa → Ni, (ΦλΨa)
∗ → Ni. Intuitively, if the number density

of Ψ is larger than that of Ψ∗, the corresponding inverse decay will tend to occur

more rapidly than the other, thus coverting more Ψ (and Φλ) into Ni than Ψ∗. This,

combined with the above story of decay, then leads to null net asymmetry. Indeed,

this reasoning can be shown to be correct if everything happens in equilibrium

environment. Namely, it is non-equilibrium condition that enables actual creation

of net asymmetry. This condition is met by virtue of the expansion of the Universe.

That is, as the temperature cools down below the mass of Ni, unlike the decay, the

inverse decay becomes Boltzmann suppressed: thermal energy that (ΨΦλ) or (ΨΦλ)
∗

carries becomes insufficient to create Ni with mass MN > T . When the washout

process due to the inverse decay becomes effectively inactive, a net asymmetry can

eventually be generated.

However, the inverse decay is not the only washout process to consider. The

scattering processes, ΦλΨa ↔ (ΦλΨb)
∗, ΨaΨb ↔ (ΦλΦλ)

∗, violate ∆ by two units and

can erase the ∆ asymmetry. As is well-known, by unitarity, the on-shell contribution

to these scattering amplitude is the same as the inverse decay. For this reason, in

order to avoid double-counting, in writing down the BEs in section 3.5.3 we will

treat the inverse decay and off-shell part of ∆ = 2 scattering as separate source of

washout.

72



3.5.2.3 Survival of the asymmetry at T .MN

Having discussed generation and standard mechanisms for washout of asym-

metry at high scale (T & MN), we now move on to the consideration of physics at

intermediate scales, 〈Φλ〉 < T < MN , as well as other potentially dangerous washout

processes. In principle, these dynamics can erase previously created asymmetry and

hence successful genesis necessitates any such washout processes, including those at

intermediate scales, to be under control.

We first discuss a subtle washout effect that can potentially appear in the

fully-symmetric model. As we mentioned earlier, there are two exact/effective

symmetries U(1)B−L and U(1)λ−B in this model, which impose conservation laws

for the global charges of U(1)B−L and U(1)λ−B in table 3.3. In terms of ∆ that we

defined in eq. (3.60), the conservation laws can be expressed as

Y∆ +
∑
a

Y∆Ψa − Y∆Φκ = 0, (3.61)

Y∆ + Y∆Φλ = 0. (3.62)

If there exists a process depleting Φλ, e.g. Φλ decaying into particles in the model,

Y∆Φλ would vanish and this will result in Y∆ → 0 due to the conservation of U(1)λ−B

[see eq. (3.62)]. For a concrete example, let’s imagine MN1 � MN2 and consider

that the high scale genesis is mostly done by the decay of N2 while the generation

of asymmetry and washout from N1 are negligible. At temperature T ∼ MN2 , Φλ

could get a thermal mass mΦλ(T ) ∼ T � MN1 and thus the decay Φλ → N1Ψ∗
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could be kinematically allowed. In that case, this decay is the dominant depletion

process for Φλ at temperatures T � 〈Φλ〉. If such decay is fast compared to Hubble,

all asymmetry generated by N2 will then be washed out and hence leptogenesis fails.

It is also clear from the above example that such washout process can be

forbidden assuming MNi are of the same order and the high scale asymmetry is

primarily generated from N1 decay. In this case when T . MN1 , Φλ cannot decay

and the high scale asymmetry survives. Given that such choice of MNi ’s, i.e. no

hierarchy, is more natural according to our naturalness criteria, we only consider

this for the rest of our discussion.

There are further washout processes that should be taken into account after

Φλ has acquired a VEV at much lower temperatures of the order T ∼ 〈Φλ〉. We will

discuss these “low-scale washout” processes partly below and the rest in the next

section.

For non-symmetric model, both U(1)B−L and U(1)λ−B are absent, and Φλ

cannot carry an asymmetry. Thus, once the asymmetry is generated at high scale,

in contrast to the fully-symmetric model, one does not have to worry about the

washout from depletion of Φλ discussed above.

Next, we briefly comment on the possibility of a scenario where only one linear

combination of U(1)B−L and U(1)λ−B survives due to the scalar potential. Such

scenario is different from both the fully-symmetric and non-symmetric models and

requires a separate consideration. When one combination of two U(1)’s is broken,

it is possible for Φλ to decay and thus erase the primordial asymmetry. One such

an example is obtained starting from the two global symmetries in table 3.3 with
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eq. (3.49) but allowing their breaking in the scalar potential. For instance, let us

consider the potential interaction ΦλΦ
∗
κ|Φκ|2 which preserves only U(1)(B−L)+(λ−B).

In such a case, we have only one conservation law for unbroken U(1), not two, and

the statement that the existence of process leading to Y∆Φλ → 0 implies Y∆ → 0 is

not generally true anymore. Instead, the fate of the asymmetry depends more on

details of the dynamics. Still, it is possible to argue that since more breakings tend to

enable more asymmetry transferring channel, if dynamics caused by those breakings

transmit all the asymmetries eventually into the SM sector before EW sphaleron

processes are turned off, genesis fails, assuming zero net primordial asymmetry. This

is simply because the sum of net asymmetry in the SM sector plus net asymmetry of

the singlet sector is zero by initial condition and asymmetry transmitting dynamics

moved all the asymmetries to the SM sector. Importantly, the above statement

is regardless of the details of asymmetry transferring physics. As long as they

are efficient enough and completed above T−EWSp, it is a correct statement. To

illustrate the idea, let us take the example above with ΦλΦ
∗
κ|Φκ|2-term in the scalar

potential. If thermal masses for the scalars satisfy mΦλ(T ) > 3mΦκ(T ), the decay

Φλ → ΦκΦκΦ
∗
κ is allowed. Since Φκ couples to Ψ and Ψc with unsuppressed coupling

κ, it may decay/scatter into those. Finally, asymmetry stored in Ψ and Ψc may get

processed to the SM via Yukawa coupling either by decay or scattering process. If

all this is done at temperatures above T−EWSp, as per the argument above, we get

zero net asymmetry. We will not consider these scenarios anymore, and next go

back to the discussion of fully-symmetric and non-symmetric models.

We finally discuss washouts at scales below MNi . In particular, we will argue
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that provided above mentioned two subtle (and easy to avoid) washouts are absent

and if washout from off-shell ∆ = 2 scattering is small, then there is no additional

washout effects at intermediate scales. Further washouts we need to consider is,

therefore, those occurring at TeV scale after scalars get VEVs. Notice that this is

quite a remarkable fact in that although physics happens in the entire energy range,

the study of genesis can be structured in clean two steps: high scale genesis and low

scale washout.

Integrating out heavy singlets Ni, the effective Lagrangian at 〈Φλ〉 < T < MN

is given by

−L ⊃ yaαΨc
aH`α + κaΨ

c
aΦκΨa +

∑
i

λiaλib
MNi

ΦλΨaΦλΨb + H.c.. (3.63)

The dimension five operator violates L′ by two units which could contribute to the

washout of Y∆. The corresponding process at high T ∼ MN is that of ∆ = 2

scattering mediated by off-shell N and will be taken into account whenever they are

relevant (see section 3.5.3.2 for details). Since the rate for this process Γ∆=2 ∝ T 3,

which drops faster than Hubble rate, Γ∆=2 < H ∝ T 2 is always true at lower

temperatures if it is enforced at a high temperature. Namely, requiring Γ∆=2 < H

at high temperature guarantees that washout from the above dimension five operator

is under control at all intermediate temperatures.

To summarize, assuming no depletion of the asymmetry from Φλ decay (both

kinds discussed above), once all washout processes in high scale (T & MN) involv-

ing N -exchange are taken under control, the preservation of the asymmetry is a
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robust feature of our model, at least for temperatures at which 〈Φκ,λ〉 = 0 (what

happens after the scalars have acquired a VEV will be discussed in the next subsec-

tion). In the model which arises from gauge symmetry we considered in appendix

E (fully-symmetric model), this is ensured by assuming high scale asymmetry is

generated from the lightest N decay. This is because in the gauge model, at the

renormalizable level, no symmetry breaking terms in the scalar potential is allowed

by gauge invariance and possible symmetry breaking higher dimensional terms are

highly-Planck-suppressed. See appendix E for more detail. No new source of asym-

metry violation at intermediate temperatures is possible in non-symmetric models.

For scenarios with a remnant global symmetry, i.e. “intermediate models”, the

conclusion is however model-dependent.

3.5.2.4 Low scale washout (T ∼ mΨ)

We define the temperature region T . 〈Φκ,λ〉 as low scale or TeV scale. In

principle, a large entropy production during thermal phase transition(s) of Φλ and/or

Φκ can result in undesired dilution of asymmetry generated from high scale. In order

to avoid this, throughout the discussion we assume that phase transition is smooth

and hence no large entropy production occurs. This ensures no significant dilution

of the asymmetry from phase transitions and the only washout out effects we need

to consider at low scale are the dynamical processes involving relevant particles

discussed below.

Once scalars get VEVs, there can be new kinds of processes generated by the
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higher dimensional operator in (3.63) with some or all of scalars set to their VEVs.

Washouts mediated by these processes may be significant even after suppressing

those with all physical Φλ (as we did in section 3.5.2.3). Therefore, they need to be

treated separately and we will call them as “low scale washout”.

We first consider an operator with one of Φλ set to its VEV:∼ λ2〈Φλ〉ΦλΨaΨb/MN .

This operator can generate several kinds of washout dynamics. As we now show,

however, each of those new effects are automatically suppressed assuming a large

separation of two physical scales: 〈Φλ〉 � MN and mΨ ∼ mΦλ,κ ∼ 〈Φλ,κ〉. In order

to see this more explicitly, we first note that the condition that ∆ = 2 washout

from off-shell scattering at high scale module (T ∼ MN1) is small can be expressed

schematically as

λ4
i

16π3

T 3

M2
Ni

∣∣∣∣
T=MN1

<
√
g?

T 2

MPl

∣∣∣∣
T=MN1

⇒ λ4
i

16π3

(
MN1

MNi

)2

<
√
g?
MN1

MPl

. (3.64)

where i = 1, 2 denotes singlet generation. As we will discuss more later, the dom-

inant ∆ = 2 washout scattering in the UV module comes from off-shell exchange

of N2. Above, however, we show the condition for both N1 and N2 by keeping the

index i general. We do this because at scales T �MN the local higher dimensional

operator λ2
i 〈Φλ〉2Ψ2/Mi will be generated as a result of integrating out both N1 and

N2, and yet the effects of the two will appear as a single operator. Assuming no

degeneracy of MN1 and MN2 , on the other hand, we can safely drop the interference

effects and the matching of effects may be done for each rate.

Next, we discuss four leading washout processes that above mentioned di-
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mension 5 operator generates and argue that all of them are rather generically

suppressed.

(1) The inverse decay ΨΨ → Φλ: The condition that this process is slower than

Hubble rate at T ∼ mΦλ can be written as

λ4
i

16π3

(
MN1

MNi

)2 [
π2 〈Φλ〉
MN1

]
<
√
g?
MN1

MPl

. (3.65)

where we used mΦλ ∼ 〈Φλ〉. Comparing this to eq. (3.64), we see that the

washout from this inverse decay is a small effect if the quantity in the square

bracket is less than one:

π2 〈Φλ〉
MN1

< 1 (3.66)

and it is clear that with assumed gap MN1 � 〈Φλ〉 this condition is easily met.

(2) ΨΦλ → ΨcΦκ and its associated t-channel ∆ = 2 scattering: Such process may

be generated by usage of one factor of λ2
i 〈Φλ〉/MNi from dimension 5 operator

above and one factor of κ. Following similar steps, this washout can be small

if

κ2 〈Φλ〉
MN1

〈Φλ〉
mΨ

< 1 (3.67)

Again, with MN1 � 〈Φλ〉, mΨ ∼ 〈Φλ〉, and κ ∼ O(1) that we are assuming,

the above condition is easily satisfied.
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(3) ΨΦλ → (ΨΦλ)
∗ and its associated t-channel ∆ = 2 scattering: There are two

contributions to be added at the amplitude level. One is from local vertex

of λ2
iΦ

2
λΨ

2/Mi and we already argued in section 3.5.2.3 that it is suppressed.

The other diagram can be constructed by two factors of λ2
i 〈Φλ〉/MNi and one

insertion of µ ∼ λ2〈Φλ〉2/MN1 . Note, howerver, that the second is much more

suppressed compared to the first: in the UV, it corresponds to eight-point

correlator with four Φλ’s set to VEV. Therefore, neglecting subdominant latter

contribution, it is a robust fact that washout from ΨΦλ → (ΨΦλ)
∗ scattering

is suppressed once the corresponding process at UV scale is small.

(4) scattering ΨΨ↔ (ΨΨ)∗ mediated by off-shell Φλ: Noting that on-shell part of

such scattering is the inverse decay ΨΨ → Φλ and that off-shell contribution

is sub-dominant to the on-shell contribution, it can be safely dropped once the

inverse decay is suppressed via eq. (3.66).

With the above discussion, now the only remaining washouts to discuss are

when both Φλ in (3.63) have a VEV. Because we will always take 〈Φκ〉 ≤ 〈Φλ〉, we

can limit our discussion to temperatures in which both scalars have acquired VEVs.

In this regime Ψa and Ψc
a form three pairs of pseudo-Dirac fermions, Ψ̃i (i = 1, ..., 6)

with masses mi. Their mass splitting as well as strength of washout are controlled by

eq. (3.50). Notice that in this temperature range we can match our hybrid seesaw

at low scale to the ISS model eq. (3.12). The scatterings controlled by µ violate

L′ and could erase exponentially the asymmetry Y∆ generated at high scale. The

formulas for low scale washout will be presented in section 3.5.3.
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Finally, there are also new washout processes pertaining to the gauge model

of appendix E. Gauge bosons associated to U(1)B−L could mediate new washout

processes like Ψ̃iΨ̃i → ff̄ where f is any fermion charged under U(1)B−L. However,

these processes are suppressed as µ2/T 2 at T > mi and as µ2/m2
i for T below the

critical temperature at which Φκ gets a VEV. Unless we consider highly non-generic

models in which the gauge boson mass is ∼ 2mi these processes are not resonantly

enhanced, and therefore do not induce significant washout.

3.5.2.5 Initial conditions and assumptions

In the standard cosmological model, it is assumed that after inflation, inflatons

decay populate the Universe with particles which thermalize among themselves to

a so-called reheating temperature.

For MN . 1015 GeV, the genesis occurs at temperatures where the SM parti-

cles could be thermalized by the SM interactions as well as new interactions in our

model. There may be a few options for the reheating. When inflatons decay only

to the SM particles, SM partcles thermalize themselves through gauge and Yukawa

interactions. Then, singlet sector states, Ψc
a, Ψa, and Φκ, can be populated via inter-

actions y and κ. The singlet scalars Φκ and Φλ can also be populated through scalar

interactions like |H|2|Φκ,λ|2. If, on the other hand, inflatons only decay to singlet

sector particles, H and `α can be produced from the aforementioned interactions and

then through the SM gauge and Yukawa interactions, the rest of the SM particles

can be populated. When inflatons reheat both sectors simultaneously, then thermal-
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ization happens naturally through various interactions metioned so far. Therefore,

we see that regardless of the assumption about the reheating, both sectors will be

thermalized and we will consider the contribution to the total energy density of the

Universe from both the SM particles and singlet sector particles: g? = 121.25.

If genesis takes place at MNi & 1015 GeV, on the other hand, the SM par-

ticles might not be thermalized by the SM interactions [96]. If inflatons decay

dominantly to the SM particles, we cannot describe this scenario within a standard

radiation-dominated thermal bath. Since a separate treatment is called for, we will

not consider this scenario further. Instead, we will consider the situation where

inflatons decay only to the singlet sector particles and they are thermalized through

interactions in our model eq. (3.49) as well as interactions in scalar potential. For

instance, interactions with a large κa can thermalize Ψa and Ψc
a while the scalars Φλ

and Φκ can be thermalized through interaction like |ΦκΦλ|2. When Ψa,Ψ
c
a,Φλ and

Φκ are all thermalized the total relativistic degrees of freedom is g? = 14.523 and we

use this number to calculate the high scale genesis. When temperature cools down,

interactions involving y and SM interactions will eventually be in equilibrium and

thus SM particles are thermalized through coupling to singlets.

Starting from zero initial Ni, a thermalized Ψa and Φλ can generate Ni through

inverse decays. In the gauge model of appendix E, Ψc
a and Φκ can also be thermalized

by U(1)B−L gauge interaction. After U(1)X symmetry breaking at around genesis

scale, if U(1)X gauge boson is not much heavier than the reheating temperature, it

23It is reasonable to assume that the decays of inflatons to heavy Ni are kinematically forbidden.
Furthermore, since they are not relativistic, they do not contribution significantly to the energy
density of the Universe.
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could also thermalize Ni, Ψa, Φκ and Φλ. Motivated by the above considerations, we

will consider two possible initial conditions for Ni abundance: zero Ni abundance

and thermalized Ni abundance.

