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The study of quantum degenerate gases has many applications in topics such as

condensed matter dynamics, precision measurements and quantum phase transitions. We

built an apparatus to create 87Rb Bose-Einstein condensates (BECs) and generated, via

optical and magnetic interactions, novel quantum systems in which we studied the con-

tained phase transitions.

For our first experiment we quenched multi-spin component BECs from a miscible to

dynamically unstable immiscible state. The transition rapidly drives any spin fluctuations

with a coherent growth process driving the formation of numerous spin polarized domains.

At much longer times these domains coarsen as the system approaches equilibrium.

For our second experiment we explored the magnetic phases present in a spin-1

spin-orbit coupled BEC and the contained quantum phase transitions. We observed ferro-

magnetic and unpolarized phases which are stabilized by the spin-orbit couplings explicit

locking between spin and motion. These two phases are separated by a critical curve

containing both first-order and second-order transitions joined at a critical point. The

narrow first-order transition gives rise to long-lived metastable states.

For our third experiment we prepared independent BECs in a double-well potential,

with an artificial magnetic field between the BECs. We transitioned to a single BEC by

lowering the barrier while expanding the region of artificial field to cover the resulting

single BEC. We compared the vortex distribution nucleated via conventional dynamics to

those produced by our procedure, showing our dynamical process populates vortices much

more rapidly and in larger number than conventional nucleation.
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Chapter 1

Introduction

Bose-Einstein condensates (BECs), a quantum state of matter first predicted by Satyendra

Nath Bose and Albert Einstein in 1924, describe a macroscopic occupation of bosonic

particles into their ground state. With the advent of new laser cooling techniques in the

1980s and early 1990s [1–4], the first experimental generation of BEC was achieved in

1995 [5, 6], with Eric Cornell, Carl Wieman and Wolfgang Ketterle earning the Nobel

prize in 2001 for their achievements in the field. Not long after, the field for studying

ultracold degenerate gases exploded with research such as creating degenerate fermions [7],

observations of superfluidity [8] and the realization of periodic lattice systems, such as the

Bose-Hubbard model [9].

The experimental techniques of atomic physics together with ultracold degener-

ate gases lend themselves well to acting as quantum simulators. The experimental tools

of atomic and optical physics has a great track record for yielding high precision mea-

surements, including the creation of atomic clocks that keep time over the age of the

universe [10], measure the electron dipole moment to 1 part in 10−29 [11], provide super

sensitivity for searching for gravitational waves [12] or other scientific endeavors [13–15].

By using similar techniques, we can have high precision control of interactions and po-

tentials that a trapped degenerate gas is subjected. By using optically or magnetically

engineered interaction in degenerate gases, both naturally occurring systems and novel

quantum systems can be engineered and studied. The thesis is focused on the use of 87Rb

BECs subjected to engineered potentials to study novel quantum systems.

1



2 1.1. Thesis Overview

1.1 Thesis Overview

Chapter 2 discusses a brief introduction to the physics of Bose-Einstein Condensates

Chapter 3 provides a overview of the methods of laser cooling and trapping used in

the experiment to bring atomic gases to the degenerate regime

Chapter 4 provides an overview of the RbLi experimental apparatus. This includes

the information about the vacuum system, various laser setups, computer data control

and acquisition systems and electromagnetic coil design and control.

Chapter 5 discusses the dynamics of spin dependent interactions. Here we quench

a two spin component condensate from a condition which is miscible to an immiscible

state. The spin-dependent interactions drive the dynamics of spin domain formation and

coarsening.

Chapter 6 explores the physics and implementation of Raman coupling in our ex-

periment. Also discussed is the physics and and implementation of a spin 1 system in the

F = 1 hyperfine ground state of 87Rb.

Chapter 7 extends the physics of the spin-1 system to a system with magnetic

ordering. Interestingly we find that a spin-1 SOC system contains phase transitions of

first and second order.

Chapter 8 describes the novel nucleation method of vortices in a BEC subjected to

synthetic magnetic fields. Common methods to generate high vortex number utilize rapid

rotation that generates vortices on the edge of the system and slowly relax into the bulk

of the condensate. By contrast, here I explored a system with engineered high magnitude,

localized synthetic magnetic fields between two separated BECs. The low density and

high magnetic field drives rapid generation, and high number, of vortices in the system.

Appendix A covers the theory of operation and implementation of the flux gate

magnetic field stabilization system.

Appendix B discusses the FPGA instrumentation system that I had developed.



Chapter 2

An Overview of Bose-Einstein

Condensation Theory

Bose-Einstein Condensation is the quantum phenomenon wherein an ensemble of bosons,

particles with an integer unit of total angular momentum, will all occupy the ground state

of the system, forming a quantum state of matter. This process occurs when a combination

of high particle density and low temperatures crosses a critical value, formulated ahead

in Section 2.1.2. Here I describe the basic mechanisms and relationships for the physics

of Bose-Einstein condensates (BECs) mostly as a supplementary reference to the physics

studied in our experiment (Chapters 5, 7, and 8). For readers interested in a much more

comprehensive description of the physics involving Bose-Einstein condensation, I would

refer them to the texts by Pethick and Smith [16] or by Pitaevskii and Stringari [17].

2.1 Origins of Bose-Einstein Condensation

All matter can be described in the context of matter-wave duality, wherein a particle has

an associated matter wave length, given by the de Broglie wavelength λDB = h/p where

h is Planck’s constant and p is the momentum of the particle [18]. In most cases, the

classical model of particles described by hard spheres or point particles is valid, for at

high temperatures the atomic wavepacket is smaller than typical sizes of the atom. By

3



4 2.1. Origins of Bose-Einstein Condensation

combining the formalism for the momentum p = mv, and the equipartition theorem for

free particles1 we can define the de Broglie wavelength:

λDB =
h√

3mkBT
(2.1)

With kB being Boltzmann’s constant. For a gas with N particles in a volume V, the

equilibrium density will be n = N/V particles per volume. For example’s sake we say

each particle occupies a uniform volume, we can approximate the average inter-atomic

spacing as d ∼ n−1/3. We can calculate a critical temperature TC when the de Broglie

wavelength is on the order of the inter-particle spacing:

TC ∼
h2n2/3

mkB
(2.2)

From this simple argument for a uniform gas we can see the critical temperature in which

condensation occurs depends primarily on the density of the particles. With an even more

basic approach of simply arranging the relevant units of the system to form a temperature

will yield the relationship in Equaiton 2.2 [16]. That said, the derivation of the critical

temperature for condensation is derived in the following sections.

2.1.1 Bose-Einstein Statistics

In classical physics the statistical mechanics of a system of many particles, such as a gas, is

characterized by the Maxwell-Boltzmann distribution, a probability density function that

describes the probability of a particle possessing a given velocity. Maxwell-Boltzmann

statistics for distinguishable particles can similarly model the probability of a particle

possessing a given energy:

p(E) = e−(E−µ)/(kBT ) (2.3)

Where kB is Boltzmann’s constant, T is the temperature of the ensemble, and µ is the

chemical potential. However, this distribution of energies applies to classical, distinguish-

1the equipartition theorem states that for a given temperature, the energy will be evenly distributed
into all degrees of freedom. For a monoatomic gas, the three translation modes gives 1

2
m〈v〉2 = 3

2
kBT .



5 2.1. Origins of Bose-Einstein Condensation

Matter-Wave Nature
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Figure 2.1: At high temperatures, using a ‘billiard ball’ model of atoms colliding
is valid. As temperatures lower, the de Broglie wavelength becomes larger and the
matter-wave nature becomes evident. Once the associated wavelength is large enough,
the atoms become coherent, and in the case of bosons, condense. Wonderful figure
adapted from the Ketterle MIT group website.

able particles. If we have an ensemble of identical bosons, particles with integer spin, we

lose distinguishable nature, and the distribution is now described by the Bose-Einstein

distribution:

p(E) =
1

e(E−µ)/(kBT ) − 1
(2.4)

Note that in the limit of high temperatures, the Bose-Einstein distribution becomes equiv-

alent to the Maxwell-Boltzmann distribution. For the derivation of the statistics for

both classical and indistinguishable particles from microcanonical or grand canonical ap-

proaches, I recommend reading the statistical mechanics book by Pathria [19].



6 2.1. Origins of Bose-Einstein Condensation

2.1.2 Critical Temperature for Condensation

The interesting difference between the two probability distributions comes in at low tem-

peratures. If we have N atoms in an atomic ensemble, we should be able to sum along the

probability distribution in steps of energy along with the degeneracy in energies and get

a result of N as well. This gives us an the relationship:

N =

∫ ∞
0

p(E)d(E) dE (2.5)

Where p(E) is the probability of occupation at an energy E, and d(E) is the density of

states, a measure of the degeneracy of the states in the system. It is worth mentioning

that the Bose-Einstein distribution requires that the chemical potential µ is always less

than the lowest energy in the system, E0. For an arbitrary density of states function, we

require that the integrand is a positive value as the probability and the density of states

are both positive semi-definite quantities2. Combining Equation 2.4 and Equation 2.5. In

expanded form, we have:

N =

∫ ∞
0

d(E)

e(E−µ)/(kBT ) − 1
dE (2.6)

As stated, d(E) must be positive as it is a function that counts the available energy levels

nearby the energy E. For entire integrand to be positive, we require the exponent in the

denominator to be greater than zero:

(Ei − µ)/(kBT ) ≥ 0 (2.7)

∴ Ei ≥ µ ∀Ei (2.8)

Which implies that independent of the specifics of the energy levels and degeneracy of the

system, the chemical potential must be lower than the ground state energy level.

If we consider the system in a box, specifically a three dimensional infinite square well

potential, the allowed energies go as E = ~2k2/2m, with the vector k having components

2I’m not one to define negative probability or a negative counting of energy levels
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ki = πni/Li, where ni is the energy level in the square potential in the êi direction, and

Li is the size of the box in the êi direction. This gives us a density of states [20]:

d(k) =
V k2

2π2
dk (2.9)

If we rewrite Equation 2.9 using the relationship E = ~2k2/2m, and for simplicity use

the standard thermodynamic definition β = 1/kBT , we can rewrite the particle number

N more cleanly as:

N =
V m3/2

√
2π2~3

∫ ∞
0

E1/2

eβ(E−µ) − 1
dE (2.10)

This expression is analytically unsolvable. However, in the special case of µ = 0, T = Tc,

we can evaluate the integral, yielding the critical temperature for condensation. Using

Equation 2.10 and noting that N/V = n, the density of the gas, and making the substi-

tution x = βE:

N/V = n =
m3/2

√
2π2~3β3/2

∫ ∞
0

x1/2

ex − 1
dx (2.11)

The integral, in terms of x, can be evaluated by the identity:

∫ ∞
0

xs−1

ex − 1
dx = Γ(s)ζ(s) (2.12)

Where Γ is the Gamma function, and ζ is the Riemann Zeta function. Using this identity

in Equation 2.11 and solving for the temperature T , we get:

Tc =
2π~2n2/3

mkB
ζ(3/2)−2/3 (2.13)

Which has a similar functional form as the quick derivation in Equation 2.2, but with

a well defined constant of proportionality. Furthermore, we can define a quantity called

the phase space density ρ such that ρ = nλ3
DB which describes the number of particles

contained in a volume given by λ3
DB. When ρ ' 1, the atomic wavefunctions begin to

overlap at the beginning of condensation. To increase the phase space density in the
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Figure 2.2: Calculations of the phase space density ρ during our evaporative cooling
stages discussed in Chapter 3

experiment, we deploy laser cooling and evaporative cooling techniques (Chapter 3) to

simultaneously increase the density and lower the temperature to approach ρ ∼ 1 (Figure

2.2).

2.1.3 The Condensate Fraction

To determine the number of particles in the system that have condensed into the ground

state, we can consider the particle number NTot = N0 +Nex.. We can quickly compute the

number of particles in the ground state, N0 using Equation 2.4. For systems with a large

number of particles, we can make the approximation of µ = 0 for the excited states as

E1−µ ' E1− kBT/N0 ' E1. Therefore, as in Equation 2.5, we can calculate the number

of particles in the excited states:

Nex. =

∫ ∞
0

d(E)

eβE − 1
dE (2.14)

Where d(E) is the density of states for the given system. We are interested in the condensed

fraction of atoms, that is:
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N0

NTot
=
NTot −Nex.

NTot
= 1− Nex.

NTot
(2.15)

Using Equation 2.13 and solving Equation 2.14 as before for a general temperature T, we

get the condensate fraction for a gas in a box:

N0

NTot
= 1−

(
T

Tc

)3/2

(2.16)

2.1.4 Condensation Requirements in a Harmonic Trap

In most (if not all) ultracold gases experiments, the condensates are confined in a harmonic

confinement potential: V (x, y, z) = 1
2m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. The harmonic confinement

geometry changes the conditions for condensation, as understood through Equation 2.5.

However, the same procedure can be repeated as in the previous sections, the difference

being that we calculate the density of states for the 3D harmonic oscillator. For a harmonic

potential, the energy levels are E = ~ωx(nx + 1/2) + ~ωy(ny + 1/2) + ~ωz(nz + 1/2) with

the integer ni ≥ 0. The harmonic oscillator is wonderful because the states are evenly

spaced in energy, and the primary axes are not coupled together in a complex fashion.

Calculating the density of states gives:

d(E) =
E2

2~3ω̄3
dE (2.17)

Where ω̄3 = ωxωyωz, is the geometric mean of the harmonic potential frequencies. Follow-

ing the method in Section 2.1.2, the critical temperature for condensation in the harmonic

trap is:

Tc =
~ω̄
kB

(
n

ζ(3)

)1/3

(2.18)

≈ 0.9405
~ω̄n1/3

kB
(2.19)

The major difference here is that the critical temperature goes as the cube root of the

density, not to the power 2/3. Similarly the condensate fraction is modified:
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N0

NTot
= 1−

(
T

Tc

)3

(2.20)

The cubic power to the condensate fraction value for a harmonically confined condensate

assists us in creating a large condensed fraction with less cooling. The intuitive explanation

is that unlike a uniform gas in a box, the harmonic potential will have a region of high

density at the center, helping the condensation process.

From performing the exercise of deriving the critical temperature twice for different

geometry, a pattern emerges wherein the form of the critical temperature depends on the

functional form of the density of states. Consider a generic density of states:

d(E) = cdE
p−1 dE (2.21)

Where cd is a constant prefactor, and p − 1 is the power law exponent of the density of

states. It follows then, using the arguments as before, that the critical temperature for

condensation is:

Tc =

(
n

cdΓ(p)ζ(p)

)1/p

(2.22)

This confinement agnostic form for the critical temperature shows the strong dependence

between the type of confinement and the critical temperature required for condensation.

This form is also helpful when calculating critical temperatures for condensation in dif-

ferent dimensional systems, as that information is contained in the density of states. For

example, the density of states of a harmonic oscillator in an arbitrary number of dimen-

sions can be calculated readily as the constant level spacing allows the system to be treated

as a convolution of independent oscillators:

dHO(E, l) =
El−1

(l − 1)!
l∏

i=1

~ωi

dE (2.23)

Where l is the number of dimensions3 and ωi is the harmonic oscillator frequency in the

3I would use a more intuitive n, but that is defined as the density
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êi direction. So we can quickly calculate the critical temperature for an arbitrary number

of dimensions as:

Tc =


n

Γ(l)ζ(l)(l − 1)!

l∏
i=1

~ωi


1/l

(2.24)

Note that for l = 1, a one-dimensional geometry, ζ(1) = ∞ signifying that condensation

cannot occur in such a system. In a two dimensional system (the far limit of ‘pancake’

style confinement geometry where ωz >> ωx,y) we get:

Tc ≈
0.78

~

√
n

ωiωj
(2.25)

We can extend this exercise to higher dimensions although I cannot fathom why, but I

will leave that as an exercise to the reader if they have an interest.

2.2 Condensation with Atomic Interactions

In Section 2.1, the requirements for condensation I discussed in terms of a non-

interacting gas. However, atoms in a gas do interact and this effect provides a density

dependent interaction potential. For the purpose of describing interactions between two

atoms in the ultracold gas, I will attempt to side-step the details of deriving scattering

theory from first principles and instead present the requisite information and resources

to derive the origin of the interaction energy in a condensate. The principles of quantum

mechanical scattering theory can be found in both [21] and [20]. Chapter 5 of [16] provides

a detailed description of deriving the effective interaction energy for a cold, dilute gas based

upon scattering theory, as well as [22].
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2.2.1 Effective Atomic Interaction Potentials

To account for the interactions of particles in the system, a model is used that makes the

approximation that the scattering processes between atoms is low energy process, valid

for atoms in a low temperature condensed state. This approximation allows us to only

consider spherically symmetric s-wave scattering effects to model the more complex inter-

atomic potentials as an effective hard sphere scattering process, where each atom has an

effective radius ascat., the scattering length. From the references listed previously, one

can find that the presence of interactions in the condensate approximated by this model

provides an energy proportional to the density of the atoms, specifically:

Vint(~r) =
4π~2ascat.

m
n(~r) = gn(~r) (2.26)

For 87Rb, ascat. ≈ 100 aB, where aB = 5.3 · 10−11m. Therefore the effective ’size’ of the

atoms in collision processes is much larger than the actual extent of the atom.

Atomic species can have either positive or negative values of the scattering. Con-

densates with particles that have attractive interactions (ascat. < 0) such as the more

isotopically abundant 85Rb (ascat. = −23.44aB) can exist, however after a critical number

of atoms, the condensate will collapse [23,24]. By comparison, condensates with repulsive

interactions (ascat. > 0) such as in 87Rb are in a stable configuration, independent of par-

ticle number. In systems with spin degrees of freedom, the interaction between atoms in

different spin states can have varying scattering lengths, as described in Section 5.1.1.

Scattering lengths are also important for evaporative cooling stages (Section 3.3.1),

which rely on the interaction of the atoms to rethermalize the ensemble after ejecting the

most energetic members. For atomic species with small scattering lengths, the evaporative

cooling mechanism is less effective. To cool them down, a technique known as sympathetic

cooling [25, 26] uses a two-species setup4: one that is easy to cool and one that is not.

However, the interaction between the two elements is effective enough such that the second

species cools off by interacting with the first.

4Either different elements or isotopes of the same element
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2.2.2 The Gross-Pitaevskii Equation

In the regime where describing the inter-atomic interactions in the condensate by the

scattering length is valid, the Schrodinger equation is modified with the interaction term

to become what is known as the Gross-Pitaevskii Equation (GPE) [27,28]. The equation

has the form:

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∇2 + V (~r) + g|ψ(~r, t)|2

)
ψ(~r, t) (2.27)

If we require the conditions that ψ(~r, t) satisfies the mean-field approximation [16] as:

N =

∫
|ψ(~r, t)|2 (2.28)

ψ(~r, t) = φ(~r)e−iµt/~ (2.29)

Then for a system in equilibrium, the time-independent form becomes:

µφ(~r) =

[
− ~2

2m
∇2 + V (~r) + gn(~r)

]
φ(~r) (2.30)

2.2.3 The Thomas-Fermi Approximation

In a system in which the kinetic energy term in the GPE (Equation 2.27) is much less

than both the confining potential and interaction energy, we can make the Thomas-Fermi

Approximation to eliminate the kinetic energy term [29]. If we assume that we are in a

time-independent configuration for the condensate, we get:

µφ(~r) = [V (~r) + gn(~r)]φ(~r) (2.31)

Note here that we are investigating the cases where ψ(~r) 6= 0. Rearranging terms give us

the density profile of the condensate in the trapping potential:

n(~r) =


1
g (µ− V (~r)) : µ− V (~r) > 0

0 : µ− V (~r) ≤ 0
(2.32)
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Figure 2.3: The Thomas-Fermi approximation for the BEC density, here shown in a
1D slice. The density profile of the atoms will mirror the curvatures of the potential
which confines the atoms.

Therefore in the Thomas-Fermi limit, the shape of the density profile is a reflection of the

trapping potential, scaled with the correct prefactors. For a harmonic confinement, we

get an inverted parabola shape referred to as the Thomas-Fermi profile shown in Figure

2.3.

It is important to note that this is in fact an approximation, the discontinuity in

the derivative at the edge of the Thomas-Fermi profile would make ∇2φ ill-defined. To

account for this, we consider the length scale in which the derivative of the density should

be non-zero.

We consider the energy scale associated with the chemical potential µ of the con-

densate to the kinetic energy term:

µ =
4π~2ascatn0

m
∼ ~2

2mξ2
(2.33)

Where ξ accounts for the length scale units from the ∇2 operator and n0 is the peak

density of the condensate. Solving for the length scale, we get:
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ξ = (8πascatn0)1/2 (2.34)

Where we call ξ the healing length of the condensate. This length scale approximates the

shortest distance over which perturbations can occur in which the density goes from zero

to the bulk value. For instance, in the experiment with vortices in Chapter 8, the healing

length sets the approximate radius of the vortex core.

2.2.4 Thomas-Fermi with a Harmonic Trapping Potential

In our experiment, and in many others, the condensate is confined in a harmonic trapping

potential. By using the Thomas-Fermi approximation in Section 2.2.3, we can quantify

many properties of the BEC, such as the chemical potential or atom number, as set by

the geometry of the harmonic trap.

Knowing the density of the condensate from Equation 2.32, we can calculate the

number of atoms within the condensate:

N =

∫
d3r n(~r) =

∫
d3r

1

g
(µ− V (~r)) (2.35)

From the condition that the condensate must vanish when µ = V (R) in Section 2.2.3,
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where R is the edge of the condensate, we can relate the harmonic oscillator frequencies,

condensate radius and the chemical potential by:

1

2
mω2

i =
µ

R2
i

(2.36)

Where ωi and Ri are the oscillator frequency and condensate radius along the êi direction

respectively. Therefore we can calculate the atom number from:

N =

∫
d3r

µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(2.37)

If we define

n0 =
µ

g
=

µm

4π~2ascat
(2.38)

as the maximum density at the center of the condensate, we can define the spatial density

as:

n(~r) = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(2.39)

If we integrate along one direction first, such as ẑ, we can calculate the column density

profile of the condensate, which is useful for absorption imaging purposes (see Section

3.5.1):

n(x, y) = 2

∫ Rz

√
1− x2

R2
x
− y2

R2
y

2
n(x, y, z) dz (2.40)

=
4Rz

3
n0

(
1− x2

R2
x

− y2

R2
y

)3/2

(2.41)

Therefore when a condensate is projected onto a two-dimensional surface, such as when

imaging, the observed density profile is not a parabola, but instead goes as the power 3/2.

Fully integrating over x and y gives the particle number in the condensate:

N =
2

5
n0 ·

4

3
πRxRyRz (2.42)
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Here I broke up the terms to illustrate that the result for the total atom number contains a

effective uniform density term 2/5n0 multiplied by the volume of the ellipsoidal condensate.

If we use the geometric mean of the radii (and therefore trap frequencies via Equation

2.36) to describe the average extent of the condensate:

N =
8πm

15g
ω̄2R̄5 (2.43)

Where R̄ = (RxRyRz)
1/3 and ω̄ = (ΩxΩyΩz)

1/3. The inverse of this equation, the radius

as a function of number, has a 1/5 power law dependence - a little increase in measured

radius means much more atoms in the condensate!

2.3 Density Profiles and Time-of-Flight Measurement

The measurement of density profiles of atomic ensembles is important as the atomic

density reveals many other metrics relevant for calculations, such as atom number or

temperature. Here I briefly discuss the density profiles for thermal and condensed clouds,

at the extraction of information via time-of-flight (TOF) imaging.

2.3.1 Time-of-Flight (TOF) Imaging Measurement

To gain information in any of our experiments, we use absorption imaging techniques

(Section 3.5.1) to image the column density of the atomic ensemble onto a CCD camera.

We can either take an image when the atoms are still confined (an in-situ image) or take

an image after abruptly turning off the trap, letting the ensemble expand (a time-of-flight

image). In-situ imaging is difficult due to the high atom density (for absorption imaging)

and the small target in which to image (∼ µm). To image features in the condensate

smaller than the radius, such as a vortex [30], complex techniques must be used. For

this reason, we commonly default to using TOF imaging techniques. At the end of an

experiment, we immediately remove the confining potential, after which the kinetic energy

of the system causes an expansion of the gas. This rapid expansion effectively maps the
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Figure 2.5: In Time-of-Flight (TOF) imaging, the atoms are suddenly released from
their confining potential. As the gas falls, it expands due to the momentum of atoms
within it. The distribution is then imaged after a free-fall time tTOF ∼ 20 ms)

momentum distribution of the ensemble into position space.

2.3.2 Thermal Profiles

A confined thermal cloud will have a density profile of [31]:

n(x, y, z) = n0e
− m

2kBT
(ω2
xx

2+ω2
yy

2+ω2
zz

2)
(2.44)

Where n0, the peak density can be calculated as:

n0 = N

(
mω̄2

2πkBT

)3/2

(2.45)

With N being the total atom number. At the start of TOF, we release the confining

potential, therefore, besides gravity, the system is described by free-particle physics. The

velocity distribution after TOF for a thermal gas is governed by the Maxwell-Boltzmann

distribution. For a sufficient TOF length, the thermal distribution:
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TOF Momentum Distribution – From Thermal to Condensate
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Figure 2.6: Momentum profiles of thermal clouds and condensates after TOF imag-
ing. As the sample of atoms is cooled from a hot thermal cloud (left) to a condensate
(right), the momentum becomes peaked around a single value.

n(x, y, z) = N

(
m

2πkBT

)3/2

e
− m

2kBT
(v2x+v2y+v2z) (2.46)

is mapped to a spatial distribution:

nTOF(x, y, z) = Ae
− m

2kBT

(
x2

σ2x
+ y2

σ2y
+ z2

σ2z

)
(2.47)

However for imaging we project the vertical direction onto the two-dimensional image. So

the thermal distribution on the camera will have the form:

nTOF(x, y) = Ae
− m

2kBT

(
x2

σ2x
+ y2

σ2y

)
(2.48)

Where:

A = N
m

2πkBT
(2.49)

σi =
√
kBT/m (2.50)
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By using a least-squares fit of the form above, we can extract the relevant information

from the thermal distribution. Here I assert that given enough time, the distribution of

the thermal cloud after TOF will become isotropic, unlike the TOF profile of a condensate,

discussed in the next section.

2.3.3 Condensate Profiles

From Section 2.2.4, the density of a BEC in a harmonic trap is:

nTF(~r) =
µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(2.51)

The TOF density profile of a condensate is related to the harmonic trapping frequencies.

For directions of tighter confinement, the BEC will ‘explode’ outwards with a higher

momentum, thus expanding to a larger radius after a given amount of time. This is why

condensates undergo anisotropic expansion in time of flight, unlike the uniform expansion

that thermal clouds achieve. This anisotropy in expansion is considered the experimental

signature to distinguish condensation from thermal ensembles.

From [32], we can calculate the anisotropic expansion according to a set of equations

for the condensate radius as a function of time:

Ri(t) = λi(t)Ri(t = 0) (2.52)

λ̈i(t) =
ωi

λiλiλjλk
(2.53)

Where Ri is the condensate radius along the ith principal axes. These relationships, known

as the Castin-Dum equations5 can be used to both find the time of flight density profiles,

or by measuring the TOF radii via absorption imaging, back-propagate what the original

radii were when the condensate was confined. To extract the radii from the image, we

do a least-squares fit to the column density in Equation 2.41 and extract the radii. Then

we use the Castin-Dum equations to back propagate the density profile back to the start

of TOF. Using the relationships in Section 2.2.4, we can calculate the atom number and

5Castin and Dum are the authors of [32], only fair they get an equation
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Figure 2.7: BEC expansion in TOF given a trap geometry of (fx, fy, fx) =
(42.8, 43.3, 133) Hz. Due to the tight confinement along the ẑ direction, the Castin-
Dum projection shows that the BEC will rapidly expand vertically. This more rapid
expansion will invert the density profile from being extended along x̂, ŷ before TOF
(left) to ẑ after TOF (right).

chemical potential.

2.3.4 Measurement of Trap Frequencies

From the previous sections, it is evident that the geometry of the confining potential is

critical in determining the critical parameters of the system. Therefore, we characterize the

system in terms of trap frequencies that describe the confinement in terms of a harmonic

oscillator model.

To measure the trap frequencies, we excite the n = 0, l = 0 resonance of the trap

and measure the modulation of the BEC. That is the fancy way of saying that we kick it

with a magnetic force that causes the condensate to slosh in the trap. The periodicity of

the slosh gives the trap frequency along the direction of the applied kick. A more detailed

procedure is as follows. First, we prepare a condensate in a magnetically sensitive spin

state. Next we apply a biasing field along a principal axis of the system6. We then

pulse on a magnetic field gradient that imparts a force to the atoms along the biasing

6For the optical trap, the principal axes are x̂± ŷ as the beams intersect at 45◦ to the experiment axes
defined in Section 4.1
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Figure 2.8: Measurement of trap frequencies in an optical dipole trap. The cloud is
given a force impulse and allowed to slosh in the trap. The displacement as a function
of time is measured, and the oscillation frequency extracted.

field direction. We time the length of this pulse to be approximately one-fourth of the

estimated trap period, and the amplitude of the force is set to give a nice gentle push

into oscillation, not a large shove that can push the condensate into higher oscillation

modes, or into regions where the potential is no longer approximated by a harmonic trap.

We then observe the motion of the condensate after varying hold times. The position of

the condensate will oscillate at the trapping frequency, which can be then extracted by a

least-squares fit of the position versus time dataset.



Chapter 3

Introduction to Laser Cooling and

Trapping Techniques

Laser cooling was instrumental in being able to create Bose-Einstein condensates in the

lab as the techniques developed were able to take a hot atomic beam and slow the atoms

down in a trap with a temperatures of few millikelvin, comparable to the best cryogenic

liquid Helium experiments. Magnetic trapping and optical trapping techniques to further

cool down atomic gases also play a role in producing a condensate, and are also discussed

here. This chapter is truly an overview of the physics and techniques for ultracold gases

experiments. For readers interested in more in-depth discussions and derivations of the

physics of laser cooling and trapping, I would suggest the atomic physics books by Metcalf

[33] and Foot [22], or the multitude of theses from ultracold degenerate gases experiments

in the past two decades.

3.1 Atoms and Magnetic Interactions

In ultracold atomic physics experiments, many of the laser cooling and trapping

methods we use (Zeeman slowers, Magneto-Optical traps, and magnetic traps) take ad-

vantage of the Zeeman effect [34] to break the energy degeneracy between the various spin

components (Figure 3.1). This energy shift comes from the interaction of the magnetic

23
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field with the electronic magnetic moment and the nuclear magnetic moment. The limit

of low magnetic field (where the applied field is much smaller than the internal field of the

atom) is referred to as the linear Zeeman effect. In this regime, the system is best described

by the hyperfine states |F,mF 〉. As the applied magnetic field strength is increased from

zero, the energy splitting of the spin components goes linearly as EZeeman = gFµBmFB

(Figure 3.1, bottom left). As the field is greatly increased, the strength of the internal

magnetic field becomes a perturbation compared to the applied field in what is known as

the Paschen-Back effect1. Here the spin-components are described in the |J,mJ〉 basis. In

the intermediate regime of applied field, neither interaction can be described as a pertur-

bation term. For J = 1/2 atoms (the alkalis) the energy of the spin components can be

algebraically solved to give the Breit-Rabi equation:

x =
(gj − gi)µBB

∆EHF

∆E = − 1

2(2I + 1)
+
µBgImFB

∆EHF
+

1

2

√
1 +

4mF

2I + 1
x+ x2 (3.1)

Where B is the applied field, µB is the Bohr magneton, gj and gj are the electronic and

nuclear g-factors, I is the nuclear spin (I = 3/2 for 87Rb), ∆EHF is the energy splitting

between the two hyperfine levels, and x is a dimensionless energy parameter dependent

on the properties of the atom. The energy, ∆E, is given here in units of ∆EHF. The

Breit-Rabi equation (3.1) gives the energy splitting over all magnetic field values: the low

and high field limits.

3.1.1 The Quadratic Zeeman shift

For low energies the Zeeman shift can be approximated as being linear for all spin com-

ponents. However there is still a non-linearity in the low magnetic field strength regimes

that causes a small, but measurable deviation. We call this small deviation from a linear

function the quadratic Zeeman shift. In our 87Rb experiment, we work primarily in the

F=1 hyperfine states. Here we define the quadratic shift as ε = E0− (E1 +E−1)/2, where

1In our experiments, we go nowhere close to this regime
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Figure 3.1: The Zeeman energy splittings in 87Rb. The energy shift across arbi-
trary magnetic field strength is calculated using the Breit-Rabi formula (top). In our
experiment we are mostly concerned with the linear Zeeman shift regime for small
fields, and the effect of the quadratic Zeeman shift, a measure of the non-linearity as
a function of the field strength.

EmF is the energy of the mF state. The bottom right of (Figure 3.1) shows the quadratic

shift in energy to the mF = 0 state compared to the other states. This shift breaks the

symmetry between the mF = ±1 states, and allows us to isolate systems via optical or

magnetic interactions to mF = 0,+1 or mF = 0,−1 only coupling schemes.
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Description Symbol Value

Nuclear g-factor gI -0.0009951414

Electronic Fine Structure g-factor 

(5S½)
gJ 2.00233113

Bohr Magneton μB 1.399624604 MHz/G

Nuclear Spin I 3/2

Hyperfine Energy Splitting ΔEHF / h 6.834682610904290 GHz

Helpful 87Rb Breit-Rabi Parameters 

Figure 3.2: Magnetic properties of 87Rb [35]

3.1.2 Oscillating Magnetic Fields a.k.a RF Coupling

In our experiment we commonly use oscillating magnetic fields (herein RF fields) to drive

transition between the spin components of the BEC (the equipment is described in Section

4.4.5). The RF field is mathematically described as a simple field ~BRF(t) = B0 cos(ωRFt),

which gives an interaction term in the Hamiltonian of the form ĤRF = −~µ · ~BRF =

µB0 cos(ωRFt)F̂x. In matrix form we can write this as:

ĤRF = ~


−δ ΩRF cos(ωRFt)/

√
2 0

ΩRF cos(ωRFt)/
√

2 ε ΩRF cos(ωRFt)/
√

2

0 ΩRF cos(ωRFt)/
√

2 δ

 (3.2)

Where ΩRF is the coupling strength of the RF filed (the Rabi frequency), δ = ωRF−ωZ is

the detuning from RF resonance where ~ωZ is the energy splitting due to the linear Zeeman

shift, and ε is the quadratic Zeeman shift. Transforming the matrix under rotation into

the rotating frame at ωRF, while ignoring terms going as ωRF + ωZ we get:

ĤRF = ~


−δ ΩRF cos(ωRFt)/

√
2 0

ΩRF cos(ωRFt)/
√

2 ε ΩRF cos(ωRFt)/
√

2

0 ΩRF cos(ωRFt)/
√

2 δ

 (3.3)

This system can be solved for both the eigen energies and states, as shown in Figure 3.3.
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Figure 3.3: Top: The RF dressed state creates avoiding crossings in the energy levels
as a function of the detuning from resonance. Bottom: The fractional composition of
the lowest energy RF eigenstate with respect to the bare spin states. Both figures are
simulated at ΩRF = 30 kHz and fRF = 25 MHz, which implies for 87Rb a quadratic
Zeeman shift of εq ≈ 90 kHz.

Adiabatic Rapid Passage

The most common way we manipulate the spin characteristics in our experiment is through

the Adiabatic Rapid Passage (ARP) technique. By ramping the detuning of the RF

dressed state slowly with respect to the energy gaps between the dressed state bands2,

we can selectively transfer atoms between various spin compositions. The experimental

process is as follows: First we prepare the BEC in the dipole trap in the mF = −1 spin

state. We then ramp on the biasing field slowly to set the value of the Zeeman splitting

2i.e. to avoid Landau-Zener tunneling
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Figure 3.4: Adiabatic Rapid passage uses the eigenstates of the RF dressed state
to select spin compositions via detuning dependent eigenstates.

~(ωZ − δ0) where δ0 is a value that is far enough out of resonance that the dressed state

spin fraction and bare state are effectively identical. We then slowly ramp up the RF

frequency to ωRF = ωZ, while the magnetic field is still lower than resonance. We then

slowly ramp the biasing field such that Zeeman shift ωZ → ωRF. By selectively choosing

the end point of the biasing ramp, we choose the value of δ = ωRF − ωZ, and hence the

spin state composition as shown in Figure 3.3, bottom. By slowly ramping off the RF,

the system is brought back into the bare spin states with a spin fraction given by the final

eigenstate.

3.2 Laser Cooling

In order to cool down our atomic gases to ultracold temperatures, we first use the

properties of laser cooling to remove momentum from the atoms. Laser cooling processes

use the momentum recoil of photons, caused by the atomic absorption and emission of

photons, the generate a force upon the atoms. Many clever schemes can be used to
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decelerate, trap, and drastically cool atoms using this force.