3.5.3 Hybrid genesis: quantitative description

In this section, we will discuss CP violation in section 3.5.3.1, washout pro-

cesses from inverse decay and off-shell scatterings in section 3.5.3.2 and finally in

section 3.5.3.3, we write down the BEs of hybrid genesis. Under reasonable assump-

tions, the formal solution to the BEs can be written down including both the inverse

decay and off-shell ∆ = 2 scattering. It will be in the form of integral, which can

readily be evaluated numerically. On the other hand, keeping only the inverse decay

term allows us to derive approximate analytical solutions in appendix. B.2. In this

way, our strategy will be to use these analytical solutions when the washout from

off-shell ∆ = 2 scattering is negligible while evaluate numerically when it is relevant.

3.5.3.1 CP violation

To quantify the CP violation in the decays of Ni → ΦλΨa and Ni → (ΦλΨa)
∗,

we define the CP parameter as follows [see eq. (B.12)]

εia ≡
Γ (Ni → ΦλΨa)− Γ (Ni → Φ∗λΨ

∗
a)

ΓNi
, (3.68)
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where Γ(P ) is the partial decay width for process P and the total decay width of

Ni (at tree-level) is

ΓNi ≡
∑
a

[Γ (Ni → ΦλΨa) + Γ (Ni → Φ∗λΨ
∗
a)] =

(
λλ†
)
ii
MNi

16π
. (3.69)

The leading CP violation in the decays comes from the interference between tree-

level and one-loop diagrams and eq. (3.68) can be written down as [73]

εia =
1

8π

1

(λλ†)ii

∑
j 6=i

Im
[(
λλ†
)
ij
λiaλ

∗
ja

]
g

(
M2

Nj

M2
Ni

)

+
1

16π

1

(λλ†)ii

∑
j 6=i

Im
[(
λλ†
)
ji
λiaλ

∗
ja

] M2
Ni

M2
Ni
−M2

Nj

, (3.70)

where the loop function is given by24

g (x) =
√
x

[
1

2

1

1− x + 1− (1 + x) ln
1 + x

x

]
. (3.71)

Assuming a modest hierarchy, MN2/MN1 ∼ a few and that the main contribution to

asymmetry generation to come from the decays of N1, we will expand g (MN1/MN2)

at leading order in MN1/MN2 . Furthermore we will ignore the Ψa flavor effect by

24This includes both self-energy and vertex corrections with the first term in the square bracket
for the former while the rest of the terms for the latter. A factor of 1

2 in the self energy term
compared to the standard leptogenesis case is due to the fact that Φλ and Ψa are singlets instead
of doublets under SU(2)L. For the same reason, the second term in eq. (3.68) coming from self-
energy diagrams also has a factor of 1

2 . Such term becomes CP-invariant once summed over flavor
a.
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summing over a.25 Doing so, we have

ε1 ≡
∑
a

ε1a ≈ −
1

8π

1

(λλ†)11

∣∣(λλ†)
12

∣∣2 sin (φ12)
MN1

MN2

≈ − 1

8π

(
λλ†
)

22
sin (φ12)

MN1

MN2

, (3.72)

where we have defined φ12 ≡ arg
[(
λλ†
)2

12

]
. In the last approximation above (and

the rest of the work), we assume

λia ∼ λib, (3.73)

for any a, b and i. However, we will allow λia/λja with i 6= j to vary within a few

orders of magnitude.

3.5.3.2 Thermal averaged reaction densities

Here we will describe the thermal averaged reaction densities [defined in eq. (B.7)]

which appear in the BEs to describe the decay and scattering processes (see ap-

pendix B.1 for details).

In the following, we assume Ni to be massive while all other particles to be

massless. Firstly, we will consider the (inverse) decay N1 ↔ ΦλΨa (and the corre-

sponding CP conjugate processes).26 From eqs. (B.8) and (B.13), the total decay

25This is justified assuming a large κ in eq. (3.49), which results in fast flavor equilibrating
scatterings Ψc

aΨa ↔ Ψc
bΨb. See section 3.5.3.3 for further discussion.

26This is equivalent to the on-shell part of ∆ = 2 scattering ΦλΨa ↔ (ΦλΨa)∗ mediated by N1

where the subdominant off-shell contribution can be ignored.
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reaction density is

γN1 = neq
N1

Γ(N1 → ΦλΨa)
K1(z)

K2(z)
, (3.74)

where z = MN1/T and Kn(z) is the modified Bessel function of the second kind

of order n. The decay term is proportional to
nN1

neq
N1

γN1 which is not Boltzmann

suppressed. On the other hand, inverse decay is simply proportional to γN1 and will

be Boltzmann suppressed for T < MN1 . If ΓN1 � H(T = MN1), the decay happens

at ΓN1 ∼ H(T � MN1) when the inverse decay is Boltzmann suppressed. In this

case, the asymmetry is efficiently generated while washout due to inverse decay

is suppressed. The degree of out-of-equilibrium decay for Ni → ΦλΨa is usually

quantified by the washout factor already introduced in eq. (3.30)

Ki ≡
ΓNi

H(T = MNi)
. (3.75)

The case of Ki < 1 is known as the weak washout regime (washout of the asymmetry

from the inverse decay is not effective) while Ki > 1 as the strong washout regime

(washout of the asymmetry from the inverse decay becomes relevant).

Next, as we maximize the CP parameter in eq. (3.72) by increasing λ2a, the

∆ = 2 scatterings ΦλΨa ↔ (ΦλΨb)
∗ and ΨaΨb ↔ (ΦλΦλ)

∗ from off-shell exchange of

heavier N2 can become relevant. We estimate the scattering rate for the processes
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above for T ∼MN1 �MN2 as follows [see eqs. (B.10) and (B.11)]

Γabscatt =
γabscatt

neq
≈ 1

16π3

|λ2a|2 |λ2b|2
M2

N2

T 3, (3.76)

where neq = T 3

π2 . With the assumption eq. (3.73), we can relate the scattering rate

above to the CP parameter eq. (3.72) as follows

Γabscatt ≈
4

π

ε21
sin2 (φ12)

MN1

z3
. (3.77)

From the above, it becomes clear that as one increases the CP parameter ε1, the

scattering washout rate will increase and vice versa. As we will see in section 3.6.2.2,

requiring this washout scattering to be under control in general implies a lower bound

on MN1 [97, 98].

3.5.3.3 Boltzmann equations

We now study in detail the generation/washout of the asymmetry at T ∼MN1

and the low scale washout at T ∼ mΦκ,λ . The high scale genesis can be described
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by the following BEs:

sHzUV

dYN1

dzUV

= −γN1

(
YN1

Y eq
N1

− 1

)
, (3.78)

sHzUV

dY∆

dzUV

= −ε1γN1

(
YN1

Y eq
N1

− 1

)
+

1

2

∑
a

PaγN1

(
Y∆Ψa

Y eq
+

1

2

Y∆Φλ

Y eq

)
+
∑
a

γaascatt

(
Y∆Ψa

Y eq
+

1

2

Y∆Φλ

Y eq

)
+
∑
a

∑
b 6=a

γabscatt

(
1

2

Y∆Ψa

Y eq
+

1

2

Y∆Ψb

Y eq
+

1

2

Y∆Φλ

Y eq

)
, (3.79)

where zUV ≡ MN1/T , Y∆i ≡ Yi − Yi∗ , Pa ≡ λ1aλ∗1a

(λλ†)
11

and Y eq is defined in eq. (B.6).

The rates γN1 and γabscatt are defined in eq. (3.74) and eq. (3.76), respectively. We

also used the fact that in our case, both Ψa and Φλ are relativistic ζΨa = 1, ζΦλ = 2

and have one gauge degree of freedom gΨa = gΦλ = 1. Here we take g? = 121.25

since Ψa, Ψc
a, Φκ and Φλ all contribute to number of relativistic degrees of freedom.

We now discuss each terms in eq. (3.78) and eq. (3.79). In eq. (3.78), which

describes the evolution of the number density of N1, the first term on the right

hand side is the reduction of number density by decay and the second term is

the production of N1 via inverse decay. In principle, several scattering terms that

produce/remove N1 appear on the right hand side of this equation and we ignore

these subleading terms. Moving onto eq. (3.79), this equation determines evolution

of asymmetry ∆. The first term on the right hand side proportional to the CP

parameter describes the production of asymmetry via out-of-equilibrium decay of

N1. The remaining terms are for washout processes: the second, third, and fourth

term respectively denoting washout from inverse decay, s-channel ∆ = 2 scattering
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ΨΦλ → (ΨΦλ)
∗ and its related t-channel process with same flavor Ψ, and the same

scattering but with different Ψ flavors a and b 6= a.

Assuming that all Ψc
aΨa ↔ Ψc

bΨb are in thermal equilibrium due to large κ,

the asymmetry will be equally distributed among all generations of the Ψa. In this

case we have Y∆Ψ1 = Y∆Ψ2 = Y∆Ψ3 ≡ 1
3
Y∆Ψ where Y∆Ψ = Y∆Ψ1 +Y∆Ψ2 +Y∆Ψ3 . With

this assumption, we can sum over flavor in the scattering rate γscatt ≡
∑

a,b γ
ab
scatt

and eq. (3.79) can be simplified to

sHzUV

dY∆

dzUV

= −ε1γN1

(
YN1

Y eq
N1

− 1

)
+

1

2
γN1

(
Y∆Ψ

3Y eq
+
Y∆Φλ

2Y eq

)
+γscatt

(
Y∆Ψ

3Y eq
+
Y∆Φλ

2Y eq

)
, (3.80)

where we have made use of
∑

a Pa = 1.

In order to solve the equations above in closed form, we need to express Y∆Ψ

and Y∆Φλ in term of Y∆. According to symmetry consideration we presented in

section 3.5.1, all particle asymmetries can be relate to the charge Y∆ [see eq. (3.56)].

So, we write Y∆Ψ = −cΨY∆ and Y∆Φλ = −cΦλY∆, with cΦ, cΦλ > 0. In terms of

these, we can rewrite eq. (3.80) as

sHzUV

dY∆

dzUV

= −ε1γN1

(
YN1

Y eq
N1

− 1

)
−
(

1

2
γN1 + γscatt

)(
cΨ

Y∆

3Y eq
+ cΦλ

Y∆

2Y eq

)
≡ −ε1γN1

(
YN1

Y eq
N1

− 1

)
−
(

1

2
γN1 + γscatt

)
cW1

Y∆

Y eq
, (3.81)
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where we have defined

cW1 ≡
cΨ

3
+
cΦλ

2
. (3.82)

The coefficient cW1 will be determined by the symmetries of the model and by the

particle contents in the thermal bath (see Appendix C for details). Formally, the

solution to eq. (3.81) is given by

Y∆ (zUV) = Y∆ (zUV,i) e
−
cW1
Y eq

∫ zUV

z
UV,i

dz′W (z′)
+ ε1

∫ zUV

zUV,i

dz′
dYN1

dz′
e−

cW1
Y eq

∫ zUV

z′ dz′′W (z′′),(3.83)

where zUV,i is the initial temperature, W (z) ≡ 1
sHz

(
1
2
γN1 + γscatt

)
is the total washout

factor and Y∆(zUV,i) is a preexisting asymmetry. The approximate solution including

only decays and inverse decays are presented in appendix B and can be summarized

as

Y∆(zUV →∞) = ε1ηN1Y
eq
N1

(0) (3.84)

where ηN1 is the efficiency factor :

ηN1 ∼


1/(K1 lnK1) for K1 � 1 [eq. (B.39)]

K2
1 for K1 � 1 with zero initial YN1 [eq. (B.31)]

O(1) for K1 � 1 with thermal initial YN1 [eq. (B.40)]

(3.85)

and K1 is defined in eq. (3.75). When off-shell ∆ = 2 scatterings are relevant, we
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took into account their effects numerically.

Next we will study the effect of low scale washout. For simplicity, we assume

that all three pseudo-Dirac pairs Ψ̃i have comparable masses and denote the common

mass scale as mΨ. With this assumption BE’s for all three pairs of Ψ̃i can be written

with a common zIR ≡ mΨ

T
. We will work up to leading order in the mass difference.

At low scale T ∼ mΨ, the washout is described by (here we ignore the asymmetry

generation from Ψ decay as it is shown to be negligible in section 3.3)

sHzIR

dY∆

dzIR

=
1

2
γΨ

(
Y∆`

6Y eq
+
Y∆H

4Y eq

)
= −1

2
γΨ

(
c`
Y∆

6Y eq
+ cH

Y∆

4Y eq

)
≡ −1

2
cW2γΨ

Y∆

Y eq
, (3.86)

where γΨ describes the washout from `H ↔ ¯̀H∗ with on-shell pseudo-Dirac fermions

Ψ̃i and we used g` = gH = 2 and ζ` = 1, ζH = 2. Also, as we already did

above, we wrote Y∆` = −c`Y∆ and Y∆H = −cHY∆, with c`, cH ≥ 0. We have also

assumed lepton flavors to equilibrate such that Y∆`e = Y∆`µ = Y∆`τ ≡ 1
3
Y∆` where

Y∆` = Y∆`e+Y∆`µ+Y∆`τ . We have defined cW2 ≡ c`
6

+ cH
4

and here we take g? = 106.75

since Ψa, Ψc
a, Φκ and Φλ no longer contribute to number of relativistic degrees of

freedom. For T−EWsp < T . 104 GeV, we have c` = 42
79

, cH = 16
79

and cW2 = 11
79

. Since

the eq. (3.86) is homogeneous, the solution can be obtained straightforwardly (or

equivalently by keeping the first term of eq. (3.83) and setting the second term to

zero)

Y∆ (zIR,f ) = Y∆ (zIR,i) e
− 6
π2 cW2K

eff
Ψ f(zIR,i,zIR,f ), (3.87)
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where zIR,i and zIR,f denote respectively the initial and final temperatures within

the IR physics for which eq. (3.86) is solved. The function f(zIR,i, zIR,f ) is defined

in eq. (B.20). In addition, the low scale effective washout factor is defined as [c.f.

T �MN1 eq. (3.31)]

Keff
Ψ ≡

∑
a

ΓΨa

H

( |µaa|
ΓΨa

)2
∣∣∣∣∣
T=mΨa

. (3.88)

where ΓΨa ≡ 1
16π

(yy†)aamΨa . Since for our case MN1 � mΨ, we can take zIR,i →

0. The initial abundance of Y∆(zIR,i) of the IR solution is obtained from the final

asymmetry Y∆(zUV,f →∞) of the UV genesis. Namely,

Y∆ (zIR,i) = Y∆ (zUV,f ) . (3.89)

As for zIR,f , it is bounded by T−EWsp = 132 GeV where EW sphaleron processes

cease to be effective. If mΨ � T−EWsp, we can take zIR,f →∞ and use f(0,∞) = 3π
2

.

Already formΨ = 1 TeV, we have f(0, 1000
132

) = 4.564 which is only about 3 % different

from 3π
2

. On the other hand, taking mΨ = 500 GeV, we have f(0, 500
132

) = 3.058. After

the low scale washout, when the EW sphaleron processes get out of equilibrium

at T−EWSp = 132 GeV, the baryon asymmetry is frozen as given in eq. (3.57). To

summarize, the complete formula for the baryon asymmetry generated in our hybrid

seesaw model is given as

Y∆B = d× ε1ηN1Y
eq
N1

(0)× e− 6
π2 cW2K

eff
Ψ f(zIR,i,zIR,f ). (3.90)
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This equation clearly demonstrates the interplay of the high scale and low scale

physics in hybrid-genesis. The part ε1ηN1Y
eq
N1

(0) shows the generation of the asym-

metry from the high scale N1 decay [eq. (3.84)], while the exponential factor encodes

the washout effect from the low scale [eq. (3.87)]. The coefficient d is the factor re-

lated to the EW sphaleron processes shown in eq. (3.57).

3.6 Results

In this section we will use the formalism developed in section 3.5 to identify

the region of parameter space of our model that accounts for the observed baryon

asymmetry. Most of the results of this section are based on analytic expressions

derived in section 3.5 and appendix B; however, when the washout effects from off-

shell scattering become significant we used numerical methods. Fortunately, most of

the plots given below can be understood analytically. For the readers’ convenience,

we provide a list of formulae relevant to leptogenesis in table 3.4. In particular, we

show the parametric dependence of each quantity on the two main parameters of

the effective theory in the IR, i.e., mΨ and y, and present most of the plots in the

plane y −mΨ.

We discuss the results only for our fully-symmetric model for concreteness.

Noticing that the main difference between fully-symmetric and non-symmetric

models are the existence of exact U(1) symmetries and that this will mainly lead to

a difference in spectator effects, we conclude based on the argument in appendix C

that their final asymmetry will differ only up to an order one factor.
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SM neutrino mass in hybrid seesaw

No. Quantity Expression Dependence on model parameters Ref.

T1 Neutrino mass mν ∼ y2v2

m2
Ψ
µ µ ∼ mν

v2

(
m2

Ψ

y2

)
eq. (3.8)

T2 µ µ ∼ λ2
2〈Φλ〉2
MN

λ2
2 ∼ mνMN

v2〈Φλ〉2

(
m2

Ψ

y2

)
eq. (3.50)

Leptogenesis in high scale module

No. Quantity Expression Dependence on model parameters Ref.