3.2.1 Providing a Force to Atoms From Light

An atom that absorbs and emits a photon will experience a shift in momentum and kinetic

energy proportional to the wavelength of the light and the mass of the atom. This imparted

momentum and energy is described by the recoil momentum ~kR = h/λ, and the recoil

energy ER = ~k2
R/2m. Consequentially, the force the atom will feel is simply the single

photon recoil momentum multiplied by the photon scattering rate of the atom. In the case

of a simple two-level atom model, the rate in which photons are scattered by the atoms is

given as:

γscatter =
ΓI/Isat

2Γ2 + ΓI/Isat + 4δ2
(3.4)

Where I is the intensity of the light (Determined by the Rabi frequency Ω), δ is the

detuning from atomic resonance and Γ is the spontaneous emission rate. If we drive the

atomic transition as hard as possible, that is, provide a laser beam intense enough to

provide non-stop atomic absorption and emission, we will reach an intensity known as

the saturation intensity, Isat = 2Ω2/Γ2. The saturation intensity technically corresponds

to the intensity of light required to place the two-level atom into an equal superposition

of the ground and excited states, as we are instantly providing the next collision after

any decay event occurs. The scattering rate and photon recoil momentum give the force

imparted to the atoms as:

Fscatter = ~k
ΓI/Isat

2Γ2 + ΓI/Isat + 4δ2
(3.5)

If a very bright incident laser beam illuminates the atomic beam (I >> Isat), the

terms in the numerator and denominator of Equation 3.5 will approach unity such that

the maximum scattering force the atoms feel is simply Fscatter = 1
2~kΓ.
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3.2.2 Zeeman Slowers

One of the first methods to show laser cooling via the scattering force discussed in Section

3.2.1 was the Zeeman slower [1]. The idea is to use the scattering force from a laser to slow

down an atomic beam of atoms by aligning the laser counter-propagating to the atomic

beam.

To see how the scattering force can be used to slow down, or even stop, an atomic

beam, consider the maximal acceleration that can be applied to an atom of mass m via

the scattering force:

amax =
Fmax

m
=

1

2m
~kΓ (3.6)

Simple classical mechanics tells us that to slow down an atomic beam with an average

atomic velocity of vbeam, we require a distance of Lsl = v2
beam/amax to bring the majority

of the atoms to a stand-still.

One problem with using the scattering force to slow down the atoms is the detuning

term in Equation 3.5. Even with a laser tuned to the correct resonance frequency, as the

atoms slow down they experience a Doppler shift that will cause a detuning which in turn

causes the force to drop off quickly. A cute idea was experimentally tested by Bill Phillips

and Harold Metcalf [1] to spatially adjust the Zeeman effect to adjust the resonance of the

atoms as they decelerated, therefore keeping the cooling light and the atoms in resonance

until the atoms were at rest. This was accomplished with what we now call the Zeeman

slower - a tapered solenoidal coil that has a variable magnetic field propagating along the

atomic beam. The Doppler shift of kv is compensated by the field of the solenoidal coil,

keeping the atoms in resonance during the length of the Zeeman slower, hence allowing

the maximum acceleration during the whole flight of the atom.

In the case of a Zeeman slower of length Lsl, the maximal acceleration condition

tells us that the velocity of the atoms will be:

vbeam

√
1− x/Lsl (3.7)

Where x is the distance from the start of the Zeeman slower. The Doppler shift of the
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Bias Coil

Slower Light

Atomic Beam
Atomic 

Source

Zeeman Slower Schematic

Figure 3.5: Schematic of a the RbLi Zeeman Slower. An atomic beam is sent in
a linear path against a counter-propagating circular polarized slowing beam. The
Taper coil provides a magnetic field that shifts the atomic resonance to balance the
Doppler shift. The Bias uniformly shifts the resonance along the slower.

moving atoms needs to be considered however. The frequency of the laser the atoms see is

ωd = ω+ kv, where k is the wavenumber of the laser, positive velocity is defined to be an

atom traveling toward the counter propagated laser source. The Doppler shift of the atoms

emerging from an atomic source is non trivial, for our oven at 120 ◦C (therefore atoms

traveling at r.m.s velocity of 336 m/s), the detuning is a healthy 425 MHz. To compensate

for the Doppler shift during the whole trajectory of the atoms down the Zeeman slower,

the required field profile is:

BSl(x) =
hvbeam

λµB

√
1− x

Lsl
(3.8)

A coil that matches these requirements can be designed using magneto-static computations

(i.e. a lot of Biot-Savart). In our experiment, we have both a taper and bias coil on our

Zeeman slower in the RbLi experiment (Section 4.4.1 for the design and measurements).

The magnetic field profile along both of these coils was optimized numerically for the coil

spacings and currents. The bias coil is a solenoid made from uniformly spaced current

windings, and as such provides a uniform field along the Zeeman slower. This field allows

us to offset the taper field to choose the velocity of atoms at the end of the slower.
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Figure 3.6: Simple model of the optical molasses cooling technique. By red-detuning
the beams, atoms with higher velocities will have a Doppler shift that brings them
into resonance, increasing the optical scattering force.

3.2.3 Optical Molasses

While the slowing technique with the Zeeman slower can cool an atomic beam with a single

velocity direction, the atoms after the slower still will posses velocity (therefore kinetic

energy) in the other two Cartesian directions. To cool down the atoms in all directions,

a set of three counter-propagating beam pairs aligned on each Cartesian axis is used in

what is known as the optical molasses. For an atom with zero velocity, the symmetry of

the system would demand that all of the scattering forces from each of the beams cancel,

imparting no net force. However, for an atom not at rest, the Doppler shift breaks this

symmetry, causing a larger scattering force to occur in the direction that opposes the

motion of the atom. If we set the frequency of the laser beams to be below resonance, one

of the beams will become resonant with the light, causing a scattering force that increases

with the velocity of the atom. In fact, the optical molasses name relates to the fact that

the scattering force increases with the velocity of the atom, like motion through a viscous

fluid.

Mathematically, one a single direct the scattering force imparted onto the atom via

the molasses is the sum of the scattering force in Equation 3.5 for an atom that sees a red
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and blue shifted laser via the doppler shift:

Fmolasses = F−kv − F+kv (3.9)

= Fsc(ω − ω0 − kv)− Fsc(ω − ω0 + kv) (3.10)

Where k is the laser wavenumber (or the recoil momentum of the photon), and v is the

velocity of the atom. When evaluating using Equation 3.5, the force can be cast into the

form F = −αv, a dissipative force with α equal to:

α = 4~k2 I

Isat

−2δ/Γ

(1 + (2δ/Γ)2)2
(3.11)

when the assumption is made that the atoms have slow velocities (such that kv << Γ)

and I << Isat. In order to give a damping force, we require α to be negative, hence the

laser beams need to be red-detuned from the atomic resonance.

3.2.4 The Doppler Cooling Limit and Sub-Doppler Cooling

Although the optical molasses provides a damping force (Equation 3.11), the minimum

possible velocity (and therefore temperature) is determined by the Doppler Cooling Limit.

The optical molasses provides a net damping force to the atoms, however during each

photon scattering event, the atom gains 2 ER of energy.

By assuming a steady state situation where the input energy (heating) from the

photon recoils matches the energy dissipation (cooling) from the optical molasses:

4ERγscatter = Fmol.v (3.12)

By relating the recoil energy to the kinetic energy of the atoms (ER = 1/2m〈v〉2), plug-

ging in the cooling from the molasses, and recalling the equipartition theorem relating

temperature and kinetic energy, we get:

TD =
~Γ

4kB

1 + (2δ/Γ)2

−2δ/Γ
(3.13)
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Simple Polarization Gradient Cooling Model
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Light Shifted 
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Figure 3.7: In polarization gradient cooling, the atom adiabatically transfers to
a higher energy state while traversing along the spatial polarization gradient. The
optical interaction can cause the atom to cycle between the excited and ground states,
where the emitted photon has more energy than the absorbed one.

The minimum of this function occurs when δ = −Γ/2, giving:

TD =
~Γ

2kB
(3.14)

For the Γ = 2π ·6.066 MHz lifetime in 87Rb, this leads to a minimum molasses temperature

of ≈ 150µK. Nice and cold, but not enough to reach condensation.

To get cooler than this, a technique known as Sub-doppler cooling, Polarization

gradient cooling, or Sisyphus cooling, is used to get beyond this limit. This effect was

experimentally discovered [36] as an unexpected result, and was theoretically explained

later [37]. Here I will describe an extremely simple model3 or flavor of the mechanism at

work. In the optical molasses one-dimensional geometry, we have a pair of counter prop-

agating lasers at the same frequency, but with different helicities of circular polarization.

The superposition of these two beams forms an optical lattice type structure, where the

3The title of Reference [37] says ‘simple theoretical models’, however is 10+ pages of math.
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Figure 3.8: Simple spin-0 to spin-1 model of magneto-optical trapping. The mag-
netic field gradient shifts the energy of the atomic spins states in space. Appropriately
circular polarized counter-propagating laser beams have a spin-dependent and spatial
dependent resonance that provides a restoring force to the atoms.

polarization changes in space from left circular → horizontal linear → right circular →

etc. over a period length equal to the laser wavelength. Specifically the polarization has a

rotating field form of ê = cos(kz)ex− sin(ky)ey with k = 2π/λ. In an atom more complex

than a two-level atom model, where the ground and excited states have Zeeman sublevels

with different spin angular momentum, the polarization gradient in space will break the

symmetry between the levels. Along the polarization ‘wave’, the sublevels will have a

spatially oscillating light shift. An atom moving along this direction can adiabatically

transfer from being in the low energy sublevel to the high energy level without changing

spin. The atoms can then absorb a photon and decay into the lower state again, causing

a reduction in energy. This technique can in theory cool atoms down to the recoil limit:

TR ≈ ER/kB.

3.2.5 Magneto-Optical Trapping (MOT)

The Magneto-Optical Trap (MOT) is the workhorse of the atomic physics world. MOTs

are commonly the first stage of laser cooling and trapping in cold atom systems. The

operation of a Sodium MOT was first experimentally shown by Raab, et. al. [3] back in
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1987. The MOT collects the slowed atoms from the exit of the Zeeman slower by providing

both a trapping force and a dissipative force (as an optical molasses) to cool the atoms

further.

The classic example of the MOT mechanism is the case of hypothetical atom with

a spin-0 ground state and a spin-1 excited state with three sub levels (Figure Figure 3.8).

Using a quadrupole magnetic field (Section 3.3), we can generate a spatially dependent

Zeeman shift that grows linearly from the coil’s geometric center. Considering a one-

dimensional geometry for simplicity, we illuminate the atoms with a pair of counter-

propagating beams along ±x̂: one with σ+ and the other with σ− polarization. If the

laser light is detuned below the non-shifted atomic resonance frequency, atoms at x > 0

will absorb more σ− photons than σ+ photons and as such will feel an average force

toward x = 0. By symmetry, an atom at x < 0 will feel a force that similarly pushes the

atom to x = 0. In summary, the magnetic field helps to provide a restoring force that traps

the atoms within the magnetic field. To make a MOT in our experiment, we replicate the

geometry (polarization, magnetic field) along all three Cartesian axes. Similarly although

87Rb is not a simple atom as described in Figure 3.8, we can use the cooling transitions

between the F = 2 to F ′ = 3 states in the same way. Similar to the Zeeman slower, the

MOT also needs to have repumping light as well along all 6 laser beams (see Section 3.2.6)

to keep the atoms within the cooling transitions.

In our 87Rb MOT, we can collect billions of atoms out of the Zeeman slower within

3-7 seconds, and they are cooled to order milliKelvin in temperature, cold enough for other

cooling techniques to be used on the way to condensation. Naturally the larger amount

of atom flux out of the Zeeman slower translates to more atoms in the MOT steady-

state as well. The atom number loaded into the MOT is highly complex, depending on:

the alignment of the six MOT beams, the polarization of the beams, the frequency of

the MOT cooling and repump beams, the atomic oven temperature, the alignment of

the atomic beam axis with the MOT center4, the slower performance (slower currents,

frequencies, and alignment), and the strength of the magnetic field gradient. Needless to

say, getting a MOT can sometimes be a chore.

4The alignment of the MOT to the atomic beam path can adjusted with the bias coils (Section 4.4.3)
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Figure 3.9: Measured MOT loading rates as a function of time. Our MOT captures
order a billion atoms within 3.5 seconds (left). As the temperature of the atomic oven
is increased, the flux of atoms in the slower atomic beam increases, allowing more
atoms to be captured in a steady-state configuration.

3.2.6 Atomic Repumping

In this discussion of light induced forces I described laser cooling processes happening in

an effective two level atom. In most cases we are exciting atoms, in 87Rb we are driving

a transition between the F = 2 to F ′ = 3 state. Unlike simple models, Rubidium is a

multi-level atom with closely-spaced hyperfine energy levels. However a laser of finite line-

width could drive off-resonant transitions to other nearby hyperfine states, which have a

possibility of decaying into the F = 1 ground state. The large splitting in the hyperfine

ground states (6.8 GHz) causes the cooling light to become decoupled from these ‘lost’

atoms. If the cooling procedure is continued, eventually all atoms will be pumped into

the inaccessible F = 1 state. To prevent this a second laser is used simultaneously with

the cooling laser, a repump laser, that is set to drive transitions between the F = 1 to

F ′ = 2 states. This laser repopulates atoms into the laser cooling transitions, allowing

laser cooling to continue.

to move the center of the quadrupole field
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Figure 3.10: Repumping for laser cooling in 87Rb. Because light on the F = 2 to
F ′ = 3 transition can off-resonantly couple to F ′ = 2, atoms can reach the F = 1
ground state and become uncoupled from the cooling process. The repumping scheme
optical pumps these atoms back into the cooling transition

3.3 Magnetic Trapping

Magnetic trapping of cold atomic gases is a common next stage after performing

laser cooling techniques. Magnetic trapping operates via a magnetic dipole interaction

with the atoms. The atom in a magnetic field will experience a shift in energy V = −~µ · ~B

where ~µ is the magnetic moment of the atom. For an atom in a non-zero magnitude

spin state, this will generate a Zeeman shift energy V = gFµBmFB, where gF is the

gyromagnetic ratio, µB is the Bohr magneton and mF is the spin of the atom. It follows

for any potential that there is a force such that ~F = −~∇V , hence the atoms will feel a

force:

~Fmag = −gFµBmF (
∂B

∂x
x̂ +

∂B

∂y
ŷ +

∂B

∂z
ẑ) (3.15)
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Figure 3.11: Quadrupole magnetic field geometry. A pair of anti-Helmholtz coils
(left) generate a cylindrically symmetric magnetic field profile (center), which near
the geometric center has a linear increase in magnitude as a function of position
(right). This linear region allows us to make the magnetic trapping approximations
in Equation 3.19.

Thus to have a restoring force, we need to have a magnetic field that varies in space such

that the atoms experience a restoring force to a central point.

This requirement can be met by using a pair of Helmholtz coils with opposite current

flow directions, the same geometry required for the Magneto-Optical trap. By using a pair

of the anti-Helmholtz or quadrupole coils, we can achieve the restoring force to create a

magnetic trap. For small displacements from the center of the coil geometry, the magnetic

field has the form:

~B = B′(xx̂ + yx̂− 2zẑ) +B0 (3.16)

Where B′ is the strength of the quadrupole magnetic field, and B0 is any spatially uniform

magnetic fields. For a geometry where the coil axis is along the ẑ direction (which is true

in our experiment), the potential energy in the absence of uniform fields becomes:

V (~r) = gFµBmFB
′
√
x2 + y2 − 4z2 (3.17)

If we add a background uniform field with strength B0 along the ẑ direction, we get:



40 3.3. Magnetic Trapping

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80

Im
a
g

e
 C

o
u

n
ts

Hold Time (s)

1/e Decay: 35 s

Figure 3.12: The measured lifetime of atoms in RbLi experiment’s magnetic trap

V (~r) = gFµBmFB
′
√
x2 + y2 − 4(z +

B0

B′
)2 (3.18)

For very near the center of the coil geometry (which is valid for small atomic clouds versus

the 10 cm length scales of the coils), the potential becomes linear in all directions, and

radially symmetric along the coil axis:

V (~r, z) = gFµBmFB
′(r − 2|z − B0

B′
|) (3.19)

It is important to note that for atoms to be trapped we need gFµBmF > 0. For the

87Rb F = 1 states, this results in the mF = −1 state being magnetically trappable, the

mF = 0,+1 states will either feel no force or explode outward respectively. For this reason,

before loading our magnetic trap, we quickly optically pump the atomic cloud into the

mF = −1 state. The magnetic trapping potential is quite robust and only limited by

the quality of the vacuum system we have. In our experiment we see 1/e atom number

lifetimes in our trap of about 35 seconds.

3.3.1 Evaporative Cooling

Evaporative cooling is used to cool atoms down further after the laser-cooling stages of our

experiment. Evaporative cooling works by selectively removing the hottest atoms in the

cloud, which carry away large amounts of energy. This is done by lowering the strength

of the trapping potential in which the atoms are confined. As the trap depth gets lower,
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Figure 3.13: Evaporative cooling in a gas occurs when the potential of the trap
is lowered, allowing the atoms with the most energy to escape. The loss of the
atoms removes energy from the system, and the remaining atoms rethermalize through
collisions to a lower temperature. This process can be repeated to further cool the
sample.

the population of atoms that have a sufficient velocity (and kinetic energy / temperature)

can escape the trap. As these atoms leave the trap, the population of atoms left in the

cloud rethermalize with each other through scattering processes. The result is that the

average temperature of the remaining atomic cloud, by selectively ejecting hot atoms, is

lowered. This process can be extended to continuously and adiabatically (with respect to

rethermalization) lowering the trapping depth until the desired temperature is reached.
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3.3.2 RF Induced Evaporation

In magnetic traps, evaporation is done via a forced RF evaporation scheme. Instead of

lowering the trapping potential and allowing the atoms to escape, an RF field with a large

frequency is applied to the atoms. Due to the Zeeman effect, there exists a distance away

from the trap center such that the atoms are on resonance, specifically where ~ωRF =

µBgFB
′r, where B′ is the strength of the magnetic field gradient of the magnetic trap.

An atom within this region of space will be transfered from the magnetically trappable

to untrappable states, and ejected from the cloud. By beginning the RF at a frequency

far beyond the atomic distribution’s radial extent, and similarly adiabatically lowering

the frequency, the hottest atoms will be ejected, allowing the atomic cloud to undergo

evaporation. In our experiment we typically ramp the RF frequency from 22 MHz down

to 5 MHz in 3 seconds to give us a thermal cloud at ≈ 30µK, cold enough to efficiently

load the atoms into our optical dipole trap.
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Figure 3.14: Top: In RF evaporative cooling in a magnetic trap, the potential is
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RF becomes a function of space, allowing the selective removal of atoms at high
temperatures. Reducing the RF frequency will progressively select cooler and cooler
populations to eject. Bottom: Measured temperature and atom number as a function
of the end point of the RF frequency sweep.

3.4 Optical Trapping

A light-field that illuminates an atomic system can perturb the energy level structure

of the atoms. This effect, known as the a.c. Stark shift or the light shift, is used within
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Figure 3.15: Trapping atoms using an optical field. The red-detuned light creates
an intensity dependent attractive potential. The geometry of the optical trap is
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degenerate gas experiments to confine the atomic clouds or condensates in space without

a magnetic field component [38]. The confinement of condensates in a purely optical trap

is advantageous as this opens up the study of spinor dynamics within the system [39,40],

as with magnetic traps only the magnetically trappable states can be studied.

The origin of the dipole force due to an electric field at an atom can be understood

from the classical ‘electron on a spring’ harmonic oscillator model of the interaction of

light with atoms. Using the assumption that the nucleus acts as a point charge and the

electron is a uniform charge cloud of radius5 R, we can write the internal electron-nucleus

force as:

F = −mω2
0~x (3.20)

Where:

ω2
0 =

e2/mR3

4πε0
(3.21)

5s orbital spherical electron distribution
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Where e is the electron charge, m is the electron mass, and ε is the Electric Constant.

Including a perturbing electric field we get the equation of motion for the displacement of

the electron-nucleus:

d2

dt2
~x + ω2

0~x =
e

m
~E(~r, t) (3.22)

Typically as a fudge factor to account for absorption, scattering and other lossy processes,

a dissipative term is added, yielding the Lorentz Model of the atom:

d2

dt2
~x + 2β

d

dt
~x + ω2

0~x =
e

m
~E(~r, t) (3.23)

Solving this equation using a plane wave oscillating electric field (~E = ~E0e
−iωt) gives the

complex polarizabilty of the atom:

α(ω) =
e2

2mω

(ω0 − ω) + iβ

(ω0 − ω)2 + β2
(3.24)

Where:

~p = α(ω)~E (3.25)

We can calculate the dipole energy using V = −p̂ · ~E. Calculating this horrid expression

and averaging over the oscillation cycles we get:

V =
−e2|E0(~r)|2

4mω

ω0 − ω
(ω0 − ω)2 + β2

(3.26)

Using the relationships between potential energy and forces, we can define the force:

~Fdipole(~r) = −~∇V =
e2∇|E0(~r)|2

4mω

ω0 − ω
(ω0 − ω)2 + β2

(3.27)

If we recast this in terms of a Rabi frequency and take the limit δ = ω0−ω >> β, we can

achieve a substantial dipole force operating on the atoms with minimal absorption effects.

In this limit, we get:

Vlight =
~Ω2

4δ
(3.28)

Where Ω is the Rabi frequency and δ is the detuning from resonance. For a negative
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detuning, this will create a downward shift in energy, causing the state to become more

preferable to an atomic system. Because the shift depends on Ω2, a more intense light

field will create a larger shift in energy. To use this effect to create a trapping potential,

a spatially dependent intensity is used, specifically in the form of a Gaussian laser beam.

A Gaussian beam propagating in the ẑ direction has the intensity profile:

I(x, y, z) =
2P

πw2(z)
exp(

−2(x2 + y2)

w2(z)
) (3.29)

Where P in the power in the beam and w is the waist of the beam (the beam radius

orthogonal to the propagation direction):

w(z) = w0

√
1 +

z2

z2
r

(3.30)

Where w0 is the beam waist (the 1/e radius of the beam at focus) and the Rayleigh

range zr = πw0/λ is the measure of the distance along the beam propagation direction in

which the radius increases to
√

2w0. In the limit for a far detuned laser beam, the energy

shift from the a.c. Stark shift takes the form:

V =
~Γ2I

8δIsat
(3.31)

When the detuning is positive (δ > 0) the presence of the laser beam causes a positive

gain in energy that repels the atoms (sometimes used on purpose to blow holes through

condensates [41]). In the case of negative detuning (δ < 0), the potential becomes attrac-

tive, and the atoms will seek locations of high intensity. For a laser beam with a tight

focus placed by the atoms, they will feel a confining potential at the location of minimum

beam waist (highest intensity).

For a laser beam with a Gaussian profile (Equation 3.31), the trapping potential

can be calculated as:

V =
~Γ2

8δIsat

2P

πw2(z)
exp(

−2(x2 + y2)

w2(z)
) (3.32)

If we approximate the potential as a harmonic oscillator, i.e. take a series expansion, we
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find a potential of the form:

V (x, y, z) =
1

2
m(ωxx

2 + ωyy
2 + ωzz

2) (3.33)

ω2
x =

4V0

mw2
0

ω2
y =

4V0

mw2
0

ω2
z =

2V0

mz2
R

Where V0 is the depth of the trap, and ωi are the characteristic trapping frequencies

in each Cartesian direction. A single laser beam provides a tight radial confinement

potential. The Rayleigh range of the focused beam is typically much larger then the

beam waist therefore the axial confinement will be small by comparison. To provide

tight confinement along both directions, a pair of optical dipole trapping beams can be

used to form what is known as a crossed dipole trap. In this scheme, two trapping

beams are intersected at the atoms (typically at 90 degrees) such that there is tight

confinement along all three axes of the trap. The trapping potential of the two potentials

are superimposed together in space. The geometry of the crossed dipole trap can be

experimentally adjusted by shaping each of the two beams via optical elements, or altering

the ratio of power between the two beams. In our experiment, we have altered the optical

dipole trap geometry to give both quasi one dimensional trapping potentials (Figure 5.3)

and cylindrically symmetric traps (Chapter 7).

3.5 Measurement of Cold Atoms

The most critical portion of any experiment is the measurement. The goal of most ex-

periments is to apply a controlled evolution of the system and measure the effects upon

the atomic ensemble. In order to retrieve the information in the ensemble, we as the

experimenters need a method to probe and measure the state of the system. With ul-
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tracold atomic systems, most measurement techniques involve capturing an image of a

laser beam that has passed through the atoms. The workhorse method of measurement,

absorption imaging, illuminates the condensate with on resonance laser light and images

the beam to extract information via the absorption behavior of the atoms. Other tech-

niques can also be used that focus on the dispersive properties of the atoms, including

phase-contrast imaging [42], which provides a non-destructive imaging method. During

my tenure the RbLi experiment has exclusively used absorption imaging, and as such is

discussed primarily.

3.5.1 Absorption Imaging

Absorption imaging is the standard method of imaging in ultracold atomic experiments.

The measurement process is destructive, as the protocol involves on resonance light that

provides momentum to the atoms. This is a large limitation of the method, however from

a single image we can obtain the density profile of the atoms which allows us to calculate

parameters such as temperature or momentum when combined with time-of-flight imaging.

To describe the processes used in absorption imaging and use it as a measurement

technique, we need to understand the basic processes of atomic absorption. To model the

absorption process, we consider a laser beam with intensity I propagating along ez through

a gas of atoms with density n in a rectangular volume A·∆z. The atoms themselves have an

optical absorption cross section, σ, which characterizes the probability of the absorption

process occurring. The fraction of the light that is absorbed is the volume density n

multiplied by the thickness of the sample ∆z and the effective area of each atom: σn∆z.

The cross section σ is frequency dependent with the functional form of Lorentzian centered

around the atomic resonance. Therefore the rate in which the beam is attenuated as it

propagates through the atomic sample is:

dI

dz
= −nσ(ω)I (3.34)

Which is readily solvable to give the intensity as a function of distance through the atomic

sample:
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Figure 3.16: A sample of atoms with density n is intersected by a beam of cross-
sectional area A for a length ∆z. The absorption of light from the atoms causes an
attenuation in the beam related to n and ∆z given by Beer’s law.

I(ω, z) = I0 exp(−nσ(ω)z) (3.35)

Equation 3.35 is known as Beer’s law [43]. In the context of absorption imaging, we define

the optical depth of the atomic gas OD such that OD = nσ(ω)z. Making this substitution

and rearranging Equation 3.35:

OD = ln(
I

I0
) (3.36)

Description Symbol Value

Saturation Intensity |F=2,mF=±2> 

to |F=3,mF=±3>, σ±
Isat 1.662 mW / cm2

Peak Optical Cross-Section σ0=3λ0
2 / 2π 2.9 x 10-9 cm2

Helpful 87Rb Absorption Imaging Parameters 

Figure 3.17: Parameters used in calculating atom number from absorption imaging.
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This equation is at the heart of absorption imaging. By taking an image of the resonant

light passing through the image, we obtain the information about I(x, y) (the absorption

image, Figure 3.18). By taking a second image of the probe beam with no atoms, we

obtain the initial intensity of light, I0(x, y) (the probe image, Figure 3.18). Because we

do not have some sort of three-dimensional camera, the optical depth OD represents the

integration of the atomic density along the probe beam direction, that is: ODmeas =

σ(ω)
∫ ∆z

0 n(x, y, z) dz. By knowing the value of the optical cross-section σ(ω), we can

directly measure the atom density. To make the numbers easier, we always use circularly

polarized light that we keep on resonance, giving a straight forward calculation of the

cross section (Figure 3.17).

Experimentally, we also take a third shot in each sequence to measure the back-

ground light incident on the camera (the background image, Figure 3.18). For this shot

we disable all of the lasers, allowing only the ambient light to be measured. We subtract

this image from both the absorption and probe images, thus our experimentally measured

optical depth is:

OD = ln(
Iabs − Ibg

Iprobe − Ibg
) (3.37)

For 87Rb we address the |F = 2,mF = ±2〉 to |F ′ = 3,mF = ±3〉 transitions for absorption

imaging. Because we work with the F=1 manifold when doing BEC experiments, we first

use the repump laser to transfer atoms out of the F=1 states to F=2 in a 100 µs pulse,

and then image with the probe beam for approximately 20 µs.

3.5.2 High Intensity Absorption Imaging

In the previous section, the formalism assumed the case where the intensity of light was

much less than the saturation intensity of the atomic transition (I << Isat), leading to

the approximation that most of the atoms in the sample were in the ground state. In the

case of very dense atomic samples (such as BECs), a weak probe beam incident on the

atomic sample may be completely absorbed. In this case, a ratio of the absorption imaging

intensity to the solely probe beam intensity is not sufficient all light is attenuated.



51 3.5. Measurement of Cold Atoms

Absorption Imaging

Probe 

Beam

Atoms

Absorption Image Probe Image Background Image

Camera Images

Figure 3.18: For absorption imaging, three separate images are taken. First, the
atoms are illuminated by the probe beam and the CCD camera detects the shadow
in the beam from the atomic absorption (left, absorption image). Next an image of
the beam without the atoms is taken (center, probe image). Lastly an image of the
background with no light is taken to account for stray light hitting the camera (right,
background image).

The solution at first glance is to increase the amount of power in the probe beam

to the point where the flux of photons through the atomic sample is greater than the

rate in which they can be scattered at peak density. This approach can lead to problems.

First, our Beer’s law approximation that most of the atoms in the ground state fails,

and the different populations of atoms in both the excited and ground states must be

considered. Secondly, with a high intensity probe beam, the CCD camera used for imaging

can saturate. A solution to this problem is to decrease the probe pulse time. Note that
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this time cannot be reduced arbitrarily. There is a lower limit on the system given by

the linewidth of the transition being used for absorption - the atoms have to at least have

time to scatter photons!

To avoid approximations of low power, we need to consider a modified Beer’s law

where atoms can be in either the ground or excited states (see Reference [44] for a won-

derful description):

dI

dz
= −nσ0

α∗
1

1 + I/(Isatα∗)
I = −nσ(I, ω)I (3.38)

Where α is an empirically determined value that accounts for polarization impurities and

corrections to the two-level atom model. Solving this differential equation for the optical

depth yields:

OD(x, y) = σ0

∫
n(x, y, z) dz (3.39)

= −α∗ ln(
Iabs − Ibg

Iprobe − Ibg
) +

Iprobe − Iabs − Ibg

Isat
(3.40)

The result is an extra term that includes a direct subtraction of the probe and absorption

images, instead of just a ratio. This process can introduce noise into the images due to

the linear term, however at large optical depths, such as those in BECs, we can recover

the atom density correctly. Reference [44] describes a calibration procedure for α∗ and

Isat.



Chapter 4

The RbLi Experimental

Apparatus

4.1 The RbLi Apparatus

The RbLi experimental apparatus was constructed to facilitate the laser cooling and trap-

ping of both 87Rb and 6Li (Figure 4.1). The design contains a traditional (tried and true)

Zeeman slower atomic source combined with a magneto-optical cooling and trapping stage.

For the experimental geometry used throughout this chapter, I define x̂ to be along the

Zeeman slower axis, with +x̂ defining the vector from the experimental cell towards the

atomic source. Similarly ŷ is the direction orthogonal to the x̂ direction and +ẑ is the

direction opposite of gravity.

4.1.1 Experimental Layout

The science within the RbLi apparatus takes place within a glass cell under ultra-high

vacuum. To create an atomic source a pair of ovens, loaded with Rubidium and Lithium,

are heated to create an atomic vapor of each element. The hot atomic vapor is collimated

through an aperture and enters the Zeeman slower. The Zeeman slower, using a slowing

53
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RbLi Experimental Apparatus

Glass Cell

Zeeman Slower

Oven

UHV System

Lab Coordinates:

Slower Beam 

Window

Figure 4.1: The RbLi Experimental Apparatus, prior to installation of cooling and
trapping optics. An atomic oven is connected to the experimental glass cell via a
Zeeman slower.

beam and a solenoidal current wrapped around the slower, is able to cool the atomic beam

to within the capture velocity of the MOT at the experimental cell. For the MOT, six

cooling and repump beams, following paths along ±x̂± ŷ and ±ẑ overlap at the center of

the experimental cell. Above and below the experimental cell are a pair of anti-Helmhotz

coils that provide a magnetic field gradient used for creating the MOT, magnetic trapping

and generic magnetic field gradient creation. Figures 4.5 and Figure 4.45 show the XY

and XZ layouts of the system respectively.

On the +ŷ side of the experimental optics is the arrangement for the optical dipole

trapping laser. The dipole provides the trapping potential for confining atoms when at

degeneracy. The dipole beams propagate along the x̂− ŷ and −x̂ + ŷ directions, however

slightly rotated within the xy plane so as to dodge the MOT optics. The entire system is

enclosed by a box of 1/4” black plexiglass. This enclosure helps to keep out stray light,

keep temperatures stable, but most importantly, provide a barrier of safety between the
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lab and the high power laser for optical dipole trapping.

4.1.2 Oven Vacuum System

The RbLi apparatus has a dual species oven chamber design. The Rubidium and Lithium

ovens come into the apparatus in series. As the Rubidium is heated up in the rear chamber,

it flows through narrow and slightly angled nozzle port into the Lithium oven, which also

serves as a mixing chamber for both species.

The Rubidium and Lithium reservoirs and nozzles are wrapped in heater tape. To

generate a large enough vapor pressure to create an atomic beam of Rubidium to load

our MOT, the Rubidium and Lithium ovens need to be heated to 120 ◦C and 160 ◦C

respectively. The nozzles are also heated to prevent buildup from occurring in the narrow

passages. The Rubidium nozzle is heated to 400 ◦C, while the Lithium nozzle is kept at 240

◦C. The Lithium setup is kept warm, but because we are not actively doing experiments

involving Lithium, we keep the oven quite cool compared to the temperature require to

make a Lithium atomic beam (≈350 - 400 ◦C). The entire region of reservoirs and nozzles is

wrapped in aluminum foil to better insulate and spread the heat. Each region is separately

RbLi Dual Species Oven

Rb

Chamber

(120 °C)

Li & Mixing 

Chamber

(160 °C)

Cold Cup

Oven Shutter

Zeeman 

Slower

Oven Valve 

and 

Turbopump

Connection

Cold Cup 

TEC

Rb Nozzle

(400 °C)

Li Nozzle

(160 °C)

Slower 

Beam

Y

X

Figure 4.2: Schematic of dual species oven.
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temperature stabilized by using heater tape, an individual thermocouple, and an Omega

CNI 3233 temperature controller unit to regulate each region. The controllers each drive

an Omega high voltage solid state relay that connects power from an AC power source,

that we controller with variable transformer units, to the heater tape.

Both species then travel out of the heated oven units into a main chamber that

contains a cold cup and an oven shutter. The cold cup is a cylindrical copper unit that

is thermo-electrically cooled, via a copper bar connection to outside of the chamber, to

approximately -30 ◦C. The head depositing side a thermo-electric cooler (TEC) providing

the cooling is connected to a closed loop water chiller unit. The cold cup design helps to

capture excess atomic deposition in the oven chamber instead of damaging our ion pumps.

The portion of the atomic beam that travels past the cold cup traverses the oven

shutter region. The oven shutter is used to block the atomic beam when not loading the

MOT as the atomic beam causes unwanted heating in the later stages of cooling our atomic

clouds. The shutter is constructed from a disassembled hard disk drive actuator arm with

a metallic flag at the end. By sending this device current, via vacuum-friendly kapton

sealed wires connecting to outside of the oven chamber, this makeshift shutter can be

actuated to enable or disable the atomic beam. From the shutter the atomic beam travels

down the Zeeman slower, which acts as both a collimator for the beam and a differential

pumping stage between the oven vacuum chamber and the experimental vacuum chamber.

4.1.3 Experiment Side Vacuum System

The experimental vacuum system consists of the glass cell where we perform our BEC

experiments, as well as Titanium-sublimation (Ti-Sub) pump and ion pump units. At the

end of the apparatus is a vacuum window in which the slower beam is passed down the

x̂ direction of the apparatus, all the way back to the oven. The glass cell is 1.25” wide

square diameter and 8” along the slower (x̂) axis. The cell is made from 1/8” uncoated

Pyrex glass. The cell center is the geometric center of our experiment, and as such all

electromagnetic coils, except the slower units, have their geometry fixed by design with

this point in the enter.
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RbLi Experimental Glass Cell

Experimental Glass Cell In-SituRbLi Oven Chamber

RbLi Atomic Sources

Figure 4.3: RbLi Apparatus vacuum system components when being installed.

4.1.4 RbLi Experimental Cooling Sequence

Our apparatus is designed to rapidly generate 87Rb BECs that are loaded into a crossed

optical dipole trap. As absorption imaging is a destructive measurement technique, we

have to generate a new condensate per measurement. The cycle to take atoms from our

experimental ovens to a trapped condensate is described here in an overview.

First, we heat our Rubidium atomic source to 120 ◦C, creating a collimated atomic

beam that travels down our Zeeman slower. These atoms are slowed and captured into

our MOT. In order to have enough atoms at the condensate, after all losses, we continue

the MOT loading process for 7 seconds. We then turn off the magnetic gradient field

for the MOT, and perform an optical molasses cooling stage for a brief ≈15 ms. Within

milliseconds after the molasses cooling stage, we optically pump the atoms into the |1,−1〉

state, which are magnetically trappable. We then snap on the magnetic trap to capture

the atoms. We then compress the atomic cloud by adiabatically increasing the depth of
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RbLi Experimental Sequence

RF Forced Evaporation
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Figure 4.4: Cooling sequence for the experiment. The process to reach BEC requires
multiple laser cooling and evaporative stages. Images show representative absorption
images at the various stages.

the trap, and then perform an RF forced evaporation stage for 3 seconds to further cool

the cloud.

After the evaporation stage, we relax the trap while simultaneously transferring

atoms into a single optical dipole trap. Here we reduce the strength of the magnetic trap
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such that the combined optical and magnetic trap will still confine the atoms against

gravity. Next we transfer to a crossed optical dipole trap and slowly remove any magnetic

trapping. The transfer to a pure optical dipole trap acts as a preliminary evaporation

stage. To reach condensation, we further relax the optical dipole trap by lowering the

intensity in the beams, causing more evaporative cooling to take place. Once we have a

condensate, we commonly use an adiabatic rapid passage technique to prepare the BEC

in a preferred spin configuration before performing an experiment.

4.1.5 Experiment Side Optical Setups

Slower Optics

The slower optics are at the end of the apparatus, on the far side from the ovens. The

optics are build in a vertical cage mounted structure that reflects into a viewport at the

end of the apparatus, down the glass cell, Zeeman slower and into the oven. The slower

repump and slower cooling light are brought over to the experiment and combined in fiber

optics. Traditionally we have aligned the slower beam by viewing the oven with an infrared

camera, and adjusting the alignment and focusing until we see maximal florescence.

MOT Optics

The experiment has a set of six MOT beams that intersect at right angles at the center

of the glass cell. Both the MOT cooling and repump light are combined in fiber optics

from the laser boards, then multiplexed into 6 separate fiber lines. Each of these fiber lines

terminates at a fiber launch on the experiment side. Each of these launches are identical in

construction. Primarily the units consist of fiber collimation optics, a telescope to enlarge

the MOT beams to approximately one inch in diameter, and a λ/4 waveplate to create

the circular polarization necessary for the MOT. The light from each MOT fiber launch is

reflected via gold mirrors1 and through a two mirror periscope consisting of two elliptical

one inch gold mirrors. The light then crosses the glass cell.

1Gold mirrors help preserve the circular polarization of the beams
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Originally the last gold mirror on the telescope was connected to a flipper mirror

unit, so when the MOT stage was complete, the large mirrors could be rotated out of

the way, allowing more optical access for later experimental stages. However in the early

years of the experiment, these flipper mirrors repeatedly malfunctioned (both slowly and

instantly), ruining our MOT alignment. After the nth time of repairing these units, we

switched the MOT periscopes in plane with the glass cell with static mirror mounts, and

we have had no issues since. However the price we pay is now we have all other optical

beams coming in at non 45 degree angles to dodge the MOT mirrors. Summary to anyone

who reads this: do not use flipper mirrors in new designs.

To align these beams, we used optical cage assembly that could be attached to our

quadrupole coil holders above and below the glass cell. The connection points for the

optomechanics and the coil holders ensured 90 degree intersections. Using cage based

alignment tools, we can, with great effort, get all the MOT beams orthogonal.
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Figure 4.6: RbLi Experiment slower optics and geometry
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Optical Dipole Trap Optics

The optical dipole trap optics intersect the glass cell and atoms at nearly the same x̂± ŷ

trajectory as the MOT beams. However, because of issues with the MOT mirrors and

geometry (see last section), the optical dipole traps beams were rotated slightly in plane

from the more natural hatx± ŷ geometry. The optical dipole beams, unlike other systems,

are not brought to the experiment side via fibers, but in free space optics adjacent to the

main experimental optics (Figure 4.23). The tight and crossing beams originate from

the +ŷ side of the experiment. Both beams have telescope systems to reshape the beam

geometry before a final lens near the glass cell that focuses the dipole beam at the atoms.

Current, and for most of the work we have done, the lens systems produce a 67 µm waist

for the tight beam, and a 300 µm waist for the crossing beam at the atoms.

Because of the intense amount of light involved, the ODT beams after propagating

through the atoms need to be reflected into high power beam dumps to avoid burning

through any nearby objects, wires or surfaces. In the later stages of the experiment (circa

Spring 2015), the Raman beams were overlapped with the ODT beam optical path via

dichroic mirrors, making alignment of both systems more straight forward.

Raman Optics

The Raman beams are used in our synthetic gauge field and spin-orbit coupling experi-

ments. On the experiment side they are ported in from fiber lines into specialized fiber

launches. We use a 7.5mm aspheric lens to collimate the beam, followed by a Glan-Taylor

polarizer as the exact polarization matters with the Raman coupling scheme. The light

then traverses a pickoff into a power detector that is used for intensity stability. The light

then goes through both a λ/4 and λ/2 waveplate to give full polarization control. Lastly

the light is focused down at the atoms with a 1000 mm lens at the end of the launch. All

three beams propagate with the ODT beam lines via dichroic mirrors added to the system.

When setting the polarization, the measurement with the polarimeter is done after the

glass cell itself instead of after the launch, given the polarization distortion effects from

dielectric mirrors.
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Picomotor Mirrors

The Picomotor mirrors from New Focus Optics are computerized stepper mirrors whose

deflection angle can be electronically incremented on the order of mircoradians. Given

the precision down to microns we need to align critical beams, such as the ODT beams or

the Raman beams, this form of alignment vastly reduces alignment time and day-to-day

stability of the system. Currently all of the Raman beam lines have a Picomotor mirror on

the last tunable mirror before the atoms. The crossing ODT beam also has a Picomotor

mirror for ease of alignment. The tight direction ODT beam will be upgraded as well,

however as of writing it currently is aligned well, and we wait for a better opportunity to

switch out the optics.

Vertical Optics

The optics on the upper and lower tiers of the experiment primarily are for the vertical

MOT beams and our XY imaging system. A side on view showing the verical optics

systems is shown in Figure 4.46. To combine the vertical probe path and vertical MOT

beams, we used a pair of flipper mirrors that can rotate out of the way. We shine the

MOT beams on these mirrors, and rotate them out after the MOT stage.

4.1.6 Ultraviolet LEDs and Preventing Lithium Buildup

In the original design of the system, both Rubidium and Lithium were going to be present

within the vacuum system. More importantly, Lithium was going to be heated out of

the oven and shot down the Zeeman slower into the ultra high vacuum region of the

apparatus. Lithium is problematic in a vacuum system as it can be absorbed into glass,

reducing (or blocking) the transmission of laser light. The thesis from Claudiu Stan at

MIT (reference [45], section 2.2.4) covers the woes of Lithium quite well. The end solution

to avoid absorption of Lithium was to heat the windows to prevent the Lithium from

sticking onto the windows.

Given our apparatus design, we decided to forgo a heated window system and instead

were going to use an array of UV light sources to prevent the Lithium from sticking. The

mechanism, light-induced atomic desorption, is related to the physics of the photoelectric
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effect. An incoming photon can be absorbed by an atom on a surface, gaining the kinetic

energy to eject from the surface. This method has been used previously to increase vapor

pressures enough to load MOTs from background atoms [46].

The design I made uses a set of 3W UV LED spotlight units from Mightex. Two of

these units are placed at the end of the apparatus, aimed at the vacuum window where

the slower beam enters. Another unit is placed by the glass cell, and another placed to

illuminate the oven window. These units can be toggled on and off with a digital TTL

signal (DO2-12) so the LEDs can be turned on in between cycles, or overnight2. Although

we do not plan to run Lithium in the near future, the LEDs can also prevent any Rubidium

from depositing within the vacuum system as well.

4.2 Computer Control Systems

For modern ultracold atomic physics experiments, precise timing and control of

experimental parameters is of extreme importance. In order to go from a hot jet of

thermal atoms out of an oven to a nanokelvin cooled BEC, there are many parameters

in the systems, such as laser frequencies and intensities, currents in electromagnetic coils,

and radio frequency fields that are parameterized at exactly the right moment (down

to microseconds precision) in order to effectively capture and cool the atoms down to

degeneracy. In order to coordinate the myriad of electronic components and instruments

through out the lab that are required to reach our experimental goals, we use a computer

control system that marshals all of the other instruments via analog and digital signaling.

Our lab utilizes two separate computers in order to control and monitor the experiment,

the ‘Control’ and ‘Imaging’ computers.

4.2.1 Control System

The control computer is tasked with sending the correct signals to all of the various instru-

ments throughout the experiment. The control computer utilizes National Instrument’s

2a practice that should be enforced more



65 4.2. Computer Control Systems

Digital Lines / Devices

Sequence Flow

Columns: Individual Channels (Analog 

Values)

Figure 4.7: Computer control program example. Rows in the program represent
steps within the cycle, and columns represent digital 5V signal toggling or analog
voltages sent to laboratory equipment.

LabView software and the ‘SetList’ custom code widely used (in one version or another)

throughout the JQI ultracold atom physics groups. This code is the front end for the

user/experimentalist to input the sequence of commands that can be then translated as

signals sent to various instruments in the lab.

The software acts as very large linear state machine that increments in steps through

a predefined cycle that is programmed by the user. At each stage, each variable (whether it

be a signal that sets a certain amount of current in a coil to produce a given magnetic field,

or the frequency of an AOM) is updated as output by the system. To translate the com-

puter commands to electronic signals that the experimental hardware can interface with,

we have deployed 6 National Instruments USB-6229 Analog-Digital conversion adapters.

These devices are tasked with three purposes. First, outputting both digital TTL signals

used for precise timing of state toggling of devices, like optical shutters, flipping mirrors or

RF switches. Second, the USB-6229 devices output analog signals to control experimental

equipment such as electromagnetic current control or laser beam intensity, both variable

and continuous values. The analog output channels allow us to command voltages of
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Device 1 Device 2 Device 3 Device 4 Device 5 Device 6

AO_0 Quadrupole Current MOT Cooling AOM X Bias Current RF Mixer (Amplitude) Raman 2 (A) Intensity XY Gradient Shim

AO_1 Slower Current MOT Repump AOM Y Bias Current ODT Power AOM Raman 3 (B) Intensity YX Gradient Shim

AO_2 Quad Fine Slower Cooling AOM Z Bias Current ODT Cross AOM Raman 1 (C) Intensity Z Gradient Shim

AO_3 Slower Biasing Probe AOM Fine Current Raman 4 (D) 

Intensity
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DO_8 XZ Probe Shutter
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DO_10 Probe AOM

DO_11 Master Laser Shutter

DO_12 UV LEDs
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DO_14 Flipper Mirror 
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DO_15 XY Camera Trigger RF Coil, Chan. 1

Figure 4.8: Mapping of the analog and digital signals from the computer control
software to the laboratory equipment.

±10 V to the various instruments in the lab with approximately 2.5 µs updates. Lastly,

these devices also allow for data acquisition on analog to digital lines which we have used

to record analog waveforms within the experiment. The NI devices are also electrically

isolated from the control computers via fiber optic USB extenders and hubs. The goal

of this setup was to effectively isolate the ground on each device and prevent electrical

ground loops (which act as antennas and pick up noise on a wire) from being formed on

our signal lines.
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Figure 4.9: Mapping of other devices in the lab from the computer control software.

The NI devices we use cannot drive large electrical loads on the analog outputs, such

as 50 ohm terminated inputs found in many instruments using BNC cabling. In many

cases, these signals are fed through a buffering circuit based around the Texas Instruments

BUF-634P amplifier IC. This IC has a high response bandwidth (≈30 MHz) and is able

to drive large amounts of current with wide voltage rails, much more than the NI devices

themselves can provide.

Our experiment also deploys a set of three Novatech 409B direct-digital synthesizer

(DDS) modules to generate frequency precise RF waveforms. These devices provide stable
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frequency sources used in our RF coil when addressing atomic samples and for AOMs used

in the lab. The frequency accuracy and stability of these devices, order Hz out of MHz

as measured against a Rubidium atomic clock, allows for a high degree of control when

targeting atomic resonances within our system.

In order to properly time all these state/signal updates, at the core of the experiment

lies a Spin Core PulseBlaster USB TTL pulse generator, a programmable digital pulse

generator. This device is programmed to send out update pulses to all other sequenced

devices to synchronize all cycle steps between devices. The computer staging software

downloads a series of pulses on this device that correspond to when various devices in

the lab need to update an output signal. To do so, the PulseBlaster device sends a TTL

trigger signal to NI-6229 AO/AI devices or Novatech 409B devices signaling to output the

next value in the sequence on each channel. In the end, these devices translate the bulk

of information between the experimental staging on the computer and the instruments

required to do the experiment. Any other information is either hand coded, in the case of

programmable stepper mirrors, or through grad student coding (i.e. turning a knob).

To prevent ground loops across the lab, we electrically isolate the computer systems

from the devices in the lab. We use a set of USB to optical fiber adapters to break ground

between the computers and the rack mounted equipment. At the equipment side, the

optical fiber terminates into a USB hub unit, allowing us to connect instrumentation to

the USB bus remotely. Recently we have also begun deploying devices, such as cameras,

over Gigabit Ethernet connections, as the connection are transformer isolated.

4.2.2 Acquisition System

The data acquisition computer is used within the experiment to collect images from the

CCD cameras within the experiment and to record any analog signals captured during

a run of the experiment (the CCD camera systems we use are further described in Sec-

tion 4.5). The cameras are connected to the imaging computer via an optically isolated

FireWire connection or via a Gigabit Ethernet connection. This computer similarly uses

LabView code to communicate with the control computer and the CCD cameras so that it

captures and downloads the images at the correct time wthin the experimental cycle. The
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acquisition computer, after capturing the images, saves the images in a RAW format to

the hard disk for later analysis, and/or passes the RAW info to our custom image analysis

written the Wavemetrics Igor data analysis program. The custom program provides, in

real time after each shot, the calculation of the optical depth from each image, and along

with the calibration of OD and magnification, uses the calculations from Chapter 2 and 3

to determine the various parameters of the atomic cloud in real time, such as: the atom

number, temperature, optical depth, and relative position.

4.3 Laser Systems

We have a few main laser systems in the RbLi experiment. For laser cooling, we have sep-

arate cooling and repump lasers that are ≈ 6.8 GHz apart in frequency. To frequency

stabilize these lasers, we have a separate master laser and saturated absorption spec-

troscopy setup that provides a reference to the other Rubidium laser cooling lasers. For

creating an optical dipole trap for the condensate, we have a high power (30W) 1064

nm fiber laser. We also have a laser system to create optical Raman coupling in our

experiment, as well as a lithium laser cooling setup.

All of the laser systems in the RbLi experiment (with the exception of the high power

optical dipole trap laser) are on separate optical tables from the main experiment. All light

is ported over in polarization maintaining fibers to the experimental optics. This design

allows for independence between the alignment of the laser boards and the alignment of

the experiment side optics. Each laser is also kept on its own optical breadboard, allowing

the laser unit to be transported easily if needed.

4.3.1 Rubidium Laser Cooling Scheme

For laser cooling and trapping Rubidium, we used three separate laser systems: one to

address the F = 2 to F ′ = 3 cooling transitions; one to repump atoms from the F = 1

ground state; and one that provides a reference frequency lock to a saturated absorption

spectroscopy cell. We conveniently name these laser systems the cooling, repump, and



70 4.3. Laser Systems

5s 2S3/2

5p 2P3/2

2563

4271.67

193.74

72.91

229.85

302.07

266.65

156.94

72.21

6834.68

780.2414 nm

384230484 MHz

Cooling Repump

5s 2S3/2

5p 2P3/2

1264.88

1770.84

100.20

20.43

80.83

113.20

120.64

63.401

29.37

3035.73

780.2412 nm

384230406 MHz

Master 

lock

All units in MHz

unless stated

Rubidium Laser Cooling Frequency Scheme

87Rb85Rb

F = 4

F = 3

F = 2

F = 1

F = 3

F = 2

F = 2

F = 1

F = 3

F = 2

F = 1

F = 0

Figure 4.10: The hyperfine structure of Rubidium. Colored lines indicated the set
frequencies of the cooling lasers.

master lasers respectively.

In the RbLi experiment, both the cooling and repump lasers for Rubidium are

beat-note locked to the master laser which itself is frequency stabilized, via saturation
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absorption spectroscopy, to the F = 3 to F ′ = 3 and F = 3 to F ′ = 4 cross over transition

in the P3/2 state of 85Rb. Light from the master laser, cooling laser and repump laser

is injected into optical fibers and combined in a Font Canada 4x4 fiber combiner and

multiplexer. One port of the fiber multiplexer is tapped off to a EOT GaAs ET-4000AF

high speed amplified photodiode. The photodiode has a frequency bandwidth up to 9 GHz,

thus is able to resolve a range of frequencies spanning between the 87Rb F = 1 to F = 2

6.8 GHz hyperfine splitting. All three frequencies combined onto the single photodiode

creates multiple beat frequencies at the differences between the three lasers.

To use this to beat-note lock the lasers, we high pass filter the photodiode signal

to get a beat note between the master laser and repump. Similarly we low pass filter the

photodiode signal to get the beat note between the master and cooling laser. To generate
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an error signal for both the repump and cooling lasers, we use a PLL device to first

frequency divide the beat-note signal from microwave frequencies to RF frequencies, then

we use a frequency comparator that compares the frequency between the particular beat

note signal and a DDS generated target frequency. The frequency comparator outputs a

positive 5 Volt signal when the laser frequency is too high, and 0 Volts when the frequency

is too low. This signal, while not perfectly continuous, is used as an error signal fed into

a PID controller.

Both the cooling laser and repump laser use the PLL generated error signal to

frequency lock via a Precision Photonics LB1005 PI controller (Figure 4.13). We use the

error offset feature on the PI controllers to set the error signal to +2.5 Volt signal when the

laser frequency is too high, and -2.5 Volts when the frequency is too low. The controller

outputs a correction signal to feed back to the frequency of the laser. We take it and both

high pass and low pass the signal into two signals. The low frequency signal is connected to

the laser cavity piezo, which has a response time on the order of kHz. The high frequency

signal is used to modulate the laser diode current. This modulation is connected to the

DC current port on the DL Pro laser unit. For optimal performance, it is important to
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Figure 4.13: Frequency locking electronics configuration for the Cooling and Re-
pump lasers

tune the PI controller gain and frequency cutoff, as well as the current feed forward gain

on the piezo command (see Toptica Dl Pro manual) to extend the mode-hop free range of

the laser.

4.3.2 Rubidium Master Laser

The Rubidium master laser system for the RbLi experiment was built to provide a stable

frequency reference for the other laser cooling systems. The system consists of a New

Focus Vortex II TLB-6900 extended cavity diode laser used for frequency locking via

a saturated spectroscopy setup. The light from the master laser is passed through a

pick-off plate to generate the pump and probe beams. The pump beam is then passed

through a λ/2 waveplate and a polarizing beam cube, with the waveplate to control

the ratio of light that is reflected or passed through the cube. The light that is passed

through the cube is fiber coupled into the beat note locking system. Light that is reflected

through the cube is passed through an AOM at 82 MHz and λ/4 waveplate, then is

retro-reflected. The modified pump beam is then passed counter-propagating with the

probe beam through a Rubidium vapor cell that has been magnetically shielded. The two

beams have a frequency difference of twice that of the AOM drive, which addresses atoms

moving at a specific velocity, via the Doppler shift. The probe beam is then passed onto

a photodiode, which measures the absorption of the light by the Rubidium atoms, giving
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our frequency reference.

To lock the frequency of the master laser, we use an FPGA based lock-in amplifier

and PID controller combination (For hardware description of the FPGA LockBox, see

Appendix ??). The FPGA system generates a ≈ 100 kHz, 2Vpk−pk sine wave that is

coupled into the frequency modulation port of the AOM driver. The small oscillations

in frequency cause an amplitude modulation, at the same ≈ 100 kHz frequency, in the

absorption / probe signal.

The absorption signal from the home-built amplified photodiode is sent into the

FPGA based lock-in amplifier. The lock-in amplifier digitally multiplies the reference



75 4.3. Laser Systems

signal versus the photodiode signal to extract the amplitude and phase of the signal at the

modulation frequency. The amplitude of the signal is a measure of the slope / derivative of

the absorption spectrum at a given center frequency (Figure 4.15). The phase of the signal

extracted by the lock-in amplifier reports if the absorption modulation signal is in phase

(indicating a positive derivative) or out of phase (a negative derivative). By modulating

the signal while scanning the center frequency across an atomic absorption feature, the

lock-in amplifier will generate a derivative signal with a zero crossing at the zero-velocity

atomic absorption frequency. This zero crossing provides the error signal measurement for

the PID controller. By engaging the PID controller, the system will stabilize around the

absorption feature center. By knowing which absorption feature we have locked the laser

to (in our case we lock to the F = 3 to F ′ = 3 and F = 3 to F ′ = 4 cross over transition

in the P3/2 state of 85Rb), we produce an absolute frequency measurement and source to

which we can lock other lasers to via a beat-note scheme.
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Figure 4.15: Frequency modulation of the absorption signal and the resulting mod-
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4.3.3 Rubidium Cooling Laser

The Rubidium Cooling Laser system is primarily designed to provide laser light for the

F = 2 to F ′ = 3 cooling transitions in both the MOT and slower stages. This system also

provides the resonant light used in the absorption imaging of our atoms. The system is

based on light from a Toptica DL Pro extended cavity laser system, with a laser diode

chosen to operate near 780 nm. The light from the laser is, right after exiting the laser

unit, split into two beams. The first beam goes to both the fiber coupler used for the

beat-note lock, and is also split into a pair of probe beams for the XY and XZ absorption

imaging systems.
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Figure 4.17: Rubidium Cooling laser optical setup
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The rest of the light from the laser is sent into a Toptica BoosTA tapered amplifier

giving approximately 650 mW of power, out of the specified 1 W. The light out of the

tapered amplifier is broken off into subsections of double passed AOMs for the the MOT

and slower cooling light. Both of these systems used the double passed AOM configuration

to allow frequency and intensity control of the MOT and slower cooling light. Both beams

are then injected into optical fibers, where they are combined with the repump light and

multiplexed on the experiment side. The cooling board also has a transverse cooling unit

that uses light from the zeroth order of the slower cooling AOM to provide transverse

cooling on the experiment side. We rarely use this line for transverse cooling, but more

often as a fiber coupled light source for diagnostics elsewhere. Figure 4.17 shows the

cooling board setup in finer detail. Settings for the Cooling laser are in Figure 4.18

Rubidium Laser System Properties

Setting Value

Cooling Laser Current 96 mA

Cooling Laser Temperature 21.9 °C

Cooling Laser Piezo 350 - Knob

BoosTA Current 1600 mA

BoosTA Output Power ~ 650 mW

Repump Laser Current 202 mA

Repump Laser Temperature 20.4 °C

Repump Laser Piezo 250 - Knob

Master Laser Current 84.6 mA

Master Laser Piezo 74 V

Figure 4.18: Parameters for the various Rubidium cooling lasers
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4.3.4 Rubidium Repump Laser

The Rubidium Repump laser is designed to provide laser light to repump atoms back into

the cooling transitions for the MOT and slower stages of the experiment. The system uses

a Toptica DL Pro 100 extended cavity laser system, with a laser diode chosen to operate

near 780 nm, similar to the cooling laser. This system does not have a tapered amplifier

as the diode itself generates approximately 100 mW of laser light. We pass this light

through a 3:1 telescope to improve our efficiency when aligning through AOMs and fiber

injecting the light. This light is picked off via polarizing beam cubes and λ/2 waveplates

into a MOT repump unit, a slower repump unit, and the remaining light is fiber coupled

into the beat note lock system. The Slower repump light is put through a double passed

AOM at 40 MHz, and we counter-propagate the +1 order. Similarly the MOT repump

unit uses a double-passed 80 MHz AOM where we counter-propagate the -1 order of the

AOM. Settings for the Repump laser are in Figure 4.18
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Rubidium Repump Laser and Optics
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Figure 4.19: Rubidium Repump laser optical setup
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4.3.5 Lithium Saturated Absorption Spectroscopy

Before Rubidium and Lithium mixtures were abandoned, I had spent a fair amount of

time designing and assembling the Lithium saturated absorption spectroscopy oven and

optics. Given the Lithium oven and optics sit cleanly on an optical breadboard, and the

Lithium light used to lock is fiber coupled in, this board as a unit is complete and can

be easily integrated into any future Lithium experiments by picking it up and moving it.

That said, the following is a description of the Lithium oven, the optical setup and the

absorption properties.

Viewport

Viewport

Li 

Containment

Figure 4.20: Top: Lithium saturated absorption spectroscopy cell during construc-
tion. Bottom: The Lithium cell in the optical setup, with heat insulation materials
applied.
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Figure 4.21: Lithium saturated absorption spectroscopy optical setup

Due to the poor vapor pressure of Lithium, it needs to be heated up to a range of

350− 400 ◦C to produce an optically thick vapor so that absorption can be measured. To

create these conditions, I built a stainless steel cell to house the Lithium sample when

heated3. The design of the cell is straightforward: There are two view ports that provide

a laser path towards an internal steel bucket housing the Lithium (Figure 4.20). Because

Lithium wants to oxidize, the cell is pumped down to vacuum, and the view ports are

a large distance away from the Lithium housing to help prevent any ‘caking on’ of the

Lithium. To further protect the view ports from being contaminated with Lithium, I back

flowed the chamber with Argon gas to a pressure of approximately 10 mTorr. To heat the

cell, I wrapped the entire unit with heating tape in two specific sections: one to heat the

cell (and Lithium atoms) up, and another to heat the view ports, to prevent Lithium from

3The cell design credit goes to Subhadeep De and Ian Spielman
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Figure 4.22: Measured absorption signal from the 6Li D1 transition using the
Lithium cell

sticking onto the windows. The entire unit was then wrapped, excessively, with aluminum

foil to insulate the heat within the cell and to prevent large amounts of heat from reaching

the nearby optics.

The saturated spectroscopy optical setup is very similar to that for Rubidium: in

general a pump and probe beam are sent counter-propagating through the Lithium vapor

and a photodiode captures the absorption signal (Figure 4.21). In this setup, the light from

the (now defunct) Lithium laser system is fiber coupled onto the board. This light proceeds

through a simple beam splitter to create the pump and probe beams. A λ/2 waveplate

before the beam splitter helps to adjust the ratio of power between the two beams. The

pump is double passed through an 80 MHz AOM, then retro-reflected against the probe

beam in the Lithium vapor cell. The probe is aligned onto a photodiode to measure the

absorption.

In this setup, I used isotropically enriched 6Li in the vapor cell, as this is also

what is loaded into the main apparatus. With the saturated absorption optics in place,

we measured the absorption signal from the atoms at the 6Li D1 line and were able to

measure the 228 MHz hyperfine splitting in the ground state of Lithium. This setup was

also used to determine the amount of Argon buffer gas to place in the cell. I allowed the

Argon to flow until I begun to measure pressure broadening of the hyperfine states (Figure

4.22). I found that the best temperature for the cell was at about 380 ◦C as it gave the
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best contrast in the absorption features before saturating.

4.3.6 Optical Dipole Trap Laser

Our optical dipole trapping laser system uses a 30 W IPG Photonics 1064 nm fiber laser.

While the unit can provide 30 W we only set the laser to 11 W normally, with the extra

trapping power initially planned for including Lithium into the design. The light from the

laser head is highly Gaussian, making optical systems more manageable. The light from

the laser is passed through a 4:1 telescope, decreasing the beam waist to 0.5 millimeters.

The light then passes through a 80 MHz AOM used to control the intensity of the beam.

The zeroth order of the beam is deflected into a beam dump. The first order out of the

AOM is propagated further to a pickoff, where a small sample of light is targeted onto an

InGaAs photodiode unit. We previously used a common Si photodiode for this purpose,

but we begun having large intensity stabilization issues owing to the Si photodiode having
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Figure 4.23: Optical dipole trap fiber laser optical setup.
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both poor response at 1064 nm and temperature drifts as well. With a more stable

detection system, we use this signal with a PID controller to feed back to the amplitude of

the power AOM RF signal, hence controlling the laser intensity. This intensity controlled

beam is passed through a second AOM, which generates two separate beams for our

crossed optical dipole trap: a tight primary beam (1st order), and the crossing beam (0th

order). These beams are reflected towards the experimental optics setup in Figure 4.5.

A shutter that has a mirror attached to it is placed in line with both beams. When the

shutter is powered down (its default state), the two trapping beams are deflected into

a beam dump. This setup was originally fiber coupled to the experiment like all other

laser systems, however after burning out multiple fibers on accident, we decided to put

this laser on the experimental optics table. Post-fibers exploding, we have purchased new

fibers with high power connectors and internal design. We have not implemented this

because: 1) If it ain’t broke don’t fix it 2) The lab will move soon anyway, let us do it

then.

4.3.7 Raman Coupling Laser System

The Raman laser system is used within our research to generate synthetic gauge fields and

spin-orbit coupling in our condensates. This laser system provides the means to do the

experiments in both Chapters ?? and 8. The diagram in Figure ?? shows the setup for our

Raman laser system. The alignment of these beams into the atoms at the experimental

apparatus is depicted in Figure 4.5.

To get large amounts of power, this system uses a pair of tapered amplifiers, with

a 1 W capability each. Originally the seed beam from the DL Pro was passed through a

50/50 beam splitter into both amplifiers. However, the mode out of the DL Pro was not

coupling well with the TA chips. The solution was to inject light into the TAs in serial,

one TA seeding a second. In between the two TAs we placed an optical fiber connection.

On the output port of the fiber, the mode is very Gaussian, allowing for great coupling to

the second TA.

Because we use one tapered amplifier to seed another, there is the obvious failure

mode of too much power being passed from the first to the second, causing a broken second
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amplifier. To prevent this, we have placed a power monitor at the output of the fiber from

the first TA to the second. This value is monitored by an interlock system implemented

on a microcontroller. If it detects too little power (the TA chips need minimum power),

or too much power, it will send an interlock signal to both of the TA power supplies.

When initially using this system, we found that the amplified spontaneous emission

(ASE) light from the TAs was large enough in intensity that it heated up our BECs. To

solve this we put a Semrock laser line filter after the amplifiers, and adjust their incident

angle with the laser beam until we maximize power.
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Figure 4.24: Raman laser system optical setup.
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Figure 4.25: Custom tapered amplifiers constructed for the Raman laser system.
A TA chip is mounted into a custom machined piece of copper which is thermally
regulated.

The tapered amplifiers are designed and constructed in house. The design uses a

small TA chip (which we have gotten from both vendors Eagle Yard and M2) that is

mounted into a custom milled copper plate to house it. The copper plate is thermo-

electrically cooled to regulate the temperature of the TA chip. Light being injected into

the TA passes through a short focal length lens mounted in a full XYZ translator so that

the alignment can be fine adjusted. On the output of the TA there is a cylindrical lens

to account for the asymmetric divergences of the elliptical beam. The entire system is

mounted into a ThorLabs optics cage assembly in order to put the optics on axis with one

another.

To generate the double frequency beam in our spin-1 spin orbit coupling experiment
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(Chapter 7), the light on the Raman 3 beam line can be diverted, by a λ/2 and polarizing

beam cube combination, to a path that combines with the Raman 2 beam line via polar-

ization optics. In this scheme, the Raman 2 and 3 beams are combined on a beam cube

with orthogonal polarizations. Another polarizing beam cube then acts as a polarizer,

combining the two frequencies, but rejecting half the power. We originally generated the

two Raman frequencies on a single AOM via combing two RF signals prior to the AOM,

however there were unwanted higher harmonics and beat tones that introduced noise and

heating into our Raman experiments and measurements. We forwent this method, and

went with what we knew had no noise issues.

All of the AOMs on this board are controlled via RF electronics that we designed

and built, versus the commercial drivers on the laser cooling systems. The schematic of

the system for each AOM is effectively the same as our RF antenna for interacting with

the atoms (Figure 4.37), except the AOMs only require a 2 W amplifier. In this method,

we use a Novatech 409B to precisely set the frequencies of the Raman AOMs. This

digital precision of the frequencies is what allowed us to perform the first-order transition

measurements down to Hertz in width in our spin-1 experiment (Chapter 7).

Power Calibrations

To calibrate the power of the Raman coupling, we first find RF resonance in the system

via an RF field and a biasing magnetic field. Next we pulse on the Raman beams (with

frequency difference equal to that of the RF frequency) for a variable amount of time

(typically order tens of microseconds) and measure the population fraction. By measuring

the fraction in the f = 1 state as a function of time, it becomes straight forward to use

the governing physics in Equation 6.9 to extract the coupling strength ΩR.

By doing this measurement while recording the Raman beam intensity at the ex-

periment side via photodiodes (Figure 4.5) we can calibrate the power in the beams to

the photodiode signal and to the Raman coupling strength. Given a daily calibration of

the photodiode measurement to the coupling strength measured from the pulsing data,

we can use the photodiode signals to measure the shot-to-shot coupling strength in the

Raman beams. This calibration and photodiode measurement is also used to implement



92 4.3. Laser Systems

Pulse Time ( µS)
0 10 20 30 40 50 60 70 80 90

Fr
a
c.

 P
o

p
.

0

0.2

0.4

0.6

0.8

1

M
f
 Populations

m
f
 = -1 m

f
 = 0 m

f
 = +1

Figure 4.26: Measuring the oscillation of spin population after pulsing on the Raman
coupling. The form of the oscillations can be fit to the Raman Hamiltonian (Section
6.1.3) to give a calibration of the coupling strength.

intensity control via FPGA based PI controllers (see Appendix B). While in most cases

the photodiode signal is constant during calibration, for experiments where we have two

frequencies on a single beam (Chapter 7) the beat tone of the two frequencies arrives at

the photodiode. To measure the coupling strength, we measure the amplitude of the beat

signal, and divide the amplitude by 2 (as the photodiode records intensity, not the electric

field!).

4.3.8 Laser Wavemeters

To monitor the output of the Rubidium cooling lasers (the Cooling, Repump and Master

lasers), we use both a wavelength meter to measure the absolute wavelength of each laser,

as well as the mode profile of the beams. To do this, we inject light from each system

into fiber, then combine and multiplex it out to a fiber coupled Bristol 521 wavemeter,

and a Thorlabs SA200 Fabry-Perot interferometer (an optical cavity). The wavelength

meter allows us to tune each of the laser wavelengths coarsely to the desired value used for

locking. The wavemeter is traditionally used when the laser parameters have drifted such

that the locking region of the respective laser is no longer evident. Because the wavemeter

receives all three wavelengths of light over fiber, we have to block off4 all lasers except the

one of interest so as to get a reliable wavelength measurement.

Similarly, we use the optical cavity to monitor the mode of each laser. For laser

4i.e. card in front of the fiber launches
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Figure 4.27: Light from the Cooling, Repump, and Master laser setups are fiber
coupled into a fiber multiplexer, which provides light for wavelength measurement at
the wavemeter, and observation of laser mode at the interferometer.
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Figure 4.28: Schematic of the 19” rack mounted laser profiler.

cooling purposes, we require each laser to be operating in a single mode configuration,

which appears on the optical cavity output signal as a single peak. By comparison, if
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the laser is in a parameter regime that produces multi-mode behavior, the wavemeter will

show a forest of peaks representing all of the lasing frequencies present. Similar to the

wavemeter, to identify a single laser signal, the two other laser inputs must be blocked

off. In most operating conditions, the observation of three peaks, corresponding to three

single-mode lasers, represents correct system operation.

For the Raman and other laser systems, I built a wavemeter setup similar to that

used for the cooling setup, however I designed it to be both rack mounted and independent

of target wavelength5. To save space and make the system effectively act as a ‘black box’

that profiles the lasers, I built the optical cavity optics into a Thorlabs RBX32 rack

mounted slide out optical breadboard. The front panels of the box has a set of four fiber

inputs that are multiplexed in fiber into both the cavity and the wavemeter. This unit

provided the space inside to place the multimode fiber multiplexer units, the free space

optical cavity optics and the Bristol 521 wavemeter in a single package, freeing up space

on the optical tables.

4.4 Magnetic Field Control

Magnetic fields generated from electromagnetic coils are an important tool within

the RbLi experiment. Because 87Rb has a non zero hyperfine spin ground state (specifically

F = 1), magnetic fields break the degeneracy of the spin states of the atoms via the linear

Zeeman effect. Therefore magnetic fields are instrumental in the control of the spin degree

of freedom for laser cooling or quantum manipulation of a BEC.