T3 CP parameter ε1 ∼ λ2
2

8π
ε1 ∼ mνMN

8πv2〈Φλ〉2

(
m2

Ψ

y2

)
eq. (3.72)

T4 Washout factor K1 ≡ ΓN1

H(T=MN1
)
∼ λ2

1

16π
√
g?

Mpl

MN
K1 ∼ r2Mplmν

16π
√
g?v2〈Φλ〉2

(
m2

Ψ

y2

)
eq. (3.75)

T5 Asymmetry in strong washout Y s
∆(zUV,f ) ∼ 10−3 ε1

K1 lnK1
Y s

∆(zUV,f ) ∼
√
g?
r2

MN

Mpl
/ lnK1 eq. (B.39)

T6
Asymmetry in weak washout

Y w
∆ (zUV,f ) ∼ 10−3ε1K

2
1 (YN1(zUV,i) = 0) Y w

∆ (zUV,f ) ∼
r4M2

plm
3
νMN

g?v6〈Φλ〉6

(
m6

Ψ

y6

)
eq. (B.31)

T7 Y th,w
∆ (zUV,f ) ∼ 10−3ε1 (thermal YN1(zUV,i)) Y th,w

∆ (zUV,f ) ∼ mνMN

8πv2〈Φλ〉2

(
m2

Ψ

y2

)
eq. (B.40)

T8 Off-shell N2 scattering Kscatt
N2

=
Γscatt
N2

H(T=MN1
)
∼ λ4

2

16π3√g?
Mpl

MN
Kscatt
N2
∼ 1√

g?

Mplm
2
νMN

v4〈Φλ〉4

(
m4

Ψ

y4

)
eq. (3.77)

The washout in TeV scale module

No. Quantity Expression Dependence on model parameters Ref.

T9 Effective washout factor Keff
Ψ ∼ ΓΨ

H(T=mΨ)

(
µ

ΓΨ

)2

Keff
Ψ ∼ 16π√

g?

Mplm
2
ν

v4

(
mΨ

y6

)
eq. (3.88)

T10 Low scale washout Y∆ (zIR,f ) ∼ Y∆(zIR,i)e
−Keff

Ψ Y∆ (zIR,f ) ∼ Y∆(zIR,i)e
− 16π√

g∗
Mplm

2
ν

v4

(
mΨ
y6

)
eq. (3.87)

Constraints

No. Quantity Expression Dependence on model parameters Ref.

T11 µ→ eγ BR(µ→ eγ) ' 3αem

8π

∣∣∣∣(yt v2

m†ΨmΨ
y∗
)
µe

∣∣∣∣2 BR(µ→ eγ) ∼ 3αem

8π
v4
(
y4

m4
Ψ

)
eq. (3.11)

Table 3.4: Summary of formulae for hybrid-leptogenesis with r ≡ λ1/λ2. High scale and TeV scale modules are defined in
eq. (3.92). Generally we assume that MN ∼MN1 ∼MN2 and r ≤ 1
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3.6.1 General parameter space

As discussed in section 3.5, there are two scales relevant for leptogenesis in

our model. The asymmetry is first generated at high temperatures through decays

of the Majorana singlet Ni. This primordial asymmetry is then prone to further

washout at the TeV scale. In other words, the asymmetry that is generated and

survives the high temperature washout effects can be taken as an initial condition

for the TeV-scale leptogensis. As was shown in section 3.3, the asymmetry generated

at the TeV scale by itself is generically negligible, so we only take into account the

washout processes at this scale. Furthermore, as we discuss in detail in section 3.6.2,

the allowed range for MN in our hybrid model is roughly of order 106 − 1016 GeV.

This corresponds to relaxed bounds on both (upper and lower) sides compared to

the standard Type I scenario, and in what follows, we will study this full mass range.

In order to avoid technical details obscuring the main physics, we assume two

generations of Ni (i = 1, 2) and their Yukawa couplings to be anarchic, except for the

specific cases described below. In particular, Ψa flavor effects can be ignored due to

the assumption in eq. (3.73) as well as fast flavor equilibrating scatterings mentioned

in footnote 25. The same assumption as in eq. (3.73) allows us to simply denote

their Yukawa couplings as λi (λi ∼ λia for all a). As we discuss in section 3.6.2.2,

in order to lower the scale of high scale leptogenesis down to 106 GeV, hierarchies

in the couplings λi are required and the third generation of N is also needed to fit

neutrino observables. For this reason it is useful to define the ratio r ≡ λ1

λ2
. The

mass of Ni is denoted as MNi or simply MN when all MNi are of the same order but
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not degenerate. For the other couplings y and κ, we assume anarchical structure

and for simplicity, we treat them as numbers rather than matrices.

Under the reasonable assumptions mentioned above, our hybrid model can be

parametrized by six parameters:

y, mΨ λ2, r, MN , 〈Φλ〉. (3.91)

Since hybrid-genesis intrinsically features two scales, it is convenient to classify these

parameters in two modules :

High scale module : λiNiΦλΨ +
1

2
MNiNiNi + h.c.,

TeV scale module : yΨcH`+mΨΨcΨ +
1

2
µΨΨ + h.c. (3.92)

Here the high scale module is the part of the full Lagrangian in eq. (3.49) which

only contains particles relevant to high scale leptogenesis and has three parameters:

λ2, r,MN . (Note that 〈Φλ〉 does not affect high scale genesis, so it is not included

here.) The TeV scale module is basically the ISS model (eq. (3.12)) withmΨ = κ〈Φκ〉

and µ determined by high scale parameters as in T2 in table 3.4. Because 〈Φλ〉 is a

more fundamental quantity than µ, we interpret the former as independent.

There are two constraints on six parameters in eq. (3.91): one is the observed

neutrino mass mν and the other the observed baryon asymmetry. This leaves us

with four independent parameters. The above simplifications allow us to write down

simple relations as in Table 3.4.
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Figure 3.3: Contours of needed UV asymmetry (solid black lines) and µ (dashed
brown lines) in the (mΨ, y) plane to obtain the observed baryon asymmetry Y∆B ∼
10−10 and mν = 0.05 eV. In the green shaded region, washout at the TeV scale is
negligible so that the UV asymmetry needs to be the observed baryon asymmetry
∼ 10−10. On the other hand, for smaller values of y, due to exponential sensitivity
in y and mΨ, UV asymmetry lines get closer to each other. In the gray shaded
region, TeV scale washout becomes so large that even saturating maximal allowed
Y∆(z

UV ,f ) ∼ 10−3 results in too small final asymmetry to explain the observation.

3.6.1.1 TeV scale module

We first study the impact of our parameters in the TeV scale module in

eq. (3.92). Consider figure 3.3, where y and mΨ are treated as independent. For a

chosen mΨ and y, the quantity µ will be fixed by the SM neutrino mass mν via T1

in table 3.4. This is presented in figure 3.3, where the dashed lines on the plot are

contours of constant µ and we have fixed mν = 0.05 eV. From table 3.4, we see that

µ ∼ m2
Ψ/y

2.
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Once mΨ, y and mν are fixed, the low scale effective washout factor (T9 in

table 3.4) is fixed as well. Therefore, we can determine the required amount of asym-

metry generated at the high scale Y∆(zUV,f ) (using T9 in table 3.4) in order to match

the observed value Y∆B ∼ 10−10 [75] through eq. (3.57). Contours of the needed

UV asymmetry are shown as solid lines in figure 3.3. As can be seen from table 3.4,

the required Y∆ (zi) depends on (mΨ, y) via Keff
Ψ ∼ 16π√

g?

Mplm
2
ν

v4

(
mΨ

y6

)
. Therefore, the

required UV asymmetry lines will simply be parallel to constant ∼ mΨ

y6 . In the green

shaded region of the plot, the washout effect at the TeV scale is negligible and hence

the UV asymmetry will need to be of order the observed size. For smaller y values,

on the other hand, the washout from the TeV scale is exponentially strong so the

final asymmetry becomes sensitive to TeV scale parameters: this is reflected in the

UV asymmetry contours getting closer and closer to each other as y gets smaller.

For the gray shaded region, y . 0.04, the washout is so strong that even the maximal

Y∆(zUV,f ) ∼ 10−3 would not be enough. For this reason no UV asymmetry contours

are present in that region.

3.6.1.2 High scale module

The high scale module in eq. (3.92) has four parameters: λ2, r, MN and 〈Φλ〉.

Besides determining the generated UV asymmetry Y∆(zUV,f ), they also control the

TeV scale mass µ as T2 in table 3.4. Fixing two of the four parameters, we can

plot contours of constant µ and Y∆(zUV,f ) in the plane defined by the remaining two.

For instance, fixing 〈Φλ〉 and r, we obtain contours of constant µ and Y∆(zUV,f ) in
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Figure 3.4: Contours of UV asymmetry and µ generated in the high scale module
in the (MN , λ2) plane for 〈Φλ〉 = 10 TeV and r = 0.1. Solid curves are contours
of UV asymmetry assuming zero initial abundance of N and dot-dashed curves are
contours of UV asymmetry with the assumption of thermal initial abundance for N .
The brown dashed lines are contours of constant µ. The blue dotted line sets the
boundary between strong washout regime (to the left of the line) and weak washout
regime (to the right of the line) for the high scale module.

the (MN , λ2) plane. These contours are shown in figure 3.4. As seen from T2 in

table 3.4, constant µ simply gives straight lines (brown, dashed). Moving onto UV

asymmetry, the blue dotted curve in the plot separates the regions of strong and

weak UV washout. The transition seen in this curve around MN ∼ 1014 GeV is

due to the change in g? as discussed in section 3.5.2.5. In the region to the left of

the blue dotted curve, washout in the UV is strong and the UV asymmetry is a

function mainly of MN with only a logarithmic dependence on λ2 (T5 in table 3.4),

as long as the washout from off-shell scattering is negligible (i.e. as long as λ2 is
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not too large). So, in this region UV asymmetry contours (solid, black lines) are

almost vertical lines until λ2 becomes so large that washout from off-shell scattering

becomes important. For such high λ2 values, the UV asymmetry is very sensitive

to Kscatt
N2

and contours of constant asymmetry roughly follow constant Kscatt
N2
∝ λ4

2

MN

lines. In the weak washout region (to the right of the blue dotted curve) and with

zero initial abundance for N , the UV asymmetry is ∝ ε1K2
1

g∗
∝ λ6

2

g∗M2
N

. Therefore,

as long as g∗ does not vary significantly, solid curves in this region follow constant

λ3
2

MN
lines. The dot-dashed black curves are contours of constant UV asymmetry

assuming thermal initial abundance for N . They differ from the solid curves only

in the weak washout regime where the UV asymmetry is ∝ λ2
2

g∗
and follow constant

λ2 lines if g∗ is constant. The transition in both cases seen around MN ∼ 1014 GeV

is due to the change in g∗ mentioned earlier.

3.6.1.3 Combining high scale and TeV scale modules

Here, we will combine the results of sections 3.6.1.1 and 3.6.1.2 in order to get

a better picture of the allowed parameter space. For given values of (y,mΨ), we can

find from figure 3.3 the required values of µ (for the right SM neutrino mass) and

UV lepton asymmetry. Then, we can “match” these values to those generated by

the high scale module from figure 3.4: for a given 〈Φλ〉 and r, we can determine the

necessary (MN , λ2). To make the parametric dependence more explicit, we fix (at a

time) values of two parameters out of (MN , 〈Φλ〉 and r) and present viable contours

for various values of the 3rd parameter in the 2D y −mΨ plane. We show some of

100



WUV
-SIR

SUV -WIRWUV -WIR

SUV -SIR

0.5 1 5 10 50
0.02

0.05

0.10

0.20

mψ(TeV)

y

〈ϕλ〉= 200 TeV, r= 1

MN(GeV)
1012

1014

1016

KΨ
eff~ 1

K1~ 1

μ→eγ

Figure 3.5: Interplay of high-scale washout and asymmetry generation with TeV
scale washout. Solid (dot-dashed) curves are contours on which observed baryon
asymmetry and SM neutrino masses are produced for fixed r and 〈Φλ〉 and different
choices of MN , assuming zero (thermal) initial abundance for N . The dashed green
line sets the boundary between the weak washout and strong washout regimes in the
IR (around the TeV scale), and the dashed black line is the boundary of weak and
strong washout regimes in UV. The gray shaded region is constrained by µ→ eγ.

the curves in figures 3.5 and 3.6: more details are given below.

First of all, we mention some of the general ingredients going into these plots.

In order to generate them, we have assumed anarchic, non-degenerate Majorana

singlet masses. We have estimated the CP asymmetry, UV washout factor and

effective IR washout factor as shown in table 3.4 and have used the analytic ap-

proximate expressions of appendix B. Whenever washout from off-shell scattering

becomes important (for regions in parameter space where Kscatt
N2

> 0.1), we take it

into account by calculating the efficiency factor numerically. The solid curves in
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figures 3.5 and 3.6 are produced under the assumption of zero initial N1 abundance

and dot-dashed curves are obtained assuming thermal initial N1 abundance. These

differ only in the weak UV washout regime since in the strong UV washout regime

any asymmetry generated at the early time is efficiently erased and the final result

only depends on the equilibrium abundance of N1 at a time when the inverse decays

freeze out. As already noted above, on each curve, we have fixed the SM neutrino

mass (to mν = 0.05 eV) and the final baryon asymmetry matches the observed one.

Finally, the region constrained by lepton flavor violating process µ → eγ (T11 in

table 3.4) is shaded in gray, see the upper left corner of each plot. As discussed in

section 3.2, such constraint can be further relaxed with flavor symmetries.

We now discuss in more detail some of the specfic features in these plots. Inter-

estingly, there is an important interplay between the asymmetry generation/washout

effects in high scale and washouts in TeV scale modules. In order to see this, con-

sider first figure 3.5, where we fix r and 〈Φλ〉 and show working contours for several

values of MN : we observe that it is divided into four regions by two dashed lines:

the green dashed line denotes the Keff
Ψ ∼ 1 boundary (of strong/weak washout in the

IR) and the black dashed line is for K1 ∼ 1 (i.e., boundary of strong/weak washout

in the UV). From table 3.4, we see that Keff
Ψ ∼ mΨ/y

6 and K1 ∼ m2
Ψ/y

2. The region

above (below) the green dashed line has Keff
Ψ < 1 (Keff

Ψ > 1), is identified as the weak

(strong) IR washout region and labelled by WIR (SIR). The dashed black line, on the

other hand, separates the high scale strong (SUV) and weak (WUV) washout regimes.

The high scale washout is strong (K1 > 1) below this line and weak (K1 < 1) above

it. One can identify four regimes from these combination: SUV − SIR, SUV −WIR,
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WUV −WIR and WUV − SIR:

(i) SUV − SIR: In this regime, the high scale asymmetry generation happens in

the strong washout regime and the UV asymmetry generated is determined

primarily by MN and has only a very weak dependence on other parameters.

Fixing all other parameters besides {mΨ, y}, from T5 in table 3.4, we see that

the UV asymmetry has only logarithmic (mild) UV dependence on K1. On

the other hand, the final asymmetry is exponentially sensitive to TeV-scale

washout, i.e. Keff
Ψ ∼ mΨ/y

6 and hence a constant final asymmetry will lie

along the constant Keff
Ψ lines i.e. parallel to Keff

Ψ ∼ 1 line. Eventually no

curves will appear simply because TeV-washout becomes so strong that it is

not possible to render the observed size of asymmetry for any choice of MN .

Furthermore, one may notice from the red curve in figure 3.5 that its behavior

differs from the others for larger mΨ. This may be understood by recalling

that for larger MN washout in the UV from scattering by off-shell exchange

of N2 becomes larger (parametrized by Kscatt
N2

in T5 of table 3.4) and at some

point it becomes a significant factor in determining the final asymmetry. In

this regime, the final asymmetry will follow a constant Kscatt
N2

line. Moreover,

Kscatt
N2
∼ m4

Ψ/y
4 and so the asymmetry curve appears to be parallel to constant

K1 line.

(ii) SUV −WIR: In this region washout at the TeV scale is negligible and the final

asymmetry is set by the high scale parameters as T5 in table 3.4. So the curves

in this region follow a constant K1 curve except for some choice of parameters
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when washout due to scattering from off-shell N2 exchange becomes relevant,

in which case the curves are determined by a constant Kscatt
N2

line that coincides

with a constant K1 line.

(iii) WUV−WIR: In this region, washout at the TeV scale is negligible and the final

asymmetry will be mainly dictated by the UV asymmetry. The asymmetry

generated at the high scale, as shown in T6 or T7 in table 3.4, will be propor-

tional to powers of mΨ/y and they will lie on constant K1 lines (for both zero

and thermal initial N1 abundance).

(iv) WUV−SIR: The generation of asymmetry at the high scale occurs in the weak

washout regime and the washout at the TeV scale is strong. The curves in

this region interpolate between strong-strong and weak-weak regions, starting

from a constant Keff
Ψ line near the SUV − SIR region and ending roughly on

constant K1 lines near the WUV −WIR region.