4.4.1 Zeeman Slower

The Zeeman slower in our experiment connects the oven region of the apparatus to the

experimental glass cell. The slower is a 0.71 meter long stainless steel tube that the atomic

beam travels down with two coils wrapped around it: a taper coil and the biasing coil.

Both coils are made from copper tubing, allowing internal water flow to help dissipate the

5The plan was to hook up any 1064 nm lasers or unknown future lasers as well
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Figure 4.29: Top: Schematic of the Zeeman slower, including the uniformly spaced
Bias coils and the Doppler compensating Taper coil. Bottom: Measured and calcu-
lated field profiles of the Bias and Taper coils along the slower axis.

large amount of heat generate from ohmic losses.

The taper coil is a solenoidal electromagnet with variable coil spacing, giving a non-

uniform field profile that varies along the slower length. The spacing of the coils is designed

to counteract the decreasing Doppler shift of the slowed atoms, thereby keeping the slower

laser beam on resonance for maximum slowing efficiency. In our loading procedures, this

coil runs at approximately 135 A yielding a maximum field of 240 G at the oven side of

the slower.

The bias coil is similarly a solenoidal electromagnet with uniform windings, giving a

uniform field profile down the entire slower. The uniform field is used to shift the resonance

of the atoms across the entirety of the slower. In our MOT loading procedures, this coil
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Figure 4.30: Characterization of the Zeeman slower. We measure the velocity of
the atoms as a function of atomic resonance and see a large profile of slowed atoms
after the slower compared to background.

runs at approximately 20 A, yielding a 54 G field uniformly down the slower.

The slowing laser beam is counter propagated against the atomic beam. Both the

slower light from the cooling and repump laser systems are combined in an optical fiber

combiner before being aligned into the slower. The laser light is passed through a λ/4

waveplate in order to create the circular polarization for the slower operation.

Measuring Atomic Velocities

To measure the performance for MOT loading, we used a probe beam to measure the

velocity profile of the slowed atoms. Because the linewidth of the atomic transition is small

compared to the Doppler broaden width of the thermal atoms, measuring the frequency

dependent absorption is proxy for measuring the velocity itself. For 87Rb, this gives

approximately 1.28 MHz/m/s. By passing a probe beam through the atoms and measuring

the absorption as a function of frequency, we reclaim the velocity profile (Figure 4.30).

To measure both the longitudinal and transverse velocities, we intersected the probe and

atomic beams at a 45◦ angle. Because of the large frequency range required for this

scan (≈ 500 MHz), we had to borrow fiber coupled light from another experiment with a

separate laser system, in addition to our own cooling and repump lasers. We can measure

that our slower, when optimized, can shift the velocity profile at the glass cell from 300

m/s to 50 m/s.
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Figure 4.31: Geometry of the quadrupole coils. The coils are mounted in an anti-
Helmholtz configuration immediately above and below the glass experimental cell.

4.4.2 Quadrupole Coils

The quadrupole coils in the RbLi experiment are an anti-Helholtz coil pair mounted im-

mediately above and below the glass experiment cell. The coils are wound with 40 turns

of square copper tubing (allowing for water cooling) in a configuration of 8 layers of 5

turns each. The current for the coils is provided by an Aglient 6690A power supply that

operates at maximum 15V and 440A of current.

The current in the quadrupole coils is regulated by a bank of 20 MOSFETs in parallel

that all share a common gate voltage that is controlled by a PI servo. The large number

Quadrupole Coils and Coil Holders Quadrupole Coils Mounting

Figure 4.32: Left: Construction of the quadrupole coils from copper tubing. Right:
Installation of the coils into the apparatus.



98 4.4. Magnetic Field Control

MOSFET Bank Assembly

MOSFETs and cooling plate MOSFETs and copper bar 

drain / source connections

Gate

Drain

Source

Source

IXFN 520N075T2

MOSFET

Figure 4.33: Quadrupole MOSFET bank used for current regulation. Due to the
high currents and heat dissipation involved, the bank consists of 20 MOSFETs on a
water cooled plate. This allows for both high and low currents at a constant power
supply voltage.

of MOSFETs, along with water cooling, allow us to run large currents with the voltage on

the power supply held constant at 15 V. Due to the low resistance of the quadrupole coils,

the majority of the voltage drop, and thus power dissipation, occurs at the MOSFETs,

which creates the requirement for water cooling and large number of parallel units to share

the power load. The advantage of this configuration is that it allows us to quickly change

field values on the quadrupole as the larger available voltage helps counteract the large

inductive kickback from the coils to snap-on commands. This configuration reduced the

turn on time of the coils from approximately 100 ms to 5 ms, allowing for much more

repeatable Stern-Gerlach spin separation pulses, or magnetic trap turn ons.

However, because of the high inductive voltages generated during a quick snap on

of current, a variety of elements were put in parallel with the MOSFET bank to prevent

reverse currents that can cause the MOSFETs to: pop, catch fire, silently stop working and

destabilize your system. To combat these problems we put a set of varistors in parallel to

prevent large voltages from building up. Because these varistors still failed under various

conditions, causing failed MOSFETs, we placed a set of diodes to allow current from

source to drain so that reverse currents could bypass the MOSFETs. Through trial and

error we found that having diodes rated for different situations put together in parallel,

i.e. rapidly responding diodes with low current rating plus large current diodes with a
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slow response, provided a sufficient amount of protection.

The strength of the gradient was measured using the position of condensates after

time of flight imaging. The condensates were prepared in pure mF = ±1 states. The

current was ramped to a variable value with a biasing field along one of the principal

axes of the experiment, allowed time to relax, and the condensate was released for time-

of-flight with the current still constant. By watching the position of the condensate as a

function of quadrupole current, we can measure the acceleration, thus force and magnetic

field gradient, due to the coils. By repeating this in all directions, with both mF =

±1 condensates (which will feel equal magnitude and opposite direction forces), we can

calibrate the magnetic field gradient from the coils in all directions. We find that the

coils have, in 87Rb centric units, 200 Hz/ µm in the vertical direction and 100 Hz/ µm in

plane, matching the 2:1 geometry of the anti-Helmholtz coils.

4.4.3 Bias Coils

The bias coils in the RbLi experiment are used to generate uniform magnetic fields across

the atomic cloud (Figure 4.34). There are three sets of Helmholtz aligned coil pairs, each

set along one of the principal axes of the experiment. The coils are created from 15

turns of 16-gauge magnet wire. All coils are driven on independent Kepco BOP ±20 A

power supply units with hall probe based PID servo electronics that give a precision (not

X Coil Y Coil Z Coil

Field Strength 

(MHz / A)
0.144 0.828 1.685

Resistance (mΩ) 0.56 0.43 0.211

Inductance (mH) 24.6 25.3 21.9

Background

Magnetic Field 

Cancellation 

Current (A)

1.040 0.062 0.303

Biasing Coil Geometry

Z

X

Y

Figure 4.34: Geometry of the biasing coils used in the experiment to provide spa-
tially uniform magnetic fields along the primary experiment axes.
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accuracy) of approximately 100 µA control over the ±20 A output range.

The X and Y coils are mounted on rectangular aluminum structures that are parallel

to the glass cell. The Z coil pair is mounted on top of the quadrupole coils, and are the

closest coil pair and produce the largest magnetic field per Ampere. As such, the Z bias

coils are the primary biasing coils used in experiments that require high (+10 MHz) biasing

fields. The Y coil is used as the primary biasing coil where the field must be in plane.

The X coil, owing to its distance from the atoms and weak field strength, is exclusively

used to cancel background magnetic fields.

Each of the coils is calibrated in field strength by performing an experiment to mea-

sure the linear Zeeman shift generated by each of the coils at various currents. We subject

the BEC to an RF field that we adjust to find resonance with the linear Zeeman shift

at a given coil current. We repeat this measurement for various RF frequencies and cur-

rent combinations to develop a proportional relationship between the current and Zeeman

shift. By knowing the gyromagnetic ratio for 87Rb ( ≈ 0.7 MHz/G) we can compute the

magnetic field strength as a function of current. By repeating this measurement on each

coil, for both positive and negative currents, we gain information on the field strength

of each coil. This measurement process also gives the background magnetic field within

the experiment. By measuring resonance while varying the current, hence magnetic field

strength, across a wide range we find the value which minimizes the RF frequency that

brings the system to resonance. In Figure 4.35, this corresponds to the zero crossing of

the linear fits.
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Figure 4.35: Calibration of coil field strength and background field via RF spec-
troscopy.

4.4.4 Gradient Shim Coils

Above and below the glass cell, mounted onto the far side (from the cell) of the quadrupole

coil holders, are three sets of coils that produce magnetic field gradients. These coils,

named the ‘Gradient Shim Coils’ are arranged on top in bottom in a clover-leaf pattern,

with opposing coils being in pairs. Each set, top and bottom, has a center coil which

together form a classic anti-Helmholtz coil configuration. The other directions, XY and

YX, have two coils on the top and the bottom that together form a magnetic field gradient

along the x̂+ ŷ and x̂− ŷ respectively. The coils are placed along these axes because they

match the principal axes of the optical dipole trap. Another set of gradient shim coils

were used in our spinor domains experiment (Section 5.2.1), but have since been removed

in favor of the design here.
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X-Y Coil Y-X Coil Z Coil

Field Strength 

(MHz / A)
0.144 0.828 1.685

Resistance (Ω) 0.56 0.43 0.211

Gradient Shim Coils Geometry

X-Y Coils

Z CoilsY-X Coils

Field and 

Current Flow 

Geometry

Figure 4.36: Geometry of the gradient shim coils, used to cancel out background
magnetic field gradients at the atoms.

4.4.5 RF Coil

To interact with the atoms using RF fields, with frequencies on the order of MHz, we have

a set of coils printed onto a thin PCB that is placed snuggly between the top of the glass

cell and the quadrupole coils. The multi-coil design allows us to generate linearly polarized

RF fields in either the x̂ or ẑ directions, depending on the geometry of the magnetic biasing

field. We use a Novatech 409B direct-digital synthesizer to provide a computer controlled

signal generator. To control the amplitude of the RF waveform, we can use both a digitally

stored command in the Novatech, or for faster amplitude changes we can use a RF-mixer

(a mini-circuits ZAD-3+) connected to a dc voltage source. The RF waveform amplitude

can be adjusted, non-linearly, by adjusting the dc voltage that couples into it. We also use

a digital switch (a mini-circuits ZYSWA-2-50DR), under computer control via a digital

line, to enable and disable the RF signal from being propagated to the coil. The RF

signal is then passed through a 10W RF amplifier and then onto the coil. After the coil,

we place a high-power attenuator and 50 Ω coupled termination onto the line to prevent

reflections of the signal. To measure the coupling strength of the RF coil, we perform

an on resonance Rabi pulse and measure the fractional populations of atoms in the spin

states, and compare to theory (similar to calibrating the Raman coupling strength, as

described in Section 4.3.7). For our RF coil setup, our maximum power described as a

Rabi frequency is approximately ΩRF ∼ 2π · 35 kHz.
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Figure 4.37: Top: Schematic of the RF coil signal path. Bottom: PCB printed RF
coil placed immediately above the experimental glass cell.

4.4.6 Table Coils

The ‘Table Coils’ are two large single coils along both the Y and Z directions. These coils

are used primarily for generating a small uniform biasing field at the atoms for calibrating

and deploying our magnetic field stabilization system (see Section 4.4.7). Both are single

coils, therefore they do not make magnetic fields as uniform as the Helmholtz biasing coils.

However the diameters of the table coils (meters) compared to the condensate (microns)

makes the uniform field approximation valid.

The Y table coil consists of 10 loops of magnet wire along a square 80-20 aluminum

structure enclosing the apparatus. By design of the enclosure structure, the Y table coil is

close to being centered on the atoms and glass cell. The Z table coil is 20 turns of magnet

wire looped along the side of the 4′ × 8′ optics table.
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Y Table Coil Z Table Coil

Field Strength 
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Y

Figure 4.38: Geometry of the table coils. These coils are used primarily for back-
ground magnetic field cancellation.

4.4.7 Magnetic Field Stabilization

Magnetic field control in spinor condensate experiments is important as any stray field

can cause an unwanted linear Zeeman effect that can cause energy shifts larger than those

characteristic to the system. These can be slowly drifting fields throughout the day, or

radiated 60 Hz line noise coming from laboratory electronics. In 87Rb experiments in the

F = 1 ground manifold, any stray fields break the symmetry between the mF = ±1 states,

causing a preference that may be unwanted. In our experiment, we have gone through

extensive measures to characterize and combat these unwanted sources of noise.

Measuring Magnetic Field Stability

To measure the magnetic field noise in the system, we use RF coupling to create a com-

bination of the F = 1 spin states. We typically use an Adiabatic Rapid Passage scheme

to take a mF = −1 BEC and create an equal mixture of mF = 1, 0. In measurements,

we go to a high enough linear Zeeman shift such that the mF = 1 state does not become

involved, thus simplifying the measurement for us. To measure the magnetic field, we first

find the command on the bias coils to create a 50/50 mixture of the two spins. Next we

let the system run, collecting information about the relative populations of the spins as a

function of time.

By knowing the power and frequency of the RF field, we can calculate the relative
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Figure 4.39: Left: Calculation of the spin populations for the dressed state of a 18
MHz RF field. Center: Experimental measurement of the population as a function
of the field difference from resonance. Right: Conversion of population information
to magnetic field value, from either experimental measurements or theoretical calcu-
lations

populations that should be appearing as a function of detuning. If we invert the rela-

tionship, we have a function of detuning as a function of measured population fraction.

Because we have the RF field set precisely, the detuning drift measured must be due to

the magnetic field and Zeeman effect.

More empirically, we can also use a measurement of the fractional population as a

function of the magnetic field (and hence detuning) that we command on the bias coil.

This also gives a similar fractional population versus detuning dataset that can be inverted

to give the shift in the field as a function of fractional population. It is also important to

note that the power of the RF field, in terms of Rabi frequency, can broaden or narrow

the resonance, giving a measurement across large or narrow detuning ranges.

Background Stability

Using the methods described in the previous section, we can measure the field noise in our

experiment. The field noise measured in both the Y and Z directions is shown in Figure

4.40. Both directions have approximately a milligauss shot-to-shot variability. However,

the Z direction also shows a long term drift, on the scale of an hour or so, where the

field can drift by a few milligauss. This is problematic as our typical data collection scans

requires such an amount of time to perform, without time in between to find resonance.
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Figure 4.40: Measurement of the magnetic field drift in the Y and Z experimental
directions as a function of time.

Flux Gate Feed Forward System

In order to improve the magnetic field environment of our system, I developed a magnetic

field stabilization system based on a pair of flux gate magnetic field sensors place near

the experimental cell. The system measures the ambient magnetic field environment, then

through calibrations, feeds a signal forward to the bias control servo to cancel the variation

in the magnetic field.

The flux gate system successfully removes the slowly drifting background magnetic

field in the experiment. However, shot-to-shot noise still remains within the system that

could be related to many factors due to the method of measuring the field with the

atoms. Any uncertainty in the condensate preparation and measurement, such as the

repeatability of our RF adiabatic rapid passage scheme, or the variation in the imaging

and measurement performance, could limit our ability to measure beyond this limit.

The flux gate system, with both the DC and 60 Hz magnetic field sensing and

removal mechanisms, is described in detail in Appendix A.
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Figure 4.41: Magnetic field drift in the Z direction without and with the flux gate
correction system.



107 4.4. Magnetic Field Control

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4

M
a
g

n
e
ti

c 
F
ie

ld
 (

m
il
li
G

a
u

ss
)

Temperature Change (Celsius)

Figure 4.42: Correlation between lab temperature and magnetic fields as measured
by the atoms. The measurements give an approximately 0.34 mG/V effect.

Magnetic Fields and Lab Temperature

In many experimental systems, there is a substantial effort to keep the lab temperature

stable. For atomic physics experiments, temperature stability is necessary due to the

sensitivity of laser diode mode behavior, the alignment of optics, and the polarization

stability of optical fibers. However, for those who work with sensitive atomic resonances

in the RbLi experiment, it is to be noted that magnetic fields also depend on the lab

temperature as well.

Given the slow background magnetic field drift measured in the lab, attention turned

to other possible sources of error that operate on long time scales. One possible source

of field drift was due to not the background fields necessarily, but that our electronics

could have temperature dependent effects that cause slight resistance or gain shifts. To

test and see how large of an effect this is, a set of temperature transducers, based on the

precision AD590 temperature-to-current device, were constructed6 and placed in the lab

near the experimental cell and near the bias coil servo electronics. The temperature was

recorded simultaneously along with atomic resonance data to make a correlation between

6Credit for this project belongs to two undergraduate students under my guidance, Doug Hockey and
Brendan Van Hook, for their project designing the temperature sensors and performing the following
measurements
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the two. To help get a wider range of temperatures in the lab to correlate against, the lab

thermostat, in perhaps poor judgment, was blasted with a hot air gun to cause a large

influx of cold air into the lab.

From these measurements, the trend of the correlations show there is an approxi-

mately 0.34 mG/V effect. Whether this is due to the control electronics or some other

temperature dependent correlation is still undetermined.

4.4.8 High Power Op Amp Current Sources

Given the need to reduce magnetic field noise at the atoms, as described in Section 4.4.7,

another source of noise we investigated was the Kepco bipolar power supplies we use on

our bias coils. Given their tendency to radiate 60 Hz noise, we needed an alternative high

current source. Unlike the quadrupole, and slower coils, the bias coils require a bipolar

current source, therefore our MOSFET based current stabilization schemes would not be

effective.

To get a bipolar current source that we could control, we opted to build a current

source based on a bank of Apex PA05 High Power Operational Amplifiers7. These am-

plifiers are designed to be standard operational amplifiers that can operate at high power

voltages from ±50 V at up to 30 A output. The idea was to have very quiet DC power

supplies that provide a < ±50 V source with high current capabilities that act as the

power source for the PA05 op amps.

By making a standard and simple non-inverting op amp circuit with the PA05, a

command voltage at the op amp input determines the output current (for a fixed load).

The circuit is designed with two resistors that set the voltage gain across the op amp.

Considering that most voltage command signals in our lab are ±10 V signals, a non-

inverting gain allows voltage commands that can utilize the full ±50 V output range of

the power source if needed. The circuit includes op amp bypassing capacitors arranged

for a 30 A output (330 µF, as given by the Apex application notes pages). The circuit

design also has a connection to the shutdown pin of the op amp, allowing a TTL disabling

7Credit for this project belongs to two undergraduate students under my guidance, Smita Speer for the
design of the operational amplifier circuit and box construction, and Ben Cannon for installing the hall
probe sensors within the box and integrating it within our experiment.
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Apex PA05 High Current Op Amp

Specifications

Voltage ± 50 V

Current 30 A

Slew Rate 100 V / μs

Bandwidth 3 MHz
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Figure 4.43: PA05 high power op amp current supply box. The PA05 high power
op amps are mounted into custom PCBs, then mounted onto water cooled heat sink
units. The entire assembly contains cooling for four op amps.

mechanism, useful for quick snap offs or interlock operation.

The high power ability of the PA05 op amps means that the op amps themselves

will dissipate an enormous amount of heat when pushed to their maximum limits. For

this reason, the op amps are mounted into custom heat sinks, available from Apex, that

fits the proprietary connectors of the PA05, allowing the underside of the PA05 to be flush

against the heat sink with the pins poking through. During assembly, we placed thermal

conductive paste between the op amp and heat sink to ensure good thermal conduction.

To go to the extreme, the heat sink itself is mounted onto water cooled plates. However,

due to the geometry of the heat sink, the op amp is at the bottom, with the fins on top.

The water cooling plates, due to these restrictions, are placed in contact with the op amp



110 4.4. Magnetic Field Control

side of the heat sinks with as much area overlap as possible. In a test where 115 W of heat

were constantly dissipated at the op amps, the unit measured a maximum temperature of

only 120 ◦F, with effectively8 no water cooling.

Again due to the geometry restrictions of the heat sinks, any connections to the op

amp must be made at the pins, which poke up in a flat region between the fins of the

heat sink. The circuit for controlling the current was printed onto a PCB which fit into

the slot between the fins of the heat sink. The op amp connects to a socket soldered onto

the PCB (the socket, again, is a special part available from Apex), allowing separation

between the PCB and heat sink / op amp unit.

The entire current supply box duplicates the op amp and cooling setup four times,

providing current control on the four separate op amp blocks. Each block also has a hall

probe in line to measure the current at the output of the op amp. The output of the box

has a voltage input that goes to the input pin of the op amp, a hall probe measurement

voltage output, a red banana jack connector for current out of the op amp, and a black

banana jack connector that goes to ground9.

Sadly, as of writing, the noise performance of this system has not been tested as we

have not yet acquired a quiet DC power supply, and interest in the project has waned.

However, the system has been faithfully powering our gradient shim coils without incident.

4.4.9 Water Cooling for Electromagnetic Coils

In order to dissipate the heat due to ohmic losses in our high current systems, like the

quadrupole coil and Zeeman slower, we installed a water cooling system in the experiment.

The major electromagnetic coils, such as the Zeeman slower, quadrupole coils and slower

biasing coils, are wound with copper tubing10 that has cooling water flow inside. The

water in these coils flows in a contained loop, with a chiller to cool the water and hold a

reservoir, a booster pump to increase the water pressure up to 170 psi before the coils, a

set of valves to control flow to individual systems, and flow meters to electronically detect

8The chiller unit running the water to the cooling plates hardly had the pressure to push water through
the test coil and the water plates

9The box assumes you always want to connect one side of the coil to ground
10We specifically used refrigerator tubing when possible as the standard to be clean enough for drinking

water meant these would be more free of particulates and oils
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Figure 4.44: Top: Schematic of the RbLi water cooling system. Bottom: Mapping
of flow control valves to the associated electromagnetic coil.

the flow of water in the experiment. The flow meters act as an interlock to the high current

systems: if the flow meters do not detect flow in the water cooling system, a set of interlock

electronics will disable the high current power supplies, thus preventing an overheating (or

other) catastrophe. Similarly, an advantage of using a closed loop water cooling system is

that it has a finite amount of water contained within in so that if any large leaks occur, the

flooding can be minimized. To cool the large amount of heat generated at the MOSFET

regulation banks in our experiment, we used water cooled aluminum plates connected to

the water system supplied by the building facilities.
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4.5 Imaging System

While everything else in this chapter has been about the design of the different

elements of the RbLi experiment to trap and cool atoms, the imaging systems are the

only setups we have to directly measure the state of the atoms. We have two imaging

setups within the experiment. The first system images in the XZ direction: we use this

system mostly for images of large atomic clouds, such as magnetically trapped atoms, and

other diagnostics. The second imaging system is the XY system which views the atoms

from below. The XY system is the primary imaging system used to measure the system

when at the BEC stage of an experiment.

4.5.1 XZ Imaging Setup

The XZ imaging system looks at the atomic cloud ‘side-on’, with gravity being along the

vertical axis of the image. This imaging direction is used primarily for diagnostics as its

low magnification is able to image all stages of creating a condensate, from MOT to BEC,

also with variable times of flight without the need to refocus the camera. The design of

the XZ imaging system is depicted in Figure 4.45.

The system uses probe light that comes from a fiber coupled line on the cooling laser

board. The light is collimated into a wide (≈ 1”) beam waist, and by using a polarizing

beam splitter and λ/4 waveplate, the beam is made circularly polarized. The probe beam

is then passed through the atoms, then through a two element telescope, with a 50 mm

1” spheric lens and a 125 mm plano-convex lens, giving a designed 2.5 magnification and

experimentally measured 2.54 magnification. The image is then focused onto a Point Grey

Blackfly PGE-50H5M-C CCD camera. The camera is on both a translation stage to find

focus, and a rotation mount that allows us to precisely align the vertical of the camera

with the direction of gravity.

The Blackfly camera has a 2448 × 2048 pixel array with 3.45 µm per pixel, which

yields a 3.36 mm× 2.8 mm field of view of the atomic cloud with a 1.38 µm/pixel resolu-

tion. The field of view and resolution together allow the XZ imaging system the ability to
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Figure 4.45: XZ imaging system optical setup

view both large magnetically trapped clouds and BECs with resolution equal to the pri-

mary, XY, imaging system. The disadvantage of the camera, however, is that the Gigabit

Ethernet connection requires ≈ 300 ms per image to transfer, causing a long delay between

the three shots for absorption imaging. The images at full resolution are large, causing

issues with computation speed while doing analysis. For this reason, it is recommended

to use Region of Interest (ROI) modes to take smaller images when possible.

4.5.2 XY Imaging Setup

The XY imaging system is the primary measurement method used in the experiment.

The system starts with fiber coupled light from the cooling laser system. This light is

collimated through a 7.5 mm aspheric lens to give a beam waist of approximately 300 µm

at the atoms. The probe beam is then passed through a Glan-Taylor polarizer and a λ/4

waveplate to ensure a nearly pure circularly polarized beam. The beam then traverses off

of two gold mirrors (to maintain polarization qualities), then vertically toward the glass
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Figure 4.46: XY imaging system optical setup

cell and atoms. Because the MOT also requires vertical beams, the imaging probe and

MOT beams must share the same vertical trajectory. We remove the MOT light (and

downward pointing mirror) by using a pair of flipper mirrors that are removed from the

vertical beam path when we image, allowing the probe beam full access.

After the light has passed through the atomic sample, the beam passes through a

two lens compound objective and a second compound lens pair to give a magnification

to the system. Lastly, this light is passed onto the Point Grey Flea3 CCD camera for

imaging. The camera is mounted on a micrometer stage so we can precisely focus the

image. Similarly the camera is mounted on a rotation mount so we can align the camera

axes, typically to either the optical dipole trap coordinates (x̂ ± ŷ) or the experiment

coordinates (x̂, ŷ).
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Figure 4.47: Gravitational displacement of BEC versus variable TOF time. Mea-
suring the acceleration in pixels/s2 and comparing to g = 9.81m/s2 gives the magni-
fication

4.5.3 Calibrating the Magnification

We use two methods for calibrating the magnification of our imaging systems. The first

is to measure the free fall acceleration of the BEC during time-of-flight imaging. The

technique is simple: We prepare a mF = 0 BEC (because of the insensitivity to magnetic

forces), release it in TOF, and vary the time until we take the image of the BEC. By

measuring the vertical displacement of the BEC (in pixels!) compared to the time of

free-fall, we can use the standard ∆Y = 1
2at

2 to find the acceleration in pixels/s2, and

compare to standard gravitational free-fall of ≈ 9.8m/s2 and the camera pixel size:

M =
ameas.
g

∆Px (4.1)

Where ameas. is the measured acceleration in pixels/s2 and ∆Px is the size of the pixel on

the camera chip. This calibration method is useful as it makes no assumptions about the

system other than the gravitational field.

This measurement naturally is performed for the XZ imaging. As such, we align

the vertical axis of the image with the direction of gravity prior to the magnification

measurement by rotating the camera until the horizontal displacement of the BEC in the

image is invariant under different TOF times.

This method can be extended to calibrate the magnification in the XY imaging
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direction as well. After the XZ imaging is calibrated, we can perform an experiment

where we prepare an mF = −1 BEC and apply a constant gradient along the x̂ direction

(the horizontal axis of the XZ camera) during TOF, while varying the TOF again. The

cloud, due to the constant acceleration due to the magnetic force, will again move across

the image. Doing this scan using the XZ imaging measures the calibrated acceleration due

to the magnetic force in m/s2. By comparing this value to the acceleration, in pixels/s2,

measured from the same scan using XY imaging, the magnification can once again be

measured.

Another method we use to calibrate the magnification of the imaging system is

through lattice diffraction. We use a Raman coupling pulse to impart different mo-

menta populations to the condensate. Because the momentum is well defined in units

of kR = 2π/λR where λR is the laser wavelength, we know the velocity of the atoms

during TOF, and hence can calculate the distance they should move in a given time pe-

riod. By measuring the displacement in pixels and comparing, we have another metric for

magnification.

4.5.4 Calibrating the Focus

To focus our imaging systems, we use density-density correlations in images of BECs. This

technique, which we stumbled upon during our spinor domains experiment (Chapter 5),

allows us to set the focal plane to within microns of the correct location. The method relies

on a BEC that has spatial density modulations across a large swath of frequencies, such

as spinor BECs with domains, BECs with vortices, or other atomic interference pattern

effects. When passing probe light through the condensate, modeled as a set of random

scatterers, a set of fringes appear in the power spectral density (PSD) of the image. The

wavevector that the fringes in the PSD occurs at diverges when the focal plane is at the

center of the scatterer distribution (see Figure 4.48, left panel). The detailed theory of

this method is discussed at length11 in Reference [47], from here I will discuss the practical

implementation within our experiment.

11Theory data and fits presented here, and moreover the work of developing the theoretical model of
this method goes to lab colleague Andika Putra
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Figure 4.48: Left: A simulated set of random scatterers will have voids in the power
spectral density (PSD) as a function of the distance from focus. The voids asymptote
to infinite frequency when in focus. Center: Observation of the voids in the PSD from
experimental imaging. Right: Fits of the features in the center plot give the location
of ideal focus.

To find focus, we create a BEC with spatial noise at higher wavenumbers so as to

give contrast in the PSD between signal and the fringes. Next to scan the focal plane

we vary the TOF time before imaging the condensate. By taking a one-dimensional PSD

measurement12 at each TOF time (hence distance from focus), we can observe the fringe

pattern in the PSD and locate the diverging point as a function of the focal distance

(Figure 4.48, center panel). The fringe locations in the experimental data can be located

and fit according to the theory in Reference [47], giving us the optimal focal distance, and

similarly TOF time (Figure 4.48, right panel). When using the TOF time as a variable

focus adjustment, we must account for the quadratic increase in focal distance as a function

of time. This effect otherwise leads to asymmetric distributions, as shown in Figure 4.48.

12slices for our 1D spinor experiment, later radial averages when using vortices



Chapter 5

Domain Formation in Crossing the

Miscible-Immiscible Transition in

a Spinor BEC

The establishment of out of equilibrium domains formed by quenching through a phase

transition is ubiquitous in physical systems ranging from grain formation in minerals [48],

domain nucleation in magnetic systems [49], to Kibble-Zurek phenomena such as structure

growth in the early universe [50], and spontaneous vortex formation in quenched BECs [51].

Here we study a similar quantum quench in a two component spinor BEC, where

the spin degree of freedom is initialized in a maximally excited state where the spin

distribution is uniform across the BEC. Because of the spin dependent interactions in

87Rb, the mf = ±1 states will gain energy by spatially separating. We follow the resulting

dynamics during which spin domains rapidly form, and subsequently slowly relax towards

equilibrium as the domain size increases and the domain number decreases.

5.1 Background and Theory

118
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87Rb F = 1 manifold:

5s 2S3/2

f = 2
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+1 +1

g0

g0

g0 + g↑↓

Figure 5.1: Interactions in the 87Rb F = 1 ground states. The mF = ±1 states
have different interaction energies when interacting in a different-spin configuration
than a same-spin interaction.

5.1.1 Spin-dependent Interactions and Miscibility

In our system we utilize 87Rb in the F = 1 ground state and hence focus on the mf = 0,±1

magnetic hyperfine states. Here there are two s-wave scattering channel lengths a0, a2 due

to the two possible total angular momentum states of F = 0, 2 from two spin 1 particles

interacting. For 87Rb, a0 = 101.8 aB and a2 = 100.4 aB where aB = 5.29× 10−11m is the

Bohr radius. We can calculate the spin-dependent interaction coefficients c0, c2 as

c0 =
4π~2

m

a0 + 2a2

3
= 100.84aB

4π~2

m
(5.1)

c2 =
4π~2

m

a2 − a0

3
≈ −4.7× 10−3 c0 (5.2)

For our 87Rb BECs the c0 term determines the spin-independent interaction strength,

and contributes a term in the Hamiltonian that only depends on the total density of 87Rb

atoms. However, the c2 term is present when the density of both mf = ±1 atoms is

non-zero at any given location in space. This spin-dependent interaction energy is weak

compared to the spin-independent energy (≈ 0.5%), however the sign of the spin inter-

action is negative. The spins gain energy when densities overlap, and is the source of
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Sudden Transition to 

Spatially Mixed State Spin Domain Formation

Time

Immiscibility and Spinor Domain Formation

Figure 5.2: Spinor immiscibility occurs when the same-spin interaction energy is less
than that of interaction with differing spins. The transition between these conditions
causes the formation of spin domains, in which the opposite spins repel each other to
minimize energy.

immiscibility in our system. When a spatially uniform mixture of the mf = ±1 state is

made, the c2 term drives an interaction that is ferromagnetic, causing spin domains to

form within the condensate.

5.1.2 Spinor BEC Hamiltonian

This experiment explores the time-evolving magnetization of two-component 87Rb BECs in

the 5S1/2 electronic ground state. Our BECs are well described in terms of a spinor wave-

function Ψ(r) = {ψ↑(r), ψ↓(r)}, where the |↑, ↓〉 pseudo-spins label the |f=1,mF =±1〉

atomic spin states. The dynamics are governed by the spinor Gross-Pitaevskii equation

(sGPE)

i~∂tψ↑,↓(r) =

[
− ~2∇2

2m
+ V (r) + (c0 − c2)n(r) (5.3)

+ 2c2N |ψ↑,↓(r)|2
]
ψ↑,↓(r) +

Ω⊥
2
ψ↓,↑(r),

a continuum analog to the transverse field Ising model. n(r) = N
[
|ψ↑(r)|2 + |ψ↓(r)|2

]
is the total density; m is the atomic mass; V (r) is a spin-independent external potential

(here a harmonic potential from an optical dipole trap); Ω⊥ describes the Zeeman shift of a

transverse magnetic field; and c0,2 are the spin-independent and spin-dependent interaction

coefficients [52,53]. This Hamiltonian has a Z2 symmetry describing a reversal of |↑〉 and
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|↓〉, which is absent in most binary mixtures [54–57].

Because the typical c0n(r) spin-independent energy vastly exceeds the c2n(r) spin-

dependent energy scale, we make the conventional Thomas-Fermi approximation for the

overall density distribution n(r) characterized by a chemical potential µ, and a mini-

mum healing length ξ = ~/
√

2mµ. This gives n(r) = [µ− V (r)] /
[
c0 + c2M

2
z (r)

]
, which

depends very weakly on the z component of the local magnetization vector, M(r) =

{Mx(r),My(r),Mz(r)}=
{

2Re[ψ∗↑(r)ψ↓(r)], 2Im[ψ∗↑(r)ψ↓(r)], |ψ↑(r)|2 − |ψ↓(r)|2
}

.

The spin degrees of freedom vary almost exclusively with axial, not radial, posi-

tion [58] because our extremely anisotropic condensate’s≈3.9 µm radial extent is compa-

rable to the minimum spin healing length ξs = ξ|c0/c2|1/2 = 3.20(4) µm (see Figure 5.3).

Theoretically, we may describe the spin degree of freedom as a 1D spinor [59] with com-

ponents χ↑,↓(z)= |χ↑,↓(z)| eiφ↑,↓(z); retaining terms through first order in c2/c0, we obtain

an effective 1D sGPE

i~∂tχ↑,↓ =

[
−~2∂2

z

2m
−g1D(z) + 2g1D(z) |χ↑,↓|2

]
χ↑,↓. (5.4)

The 1D interaction strength g1D(z) ∝ c2 is related to a 1D healing length ξ1D≈
√

3/2ξs.

These two 1D sGPE’s are coupled by the local constraints |χ↑(z)|2∂zφ↑(z)+|χ↓(z)|2∂zφ↓(z)=

0 (i.e., no mass currents in our experiment). To make the analogy explicit, we dropped

terms quadratic in |χ↑,↓|2 resulting from integrating out the transverse dimensions. These

repulsive terms do not affect the dynamics at short times after the quench, but must be

included at long times.

5.2 Experimental Setup and Execution

In our experiment, we prepare a transversely magnetized two component spinor BEC

described by a U(1) order parameter, and observe the formation and spatial expansion

(coarsening) of domains following a quench into a phase with a U(1)×Z2 order parame-

ter [60, 61], unexplored by previous studies with binary condensates (miscible [54, 55] or
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ωz: 3.2 Hz
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Figure 5.3: Experimental trap geometry for the spinor domains experiment. The
optical trapping beams were configured to make a quasi-1D trap in order to restrict
domain formation to a single direction.

immiscible [56, 57]). As compared with three component systems [58, 62–67], the relative

simplicity present here allows us to identify an intriguing analogy between our spin system

and a single-component attractive BEC as it collapses [59,68–70].