Useful complementary information can be found in figure 3.6, where we show

two plots with fixed (MN , 〈Φλ〉) instead, while varying r and with fixed (MN , r), for

several choices of 〈Φλ〉, respectively. Analyses similar to that done for figure 3.5 can

be performed here also, but for brevity, we will not repeat it. As seen from T4 in

table 3.4, K1 ∝ r2

〈Φλ〉2
and thus as we change either r or 〈Φλ〉 (as we do in figure 3.5),

the K1 ∼ 1 boundary will also change. To avoid too much complication in plots,

therefore, we decided not to show K1 ∼ 1 lines for each case. For a discussion of

other phenomenology of this model (such as collider and cosmological signals), see

ref. [54].
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Figure 3.6: Solid (dot-dashed) curves are contours in (mΨ, y) plane on which the
observed neutrino mass and baryon asymmetry is produced assuming zero (thermal)
initial abundance for N , similar to figure 3.5. In the left panel, we vary r and keep
MN and 〈Φλ〉 fixed, while the right panel shows the results with varying 〈Φλ〉 while
keeping MN and r fixed. The gray shaded region is constrained by µ→ eγ.

3.6.2 Selected benchmark points

In this section we are going to focus on some representative benchmark points.

We categorize the possibilities based on MN , the size of mass of heavy Majorana

singlet. Specifically we present the choice of parameters that make leptogenesis

possible for MN > 1015 GeV and MN < 109 GeV, i.e., outside the usual range of

Majorana singlet mass in type I seesaw leptogenesis scenarios.

3.6.2.1 Super-heavy singlet: & 1015 GeV

We start with singlet masses close to the upper bound on the reheating tem-

perature from BICEP, i.e., MN ∼ 1016 GeV [99].27 In type I seesaw, leptogenesis

fails in this regime because it suffers from too large washout due to off-shell scatter-

ing mediated by the Majorana singlet. This washout has a rate proportional to λ4

27The constraint is on the Hubble scale during inflation, which with the assumption of instan-
taneous reheating, can be translated into a bound on the reheating temperature.
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and as one increases MN , one also has to increase λ in order to generate sufficient

SM neutrino mass (in the type I seesaw mν ∼ λ2v2/MN). When λ > 1, the washout

becomes strong and efficiently erases the asymmetry. On the other hand, in our

hybrid model, we can keep λ small enough to suppress the washout from scattering

and adjust other parameters to obtain the SM neutrino mass even for such large

values of MN . Indeed, taking into account the above considerations, it was shown

in [54] that the upper bound on MN in hybrid model is given by

MN .

(
16π3√g∗ v4

MPl m2
ν

)
×
(
y〈Φλ〉
κ〈Φκ〉

)4

∼ 1014 GeV ×
(
y〈Φλ〉
κ〈Φκ〉

)4

, (3.93)

where the first factor is the bound for standard type I seesaw due to strong washout

from scattering as discussed earlier. We see that the second factor, which can be

interpreted as a TeV-modulation effect, buys us extra freedom and allows to relax

the usual upper bound of 1014 ∼ 1015 GeV. Initial conditions for leptogenesis in this

high temperature regime are discussed in section 3.5.2.5.

In order to illustrate successful leptogenesis for MN1 & 1015 GeV, as a bench-

mark point we choose MN1 = 1016 GeV and MN2 = 3 × 1016 GeV (shown in table

3.5). A choice of λ ∼ 0.5 allows for N1 decays and inverse decays to be in equilib-

rium around T = MN1 while keeping the off-shell scattering mediated by N ’s out

of equilibrium. With this choice of parameters, high scale leptogenesis happens in

the strong washout regime (K1 ≈ 10), and it generates a UV baryon asymmetry

of ∼ 10−5. The washout at the TeV scale is then needed to dilute it down to the

observed baryon asymmetry of ∼ 10−10. For this to happen we must have Keff
Ψ ≈ 27.
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MN1

(GeV)
λ2 r = λ1

λ2

MN2

MN1

〈Φλ〉
(TeV)

mΨ

(TeV)
y K1 Keff

Ψ

µ
(keV)

1016 0.5 1 3 400 3 0.05 10 27 5

1011 0.04 0.3 3 20 8 0.1 30 0.2 6

107 0.01 0.001 20 4 20 0.2 0.6 0.03 15

Table 3.5: Three different benchmark points consistent with neutrino mass data
and leptogenesis, organized by Majorana singlet mass scale.

This value of Keff
Ψ can be obtained by a choice of mΨ ∼ 3 TeV and y ∼ 0.05, which

is also consistent with the µ→ eγ bound. To get the observed neutrino mass with

the chosen parameters, we then take 〈Φλ〉 ∼ 400 TeV.28

Note that since we have not introduced any significant hierarchies in any of

the mass or Yukawa matrices, we obtain an anarchic SM neutrino mass matrix in

the SM flavor basis as is sufficient to fit to the observed neutrino masses and mixing

angles.

3.6.2.2 Going below Davidson-Ibarra bound of ∼ 109 GeV

At the other extreme we consider Majorana singlet masses below 109 GeV. In

standard type I seesaw model, one can not have successful leptogenesis for singlet

masses below 109 GeV unless one employs flavor effects or resonant leptogenesis

which requires hierarchical parameters and/or new ingredients as discussed in sec-

tion 3.3.3.3. This lower limit on the Majorana singlet mass is known as Davidson-

Ibarra bound [40]. However, as shown in [54], the lower bound in hybrid seesaw is

28As discussed in section 3.4 and chapter 2, such a value for 〈Φλ〉, i.e.,� TeV, can be “effectively”
obtained without any hierarchies in the fundamental parameters in the warped/composite UV
completion of the hybrid model.
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relaxed

MN & 10−7 8πv2

mν

(
y 〈Φλ〉
κ 〈Φκ〉

)2

∼ 109 GeV ×
(
y 〈Φλ〉
κ 〈Φκ〉

)2

, (3.94)

where the first factor is the Davidson-Ibarra lower bound for the case of standard

type-I seesaw and the second factor is due to the TeV-modulation. Therefore, in

our model we can have successful leptogenesis with Majorana singlet masses � 109

GeV , even if we ignore flavor effects and without any degeneracy between singlet

masses. However, there exists another rather generic lower bound MN & 105 GeV.

This is derived by the simultaneous requirements of large enough CP violation and

small enough ∆ = 2 washout due to scattering. In order to see this more explicitly,

we note that to suppress potentially dangerous washout by the ∆ = 2 scattering

from the off-shell N2 mediation, we need to impose its rate to be smaller than the

Hubble rate at T = MN1 . Using eq. (3.72) and (3.77) this gives us the following

condition:

MN1 &
4

π

ε21
sin2 (φ12)

MPl

1.66
√
g?

= 8.5× 104 1

sin2 (φ12)

( ε1
10−7

)2
√

121.25

g?
GeV. (3.95)

Hence we see that the requirement that the scatterings ΦλΨa ↔ (ΦλΨa)
∗ be out of

equilibrium set a lower bound on the mass of N1 [97, 98]. The value ε ∼ 10−7 is

chosen because this is the minimum value of ε to get successful leptogenesis.

To achieve leptogenesis for the lowest value MN1 ∼ 105 GeV, we however need
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a hierarchy in λ1a/λ2a. This can be seen by checking the allowed range of λ1a and

λ2a. Since the value of ε1 is already saturated to its minimum value for MN1 ∼ 105

GeV, we can not afford additional washout effects. As we saw in eq. (3.85), the

maximum efficiency of the washout can be achieved if K1 . 1, and this leads to

(
λλ†
)

11
. 1.66

√
g?16π

MN1

MPl

= 7.5× 10−12

√
121.25

g?

(
MN1

105 GeV

)
. (3.96)

On the other hand, to have |ε1| & 10−7, from eq. (3.72), we require

(
λλ†
)

22
& 8π10−7MN2

MN1

1

|sin (φ12)|

= 2.5× 10−5

(
MN2

MN1

1

10

)
1

|sin (φ12)| . (3.97)

The above estimation shows that to achieve leptogenesis for MN1 ∼ 105 GeV, we

need λ1a/λ2a ∼ 5× 10−4 (i.e. a small value of r),29 but not among different genera-

tions of Ψ’s.

The relaxation of the lower bound on the singlet Majorana masses, thus lower-

ing the required reheating temperature of the Universe, may alleviate the gravitino

overproduction problem [100–104] of SUSY models. Namely, for gravitino masses

(SUSY breaking scale) ∼ TeV (which is the “natural” range), we typically need

reheating temperatures below ∼ 109 GeV in order to avoid BBN bounds from ex-

cessive late decays of (very weakly-coupled) gravitinos [105, 106]. In the usual type

29As discussed in [54], with the choice of anarchic parameters instead, we can only go down to
MN ∼ 1011 GeV.
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I seesaw model, this might be in tension with leptogenesis.

We now present a specific choice of parameters consistent with leptogenesis

for Majorana singlet mass MN1 ∼ 107 GeV (see table 3.5). We choose λ1 ∼ 10−5

such that we get K1 ∼ 1 in order to optimize the efficiency factor η. As already

mentioned, we need to allow for a hierarchy between the Yukawa couplings of N1

and N2, which we choose to be r = λ1

λ2
∼ 10−3 corresponding to λ2 ∼ 0.01. This

provides an enhancemnet in the UV asymmetry by a factor of 1
r2 ∼ 106, compared

to the anarchic (r = 1) case (see T5 in table 3.4), which is enough to account for the

observed asymmetry. Note that with λ2 � λ1, the decay rate of N2 is much larger

than the Hubble rate, and so washout from inverse decay of N2 can be potentially

dangerous for leptogenesis. However, since at temperatures below the mass of N2,

the rate for this inverse decay is Boltzmann suppressed, a small hierarchy between

MN2 and MN1 is sufficient for N2 inverse decay to be out of equilibrium at T ≈MN1 .

The condition we demand is

e
−
MN2
MN1 <

ΓN1

ΓN2

∼ r2. (3.98)

We choose MN2 ≈ 20MN1 as our benchmark value which gives a Boltzmann sup-

pression of e−20 ∼ 10−9 � r2. With the chosen values for MN2 and λ2, washout

from off-shell scattering, mediated by N2, is out of equilibrium when asymmetry

generation happens. A choice of mΨ ∼ 20 TeV and y ∼ 0.2 would result in weak

washout at the TeV scale (Keff
Ψ ∼ 0.03) and is consistent with the µ → eγ bound.

We then can pick 〈Φλ〉 = 3 TeV to obtain the right SM neutrino mass scale.
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One might worry that with the hierarchies introduced it may not be possible

to obtain a relatively anarchic SM neutrino mass matrix. We should however note

that even though we are discriminating different N generations (labeled by i, j, ...),

we are not introducing any hierarchies distinguishing different Ψ families (labeled

by a, b, ...) or SM lepton flavors (labeled by α, β, ...), and this results in an anarchic

SM neutrino mass matrix in the flavor basis. Still, in the limit of r → 0 the rank of

the λ matrix is reduced by one. This in turn reduces the rank of µ and SM neutrino

mass matrices. So in order to have a realistic neutrino mass matrix in scenarios

with small r, we need to consider at least three generations of Ni. We take N3 to

have Yukawa couplings comparable to those of N2. Choosing MN3 larger than MN2

by a factor of a few ensures that contributions of N3 to the CP asymmetry and to

off-shell scattering washout are subdominant compared to those of N2. Note that

this scenario with small r ∼ 10−3 and three generations of N results in one of the

SM neutrino mass eigenvalues being much smaller than the other two, by a factor

of ∼ r2 ∼ 10−6. Such a small mass for the lightest neutrino mass eigenstate is of

course consistent with the current neutrino data.

3.6.2.3 Intermediate scales: ∼ 109 − 1015 GeV

The region of parameter space with MN ∼ 109−1015 GeV works in our model

as well as in the usual type I case. An example of a working point is presented,

for MN ∼ 1011 GeV, in table 3.5. No hierarchies in the Yukawa or mass matrices

nor small Yukawa coupling are needed for this case.30 For the presented benchmark

30As mentioned in footnote 29, this is the smallest value of MN which works with anarchy.
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point, the asymmetry in the UV is generated in strong washout regime (K1 ∼ 30)

and the washout at the TeV scale is negligible (Keff
Ψ ∼ 0.2).
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Chapter 4: Fast phase transition in Randall-Sundrum models

4.1 Introduction

As illustrated in the previous chapters, the RS/CH model is an attractive so-

lution to the Planck-EW hierarchy problem and could allow further modifications

to address neutrino mass and baryon asymmetry problems, like warped/composite

seesaw mentioned above. Most of the analysis related to warped/composite seesaw

is done in the zero temperature limit, which is sufficient to study SM neutrino mass.

However, as shown in chapter 3 based on simplified hybrid seesaw, the dynamics at

high temperature T � TeV is necessary to achieve successful leptogenesis. There-

fore, in order to study leptogenesis in full warped/composite seesaw, it is also crucial

to understand high temperature behavior, as well as cosmological evolution of the

model. In this chapter, we will focus on one important stage of the early cosmolog-

ical evolution of warped/composite seesaw (or general RS/CH models)—the phase

transition (PT).

It is known that at sufficiently high temperature, the strongly coupled sector

of CH models is in a deconfined phase, similar to high temperature quark gluon

phase of QCD [21]. Whereas at low temperature, it undergoes confinement and

composite states (e.g. SM Higgs) are generated, similar to the low temperature
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hadron phase of QCD. So this class of models features a deconfined to confined PT.

Due to the non-perturbative nature of such phase transition, it is extremely hard to

determine the nature of the transition (i.e. first or second order PT or cross-over),

as well as the transition rate. Taking QCD as an example, although we know its

the group structure and the fermion content very well, we only get some sense of its

cosmological PT with the help of non-perturbative lattice calculation [107–110]. It

seems almost impossible to understand the PT in CH models since we have no clue

of its UV dynamics.

Remarkably, as mentioned earlier, the strongly coupled 4D theory with confor-

mal symmetry is dual to a weakly coupled 5D AdS spacetime including gravity ac-

cording to AdS/CFT duality. This opens a window to study some non-perturbative

physics of 4D CH models using analytic 5D calculations. It is known that the high

temperature deconfined phase of 4D CH model is dual to a large black hole configu-

ration in 5D AdS described by the AdS-Schwarzschild (AdS-S) geometry [111], with

a UV brane. While the low temperature RS phase has both UV and IR branes. The

free energy of these two phase can be calculated analytically and we can robustly

argue that the phase transition is first order (see section 4.2). The phase transi-

tion occurs by bubble nucleation and the rate can be estimated by the Euclidean

4D bounce action. Since the low temperature RS phase has a IR brane, the bounce

configuration should capture the feature that the IR brane “emerges” from the black

hole horizon. As discussed in ref. [112], one ansatz of such bounce is the horizon

moving to AdS boundary and then a IR brane emerging from the boundary to the

equilibrium place. The authors of ref. [112] calculated the bounce action of this
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ansatz and derived the phase transition rate per unit volume Γ:

Γ ∼ T 4e−cN
2/εα , (4.1)

where T is the temperature of the universe and ε is the 5D mass of GW scalar

in units of AdS curvature k (or the anomalous dimension of the dual 4D CFT

operator). It is assumed that the dual CFT theory has a SU(N) gauge structure

and thus N is related to 5D Planck mass M5 as N2/(16π2) = (M5/k)3. c is an

order one factor and the power α is model dependent but generally order unity.

Since the Planck-EW hierarchy is also controlled by ε (see eq. (1.1)), it is straight

forward to show that this transition rate is too slow compared to Hubble expansion

at the critical temperature Tc (defined in section 4.2) for large N (required by the

validity of 5D EFT) and ε = O(0.1) (required by achieving Planck-EW hierarchy

in the standard GW mechanism). Later, it was realized that the phase transition

rate goes up as the temperature goes down, and the transition could complete but

the temperature where the nucleation happens is much smaller than Tc, thus called

supercooling [113–118]. Allowing supercooling enlarges the controlled parameter

space of the 5D model, but the universe is stuck in the false vacuum before transition

starts, whose vacuum energy density dominates the universe and drives the low scale

inflation. All pre-existing abundance will be exponentially diluted and thus the

asymmetry generated from high scale, e.g. leptogenesis of our warped/composite

seesaw, will be negligible today if the universe supercools.

A faster phase transition rate can be achieved for a larger ε in eq. (4.1) .
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Since ε is the anomalous dimension of the OGW, ε may not be a constant but can

grow from UV to IR if there is a non-trivial RG equation (RGE) for OGW. The

relevant ε entering eq. (4.1) is at the scale of phase transition, which can be very

different from that at the UV scale, and thus both large hierarchy and fast phase

transition can be simultaneously obtained [118,119].1 In section 4.4 of this chapter,

we propose a general modification of the standard stabilization mechanism where

the deformation of CFT OGW has both UV and IR fixed points. In our model,

the anomalous dimension of this deformation near UV fixed point (denoted as ε)

controls the large hierarchy between UV scale and confinement scale, whereas the

phase transition rate is determined by the anomalous dimension near IR fixed point

(denoted as ε′). Thus a fast phase transition near the critical temperature and a

large Planck-EW hierarchy can be realized if ε � ε′ . 1. In this case, leptogenesis

along the lines of chapter 3 will be successful due to no dilution of the primordial

asymmetry after the phase transition.

However, the estimation of the bounce action and phase transition rate in [112]

assumes ε′ � 1, which may not be directly applicable to models with ε′ . 1. The

reason is that such an ansatz always involves a region where temperature is higher

than the IR brane scale and thus KK particles or even physics above the 5D UV

cutoff must be considered. This region may have negligible contribution to the

bounce action for ε′ � 1, but in general it is not true for ε′ . 1. We then propose

a new ansatz of the bounce in section 4.3: the deconfined phase is the usual AdS-S

1There are also other ways to reduce the bounce action and enhance the transition rate (see,
for example, [120–123]).
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Figure 4.1: The ansatz of the bubble configuration in 5D. The bulk geometry is
AdS-S everywhere and the black solid (dashed) line indicates the position of the
UV brane scale ρUV (horizon ρh). The deconfined phase is outside of the bubble,
where it is purely AdS-S. Inside the bubble (the confined phase), φ(r) cuts off the
spacetime and smoothly connects to ρh at the end of the bubble.

geometry with a horizon, while the confined phase is now modeled as the AdS-S

geometry in the bulk with an IR brane cutting off the spacetime in front of the

horizon. This is also a solution of the background Einstein equation and can reduce

to RS configuration if the IR brane is much away from the horizon. In our ansatz,

the dynamical IR brane moves from the equilibrium position to the horizon (see

figure 4.1),where the full bounce configuration is smooth and can be calculated

within the 5D EFT even for ε′ . 1. We also demonstrate that this ansatz can

set a robust bound on the phase transition rate. Furthermore, we briefly discuss

the phenomenological signals of our model in section 4.6. Our model predicts an

interesting correlation between the radion mass, which may be probed at colliders,

and the amplitude and frequency of stochastic gravitational waves from the phase

transition, which may be probed by e.g. Laser Interferometer Space Antenna (LISA)

experiment [124].
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4.2 4D Equilibrium description of the two phases

We can understand some qualitative features of the PT by studying it from a

4D perspective. In particular, we can estimate the critical temperature of the PT

as follows.

We model the deconfined phase as a SU(N) gauge theory at a temperature

T . Since there are N2 degrees of freedom in the thermal bath, we can write quite

generally,

Fdeconfined ≡ E − TS = −CN2T 4, (4.2)

where E , S , T is the energy density, entropy density and temperature of the thermal

bath respectively and C is some O(1) constant that can be determined once the CFT

is explicitly specified.

At low enough temperature the QFT can potentially confine giving rise to

massive, hadronic states. Quite generally, there can also exist a (almost) massless

degree-of-freedom (d.o.f) in the confined phase—the Goldstone boson corresponding

to spontaneous breaking of scale symmetry, namely the dilaton. At temperatures

parametrically smaller than the confinement scale, it is sufficient to consider the

dilaton as the only dynamical d.o.f in the EFT.

For phenomenological viability, the dilaton has to have a mass which can be

achieved by having a (small) explicit breaking of scale invariance in the “CFT”.

This can be done by deforming the CFT by an operator ∆LCFT = gO. Such a
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deformation will result in an effective potential for the dilaton µ [125,126]:

Veff = λ (g(µ))µ4, (4.3)

where the explicit breaking is characterized by the “running” quartic coupling

λ (g(µ)). For small deformation g, we can expand the beta function as β(g) ≡

dg
d lnµ
≈ εg. The solution the above RGE is given by,

g(µ) = g0

(
µ

ΛUV

)ε
, (4.4)

where g0 is the deformation at scale ΛUV. Thus the deformation corresponds to the

operator O having a scaling dimension 4+ ε. The potential for radion then becomes

(up-to first order in g),

Veff =

(
λ(0) + λ′(0)g0

(
µ

ΛUV

)ε)
µ4, (4.5)

where λ(0) = λ(g = 0), and λ′(0) = dλ
dg
|g=0. The above potential has a minimum at

〈µ〉 = ΛUV

(
− λ(0)
λ′(0)g0

) 1
ε
. A large hierarchy between 〈µ〉 and ΛUV can be obtained for

small ε. It will be convenient to re-express the dilaton potential in terms of 〈µ〉,

Veff = λ(0)µ4

(
1− 1

1 + ε/4

(
µ

〈µ〉

)ε)
. (4.6)

According to the dilaton EFT, this effective potential gives the free energy of the

confined phase i.e. Fconfined ≈
T�µ

Veff(µ).
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Having estimated the free energies of the two phases, we can now calculate

the temperature at which they become equal, namely the critical temperature for

the PT, Tc:

Fdeconfined(Tc) = Veff(〈µ〉)

⇒ Tc
〈µ〉 =

(
ελ(0)

C(4 + ε)N2

)1/4

. (4.7)

We see that Tc is self-consistently and parametrically smaller than 〈µ〉 for small ε

and(or) small λ̄. This justifies the effective description of the confined phase involv-

ing only the dilaton. Furthermore, the above fact indicates that at the temperature

Tc we can have a simultaneous existence of both the confined and the deconfined

phase, and thus the PT under consideration is first order in nature. As will be

explained below, Tc is not suppressed compared to 〈µ〉 by N , contrary to what eq.

(4.7) might indicate at first sight.

We can also estimate the rate of PT from the 4D perspective. A cosmological

PT completes when the bubble nucleation rate per unit volume, Γ, gets bigger than

H4 where H is the Hubble scale. For T ≤ Tc, H roughly remains constant (being

dominated by the cosmological constant corresponding to the false vacuum) and is

given by H2 ∼ N2T 4
c

M2
pl

. Γ can be computed in terms of the Euclidean bounce action

SE as,

Γ ∼ T 4e−SE . (4.8)

Thus for the PT to complete one needs roughly SE < 4 ln
(
MPl

Tc

)
∼ 140. Given this

120



stringent constraint, to really answer the question whether the PT completes or not,

we need to calculate the bounce action SE precisely. This is difficult to do within a

4D framework since the 4D theory under consideration is strongly coupled. Thus to

make progress, we will now utilize the AdS/CFT duality and consider the 5D dual

of the entire set-up considered so far.

4.3 5D geometry and the structure of the bounce

The 5D dual of the confined phase corresponds to an RS geometry at finite

temperature with a UV and an IR boundary. The dual of the deconfined phase

corresponds to a AdS-S geometry with a UV boundary and a horizon (instead of a

IR boundary) cutting off the extra-dimension. To compute the bounce action from

5D, in principle, one has to look for a solution of the 5D Einstein equations which

smoothly interpolates between the two above mentioned geometries. Although it is a

mathematically well-posed question, finding the true solution is difficult in practice.

Instead, we will identify the dynamical degrees of freedom for the two phases and

make an ansatz about the 5D geometry of the bounce. Although our ansatz may

not be the true bounce solution, we will argue later that,

Sthin wall
ansatz > Sthin wall

true . (4.9)

Along with a lower bound on Sthin wall
true that we will derive below, this will enable us

to estimate Sthin wall
true reliably in some part of our parameter space.

To this end, we now describe 5D geometry of our ansatz. The dual of the
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deconfined phase is described by the 5D metric,

ds2 = −
(
ρ2 − ρ4

h

ρ2

)
dt2 +

dρ2

ρ2 − ρ4
h

ρ2

+ ρ2
∑
i

dx2
i , (4.10)

where ρUV > ρ > ρh with ρUV(ρh) being the position of the UV brane (horizon). The

AdS curvature has been set to 1.The confined phase can be described by the same

geometry but with an IR boundary cutting off the extra dimension so that ρUV >

ρ > φ where φ denotes the location of the IR boundary. There is another solution

of the Einstein equation with two branes at finite temperature: RS configuration

with time compactified. This is often used as the dual of the confined phase. These

two solutions are approximate the same when φ� ρh.

To have a smooth geometry describing the bounce, we promote φ to be a

function ~r such that it interpolates between some value > ρh inside the bubble to

φ = ρh outside. We can then calculate the action for φ using the 5D action:

S = SGR + SGW = 2M3
5

∫ Λ

φ

dy

∫
d4x
√−g (R5[g] + 12)

+4M3
5

∫
d4x
√−γK − 12M3

5

∫
d4x
√−γ + SGW, (4.11)

where K = gµνKµν is the trace of the extrinsic curvature Kµν of the IR boundary.

In the above, the boundary terms are present for both the UV (ρ = ρUV) and the IR

(ρ = φ) boundaries and, to avoid clutter, we have used γ to denote induced metrics

on both of them. SGW denotes the action of a Goldberger-Wise (GW) field that

stabilizes the extra dimension.

122



We start by evaluating SGR. By O(3) symmetry we expect the action to be

a function of the r = |~x| only. To calculate the extrinsic curvature K, we need the

normal to the surface ρ = φ(r),

nµ =

(
ρ2

ρ4 − ρ4
h + φ′2

)1/2

(0,−φ′, 0, 0, 1). (4.12)

Then induced metric on that surface is given by,

ds2
ind = −

(
ρ2

L2
− ρ4

h

ρ2L2

)
dt2+

ρ2 +
φ′2

ρ2 − ρ4
h

ρ2

 dr2

+ρ2(r2dθ2 + r2 sin2 θdφ2). (4.13)

From the above the trace of the extrinsic curvature and the determinant of the

induced metric can be calculated as,

√
γ = r2 sin θφ2

(
φ4 − ρ4

h + φ′2
)1/2

, (4.14)

√
γK = r2 sin θ

1

φ4 − ρ4
h + φ′2

×

[2φ(ρ4
h − φ4)

φ′

r
+ (6φ4 − 2ρ4

h)φ
′2 − 2φ

φ′3

r

+ (φ4 − ρ4
h)(4φ

4 − 2ρ4
h − φφ′′(r))]. (4.15)

Given the Goldberger-Wise action, SGW =
∫ Λ

φ
dy
∫
d4x

(
1
2
(∂Ψ)2 − 1

2
M2Ψ2

)
, we

can evaluate its contribution to the effective action for φ by solving for the extra-

dimensional profile of Ψ and substituting that back into SGW. We propose an ansatz

to calculate SGW: first, we will ignore the backreaction of Ψ on the background AdS-
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S geometry eq. (4.10) and second, we will make the simplifying assumption that Ψ

lives in an AdS geometry as opposed to the actual AdS-S geometry. In this ansatz,

the effective contribution of SGW yields the standard result which has the same form

as eq. (4.6) (with µ = φ), where λ = λ̄ 3
4π2N

2 and 3
4π2N

2 is upper limit for λ(0)

demanding the small back reaction to the 5D geometry. A larger N2 ≡ M3
5

16π2 denotes

a better control of the effective GR description of the 5D physics. In passing, we

note that using the value of λ and C = π2

8
, which follows from 5D, we can rewrite

eq. (4.7) as,

Tc
〈µ〉 =

(
12ελ̄(0)

π4(4 + ε)

)1/4

. (4.16)

From the above we finally get the effective action for φ,

Sφ =
4π

T

∫
drr2

[
2M3

5

( 2

φ4 − ρ4
h + φ′2

[
2φ(ρ4

h − φ4)
φ′

r
+ (6φ4 − 2ρ4

h)φ
′2 − 2φ

φ′3

r

+ (φ4 − ρ4
h)(4φ

4 − 2ρ4
h − φφ′′)

]
+ ρ4

h − 2φ4 − 6φ2
(
φ4 − ρ4

h + φ′2
)1/2

)
+ Veff(φ)

]
.

(4.17)

where Veff(φ) is the dilaton potential given in eq. (4.6).

The 5D bounce is then specified by a solution φ(r) to the equation of motion

that follows from the above action and we show such an example in fig. 4.1.

For the present ansatz the 5D geometry, as required, is smooth everywhere

by construction except the potentially problematic region where the IR boundary

merges into the AdS-S horizon. To see whether this merging is smooth, we can
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evaluate the induced metric in the near-horizon region by writing φ(r) = ρh(1 +

δφ(r)). Assuming ρ2
hδφ� φ′2, we get

ds2
ind =4ρ2

hδφdt
2 +

φ′2

4ρ2
hδφ

dr2

=4ρ2
hy

2dt2 + dy2 (4.18)

where we have made a variable change y =
√
δφ. This is same as the metric of 2D

flat space (with correct time periodicity). The choice of ρ2
hδφ � φ′2 is guaranteed

by a fall off δφ(δr) ∼ δrn with n < 2. We also note that just the assumption of

ρ2
hδφ� φ′2 is not enough to render the radion action finite. We first note the near

horizon behavior of
√
γ and K:

√
γ = r2 sin θρ2

hδφ
′ (4.19)

K ∼ 1√
γ
∼ 1

δφ′
. (4.20)

So for δφ ∼ δrn behavior we need 0 < n < 1 to ensure a finite radion action.

4.3.1 Phase transition in thin-wall regime

We can numerically solve the equation of motion following from eq. (4.17) and

plug the solution back into eq. (4.17) to obtain the bounce action and hence the rate

of the PT. However in the thin wall regime, namely when Tn ≈ Tc, one can obtain

an analytical expression for the transition rate if ε � 1 or λ̄ � 1. Under such an

approximation, ρh � 〈µ〉, as follows from eq. (4.16), and most of the bounce action
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is determined by the radion/dilaton potential. To see this more explicitly, we take

the limit of φ� ρh and φ′ � φ2 of the effective action (4.17) to get,

Sφ ≈
4π

T

∫
drr2

[
6M3

5φ
′2 + Veff(φ)

]
. (4.21)

The above is the standard dilaton/radion potential that follows in the presence of

a stabilized RS geometry. Under this approximation of radion dominance,

S3,true ≥ S3,radion dominance. (4.22)

This is because the true bounce action might involve contributions of degrees of

freedom additional to the radion and such contributions can only make the bounce

action bigger, i.e. the radion dominance ansatz underestimates the bounce action.

For an O(3) symmetric bounce solution, the bounce action can be rewritten quite

generally as,

S3

T
=

16π

3

S3
1

(∆F )2T
, (4.23)

where ∆F is the difference of the free energy in two phases and S1 is given by,

S1 ≡
∫
dr

[
2M3

5

( 2

φ4 − ρ4
h + φ′2

[
(6φ4 − 2ρ4

h)φ
′2 + (φ4 − ρ4

h)(4φ
4 − 2ρ4

h − φφ′′)
]

+ρ4
h − 2φ4 − 6φ2

(
φ4 − ρ4

h + φ′2
)1/2

)
+ Veff(φ)

]
ε and/or λ̄�1≈

∫ 〈µ〉
ρh

dφ̃

√
2Veff(φ̃), (4.24)
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where φ̃ is the canonically normalized field. Such a form of S1, with a potential

Veff(φ̃) that is bounded from below, implies that extremizing the bounce action is

equivalent to minimizing the bounce action. Hence this implies, S1,ansatz < S1,true

and equivalently, eq. (4.9). Then combining eqs. (4.9) and (4.22) and using the fact

that Sansatz ≈ Sradion dominance, we get a reliable estimate of the true bounce action.

Under the approximations mentioned above, we calculate the bounce action:

S3

T
≈ 16

(
8

3

)1/4(
(1 + ε/4)

λ̄ε

) 3
4

×N2 Tc/T

(1− (T/Tc)4)2 . (4.25)

The RHS is a function of temperature and is minimized at T = Tc√
3

so that,

S3

T
> 45

(
(1 + ε/4)

ε

) 3
4 N2

λ̄3/4
. (4.26)

Using ε = 1/20, as to ensure a correct Planck-Weak hierarchy, and λ̄ = 1, this gives

the upper bound N < 1 for a viable bounce. For theoretical control of the 5D EFT

we need N > 1 and for such cases the PT does not complete. Staying within the

regime of small backreaction (i.e. λ̄ . 1), looking at eq. (4.26) we are lead to the

conclusion that one way of ensuring a smaller bounce action is to increase the value

of ε. However, since ε = 1/20 gives the correct electroweak hierarchy, the challenge

is to increase ε that appears in (4.26) while still maintaining the correct value of the

hierarchy.
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4.4 A non-trivial RG flow between a UV and an IR fixed point

Earlier in eq. (4.3) we approximated the beta function as β(g) ≈ εg where we

were expanding the coupling constant around the trivial fixed point g = 0. However,

another interesting possibility arises if g flows into a nontrivial IR fixed point (F.P.)

at g = g?. Such a RGE having two F.P.s takes the following general form:

dg

d lnµ
= βg(g) = −g(g? − g)f(g) (4.27)

where f(g) is a function that is positive at both F.P.s and has no zeros between

g = 0 and g = g?. Expanding around the UV and the IR F.P.s we get, respectively,

d ln g

d lnµ
≈ −ε near UV F.P. (g = 0) (4.28)

d ln (g? − g)

d lnµ
≈ ε′ near IR F.P. (g = g?) (4.29)

where ε = g?f(0) and ε′ = g?f(g?). The RGE solutions near the IR and the UV

F.P.s are respectively

g = g0

(
µ

ΛUV

)−ε
near UV F.P., (4.30)

g = g? −
(

µ

ΛIR

)ε′
near IR F.P.. (4.31)

The above solutions captures the running of g(µ) which takes a value g0 at the UV

scale ΛUV and grows in the IR (we will choose ε > 0). Around a “matching” scale
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ΛIR the coupling transitions from the basin of attraction of the UV F.P. to that of

the IR F.P. and thus, the above solutions (4.30) are valid everywhere except for a

narrow range around ΛIR. This matching scale is can be estimated in terms of the

UV parameters by,

ΛIR

ΛUV

∼
(
g?
g0

) 1
ε

, (4.32)

and hence for small values of ε and g0/g?, it is exponentially smaller than the UV

cutoff.