We produce N=7.0(5)×105 atom 87Rb BECs in the |f=1,mF =0〉 hyperfine state,

originating from cold |f=1,mF =−1〉 thermal clouds formed in a hybrid magnetic/optical

trap [71]. To initially transfer atoms to the |f=1,mF =0〉 state from |f=1,mF =−1〉,

we applied a RF field while off of resonance and used an adiabatic rapid passage tech-

nique to transfer atoms while in the dressed RF state. These BECs are subject to a

uniform magnetic field with magnitude B0 = 107.0(2) µT and are confined in the ex-

tremely anisotropic crossed optical dipole trap depicted in Figure 5.12a. Our dipole trap

is formed from a pair of axially symmetric 1064 nm laser beams intersecting at right an-

gles with 1/e2 radii≈67 µm and≈300 µm. The radial (er, i.e., in the ex − ey plane) and

axial (ez) trap frequencies are ωr/2π=135(3) Hz and ωz/2π=3.1(2) Hz respectively. Our

T = 90(8) nK condensates have radial and axial Thomas-Fermi radii of Rr = 3.9(1) µm

and Rz=170(7) µm. The BECs’ 170 µm axial radius is not small compared to the dipole

laser’s 300 µm waist along the axial direction; as a result, we expect small deviations from

the conventional inverted parabola density profile, explicitly the introduction of quartic

trapping terms.
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Figure 5.4: Experimental sequence used to prepare, evolve, and measure the spinor
system.

The spinor experiment is initiated by a 34 µs RF-pulse that puts each atom into

an equal-amplitude superposition of the |↑, ↓〉= |mF =±1〉 spin states, the ground state

when Ω⊥ is large; the system then evolves according to Equation 5.3 with Ω⊥ = 0.

This procedure is equivalent to rapidly quenching Ω⊥ to zero: the ground state goes

from breaking a U(1) symmetry to breaking a different U(1) symmetry along with a Z2

symmetry. While a conventional BEC breaks just a single U(1) symmetry associated

with a wave function’s overall phase (generated by the identity), our spinor Hamiltonian

adds a U(1) symmetry associated with the relative phase of the spin (generated by the

Pauli matrix σ̌z), as well as a discrete Z2 symmetry. Post quench, the formation of spin

domains corresponds to breaking the Z2 symmetry, while within a specific domain, a new

U(1) symmetry is broken. This is generated by a combination of the overall and relative

phases: each spin domain has a broken generator (1̌ ± σ̌z)/2, leaving behind a “sneaky”

unbroken U(1) symmetry generated by (1̌∓ σ̌z)/2.

The quenched binary mixture is held for a variable duration thold, up to 20 s, while

spin structure forms and evolves. Spin mixing collisions are suppressed because the rela-

tively large 82 Hz quadratic Zeeman shift greatly exceeds the c2n(r)≈6 Hz spin dependent

energy [62]. As a result, we observe no population in mF =0 for the entire duration of our
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experiment.

After thold, we remove the confining potential and allow the atomic ensemble to

expand for 19.3 ms, during which time we Stern-Gerlach [72] separate the spin components

and measure the density distributions with absorption imaging.

5.2.1 Magnetic Field Gradient Calibrations

To help remove the effects of background magnetic field gradients, which themselves can

cause spin domains and spin-flow, we used an RF π-pulse (≈ 16 µs long) to rapidly (com-

pared to the domain dynamics) flip the two populations between mF = ±1. This pulse,

when placed at the midpoint of the quench hold time, causes each spin state to experience

an equal force-impulse along the gradient in both directions that effectively cancel out.

This method helped to remove large scale spin separation in our BEC due to gradients

while leaving the spinor dynamics, which occur at a shorter periodicity, unaffected.

Along each principal axis we also deployed three gradient shim coils - coil pairs

in an anti-Helmholtz configuration - in order to compensate for background magnetic

field gradients in our system. The field gradients from the ambient and coil sources were

measured using time-of-flight imaging. Knowing the mass of 87Rb and the duration of the

time-of-flight procedure, we can measure the distance the atoms move during this time

and calculate the force that the atoms felt due to the magnetic field gradient while falling.

Quantization 

Direction

X Field 

Gradient 

(mG/cm)

Y Field 

Gradient  

(mG/cm)

Z Field 

Gradient  

(mG/cm)

+X 4.8 -1.6 -0.9

-X -5.5 2.0 --

+Y 1.7 -4.9 0.5

-Y 1.8 3.5 --

+Z 1.2 0.5 2.9

-Z 1.3 0.5 -1.3

None 1.2 2.1 -3.2

Gradient Shim Coil Geometry

Z

X

Y

Figure 5.5: First generation gradient shim coil geometry and the measured magni-
tude of background gradients at the atoms
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We perform this measurement using both pure spin ±1 BECs, exploiting the symmetry

between the states to increase our measurement efficiency. To determine the strength of

the magnetic field gradient in a given direction, we apply a sizable biasing field (≈ 3 MHz)

to provide a well defined quantization axis. By repeating this measurement over many bias

field, spin state, and gradient coil configurations1 , we can calculate the ambient magnetic

field gradients, and know how to compensate correctly for them. In later experiments,

these coils were disabled and were replaced with the cloverleaf coils described in Section

4.4.4.

5.3 Measurement and Reconstruction

|+1> |-1> Reconstruction Comparative

Single Spin 

BEC Density 

Profile

Density Profile Reconstruction

Align BEC 

centers with 

summed TF Fit

+

Figure 5.6: Reconstruction of the BEC density profile from the spin-separated
distributions.
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5.3.1 Reconstruction

We detect the resulting density distribution by absorption imaging. By using a Stern-

Gerlach pulse during time of flight, we spatially separate the spin components on different

regions on the image. In order to retrieve the full density distribution of the BEC, along

with the fractional populations, we used a least-squared fitting approach to optimize re-

construction of the profiles into a single Thomas-Fermi profile (Figure 5.6). First, the

locations of the two spin distributions was cropped into two equally sized regions of inter-

est, with the centers of the regions being fit parameters. Next the two regions we summed

together and a Thomas-Fermi fit was performed. The overlapping fit was optimized by

minimizing the fit residuals of the total Thomas-Fermi profile. In addition to varying

the center coordinates of the two regions, a scale factor parameter was added to resize

one region versus the other. We found that our Stern-Gerlach procedure asymmetrically

affected the mF ± 1 states, causing the two resulting distributions to vary in expansion

size on the order of ≈ 3%

5.3.2 Extracting Mz and Mx Simultaneously

By obtaining the population fraction of each spin state, we were able to reconstruct both

Mx(x, z) and Mz(x, z), projected onto the ez−ex imaging plane. A brief RF pulse lasting

9.4 µs just before TOF can partially re-populate |mF =0〉. Following TOF expansion

and Stern-Gerlach separation, the distribution of all three spin states contains sufficient

information to obtain Mx and Mz simultaneously.

By knowing both the power of the RF pulse, ΩRF and the pulse duration tpulse =

ΩRF/4, we can calculate Mz:

Mz =
|ψ↑|2 − |ψ↓|2

cos(tpulseΩRF)
(5.5)

Similarly by observing the fraction of atoms that are measured in the mF = 0 state,

we can extract Mx simultaneously:

1credit to colleague Dan Campbell for doing this ‘fun’ task
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Mx =
|ψ0|2

sin2(tpulseΩRF)
(5.6)

We can use these relations to reconstruct the full magnetization profile of the BEC,

such as the shots in Figure 5.12.

5.3.3 Flirting with Spin-Selective Imaging

Initially in order to measure the spin domains, we used a spin-selective imaging technique

to measure the population of either the mF = ±1 spin state. Due to the absence of

microwaves to selectively pulse atoms out of the F = 1 hyperfine ground states to the

F = 2 manifold, we opted to try a polarization and frequency dependent method using

our repump laser before absorption imaging (Figure 5.7). The idea was to create a sizable

magnetic field that would, by the linear Zeeman effect, create a large energy shift between

individual states in the F = 1 and F ′ = 1 manifolds. By also using a circularly polarized

repump beam, we could further restrict the transitions that could occur. We could reverse

the direction of the biasing field to switch between the spin states.

Figure 5.9 shows the imaging efficiency as a function of our repump detuning. We

were able to identify peaks corresponding to the F ′ = 2 and F ′ = 1 hyperfine manifolds,

measured to be 153 MHz apart, compared to the actual 156 MHz. This allowed us to

Spin Selective Imaging Scheme

-0.7 MHz / G

0.93 MHz / G

F’=1

F=1

Figure 5.7: Left: Targeting atomic transitions for imaging using an offset repump
laser pulse. Right: In-situ image of a spinor BEC.



128 5.3. Measurement and Reconstruction

Repump Detuning (MHz)

50 100 150 200 250 300 350
R

e
la

ti
ve

 V
is

a
b

ili
ty

0

0.2

0.4

0.6

0.8

1

153 MHz

F'=2 F'=1

Figure 5.8: Measurement of atomic transitions for spin selective imaging by scanning
the repump laser frequency

confidently set the transition to the F ′ = 1 transition.

When using this technique on a simple system with 2 large separated spin domains,

we saw a contrast between the states on the order of 5 at maximum. For large domains

(Figure 5.9), the contrast was sufficient to identify the spin domains. However with smaller

domain size (Figure 5.7), the low contrast began to make differentiating separate domain

difficult. The time of flight imaging technique clearly had an advantage in resolving

small domains in the elongated BEC (for example, Figure 5.17, and with reconstruction

techniques were superior. Thus the in-situ imaging work was abandoned.

|+1> |-1>

Spin Interaction / Repulsion

Harmonic

Trap

Thomas-

Fermi BEC 

Profile

Spin Selective Imaging

Figure 5.9: Spin-Selective imaging example illustrating the low contrast between
the states.
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5.3.4 Upgrade to Higher Resolution Imaging

For this experiment, we switched our primary imaging system to a higher magnification of

approximately 6.25 in order to image the in-situ spinor domains. Although in the end we

used time of flight measurements and reconstructed the in-situ spin densities, this higher

magnification was still in place as the expanded BECs after the measurement procedure

optimally fit into the imaging plane. Later this system would be switched out for an

imaging solution with a magnification of 3.

Magnification 6.25 

Imaging System

68 mm Compound Objective:

60 mm Achromatic Doublet

AC254-060

Rotation Mount

Micrometer Stage (Focusing)

Flea3 CCD

FL3-FW-03S1M-C

648x488 px
5.6 μm/px

Glass Cell
Slower

300 mm Plano-Convex

LA1484

Coil Holders

Coil Holders

MOT Flipper Z1

325 mm Compound Lens:

750 mm Plano Convex

LA1727-B

500 mm Achromat

AC508-800-B

91 mm

Separation

Z

X

Figure 5.10: Upgraded imaging system for higher resolution imaging of the spinor
domain BECs.
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5.4 Results

The initially (thold =0) uniform χ(z)=(|↑〉+ |↓〉) /
√

2 spin superposition is dynam-

ically unstable, as indicated in Figure 5.12b’s snapshots. At this unstable point, small

spin-wave excitations have an (~ω/µ1D)2 = (kξ1D)2
[
(kξ1D)2 − 2

]
energy spectrum [67],

where µ1D = ~2/2mξ2
1D is a typical 1D spin interaction energy. When ~ω is imaginary –

for kξ1D ∈
(
0,
√

2
)

– the associated modes grow exponentially with peak gain at k=1/ξ1D,

amplifying any existing spin fluctuations, classical or quantum. Figure 5.13 depicts the

magnetization Mz(z), showing the initially unmagnetized condensate developing visible

structure after about 200 ms. The experimental data plotted in Figure 5.13a is in qualita-

tive agreement with a stochastic-projective GPE (SP-GPE) simulation [73], with param-

eters nearly matched to our experiment, Figure 5.13b. In what follows, we make several

0.5 s

1.5 s

0.05 s

15 s

0.3 s

5 s

Experimental View of Spinor Domain Evolution 

MF +1

MF -1

MF +1

MF -1

Figure 5.11: Spinor domain experimental evolution in raw images from domain
onset through the coarsening stages.



131 5.4. Results

Spinor Domain Formation
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Figure 5.12: Images showing the progression from a uniformly magnetized con-
densate (short times) in which domains appear (intermediate times), and then grow
spatially (long times). During this process the condensate slowly decays away

quantitative comparisons between the two. The SP-GPE’s stochastic noise term was cho-

sen to match the experimentally observed temperature, and was not tuned to match the

onset-time for domain formation. While the amplitude of these spin waves grow with an

exponential time constant τ(k)=1/Im(ω(k, z)) [minimum at τ(z)=2mξ2
1D(z)/~≈42 ms],

Figure 5.13a shows that no structure is visible until thold≈200 ms. Representative recon-

structions of Mz(x, y) at six hold times are depicted in Figure 5.12.

Our simulations predict that structure begins to grow immediately, however the

domains that have formed directly after the quench cannot be detected due to the mag-

netization Mz(z) at the beginning of the exponential formation process being smaller in

magnitude than the technical noise (primarily due to shot noise in density fluctuations

across the BEC) in the system. The methodology of detecting a spin domain in the BEC

is based upon detecting the number of modulations in Mz(z) that are larger in ampli-

tude than the measured noise in Mz(z). After the quench when the magnetization of

the domains grows rapidly in amplitude, there is a threshold once domains will become

statistically measurable in the analysis. This measurement effect is evident in the rapid

increase of domains we experimentally detect in Figure 5.14 at≈200 ms.

Figure 5.13 also shows that spin structure forms more slowly in the lower density

periphery of the system where ξ1D and τ are larger. To quantify this effect, Figure 5.14
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Figure 5.13: Time evolution of magnetization Mz(z). (a) Experimental data and
(b) finite temperature simulation using the SP-GPE method. In both simulation and
experiment, the spatial structure of Mz(z) coarsens after an initial growth period as
domains coalesce.

plots the number of spin-regions visible above the noise, along with the results of our SP-

GPE simulations, and a local density approximation (LDA, accounting for our systems

inhomogeneous density profile) prediction for the expected pattern of domain growth.

This number increases for short times because spin-regions become visible in the system’s

center before its edges, and does not initially reflect a change of their spatial size.

The spin modulations continue to grow in amplitude until, at thold≈ 300 ms, they

form fully spin polarized domains of |↑〉, and |↓〉, with a spacing set by the dynamic

growth process, not by the system’s equilibrium thermodynamics. After this period of

rapid growth, the polarized spin domains evolve slowly, equilibrating, for the remaining

20 s duration of our experiment.

Our BEC has a τ =10(1) s lifetime, implying that the domain pattern must evolve

in time as the BEC slowly contracts. The simplest model – in which the domain pattern

contracts together with the dwindling BEC (where each domain simply contracts) – is

obviated by Figure 5.14, that shows the number of domains decreasing after thold ≈ 1 s.

Indeed, once a domain becomes smaller than≈ 2ξ1D(z), it can no longer reach full spin-
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Figure 5.14: Number of domains as a function of thold. The red symbols depict
the experimentally observed number of domains (typical uncertainty plotted on the
leftmost point) and the blue curve plots the results of our SP-GPE simulation (un-
certainties denoted by the blue band). In both cases, the uncertainties reflect the
standard deviation over many realizations. In addition, the red curve fits the data to
a model assuming exponential growth along with a non-zero observation threshold, in
the LDA. The grey symbols correspond to the ratio Rz/2ξ1D: an estimate of domain
number, assuming the system with length 2Rz is partitioned into domains of local
size πξ1D(z) (the size at which domains initially form); the weighted average of this
over our system is about 4ξ1D.

polarization in its center, and it ceases to be a barrier for the hydrodynamic flow of the

other spin state. As a result, small domains de-pin and can move freely until they coalesce

with another domain of the same spin.

While Figure 5.13 and Figure 5.14 qualitatively suggest that the domains gradu-

ally expand as thold increases from 300 ms to 20 s, it is difficult to obtain a quantitative

measure of domain size from data in this form. Indeed, the data show that while mea-

surements at neighboring times have similar domain sizes, the exact domain pattern has

a significant element of randomness – primarily in the form of phase shifts – likely re-

sulting from subtle differences in the initial conditions, as amplified by the subsequent

exponential gain process. To mitigate these effects, we turn to the power spectral density

PSDx,z(k) =
∣∣∫ Mx,z(z) exp(ikz)dz

∣∣2 obtained from these data. With the PSD, we can

compare different realizations even in the presence of spatial phase shifts of the domain

structure.

Figure 5.15a shows PSDz(k) derived from Mz(z) shown in Figure 5.13. For short

times (thold . 300 ms), a narrow peak associated with the growing spin modulations
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Figure 5.15: Power spectral density. (a) PSDz(k) as a function of thold showing the
formation of a peak at finite wave-vector k, followed by the gradual movement of that
peak to smaller k as the spin domains expand. Each vertical slice represents a single
experimental realization, i.e., no averaging. The color scale depicts increasing spectral
power with darker color. (b) Wavevector of PSDz(k)’s peak. (c) Width of PSDx(k),
which always peaked around zero. In (b) and (c), the red symbols depict the exper-
imentally observed peak location (typical uncertainty plotted on the leftmost point)
and the blue curve plots the results of our SP-GPE simulation (uncertainties denoted
by the blue band). In these three cases, the uncertainties reflect the standard devi-
ation over eleven realizations, i.e., (b) and (c) are averaged data. The grey symbols
mark 1/ξ1D, the homogenous-system wave-vector of maximum gain (the uncertainties
are comparable to the symbol size).

develops. Once the spin domains reach unity polarization, the magnetization’s magnitude

saturates and the boundaries between domains – domain walls – sharpen, broadening

PSDz(k) starting at thold ≈ 250 ms. At longer times, the broad peak drifts to smaller

wavevectors, indicating an increasing typical domain size. Figure 5.15b compares this peak

location for both experiment and theory against 1/ξ1D. Figure 5.15 plots experimental

data with red symbols and SP-GPE simulation with the blue curve. Our analytical model

predicts maximum gain at this wave-vector and indeed our SP-GPE simulation shows

peak gain at 1/ξ1D. By contrast, the peak in PSDz(k) for the experiment is at slightly

smaller k.

Because the ≈ 2ξ1D(z) minimum domain size increases as the condensate depletes

away, it is plausible that the increase in domain-size results exclusively from an increasing
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Figure 5.16: Ratio of peak in PSDz(k) over 1/ξ1D plotted on a linear time scale.
We use only the seven data runs that include thold > 6 sec. The red symbols depict
the experimentally observed peak location and the blue curve plots the results of our
SP-GPE simulation (uncertainties denoted by the blue band).

cutoff in the minimum domain size. If we assume a proportional relationship between

1/ξ1D(z) (Figure 5.15, grey symbols) and the peak in PSDz(k) such that the ratio of

one over the other would hold constant we see in Figure 5.15b that for thold > 2 sec this

theory could describe the data. To highlight this possible relationship, we display the

ratio between PSDz(k) and 1/ξ1D(z) – essentially constant – on a linear time scale in

Figure 5.16 (the uncertainties reflect the standard deviation of the mean at each thold).

Unlike PSDz(k), PSDx(k) is peaked about zero; this is because Mx(z) is only ap-

preciable in the domain walls where the gas is not fully polarized: it consists of a series

of narrow peaks. By showing that the width of the peak in PSDx(k) tracks the inverse

spin-healing length, Figure 5.15c demonstrates that the domain walls are sized according

to ξ1D (grey symbols).

For c2 < 0, as in 87Rb, Equation 5.3 and Equation 5.4 describe our system’s spin

degree of freedom as a single component attractive BEC (the overall density follows the

conventional Thomas-Fermi profile). The process of domain formation is a spinor analog

to the “chain of pearls” pattern that forms in 1D BECs quenched from repulsive to attrac-

tive interactions [68,69]. In that case, the growth of structure results from a modulational

instability with peak gain at k = 1/ξ set by the conventional healing length. Attractive

Bose systems are intrinsically unstable against collapse [70], however for spinors, any even-

tual collapse is stymied by an effective hard core interaction resulting from the bounded

individual spin wavefunctions, and higher order interaction terms omitted from Equation
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5.4.

5.4.1 Forced Counterflow

As an extra interest, we examined the effects of a system that was not only quenched from

a miscible to immiscible state, but also gave the system a ‘kick’ to induce dynamics in the

system. Contrary to the gradient cancellation schemes of Section 5.2.1, in this system we

purposely introduced a gradient to cause spins to flow. In these data runs, we followed

the same experimental sequence to create BECs and the immiscible system as described

in Figure 5.4. However, to introduce the kick, we created a pulse on the y pair of magnetic

field gradient shim coils (Figure 5.5). This pulse was shaped to be a one period long sine

wave, with a period of 160 ms, and with extra terms to create a continuous derivative

at the start and end of the pulse for a smooth transition. The oscillatory nature of the

kick imparts momentum in both directions for both spin populations, causing the small

unformed domains to slosh into one another.

The forced counterflow, as one may expect, generates more domains in the system

than an unperturbed method. In Figure 5.17, the short term and long term behavior of

the domains shows that the induced flow system generates more domains, but also they do

not coarsen to larger domains as rapidly as the unperturbed case. When comparing the

Short Times Long Times

Normal 

Preparation

Induced 

Counterflow

Domain Formation with Induced Flow

Figure 5.17: Spinor domain formation with and without induced flow
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power spectral density (Figure 5.18), the induced counterflow has domains that begin to

appear slightly earlier than normal (≈ 50 ms), with higher spatial frequency on average,

suggesting the generation of smaller, but less energetically favorable, spin domains.

5.5 Conclusion

We observe the full gamut of time scales starting with the dynamical generation

of spin-domains from an initially non-equilibrium system followed by their subsequent

relaxation to progressively larger domains, i.e., coarsening. However, for times > 2 sec

this coarsening occurs with the only other relevant length scale: the spin healing length

ξ1D.



Chapter 6

Creating Artificial Gauge Fields

via Optical Raman Interactions

While ultracold degenerate gas systems lend themselves well to acting as quantum simu-

lators due to the high degree of control provided, there are many systems in physics that

cannot be accessed this way due to the inherent charge neutral property of our conden-

sates. This is problematic as many topics in physics involve electromagnetic phenomena,

and hence cannot be realized in a standard degenerate gas system.

Many experiments [74–76] have exploited the equivalent mathematical form of the

electromagnetic Lorentz force and the Coriolis force present in rotating systems. In these

systems, rotating the condensate within a confining trap creates an energy term in the

Hamiltonian analogous to a condensate of charged particles with a uniform magnetic field

present1. These systems exhibit properties similar to other ‘super’ systems - superconduc-

tivity and superfluidity - namely the signature creation of quantized vortices of rotation2.

The disadvantage of this method is that only one analogous system can be created - a

uniform magnetic field. For other geometries, or to simulate an electric field, one needs to

be able to engineer a more complex vector potential. A Raman coupling scheme provides

this ability by using the connection between a geometric phase (a Berry’s phase [77]) and

the form of the vector potential in quantum mechanics [20]. Using such a Raman coupling

1Without the more complex issue of electromagnetic atomic interactions beyond the usual
2for much more detail on this topic, skip on ahead to Chapter 8

138
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scheme, the engineering of light induced artificial electric [78] and magnetic [79] fields have

been created through modifying the dispersion relation in a controllable manner.

Here I describe the basic physical principles involving Raman coupling as it forms

the basic of the theory for Chapter 7 and Chapter 8. The first part of this chapter provides

the framework for Raman coupling schemes and generating artificial fields, relevant for

the non-uniform magnetic fields described in Chapter 8. The second half of this chap-

ter describes our Raman coupling scheme that couples all of the F = 1 states of 87Rb

simultaneously, and forms the basis for the exploration of magnetic phases in Chapter 7.

6.1 Artificial Gauge Fields and Raman Coupling

6.1.1 Electromagnetism in Quantum Mechanics

In classical physics, the electromagnetic field is primarily described by the physical electric

and magnetic fields (~E and ~B), mathematically represented by two vector fields in space.

These fields, through the Lorentz force F = q(~E + ~v × ~B) for particle of charge q with

velocity ~v, can describe the motion of any particle. Furthermore, the evolution of the

electromagnetic fields are governed by Maxwell’s equations, themselves only reliant on the

electromagnetic fields.

In quantum mechanics, we typically deal with energies, not forces. To account for

the electromagnetic fields, we instead use a formalism with the introduction of a scalar

potential φ and vector potential ~A such that: E = ~∇φ − ∂ ~A
∂t and ~B = ~∇ × ~A. The

Hamiltonian for a particle in an electromagnetic field is given by:

~H =
~2

2m
(~p− q ~A)2 + qφ (6.1)

By using a Raman coupling scheme, described in the next section, we can optically

induce terms in the Hamiltonian for our BECs that have the same form as Equation 6.1.
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Figure 6.1: Left: Geometry of the Raman coupling scheme. Right: Raman coupling
between the F = 1 states of 87Rb.

6.1.2 Raman Coupling Scheme

In our system, we created a Raman coupled system with the following setup (see Figure

6.1). First, we create our 87Rb condensate in our optical dipole trap and subject it to a

biasing magnetic field along the ŷ direction, which by the linear Zeeman effect breaks the

degeneracy between the 87Rb F = 1 states, separating them by an energy3 ~ωZ . We then

subject the BEC to two Raman beams, with their frequency difference ω1−ω2 = ωR ≈ ωZ ,

that intersect the condensate.

Within this setup, we consider the case of two counter propagating Raman beams as

in Figure 6.1. These beams have oscillation frequencies ω0 and ω0 + ∆ω where ω0 � ∆ω.

Given the geometry, the electric fields produced by the two laser beams can be written as:

~E1 = E1êi exp(i(kx− ω0t)) (6.2)

~E2 = E2êj exp(i(−kx− ω0t−∆ωt)) (6.3)

Where E1, E2 are the field amplitudes, k = 2π/λR is the wavevector and êi, êj are the

3I am assuming the quadratic Zeeman effect is negligibly small for now
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polarizations of the two laser beams. It follows through the principle of superposition that

the total field seen by the atoms is the sum of the two fields:

~E = exp(−iω0t){E1êi exp(ikx) + E2êj exp(−ikx− i∆ωt)} (6.4)

We are interested in the vector light shift ~E∗ × ~E of the total electric field. The vector

light shift term is proportional to an effective magnetic field B̂eff ∝ ~E∗ × ~E which then

interacts with the atoms according to −~µ · B̂eff = −gfmF~F̂ · B̂eff with gf being the

gyromagnetic ratio, mF being a particular spin state (note the spin dependence, hence

the ‘vector’ nature of the interaction) and F̂ being the spin-1 spin projection operator [80].

We compute this and find

~E∗ × ~E = 2E1E2(êi × êj) cos(2kx+ ∆ωt) (6.5)

Giving an interaction term:

ĤRaman = −2gfmF~E1E2(êi × êj) · F̂ cos(2kx+ ∆ωt) (6.6)

If we set the polarizations êi, êj equal to ŷ, ẑ, then we get a projection of the interaction

with the F̂x operator:

ĤRaman = −2gfmF~E1E2F̂x sin(2kx+ ∆ωt) (6.7)

If we scrunch numerical coefficients into an interaction strength ΩR, we get:

ĤRaman =
~ΩR√

2
cos(2kx+ ∆ωt)F̂x (6.8)

6.1.3 The Raman Coupled Hamiltonian

Using the result in Equation 6.8, we make a transformation into the rotating frame at

∆ω and into the momentum basis. Due to the non-commutative position and momen-

tum terms in the Raman coupling Hamiltonian, we get a Hamiltonian which has a spin-

dependent momentum offset:
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Increasing Raman Coupling Strength, ΩR

Figure 6.2: The effect of Raman coupling on the atomic dispersions. As the coupling
strength ΩR is increased, the eigenenergies of the system form a band structure owing
to avoided crossing in the system.

ĤRaman =


~2
2m(p− 2k)2 − δ ΩR/

√
2 0

ΩR/
√

2 ~2p2
2m + ~ε ΩR/

√
2

0 ΩR/
√

2 ~2
2m(p+ 2k)2 + δ

 (6.9)

Where the terms δ and ε are the Raman detuning from resonance and the quadratic

Zeeman shift (Section 3.1.1) respectively. We define the characteristic energy of the system

in terms of the recoil energy EL = ~2k2
L/2m and the recoil momentum KL = 2π/λR.

Here I focus on the transformation of the kinetic energy in the x̂ direction (the Ra-

man direction defined by the polarizations of the Raman beams) as the ŷ and ẑ directions

are unchanged. The Raman interaction Hamiltonian in Equation 6.9 governs the physics

behind Chapter 7 and Chapter 8.

The eigenstates for the Raman Hamiltonian consist of three separated energy-

momentum dispersion bands (Figure 6.2) that arise from the avoided crossing of the offset

bare state dispersions (~2(k ± 2)2/2m, dashed curves in Figure 6.2) as ΩR is increased.

For the experiments presented within the rest of this thesis, I am only concerned with

the lowest energy band of the Raman Hamiltonian - we make the good assumption here

that we load atoms adiabatically into the lowest band (ground state) and they like to stay

there.
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6.1.4 The Scalar and Vector Light Shifts

For our Raman processes, we want the two-photon transition caused by the two laser beams

to be off resonance. However, when operating at a wavelength away from resonance, we

must contend with other effects. From the arguments in Section 3.4 about optical trapping,

an optical field applied to an atomic system will cause a shift in the energy levels of the

system. Here we refer to this field as the scalar light shift, or scalar polarizabilty. This

effect is highly undesirable in our system as the presence of the Raman beams will affect

the trap geometry, and any alignment drifts will move the trapping potential as well4. For

the scalar light shift, as in Equation 3.28, in the limit of large detuning from resonance

the light shift goes as:

∆Vlight ∝
Ω2

δ
(6.10)

Where Ω, as usual, is the Rabi frequency proportional to the intensity of the light, and δ

is the detuning.

In a hand-waving argument, we can say then that for blue shifted light (δ > 0)

the field will raise the energy of the system making an anti-trap, and for red-shifted

light (δ < 0) we get an attractive trapping potential. Consider the case where we have

two resonances in the system, in our case the 87Rb D1 and D2 lines. For frequencies

of light that are in between the two resonances, there is both an effective trapping and

anti-trapping potential. Some form of the intermediate value theorem then says that

there must be a frequency in between these two resonances such that their effect cancels,

leaving no energy shift. We call this frequency the magic wavelength [81, 82], and in

87Rb, λmagic = 790.024 nm. For this reason, our Raman laser is set (but not locked) to

790.024 nm when we perform experiments.

For systems where ~E∗ × ~E is non-zero, we also are concerned with the vector light

shift, which shifts the different Zeeman sublevels with different energies. I measured this

effect in the lab by measuring the shift in an RF resonance when only one of the Raman

beams is present in the sample. By scanning for resonance with no beams on, and each of

4This can be used as an alignment technique when setting λR 6= 790 nm and moving the condensate
with the Raman beams
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Figure 6.3: Shift in resonance due to the vector light shift. The resonance was first
measured with no Raman beams present (blue) and the presence of a Raman beam,
one at a time, shifted the resonance, signifying a state-dependent energy shift.

the two Raman beams on, we can visually see the shifting resonance in Figure 6.3. Here

the measure of resonance is related to measuring the relative fractions of atoms in the

mF = −1, 0 states, as described in Section 4.4.7.

Polarization of the Raman beams strongly influences the magnitude of the vector

light shift. While holding the system at resonance, one beam at a time was sent toward

the atoms while a λ/4 waveplate was rotated, therefore adjusting the polarization of

the Raman beam. The data in Figure 6.4 show that the atomic resonance of the system

changes on the order of the recoil energy EL as the polarization changes. This measurement

can help optimize the polarization in the beams at the atoms, including any effects of the

Raman beams traversing the glass experiment cell.
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Vector Light Shift and Polarization
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Figure 6.4: Measurement of the vector light shift effect on atomic resonance as a
function of the polarization in each Raman beam. A λ/4 waveplate on each Raman
beam was rotated through 360◦, and the resonance shift measured.

6.1.5 Synthetic Magnetic and Electric Fields From Raman Coupling

Definition of the Synthetic Vector Potential Ax

Once the atoms are adiabatically loaded into the Raman dressed state, their dispersion

is defined by the curvature of the lowest band. In general, we describe this dispersion

engineering by:

E(kx) =
~2(kx −Ax(ΩR, δ))

2

2m∗(ΩR, δ)
(6.11)

Where Ax/~ = kmin, the momentum corresponding to the lowest energy possible, and m∗

is the effective mass, which is to account for the correction of the dispersion curvature

compared to the parabolic free-particle dispersion. Figure 6.5 shows how the value of the

vector potential is determined in the dispersion curve.

It is important to note that the properties of the Raman dispersion, Ax and m∗,

can be adjusted directly via the Raman coupling strength ΩR and the detuning δ. The

detuning plays a large role in shaping the dispersion, as the detuning can break the
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Figure 6.5: The definition of the Vector Potential Ax is given by the momentum
value associated with the minimum energy in the Raman dispersion. The change
of the vector potential as a function of the detuning δ from resonance is shown at
negative values (left) and positive values (right).

symmetry of the mF = ±1 states, causing a preference for one state, and accordingly

shifting Ax as well. Figure 6.6 shows how the dispersions change as a function of δ. As

the detuning from resonance is increased, the dispersion curve will ‘tilt’ in such a way that

the minimum in the momentum dispersion (defined as Ax above) is no longer zero (shown

by the solid light-blue curve). Furthermore, as the detuning is increased, the zero energy

of the dispersion will decrease as well.

If we measure the vector potential as a function of detuning, we get the relationship

shown in Figure 6.7. For large values of δ, the vector potential Ax will asymptote to ±2kL.

Creating Synthetic Magnetic Fields

In the context of vector potentials, the magnetic field ~B is defined as ~B = ~∇ × ~A. Pre-

viously we applied a real magnetic field (a constant biasing field)5 of B0ŷ as described

in Section 6.1.2, which for our spatially uniform one-dimensional vector potential Ax,

∂A
∂xi

= Beff = 0. However if we apply a real magnetic field profile of B(y) = B0 + B′y, a

linearly dependent field strength along the ŷ direction, this will create a linearly depen-

5We purposely balance the biasing Zeeman field such that at the center of the BEC, δ0 = 0
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dent detuning δ(y) = δ0 + δ′(y). From looking at Figure 6.7 and Equation 6.11, we note

that the vector potential now becomes a function of y as well: Ax(y). In this case the

term Beff = ∂A
∂y 6= 0, yielding an effective magnetic force on the atoms. For calculations of
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Figure 6.7: Calculation and measurement of the vector potential as a function of
detuning at ΩR = 7EL. Ax asymptotes to ±2kR for large ΩR.
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Effective Vector Potential and Magnetic Field
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Figure 6.8: For a spatially dependent vector potential Ax(y) (created by a real
magnetic field gradient), there exists a non-zero effective magnetic field. Example at
at ΩR = 7EL.

magnetic field strength, we define the effective “charge” of atoms to be that of the electron

charge e.

For schemes with ΩR > 4EL (a single dispersion minima) and δ′ > 0, this yields

a quasi-linear region near y = 0, giving a Beff that is constant. If ΩR and δ′ are tuned

such that the majority of the condensate is within this region of constant magnetic field,

the system becomes equivalent to the original rotating trap experiments that first created

vortex lattices in BECs [74–76]. The physics of this system is extended further to examine

the effects of non-uniform fields across the condensate in Chapter 8, and the consequences

on vortex nucleation when crossing a transition between a non-uniform to uniform field

configuration.
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Rotational Motion (Vortices) from an Effective Magnetic Field

Figure 6.9: Observed vortex formation in a BEC subject to a synthetic magnetic
field. A uniform synthetic field induces a Lorentz force to the ‘charged’ particles,
causing cyclotron (rotational) motion

Creating Synthetic Electric Fields

The electric force is related to the rate in which the vector potential changes in time, that

is: ~E = ∂A
∂t . This effect has been previously studied [78], and here I want to point out

our application of the synthetic electric field in the experimental apparatus. Because the

value of Ax depends on ΩR, it follows that a time dependent change in ΩR, effectively the

intensity of the Raman laser beams, will cause a synthetic electric field. We commonly

need to increase the Raman coupling in slow ramp ups to avoid large momentum transfers

via the electric effect. We also use the electric field to our advantage when doing TOF

imaging. When we release the condensate from the optical dipole trap before imaging,

we also suddenly switch off the Raman beams. The rapid change imparts momentum to

the different components (spin and momentum) of the condensate, which after the TOF

free-fall, have become spatially separated. This separation is what allows us to measure

the momentum states of the BEC (see Section 6.1.6).

6.1.6 Measuring Raman Coupled Systems in TOF

To measure the spin in momentum states of the condensates, we have two methods avail-

able, a snap-off method and an adiabatic deloading method.

The snap-off method is a projection of the Raman dressed state into the bare spin-

momentum basis. In this method we turn off the Raman coupling instantly at the start

of TOF (hence the snap-off name) and allow the atoms to free-fall. The projection to

the bare states will cause the states with differing momentum to be spatially displaced
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Figure 6.10: Measurement of Raman coupled system after time-of-flight (TOF).

after having time to expand (this is essentially the argument of TOF being a mapping of

momentum to position space in Section 2.3.1). To resolve the spin components, we apply

a Stern-Gerlach pulse that separates the spin components on the imaging axis orthogonal

to the momentum direction. This method allows us to image all |mF , k〉 states of the

BEC.

In the first 2 ms of TOF we decrease ΩR adiabatically to 0 while simultaneously

ramping the detuning δ � EL from resonance. This process maps the laser-dressed

system into a single spin-momentum state BEC [83], and in addition imparts a position-
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Figure 6.11: Projection of each |mF , kL〉 state on the camera. The spins travel in
different amounts along the Raman coupling momentum direction.

dependent artificial electric field as A becomes constant, inducing an overall shearing

motion. This method works well for measuring the composition of the Raman eigenstates,

or for observing structure such as vortices.

Calibrating the Raman Coupling Measurements

We found in our system that when performing snap-off style imaging, we saw that the

mF = ±1 states traveled asymmetrically during TOF. This effect, owing most likely to

small background magnetic field gradients present during TOF, needs to be accounted

for when doing experiments that measure the momentum state of the BEC as a function

of position on the camera. To calibrate the spin and momentum states on the camera,

we first prepared the system with an equal mixture of the mF states using an RF pulse,

then pulsed the Raman coupling briefly to populate momentum states at −2, 0,+2 kL.

This method produces a small population of atoms in all states, which can be measured

simultaneously (Figure 6.11). By letting the apparatus run taking many shots like in

Figure 6.11, we can gather a statistical measure of the location of each |mF , kL〉 state on

the camera along with uncertainties.
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6.2 Raman Coupling in a Spin-1 System

In the limit of low biasing fields, such that εq < ΩR (εq is the quadratic Zeeman

shift, Section 3.1.1), the coupling scheme in Section 6.1.3 can address all of the mF states

equally, allowing full control of the F = 1 ground state. However, as biasing field strength

increases, so as to have the energy gap between the states larger, εq will increase to

where εq > ΩR for all experimentally obtainable values of ΩR. Previous experiments [84]

with artificial gauge fields were performed in pseudo spin 1/2 systems where either the

mF = −1 or mF = +1 state is detuned far away to where the Raman coupling only

addresses a transition from one of the mF = ±1 states to mF = 0, using this single spin

coupling as an advantage.

We developed a scheme that Raman couples all of the F = 1 states in 87Rb together

for an arbitrary strength biasing field, providing spin-1 spin-orbit coupling in all situations.

To do this, we have two counter-propagating Raman beams with frequencies ω1 and ω2

intersecting the BEC as previously. However we now put a second frequency onto one of

the beams such that there is a super position of ω2 and ω3 frequencies. In this scheme,

the ω2 frequency address the mF = −1 to mF = 0 transition and ω3 frequency address

the mF = +1 to mF = 0 transition (Figure 6.12).
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Figure 6.12: Energy level diagram for a spin-1/2 (left) and spin-1 (right) Raman
coupling scheme. For large biasing magnetic fields, the quadratic Zeeman shift causes
an asymmetry in coupling between the mF = ±1 states, and only one transition can
be on resonance with a two frequency Raman scheme, allowing for an effective spin-
1/2 system. By adding a third frequency, all three states can be coupled, regardless
of the quadratic shift.

6.2.1 An Optically Tunable Effective Quadratic Zeeman Shift

As before with the two beam case, we are interested in the interaction of the atoms and

the effective magnetic field arising from the vector product of the electric field. If we write

down the superposition of the field for a three frequency coupling scheme in a method

similar to Section 6.1.2, we get:

~E = E1êie
ikx−iω1t + E2êje

−ikx−iω2t + E3êje
−ikx−iω3t (6.12)

I will assume that E2 and E3 are the same (i.e. we put the same power into each frequency

component of the beam, as done in experiments). Following the same steps as previously

we can arrive at the interaction terms from these beams:
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ĤRaman =
~ΩR√

2
F̂x (cos(2kx− (ω1 − ω2)t) + cos(2kx− (ω1 − ω3)t)) (6.13)

Here I define a relative frequency ω̄ = ω3 − ω2 = 2εq + 2εeff where εq is the quadratic

Zeeman shift of the system, and εeff is a term we call the effective Zeeman shift which I

will describe more momentarily. Using this definition and making a transformation into

the frame rotating at ω1 − ω̄/2, we get a total Hamiltonian of the form:

ĤRaman =


~2
2m(p− 2k)2 − δ ΩR/

√
2 0

ΩR/
√

2 ~2p2
2m + εeff ΩR/

√
2

0 ΩR/
√

2 ~2
2m(p+ 2k)2 + δ

 (6.14)

Where

εeff =
ω̄

2
− εq =

ω3 − ω2

2
+ εq (6.15)

By adjusting the relative frequencies of ω2 and ω3, we can alter the effective quadratic

Zeeman shift that the mF = 0 state experiences.

Floquet Theory in the Spin-1 Coupling Scheme

The spin-1 Raman coupling Hamiltonian has some subtlety hiding beneath the surface

of Equation 6.14. The use of the rotating wave approximation in the transformation

involving ω̄ is only that, an approximation. The introduction of a third frequency creates

a plethora of issues arising from the different beat-tones present in the optical field. To

be accurate and find the true energies of the system, we need to consider the system

in a Floquet formalism [85]. Floquet theory is roughly a temporal version of Bloch’s

theorem for a spatially periodic Hamiltonian. For the time-dependent periodicity, we

have a Hamiltonian of the form:

Ĥ(t) = Ĥ0 + V (t) (6.16)

With V (t) being periodic with period T:
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Floquet Bands in the Spin-1 Raman Scheme
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Figure 6.13: Three Floquet bands calculated for the spin-1 setup with εq ≈ 90 kHz,
ωR = 25 MHz. Dashed lines represent the free-particle dispersions at zero coupling
with mF = −1, 0,+1 represented as blue, purple, red respectively.

V (t+ T ) = V (t) (6.17)

Then the solutions take the form of:

ψ(t) = e−intφ(t) (6.18)

φ(t+ T ) = φ(t) (6.19)

Where n, as usual, is an integer. The idea of the Floquet solution then is to use these

conditions to recast the periodic Hamiltonian into one in which we look for solutions in the

frequency state basis. The solution gives a set of repeating energy-bands that are separated

by the value of the real quadratic Zeeman shift εq. For this reason in the experiment in

Chapter 7 we set the linear Zeeman shift (the difference in ω1 − ω2) to 25 MHz, yielding
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εq ∼ 90 kHz, which helped to decouple interactions between the Floquet bands.

Although we work at high Zeeman splittings to reduce the coupling between the

Floquet bands, there is still an effect present. For working at 25 MHz (such as in Chapter

7), the corrections to εeff due to the coupling ΩR in the Floquet bands can be approximated

by the polynomial:

ε∗q(ΩR) = εq + Ω2
R

{
−4.9 · 10−2 + 1.56 · 10−2ΩR − 4.41 · 10−3Ω2

R

− 5.8 · 10−4Ω3
R − 2.76 · 10−5Ω4

R

}
(6.20)

Where all terms are in units of EL.

6.2.2 Spin-1 Raman Coupling Parameter Space

From the spin-1 Hamiltonian in Equation 6.14, we can calculate the effect of tuning the

effective Quadratic Zeeman shift in the system at a fixed value of ΩR. For the rest of this

discussion, I am assuming that the detuning δ = 0, which keeps the symmetry between

the mF = ±1 states. In the regime of very little Raman coupling (ΩR ∼ 0), we have that

the bare quadratic Zeeman shift will shift the bare mF = 0 dispersion state downward in

energy compared to the mF = ±1 states. However, as we increase the values of εeff , the

mf = 0 state will reach a critical value when all three states are degenerate in energy,

and an increase further will put the mF = 0 dispersion higher in energy than the other

two states (Figure 6.14). A large enough value of εeff can even make the mF = 0 state

disappear into an unstable configuration.

If we hold the value of εeff constant and increase the value of ΩR, a similar process

occurs. As the coupling strength ΩR increases, the bands between dispersion widen, and

the k = 0 state can go from being stable to metastable to unstable (Figure 6.15).

From this description, we can see that between the values of εeff and ΩR, there exist

different regions where the Raman coupled dispersions will have three, two or one minima.

Naturally, this leads to a parameter space with different phase transitions that can exist.

Figure 6.16 shows a parameter space between εeff and ΩR that shows the different regions
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Increase Effective Quadratic Zeeman Shift, εq

Figure 6.14: As the effective quadratic shift εq is increased (with ΩR = 2EL con-
stant), the minima in the dispersion associated with the mF = 0 bare state raises in
energy with respect to the other minima. Increasing the value can take the system
from 3 to 2 minima in the dispersion.

of dispersions that can exist within the system. Furthermore, there are regions in the

parameter space that have metastable configurations, and sets of points where the energy

of each dispersion minima is degenerate. The physics of this complex parameter space is

explored in Chapter 7 in the context of a magnetic model with phase transitions. Here it

is presented as a reference for the ideas presented later.

Increasing Raman Coupling Strength

(Example at εq = 2)

Figure 6.15: At particular fixed values of εq (here = 2EL), incrasing the Raman
coupling strength ΩR causes the system go from 3 to 2 to 1 minima as the increased
coupling strength causes a flattening of the band.
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Figure 6.16: Tuning the parameters coupling (ΩR) and relative frequencies (effec-
tive shift εq) of the Raman beams yields a parameter space with distinct classes of
dispersion relations.

Critical Locations in Parameter Space

Starting from Equation 6.14 for the spin-1 Hamiltonian, it is possible to algebraically

solve6 for the locations where the system undergoes transitions between the number of

minima and also solve for the line of points where all the energy minima in the system are

degenerate.

The tricritical point of the system (where all of the regions touch) is located at7:

(ΩC, εC) = (16

√
5
√

5− 11, 24
√

5− 52) (6.21)

≈ (6.795 ER, 1.666 ER) (6.22)

The boundary between the 3 minima and 2 minima regions is given by (for ΩR less

than ΩC):

Ω =

√
1

8

[
−16 + 72εeff − ε2eff ± (12 + εeff)

√
−112 + εeff(88 + εeff)

]
(6.23)

6Algebraically solve means use Mathematica
7All of these trends are true up to the annoying

√
2 factor that may or may not be in the definition of

the coupling strength ΩR
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Where the boundary is given the term of ± that gives a real solution. Similarly, this

equation gives the 2 to 1 transition boundary for the positive term, with Ω > ΩC. The

boundary for the 3 to 1 transition is given by (for (ΩR, ε) less than (ΩC, εC)):

Ω =

√
−8(4 + εeff)3

27(εeff − 4)
(6.24)

The triple-degenerate line, where all three wells have the same energy minima is given by

(for (ΩR, ε) less than (ΩC, εC)):

Ω =

√
−8
(
−72 +

√
−(−36 + εeff)2(−4 + εeff) + 10εeff

)
(6.25)

6.2.3 Experimental Implementation

Generating a Double Frequency Beam

We developed two methods to generate the double frequency beam for ω2 and ω3. When

first testing the system and studying the physics, we originally sent the two frequencies to

a single AOM via combing two RF signals prior to the AOM and amplifier. This method

generated noticeable higher harmonics (measured as beat tones on a photodiode) that

introduced noise and heating into our Raman experiments and measurements. After the

experiment in Chapter 7, we had developed an RF filter circuit to mitigate this effect.

However, for the experiment in (Chapter 7), we combined the light between two beam

lines in free space via polarization optics, as described in Section 4.3.7. The optics used

to focus the beam and set the polarization at the atoms is described in Section 4.1.5, and

the Raman laser system in Section 4.3.7

BEC Lifetimes and Raman Coupling

The lifetime of the BEC when dressed with the Raman beams is much less than that of the

bare condensate due to heating from spontaneous emission. This typically limits Raman

experiments in our apparatus to around one second in length. However, in the original

setup we found that the Raman coupling would cause the immediate destruction of the
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Figure 6.17: Measurements of the BEC lifetime prior to installing laser-line filters
after the tapered amplifiers. The presence of the Raman beams quickly heated the
condensate.

condensate. We traced this issue back to the amplified spontaneous emission (ASE) of the

tapered amplifiers (TAs) (Section 4.3.7) we used to generate the Raman beams. To block

the ASE, we placed a set of laser-line optical filters (Semrock 808 nm) after the TAs and

adjusted the angle to maximize 790 nm transmission.



Chapter 7

Magnetic Phases of Spin-1

Spin-orbit Coupled Bose Gases

In Chapter 6, I laid the foundations for the spin-1 coupling scheme and described the

parameter space of the dispersion energy as the function of the Raman coupling power ΩR

and an optically induced effective Zeeman shift εeff . For this spin-orbit coupling (SOC)

system, Figure 6.16 described the various regions where the dispersion could have 1, 2 or

3 distinct energy minima corresponding to similarly distinct Raman states.

Here I describe our experiment investigating the connection of this system to a

magnetic model involving quantum phase transitions of both first and second order. In

the magnetic model, the system can transition between an unmagnetized state that is

effectively a polar BEC state (all the atoms are in |mF = 0, k = 0 kL〉), to a ‘ferromagnetic’

state (all the atoms are in |mF = ±1, kL = ±2 kL〉). As the system undergoes transitions to

have the global minima in the energy in different states, the system quickly condenses into

this new ground state, as evidenced by our observations of a narrow first order transition.

7.1 Magnetic Ordering in the Spin-1 Spin-Orbit Coupled

System

161
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7.1.1 Definition of Magnetic Order in the Spin-1 SOC System

For spin-1/2 systems (i.e, total angular momentum, f = 1/2) like electrons, ferromagnetic

order can be represented in terms of a magnetization vector M = 〈Ŝ〉/~. This is rooted in

the fact that the three components of the spin operator Ŝ transform vectorially under ro-

tation. More specifically, any Hamiltonian describing a two level system may be expressed

as H = ~Ω0 + Ω1 · Ŝ, the sum of a scalar (rank-0 tensor) and a vector (rank-1 tensor)

contribution. The former, described by Ω0, gives an overall energy shift, and the latter

takes the form of the linear Zeeman effect from an effective magnetic field proportional

to Ω1. Going beyond this, fully representing a spin-1 (total angular momentum f = 1

with three mF sublevels: |−1〉, |0〉, and |+1〉) Hamiltonian with angular momentum F̂

requires an additional five-component rank-2 tensor operator – the quadrupole tensor –
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Figure 7.1: Calculation of the magnetization Mz in the magnetic system as function
of Ω1 at fixed Ω2 = 2EL. Insets: As Ω1 is increased, the dispersion energy in the
Raman coupling scheme (Section 6.2.2) will transition from having a different number
of minima.
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and therefore there exist “magnetization” order parameters that are not simply associated

with any spatial direction [60,62,86].

Studies in GaAs quantum wells [87, 88] showed that material systems with equal

contributions of Rashba and Dresselhaus SOC described by the term αkxF̂z, subject to

a transverse magnetic field with Zeeman term Ω1F̂x, can equivalently be described as a

spatially periodic effective magnetic field. Our experiments with spin-1 atomic systems

use Raman laser with wavelength λ to induce SOC of this form [89–95] with strength

α = 2~kR/m, where the single-photon recoil energy and momentum are ER = ~2kR
2/2m

and ~kR = 2π~/λ. This atomic system can therefore be described by the magnetic Hamil-

tonian:

Ĥ =
~2k2

2m
+ Ω1(x)·F̂ + Ω2F̂

(2)
zz , (7.1)

describing atoms with mass m and momentum ~k interacting with an effective Zeeman

magnetic field Ω1(x)/Ω1 = cos(2kRx)ex − sin(2kRx)ey helically precessing in the ex-ey;

and an additional Zeeman-like tensor coupling with strength Ω2. From Section 6.2.2, our

value of ΩR maps to the strength of the vector interaction with the spins, Ω1. Here,

F̂
(2)
zz /~ = F̂2

z/~2−2/3 is an element of the quadrupole tensor operator, where the strength

of the interaction Ω2 is related to the effective Quadratic Zeeman shift in Section 6.2.1 by

the relation Ω2 = −εq.

For the magnetic model, we consider a magnetization term to track the relative

population of the Raman states:

Mz =
n±1 − n0

n±1 + n0
(7.2)

Where n±1 is the atom number in the sum of the mF = ±1 states, and similarly n0 is the

population in the mF = 0 state. Here Mz represents the order parameter of our model

system. Because we are defining the magnetization based on the number of atoms in the

absolute value of the spin component, the system is reminiscent of a spin-1/2 system with

the spin states either pointing up or down.
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However, in our system we can define a second order parameter Mzz:

Mzz =
n0

n±1 + n0
(7.3)

This order parameter, that we call the tensor magnetization, is related to the tensor

operator Ω2 in our model Hamiltonian.

7.1.2 Parameter Space in the Magnetic Model

As described in Section 6.2.2, this system contains a parameter space that, in the magnetic

model, depends on the values of Ω1,Ω2. Figure 7.2 shows the parameter space within this

new framework with the magnetization Mz shown.

From the discussion of critical lines and points in Section 6.2.2, we can calculate

regions where first-order transitions and second-order transitions can occur. These two
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transitions in the system are represented by pink and orange lines respectively. The
region contained by the light blue dashed line represents where metastable magnetic
states are present.



165 7.1. Magnetic Ordering in the Spin-1 Spin-Orbit Coupled System

Parameter Space and Magnetization
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Figure 7.3: Magnetic states as a function of Ω1 at select Ω2. Left: At positive Ω2,
the system goes from having metastable magnetized (Mz > 0) states available (blue),
to having a single unmagnetized state (Mz = 0, purple). Center: At lower Ω2, the
system can undergo a continuous transition from magnetized states to unmagnetized
states in a second order transitions. At low Ω1, the unmagnetized state can persist
as a metastable state. Right: With Ω2 decreased further, the magnetization profile
no longer contains any metastable states.

phase-transitions continuously connect at the point (Ω∗1,Ω
∗
2) (as defined in Equation 6.22),

the purple circle in Section 6.2.2, where the small-Ω1 first-order phase transition gives way

to the large-Ω1 second-order transition, and together these regions constitute a curve of

critical points {(ΩC
1 ,Ω

C
2 )}.

Second-Order Transitions

The second-order transition can be intuitively described starting in the large Ω1 limit

where the system forms a spin helix BEC. This order increases the system’s kinetic energy,

leading to the second-order phase transition into the ferromagnetic phase shown in Figure

7.4 as Ω1 is varied. This second-order phase transition is analogous to other systems

with effective spin-degrees of freedom such as double-leg ladders [96] or engineered optical

lattices [97,98].
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Figure 7.4: Second order phase transition. As Ω1 is increased with Ω2 & 1.7 ER,
the ferromagnetic states begin to approach a value of Mz = 0. The two states merge
continuously to a single unmagnetized state for large enough Ω1. Solid black line
represents the uncoupled minimum energy.

First-Order Transitions

In the limit of infinitesimal Ω1, the tensor magnetization terms favors either a polar BEC

for Ω2 > 0 (mF = 0: unmagnetized, Mz = 0), or a ferromagnetic BEC for Ω2 < 0

(mF = +1 or −1: magnetized, |Mz| = 1). As with spinor BECs [64], these phases are

separated by a first-order phase transition at Ω2 = 0, where the mF = 0 state is either

lower or higher than the mF = ±1 states due to the tensor energy shift (i.e. quadratic

Zeeman shift of the mF = 0 state). As bosons have a strong preference to condense into

the lowest energy state of the system through Bose stimulation [99], immediately after the

configuration has crossed the transition the state of the system will change.

Metastable States

From Figure 7.5, for values of Ω2 not far from the first-order transition, all three magnetic

states exist. Here a metastable state with Mz = 0 persists in the ferromagnetic phase,
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Figure 7.5: First order phase transition. As Ω2 increases, the unmagnetized state
(bare state ≈ |mF = 0, k = 0〉) raises in energy with respect to the symmetric ferro-
magnetic states. When at higher energy, the BEC will condense into the energetically
favorable ferromagnetic states. For Ω2 near the transition all three states exist, with
either the unmagnetized state or magnetized states being metastable. Solid black line
represents the uncoupled minimum energy.

and a pair of metastable states with Mz 6= 0 persists in the unmagnetized phase. As

mentioned in the previous section, after crossing the first-order phase transition, the BEC

will condense into the lowest energy state. However, this process takes dramatically longer

for the first-order transition than the second-order transition (up to 1.5 s compared to

50 ms).

Another interesting configuration is one where the values of Ω1 and Ω2 place the

system on a critical point of the first-order transition. In this situation, all three states

are degenerate in energy1 which can lead to interesting many-body phases where the

miscibility of the different bare spin states is altered [100], including an tripartite mixture

in-plane ferromagnetic phase with no analogue in spinor BECs or effective spin-1/2 SOC

BECs [101].

1Our group lovingly refers to this condition as being on the ‘triple degenerate line’



168 7.2. Experimental Setup and Measurements

7.2 Experimental Setup and Measurements

As shown in Figure 7.6, we realized the magnetic system by illuminating 87Rb BECs

in the F = 1 ground state manifold with a pair of counter propagating and orthogonally

polarized Raman lasers that coherently coupled the manifold’s mF states. Physically, the

spatial interference of the orthogonally polarized laser beams give rise to the helical effec-

tive magnetic field with period λ/2. As first showed [90] using effective F = 1/2 systems,

this introduces both a spin-orbit and a Zeeman term into the BEC’s Hamiltonian, equiv-

alent to Equation 7.1. Here the quadratic Zeeman shift from a large bias magnetic field

B0ez split the low-field degeneracy of the |−1〉 ↔ |0〉 and |0〉 ↔ |+1〉 transitions, and we

independently Raman coupled these state-pairs with equal strength Ω1. We dynamically

tuned the quadrupole tensor field strength Ω2 by simultaneously adjusting the Raman

frequency differences; as shown in Figure 7.6 we selected frequencies differences where the

detuning from the |+1〉 to |0〉 and |−1〉 to |0〉 were both equal to Ω2 (see Methods Sum-

mary). Without this technique, only the upper half-plane of the phase diagram (Figure
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Figure 7.6: Schematic and level diagram. We used the spin-1 Raman coupling
scheme described in Section 6.2 to probe the parameter space of the magnetic system.
The |−1〉 ↔ |0〉 and |0〉 ↔ |+1〉 transitions of the F = 1 ground state manifold of
87Rb were independently Raman coupled, giving experimental control of Ω1 and Ω2.



169 7.2. Experimental Setup and Measurements

7.2) would be accessible, containing only an unmagnetized phase and lacking any phase

transitions.

In each experiment, we first prepared BECs at a desired point in the phase diagram,

possibly having crossed the phase transition during preparation. A combination of trap

dynamics [102, 103], collisions, and evaporation [104] kept the system in or near (local)

thermal equilibrium. We then made magnetization measurements directly from the Bose-

condensed atoms measured in the spin resolved momentum distribution obtained using

the time-of-flight (TOF) techniques described in Section 6.1.6.

7.2.1 Control of Magnetic Field Noise

In order to make precision measurements of the phase transitions, we needed to have

absolute control of the magnetic fields within the experiment. Section 6.1.5 describes

the effect of detuning the Raman coupling resonance, and the subsequent shifting of the

minima of the energy dispersion. In our system, we attempt to combat this by using

magnetic field stabilization techniques (Section 4.4.7), in particular using the flux gate

field stabilization system (Appendix A) to remove long term drift.
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Figure 7.7: Magnetization |Mz| as a function of Ω1 at Ω2 = 2.5ER. The solid
curve represents zero detuning. The dotted curve represents the magnetization with
a detuning of δ = 0.2ER. The shaded region between the two curves represents the
region of uncertainty for such a detuning.
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Through such efforts, we have an approximate 1 mG shot-to-shot variation in the

magnetic field as measured by the atoms. However, this translates into an ≈ 0.2 ER

detuning in the system. Figure 7.7 illustrates the woes of the magnetic field: a small

detuning uncertainty can change the magnetization drastically near the transition lines

described in Section 6.2.2. We can further try an post-select images that are obviously

highly detuned (as measured by an imbalance in mF = ±1 in the measurement process),

however this ultimately limits the precision we can achieve.

7.3 Measurements
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Figure 7.8: Ramping sequence used for the horizontal (primarily second-order tran-
sition) measurements. We adiabatically transfer the atoms to a highly coupled, but
unmagnetized, state, and slowly lower Ω1 to cross the second-order transition.
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Measurement of Phase Transition Boundary
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Figure 7.9: Magnetization Mz measured as a function of Ω1, showing both
second-order (red points) [Ω2(Ω1 = 0) = −3.7500(3)ER] and first-order(blue points)
[Ω2(Ω1 = 0) = −1.0ER] phase transitions in comparison with theory (black solid
lines).

7.3.1 Second-Order Scans

Our experiment first focused on second phase transitions. We performed the scans in the

following sequence (see Figure 7.8). First, we prepared the condensate in the unmagnetized

phase (Ω2 > 0) and ramped Ω1 far into the spin-helix phase. We then reduced the value of

Ω2 > 0 to the regime where second order transitions can occur. We then ramped Ω1 toward

zero, while trying to slowly cross the second order phase transition where the system goes

from one to two minima (Figure 7.4). We ramped Ω1 at a rate of ≈ −40ER/s, allowing

the system to adiabatically track the ground state, and allowed 50 ms for equilibration

before the measurement process described in Section 6.1.6.

By measuring at various end values of Ω1 at a given Ω2, we can map out the

magnetization (Figure 7.9). In each case, data is plotted along with theory with no

adjustable parameters. Repeating the horizontal scan processes for Ω∗2 < Ω2 < 0, we

found a sharp first-order transition within the magnetic system.

Using data of this type for a range of Ω2 and fitting to numeric solutions of Equation

7.1, we obtained the critical points plotted in Figure 7.10, bottom. Because horizontal

cuts through the phase diagram are nearly tangent to the transition curve for small Ω2,

this produced large uncertainties in ΩC
1 for the first-order phase transition.
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Measurement of Phase Transition Boundary
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Figure 7.10: Top: Measurement of the phase transition locations for the magnetic
system. Red circles represent vertical scans through parameters space, while teal
circles represent horizontal scans. The theory lines for the first and second order
transitions are highlighted by solid pink and orange lines, respectively. The critical
location where the two transition orders meet (ΩC

1 ,ΩC
2 ) is represented by the purple

circle with ΩC
1 mapped as a vertical purple line. Bottom: The width of the phase

transitions ( 20% and 50% widths)

7.3.2 First-Order Scans

We studied the first-order phase transition with greater precision by ramping Ω2 through

the transition at fixed Ω1 and found near perfect agreement with theory. To perform

these scans, we start with the BEC in an unmagnetized state with Ω2 > 0, similar to the

horizontal scans described previously. Here, we ramp Ω1 < ΩC
1 to stay primarily within

the first-order transition regime. We then ramp Ω2 across the first-order transition, and

measure the tensor magnetization Mzz after a hold time between 0.2 ms and 2 s to allow for

equilibration. The reason for this sequence is two fold. First, similar to the argument for

horizontal scans for the second order transition, the curve for the first order transitions is

perpendicular to a ramp in Ω2. Secondly our control of Ω2, set by the frequency difference

in the Raman beams used in the experiment, can be controlled to incredibly high precision,

allowing us to precisely measure the location and width of the first-order transitions.
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phase with Ω1 = 0.74(8)ER and Ω2 was ramped through the phase transition at ramp-
rates dΩ2/dt = −0.2,−0.3,−0.4, and −0.5ER/s (blue, black, red, and green symbols,
respectively). The curves are guides to the eye.
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For all the experimentally measured critical points (Figure 7.10), separating the

unmagnetized and ferromagnetic phase, we also measured the corresponding transition

width defined as the required interval for the curve to fall from 50% to 20% of its full range.

This width ∆ decreases sharply at Ω∗1, marking the crossover between second- and first-

order phase transitions as shown in Figure 7.10, bottom. In these data, the width of the

first-order transition becomes astonishingly narrow: as small as 0.0011(3)ER = h×4(1)Hz

at Ω1 = 0.41(1). This narrowness results from the energetic penalty associated with

condensation into multiple modes for repulsively interacting bosons.

7.3.3 Metastable Scans

Systems taken through a first-order phase transition can remain in long-lived metastable

states as described previously in Section 7.1.2. We began our study of this metastability by

quenching through the first-order transition at Ω1 = 0.74(8)ER with differing rates from

0.5 to 0.2 ER/s, as shown in Figure 7.12. We observed the transition width continuously

decreases with decreasing ramp rate, consistent with slow relaxation from a metastable

initial state.

We explored the full regime of metastability by initializing BECs in each of the mF

states, at fixed Ω2, then rapidly ramping Ω1 from zero to its final value fast enough that

the system did not adiabatically follow into the true ground state, yet slow enough that

the quasi-equilibrium metastable state was left near its local equilibrium. We found that

the rate . 200ER/s was a good compromise between these two requirements. For points

near the first-order phase transition three metastable states exist (Figure 7.14); near the

second-order transition this count decreases, giving two local minima which merge to a

single minimum beyond the second-order transition.

We experimentally identified the number of metastable states by using Mz and its

higher moments, having started in each of the three mF initial states. A small variance

in Mz, less than 0.25, indicates the final states are clustered together (associated with a

single global minimum) and it increases when metastable or degenerate ground states are

present. We distinguished systems with two degenerate magnetization states (Mz ≈ ±1)

from those with three states by the same method, since when Mz ≈ ±1, the variance of



175 7.3. Measurements

Ω
2
 (
E

R
)

0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4

Metastable States Measurements

1.) Start with BEC 

in

mf =0, ±1 on 

different shots

At the desired Ω2

Ω1 (ER)

3.) Measure Mz

2.) Slowly Ramp Ω1

Figure 7.13: Experimental sequence for measuring the metastability in the mag-
netic system. For each value of (Ω1,Ω2) that we measured, we take three separate
measurements. The three measurements are performed with the ramp shown, but
initializing the BEC in either the mF = 1, 0,−1 states.

|Mz| is smaller than 0.25, and it distinguishably increases beyond 0.25 as a third metastable

state appears with Mz = 0. In this way we fully mapped the system’s metastable states

in agreement with theory, as shown in Figure 7.14.
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final value; during this ramp Ω2 also changed, and the system followed the curved
trajectory in the bottom panel. Each displayed data point is an average of up to
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7.4 Conclusion

In conclusion, we accurately measured the two-parameter phase diagram of a spin-1

BEC, containing a ferromagnetic phase and an unmagnetized phase, continuously con-

necting a polar spinor BEC to a spin-helix BEC. The ferromagnetic phase in this itinerant

system is stabilized by SOC, and vanishes as the SOC strength ~kR goes to zero. Our

observation of controlled quench dynamics through a first-order phase transition opens

the door for realizing Kibble-Zurek physics [50,105] in this system, where the relevant pa-
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rameters can be controlled at the individual Hz level. The quadrupole tensor field ∝ F̂
(2)
zz

studied here is the q = 0 component of the rank-2 spherical tensor operator F̂
(2)
q , with

q ∈ {±2,±1, 0}. The physics of this system would be further enriched by the addition of

the remaining four tensor fields. The q = 0 term we included is the simplest of the tensor

fields to deploy, as it required control over frequencies. The q = ±1 components are rela-

tively simple to incorporate by RF-coupling the |mF = −1〉 to |mF = 0〉 and |mF = +1〉

to |mF = 0〉 transitions with different phases. The q = ±2 components require direct

coupling between |mF = +1〉 and |mF = −1〉 which is straightforward using two-photon

microwave transitions, but is challenging to include with significant strength.



Chapter 8

Vortices in Non-Uniform Magnetic

Fields

8.1 Overview of Vortices in Quantum Fluids

Degenerate ultracold atomic gases are a kind of quantum fluid which can have behav-

ior analogous to those present in other quantum systems ranging from exotic materi-

als [106, 107], to neutron stars [108]. Quantized vortices are a common element present

in superconductors [109], superfluids [110], and dilute atomic Bose-Einstein condensates

(BECs) [74], or any system where the single valuedness of the wavefunction demands

quantized circulation.

Here I discuss the physics of vortices in BECs, and the conditions in which they

are energetically favorable to form within the condensate. In the following sections, I

take a hydrodynamic approach that treats the condensate as a superfluid for all practical

purposes.

178
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8.1.1 Mass Flow and Conditions for Quantized Circulation

To consider the fluid flow of a condensate, we need to discuss the condensate in terms of

a density and mass flow. We start we the time-dependent Gross Pitaevskii equation:

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∇2 + V (~r) + g|ψ(~r, t)|2

)
ψ(~r, t) (8.1)

As mentioned we are interested in the density n = |ψ|2. Using the hydrodynamic descrip-

tion of BECs [16], to find the velocity of the fluid we multiply Equation 8.1 by ψ∗ and

subtract by the complex conjugate to get:

0 =
∂

∂t
|ψ|2 +∇ ·

(
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

)
(8.2)

We define the velocity of the condensate as:

~v =
~

2mi

(ψ∗∇ψ − ψ∇ψ∗)
|ψ|2

(8.3)

Making the substitution that n = |ψ|2 and the definition of v into Equation 8.2:

0 = ∂tn+∇ · (n~v) (8.4)

Which is the continuity equation for the dilute gas (directly analogous to the continuity

for fluids [111] and for charge conservation in electromagnetism [112]).

If we consider a wavefunction of the form ψ(~r) = f(~r)eilφ(~r), that has a real ampli-

tude f and a imaginary phase factor term then by Equation 8.2 it follows that the velocity

of the condensate is given as:

~v =
~
m
∇φ(~r) (8.5)

The interesting result from this hydrodynamical model is that the velocity flow of the

condensate is irrotational, i.e. ∇× ~v = 0. The wavefunction of the condensate must also

be single-valued and continuous, therefore along any closed loop in space, the phase of the

condensate can only advance by 2πl where l is an integer value. This requirement, more
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Figure 8.1: Radial cross-section of a uniform medium with a vortex at the center.
Due to the conditions on the wavefunction, the density must go to zero at the vortex
core and at far distance the density will approach a constant value.

mathematically stated is:

∆φ =

∮
∇φ · d~l = 2πl (8.6)

Using the identity in Equation 8.5, we get:

φ =

∮
~v · d~l =

2π~l
m

=
h

m
l (8.7)

Therefore the circulation of the velocity around a closed curve is quantized in angular

momentum, leading to singular defects in the density, i.e. vortices, at a central point.

The winding phase of φ must become singular at a point in the advancement by 2π in a

rotational geometry. Therefore to avoid a diverging wavefunction at the central point, the

density f of the condensate goes to zero.

8.1.2 Vortices in BECs

A Single Vortex in a Uniform Fluid

Before going full into the physics of vortices in condensates, I start with an introductory

case here for the vortex in a spatially uniform fluid (i.e. V (x, y, z) = 0). Here I focus on
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the energy cost for a vortex to be placed into the system. We can calculate the energy

cost of the vortex being present by looking at the Hamiltonian of the system:

E = 〈ψ| Ĥ |ψ〉 =

∫
ψ∗Ĥψ dr

=

∫
d~r

(
~2

2m
|∇ψ|2 + V |ψ|2 +

g

2
|ψ|4

) (8.8)

However, we can simplify for our case of a uniform gas with a trapping potential V = 0.

From the discussion in the previous section, I start with a generic wavefunction with a

real valued amplitude and imaginary phase term that can contain a phase winding:

ψ(r, z) = ρ(r, z)1/2eilφ (8.9)

Where ρ is the density of the BEC (a real-valued function), φ is the phase angle of the

wavefunction, and l is an integer to account for multiples of 2π. If we cast the energy

calculation in terms of cylindrical coordinates (i.e. no z dependence), and insert our

generic wavefunction we get:

E =

∫
d~r

(
~2

2m

[
(∂rρ)2 +

ρ2l2

r2

]
+
g

2
ρ4

)
(8.10)

To perform this integral, we need to put bounds on the volume in which we are integrating

over (as a uniform gas will have infinite energy in infinite space). Here I consider the

volume of a cylinder of radius a, such that the integral becomes:

E =

∫ a

0
2πrdr

(
~2

2m

[
(∂rρ)2 +

ρ2l2

r2

]
+
g

2
ρ4

)
(8.11)

Note that this is the total energy of the system, including the vortex. To find the energy

cost of the vortex, we need to subtract the energy of the system without the vortex. For

the uniform system with no vortex, the density is a constant uniform value of ρ = ρc. If

we take Equation 8.11 with l = 0 (no circulation) then we get the energy of the stationary

state, E0:
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E0 =

∫ a

0
2πrdr

(g
2
ρ4
c

)
(8.12)

However, we also need to account for the difference in the density form the vortex and

non-vortex configurations. Under the constraint of constant atom number in a given

volume, when the vortex is present the density far from the core must be larger then in

the uniform case as the mass near r = 0 has been displaced outward to larger r. This

effect will change the interaction energy term in Equation 8.11 between the vortex and

non-vortex scenarios. To account for this, we again consider our cylindrical volume of

radius a. The atom number is constant, which means the integration over the number

densities must be equal as well. The expression for the particles per unit length nl for the

no vortex case:

nl = πa2ρ2
c −

∫ a

0
2πdr

(
ρ2
c − ρ2

)
(8.13)

Note that in the limit of the vortex density profile ρ becoming constant, this expression

simply evaluates to the average density in a uniform medium. Combining number density

with the interaction energy definition, the energy density from interactions becomes:

Eint =

∫ a

0
2πrdr

(g
2
ρ4
c

)
− ρ2

cg

∫ a

0
dr 2πr(ρ2

c − ρ2) (8.14)

Using the correction from the density profile modifying interactions, we can subtract

the energy of the system without a vortex, E0, from the total energy of the system with

the vortex, Ev:

Ev =

∫ a

0
2πrdr

(
~2

2m

[
(∂rρ)2 +

ρ2

r2
l2
]

+
g

2
(ρ2
c − ρ2)2

)
(8.15)

Which vanishes if l = 0 (no vortex) and the density becomes constant. The amplitude of

the condensate wavefunction can be determined directly (i.e. numerically) by solving the

GPE for ρ:

µρ =
~2

2m

[
−1

r
∂r (r∂rρ) +

l2

r2
ρ

]
+ gρ3 (8.16)
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In the case of a numerical solution, the energy of the vortex in the uniform fluid can be

calculated using Equation 8.15 [16]:

Ev =
π~2ρc
m

ln

(
1.464

a

ξ

)
(8.17)

Where ξ = (8πascatn0)1/2 (Section 2.2.3) is the healing length of the condensate.