The µ-dependence of λ near the two F.P.s are given by:

λ(µ) =


λ(0) + λ′(0)g0

(
µ

ΛUV

)−ε
+ · · · near the UV F.P.,

λ(g∗)− λ′(g∗)g∗
(

µ
ΛIR

)ε′
+ · · · near the IR F.P.,

(4.33)

2 We see for λ(g∗), λ
′(g∗)g∗ < 0 and |λ(g∗)| < |λ′(g∗)g∗| the dilaton potential can

have a minima at

〈µ〉 ∼ ΛIR

(
−λ(g∗)

λ′g∗

)1/ε′

. (4.34)

Combining this with the previous estimate of ΛIR given in eq. (4.32) we get,

〈µ〉 ∼ ΛIR

(
−λ(g∗)

λ′g∗

)1/ε′

∼ ΛUV

(
g?
g0

) 1
ε
(
−λ(g∗)

λ′g∗

) 1
ε′

. (4.35)

Thus for 1 > ε′ � ε, 〈µ〉 is not too far below ΛIR and the Planck-weak hierarchy

is still guaranteed by the smallness of ε as in before. We can rewrite the potential

2Note that in the case of λIR < 0 which is needed to stabilize the dilation near the IR F.P., the
F.P. CFT may not stand on its own, and the CFT+ deformation should be consider together as
an EFT.
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in terms of 〈µ〉 using the parameters at the IR F.P.,

Veff(µ) = λ(g∗)

(
1− 1

1 + ε′/4

(
µ

〈µ〉

)ε′)
µ4 (4.36)

This has the identical form as the potential in eq. (4.6) except the proximity to the

IR F.P. has replaced ε with ε′ and correspondingly the bounce action for the thin-

wall transition becomes parametrically smaller. This allows for the PT to complete

for parametrically larger N in the the thin-wall regime. In particular, one can get

the numerical result of S1 from the first line of eq. (4.24) and show that, using

ε′ = 0.5, λ̄ = 0.5, the PT can complete for N . 2. Although this is a parametric

improvement, it shows even for slightly larger values of N , the PT does not complete

in the thin-wall regime and thus one has to go over to the thick-wall regime.

Γ(�) = �(�)�

ϵ�=��� ϵ�=��� ϵ�=����

���λ=���

10-5 10-4 10-3 10-2 10-1 1
0

5

10

15

T/Tc

N

Figure 4.2: The contour plot for Γ = H4 in N and T/Tc plane with fixed λ̄ = 0.5
and different ε′
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4.5 Phase transition in thick wall regime

There is another limit T � Tc where we can have an analytic estimation of

the bounce (usually referred as the thick-wall approximation [127]). For λ� 1, the

relevant scale for the bounce φr can be estimated as the scale where the free energy

of the two phases are equal

3

4π2
λ̄(φr)φ

4
r ∼

π2

8
T 4. (4.37)

It is clear from the above equation that φr � T for λ� 1. Together with assumption

φ′ � φ2, the action in Eq. (4.17) can be reduce to standard radion potential in

Eq. (4.21). The O(3) symmetry action in this case can then be approximated as

SB ∼
N2

λ̄(φr)3/4
. (4.38)

In order to complete the phase transition, the following inequality needs to be sat-

isfied at some temperature: (see Eq. (4.1))

SB/4 + ln
Tc
T
≤ ln

MPl

Tc
. (4.39)

To see if for a given set of parameters the phase transition completes, one can

minimize the left hand side of the above inequality and then compare the minimum

with the right hand side. The boundary of the parameter space where the phase

transition completes is obtained by equating the minimum of this equation to RHS.
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This boundary gives the maximum N for a given ε′ and λ̄(0) for which the phase

transition completes.

The left-hand side of Eq. (4.39) is minimized at T given by

ln
Tc
T
∼ 1

ε′
ln

ε′N2

4λ̄(0)3/4
, (4.40)

where we have used the approximation φr
〈φ〉 =

(
4+ε′

ε′

)1/4 T
Tc

.Then we get the following

parametric dependence for Nmax:

N2
max

4λ̄(0)3/4
≈ ln

MPl

Tc
− 1

ε′
ln

(
ε′ ln

MPl

Tc

)
(4.41)

It can be seen in Eq. (4.40) that for a given N ≤ Nmax and λ, the phase transition

temperature Tn can be estimated as ln TC
Tn

& 1
ε′

ln ε′N2

4λ̄(0)3/4 . Then it is clear to see that

a larger ε′ leads to a larger Tn/Tc and Nmax, as shown in fig. 4.2.

4.6 Phenomenology

Amplitude of gravity waves is larger (smaller) the longer (shorter) the dura-

tion of the phase transition is. This duration can be captured by the temperature

variation of the bounce action near Tn,

β

H
= − T

Γ

dΓ

dT
∼ T

dS

dT

∣∣∣∣
Tn

(4.42)
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In our context we can relate this to the RG running of the radion quartic,

β

H
∼ S3

T

µ

λ

dλ

dµ
∼ S3

T
ε′. (4.43)

Since radion mass in our model is also proportional to ε′ [125, 126], the anomalous

dimension near the IR fixed point, there is an interesting correlation between the

radion mass, which may be probed at colliders and the amplitude and frequency of

stochastic gravitational waves (controlled by β
H

) from the PT, which may be probed

by LISA experiment.
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Chapter 5: Conclusions

The SM of particle physics is so far the most successful theoretic model which

has passed extensive experimental tests. However, it is still imperfect due to its

own theoretic limitation and lack of explanation of some experimental results. In

chapter 1 of this thesis, we reviewed one of the theoretic problem, Planck-EW hi-

erarchy problem, and two problems related to non-zero neutrino masses and the

observed baryon anti-baryon asymmetry of the universe. In order to address all of

these problems, it is necessary to consider theories beyond the SM.

In chapter 1, we also reviewed some existing solutions to the above three prob-

lems. Composite Higgs models, and the AdS/CFT dual RS models with a warped

extra dimension, provide a plausible way to address the Planck-EW hierarchy prob-

lem. In such models there exists a strongly interacting sector with approximate

conformal symmetry undergoing confinement at around TeV scale, of which SM

Higgs originates as the composite state. The big hierarchy between the UV scale

(e.g. Planck scale) and the confinement scale is naturally explained by the small

perturbation to the conformal symmetry. Moreover, we discussed seesaw mecha-

nism to solve neutrino mass problem. For type I seesaw, the tiny but non-zero SM

neutrino mass is generated via the exchange of heavy right-handed singlet neutrinos
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with unsuppressed couplings to SM left-handed neutrinos. Seesaw models predict

SM neutrinos are Majorana and the lepton number symmetry is broken. Due to

the presence of the lepton number violation and heavy singlets in seesaw models,

it is also an attractive model which can produce the observed baryon asymmetry

via leptogenesis. In such mechanism, lepton asymmetry is generated from the out-

of-equilibrium decay of heavy singlets, which subsequently is converted into baryon

asymmetry via SM sphaleron process.

In chapter 2, based on RS/CH framework, we studied a natural embedding

of high scale type I seesaw, named warped/composite seesaw, which can address

all three problems mentioned before in one shot. Remarkably, the type I seesaw

structure of warped/composite seesaw model at UV scale appears as TeV scale

inverse seesaw after confinement. We justified the robustness of such feature from

both 4D (section 2.1) and 5D (section 2.2) point of view.

We moved on to study leptogenesis in chapter 3. To avoid technical difficulty

in analyzing leptogenesis in full warped/composite seesaw, we presented the results

based on a simplified 4D version, hybrid seesaw. We set up the formalism to study

leptogenesis in hybrid seesaw and demonstrated that successful leptogenesis can be

realized in a larger parameter space compared to type I seesaw models. Further-

more, leptogenesis inherits the hybrid structure of the hybrid seesaw, which has an

interesting interplay of high scale asymmetry generation and TeV scale washout.

We believe leptogenesis in the full warped/composite seesaw has similar qual-

itative features as that in hybrid seesaw. To justify this argument, we also studied

the phase transition in the RS/CH models in chapter 4. The phase transition in
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CH models in the early universe is hard to estimate due to strong couplings. Such

deconfined to confined phase transition is usually modeled in the dual 5D theory

as the transition between a black hole phase and RS phase with two branes. It

is usually believed that this transition is too slow at the critical temperature due

to approximate conformal symmetries, which is required to achieve large Planck-

EW hierarchy (see section 4.3.1). This leads to a large amount of supercooling

and dilution of pre-existing asymmetries generated via leptogenesis. We presented

a modification of standard Goldberger-Wise stabilization mechanism with both UV

and IR fixed points. The phase transition rate in this case is controlled by the

physics near IR fixed point while the Planck-EW hierarchy is still controlled by

the UV fixed point. Therefore, this modification allows a fast phase transition at

the critical temperature, still maintaining the large Planck-EW hierarchy (see sec-

tion 4.4). This result is justified using our new ansatz of the geometric configuration

of the bubbles nucleated in the phase transition, where the transition rate can be

robustly calculated in the perturbative region of 5D EFT. Thus in this scenario,

primordial asymmetry from leptogenesis will survive after the phase transition until

today, accompanied by interesting gravitational wave signals (see section 4.6).

136



Appendix A: Leptogenesis in TeV scale linear seesaw

In section 3.3, we discussed leptogenesis in TeV scale inverse seesaw model in

detail. Now we move on to study another well-motivated seesaw model, the linear

seesaw. The Lagrangian is

−LLSS = yaαΨc
aH`α + (mΨ)abΨaΨ

c
b + y′aαΨaH`α + h.c., (A.1)

where α is the SM lepton flavor index and a, b = 1, 2 denotes the generations of

Ψ,Ψc. By redefining the fields, the (mΨ)ab matrix can be made real and diagonal

whereas yaα and y′aα are complex. In the mass basis, we get the same form as in

eq. (3.16), but the parameters are changed to

m1 = m2 = mΨ1 ; h1α =
y1α + y′1α√

2
, h2α =

i(y1α − y′1α)√
2

m3 = m4 = mΨ2 ; h3α =
y2α + y′2α√

2
, h4α =

i(y2α − y′2α)√
2

. (A.2)

The condition for small lepton number breaking in this case is ε′aα � 1, where we

define ε′aα ≡ y′aα/yaα. It is clear that taking ε′1α → 0 limit, h1α = ih2α and thus

(Ψ̃1, Ψ̃2) become a Dirac pair.

In this section, we only focus on the effect from the Lagrangian in eq. (A.1).

137



Loops will generate a mass spitting between singlets within the same generation,

which will effectively generate a µ term as in the ISS models. Though the size of

this µ term is loop suppressed, it might change the parametric dependance of the

final baryon asymmetry. We have studied the models with both y′ and µ turned on

in section 3.3.3.2.

CP asymmetry

According to the definition of the CP asymmetry parameter for Ψ̃i, denoted

as εi in eq. (3.19), we have

ε1 + ε2 =
1

8π(hh†)22

(∑
i 6=1

Im[(hh†)2
1i]f1i +

∑
j 6=2

Im[(hh†)2
2j]f2j

)

+
1

8π

(hh†)22 − (hh†)11

(hh†)11(hh†)22

(∑
i 6=1

Im[(hh†)2
1i]f1i

)
, (A.3)

Notice that fij = fv
ij + f self

ij , where fv
ij and f self

ij are defined in eqs. (3.20) and (3.21)

respectively. lt is easy to show that in pure linear seesaw [eq. (A.2)] with singlets in

different generations being non-degenerate (i.e., |mΨ2 −mΨ1| > Γi),

fv
12 = fv

21

f self
12 = f self

21 = 0

 ⇒ f12 = f21

fv
13 = fv

14 = fv
23 = fv

24

f self
13 ≈ f self

14 ≈ f self
23 ≈ f self

24

 ⇒ f13 ≈ f14 ≈ f23 ≈ f24 (A.4)
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Using such relation and Im[(hh†)2
12] = Im[(hh†)2

21] = 0, eq. (A.3) reduces to

ε1 + ε2 ≈
1

8π(hh†)22

(
Im[(hh†)2

13] + Im[(hh†)2
14] + Im[(hh†)2

23] + Im[(hh†)2
24]
)
f13

− 1

8π

(y′y†)11 + (yy′†)11

(hh†)11(hh†)22

(
Im[(hh†)2

13] + Im[(hh†)2
14]
)
f13. (A.5)

It is worth mentioning that, if we only consider one generation of singlets, meaning

only two degenerate Majorana states Ψ̃1,2 left, ε1 + ε2 will vanish due to the absence

of the CP phase.

Furthermore, according to eq. (A.2), we can find that

(hh†)2
13 =

1

4

[
(yy†)12 + (y′y†)12 + (yy′†)12 + (y′y′†)12

]2
(hh†)2

14 = −1

4

[
(yy†)12 + (y′y†)12 − (yy′†)12 − (y′y′†)12

]2
(hh†)2

23 = −1

4

[
(yy†)12 − (y′y†)12 + (yy′†)12 − (y′y′†)12

]2
(hh†)2

24 =
1

4

[
(yy†)12 − (y′y†)12 − (yy′†)12 + (y′y′†)12

]2
, (A.6)

and the sum

(hh†)2
13 + (hh†)2

14 = (yy†)12(yy′†)12 +O(y′2)

(hh†)2
13 + (hh†)2

14 + (hh†)2
23 + (hh†)2

24 = 2
[
(yy†)12(y′y′†)12 + (y′y†)12(yy′†)12

]
.

(A.7)
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Plugging eq. (A.7) into eq. (A.5), one could obtain

ε1 + ε2 ≈
Im
[
(yy†)12(y′y′†)12 + (y′y†)12(yy′†)12 − 2(yy†)12(yy′†)12|yy′†|11/(yy

†)11

]
2π(yy†)11

f13,(A.8)

to the second order in y′. Assuming no hierarchy among yaα(y′aα) and mΨa are

not degenerate, namely f13 is O(1) factor, the CP asymmetry can be schematically

written as

ε ≡ ε1 + ε2 ∼
Im[(y′y′†)(yy†)]

(yy†)
∼ Γ

mΨ

ε′2 (ε′ � 1), (A.9)

where ε′ is the schematic notation for ε′aα .

According to eq. (3.19), one can also find that

ε1 ≈ −ε2 ∼
Γ

mΨ

ε′, (A.10)

which is first order in ε′, while the sum ε is second order in ε′ [see eq. (A.9)]. As

argued in appendix D, we shall use the sum ε instead of ε1 or ε2 in the estimation

of final asymmetry.

Washouts and baryon asymmetry

Now we want to evaluate the effective washouts in linear seesaw. Follow the
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method in ref. [74], one can calculate

Keff ∼ Γ

H
ε′2. (A.11)

Using the formula for baryon asymmetry [eq. (3.29)] and the efficiency factor η .

1/Keff , the baryon asymmetry in linear seesaw is

Y∆B . 10−3 ε

Keff
. 10−3√g∗

mΨ

MPl

, (A.12)

which is remarkably the same as the result in inverse seesaw [eq. (3.33)]. Leptogen-

esis in linear seesaw is also summarized in table 3.2.

Appendix B: Boltzmann equations and analytical approximate solu-

tions

We start with a brief review of the general BEs in section B.1 before proceeding

to derive analytical approximate solutions in section B.2. The results of our hybrid

genesis presented in sections 3.5 and 3.6 are based on these analytical approximate

solutions to the BEs.
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B.1 Generalities

A general BE describing the evolution of nX in time t can be written as [128]

dnX
dt

+ 3HnX = −
∑

b,...,i,j,...

[Xb...↔ ij...] (B.1)

where the Hubble rate is H = 1.66
√
g?

T 2

MPl
with g? the total number of relativistic

degrees of freedom (of the Universe) and MPl = 1.22 × 1019 GeV the Planck mass

and

[Xb...↔ ...] = Λij...
Xb...

[
|A(Xb...→ ij...)|2fXfb...(1 + ηifi)(1 + ηjfj)...

−|A(ij...→ Xb...)|2fifj...(1 + ηXfX)(1 + ηbfb)...
]
, (B.2)

where

Λij...
Xb... ≡

∫
dΠXdΠb...dΠidΠj...(2π)4δ(4)(pX + pb + ...− pi − pj − ...)

dΠx ≡
d3px

(2π)32Ex
. (B.3)

In the above, fx is general phase space distribution with ηx = 1(−1) if x is a boson

(fermion) and |A(ab... → ij...)|2 is the squared amplitude summed over initial and

final spin states and gauge multiplicities.

In our study, we will consider X as the only massive particle with mass MX

while all other particles are massless. In this scenario, it is convenient to trade t for
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z ≡ MX

T
and number density nx for abundance Yx = nx

s
where s = 2π2

45
g?T

3 is the

entropic density. In this case, eq. (B.1) can be written, during radiation-dominated

epoch, as

sHz
dYX
dz

= −
∑

b,...,i,j,...