Vortices in a Trapped Condensate

As an extension to the uniform condensate, we can advance the discussion to the energy

associated with a vortex inside a confined condensate. For simplicity, I consider the case of

the experimentally relevant geometry of a harmonic potential where there is a cylindrical

symmetry ωx = ωy 6= ωz with a vortex at r = 0. Because the radius of the condensate in

plane, RTF, is significantly larger than the size of the vortex, approximately the healing

length ξ, the result in Equation 8.17 is valid for length scales intermediate to these two.

To account for the trapping potential in plane, we consider the kinetic energy of

the rotating condensate for values of RTF > r > a. Each particle at a distance r will

have a kinetic energy of E = 1/2mv(r)2. To find the total kinetic energy contribution, we

integrate along the radial direction and multiply by the density of atoms as a function of

the radius:

EK =
1

2
m

∫ RTF

a
dr 2πrn(r)v(r)2 (8.18)

Where n(r) is the radial density of the condensate. The density profile of the condensate

at a radius r away from the vortex core is simply given by the Thomas-Fermi profile

(Section 2.2.4):

n(r) = n0(1− r2

R2
TF

) (8.19)

Where n0 is the density at the center of the condensate if there were no vortex present.

The velocity of the condensate can likewise be calculated from the expressions in Equation

8.5 and Equation 8.7:
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v(r) =
~
mr

(8.20)

If we combine Equation 8.19 with Equation 8.20 in Equation 8.18, we get the kinetic

energy contribution as:

EK =
πn0~2

m

∫ RTF

a
dr

1

r

[
1− r2

R2
TF

]
(8.21)

Evaluating Equation 8.21 gives the energy cost due to the trap as:

EK =
πn0~2

m

[
ln(RTF)− ln(a) +

1

2

(
a2

R2
TF

− 1

)]
(8.22)

(8.23)

Using the approximation that a << RTF to neglect the quadratic term, we get a final

approximate contribution of:

EK =
πn0~2

m

[
ln

(
RTF

a

)
− 1

2

]
(8.24)

To find the total energy of the vortex in the trapped system, we add the kinetic energy in

Equation 8.24 to the uniform case in Equation 8.17 to get the total energy of:

Ev =
πn0~2

m

[
ln

(
1.464

a

ξ

)
+ ln

(
RTF

a

)
− 1

2

]
(8.25)

=
πn0~2

m
ln

(
0.888

RTF

ξ

)
(8.26)

Thus the presence of the trap does not significantly change the functional form of Ev, but

just the numerical constant within the logarithm.

To consider the energy cost for the full three dimensional system, under the con-

dition that Rz >> ξ, we can approximate the energy of the vortex in the condensate

as being composed of multiple two dimensional systems with a central vortex [113]. In
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this description the density profile n0, (and therefore the healing length ξ) and the radial

extent of the condensate RTF all become functions of z. For a radial slice, we get a small

energy contribution described by Equation 8.26:

dE(z) =
πn(z)~2

m
ln

(
0.888

RTF(z)

ξ(z)

)
dz (8.27)

Again, the Thomas-Fermi description of the condensate (Section 2.2.4) saves us from effort

as we can quote the density and radius as:

n(z) = n0

(
1− z2

R2
z

)
R(z) = RTF

(
1− z2

R2
z

)1/2 (8.28)

The healing length is slightly trickier, but likewise can be computed as:

ξ(z) = ξ0 (n0/n(z, r = 0))1/2 (8.29)

Where ξ0 is the healing length at the center of the condensate, n0 is the density at the

center of the condensate and n(z, r = 0) is the density along the z-axis of the condensate.

Therefore we can express the vortex energy per slice of the condensate in Equation 8.27

as:

dE(z) =
πn0~2

m

(
1− z2

R2
z

)
ln

(
0.888

RTF

ξ0

[
1− z2

R2
z

])
dz (8.30)

If we want the total energy of the vortex, we integrate across all values of z:

Ev =

∫ Rz

−Rz
dE(z)

= 2

∫ Rz

0
dz

πn0~2

m

(
1− z2

R2
z

)
ln

(
0.888

RTF

ξ0

[
1− z2

R2
z

]) (8.31)

Here I used the z axis symmetry of the condensate to alter the bounds of integration.

Thanks to an old table of integrals hidden deep somewhere within the catacombs of math-
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ematical knowledge, a similar integral can be evaluated as [113]:

∫ 1

0
dx(1− x2) ln(1− x2) =

1

9
(12 ln(2)− 10) (8.32)

Using the relationship in Equation 8.32 to evaluate Equation 8.31 for the vortex energy

(using appropriate rescaling of the integration variable z), we get:

Ev =
4π~2n0Rz

3m
ln

(
0.671

RTF

ξ0

)
(8.33)

Given the trap geometry the condensate is in, and the number of atoms within the con-

densate, the energy of a vortex forming can be calculated using Equation 8.33. The astute

reader may wonder how a vortex can form, as Equation 8.33 suggests a vortex will always

carry an energy penalty that the system will avoid. In the next section I will discuss the

barrier of entry of vortices, and the associated rotational dynamics to create conditions

favorable for vortices to nucleate within the BEC.

Rotating Condensates and the Barrier to Entry of Vortices

For a vortex to be energetically favorable, we must compare the energy of the stationary

ground state compared to the energy of a condensate with a vortex in a frame rotating

with an angular frequency Ω. The energy of the condensate rotating around the z-axis in

the rotating frame is given as ER = ES − ΩLz, where ER and ES represent the rotating

and non-rotating energies respectively [114]. Therefore we can define a critical value of

the rotation frequency such that the rotating state will be energetically favorable as:

Ωc =
ER − ES

Lz
(8.34)

We know the difference in the numerator as the vortex energy Ev from Equation 8.33. The

angular momentum, on the other hand, is still to be calculated. The angular momentum

Lz of the condensate is ~ multiplied by the number of particles in the condensate. Cast

in terms of a density, we calculate:
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Lz =

∫ Z

−Z
dz

∫ RTF

0
2πdr

(
1− r2

R2
TF

− z2

R2
z

)
(8.35)

This is simply the result derived in Equation 2.42 for the atom number in the Thomas-

Fermi approximation multiplied by ~:

Lz =
8π

15
~n0RzR

2
TF (8.36)

We can combine Equation 8.34 with Equation 8.36 to get the critical angular frequency

of rotation in which the vortex state becomes energetically favorable:

Ωc =
Ev
Lz

=
5~

2mRTF
ln

(
0.671

RTF

ξ0

)
(8.37)

Connection Between Rotation and Magnetic Fields

In the context of Section 8.2, it is important to discuss the relationship between magnetic

fields and rotation in terms of vortices. The equivalence of the Lorentz force for particles in

uniform magnetic fields and the Coriolis force for a rotating system allows us to extend the

discussion of vortices as introduced by magnetic fields, here specifically synthetic magnetic

fields acting upon our charge neutral BECs. For a given synthetic field B, we can define

a cyclotron frequency such that Ω = qB/m. Here the cyclotron frequency has a direct

correspondence to the rotation frequency in the previous section, allowing us to similarly

define a critical synthetic magnetic field strength in which vortices appear:

Ωc =
qBc
m

=
5~

2mRTF
ln

(
0.671

RTF

ξ0

)
(8.38)

Or in terms of the magnetic field:

Bc =
5~

2qRTF
ln

(
0.671

RTF

ξ0

)
(8.39)
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Vortices via Engineering the Phase

Merging 

Condensates

Phase 

Imprinting

Figure 8.2: Top: Vortices generated by three separated BECs which are then merged
together. The phase difference between the BECs can vary such that there is an
azimuthal phase winding, thereby generating flow. Picture from experiment in [116].
Bottom: An inverting magnetic field is used to introduce a topological phase into the
condensate. Picture from [117].

8.1.3 Experimentally Generating Vortices in Condensates

Since the first observation of vortices in BECs [115] there have been various mechanisms

used to nucleate vortices into condensates. In this section I will provide an overview to

the varying methods and their characteristics.

Engineering Phase Windings

In various experiments, vortices were created in BECs by generating a wavefunction that

has a phase singularity imprinted into it, as described in Equation 8.5. From Equation

8.5, this will create an azimuthal mass flow, thereby generating a vortex. These methods

typically generate a low number of vortices (order unity) as it becomes more experimentally

difficult to generate the requisite number of phase windings required for more circulation.

Examples are shown in Figure 8.2.
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Vortex Lattice in Rotating BEC

Figure 8.3: Vortices and vortex lattice generated from a stirring laser. Image from
Reference [119]

Applied Rotation to Condensates

In comparison to imprinting the appropriate phase conditions, other experiments created

vortices in a BEC via rotation of the cloud. This method includes those that use a blue

detuned optical beam rotating in time (providing the time dependent force) and rotating

traps. This method uses the rotation of the condensate to cause the vortex state to be

energetically preferable as discussed in Section 8.1.2. In this method, a stationary BEC is

subjected to a rotation, and the system is allowed to evolve into the rotating ground state

configuration preferring vortex formation.

Rotating traps can produce large number of vortices (Figure 8.3) as the BEC relaxes

into the rotating ground state. The number of vortices Nv the system can support at a

given rotation Ω is given by:

Nv =
2mΩ

h
A (8.40)

Where A is the area of the condensate projected onto the rotation vector direction. From

the density profiles of a confined condensate (Section 2.2.4), the area is related to the

number of atoms in the condensate, hence a larger condensate with many atoms can

support a larger number of vortices in rotational equilibrium. While the system can

support many vortices in equilibrium, the time to equilibrate can be comparable to the

lifetime of the condensates (∼ 1 second). Over these long times, the vortices are predicted

to form a triangular lattice (Figure 8.3) in an infinitively large medium [118].



190 8.2. Rapid Entry of Vortices via Non-uniform Synthetic Gauge Fields

0

0.5

1

1.5

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

S
h

e
a
r 

P
a
ra

m
e
te

r 
(a

.u
.)

Gradient (EL / µm)

Shear Versus Detuning Gradient

ΩR ~ 7 EL

Figure 8.4: Onset of vortex nucleation via synthetic magnetic fields as measured by
the shear in the BEC density after TOF [83]. The sudden increase in shear as the
detuning gradient is increased (which determines the synthetic field strength, Section
6.1.5) coincides with the observation of vortices in the system.

Generating Vortices via a Synthetic Gauge Field

Owing to the analogy between the Lorentz force and the Coriolis force, a BEC of charged

particles will experience the same vortex nucleation dynamics as a rotating charge neutral

BEC. As described in Chapter 6, we can create a synthetic magnetic field that will drive

vortex nucleation within the non-rotating condensate. This approach is unique in that

there are no time-dependent potentials, i.e. the synthetic magnetic field is at rest in the

lab frame.

This method can be extended into cases where the optical generation of the synthetic

field is no longer uniform. In such cases, the non-uniform field can be high strength

and tightly confined, creating regions where the effective rotational force overwhelms the

other local energy scales, thereby rapidly nucleating vortices into the condensate. The

experiment and observations of such effects is described in the latter half of the chapter

in Section 8.2.

8.2 Rapid Entry of Vortices via Non-uniform Synthetic Gauge

Fields
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In this section I discuss the experiment exploring a new mechanism for vortex nu-

cleation in BECs using non-uniform synthetic magnetic fields. In the uniform field exper-

iments, the number of vortices and the rate in which vortices are created is dependent

upon the rate of rotation and the density of atoms in the condensate [120–122]. It is

energetically favorable for vortices to form at the systems edge, where the low atomic

density facilitates vortex formation. These vortices then migrate toward the center of the

condensate, where they can ultimately relax to form a vortex lattice.

Even in cases where the effective magnetic field is not uniform across the condensate,

the same mechanisms of vortex nucleation, the coupling of perturbations to higher trap

modes, applies [123]. Furthermore, the arrangement of the vortices across the condensate

will be correlated with the geometry of the effective magnetic field, where vortices pref-

erentially congregate in high field regions. We first prepared pairs of independent BECs

in a double-well potential, with an engineered strong artificial magnetic field present in

the barrier separating the BECs. We then merged the BECs by lowering the barrier and

expanding the region of artificial field to nominally uniformly cover the resulting single

BEC.

Here we created an inhomogeneous laser-induced artificial magnetic field ( [124])

initially maximized in the space between a pair of separated BECs. Initially, the atomic

density in the high field region was small but non-zero, allowing the ready formation of

“hidden vortices” [125]. We then gradually expanded the region of high field while merging

the BECs, eventually reaching a single BEC in the uniform field limit. In comparison to

rotating trap experiments, this method rapidly nucleates vortices in the low atomic density

regions between the condensates, which become located at the condensate center after the

two BECs merge.

The strength and location of the artificial field, as well as the double-well potential

is determined by two parameters, the strength of the Raman coupling interaction, and the

spatial detuning used to generate the synthetic magnetic field.
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8.2.1 Generating the Separated BECs and Synthetic Field

In Section 6.1.5, I outlined the methods to generate a synthetic magnetic field in BECs via

optical interactions. However the original experiments did not fully explore the parame-

ter space between the strength of the spatial detuning and the Raman coupling strength.

Within experimentally accessible regimes, there can exist interesting linear vortex struc-

tures as predicted by GPE simulations. Here I want to develop the origin of the different

parameter regimes in the system, and discuss the different behavior that is manifested.

First, as described in Section 6.1.3, I restrict the study of the system to the lowest

dispersion band of the Raman Hamiltonian, under the assumption that the energy dif-

ference between the dispersion bands is larger than any other characteristic energy scale.

Our system then can be described by an equivalent Hamiltonian for a spinless boson with

an vector potential in the x̂ direction:

Ĥ =
~2

2m
(k2
y + k2

z) + V (r) +
~2

2m
(kx −Ax(ΩR, δ))

2 (8.41)

Where Ax, the effective vector potential, depends on the Raman coupling strength

ΩR, and the detuning from the Raman resonance δ. Here I describe the energy and

momentum, as per usual, by the characteristic units EL = ~2k2
L/2m and kL =

√
2π/λR,

where λR is the wavelength of the Raman beams creating the interaction.

For small ΩR and δ = 0, the dispersion relationship in the F = 1 manifold of 87Rb

has three minima at k ≈ −2, 0,+2 kL, with an energy degeneracy between the k = ±2 kL

states. As ΩR is increased, the dispersion bands will transition from multiple minima

to a single minima [84, 126]. As a detuning δ is added, the symmetry between the spin-

momenta states is broken and as δ increases, the dispersion band will deform towards a

single global minima as described back in Section 6.1.5.

For a pair of δ and ΩR values, the dispersion relation for the lowest Raman band

can be computed and its global minimum energy found. The value of the artificial vector

potential Ax is defined at the momentum of the global dispersion minima, and the scalar

value φ is defined as the downward shift in energy from the uncoupled state. For all
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Figure 8.5: Left: Synthetic vector potential curves as a function of increasing Ra-
man coupling strength ΩR. At small values of ΩR, the vector potential has large
discontinuities, generating large magnetic fields. Left: Calculation of synthetic mag-
netic field at various values of ΩR. Both plots are at δ′ = 300 Hz/ µm and colors
correspond to same values of ΩR on each plot.

|δ| > 0, the presence of the Raman coupling will increase the magnitude of A and shift

the minimum dispersion energy φ lower as |δ| becomes larger (see Figure 6.6).

When a linear spatially dependent detuning δ(y) = δ′y+δ0 is introduced, the vector

potential becomes a function of y, Ax(y). As a corollary, the spatially dependent vector

potential causes the BEC to experience an effective magnetic field∇×Ax(y) = −B(y)ez as

∇×Ax(y) becomes non-zero. Similarly, the energy shift φ becomes a spatially dependent

scalar potential φ(y). Because φ(y) is negative semi-definite, it always acts as an effective

‘anti-trapping’ mechanism that competes with the trapping potential along the ŷ direction.

It becomes immediately clear that depending on the parameters ΩR, δ′ generating φ(y)

and the trapping potential geometry, there can be different regimes within the system.

In the limit of ΩR → 0 and δ′ > 0, the system is described by a simple spin

dependent potential φ(y) combined trapping potential. If the linear detuning is generated

via magnetic field gradient in ŷ, φ(y) simply becomes the linear Zeeman shift when ΩR = 0.

Depending on the magnitude of δ′, the spin components of the BEC will either phase

separate in trap, or with large δ′, spatially separate into multiple spin dependent trapping
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Figure 8.6: Pictoral definition of the scalar potential φ and the vector potential Ax.
The value of Ax (orange) is the momentum value corresponding to the global minima
in the Raman dispersion. The value of φ (light blue) is defined as the decrease in
energy at the minima from the undressed state.

potentials. For the limit of large ΩR, φ(y) becomes weak and the optical trap dominates.

In this regime, both the effective trapping potential has a single minima and the vector

potential smoothly varies over the BEC, producing a nearly constant effective magnetic

field B.

The regime of interest occurs with finite ΩR and large δ′. Here the scalar potential

φ(y) dominates at distance on the order of the BEC size and will create separated minima

in position space with a potential barrier of height VB. However with finite Raman cou-

pling, the BECs in separate potential wells also experience a vector potential Ax ≈ ±2kL.

In this regime, ΩR is small enough that at δ = 0, the dispersion relation εx(k) has

configurations that support three separate local minima. Small amounts of detuning will

break the symmetry and favor a global minima at ≈ ±2 kL. For a spatially dependent

detuning, the value of Ax(y) will undergo abrupt transitions located at ±y∗ from k = 0 to

k = ±2. These abrupt transitions in Ax(y) correspondingly create large values of B(y)ez

around ±y∗. Because of the design of the vector potential only being monotonically

increasing along ŷ (owing to the linear detuning), all points in the BEC within the narrow

one-dimensional band ≈ ±y∗ will experience the large effective field and areas outside the
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smooth. Right: The combination of the harmonic trapping potential and the scalar
potential φ. For small ΩR (dark reds), the combination of the trap and φ generates
a double-well configuration. As ΩR is increased (lighter reds), the potential becomes
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band will have B ≈ 0.

If the scalar potential φ(y) creates a geometry with VB ≈ µ, the chemical potential

of the BEC, that supports a non-negligible atom density at ±y∗, there will be a slice

through the BEC with large effective magnetic field within a narrow band. The large

field creates similarly large amounts of angular momentum over a narrow region, leading

to phase singularities, i.e. vortices, that due to the 1D nature of the strong field, are

restricted to a one dimensional strip at ≈ ±y∗ within the BEC, with a spacing equal to

2π/∆k. Indeed, previous simulations have predicted that within these overlap regions

linear vortex structures are formed and are in equilibrium [127].
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8.2.2 Experimental Setup

To study the vortices in this system, we prepared our BEC with an equal fraction of

atoms in the mF = ±1 states and linearly ramped on the detuning gradient from zero to

a desired final value δ′ over half a second from 0 to the desired experimental value (up to

450Hz/µm) over 0.5 seconds. When δ′ 6= 0, the magnetic gradient phase separated the two

spin components, forming the precursors of the potential wells in Figure 8.7. We waited

an additional 100 ms for the magnetic field environment to equilibrate before linearly

ramping on the Raman lasers to a final coupling ΩR. To measure the system at a given

(ΩR, δ
′), we then linearly ramp up ΩR to a measurement value.

Our gradient coils produced a small unwanted contribution to the bias field which we

compensated for by adjusting the current in our bias coils, thereby keeping the bias at the

system’s center constant. The measurement of momentum distributions is highly sensitive

to the trapping potential and any constant detuning will break the degeneracy between

Non-Uniform Effective Fields Geometry

BEC

ω1

Y

X

B(y)

ω2

ω2 - ω1= ωZ ≈3 MHz

Figure 8.11: We subjected 87Rb BECs to a linearly varying B = (B0 +B′y)ey mag-
netic field which gave a position-dependent Zeeman splitting ~ωZ(y) = gFµB|B(y)|
between the three mF states of the f = 1 ground state manifold. We then illuminated
our BECs with a pair of cross-polarized λ = 790 nm laser beams propagating along
ex ± ey. The frequency difference δω between these lasers was detuned by a small
δ = ~[δω − ωZ(y)] from the Zeeman-resolved transitions within f = 1 ground state
manifold, allowing us to couple the Zeeman sub-levels with strength ΩR.
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Non-Uniform Fields Experimental Procedure
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Figure 8.12: Experimental procedure used to measure the momentum distribution
and vortex nucleation within the system.

states, and will skew the distribution accordingly. Even with the average detuning noise

within our apparatus (≈ 0.35EL), the location transition region can vary up to 2EL, and

accordingly affects vortex nucleation properties. Similar to the discussions in Chapter 7,

we used the magnetic field stabilization system as described in Section 4.4.7 and Appendix

A to remove long term drift.

8.2.3 Measurement and Analysis

We measured our system using standard time-of-flight (TOF) techniques followed by ab-

sorption imaging. We initiated TOF by suddenly turning off the confining potentials and

in the first 2 ms of TOF we ramped ΩR to zero and simultaneously ramped the detun-

ing 75 EL from resonance. This process mapped the laser-dressed system into a single

spin state [83], and imparted a position-dependent artificial electric field as the vector

potential becomes constant, inducing an overall shearing motion [83]. In the regime where

one-dimensional vortex structures are predicted to form, it is exceedingly difficult to image

the structures in-situ via absorption imaging because of the predicted minimum vortex

spacing of λR/2
√

2 ≈ 300 nm.
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Vortex Counting Algorithm

We developed a vortex counting algorithm in order to systematically measure the number

of vortices observed with the BEC. The algorithm is as follows: First, a low-pass filter is

applied to the image of the BEC density. This filter removes small scale noise and density

modulations, leaving behind only the Thomas-Fermi profile. All regions within the image

that are above a threshold value (typically set to be 20 percent of the max density) were

considered to be within the BEC region.

The compared to only using a least-squares fitting algorithm to extract a Thomas-

Fermi profile of the BEC is that in most images, the shearing and deformation of the

gas from the vortex dynamics generates a profile that is no longer properly describe by a

Thomas-Fermi shape. In the case of a BEC near the separated-chain region of parameter

space, the cloud is thinly spread across momentum and position space. Next, using the low

pass density profile, a high pass density profile is obtained by subtracting the unfiltered

profile and the low pass profile. The result gives the density modulations that are convolved

with the approximately Thomas-Fermi profile. This image also has the threshold applied,

making all regions outside of the marked BEC region zero density, and leaving those within

at their high-pass values.

Using the prepared density image as previously described, the core of the counting

algorithm is to look for islands of negative values within the density modulations. The

image is further prepared by setting all values greater than zero to zero, leaving only

negative density modulations (the vortices).

Next, the minimum density value is found within the image. In small steps starting

at this minimum value up to 0, the image has a threshold applied at min + ∆ and all

regions that are between the minimum density and the threshold are set to one, creating

a binary (black and white) image showing regions that have a density within that region.

To determine the location of each region, a boundary tracing algorithm is applied to

generate a set of points that are on the perimeter of each region. To find the center of

each region, a center of mass calculation is performed on the perimeter points, generating

the approximate center of the bounded region. This process is repeated for each (x,y)

region center found, and for each threshold value incremented.
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Vortex Counting Algorithm

Original Image Filtered Image BEC Region Image High-Pass Filtered
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Figure 8.13: Algorithm to count vortices in images of the condensates. The pro-
cedure uses 2D filtering methods to extract the frequency modulations in the BEC
density corresponding to vortices.

After iterating threshold values and determining regions, the set of center points

is filtered to remove duplicate points. Next, a 2D minimization algorithm is applied

iteratively using each center point as the starting value, generating a new set of vortex

center points. This step weeds out any weak local minima within the density profile.

Lastly the relative distances between each of the minima points is generated. Due to the

discrete nature of the density profile data, the local minimization solver may find solutions

that are separated by a grid point or two, marking them again as duplicate points. The

points that remained are considered the vortices within the BEC.

Due to the chaotic nature of the vortex arrangement, only those vortices within the

central region of the BEC were counted as they were clearly resolvable. This rejection

criterion implies the counting algorithm conservatively reports the number of vortices

within the BEC.
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Figure 8.14: Plot of the variance measured in the condensate image after the high-
pass filtering step versus the number of vortices reported by the vortex counting
algorithm. The comparison was calculated on over ∼ 2500 independent realizations
at various δ′ and ΩR.

Using Variance to Count Vortices

Our counting algorithm performs poorly for disordered vortices, and for those with poor

contrast, especially in distributions when the two condensates are partially merged. We

found that the variance of high-pass filtered images gave a signal proportional to the

vortex-number in images where the counting algorithm succeeded. For BECs with few

or no vortices, there should be relatively low variance as the Thomas-Fermi profile has

been removed by the filter; only high spatial frequency imaging noise remains. For BECs

with many vortices, the variance increases as the regions with and without vortices form a

series of high and low peaks in the filtered image respectively. We compared the variance

to the counter vortex number for ∼ 2500 independent realizations at various ΩR and δ′

values and confirmed that the variance is proportional to the vortex number. We therefore

use these variances as a proxy signal for the vortex number. The variance measurement of

the number of vortices shows a much more dramatic onset of vortices in the non-uniform

field regime versus the uniform field regimes compared to the vortex counting algorithm

(Figure 8.14). This method accounts for many more vortices that the counting algorithm

could identify reliably.
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Figure 8.15: Second moment of the momentum distributions at δ′ = 300 Hz/µm
as a function of ΩR, with the left, center, and right columns being ΩR = 3, 4, 5EL

respectively. Top: GPE-computed 2D momentum distributions k(x, y) using the same
parameters. Middle: Experimentally measured momentum distributions after TOF
Bottom: Experimentally measured second moment of the momentum distributions at
δ′ = 300 Hz/µm as a function of ΩR. Shared region represents theoretical prediction,
accounting for uncertainties.

8.2.4 Results

Momentum Distributions

To examine where in the parameter space (ΩR, δ
′) possessed regions of high magnetic

field and rapid vortex nucleation within the BEC, we first examined the distribution of

momentum in the BEC as a function of ΩR and δ′. For the three different possible

trap geometries, there can be equally three classes of momentum distributions that arise.

First, when there are two separated BECs, there are two distinct peaks in the momentum

distribution of the BECs at ±2 kR. In the regime where the two separated BECs are

beginning to overlap (when VB ≈ µ), the BEC will span a larger set of momenta. In the
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Figure 8.16: Magnitude of 〈k2〉 in the parameter space of ΩR and δ′. The overlapped
region between the dashed lines was calculated from theory to be at the 80% and 20%
of the maximum moment at a given δ′.

high coupling limit when ΩR creates a single well in both momentum space and position

space, the momentum of the cloud is centered around k = 0 kR (Figure 8.15, top)

The momentum distributions are drastically different in each of the three parameter

regimes shown in Figure 8.15. Firstly, when there are two separated BECs (left column)

the momentum distribution is sharply peaked at ±2 kR, maximizing 〈k2〉 ≈ 4 kR
2. As

these BECs begin to overlap (center column) (when VB ≈ µ), the momentum distribution

spans the full regime from −2kR to 2kR, reducing 〈k2〉. Lastly, in the coupling limit when

ΩR when the BECs merge (right column), the momentum distribution is sharply peaked

at k = 0 kR and 〈k2〉 → 0. Thus 〈k2〉 parameterizes these different regimes.

To study 〈k2〉 for a range of ΩR and δ′, we prepared our system at the desired δ′

with ΩR = 0, with a BEC consisting of an equal mixture of mF = ±1. When δ′ 6= 0, the

magnetic gradient phase separated the two spin components, forming the precursors of

the potential wells in Figure 8.8. We then ramped on ΩR with a ≈ 10ER/s rate chosen to

be adiabatic with respect to the system’s center of mass dynamics (but not the time scale

for vortex formation), and then held ΩR constant at the final value for 150 ms, allowing

the system to equilibrate.

Figure 8.15, bottom depicts the evolution of 〈k2〉 at δ′ = 300 Hz/µm as a function
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of Raman coupling strength ΩR, and shows the three qualitative regimes outlined above.

For ΩR & 3, 〈k2〉 decreases slowly, as expected for the separated well configuration, then

as the wells merge (3 . ΩR . 5) 〈k2〉 drops rapidly, before saturating to zero in the single

well regime.

We observe that for the separated BEC regime, 〈k2〉 ≈ 4kR
2. As the coupling is

increased the two separated BECs begin to merge as the scalar potential φ(y) begins to

weaken as ΩR increases. This onset of the merging of the condensates is correlated to a

rapid decline in 〈k2〉, indicating a measurement in the VB ≈ µ region of the parameter

space. As ΩR increases further, φ(y) becomes weak in comparison to the trapping poten-

tial, and the system forms a single well potential. In this region where the BEC has a

single potential well, 〈k2〉 asymptotes towards zero (Figure ??e).

Rapid Entry versus Standard Entry

Because the variance acts a proxy measurement of vortex number that is indifferent to

the chaos of the vortex distribution, we took advantage of the metric and studied the

variance in two different regions of the BEC: the inner and outer halves. Since in a

conventional nucleation process the vortices come from the system’s edge, we expect for

this regime the outer signal to be larger as vortices nucleate and smaller in the inner

region as vortices must migrate inwards. In contrast, for our merged BECs we expect

vortices to be preformed in the system’s center, quickly dispersing across the BEC once

the merging process has occurred. We distinguished these two potential mechanisms for

vortex formation by studying the variance in the inner and outer halves of the system.

For parameters where a high strength magnetic field does not intersect the BEC at

all ΩR, the variance in the outer region of the BEC begins to increase noticeably before

the variance in the inner region (Figure 8.17). The interpretation here is that, similar to

previous rotational experiments, the vortices are nucleated on the periphery of the BEC

and evolve inward toward a lower energy state. For parameter trajectories that do have

a high-strength magnetic field region, the variance in both the inner and outer regions

simultaneously increase at the onset of vortices within the system at approximately where

the theory predicts the two spatial wells to combine. The simultaneity of the increases
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Figure 8.17: Top: Vortex number as a function of ΩR in the non-uniform (blue trian-
gle) and uniform (red circles) effective field regimes (at δ′ = 300 Hz/µm, 100 Hz/µm
respectively). The vortices suddenly enter when the BECs merge. The vertical purple
and orange lines represent the onset of vortices in the uniform and non-uniform cases
respectively. Middle: Variance in the outer (dark red) and inner regions (light red) of
the BEC for the uniform field method regime. Here the inner variance lags the outer
variance, suggesting vortex formation at the condensate periphery. Bottom: Variance
in the outer (dark blue) and inner regions (light blue) of the BEC for the non-uniform
field method regime. For a non-uniform field, the condensate experiences a jump in
inner and outer variance simultaneously.

implies that the vortices were nucleated from the inside of the BEC and quickly disperse

across the cloud.

For parameter regimes where there was not a large effective magnetic field, we

observed a slow increase of vortices as ΩR was ramped up. At higher values, the number
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Figure 8.18: Dynamics after a quench through the separated to merged regions of
the experimental parameter space. By varying the hold time, the two BECs can be
seen to collide, producing many vortices.

of vortices began to drop as the density of the BEC lessened as well for the longer ramps

(Figure 8.17). By comparison, for parameter regimes where a vortex chain was predicted,

there was a sudden turn on of vortices as ΩR was increased. The stark difference in rapid

appearance of vortices, together with higher vortex number, suggests that the vortices are

being nucleated into the system via a different mechanism.

Rapid Quenches To Uniform Field

In a separate study I examined the dynamics of the system after crossing between the

non-uniform to uniform transition suddenly. To do this I first ramped up the detuning

gradient as described in Section 8.2.2 to a specific value. Next I ramped ΩR up to a value

before the transition region. Next the value of ΩR was increased instantly to a value

beyond the transition. Lastly, the system was held for a variable hold time to observe the

resulting dynamics.

When performing the quench across the transition, the two separated BECs in a
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double well potential are suddenly placed into a single well potential and offset from the

center. This causes the two BECs to gain momentum as they fall toward the trap center.

The two clouds, both with different momentum characteristics due to the vector potential,

begin to collide, producing a set of interference patterns and vortices (Figure 8.18). If held

for much longer, the system will relax into a single BEC with many vortices present.



Appendix A

Flux Gate Magnetic Field

Stabilization System

This chapter details the operation of the flux gate magnetic field stabilization system

described in Section 4.4.7. This system uses an FPGA circuit board that I designed to

read the background magnetic field in our experiment, and produce a correction signal

that drives our biasing coils to cancel the noise at the atoms. The performance of this

system is also described in Section 4.4.7

A.1 Theory of Operation

A.1.1 Flux Gates

To measure the magnetic field, we use a set of Stefan-Mayer model FL1-100 flux gates

(Figure A.1). These units work well within our experiment, as they are compact and low

power. The total measurement range of 1 Gauss over 10 Volts allows for a wide window

of measurement with high resolution.

As helpful as the sensors are at measuring small magnetic field, there are many

problems for us to use them in a direct feedback form of stabilization. The flux gates, due

209
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Stefan Mayer FL1-100 Flux Gate

Specifications

Range ±1000 mG

Output 100 mG / V

Temperature 

Drift
1 µG/°C

Bandwidth 0 – 1KHz

Power ± 15V @ 30 mA
Data and PCB image from Stefan Mayer Instruments

Figure A.1: Stefan-Mayer FL1-100 Flux Gate

to their method of measuring the field, generate a magnetic field in the 10 kHz− 30 kHz

frequency range (see section iv of reference [128]). This field can cause a back action with

the atoms, making direct feed forward or feed back schemes difficult. Even worse, the field

generated from our bias coils are registered on the flux gates themselves, thus any feedback

to correct a field will cause a feedback loop, making conventional locking impossible.

To combat these issues, we do a few things. First, to help reduce the radiated

kilohertz noise from the flux gates, we enclosed them in aluminum shields. Secondly, I

had developed a way to toggle the power of the flux gates on and off via a 5V TTL line,

allowing us to turn off the flux gates at sensitive portions of the experiment. The last

problem is the most difficult: every other coil in the experiment (quadrupole, Zeeman

slower, bias coils, etc.) produces a signal at the flux gate that can quickly saturate the 1

Gauss full range. Therefore for most of the experimental cycle, the flux gates cannot be
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Figure A.2: Placement of fluxgates to measure the magnetic field in ẑ

engaged as their output signal is railed and useless, another reason direct feedback will

not work.

The solution was to make a track and hold measurement system, with a complexity

that required the flexibility of the FPGA system. The idea is that at the end of the

evaporation in the optical dipole trap, all of the electromagnetic coils in the experiment

are off (or canceling true DC background fields), therefore a measurement at this time is

a (or at least the best) measurement of the background field. For any other times outside

of this window, the correction system can keep the flux gates powered down, and output

a correction signal based on the last measurement. By measuring the drifting field during

this window each cycle and then updating the correction signal to a cancellation coil, we

can remove long term field drifts (see Section 4.4.7).

Due to the bulky size of the flux gates, we are not able to get the flux gate sensors

any closer to the atoms than ≈ 10 cm. Since we cannot put a flux gate close, or on the

atoms, we cannot directly measure the field at the atoms. To improve our measurement of

spatially uniform background fields, we deployed a pair of flux gates symmetrically across

the glass experimental cell. The two flux gate sensors are placed in opposite directions

(±ẑ). We then calculate the average background field signal from the two sensors as:

VFG−Total =
1

2
(VFG1 − VFG2) (A.1)

The assumption we are using is that the background field does not vary in a discontinuous
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fashion over the 30 cm distance between the two sensors, hence to a linear order we are

extrapolating the field at the glass cell. That said, we still do find the magnetic field

sensed by the flux gates and atoms is different, and still needs to be calibrated.