[Xb...↔ ij...]. (B.4)

For massless particles, we assume kinetic equilibrium with phase space distri-

bution fx = (e
Ex−µx

T −ηx)−1 where µx is the chemical potential for x. For real scalar,

we have µx = 0; otherwise, we assume the chemical potential of the antiparticle x∗

is given by µx∗ = −µx. Given that nx =
∫

d3p
(2π)3fx, at leading order in µx/T , we have

the relation

2µx
T

=
Y∆x

ζxgxY eq
, (B.5)

where Y∆x ≡ nx−nx̄
s

, gx is the number of degrees of freedom of x and ζx = 1(2) for

relativistic fermion (boson) and

Y eq =
15

8π2g?
. (B.6)

For the massive particle X, we approximate fX ≈ YX
Y eq
X
f eq
X where f eq

x = (eEx/T−

ηx)
−1 is the equilibrium phase space distribution and Y eq

x = neq
x /s denote the equi-

librium abundance of x.

As shown in detail in appendix A of refs. [129], with the above approximations

and expanding the right-hand side of eq. (B.4) up to first order in µx/T , the BEs can
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be written in terms of YX , Y eq
X , Y∆x, ζxgxY

eq and (equilibrium) thermal averaged

reaction densities

γ(ab...↔ ij...) ≡ Λij...
ab...

[
|A(ab...↔ ij...)|2f eq

a f
eq
b ...(1 + ηif

eq
i )(1 + ηjf

eq
j )...

]
.(B.7)

Notice that for the time reversal process, the only difference is in the squared

amplitude while the phase space distribution combination remains the same i.e.

f eq
i f

eq
j ...(1+ηaf

eq
a )(1+ηbf

eq
b )... = f eq

a f
eq
b ...(1+ηif

eq
i )(1+ηjf

eq
j )... due to energy con-

servation. Finally, as discussed in section 3.5.1, once the approximate U(1) charges

are identified, all particle asymmetries Y∆x can be expressed in term of these charges

as in eq. (3.56).

Assuming Maxwell-Boltzmann distribution and ignoring the Fermi-Dirac/Bose-

Einstein factor 1 + ηxf
eq
x , the (inverse) decay process X ↔ ij can be written as

γ(X ↔ ij) = neq
XΓ(X ↔ ij)

K1(z)

K2(z)
, (B.8)

where Γ(X → ij) is the decay width for X → ij , Γ(ij → X) = Γ(X∗ → i∗j∗) should

be interpreted as the CP conjugate process, and K1(z)
K2(z)

is the thermal averaged time

dilation factor with Kn(z) the modified Bessel function of second kind of n-th order.

The equilibrium number density of X is

neq
X =

gX
2π2

T 3
Xz

2K2(z), (B.9)

where gX is the number degrees of freedom of X.
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Under the same approximations as above, for the scatterings ij ↔ kl, we have

γ(ij ↔ kl) = neq
i n

eq
j 〈σ(ij ↔ kl)〉 = neq

i Γ(ij ↔ kl), (B.10)

where 〈σ(ij ↔ kl)〉 is the thermal averaged cross section, neq
i = neq

j = T 3

π2 and we

have defined the scattering rate as1

Γ(ij ↔ kl) ≡ neq
j 〈σ(ij ↔ kl)〉 =

γ(ij → kl)

neq
i

. (B.11)

Finally, one can define the CP parameter for the decay X → ij as

ε(X → ij) =
γ(X → ij)− γ(X∗ → i∗j∗)

γX
, (B.12)

where we have defined the total decay reaction density as

γX ≡
∑
ij

[γ(X → ij) + γ(X∗ → i∗j∗)] . (B.13)

With the Maxwell-Boltzmann approximation, eq. (B.12) can be written only in term

of decay widths Γ(X → ij) and Γ(X∗ → i∗j∗).

B.2 Analytical approximate solutions

One can construct the BEs according to the procedure discussed in the previous

section. In this section, we will derive analytical approximate solutions to the set

1The number of degrees of freedom for initial and final states have been absorbed into the cross
section σ(ij ↔ kl).
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of BEs used in sections 3.5 and 3.6. The BEs we consider involves only decays and

inverse decays of a heavy particle X of mass MX , which captures the dominant

generation and washout of the asymmetry in ∆:

dYX
dz

= −D (z)

(
YX
Y eq
X

− 1

)
, (B.14)

dY∆

dz
= εD (z)

(
YX
Y eq
X

− 1

)
− 1

2
cD (z)

Y∆

Y eq
, (B.15)

where z = MX

T
, ε is the CP parameter2 from decay of X defined in eq. (B.12), Y eq =

15
8π2g?

[see eq. (B.6)] and Y eq
X = 45gX

4π4g?
z2K2 (z) [see eq. (B.9)]. In the (inverse decay)

washout term [the second term of eq. (B.15)], the coefficient c can account for the

following two effects. Firstly, it can capture the relevant spectator effects [130,131].

In hybrid-genesis discussed in section 3.5, the spectator effects are captured by

c = cW1 defined in eq. (3.82) or c = cW2 defined in eq. (3.86) with their values given

in appendix C. Moreover, choosing c = Keff/K � 1 can also represent the reduced

washout due to approximate symmetry in small lepton number violating models.

For example, one can set c ∼ (µ/Γ)2 in ISS (section 3.3) or c ∼ (y′/y)2 in LSS

(appendix A) to study the BEs for leptogenesis in these models. The total decay

reaction density eq. (B.13) compared to the Hubble expansion rate H is denoted as

D (z) ≡ γX
sHz

= Kz
K1 (z)

K2 (z)
Y eq
X =

1

2
KY eq

X (0)z3K1 (z) , (B.16)

2In eq. (B.15) one may notice that there is overall sign difference for the term ∝ ε compared to
equations appearing in section 3.5.3. This sign depends on the precise definition of the aymmetry
parameter ∆ and equations with one sign ε are related to equations with opposite sign ε by a
simple change ε→ −ε. Physically, ε→ −ε just changes the notion of particle ↔ anti-particle.
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where the washout parameter is defined as

K ≡ ΓX
H(T = MX)

, (B.17)

with ΓX the total decay width of X.

Let’s first study the Boltzmann equation for YX as in eq. (B.14). Assuming

YX (zi) = 0, we can define zeq as the temperature in which

YX (zeq) = Y eq
X (zeq) . (B.18)

For z < zeq, we can approximate dYX
dz
≈ D (z) and obtain

YX (z) ≈
∫ z

zi

dz′D (z′) =
1

2
Y eq
X (0)Kf (zi, z) , (B.19)

where we have set YX(zi) = 0 and defined

f (zi, z) ≡
∫ z

zi

dz′z′3K1 (z′) . (B.20)

Taking high initial temperature zi → 0, let us consider the following two cases.

For K � 1, X reaches its equilibrium abundance at late time zeq � 1 and we can

approximate3

YX (zeq) ≈ 3π

4
Y eq
X (0)K ≡ Ya. (B.21)

3We approximate the result with the identity f (0,∞) = 3π
2 .
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On the other hand, for K � 1, X reaches its equilibrium abundance at early time

zeq � 1 and we can approximate4

YX (zeq) ≈ 1

6
Y eq
X (0)Kz3

eq ≡ Yb. (B.22)

According to the definition of YX (zeq) = Y eq
X (zeq) ≈ Y eq

X (0), we have zeq ≈

(6/K)1/3.

Next, we will look at the Boltzmann equation for Y∆ as in eq. (B.15). It is

convenient to parametrize the asymmetry generated in Y∆ by

Y∆(z) ≡ ε η(z)Y eq
X (0), (B.23)

where η ≡ η(∞) is known as the efficiency factor, which shows the effect from

washout. η ≤ 1 by definition and we will get η = 1 when there is thermal initial

abundance of YX and no washout. Substituting eq. (B.23) into eq. (B.15), we have

dη(z)

dz
=

D (z)

Y eq
X (0)

(
YX
Y eq
X

− 1

)
− 1

2
c
D (z)

Y eq
η. (B.24)

Notice that the equation above is independent of ε. This simplification arises be-

cause we have considered zero temperature CP parameter which is independent of

temperature and the problem boils down to solving for η(z). The formal solution

4We approximate the result with f (0, z � 1) = z3

3 .
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for the equation above is

η (z) = η (zi) e
− c

2Y eq

∫ z
zi
dz′D(z′)

+
1

Y eq
X (0)

∫ z

zi

dz′D (z′)

(
YX
Y eq
X

− 1

)
e−

c
2Y eq

∫ z
z′ dz

′′D(z′′)

= η (zi) e
− c

2Y eq

∫ z
zi
dz′D(z′) − 1

Y eq
X (0)

∫ z

zi

dz′
dYX
dz′

e−
c

2Y eq

∫ z
z′ dz

′′D(z′′). (B.25)

In the following, we will assume no initial asymmetry and set η (zi) = 0. (After all,

our aim is to generate an asymmetry dynamically.)

For z ≤ zeq, we define η− (z):

η− (z) ≡ η (z) ≈ − 1

Y eq
X (0)

∫ z

zi

dz′D (z′) e−
c

2Y eq

∫ z
z′ dz

′′D(z′′)

= − 2Y eq

cY eq
X (0)

[
1− e−

c
2Y eq

∫ z
zi
dz′D(z′)

]
= − 2

Rc

[
1− e− c

2Y eq YX(z)
]
, (B.26)

where we use the approximation: dYX
dz
≈ D (z) and define

R ≡ Y eq
X (0)

Y eq
. (B.27)

For z > zeq, we have

η (z) = η− (zeq) e
− c

2Y eq

∫ z
zeq

dz′D(z′)
+ η+(z), (B.28)

where

η+ (z) = − 1

Y eq
X (0)

∫ z

zeq

dz′
dYX
dz′

e−
c

2Y eq

∫ z
z′ dz

′′D(z′′). (B.29)
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The first term of eq. (B.28) is the contribution when X is being populated while the

the second is the contribution when X decays. Next we will discuss the solutions in

the following regimes.

B.2.1 Weak washout regime (cK � 1) with YX(zi) = 0

As shown in eq. (B.15), the washout of the asymmetry is controlled by cK

while the generation is controlled by K. In the weak washout regime: cK � 1,

there is still freedom to choose K � 1 or K � 1 because c � 1 in ISS or LSS

models. The region cK � 1 and K � 1 is not possible in the standard leptogenesis

with type I seesaw due to c being order unity. Now we shall discuss these two cases

in the weak washout regime.

Case I: cK � 1 and K � 1

Since zeq � 1 when K � 1, we can neglect the washout for z > zeq in

eq. (B.28). Hence, we have

η (z) ≈ η− (zeq)− 1

Y eq
X (0)

∫ z

zeq

dz′
dYX
dz′

,

= − 2

Rc

[
1− e− c

2Y eq Ya
]

+
1

Y eq
X (0)

[Ya − YX (z)] , (B.30)

where we have used eq. (B.21).
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For the final efficiency, we take z →∞ where YX(∞) = 0 and obtain

ηwK�1 (K, c) ≈ − 2

Rc

[
1− e− c

2Y eq Ya
]

+
1

Y eq
X (0)

Ya

≈ − 2

Rc

[
c

2Y eq
Ya −

1

2

( c

2Y eq
Ya

)2
]

+
1

Y eq
X (0)

Ya

=
1

Y eq
X (0)

c

4Y eq
Y 2
a

=
9π2

64
RcK2. (B.31)

In the above, we have expanded the exponent in cK � 1 up to second order. If

we choose c ∼ 1, this gives the standard result ηwK�1 ∼ K2 in the weak washout

regime. While in the models with small lepton number breaking (c = Keff/K � 1),

we would have ηwK�1 ∼ KeffK.

Case II: cK � 1 and K � 1

Since zeq � 1 when K � 1, we cannot neglect the washout for z > zeq in

eq. (B.28). In this case, we have

η− (zeq) e
− c

2Y eq

∫ z
zeq

dz′D(z′) ≈ − 2

Rc

[
1− e− c

2Y eq Yb
]
e
− c

2Y eq

∫ z
zeq

dz′D(z′)

≈ − 2

Rc

[
1− e− 1

2
Rc
]
e
− c

2Y eq

∫ z
zeq

dz′D(z′)
, (B.32)

and

η+ (z) ≈ − 1

Y eq
X (0)

∫ z

zeq

dz′
dY eq

X

dz′
e−

c
2Y eq

∫ z
z′ dz

′′D(z′′)

=
1

Y eq
X (0)K

∫ z

zeq

dz′
1

z′
D (z′) e−

c
2Y eq

∫ z
z′ dz

′′D(z′′), (B.33)
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where we have used the following approximation:

dYX
dz′

≈ dY eq
X

dz′
= −Y eq

X

K1 (z)

K2 (z)
= − 1

Kz
D (z) . (B.34)

Writing the integrand as e−g(z
′,z), the dominant contribution for η+ (z) comes from

a region around zB where g(z′, z) has a minimum. Following the approximation of

ref. [39] by replacing the exponent of the integrand D (z) by D (z) = z̄
z
D (z) with

z̄ = min (z, zB), we have

η+ (z) ≈ 1

Y eq
X (0)Kz̄

∫ z

zeq

dz′D (z′) e−
c

2Y eq

∫ z
z′ dz

′′D(z′′)

=
2

z̄R cK

[
1− e−

c
2Y eq

∫ z
zeq

dz′D(z′)
]
. (B.35)

In the above, zB is well approximated by [39] to be

zB (K, c) ≈ 1 +
1

2
ln

[
1 +

πK2R2 c2

1024

(
ln

3125πK2R2 c2

1024

)5
]
, (B.36)

for all K. For K � 1, we can approximate zeq ≈ 0 and integrate eq. (B.35)5

η+ (∞) ≈ 2

zBRcK

[
1− e− 1

4
zBKRc

∫∞
0 dz′z′2K1(z′)

]
=

2

zBRcK

[
1− e− 1

2
zBRcK

]
. (B.37)

5We use the identity
∫∞

0
dzz2K1 (z) = 2.
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Plugging eqs. (B.32) and (B.32) into eq. (B.28), the final efficiency (z →∞) is

ηwK�1 (K, c) ≈ − 2

Rc

[
1− e− 1

2
Rc
]
e−

c
2Y eq Ya +

2

zBRcK

[
1− e− 1

2
zBRcK

]
≈ 1

4
RcK

(
3π

2
− zB

)
, (B.38)

where we have kept only the leading term in cK � 1. Notice that the result

above depends on cK instead of K2 as in the usual weak washout regime. To our

knowledge, this is a novel which has not been presented elsewhere.

B.2.2 Strong washout regime (cK � 1)

In the strong washout regime cK � 1, we will also have K � 1 due to c

being at most order unity. In this case, the term involving η−(zeq) in eq. (B.28)

is negligible because it suffers a strong exponential washout e
− c

2Y eq

∫ z
zeq

dz′D(z′)
. For

η+ (∞), we can make use of eq. (B.37) which is valid for K � 1. According to

eq. (B.28), the final efficiency is simply6

ηs (K, c) ≈ η+ (∞) ≈ 2

zBRcK

[
1− e− 1

2
zBRcK

]
. (B.39)

B.2.3 Regimes with thermal initial abundance of X

Now we move on to study the regimes with thermal initial abundance of X, i.e.

YX (zi) = Y eq
X (zi). According to the definition in eq. (B.18), we have zeq = zi. This

6For improved approximation, we can also include contribution from η which gives

− 2
Rc

[
1− e− 1

2Rc
]
e−

3π
8 RcK .
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means η(z) = η+(z) in eq. (B.28). Hence for the case of thermal initial abundance

of X, a approximate solution good for all K is

ηth (K, c) = η+ (∞) ≈ 2

zBRcK

[
1− e− 1

2
zBRcK

]
. (B.40)

We can check several limits:

ηth (K, c) ≈


1− 1

4
zBRcK (cK � 1)

2
zBRcK

(cK � 1)

. (B.41)

In the weak washout regime cK � 1, ηth (K, c) ≈ 1, meaning there is almost no

washout effect as expected. While in the strong washout regime, it coincides with

eq. (B.39) because the efficiency factor is not sensitive to the initial condition in this

region.

B.2.4 For all regimes

For the case of thermal initial abundance of X, we can use eq. (B.40) for all

K and c. For the case of zero initial abundance of X, following ref. [39], we can

interpolate η for all K and c wtih

η (K, c) ≈ η− (K, c) + η+ (K, c) , (B.42)
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where

η− (K, c) = − 2

Rc
e−

3π
8
RcK

exp

 3π
8
K(

1 +
√

3π
4
K
)2Rc

− 1

 , (B.43)

η+ (K, c) =
2

zBRcK

1− exp

− 3π
8
K(

1 +
√

3π
4
K
)2 zBRcK


 . (B.44)

The equations above reproduce the approximate solutions eqs. (B.31), (B.38) and

(B.39) in their respective regimes.

Appendix C: Spectator effects

Here we shall discuss the relevant spectator effects in analyzing BEs at different

temperature regimes in section 3.5.

In the thermal bath, through fast scatterings, asymmetries will also be induced

in other particles not directly involved in asymmetry generation (they are known

as spectators). Although the effects remain generally less than order of one [130,

131], they are included for completeness. Such effects from spectators are encoded

in cΨ, cΦλ in BEs [see eq. (3.81)], which are defined as the ratio of Y∆Ψ
/Y∆ or

YΦλ/Y∆ respectively. cΨ, cΦλ can be calculated using the charge matrix in eq. (3.56),

which depends on the effective U(1) symmetries [see section 3.5.1] present at the

relevant temperature regime. In the following, we will briefly discuss the interactions
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which are in or out of thermal equilibrium and the conserved charges in different

temperature regimes.