A.1.2 Low Frequency Field Rejection

To remove the long term drifts in the experiment, there is a track-and-hold algorithm that

uses non-continuous measurements to overcome the issues previously mentioned. To do

this, first the flux gate signal is connected to the FPGA system at an analog input channel.

The FPGA board is set to have the channel be read differentially so that both the flux gate

positive and negative values can be read. The ADC subtracts these two values and reports

them as a digital value within the FPGA. Next, the measured signal is subtracted by a

reference value that we set. This gives us the field strength difference from now and where

we want to be (the reference). Next, the difference in the field, ∆B, is fed into the track

and hold system. To prevent feedback loops, this part of the algorithm must be enabled

remotely. When the Measurement Active signal is enabled, ∆B is continuously averaged

for the length of the enable signal, thereby extracting the low frequency components of

the ∆B signal. This operation is naturally implemented with a low-pass filter algorithm

in hardware. With the DC value of ∆B, the system multiplies by a scaling coefficient that

is the combination of: the flux gate scaling, the calibration of flux gate field versus field at

the atoms, the field generated in the correction coil per amp run through it, and the coil
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Figure A.3: Flux gate low frequency compensation algorithm
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amps per command volt (see Section A.2.4). After ∆B is scaled appropriately to give a

feedback signal, this signal is output from the FPGA device to the correction coil current

command port. When the measurement active signal is enabled, the output of the device

puts out 0 V so that the field from the correction coils is disabled, allowing measurement

of the true field.

A.1.3 60 Hz Field Rejection

Line noise (aka 60 Hz noise) originates from currents flowing in the 120 V AC lines,

powering most lab equipment. That said, it is hard to remove all the sources of 60 Hz

magnetic field noise in the lab without having any electricity left1! To counteract the

effects of 60 Hz magnetic field noise at the atoms, we can measure the spatially uniform

1All plans about interchanging lead-acid +12V battery banks aside

‘Anti-Signal’ 

Correction 

Signal to Coil 

Controller
ΔB Measured

Flux Gate 60 Hz Compensation Algorithm

60 Hz 

Line TTL

9
0

°
P

h
a
se

 T
T
L

Higher Harmonic

TTLs

(120,180Hz, etc.)

Phase

Amplitude

32-bit Base Frequency Code

Output 

Scaling

Add to DC 

Compensation

Higher Harmonic 

Removal Modules

Internal 

32-bit NPLL

Multiplier

Multiplier

CORDIC Atan

Module

Fast Square 

Root

θ

Low Pass 

Filter

Low Pass 

Filter

0
°

P
h

a
se

 T
T
L

Numeric 

Frequency 

Multiplier

DDS Numeric 

Sine Function 

Generator

(180° Phase 

Anti-Signal)

Lock-in Amplifier

+

Figure A.4: Flux gate 60 Hz line noise compensation algorithm



214 A.1. Theory of Operation

60 Hz signal between the flux gate pair and send a signal back to the correction coils to

counteract the effect.

However, this plan requires a few things. First, the correction coil and current source

must be able to operate faster than 60 Hz, so that the phase lag between measurement and

correction is negligible. Second, in order to send a 60 Hz anti-signal, we need to know the

amplitude and phase of the measured background field. This is where the FPGA flexes

its muscle.

To get the amplitude and phase out of the flux gate measured signal, I deployed a

phase-sensitive detector: a lock-in amplifier. A 60 Hz 5V TTL is generated from a direct

connection to the 120 V AC line, with appropriate electronics to downsize the voltage

and filter out high frequency noise. This input oscillator tied to the line frequency acts

as the reference signal for the lock-in amplifier. One could simply digitally synthesize a

60 Hz signal with great precision, however the line frequency varies in time to maintain

synchronization with atomic clocks and across the power grid. Because we want a very

narrow filter at exactly the power line frequency, it is simple enough to digitize the power

line signal into a clock itself. All that said, herein I refer to this frequency varying signal

still as the 60 Hz signal.

With the 60 Hz TTL in the FPGA, a digital-numerical PLL is used to determine

the phase-increment value of a 32-bit DDS clock source. The digital PLL pulls back the

32-bit frequency code and phase that follows the 60 Hz signal, with a stable lock to within

a microsecond. This code allows digital synthesis of TTL signals at higher harmonics, as

well as arbitrarily phase shifted versions of the 60 Hz line signal. This arbitrary phase

shift allows the creation of a 0 degree and 90 degree phase separated pair of TTL signals

at 60 Hz. These TTL signals are individually multiplied against the calculated ∆B in

Figure A.3, generating a pair of signals X and Y such that:

A =
√
X2 + Y 2 (A.2)

tan(θ) = Y/X (A.3)
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Where A is the amplitude of the 60 Hz signal present on the ∆B signal and θ is the phase

delay between it and the 0 degree phase TTL.

It is worth mentioning that the extraction of the amplitude and phase requires a

square root function and arctangent computation in hardware. To avoid excessive resource

usage, a hardware friendly square root approximation that only involves two additions and

bit shifts is used, at the cost of ≈ 3% accuracy. To compute the arctangent, I wrote a

hardware CORDIC algorithm consisting of a few pre-stored values of arctangent that

computes arbitrary angles via successive shift and add operations.

With the amplitude, frequency and phase of the 60 Hz signal known precisely, these

parameters are fed into a DDS sine wave generation module that I wrote, creating an

anti-signal that can be fed to the correction coils. Lastly this signal is added to the DC

correction signal in Section A.1.2.

To further improve the reduction of line noise, the digital-numerical PLL gives the

ability to easily multiply the base frequency of the 60 Hz input TTL, allowing us to create

higher harmonic TTLs (i.e. 120 Hz and 180 Hz), and deploy the same lock-in amplifier

algorithm to generate an anti-signal at those frequencies as well. Using this algorithm for

the 60 Hz and the next 2 harmonics, most of the flux gate line noise components can be

matched and eliminated (see Figure A.5).

It is important to note, because of the track-and-hold method of measuring the B

field, the 60 Hz amplitude and phase are measured during the Measurement Active signal

enabled; the frequency is measured continuously from the input clock line. Therefore the

anti-signal fed to the correction will be locked at phase, amplitude and frequency until

the next measurement is enabled. As mentioned previously, the 60 Hz waveform can drift

over time, but the 1 minute timescale of a normal BEC experiment from start to finish is

much shorter than this variance time. In fact, the SoftScope trace in Figure A.5 was taken

a few minutes after the measurement trigger in order to see the feed forward stability.

Lastly, this 60 Hz removal method is independent of the flux gate measurement,

that is it is general enough in design to remove 60 Hz signals from any digitized signal.

It would be possible, considerable device resource constraints aside, to place such a filter

on every analog in line on an FPGA system where the input analog signal is immediately



216 A.1. Theory of Operation

Flux Gate 60 Hz Compensation Performance Example

Flux Gate 1

Flux Gate 2

60 Hz TTL

ΔB
60 Hz Correction
(Phase shifted to show match)

Figure A.5: SoftScope measurement from the FPGA device showing the 60 Hz
matching waveform. Look closely, they lie right on top of each other.

subtracted by the anti-signal before being processed else where.
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A.2 Usage and Calibration Protocols

A.2.1 Flux Gate Controller Box and Connections

The flux gate controller is based on the FPGA PCB (Appendix B) that I designed. There

are a few simple modifications to the board. First, the ADC channels for the flux gates

were set to read a differential signal; at no point are the inputs connected to ground.

Given the 100 mG/V measurement of the flux gates, the FPGA system when reading over

±10 V has a maximum precision of 30 microgauss. To aid in the 60 Hz cancellation, a

simple circuit connected to the AC power entering the box takes the 120 V line waveform

FPGA Flux Gate Controller System

Correction

Signal

Flux Gate CFlux Gate A Flux Gate B

Front Panel

Back Panel Flux Gate Connector

Signal + Signal -

-15V+15V

Figure A.6: Connections for the FPGA-based flux gate controller
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Flux Gates
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Connections

Flux Gate

Signal Measurements

Correction

Signal

Voltage Controlled 

Current Source Correction

Coil

Figure A.7: Front panel connection guide

and turns it into a 60 Hz 5V TTL signal that the FPGA can process. This TTL provides

the reference signal for the 60 Hz cancellation lock-in amplifier.

The front side of the box has connections for up to 3 flux gates. Flux gate port A

is a simple monitor port. Flux gate ports B and C are used in the cancellation system,

providing the signals in the averaging mechanism described in Equation A.1. Each of the

three flux gate signals can be read out of three BNC ports on the box, removing the need

for separate differential amplifiers if one wants to simply see the field measurements. Note

that the flux gates need to be powered on to see a signal2.

When constructing the current source and correction coil, it is useful to consider

the voltage to current to field calibrations. It is a sad fact that there is a few mV of

noise on the correction signal line. If through the calibrations the correction signal for a

2Because I’ve fooled myself enough times wondering where the signal went, only to find I did not toggle
the power to the flux gates
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-15V @ 250 mA

Flux Gate Power Enable Circuit

Figure A.8: Power on/off TTL toggle circuit schematic

milligauss field jump is the same size, then the correction signal noise will introduce more

magnetic field noise than it corrects. For this reason, it is helpful to use the large ‘table

coils’ (Section 4.4.6) to make feedback corrections. For example, the bottom table coil has

a 64.3 mG/A magnetic field and 11.4 Ω resistance. Given a 1:3 voltage command:output

(which is currently true), the coils generate 16.9 mG per volt from the correction signal. In

this scheme, the millivolt noise on the line only translates into tens of microgauss magnetic

field, far below our usual shot-to-shot stability.

Flux Gate Power Control

To disable the flux gate power when not making a measurement in order to avoid any

magnetic noise at the atoms, I quickly constructed a TTL compatible power enable/disable

circuit. The circuit consists of an input 5 V signal that is passed through two operational

amplifier circuits: one that has gain +3 and the other gain -3. The op amps then output

low current ±15 V voltages. To provide the ≈ 30mA currents to each flux gate, a set

of BUF634p buffer chips are placed at the outputs of the operational amplifiers. These

devices each can provide 250 mA at ±15 V (given the correct power supply), more than

enough power sourcing for multiple flux gates. Although functional, this design could be

better improved with a dedicated high current switching IC, such as ADG5434, and use of

surface mount component PCB fabrication, versus the wire and vector board construction

currently deployed.
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A.2.2 Manual Readings From Flux Gates

To make a measurement of the field as given by the flux gates when not in an experimental

cycle, one can use the signal output ports on the front of the device (Figure A.6). Given

the default state of the system in manual control to make a MOT, remember to set the

currents of the quadrupole, slower bias and slower taper coils to zero, or else the flux gates

will saturate and the signal will be useless. Also, the flux gates need to be powered on

using the DO4-13 digital line.

A.2.3 Experimental Cycle Setup

To get the feedback system to work, the timing of the measurement active signal must be

set correctly, and the feed forward coefficient must be calibrated. First, the experimental

cycle must have the FPGA device measuring at a time step when all of the other coils

are off, or the bias coils are on at low field (the flux gates cannot be saturated). There

also needs to be wait time before measuring if coils have been recently(≈ 200 ms) turned

off, as coils such as the quadrupole have long eddy current and inductive timescales. Next

the flux gates need to be powered on for ≈ 100 ms, then the measurement active signal

enabled. The more time given on this step, the better the measurement for both DC and

AC magnetic fields will be. When done, disable the measurement line and power to the

PulseBlaster Line 2: 

Measurement Enable

DO4_13: 

Power Flux Gates

Dev4 

Digitals

PulseBlaster

Digitals

Turn off all coils

Wait for field to stabilize

Measure field

Turn off flux gate

Flux Gate Track-and-Hold Measurement Sequence

Figure A.9: Measurement steps for flux gates in CycleX experiment
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Flux Gate Measurement Sequence
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Figure A.10: Measurement and Correction signals during the track and hold process

flux gates, the new correction value will be updated at the output.

A.2.4 DC Correction Calibration Protocol

Before calibrating for the feed forward coefficient, the reference magnetic field value needs

to be set. The reference magnetic field values act as the ‘zero field value’ in the sense

that the flux gate system will always output the signal required to correct to get this field

measurement back.

After setting the experimental cycle up as described above, one needs to use their

favorite method (usually Adiabatic Rapid Passage, Section 3.1.2) to get the background

magnetic field plus applied field at a known atomic resonance. Once on resonance, we set

the reference value to the background field measured during the magnetically quiet stage
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in the cycle. To do this in an easy way with the cycle running, take the measurement

signal connected to the FPGA device and connect it to the Reference Capture Trigger

(Figure A.6, back panel schematic) for a cycle or two. This will cause the FPGA device

to set the internal reference value to what the field is when triggered at the magnetically

quiet portion of the experiment. After the one or two cycles, connect the signal back into

the Measurement Active TTL line.

To get the feed forward coefficient we require 4 values:

• The conversion of flux gate voltage to field measured at the flux gates. This is simply

the 100 mG/V calibration in Figure A.1.

• The field at the atoms (measured through ARP, Section 4.4.7) as a function of field

at the flux gates. This is the value of a in equation A.4.

• The field generated at the atoms as a function of current on the correction coil. This

is the value of b in equation A.4.

• The current flow in the correction coils as a function of voltage command to the

power supply or servo the coils are connected to. This is the value of c in equation

A.4.

All of these allow one to calculate the feed forward coefficient as:

CFG =
100 mGFluxGate

1 VFluxGate
× amGAtoms

1 mGFluxGate
× 1 ACoil

bmGAtoms
× 1 VCoilCMD

cACoil
(A.4)

Knowing the coefficient CFG gives the FPGA the knowledge to compute the command

signal to the correction coil:

VOutput = CFG∆BMeasured (A.5)

Now it is very simple3, the experimentalist just needs to find the values of a, b, and

c in equation A.4. If using the bias coils in the experiment to provide a correction signal,

the value of c is a freebie, see Section 4.4.3. After getting all these values, hook up the

3I kid.
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Coil 

Command

Voltage (V)

Coil Current 

(A)

Coil Voltage 

(V)

Resonance

(A)

Flux Gate 

Voltage (V)

0 0.001 0.002 3.62375 0

0.25 0.3046 0.457 3.6140 0.058

0.5 0.6814 1.105 3.6045 0.117

-0.25 -0.2845 -0.4023 3.6335 -0.057

-0.5 -0.6750 -1.105 3.643 -0.115

Figure A.11: Example raw data set required for calibrations of flux gate system

correction coil of your choice to power supply of your choice. Next, find resonance with no

current in the coil. Then introduce current into the correction coil, enough to where you

see the resonance change at the atoms, but not wildly far away. At this point, you need

to record the voltage across the coil and the current on the coil, as well as the amount of

current in the bias coil required to get the system back to resonance and the measurement

of the voltages on the flux gates (via softscope or the analong output ports on the front of

the box). Repeat this procedure for many different currents, both positive and negative.

With enough points, the linear relationship between the flux gate field measurement and

atomic field measurement should become clear. A bonus is that the correction coil is now

calibrated, with the linear relationship between field shift measured by the atoms and

current in the coil. Now crunch numbers4, get value.

A.2.5 60 Hz Correction Calibration Protocol

Previously it was found that the scaling factor for the 60 Hz field noise correction system

was approximately 2, owing to the fact that I had not included in hardware the 1/2 factor

in amplitude measurement from the lock-in amplifier calculation. Thus a scale factor of 2

input into the software for the 60 Hz correction (see Section A.2.6) is required for normal

operation. If there are fears that the calibration is somehow different, a calibration and

measurement procedure can be performed.

To do this calibration, I measured the change in resonance (and hence field described

4Useful - 87Rb F = 1 ground state: 0.7 MHz/G
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Generating and Calibrating 60 Hz Field Noise
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Figure A.12: Example raw data set required for calibrations of flux gate system

in Section 4.4.7) as a function of time, over ≈ 50 ms, a large enough time window to see

60 Hz oscillations. The idea is that by changing the gain of the 60 Hz correction signal,

there should be coefficients that ‘overdrive’ the system and induce 60 Hz oscillations, or

those the over correct the 60 Hz waveform and change the phase of the oscillation by

180 degrees. I repeated the resonance oscillation scan for many different 60 Hz correction

signal gain coefficients to see how the oscillations changed Section A.12. By measuring

the amplitude of the oscillation as a function of the gain, a linear trend appears where the

x-axis intercept gives the gain that cancels out the 60 Hz noise at the atoms.

Two things to note about the amplitude to gain relationship in Section A.12. First,

measuring the oscillation amplitude near the correct gain value is difficult, and the intrinsic

noise in the system washes it out, requiring measurements at larger gain magnitudes.

Second, if the gain is too high, the shift in the field can be larger than the resonance

width, causing non-linear effects or signal clipping.
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Setting Flux Gate Coefficients

1.) Connect to device, click ‘Flux Gate Controller’ 2.) Input feed forward coefficient

Figure A.13: Example raw data set required for calibrations of flux gate system

A.2.6 Programming the Coefficients

(This section may change in the future if the newer FPGA software is deployed for the

Flux Gate controller box)

To program in the calibration coefficient for the control signal, connect to the flux

gate box via the USB connection. Click the ‘Flux Gate Controller’ tab, and put the value

into the ‘Track/Hold Gain’ box. Note this value can be positive or negative, make sure

you are removing the signal, not doubling it! As of this moment, to insert the 60 Hz gain

coefficient, similar to before, go to the PID control tab and type into the P gain setting.

This is a band-aid method, co-opting an already established 32-bit register to act as the

gain coefficient for the 60 Hz waveform.

A.2.7 Troubleshooting

Turn the box off, then back on. Repeat till working.

Sometimes this box and oscilloscopes do not behave together and a lot of noise

appears on the line.



Appendix B

Modern FPGA Instrument System

This appendix chapter serves as documentation of work performed on the current FPGA

based platform. This work encompasses extensive hardware and software development

(being a large portion of my technical work within the RbLi experiment) and as such is a

lengthy read. Enjoy!

B.1 Hardware

After the experience with the development of the first version of the FPGA board,

there were many shortcomings that needed to be addressed. First, the FPGA board de-

sign borrowed from previous research groups did not have the analog-digital conversion

focus that we require for our experiment. As a result, the older system had many elec-

tronic noise issues that caused signal degradation in our experiments. Furthermore the

FPGA chip itself was an outdated part with relatively few resources to implement more

complex calculations, effectively forcing corners to be cut in code so that it would reduce

its firmware footprint and compile and execute in the chip.

The goal for the next version was to have a more robust analog front end that could

adapt to arbitrary signal control within the experiment (for example the flux-gate based

magnetic field stabilization scheme described in Section 4.4.7). Also, the holy grail of such

a project was to have that such devices could integrate with the computer control sys-

226
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tems within the experiment, bypassing the need for commercial analog-digital conversion

instruments at all. In our current implementation, the computer control systems convert

digital signals to analog waveforms, which then control various laboratory instruments via

those analog signal levels. However, when the analog signal is sent to a remote device,

it will inevitably acquire electronic noise, degrading the precision of the signal. Some of

these analog control signals are sent to FPGA based devices to control a servo set point

for instance. At the FPGA instrument, the signal has to be re-digitized with an ADC,

which will not acquire all of the information originally sent and acquire noise. However, if

the FPGA devices were sent data digitally, there would be ε amount of signal degradation,

no 60 Hz line noise, or update timing issues. Thus, one objective for the next version was

to be able to load a set of digital sequence values (i.e. the set point for a PID controller)

for each step in an experimental sequence, effectively an arbitrary waveform generator

embedded within each device.

To address these issues, a custom PCB for analog control was designed around the

use a cheap, but powerful, off-the-shelf FPGA development unit.

B.1.1 DE0-NANO FPGA Board

For the second generation FPGA instruments, I used a Terasic DE0-NANO FPGA devel-

opment boards as the starting point of the design. The boards come built with a modern

(as of 2013) Altera Cyclone IV FPGA, built in USB-JTAG programming circuitry, and

importantly 32 MB of RAM to which sequencing data can be stored. It is worth noting

that while 32 MB is small for today’s systems, there is enough space to store 4 million

experimental steps for a four channel PID controller. Assuming that the data is triggered

intelligently, this is more than adequate amount of space for the typical experimental cycle

run within the lab.
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Figure B.1: DE0-Nano Development board. (Figure from Terasic website)

B.1.2 Custom Circuit Board for Digital Control of Analog Signals

The design of the PCB is divided into two separate regions - the analog and digital sections

of the board. To help prevent high speed switching noise from the FPGA from contam-

inating the analog portion of the board, the analog and digital sections are electrically

disconnected from each other, with digital isolators bridging the connection between the

FPGA and analog-digital converter ICs.

FPGA PCB

Digital 

Section

Analog 

Section

Figure B.2: The second version of the FPGA board
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B.1.3 Digital Section

FPGA

One of the most prominent features on the digital side of the custom PCB is the socket

for attaching the DE0-Nano development board to the FPGA board. To remove the need

for ribbon cables (which can radiate digital noise), the boards ‘socket’ into one another.

A helpful feature of the development board is the physical arrangement of the connector

pins. All pins are neatly arranged into two separate banks, making it simple to directly

connect the board into another appropriately designed PCB. Similarly the power pins on

the development board can be attached in the same way, providing all requisite power and

communication connections. Another advantage of having a socketed design allows ‘hot

swapping’ of different development boards that are flashed with different code set.

FPGA PCB: DE0-NANO FPGA Socket

Figure B.3

Direct-Digital-Synthesis IC for RF Waveforms

Another digital subsystem of the custom PCB is the inclusion of a Direct-Digital-Synthesis

(DDS) IC. This IC, the AD9911, was chosen as it is able to drive frequencies up to 250 MHz

with 10 bits of amplitude resolution. The large frequency range allows for the device, with

an appropriate external amplifier, to act as a precise AOM driver that can be digitally

controlled. The device also features digital triggering lines for near-instantly switching

between pre-programmed frequency values, helpful for doing high-speed frequency ramps.

The DDS output contains, in series with the RF signal path, a mini-circuits AD1T1

transformer to AC couple the RF waveform. Also there are placements on the PCB for a
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Filtering 

Components
Transformer

AD9911 DDS

SMA

RF 

Out

Figure B.4: DDS region of the FPGA PCB

frequency filter that attenuates frequencies above 250 MHz, helping to reject noise from

the waveform.

USB Remote Communication

The second most important portion of the custom PCB (next to the FPGA itself) is

the USB communication section of the board. The design is centered around an FTDI

FT232H USB-to-Parallel interface chip. This chip was specifically chosen for its ability to

communicate at full USB2.0 speeds (480 Mbps), especially helpful if loading experimental

ramps into the FPGA memory. The design runs 8 bits in parallel from the FPGA to the

FT232H chip, with all data transactions timed to a provided 60 MHz clock source (see

FTDI 245 synchronous communication documentation on the FTDI website). There is

also an attached EEPROM chip that stores the USB configuration information, such as

vendor and part ID numbers, that is provided to the remote operating system upon USB

connection.

Digital Inputs and Outputs

A set of pins on the custom PCB are digital lines that run directly to and from the

FPGA, to be used for high speed digital signaling and timing. To adapt the design for

laboratory electronics, a set of 8 lines each were dedicated to providing digital inputs and

outputs respectively. The inputs are 50 Ω terminated lines, connected via BNC or SMA

connectors. The outputs have a high current digital driver allowing interface to other 50 Ω
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terminated instruments. The trace spacing and widths on the PCB were calculated to

give approximately 50 Ω impedance as well, to further reduce ringing on the digital lines.

FPGA PCB: Digital IOs
InputsOutputs

- 50 Ohm Terminated

- Multiple Connection 

Adapters 

- 25 Ohm High Current 

Drivers

- Multiple Connection 

Adapters 

Figure B.5

Secondary Digital Inputs and Outputs

In addition to the high speed digital line, a bank of 16 digital inputs and 16 digital outputs

were placed on the board using a set of shift register ICs, effectively multiplexing 3 FPGA

digital lines into 16. These lines, because of the shift register design, are best served

for digital timing the is not faster than ≈ 100 kHz. These uses include things such as

LED indicators, front panel knobs and switches. The input lines have a 50 Ω terminated

arrangement, along with a Schmitt trigger IC to help reduce any ‘bounce’ effects from

switches and knobs. The outputs equivalently have 50 Ω digital drivers for interfacing

with other laboratory instrumentation or providing moderate current to objects such as

LEDs.
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FPGA PCB: Digital IOs

Secondary Digital Outputs

Secondary Digital Inputs

GND pins

1 16

1 16

Figure B.6

B.1.4 Analog Section
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Figure B.7

The main usage of the FPGA system is to interface with experimental instruments

and objects via analog signals, and as such there is a half of the PCB dedicated to the

digitizing of analog signals.

Analog-to-Digital Converters (ADCs)

For analog signal acquisition, the PCB is loaded with Analog Devices ADAS3022 16-bit

ADCs. The ADCs provide high resolution, high update frequency up to 1 MHz along

with built in variable gain amplifiers for resolution of ±300 µV to 10 µV per bit, with the

maximum input voltage range being ±20.48V
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Ch. 1

FPGA PCB: ADC Channels

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

ADAS3022 ADC – 16 bit resolution @ 1 MSPS

Built in ±20.48V, ±10.24V, ±5.12V, ±2.56V, 

±1.28V, ±0.64V Differential Input ranges

Input Circuit Model

Figure B.8

The ADC is a compromise between high precision and high speed. It was chosen

to be well-rounded in performance for all experimental control situations, from intensity

stabilization to thermal regulation. Each of the four channels of the ADCs are differentially

coupled, thereby rejecting any common mode (ground) noise in the signal. By default there

is an in-line anti-aliasing filter at 1 MHz to help reject high frequency noise from being

injected into the ADC. By default each input channel is terminated into 1 MΩ to ground,

with the option of making the termination float to the outer connection of the SMA

connector by removing a 0 Ω resistor. For measurements that require a current dropped

across a resistor, for instance a hall probe for current, the 1 MΩ resistor can be replaced

with a more suitable 50 Ω or 100 Ω resistor.

Digital-to-Analog Converters (DACs)

For generation of analog signals, the system uses a pair of Analog Devices AD5686R DACs,

with four 16-bit channels, to provide 8 output channels. To provide a bipolar signal from

the usually unipolar AD5686Rs, each channel has a AD8251 instrumentation amplifier

before the output connector that subtracts the value of the voltage reference from the

output signal, giving a bipolar output.

The reasons for using the AD8251 are that they provide differential outputs for the

analog output channels, but more importantly have 2-bit digitally adjustable gain settings,
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Ch. 4

FPGA PCB: DAC Channels

Ch. 2

Ch. 2

Ch. 1

Ch. 8

Ch. 7

Ch. 6

Ch. 5

AD5686R DAC – 16 bit resolution @ 1 MSPS

±10V, ±5V, ±2.5V output ranges

Input Circuit Model

Figure B.9

giving options of gain 1, 2, 4, 8, which leads to possible output ranges of ±2.5, 5, 10, 20 V.

The additional output options are helpful for commanding systems that do not need large

voltage range, keeping the 16-bit resolution over a small range of voltages. By reducing

the output range, the resolution in voltage increases, thus providing more stabilization

to the system or signal. The gains on the instrumentation amplifiers are set in code via

the FPGA, and as such can be adjusted dynamically from a remote system, on the fly,

no resistors or jumpers required. An improved version of the board would benefit from a

multiplier based DAC system with adjustable offsets and limits for full resolution control.

Analog Power

The analog section uses a separate power supply from the digital section of the PCB to

remove the switching noise from any analog signals. The analog portion of the board

requires both ±15 V power to provide the bipolar input and output ranges required. The

board is equipped with a pair of 7815 / 7915 equivalent ±15 V regulators so that the user

can simply connect bipolar sources greater than 15V to it. A 5V regulator in series with

the 15V regulator is also used to provide digital power to the ADCs and DACs. To help

with diagnostics, there are 3 ‘power good’ led indicators that verify the correct operation

of the ±15,+5 V power sources. If the LEDs do not light up, there is an issue with the

power supply as labels on the PCB. For reference, the board draws approximately 350mA
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of current on the positive and negative inputs during operation1.

FPGA PCB: Analog Power

+5V Regulator

+15V Regulator

-15V Regulator

‘Power Good’ 

indicator LEDs
±18V, GND input

Figure B.10

To help reduce noise in the system, all ICs are connected in series to the power

supplies with a ferrite bead, and to ground with a pair of 10 uf and 0.1 uf capacitors. The

combination acts as an LC filter over a wide range of frequencies, and the ferrite bead

ohmically dissipates the power at high frequencies.

B.2 FPGA Software Design

The firmware on the FPGAs consists of both Verilog code to generate hardware logic

for digital signal processing, but also an Altera Nios 2 ‘soft’ processor programmed into

the FPGA hardware. By embedding a microprocessor into the FPGA, operations such as

communication and low speed calculations can be easily facilitated into the system with

no cost to hardware resources.

B.2.1 System-on-Chip (SOC) Design

To take advantage of the microprocessor in the system, the FPGA instrument system was

build in a system-on-chip design style. All DSP hardware hardware blocks are embedded

1I did not test for the max current draw, i.e. all outputs are dumped into low resistance loads at high
voltage, etc.
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as different objects in the interconnected system, along with the processor, memory and

other auxiliary functions such as timers. All of the devices are connected to one another

through an interconnection bus that assigns memory address space to the various objects

connected, allowing for arbitrary communication between objects.Each of these objects

have different regions of memory that can be assigned. For a custom made PID controller

object connected to the system, the registers within its address range correspond to dif-

ferent parameters, such as the proportional gain, or a maximum output value. Each of

the hardware objects attached to the system can also communicate to remote ICs and

external hardware logic as well using their own external connections.

B.3 USB Remote Communication

B.3.1 Packet Structure

To communicate with the FPGA devices over USB, a custom packet structure and protocol

was developed. Because the actual USB communication protocols are transparent to the

FPGA, the packet structure helps to define a protocol for flow control, data length and

error checking. Without such structure, if multiple commands are queued up within the

FPGA’s read buffer, it would not be able to delineate where the commands begun or end

thus causing possible data corruption that would go unaccounted for2. When dealing with

large data transfers, like programming arbitrary waveform generation or retrieving data

logging tables, having the communications buffer fill up is a fact of life.

The packet structure is designed to be similar to both of the common internet UDP

and TCP protocols. There is a header that contains the size and relevant information

as to the payload of the packet, a data section and all followed by a checksum value. In

detail, the first two bytes of the packet contain the size of the packet, including header,

data and checksum bytes. The next two bytes provide a command sequence. This tells the

the FPGA device how to interpret the data in the address and data fields. For instance,

2Which did happen when first testing...
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the command field can distinguish between reading data and writing data into memory

locations. The packet number field is a 4 byte field that increments upon each packet

transaction. This field is primarily used for flow control purposes, similar to the TCP

sequence number field. The data field contains the data payload sent to the device. The

interpretation of the bytes in this field depend on the command. The last two bytes of

the packet are for an appended checksum value. The checksum is calculated using the

CRC-16-CCITT convention with polynomial 0x1021. On these instruments, the hardware

logic for USB data transfer automatically3 handles the generation of the CRC as bytes

are read in or out (see Section B.4.2).

All the fields in the packet are represented in a little endian format. Because the

embedded processor uses a little endian format as well, this allows quick copying of data

from the packet to a location in the instrument’s memory space in a data content agnostic

method. This ambivalence to the packet content also allows for the use of a direct-

memory-access (DMA) controller to copy data from a packet to system memory-space at

high speed, drastically increasing efficiency for large data set operations.

B.3.2 Commands

The following are a list of commands can be sent to a standard instrument.

Command
Code

Description

0x3000 Returns list of all registered custom devices on the system. Reported in a
single ASCII string, sub fields divided by commas, devices by semicolons in
format:
Type, Name, Memory Base Address, IRQ Number, IRQ Controller ID, Mem-
ory Span, Saveable Flag, Structure Pointer, Structure Size;

0x3001 Read the device’s name

0x3002 Write the device name

0x3010 Read from memory at the value in the address field of the packet, for the
length specified in the data field of the packet.

0x3011 Write to memory at the value in the address field of the packet, for the
length of the data field of the packet

0x3020 Returns an identical packet to the one sent, a ’ping’ for simple communica-
tion diagnostics

3The hardware calculates the checksum, but the code on the soft processor checks if the CRC is correct
when it reads out each packet, therefore can be disabled in the code if checksum is unwanted.
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B.3.3 Device Communication Model

Given the small subset of commands for communication with the device, it may seem

confusing as how to go about setting parameters within the system. The SOC design

methodology describes in Section B.2.1 the memory-mapped structure of all the subdevices

within a system. To set a parameter on a function generator, such as the frequency, one

requires the base address of the function generator and the knowledge of what the memory

offset is to the frequency registers. By sending a command 0x3011 with the correct address

(the device’s base plus offset), the correct parameter will be updated. Command 0x3000

to the device is especially useful, as it enumerates the various subdevices in the system,

and their memory-mapped locations in the instrument.

This model was deployed as it requires a minimal number of commands for an

arbitrary amount of subdevices within the system. This means being able to have a single

physical FPGA and PCB that can easily operate multiple distinct laboratory instrument

functions, and having easy access to them.

To provide extra information about the different subdevices, the user can access the

structure in the processor memory associated with specific subdevice. This structure in

the CPU memory, located at the address given in by command 0x3000, can have unique

identifier fields for each device. For instance for an oscilloscope subdevice, the names of

the channels, and their scalings, can be saved into the CPU memory versus a resource

intensive setup in the hardware itself.

B.4 System Sub-devices

The following is an enumeration of the different devices that can be found on one of the

FPGA devices, and their memory-mapped structures.
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B.4.1 System Info

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R Number of 1 second ticks since the device was 

powered

1 R/W Firmware Version Code

2 R/W QSYS Code Build Time

3 R/W QSYS Code Build ID

4 R Upper 64-Bit number of CPU ticks since start

5 R Lower 64-Bit number of CPU ticks since start

Figure B.11: System Info Subdevice Memory-Mapping
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B.4.2 USB

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 -- --

1 -- --

2 R RXD Buffer Fill

3 R TXD Buffer Fill

4 R IRQ State

5 R/W
Number of bytes in the RXD buffer that triggers 

and IRQ to the CPU to indicate data received

6 R RXD Buffer Size

7 R TXD Buffer Size

8 R Number of bytes sent from the device

9 R/W

Running CRC value on the RXD channel, writing 

anything causes the running CRC to reset (useful at 

end of packet)

10 R/W

Running CRC value on the TXD channel, writing 

anything causes the running CRC to reset (useful at 

end of packet)

11 R
Number of bytes in the current RXD CRC 

calculation

12 R
Number of bytes in the current TXD CRC calculation

15 R Number of bytes read into the device

Figure B.12: System Info Subdevice Memory-Mapping
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B.4.3 PID

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R Data size (in bits)

1 R Coeffcient size (in bits)

2 R
Shift of the proportional gain for fixed-point 

arithmetic

3 R General fixed point shift of coeffcients

4 R Sampling rate, in Hz

5 R/W Error Offset

6 R/W Maximum Output

7 R/W Minimum Output

8 R/W Enable PID Controller

9 R/W Enable Integrator

10 R/W Enable Derivative

11 -- --

12 R Read Input A

13 R Read Input B

14 R Read Input C

15 R Read Input D

16 R Read output signal

17 R

State of PID Controller (0 - Off, 1- Bad Lock, 2 –

Locked, 3- Locked near minimum / maximum 

output)

20 R/W Enable external lock signal port

21 R State of external lock

32 R/W P Coeffcient

40 R/W I Coeffcient

48 R/W D Coeffcient

Figure B.13: Function Generator Subdevice Memory-Mapping
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B.4.4 Function Generator

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R/W Amplitude Value

1 R/W Offset Value

2 R/W Phase Value

3 R/W Frequency Value

4 R/W On/Off Toggle

5 R/W
Function Selector

6 R Read default output

7 R Read triangle output

8 R Read sawtooth output

9 R

Read square output

10 R

Read sine output

11 R
Read cosine output

12 R
Read tangent output

13 R Read TTL output

Figure B.14: Function Generator Subdevice Memory-Mapping
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B.4.5 Analog IO Controller

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0-7 R Read Analog Out (AO) value, Channel 1-8

8-15 R Read Analog In (AI) value, Channel 1-8

16-23 R/W
Static Analog Out value, Channel 1-8

24-31 R/W

Analog Out gain 

0 - ±2.5V

1 - ±5V

2 - ±10V

3 - ±20V)

32-39 R/W

Analog In gain

0 - ±24.576

1 - ±10.24V

2 - ±5.12V

3 - ±2.56V

4 - ±1.28

5 - ±0.64V

7 - ±20.48

40 R/W Enable Static analog out values

Figure B.15: Analog IO Controller Subdevice Memory-Mapping
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