In our hybrid seesaw model, we always assume singlet particles (Ψ,Ψc,Φλ,Φκ)

are in equilibrium when the genesis happens due to large couplings within the sector

[see section 3.5.2.5]. Whether the SM particles are in equilibrium or not depends

on the temperature. For T & 1015 GeV, as discussed in section 3.5.2.5, the SM

particles cannot be in equilibrium via the SM interactions. Since we have yΨcH`

interaction in our hybrid seesaw model [see eq. (3.49)] with unsuppressed coupling

y, we assume the SM lepton doublets and Higgs are in equilibrium but not other SM

particles in this temperature regime. For T . 1015 GeV, the SM gauge interactions

are in equilibrium. For T & 1012 GeV, EW sphaleron processes as well as all charged

lepton Yukawa interactions are out of thermal equilibrium. In addition, the first and

second family quark Yukawa interactions are out of thermal equilibrium while the

third family quark Yukawa interactions are in thermal equilibrium.1 For T . 1012

GeV , the EW sphalerons get into thermal equilibrium. For T . 1011 GeV, the τ

and charm Yukawa interactions get into thermal equilibrium. For T . 109 GeV, µ

Yukawa interactions are in thermal equilibrium. For T . 107 GeV, down Yukawa

interactions are in thermal equilibrium and finally for T . 104 GeV, electron Yukawa

interactions get into thermal equilibrium as well.

Knowing the relevant interactions at a given temperature regime, we can figure

out the conservation of the charges. Since EW sphalerons are not in equilibrium for

1For T & 1013 GeV, QCD sphaleron processes and bottom Yukawa interactions are also out of
thermal equilibrium.
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Temperature regimes
Fully-symmetric model Non-symmetric model

cΨ cΦλ cW1 cW1

1015 GeV . T 5
7

1 31
42

1
6

1013 GeV . T . 1015 GeV 2
3

1 13
18

1
9

1012 GeV . T . 1013 GeV 35
53

1 229
318

4
39

1011 GeV . T . 1012 GeV 15
23

1 33
46

1
11

109 GeV . T . 1011 GeV 42
65

1 93
130

5
61

107 GeV . T . 109 GeV 573
887

1 1269
1774

17
208

104 GeV . T . 107 GeV 363
565

1 807
1130

10
131

Table C.1: We list the values of cΨ, cΦλ and cW1 = 1
3
cΨ + 1

2
cΦλ in different temper-

ature regimes in the fully-symmetric model, as well as the values of cW1 = 1
3
cΨ

in the non-symmetric model. For simplicity, in our numerical estimations, we
will fix cW1 = 0.7(0.1) for all temperature regimes in the fully-symmetric (non-
symmetric) model .

T & 1012 GeV, the baryon number B is an effective symmetry. Therefore, we impose

baryon number conservation, i.e., Y∆B = 0. We do not impose such conservation for

T . 1012 GeV because EW sphalerons processes break baryon number symmetry.

Notice that our definition of Y∆ changes from −Y∆L′ for T & 1012 GeV to Y∆(B−L′)

for T . 1012 GeV [see eq. (3.60)], which will lead to small changes in the spectator

effects. Since we have two realizations of the hybrid seesaw model, namely fully-

symmetric model and non-symmetric model (defined in section 3.5.2.1), we

will discuss them separately here:

• Fully-symmetric model

In this type of model, on top of hypercharge conservation, we also impose

U(1)B−L and U(1)λ−B conservation in all temperature regimes. In table C.1,

we list the values of cΨ, cΦλ and cW1 = 1
3
cΨ + 1

2
cΦλ [introduced in eq. (3.82)]
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in different temperature regimes.

• Non-symmetric model

In this type of model, we only impose hypercharge conservation due to the

absence other global symmetries. Moreover, since the scalar Φλ in this model

does not carry any charge, so cΦλ = 0 and we will get cW1 = 1
3
cΨ according to

eq. (3.82). In table C.1, we list the values of cW1 = 1
3
cΨ in different temperature

regimes.

As can be seen in table C.1, although the exact values varies at different tem-

peratures, we can find that in all temperature regimes cW1 ≈ 0.7 in the fully-

symmetric model and cW1 ≈ 0.1 in the non-symmetric model. Therefore, we

will fix cW1 = 0.7(0.1) in the estimation of BEs in the fully-symmetric (non-

symmetric) model for simplicity.

Appendix D: Comments on Boltzmann equations for ISS and LSS

When we study leptogenesis in ISS and LSS models in section 3.3, we have used

the sum of CP parameter of each particle within the pseudo-Dirac pair to estimate

the size of total CP asymmetry as well as the final lepton or baryon asymmetry. In

this section, we will justify this argument using a general parametric estimation.

Consider Boltzmann equation for the asymmetry in ∆(B − L) in inverse or

linear seesaw,
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dY∆(B−L)

dz
=
∑
i

εi
dYΨ̃i

dz
− 1

2
W (z)Y∆(B−L), (D.1)

where Ψ̃i are the mass eigenstates of the singlet fermions with mi ≤ mi+1, εi is the

CP asymmetry parameter for Ψ̃i decays and z = m1

T
. For simplicity let’s focus on

the asymmetry generated from decays of the lightest pseudo-Dirac pair only, i.e.

consider the sum in eq. (D.1) to be only over i = 1, 2. The qualitative conclusion

will not change when we include more generations of Ψ̃i. The washout is controlled

by W (z) and we assume the dominant washout comes from the inverse decay (on-

shell part of ∆(B −L) = 2 scattering process). Correctly including the interference

among Ψ̃1,2, one would get (see ref. [74])

W (z) ≈ 1

2
Keff

Y eq

Ψ̃
(0)

Y eq
z3K1(z), (D.2)

where Keff = K1δ
2
1 for ISS and Keff = K1ε

′2
1 for with δ ∼ µ/Γ, ε′ ∼ y′/y and Ki

defined in eq. (3.30). This is the same washout factor in eq. (B.15) with c = Keff/K1.

The formal solution to the differential equation eq. (D.1) is

Y∆(B−L)(z) =

∫ z

0

dz′
∑
i

εi
dYΨ̃i

dz′
e−

1
2

∫ z
z′ dz

′′W (z′′), (D.3)

assuming Y∆(B−L)(0) = 0, meaning no initial asymmetry. Since W (z) is the same
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for all Ψ̃i, we can simply put the sum out of the integration:

Y∆(B−L)(∞) =
∑
i

∫ ∞
0

dz′εi
dYΨ̃i

dz′
e−

1
2

∫∞
z′ dz

′′W (z′′) (D.4)

=
∑
i

εiηiY
eq

Ψ̃
(0),

where ηi ≡ ηi(∞) and η(z) is defined in eq. (B.24) with c = Keff/K1 . This means

we could treat the generation of asymmetry and washout separately for each Ψ̃i and

the total effect is the sum of the result of each one. Now eq. (D.4) can be rewritten

as

Y∆(B−L)(∞)

Y eq

Ψ̃
(0)

= [(ε1 + ε2)η1 + ε2(η2 − η1)] . (D.5)

As discussed in section 3.3 and appendix A, we have ε1 ≈ −ε2 = O(εy2), where

ε ∼ µ/mΨ and we assume y2 � µ/Γ, in ISS and ε1 ≈ −ε2 = O(ε′y2) in LSS. The

sum ε1 +ε2, however, is second order in ε(ε′): ε1 +ε2 = O(ε2/y2) in ISS and ε1 +ε2 =

O(ε′2y2) in LSS. Since the mass splitting and the difference in Yukawa couplings

within the pseudo-Dirac pair are controlled by ε or ε′, the difference of the ηi should

go to zero as ε or ε′ → 0 . Taking η1 − η2 ∝ ε(ε′)η1 as an conservative estimation,

we would find the first term in eq. (D.5) is O(ε2/y2)η1 in ISS or O(ε′2y2)η1 in LSS.

Whereas the second term is at most O(ε2y2)η1 in ISS or O(ε′2y2)η1 in LSS. This

means the second term in eq. (D.5) is parametrically smaller or at most the same

order as the first term. Since our estimation here is only order of magnitude, it is
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appropriate to keep only the term with ε1 + ε2, meaning eq. (D.5) approximates to

Y∆(B−L)(∞)

Y eq

Ψ̃
(0)

∼ (ε1 + ε2)η1. (D.6)

This allows us to simply treat the contribution to the Y∆(B−L) from a pseudo-Dirac

pair as if only one of the particle (say Ψ̃1) decays with the effective CP asymmetry

parameter being ε1 + ε2.

We shall justify the above argument with analytic approximations of η2 − η1

in both ISS and LSS models. We first consider the LSS case where m2 = m1. There

is a unified definition of z for each Ψ̃i because z ≡ m1

T
= m2

T
. Therefore we could

simply use the results for ηi derived in appendix B:

ηi ∼



1/(KeffzB) (Keff � 1)

Keff (Keff � 1&Ki � 1with zero initial Ψ̃i)

KeffKi (Ki � 1with zero initial Ψ̃i)

1 (Keff � 1with thermal initial Ψ̃i)

, (D.7)

where zB is defined in eq. (B.36) and it only depends on Keff . Since only in Ki � 1

region (with zero initial Ψ̃i) ηi depends on Ki and knowing that K2 ≈ K1(1− 4ε′1)

[derived using eq. (A.2)] to the first order in ε′1, we can conclude that

Y∆(B−L)(∞)

Y eq

Ψ̃
(0)

≈


[(ε1 + ε2)η1 − 4ε2ε

′
1η1] (Ki � 1)

(ε1 + ε2)η1 (others)

. (D.8)

Since (ε1 + ε2) = O(ε′2y2) ∼ ε2ε
′
1 = O(ε′2y2), it matches our estimation in eq. (D.6).
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Now we move on to study the case of ISS, which is bit subtler due to mass

differencem2 = m1(1+ε1). We can not simply use the same expression in appendix B

to get η2. Instead, we should consider

η2 =
1

Y eq

Ψ̃
(0)

∫ ∞
0

dz′
dYΨ̃2

(z′2)

dz′2
e−

1
2

∫∞
z′ dz

′′W (z′′), (D.9)

where z′2 = z′(1 + ε1). In the strong washout region (Keff � 1), as discussed in

appendix B.2.2, we can treat YΨ̃2
≈ Y eq

Ψ̃
in all relevant regions. Therefore the part

involving z′2 in eq. (D.9) can be approximated to be

dYΨ̃2
(z′2)

dz′2
≈

dY eq

Ψ̃
(z′2)

dz′2

≈
dY eq

Ψ̃
(z′)

dz′
+ ε1z

′d
2Y eq

Ψ̃
(z′)

dz′2
, (D.10)

to the first order in ε1. Plugging the first part of the second line of eq. (D.10) to

eq. (D.9) will simply get η1 and thus we can write η2 ≈ η1 + δη with

δη =
ε1

Y eq

Ψ̃
(0)

∫ ∞
0

dz′z′
d2Y eq

Ψ̃
(z′)

dz′2
e−

1
2

∫∞
z′ dz

′′W (z′′). (D.11)

For Keff � 1, due to the exponential washout controlled by W (z), the integration

in the region z & zB � 1 dominates. This allows us to keep only z′ � 1 region of

the integrand:

1

Y eq

Ψ̃
(0)

z′
d2Y eq

Ψ̃
(z′)

dz′2
z′�1≈ − 1

KeffR
W (z′), (D.12)
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where R ≡ Y eq

Ψ̃
(0)

Y eq and we have used the properties of K1(z′) function:

z′
d(z′2K1(z′))

dz′
z′�1≈ −z′3K1(z′). (D.13)

Combining eq. (D.11) and eq. (D.12), one will find

δη ≈ − ε1

KeffR

∫ ∞
0

dz′W (z′)e−
1
2

∫∞
z′ dz

′′W (z′′) (D.14)

=
2ε1

KeffR

(
1− e− 1

2

∫ z
0 dz

′′W (z′′)
)

=
2ε1

KeffR

(
1− e− 3π

8
KeffR

)
.

Using the expression for η1 in eq. (B.39) and Keff � 1, we can get

δη ≈ zBε1η1. (D.15)

Therefore, the asymmetry in ISS in the strong washout region can be summarized

as

Y∆(B−L)(∞)

Y eq

Ψ̃
(z = 0)

≈ [(ε1 + ε2)η1 + ε2ε1zBη1] (Keff � 1). (D.16)

Since (ε1 + ε2) = O(ε2/y2)� ε2ε1zB = O(ε2y2 lnKeff), this will reduce to eq. (D.6).

We also checked numerically that the results for weak washout regions are consistent
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with eq. (D.6).

Appendix E: Gauge model

The structure of the hybrid seesaw introduced in eq. (3.49) can be obtained

introducing appropriate gauge symmetries and additional fields. In this appendix

we present a minimal model that reduces to our hybrid scenario after the additional

fields (χ, S in table E.1) have been integrated out or decoupled. In this model,

U(1)B−L global symmetry in table 3.3 is promoted to be a gauge symmetry while

U(1)λ−B arises as an accidental global symmetry.

We assume the full model has gauge group GSM × U(1)B−L × U(1)X , where

GSM ≡ SU(3)c × SU(2)L × U(1)Y . While the new gauge symmetry U(1)B−L is

different from the usual (B − L) symmetry of the SM, we decided to use this name

since SM particles are charged as baryon (B) minus lepton (L) number symmetry.

The fields beyond the SM are singlets under GSM. Their charges under the two new

U(1) gauge groups are specified in table E.1. It is easy to check that the gauge

symmetry is anomaly-free [132]. Notice that in our case we have two Ni and, as a

result, the lightest SM neutrino will be massless. Scenarios with three Ni (or more)

can be constructed, but at the cost of introducing new fermions.

Other than the kinetic terms, the only renormalizable couplings allowed by
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U(1)B−L U(1)X spin
Ψc
a=1,2,3 +1 0 1/2

Ψa=1,2,3 0 α 1/2
Ni=1,2 0 −4α 1/2

Φκ −1 −α 0
Φλ 0 3α 0
χ 0 5α 1/2
S 0 8α 0

Table E.1: Beyond the SM fields and their charges under new gauge symmetries
U(1)B−L × U(1)X . Here α is some arbitrary real number.

the symmetries are

−LYukawa = yaαΨc
aH`α + κabΨ

c
aΦκΨb + λaiΨaΦλNi + cijSNiNj + h.c. (E.1)

In addition to the fields of the hybrid seesaw [eq.(3.49)] we have added a Weyl

fermion χ and one complex scalar S. As mentioned earlier, the former is necessary

to obtain a gauge anomaly-free U(1)X . The scalar S is assumed to acquire large

VEV, thus generating the large Majorana masses for Ni. The hybrid model is effec-

tively recovered once S gets a VEV MN ∝ 〈S〉 and its radial mode gets integrated

out. In particular, note that no number-changing interaction between Φλ,κ, S is

allowed by gauge invariance at the renormalizable level. The lowest dimensional

operator in the scalar potential that breaks the U(1)λ−B symmetries in table 3.3

(after S gets a VEV) arises at dimension 11, ∼ Φ8
λ(S∗)3

M7
Pl

, and as a result, its effect

is negligible at low energies. Further number changing operators may exist, e.g.

Φ8
λ(S∗)3

M7
Pl

(
Φ†κΦκ
M2

Pl

)
→ 〈S〉3

M3
Pl

Φ8
λΦ†κΦκ
M6

Pl
. Unlike previous dimension 11 operator, this operator

can generate number changing processes among Φλ’s and Φκ’s within the EFT of hy-
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brid model, and in principle can washout asymmetry as discussed in section 3.5.2.3.

However, being dimension 13 or higher, those effects can safely be ignored.

The global symmetry U(1)λ−B is spontaneously broken by 〈Φλ〉 ∼ TeV, gener-

ating Nambu-Goldstone boson (NGB). Due to explicit breakings by higher-dimensional

operators, this NGB will acquire mass. This fact, together with resulting phe-

nomenological implications were discussed in [54].

The additional fermion χ is very light and stable on cosmological scales. Its

mass dominantly arises from χχ(S∗Φλ)
2/M3

Pl
1, and is thus of order

mχ ∼ (MN/MPl)
2(TeV2/MPl)� 10−3 eV.

However, because it is also very weakly-coupled, its presence is still allowed by all

experimental data. After the gauge boson associated with U(1)X becomes mas-

sive, the dominant interaction involving χ is χ̄χΨ̄Ψ/〈S〉2. This decouples around

T ∼ (〈S〉4/MPl)
1/3 ∼ (M4

N/MPl)
1/3, which is always much higher than the QCD

phase transition in our model. This ensures that χ behaves like dark radiation and

contributes negligibly to ∆Neff at BBN and CMB [133]. Other constraints on the

hybrid seesaw model are discussed in [54].

1This operator also breaks U(1)λ−B and induces U(1)λ−B-violating decay of Φλ. However, such
decay is not harmful for the genesis if either (i) corresponding decay rate is slow (and it is: at
any temperature T . MPl the decay is inactive) or (ii) (even if Φλ decay were rapid) χ does not
interact with SM sector strongly that it does not transfer asymmetry (from Φλ decay) to the SM.
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